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1. Introduction 

One of the leading methods for computing the eigenvalues of a real sym- 
metric matrix is that  of Givens [1]. In that  method, after transforming the 
matrix to a triple-diagonal form S, one isolates the eigenvalues by using the 
fact that,  roughly speaking, the leading principal minors of S - kI  form a 
Sturm sequence. However, the classical theory of a Sturm sequence, expounded 
in [2], needs some extension to give signs to zero values in the sequence. We have 
noticed that  the extension of Givens in the text of [1] is not quite correct. The 
difficulty is a purely algebraic one and has nothing to do with the digital realiza- 
tion on a computer. Professor Givens [personal statement] concurs in this, but  
states that  the machine codes in [1] are correct. 

The theorem given below gives a correct extension of a Sturm sequence. 

2. Extension of the Sturm Sequence 

DEFINITION 1. To any expression f i (k)  defined below (i = 0, 1, - . .  , n; k a 
real number),  we at tach a unique sign, SIG[f~(X)], defined reeursively as follows: 

S l G [ f , ( k ) ]  = - i f  f , ( k )  < 0, 

( S l G i f , _ l ( k ) ]  if f,(X)=0. 
Thus, fif0(k) ~ 0, SIG[f~(k)] is well-defined. 

DEFINrrIoN 2. We denote by A(X) the number of agreements in sign of the 
sequence {f~(k)}. I.e., A ( k )  is the number of values of i (i = 1, - . .  , n) for 
which SIG[f~(k)].SIG[f,_i(k)] = +1 .  

' I T H E o ~ .  Let S = (s,.i) be a real n X n symmetric matrix in triple-diagonal 
form; i.e., s~.~ = a , ,  s,,i+l = s~+l.i = bl,  and si.~ = O for [ i - j l > 1. Let 
bo = 0 and define a sequence f ,  (i = 0, 1, . . .  , n)  ( f u n c t i o n s  of a real variable 
k asfol lows:fo(k)  ~ 1 and, for i = 1, . . .  , n, 

I ( a , -  k)SIG[f,_,(k)],  i f  b,_l = 0; 
I 

(1) f , ( k )  = l ( a ~ -  h)f,_~(k) -- b~_~SIG[f,_~(k)], i f  5,_2 = 0 

and b~_~ r~ 0; 

( (a~ k) f ,_ l (k)  b~_lf~_2 (k) ,  otherwise. 
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Then, for any ~, the number of eigenvalues of S that are greater than or equal to ~ is 
given by A (),). 

NOTE. The statement and conclusion of the theorem are those of Givens 
([1], p. 16), except for the following: 

I. Givens makes SIG[fi(h)] = ---t-1 wheneverf~(>,) = 0. 
II.  Our algorithm (1) for computing the sequence {f~(h)} has replaced Givens' 

I (a~--  ),)fi-l(h) if - -  b ,~f ,_2(~ . ) ,  

-- b~_~_2(X), if 

algorithm : 

f~_l(X) ~ 0; 

f _l(x) = o 

and b~-x ~ 0; 

f,-x(h) = 0, f,_~.(k) = 0, 

and b~_x ~ 0; 

f i - l (h)  = 0 and bi_l = 0. 

(2) f,(~,) = ~ -- b~_l if 

ai -- X, if 

A restatement of the theorem was rendered necessary by the discovery of two 
classes of counterexamples, of which the following are illustrative. 

1. With Givens' sign convention, the theorem fails at  h = 2 for the matrix 

sincef0(2) = 1, f i (2)  = --1 and f2(2) = 0. T h u s ~ ( 2 )  ~ 0 although X = 2 is 
an eigenvalue of S. 

2. Applying the algorithm (2) to the matrix 

S]= 0 1 

0 1 

gives the sequence 

f0(2) = 1, . ~ ( 2 ) - - - - 1 ,  j ~ ( 2 ) =  0, 9 q ( 2 ) = - - 1 ,  f 4 ( 2 ) =  0. 

