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Preface 

Vector bundles provide the background for the proper formulation of 
many classical and modem problems of differential topology, whose solu
tions via characteristic classes and K-theory are among the mathematical 
triumphs of the past few decades. These volumes are an introduction to 
vector bundles, characteristic classes, and K-theory and to some of their 
applications : 

Volume I: Foundations and Stiefel- Whitney Classes 
Volume 2 :  Euler, Chern, and Pontrjagin Classes 
Volume 3: K-Theory and Integrality Theorems 

The exposition is based on various courses the author has presented at the 
University of Illinois, with a one-semester course in singular homology and 
cohomology as the only prerequisite ; no further background is necessary. 
Appropriate portions of differential topology, Lie groups, and homotopy 
theory, for example, are explicitly introduced as needed, with complete 
proofs in most cases ; in a few exceptional cases, specific references are sub
stituted for proofs. 

Each chapter ends with illustrative remarks and exercises. The remarks 
constitute a guide to much of the literature on vector bundles, characteristic 
classes, and K -theory from 1935 to 198 1 . 

This first volume is designed both for self-study and as a classroom text 
about real vector bundles and their 71./2 characteristic classes. For classroom 
use, one should perhaps not dwell on the background details of Chapter I ,  
whose results are often taken for granted in any even t ;  only some scattered 
definitions and the Mayer-Vietoris technique itself need any special em
phasis. The remaining chapters can then easily be adapted for presentation 

x i  



Xli Preface 

either in a one-quarter course or in a one-semester course, with very few 
omissions in the latter case. 

The author is indebted to many mathematical friends for their direct and 
indirect contributions to this work : to Professor S. S. Chern for an exciting 
and informative 1 953 graduate course based on the new Iy published Steenrod 
[4] ;  to Professor John Milnor, who has been an inspiration since shared 
undergraduate days at Princeton University, and who provided Milnor [3] ; 
to Professor Rene Thorn, whose pithy and patient explanations turned 
mathematical abstractions into virtually tactile objects ; to Professor Emery 
Thomas, whose clearly delivered lectures (Thomas [2]) rekindled the author's 
interest in vector bundles ; to Professor Peter Hilton and Professor Raoul 
Bott, who provided much encouragement and moral support during early 
stages of the project ; to Professor Felix Albrecht and Professor Philippe 
Tondeur, who read large portions of the completed typescript and provided 
many constructive suggestions ; to Professor Wu Wen-Tsiin, who addressed 
himself to the details of Chapter VI with the astonishing enthusiasm one 
expects only of someone discovering a new world (which he had in fact helped 
to create); to Professor Hassler Whitney, who created vector bundles in the 
first place, and who warmly shared several days of companionship and 
chamber music ; and to many other mathematical friends and colleagues 
who helped clarify questions as they arose. 

The author is equally grateful to Mrs. Doris Bartle for her assistance in 
proofreading the bibliography and to the staff of Academic Press for their 
cooperation during the production of the book. 

I thank my wife, Jean, and our children, Mark, Stephen, Adrienne, and 
Emily, for their patience, understanding, and love throughout the entire 
project. 

University of Illinois at Urbana-Champaign 
June, 1982 

How ARD OSBORN 



Introduction 

In the first half of this volume both real and complex vector bundles are 
introduced and classified, and many examples are given which will play 
a role in later applications. The second half of the volume concentrates 
exclusively on certain 71/2 cohomology classes assigned to real vector bun
dles ; there are several applications to classical problems in differential topol
ogy. (Complex vector bundles reappear in the next volume, where further 
cohomology classes are assigned to both real and complex vector bundles.) 

Let E � X be a continuous map from a topological space E (the total 
space) onto a topological space X (the base space). Suppose that there is an 
open covering { Vi l i E I } of X such that each inverse image n-1(VJc E 
is homeomorphic to the product Vi X �m. The homeomorphisms n - 1 (V i} � 
Vi X �m need not be unique ; however, they will belong to a certain family 
of home om or ph isms whose composition with the first projection Vi X �m-+ 
Vi is the restriction of n to n- I(Vi). If an intersection Vi n Vj of two sets 
in the covering { Vi l i E  I }  is nonempty, then for each x E Vi n Vj one has 
a composition {x} x �m ::"'n-I( {x})":' {x} X �m, hence a homeomorphism 
�m -+ �m. If all the latter homeomorphisms result from the usual action 
GL(m,�) x �m -+ �It/ of the general linear group GL(m, �), then the projection 
E � X is a coordinate bundle representing a real vector bundle e of rank m 
over the base space X. The bundle e is also called a real m-plane bundle over 
X, itsjiber being �m. 

