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1. Introduction

One of the leading methods for computing the eigenvalues of a real sym-
metric matrix is that of Givens [1]. In that method, after transforming the
matrix to a triple-diagonal form S, one isolates the eigenvalues by using the
fact that, roughly speaking, the leading principal minors of S — Al form a
Sturm sequence. However, the classical theory of a Sturm sequence, expounded
in [2], needs some extension to give signs to zero values in the sequence. We have
noticed that the extension of Givens in the text of [1] is not quite correct. The
difficulty is a purely algebraic one and has nothing to do with the digital realiza-
tion on a computer. Professor Givens [personal statement] concurs in this, but
states that the machine codes in [1] are correct.

The theorem given below gives a correct extension of a Sturm sequence.

2. Ezxtension of the Sturm Sequence

Dermirion 1. To any expression f;(A) defined below ({ = 0,1, -+, n; A a
real number), we attach a unique sign, SIG{f;(\)], defined recursively asfollows:
| +1 i £ >0,
SIG[f:(\)] =<—1 if f:(A) <0,

SIGa(N)] i fi(0) = 0.
Thus, if fo(A) # 0, SIG[f:(7\)] is well-defined.

DermviTioN 2. We denote by A(A) the number of agreements in sign of the
sequence {f;(A\)}. L.e., A(\) is the number of values of 2 (¢ = 1, ---, n) for
which SIG[f;(A\)]-SIG[fi_i(A)] = +1.

TaEoREM. Let 8 = (s:,;) be a real n X n symmetric matriz in triple-diagonal
form; ie., si: = @i, Siip1 = Siya,i = bi, and 8;,; = 0 for |4 — 7| > 1. Let

bo = 0 and define a sequence f; (¢ = 0, 1, --- , n) of functions of a real variable
A as follows: fo(A) = land,fori =1, ---,n,
((a: — N)SIG[fia(M)], if bia=0;
(@i = Nfisa(N) — BIsSIG[fie(N)], if bia =0
(1) fih) =«
and b,‘_1 = 0;
((@; = Nfiea(V) — bisfia(N), otherwise.
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Then, for any N, the number of eigenvalues of S that are greater than or equal to \ s
given by A(N).

Note. The statement and conclusion of the theorem are those of Givens
({1], p. 16), except for the following:
I. Givens makes SIG[f:(\)] = +1 whenever f;(A\) = 0.

II. Our algorithm (1) for computing the sequence {f;(A)} has replaced Givens’
algorithm: o

((a: — Nfia(N) = biafie(N), if fia(N) 5 0;
— biafie(N), if fia(A) = 0, fis(N) #= 0
@ i) = - and b,; # 0;
— bi,, A fia(A) = 0, fia(N) = 0,
and b;; # 0;
ai — 2, if fia(A) =0 and be, = 0.

A restatement of the theorem was rendered necessary by the discovery of two
classes of counterexamples, of which the following are illustrative.
1. With Givens’ sign convention, the theorem fails at A = 2 for the matrix

1 1
s=[1 1)
since fo(2) = 1, fi(2) = —1and fo(2) = 0. Thus 4(2) = 0 although A = 2 is

an eigenvalue of S.
2. Applying the algorithm (2) to the matrix

S]-

S =)
_— OO

1
1
0
0

O QO kil e

gives the sequence

fo(g) = 1’ fl(z) = _1: f2(2) = 0’ fa(z) = —17 f4(2) = 0.

If Givens’ sign convention is used we have A(2) = 0, whereas with our sign
convention we have A(2) = 3. In either case the result is incorrect, since the
eigenvalues of S are 0, 0, 2, 2.

3. Proof of the Theorem

Case 1. Nob; = 0.

We first prove the following properties of the sequence {f:(A\)}:

(a) Two consecutive f;(A) cannot both vanish for the same value of \.
(b) If fi(\) = O, then fii(M\)fsu(N) <O (4 =1,---,n — 1).

(¢) fx has no multiple root.
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Since, by definition, fo(A) and f,(\) are not both zero, property (a) follows
immediately by induction, using (1).

Property (b) follows from property (a), since, if f;(A) = 0, by (1) we have
fis1(A) = —bfia(A) and neither fi,(A) nor fi1(A) is zero.

To prove property (c¢), we note that f;(2) is the determinant of the sth leading
principal minor of the matrix S — AI. (Since no b; is zero, all of the f; are poly-
nomials in A.) If fo(A) = 0 then, by (a), foc1(A) = 0. Thus S8 — Al is of rank
n — 1 and, since S is symmetric, this guarantees that A is a simple eigenvalue
of S and hence a simple root of f» .