If Givens' sign convention is used we have A(2)  = 0, whereas with our sign 
convention we have A(2)  = 3. In  either case the result is incorrect, since the 
eigenvalues of S are 0, 0, 2, 2. 

3. Proof of the Theorem 

CASE I. No b~ = O. 
We first prove the following properties of the sequence {f~(h)} : 
(a) Two consecutive f~(X) cannot both vanish for the same value of h. 
(b) Iff~(X) = 0, thenf~-l(h)f~+l(~) < 0 (i  = 1, . . .  , n - 1). 
(c) f~ has no multiple root. 
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Since, by definition, f0(~) and fl(~) are not both zero, pi'operty (a) follows 
immediately by induction, using (1). 

Property (b) foilows from property (a), since, if re(n) = 0, by (1) we have 
fi+a(k) = --bi2/i_l(n) and neither f i+l (n)  nor  f~_l(n) is zero. 

To prove property (c), we note tha t  f i (n)  is the determinant of the i th leading 
principal minor of the matrix S - hi .  (Since no b~ is zero, all of the f~ are poly- 
nomials in n.) If f~(n) = 0 then, by (a), f~_l(n) ~ 0. Thus S -  k l i s  of rank 
n - 1 and, since S is symmetric, this guarantees that  n is a simple eigenvalue 
of S and hence a simple root of f , .  

By properties (a), (b),  and (c) we have for any n not a root of ft. t h a t  

(3) ( - 1 ) " / , ( n ) ,  ( -1)"-~f~_l(k) ,  . . .  , :0(n) 

is a classical Sturm sequence [2]. Hence the number of roots of f ,  greater than 
is the number of variations in sign of the sequence (3). But this is identical 

to the number of agreements in sign of tire sequence computed by (1), i.e., to 
A(n) .  

If n0 is a root of f~, then by (a) there is an e-neighborhood of n0, N(~0, e), 
such that  f ,_t(n) : 0 for n E N(n0 ; e). Thus SIG[f,_~(n)] is constant for n 
N(n0 ; e); also, the number of sign agreements of the sequence f~_~(X), . . .  , f0(n) 
remains constant for n E N(no ; e). But, since no is a simple root of f , ,  we must 
have A(~0 - 8) -- A(~0 q- 8) = 1 for any 8 with 0 < 8 < ~. This in turn im- 
plies that  SIG[f,_~(~,0 - 8)] = SIG[f~(n0 - ~)] and, by Definition 1, this holds 
in the limit as 8 -~ 0. Thus A(n0) = A(n0 - 8), and the proof is complete when 
no b~ = 0. 

CASE II.  Exact ly  one b~ = O. 
Assume b, = 0. Then S decomposes into the direct sum of two matrices 

,S~ and $2 of orders ~ and n - ~, respectively, such tha t  each has no b~ = 0. 
Let foc') (n), • ..  , f~)(n) and fo ¢~) (n), . . .  , f ~ , ( n )  be the sequences which would 
be computed by the algorithm for S~ and $2 separately, and let AC~)(n) and 
AC~)(n) be their respective sign agreements. Then, for any n, the number of 
eigenvalues of S greater than or equal to n is AC~)(n) "-t- A¢~)(n) and we must 
prove that  the number of sign agreements of the sequence f0(n), . . -  , f , (n )  
computed for S by (1) is ACl)(n) ~ Aa)(n).  