For example, any smooth m-dimensional manifold X is covered by open 
coordinate patches Vi' each of which has coordinate functions Xl, . . . , xm 
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used to describe a homeomorphism from U i to an open set in IRm; the partial 
differentiations J/(ixl, . .. , J/Jxm at each point of Ui form a basis of a vector 
space IRm. Let Uj be another open coordinate patch on X such that the 
intersection Ui n U j is non empty, and let y1, . . . , y'" be coordinate functions 
on Uj• Then over each point of Ui n Uj one has a/ai = (ilx! jail a/ox! + 
. . .  + (iJxm/iJi)O;Jxm for j = 1, . . . , m, so that the two copies of IRm over 
each point of U i n U j are related by the usual linear action of the jacobian 
matrix (Uxi/iJi) E GL(m, IR). This suggests that X has a well-defined real 
m-plane bundle associated to its differentiable structure : the tangent bundle 
,(X) of X. 

Now let 71/2 be the field of integers modulo 2, and let 71/2 [et]] be the 
ring of formal power series over 71/2. To each element f(t) E 71/2 [et]] with 
leading term 1 E 71/2, and to each real vector bundle � over a base space X, 
there is a naturally defined cohomology class u f(�) in the direct product 
H**(X; 71/2) of the singular cohomology modules HP(X; 71/2). In the special 
case f(t) = 1 + t E 71/2[[t]] the class u A�) is the total Stiefel- Whitney class 
w(�) of �, which can be used to compute any of the other classes Ug(�). For 
g(t) = (1  + t) - I = 1 + t + t2 + . . . E 71/2 [et]] the class Ug(�) E H**(X; 71/2) 
is the (total) dual Stiefel-Whitney class w(O of � . 

Here is one of the many classical applications of such 71/2 characteristic 
classes. Let X be a smooth m-dimensional manifold, and let w(,(X) ) E 
H*(X; 71/2) [ = H**(X; 71/2)] be the dual S tiefel-Whitney class of its tangent 
bundle ,(X). Then a necessary condition for the existence of a smooth (proper) 
embedding of X into the euclidean space 1R2m - P is that w(r(X) ) vanish in 
each summand Hq(X; 71/2) for which q � m - p. Using this criterion one 
easily constructs a smooth closed m-dimensional manifold X with no smooth 
embedding in 1R2m -�(m), where et(m) is the number of 1 's in the dyadic expan
sion of m. 

One can define vector bundles � over arbitrary topological spaces. How
ever, many useful properties of vector bundles depend upon further restric
tions; in this book those restrictions are imposed directly on the base spaces 
themselves. The "category f!4 of base spaces" is described in Chapter I, along 
with the category 'If/' of spaces of homotopy types of CW spaces and the 
category.lf of smooth manifolds ; since there are inclusions . if c 11/' c :?4 
the restriction to vector bundles over base spaces X E f!4 is not especially 
stringent. (For those specialists who prefer to consider numerable bundles 
over arbitrary base spaces, any bundle over a space X E f!4 is automatically 
numerable; numerability is discussed in Remark 11.8.4.) 

Let G x F -+ F be any effective action of a topological group G on a 
topological space F. If one substitutes F, G, and G x F -+ F for IRm, GL(m, R), 
and GL(m, IR) x IRm -+ IRm in the earlier sketch of a definition of real m-plane 
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bundles, the result is afiber bundle � withfiber F and structure group G. For 
example, for each real m-plane bundle � there is a corresponding projective 
bundle P�, whose fiber is the real projective space Rpm-I and whose structure 
group is the projective group PGL(m, !R). Fiber bundles (over base spaces 
X E 26') are introduced in C hapter 11, which has several results needed in 
later chapters. One of the main results of C hapter 11 is that if the structure 
group of a fiber bundle is a Lie group G, then one can always replace G by 
any maximal compact subgroup He G ;  for example, the structure group 
G L(m,!R ) of any real m-plane bundle can always be replaced by the orthogonal 
group O(m) c GL(m,!R ). Another major result of C hapter 11 is the Leray-
Hirsch theorem, which asserts for certain coordinate bundles E � X that 
H*(E ; 71/2) is a free H*(X ;  71/2)-module; this is a crucial step in the later 
construction of 71/2 characteristic classes. 

If X !. Y is any map in the category f!4 of base spaces, and if '1 is any real 
m-plane bundle over Y, the pullback P'1 is a real m-plane bundle over X 
which is uniquely defined by '1 and the homotopy class [I] of f. One of the 
main results of C hapter HI is that there is a universal real m-plane bundle 
I'm over the real Grassmann man ifold Gm(!Rx) such that any real m-plane 
bundle � over any X E f!4 is of the form [ym for a unique homotopy class 
[I] of maps X!. Gm(!Roc). For this reason Gm([ROC) is also called the class ifying 
space for real m-plane bundles. 

If E � X represents a real m-plane bundle � over X E fJ4, then there is a 
well-defined zero-section X � E carrying each x E X into that point a(x) E E 
whose image under any of the local homeomorphisms n;-I(V;) --+ Vi X [Rm 
with x E Vi is (x, 0) E Vi X [Rm. If E* is the subspace E - a(X) of E, then there 
is a 71/2 Thorn class V � E Hm(E, E* ; 71/2) which is uniquely characterized in 
C hapt er IV. The composition X � E.!... E, E* of the zero-section with the 
inclusion j then provides the 7l/2 Euler class e(�) = a*j* V � E Hm( x ;  71/2). 