By properties (a), (b), and (¢) we have for any A not a root of f. that

(3) (=1)"fa(N), (=1)" " faca(A), - =+, Fo(N)

is a classical Sturm sequence [2). Hence the number of roots of f. greater than
A is the number of variations in sign of the sequence (3). But this is identical
to the number of agreements in sign of the sequence computed by (1), i.e., to
A(\).

If o is & root of f., then by (a) there is an eneighborhood of Ag, N (Ao, €),
such that f.1(A) # 0 for A € N(Xo ; €). Thus SIG[f,—1(7)] is constant for A €
N(\o; €); also, the number of sign agreements of the sequence fo1(A), -+, fo(A)
remains constant for A € N (Ao ; €). But, since )\ is a simple root of f. , we must
have A(M — 6) — A(No + 8) = 1 for any 6 with 0 < § < e This in turn im-
plies that SIG[f,_1(A0 — 8)] = SIG[f»(A0 — 8)] and, by Definition 1, this holds
in the limit as 6§ — 0 Thus A(N\y) = A(\ — §), and the proof is complete when
no b; = 0.

Case II. Ea:actly ome b; = 0.

Assume b, = 0. Then S decomposes into the direct sum of two matrices
Sy and S, of orders vand n — v, respectlvely, such that each has no b; = 0.
Let 2N, -+, Ff2 ) and £, -+, F,(N) be the sequences which would

be computed by the algorithm for S; and S, separately, and let A®(A) and
A®P(\) be their respective sign agreements. Then, for any ), the number of
eigenvalues of S greater than or equal to A is AP (A) + A®(A) and we must
prove that the number of sign agreements of the sequence fo(A), « -, fa(X)
computed for S by (1) is AV () + A®(A).

We note first that f:(A) = f&(A) fors = 0, - -+, ». Thus it suffices to show
that the number of sign agreements of the sequence f,(\), - -+, fa(A) is AP).
Since b, = 0, we have by (1) that f,4+a(A) = (@41 — N)SIG[f,(A)]. But

2N = (G4 — A)

and therefore f,1(A) = f2(V)SIG[f,(\)]. Likewise, if n — » > 1, we have that
frra(N) = £ (M)SIGIf,(N)), since f5(A) = (@42 = N)fi”(A) — 41 . In carrying
out the algorithm for the (possibly) remammg functions f,43(A), -+ -, fu(A) we
obtain f,4:(A) = f& (A)SIG[f (\)] for z = 3, , » — v. Now multiplication
of the sequence f{"(A), -- -, ® (\) by the constant factor SIG[f,(\)] does not
change its number of sign agreements. Moreover, there is a sign agreement
between f,(A) and f,1(A) if and only if there is one between () =1 and
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fi?()). Hence the number of sign agreements of f,(\), - -+, fu(A) is AP (M),
and the proof is complete when exactly one b; = 0.

The extension to the case of an arbitrary number ¢ of b; equal to zero can be
immediately proved by induction on o.

4. An ALGOL Subroutine for Computing A(N\)

The following subroutine is the equivalent of the algorithm described in
section 2, and is formulated in the version of the algorithmic language AvrGoL
defined in reference [3]..

procedure agree (lambda, a[ ], b[ ], N) =: (A)

array (a, f[{1:N], b[0:N — 1], SIGf[0:N}) ;

integer (N) ;

comment: This procedure computes the number of agreements in sign of the sequence
{f:} defined above for a tridiagonal real symmetric N X N matrix whose diagonal ele-
ments are given by the array a and off-diagonal elements by b. No attempt is made to
minimize temporary storage;

begin agree: b[0] := 0 ; SIGf[0] :

for I := 1(1)N ; begin 1: alpha :

beta := b[I — 1] X b{I — 1]

41 ; A:=0 ;
a[l] — lambda ;
; if either (b[I — 1] =0) ;

f(I] := alpha X SIGf{I — 1} ; erif (b[I — 2] =0) ; .
f(I] := alpha X f[I — 1] — beta X SIGf[I — 2] ; orif 1 =1) ;
f{I] := alpha X f[{I ~ 1] — beta X f[I — 2] end ;

if (f[I} = 0) ; SIGf[I] := sign(f{I]) ; SIGI[I] := SIGf[I — 1] ;

if (SIGI[I] X SIGF[I —~ 1) >0) ; A:=A 4+ 1 ; A:=Aendl ;
return .
end agree
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