We note first tha t  re(n) ~ f~)(n) for i = 0, . . .  , v. Thus it  suffices to show 
that  the number of sign agreements of the sequence f~(n), . - .  , f , ( n )  is ACS)(n). 
Since b, = 0, we have by (1) that  f~+~(n) = (a,+l - k)SIG[f,(n)]. But 

and therefore f,+~(n) = f~)(~,)SIG[f~(n)]. Likewise, if n -- v > 1, we have that  
35+~(n) = f~(n)SIG[f~(k)],  since f ~ ( n )  = (a,+~ :-- n ) f ~ ( k )  - b~+~. In carrying 
out the algorit, hm for the (possibly) remaining functions f , + ~ ( n ) , - . - ,  f , ( n )  we 
obtain f,+i(n) = f~(h)SIG[.f,(X)] for i = 3, . . .  , n - ~. Now multiplication 
of the sequence f ~ ( h ) ,  . . .  , f ~ , ( n )  by the constant factor SIG[f,(n)] does not 
change its number of sign agreements. Moreover, there is a sign agreement 
between f , (n)  and fi+~(k) if and only if there is one between foCal(n) = 1 and 



ON STUR!~ SEQUENCES FOR TRIDL4.GONAL MATRICES 263 

f¢~}rX~ , . . .  , ~ j .  H e n c e  t h e  n u m b e r  of s ign a g r e e m e n t s  of f , (X)  f,,(X) is AI~')(X), 
and  t he  p roo f  is c o m p l e t e  w h e n  exac t ly  one  b~ = 0. 

T h e  ex tens ion  to  t h e  case of a n  a r b i t r a r y  n u m b e r  ~ of b~ equa l  to  zero can  be 
i m m e d i a t e l y  p r o v e d  b y  i n d u c t i o n  on  , .  

4. An ALGOL Subroutine for Computing A(X) 

T h e  fo l lowing  s u b r o u t i n e  is t h e  e q u i v a l e n t  of t h e  a l g o r i t h m  desc r ibed  in 
sec t ion  2, a n d  is f o r m u l a t e d  in  t h e  ve r s ion  of t h e  a l g o r i t h m i c  l a n g u a g e  ALGOL 
def ined  in re fe rence  [3]. 

p r o c e d u r e  agree (lambda, a[ ], b[ ], N) --: (A) 
a r r a y  (a, f[l:N] , b[0:N - 1] , SIGf[0:N]) ; 
in t eger  (N) ; 
c o m m e n t :  This procedure computes the number  of agreements in sign of the sequence 

[f~} defined above for a tridiagonal real symmetric N X N matrix whose diagonal ele- 
ments are g i v e n  b y  the array a and off-diagonal elements by b. N o  a t t e m p t  is  m a d e  ~to 
mi~imlze temporary storage; 

b e g i n  a g r e e : b [ 0 ]  : ~  0 ; SIGf[0] :-- 4 1  ; A :ffi 0 ; 
f o r  I :=  I ( 1 ) N  ; b e g i n  1: a l p h a  :ffi a[I]  - l a m b d a  ; 
beta :~- b [ I -  1] X b [ I - -  1] ; i f  e i t h e r  ( b [ I -  1] ffi 0) ; 
f[I] :-~ a l p h a X  S I G f [ I -  1] ; e r i f ( b [ I -  2] ffi 0) ; 
f[I] := alpha X f [ I - -  1 ] - -  b e t a  X S I G f [ I - 2 ]  ; o r  i f ( 1  = 1) ; 
f[I] := alpha X f[I - 1] - b e t a  X f [I  - -  2] e n d  ; 
i f  (f[I] ~ 0) ; SIGf[I] :-- sign(f[I]) ; SIGf[I] :ffi SIGf[I - 1] ; 
i f  ( (SIGf[I ]  X SIGf [ I  - 1]) > 0) ; A :ffi A ~ 1 ; A :-- A e n d  1 ; 
r e t u r n  
e n d  agree 

R E F E R E N C E S  

1. W. GIVENS, Numerical computat ion of the characteristic values of a real symmetric 
matrix: Oak Ridge National Laboratory,  Report  1574, February 19, 1954. 

2. J. V. UsP~.~sxY, Theory of Equations. New York: McGraw-Hill, 1958. 
3. A. J. PE~LIs ANT K. SA~IELSON, Prel iminary Report - - Internat ional  Algebraic Language, 

Comm. ACM 1, No. 12 (Dec. 1958), 8--22. 