Let � be a real m-plane bundle over X E :Jd, and let P� be the corresponding 
projective bundle. The notation P� is used ambiguously for the total space 
of any representative coordinate bun dle P � --+ X of P�, and there is a canonical 
real line bundle ( = real I -plane bundle) ),� with base space P�. One uses the 
Leray-Hirsch theorem to verify that H*(P�; 71/2) is a free H*( X ;  71/2)-module 
with a basis {l ,  eU�), . . . , e(),�)'n- I ] consisting of cup products of the 71/2 
Euler cla ss e(l.�) E HI(X ; 71/2); the cup product operation ue(),�) is itself 
an endomorph ism H*(P� ; 71/2 ) --+ H*(P� ; 71/2) over H*(X ; 71/2). The direct 
product H**(P� ; 71/2) is similarly a free H**(X ; 71/2)-module, so that for 
a ny IU) E 71/2[[t]] with leading term 1 E 71/2 one can define the 71/2 char
acteristic class uJ(�)E H**(X ;  71/2) to be the determinant of the induced free 

. ,.r(e(Ad) H**(X; 71/2)-module endomo rphlsm H**(P�; 71/2) • H**(P� ; 71/2) ;  
the details of the construction are given in C hapter V. 
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For any real m-plane bundle � over any X E f1d the (total ) Stiefel-Whitney 
class w(�) is the class uf(�) for f(t) = 1 + t. One easily shows that w(�) 
vanishes in all summands HP(X;  Z/2) c H**(X ; Z/2) with p > m, so that 
w(�) = 1 + Wl(�) + . . .  + wm(�) E H*(X ; Z/2), where wpW E HP(X ; Z/2) for 
p = 1 ,  . . .  , m ;  furthermore wm(�) is just the Z/2 Euler class e(�) E Hm(x ;  Z/2). 
For any formal power series g(t) E Z/2 [[tJJ whatsoever, with leading term 
1 E Z/2, there is an alternative computation of ui�) E H**(X ; Z/2) from the 
classes Wl (�)' . . .  , wm(�) alone, using the Hirzebruch multiplicative sequence 
associated to g(t); this construction is also given in Chapter V. 

According to one of the main results of Chapter Ill, any real m-plane 
bundle � over any X Ef!4 is of the form J'ym for a unique homotopy class 
[fJ of maps X 1. Gm(IRIXO). One easily shows that w(�) = w(f!ym) = f*w(ym) E 
H*(X; Z/2) for the total Stiefel-Whitney class w( ym) E H*( Gm(lRoo) ; Z/2) of 

1'* 
the universal real m-plane bundle ym over Gm(lRoo), where H*(Gm(lRoo); Z/2) � 
H*(X ; Z/2) is induced by [fJ. The cohomology ring H*(Gm(IR"') ; Z/2) is 
therefore of interest : it is the source of all Z/2 characteristic classes. The 
main result of Chapter V is that H*(Gm( IROO) ;  Z/2) is the polynomial ring 
Z/2 [Wl (ym), . . .  , wm(Ym)J with one generator wp( ym) E HP(Gm(IR�) ; Z/2) in 
each of the degrees p = 1 ,  . . . , m. 

Chapter VI contains some of the many applications of Z/2 characteristic 
classes, including the nonembedding result sketched earlier in this Introduc
tion. The vector bundles of primary interest in Chapter VI are tangent bundles 
!(X) of smooth manifolds X. 

The only prerequisite needed for the sequel is a modest background in 
singular homology and cohomology, as promised in the Preface. Such a 
background can easily be gleaned from any one or two of the following 
standard references : Artin and Braun [ 1 , 2J , Dold [8J, Eilenberg and 
Steenrod [2J, Greenberg [ I J, Hilton and Wylie [ l J ,  Hu [4, 5J, Massey [6J, 
Spanier [4, Chapters 4 and 5J, Vick [ lJ, and Wallace [6, Chapters 1-4]. 

Portions of differential topology, Lie groups, and homotopy theory will 
be introduced in detail as needed. References to other texts containing 
elementary introductions to topics in fiber bundles in general, vector bundles 
in particular, and characteristic classes, will also be given in appropriate 
later chapters. 



CHAPTER I 

Base Spaces 

O. Introduction 

A vector bundle over a topological space X consists in part of a projec
tion E -> X from another topological space E onto X ;  the space X is the 
base space of the given bundle. Vector bundles exist over arbitrary base 
spaces ; however, interesting theorems are accessible only for bundles over 
appropriately restricted base spaces. Accordingly, in this chapter we intro
duce a large category fJI of topological spaces, and in the remainder of the 
book we consider only those bundles whose base spaces lie in fJI. 

In §1 the category !1J is defined, and it is shown to be closed with respect 
to finite disjoint unions and finite products. In §§2-7 one learns that !1J is 
indeed a large category, containing all spaces of the homotopy types of CW 
spaces, for example; reasonable topologists seldom ask for more. The most 
important feature of fJI is that it is a category in which one can prove theorems 
by the Mayer-Vietoris technique, described and established in §9 ; several 
applications of the Mayer-Vietoris technique will appear in later chapters. 

1. The Category of Base Spaces 

A map from a topological space X to a topological space Y is any func
tion X !... Y that is continuous in the given topologies. If [0, 1 ]  is the closed 
unit interval, then any map X x [0, 1 ]  � Y induces restrictions to X x {O} 

5 



6 I. Base Spaces 

and X x {I:, which can be regarded as maps X � Y and X � Y, re
spectively ; in this case J� is homotopic to f1' Two topological spaces X and 
Y are homotopy equivalent, or of the same homotopy type, whenever there 
are maps X � Y and Y � X such that the compositions go f and f o g  are 
homotopic to the identity maps X -+ X ' and Y -+ Y, respectively. A topo
logical space X is contractible whenever i t  is homotopy equivalent to th e 
space {*} consisting of a single point *. 

The category f!J will be defined in two stages, the first bei ng an induction 
on the natural numbers n � O. In describing the inductive step we shall 
suppose in part that a given topological space X can be covered by q families 
of open sets, for some natural number q > 0, where the sets in each one of 
the q families will be mutually disjoint ; that is, for q unrelated index sets 
B1, • • •  ,Bq there will be q families {Up,lfJl E Bd, ... , {UpJfJq E Bq: of open 
sets U Pp c X, which collectively cover X, and for each fixed p � q the sets 
in the family {U Pp I fJp E Bp} will be disjoint from one another. For notational 
convenience we let {U 1,�}�, ... , { Uq,y}y represent the q families of open sets, 
without explicitly identifying the index sets ; for each p � q the notation 
{ U  P.p}p will represent the pth family. 

1 . 1  Definition : A topological space is of Oth type if it is a disjoint union of 
contractible spaces. Suppose that a topological space X can be covered by 
the union of finitely many families {U 1,�}�, ... , { U  q,y}y of open sets U p,p c X 
such that for each p � q the sets U p,p in the family {U p,p} p are disjoint from 
one another, Then X is of nth type whenever there is such a covering with 
the additional feature that all intersections of the sets in the covering are of 
(n - l }th type. A topological space is of finite type if it is of nth type for 
some n � O. 

The sets U p,p c X in the preceding definition are themselves of(n - l } th 
type since they are singleton intersections. The restriction concerning less 
trivial intersections is not unduly severe, however, since all intersections of 
more than q distinct sets in the covering {U 1.�}�' ... , {U q,y} y are necessarily 
void. 

A metric on any set X is any function d from X x X to the nonnegative 
real numbers such that for any (x, y, z )  E X X X x X one has d(x, y) = d( y, x), 
d(x, y) = 0 if and only if x = y, and d(x, z )  � d(x, y) + d( y, z ). For any x E X 
and any B > 0 there is a subset U X,t c X consisting of those y E X wi th 
d(x, y) < B, and the family {U X,t} (x.t) is the basis of the corresponding metric 
topology on X. A given topological space i s  metrizable if its topology is the 
metric topology of some metric. 

We omit the elementary proofs that metrizable spaces have many fa
miliar and desirable features. For example, a metrizable space is hausdorJJ 
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in the usual sense that any two distinct points lie in corresponding disjoint 
open neighborhoods, and normal in the usual sense that any two disjoint 
closed sets lie in corresponding disjoint open neighborhoods. Some equally 
elementary but less familiar properties of metrizable spaces will be presented 
as the need arises. 

1 .2 Definition : A topological space X is a base space if it is homotopy 
equivalent to a metrizable space of finite type. Morphisms in the category 
!J6 (�l base spaces are arbitrary maps from one base space to another. 

A base space is not necessarily itself metrizable or of finite type; these 
properties are not preserved under homotopy equivalence. 

The principal reason for introducing the category !J6 will appear in §9. 
In this section we show only that !J6 is closed with respect to fi nite disjoint 
unions and fi nite products. 

1 .3 Lemma : If X I and X 2 are metrizable spaces, then (i) the disjoint union 
X I + X 2 is metrizable, and (ii) the product X I X X 2 is metrizable. 
PROOF : (i) For any metric d on any set X there is another metric c5 with 
6( x , y) = d( x , y)/( l + d( x , y) ) for all ( x, y) E X X X, as one easily verifies, and 
the topologies induced by d and b are clearly the same. Hence there are 
topologies on X I and X 2 induced by metrics dl and d2 with values in the 
hal f-open interval [0, 1 ). There is then a metric d on X I + X 2 given by {d l ( X ' Y ) if ( X , Y ) E  XI x XI 

d( x , y) = d
2
2( X, y) if ( x , y) E X 2 X X 2 

if ( x, y) E X I X X 2 + X 2 X X I ' 

The topology induced on X I + X 2 by d is the usual topology of X I + X 2 , 
for the given topologies of X I and X 2 '  

( ii) For any metrics d I and d 2 on X I and X 2 there is a metric d on 
X I X X 2 given by 

d( ( XI , X2), ( YI , Y2) ) = dl( xI , yd + d2( X2 , Yz), 

and an easy verification shows that the resulting metric topology on X I X X 2 
is the usual product of the given topologies of X I and X 2 '  

1 .4 Proposition : The category fJd oI base spaces is closed with respect t o  
finite disjoint unions and finite products. 
PROOF: Since finite sums and finite products ofhomotopy equivalent spaces 
are themselves homotopy equivalent, Lemma 1 .3 leaves only the task of 
verifying that finite sums and finite products of spaces of finite type are 
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themselves of finite type. The assertion concerning sums is trivial since spaces 
of (n - 1 ) th type are automatically of n th type. It remains to show (by 
induction on n) that a product of two spaces of n th type is also of n th type. 
The case n = 0 is clear. Now let X be a space of n th type, covered by q 

families {V1.a}a,"" { Vq,y }y of open sets Vp,(J C X as in Definition 1 . 1 ,  and 
similarly let Y be a space of n th type, covered by t families {Vub, . . .  , { V,.d, 
of open sets v.,< C Y as in Definition 1 . 1 .  By the inductive hypothesis all 
intersections of the products V p,(J x v..< are of (n - l jth type, intersections 
of more than qt distinct such sets being void, and each of the families 
{Vp,(J x V.)(fl.<) in the open covering { V I ,. x Vl,bL�,�),···, {Vq,l x V,.do',s) 
of X x Y is mutually disjoint. 

2. Some Simplicial Spaces 

We now show that many familiar topological spaces are base spaces in 
the sense of Definition 1 .2. Further examples will be given later. 

Let Ko be any set. An abstract simplicial complex with vertex set Ko is 
a family K of finite subsets of distinct elements io ,  . . .  , ip E Ko ,  subject to 
two conditions : (i) if { io , ' . .  , ip} E K and {jo , ' . .  , jq} C { io , ' . .  , ip}, then 
{jo, ' . .  , jq} E K;  and (ii) if i E Ko , then { i }  E K. An element { io , ' . .  , ip} E K 
containing p + 1 distinct elements of Ko is a p-simplex. Condition (ii) permits 
one to identify vertices i E Ko with O-simplexes { i }  E K. 

Let K o be the family of functions Ko":' [0, 1 ], with value Xj E [0, 1 ]  on 
i E Ko, such that Xj = 0 except for finitely many vertices i E Ko , and such 
that LiEKo xi = 1 . The value Xi E [0, 1 ]  is the i th barycentric coordinate of 
x E K o .  For each vertex i E Ko there is a unique element c5i E K o with value 
c5: = 1 (no summation), and any x E K o is uniquely of the form LiEKo Xic5i 
with LiEKo xi = 1 .  For each si� plex { io , " "  ip} E K ! he corresponding 
geometric simplex l io ,  . . . , ip l C Ko consists of those x E Ko such that Xi = 0 
for i � r io ,  . . .  , ip}. The simplicial space IKI C K o  is the union over all 
simplex,: s { io , " . ,  ip} E K of the geometr!.c simplexes lio , ' . .  , ip l C K o .  The 
family Ko and the simplicial space IKI c Ko can both be regarded as subsets 
of the direct sum OKo IR, which consists of all functions Ko":' IR such that 
Xi = 0 except for finitely many vertices i E Ko;  that is, OKo!R is the real 
vector space with basis { c5i l i  E Ko} .  

There are at least two natural topolog ies on the vector space OKu!R . 
One such topology arises from the norm OKo!R JlJ!.. !R given by the finite 
sums I lx l l  = LiE Kolxil for each x = LiE Ko xjc5i, the resulting metric and metric 
topology on OKo!R being given by setting d(x, y) = I lx - yl l .  The metric 
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simpi iciai space associated to an abstract simplicial complex K is the sim
plicial complex K is the simplicial space IK I  c ilKo IR in the relative metric 
topology it inherits from the preceding metric topology of ilKo IR. 

An abstract simplicial complex K is finite-dimensional whenever there is 
a natural number q � 0 such that K contains no p-simplexes with p > q; K 
is q-dimensional if q is the least such number. The vertex set Ko of a finite
dimensional simplicial complex K need not be finite ; however, if Ko is 
finite, then K is a finite simpliciai complex, trivially finite-dimensional. A 
simplicial space IK I  is finite, q-dimensional, or finite-dimensional whenever 
the underlying simplicial complex K has these properties. In this section we 
show that any finite-dimensional metric simplicial space is a base space in 
the sense of  Definition 1 . 2 . We shall later obtain the same result for any 
metric simplicial space whatsoever. 

Let K be an abstract simplicial complex with vertex set Ko as before. 
The first barycentric subdivision of K is an abstract simplicial complex K'  
with vertex set K, constructed as  follows : for any distinct simplexes 1o ,  . . .  , Iq 
in K one has {I o , " " Iq} E K' if and only if one can relabel 1o ,  . . .  , Iq in  
such a way that as  subsets of  Ko  they satisfy 1o c l i e ' . . c Iq . One easily 
verifies that K' is indeed an abstract simplicial complex, and that K' is 
q-dimensional if and only if K is q-dimensional. 

Let K be the family of functions K !. [0, 1 ] ,  with value X I E [0, 1] on 
l E  K, such that Xl = 0 except for finitely many vertices I E K, and such that 
LlEK Xl = 1 .  For each vertex l E  K there is a unique element El E K with 
value b� = 1 (no summation), and any X E K is uniquely of the form 
LlEKXlbl with LlEKXl = 1 . For each simplex {Io, . . .  , Iq} E K' the corre
sponding geometric simplex 1 1o , . . .  , Iql c K consists of those X E_K such 
that Xi = 0 for I et { Io , ' . .  , IJ , and the simplicial space IK' I  c K is the 
union over al! simplexes { Io , . . .  , Iq} E K' of the geometric simplexes 
1 1 o ,  . . .  , I ql c K. A metric topology is imposed on IK'I e K e  ilK IR in 
the same way that a metric topology was imposed on IK I  c K o c ilKo IR. 

We now construct a homeomorphism IK' I  � IK I .  For any p-simplex 
I = ( io , . . .  , ip} E K the barycenter Bl E IK I  is the point (p + l)-lbio + . . .  + 
(p + 1 )- 1 bip in the geometric simplex l io ,  . . .  , ipl c IK I .  For any q-simplex 
{I o ,  . . .  , Iq) E K', and for any point LlEKXlbl of the corresponding geo
metric simplex 11o , . . .  , Iq l c IK' I one easily verifies from the conditions 
LlEKXl = 1 and Xl = 0 for I et {I o , " "  Iq} that LlEKXlBl E IKI ; in fact, 
if 1o e l l c · · ·  c Iq c [ io , " "  ip } for a p-simplex { io , " " ip} E K, then 
LlEK XlBl lies in the geometric simplex l io ,  . . .  , ip l  c IK I .  Thus there is a 
well-defined set-theoretic map I K'I � IK I  carrying any LlEKX]bl E IK' I into 
LlEKXIBl E IKI . A routine verification shows that et> is indeed a homeo
morph ism in the metric topologies of IK I  and IK' I . 
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Let i E Ko be a vertex of an abstract simplicial complex K. The abstract 
star of the O-simplex { i }  E K is the unique smallest subcomplex of K ( in 
the obvious sense) that contains every simplex { io , " " ip} E K with i E 
{ io , " "  ip} ;  the corresponding �ubset of \ K\ is the closed star of the point 
c:')i E \ K\ . In general the abstract star of { i }  also contains simplexes { Jo ,  . . .  , Jq} 
that do not contain i, and one obtains the open star of c:')i E \ K\ by removing 
all points of the corresponding geometric simplexes \ Jo , " " Jq\ in the 
closed star. Alternatively, the open star of c:')i E \ K\ consists of all points 
LjEKOXjc:')

j E \ K\ with X
i
> O. Observe that the set of all points LjEKOXi

c:')
j E 

UKu IR with X
i
> 0 is an open convex set in UKulR whose intersection with 

\ K\ is the open star of (ji; hence the open star of (j i is open in the metric 
topology of \ K\ ,  and it has a "convexity" property. 

If K' is the first barycentric subdivision of K, then for any p-simplex 
I E K the open star of the point (jl E \K'\ consists of all points LI' E K X 1'c:')1

' 

such that XI > ° which satisfy the following additional condition : if XI' > 0, 
then the subsets I c Ko and I' c Ko satisfy either I c I' or I' c I (or both). 
The open star of c:')1 E \ K'\ is denoted U p,l in the proof of the following result, 
I being a p-simplex of K. 

2.1 Proposition : Any finite-dimensional metric simplic ial spac e \ K\ is of 
.fi rst type. 
PROOF : Let K' be the first barycentric subdivision of K ;  since there is a 
homeomorphism \ K'\ ...... \ K\ ,  it suffices to show that \ K'\ is of first type. For 
any p � 0, let I and J be p-simplexes { io , '  . .  , ip} and { Jo , " . , Jp} of K, and 
let U p.1 c \ K'\ and Up,) c \ K'\ be the open stars of the points 151 E \ K'\ and 
f/ E \ K'\ ,  respectively. If the intersection U p,l n Up,) is nonvoid, any point 
X E U p,l n Up,) is of the form LI'EK XI'c:')/

' with both XI > ° and X) > 0, It 
follows that the subsets I c Ko and J c Ko satisfy either le J or J c I, 
and since each of I and J has p + 1 elements, either consequence is equivalent 
to I = J. Thus if P denotes an arbitrary p-simplex of K, the family { U  p, p }  fJ 
of open stars U p,fJ c \ K'\ of points (jfJ E \ K'\ is mutually disjoint. If K is q 

dimensional, one thereby obtains a covering { U o,� } OC' • • •  , { U  q,J y of \ K'\ by 
q + 1 such families { U  PIP } fJ of open sets. All intersections of more than q + 1 
distinct sets in the covering are void, and to complete the proof it remains 
only to show that all possible nonvoid intersections are contractible; but 
this is an immediate consequence of the "convexity" property of the open 
stars U p. p c \ K'\ .  

2.2 Corollary : Any finite-dimensional metric simplicial space \ K\ is a base 
spac e. 
PROOF : \ K\ is metric by definition and of first type by Proposition 2. 1 .  
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A polyhedron i s  any metric simplicial space IK I whose v ertex set Ko is 
finite. 

2.3 Corollary : Any polyhedron IKI is a base space. 
PROOF: If Ko is finite, then IK I  is finite dimensional. 

S ome elementary introductions to simplicial complexes and metric 
simplicial spaces are indicated in Remark 10 .5. 

3. More Simplicial Spaces 

Any metric simplicial space IK I  whatsoev er is a base space, ev en without 
the dimensionality condition of C orollary 2.2. Howev er, rather than prov ing 
that IKI itself is of fi nite type, we construct a new metric space IKI* homotopy 
equiv alent to IK I ,  and we show that IK I* is of second type ; this implies that 
IKI is a base space as desired. 

We first replace the giv en metric simplicial space IK I  by the simplicial 
space IK' I of the first barycentric subdiv ision K' of the underlying abstract 
simplicial complex K; this is harmless since there is a natural homeomor-
phism IK' I � IK I ,  as noted earlier. For any p-simplex 1 =  {i o , . . .  , ip} of K 
the dimension dim I is the number p. 

3.1 Definition : For any metric simplicial space IK I  the telescope function 
IK' I  � [0 , 1 )  assigns to each x = LJEKXJ(jJ E IK ' I  the v alue 

. '\' xJ dimI 
j(x) = L., 

2 d' lE [0 , 1 ). 
JEK + l m  

For each x E IK' I both of the preceding sums are fi nite, and since 
LJ E K XJ = 1, it follows that f(x) E [0 , 1 )  as indicated. 

3.2 Lemma : The telescope function IK' I � [0, 1) is continuous in the metric 
topology of IK' I and the usual real topology of [0 , 1 ). 
PROOF: The tel escope function is the restriction to IK' I c UK � of a linear 
functional UK� � R also giv en by f(x) = LJ EK(xJ dimI/(2 + dim l ) ). 
S ince If(x) 1 � I lx ll = LJ EKlxJ I for all x E UK �' it follows that the linear 
functional f is bounded, hence continuous, in the metric topology induced 
by the norm 1 1 11; consequently the restriction of f to IK' I c UK � is contin
uous in the relativ e  topology of IK' I . 



1 2  I .  Base Spaces 

In particular, since the image of the telescope function f lies in the half
open interval [0, 1 ), for any half-open subinterval [0, r) c: [0, 1 )  the inverse 
image.r I [O, r) c: IK' I is open in IK' I .  

3.3 Definition : The telescope IK I* of any metric simplicial space IK I  is the 
subset 

Uf- I [O -q )x(� -q ) 
q>O 

' q + 2 q ' q + 2 
of the metric space IK' I x ( - 1 , 1 ), in the relative topology. 

3.4 Lemma : Any metric simplicial space IKI is homotopy equivalent to its 
telescope IKI* .  
PROOF : Since there is a homeomorphism IK' I � IK I ,  it suffices to show that 

IK'I is homotopy equivalent to IK I* .  Let IKI* � IK'I be the restriction to 
KI* c: IK' I  x ( - 1 , 1 )  of the projection IK' I  x ( - 1 ,  1 )  � I K' I ,  which is trivially 
continuous. If IK' I  � IK' I is the identity map and IK' I .!. [0, 1) the telescope 
function, then the image of IK' I  � IK' I x [0, 1 )  lies in IK I* ,  and by 
Lemma 3.2 the restriction IK' I � IK I* of (id, .f) is continuous. Clearly the 
composition IK'I � IKI* � IK' I is the identity on IK' I ,  and it remains to show 
that the composition IKI* � IK' I.!:. IKI* is homotopic to the identity on IK I* .  
For any point (x, s) E IK' I  x ( - 1 , 1 )  and any point t E [0, 1 ]  let kt(x,s) = 
(x, ( 1  - t)s + tf(x) ) E IK' I x ( - 1 , 1 ). I f  (x, s) E IK I* ' then kt(x, s) E IK I* for 
any t E [0, 1] ; furthermore, the restriction of ko to KI* is the identity IK I* � 

IKI* and the restriction of k l to IK I* is the composition ho g, which completes 
the proof. 

3.5 Lemma : For any q > ° the open set 1 - 1 [0, q/(q + 2 ) )  c: IK' I  is of first 
type. 
PROOF : For any p � ° and for any p-simplex f3 E K let U P.P c: IK' I be the 
open star of bP E IK' I  as in the proof of Proposition 2. 1 ,  and let Vp•P = 
U p.P n I - I [0, q/(q + 2) ). Since f(bP ) = p/(p  + 2) it follows that the q + 1 
families {Vo.a}a,"" {�,y}y of open sets cover f- I [O, q/(q + 2) ). Since 
each family {U Pop} /l is mutually disjoint, exactly as in Proposition 2. 1 ,  it also 
follows that each family {Vp,p}p is mutually disjoint. It remains to show that 
nonvoid intersections of (at most q + 1) of the sets VP,/l are contractible. Each 
open star U p.p c: IK' I is the intersection with IK' I c: ilK IR of the convex set 
of points LI X1bl E ilK IR such that xp > 0, and IK' I  L IR is the restriction to 
IK' I c: ilK IR of a linear functional ilK IR .!. IR. Consequently any nonvoid 
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intersection VPII,/ill n ' "  n Vpr,/ir (for which one necessarily has ° � r � q) 
is the intersection with IK' I of an intersection of convex sets in UK fR, The 
latter intersection contracts linearly to the barycenter of the geometric 
simplex I Po , ' "  ,#, 1 c IK' I ,  and the contraction restricts to a contraction of 
VplI,/l1l n ' , , n Vpr./ir' as desired. 

3.6 Lemma : The telescope IKI* of any metric simplicial space IKI is of 
second type. 
PROOF : F or any q > 0, let 

U q = f- , [0, �2) x (q - 2, -q-) c IKI* c I K'I x ( - 1 ,  1 )  q+ q q+2 
for the telescope function IK' Il. [0, 1 ), so that IK I* = Uq>o Uq as in Defi
nition 3.3. The two families {Uq}qeven and {Uq}qodd are each mutually 
disjoint, and together they cover IK I* .  The only nonvoid intersections in the 
covering are the singleton intersections 

U =f-'[O,-q ) x (�,-q ) q q+2 q q+2 
and the intersections 

Uqn Uq+, =f-' [0'q ! 2) x (:� �'q!2); 
since each r ' [0, q/(q + 2)) is of first type by Lemma 3,5, all intersections in 
the entire covering {U q} q are of first type. Hence IK I* is of second type, as in 
Definition 1 . 1 .  

3.7 Theorem : Any metric simplicial space IKI is a base space, 
PROOF : According to Lemma 3.4, IKI is homotopy equivalent to its tele
scope IK* I , which is of second type by Lemma 3,6, Since IK I* inherits its 
topology as a subspace of a product IK' I  x ( - 1 , 1 )  of metric spaces, IK I* is 
metrizable. Thus IKI is homotopy equivalent to a metrizable space IK I* of 
finite type, as required by Definition 1 .2. 

3.8 Definition : Let "If' denote the category of spaces of the homotopy types 
of metric simplicial spaces, morphisms being arbitrary maps. 

Another characterization of if' will be given in Corollary 5.3. 

3.9 Corollary : The category "If' is a full subcategory of the category .@ of 
bases spaces. 
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PROOF: This follows immediately from Theorem 3.7. 
The category "IfI also satisfies an analog of Proposition 1 .4. 

3.10 Proposition : The category 1If" is closed with respect to fi nite disj oint 
unions and finite products. 
PROOF : It suffices to show that finite disjoint unions and finite products of 
metric simplicial spaces are again metric simplicial spaces. The assertion 
about unions follows immediately from part (i) of Lemma 1 .3 . As for prod
ucts, if K and L are abstract simplicial complexes with vertex sets Ko and 
Lo, respectively, then one constructs the obvious product complex K x L 
with vertex set Ko x Lo ,  observing that the resulting simplicial space 
IK x LI c ilKo x Lo IR is the image of IK I  x ILl c ilKo 

IR E9 ilLD IR under the 
canonical isomorphism ilKD IR E9 ilLo IR --+ ilKD x Lo IR of direct sums. The 
metric for IK x LI is precisely the product metric for IK I  x IL l  given in 
part (ii) of Lemma 1 .3 .  

A simplicial space IK I  is countable whenever the vertex set Ko of the 
underlying abstract simplicial complex K is countable in the usual sense. 

3.1 1  Definition : Let "IfIo denote the category of spaces of the homotopy 
types of countable metric simplicial spaces, morphisms being arbitrary maps. 

3.12 Corollary : The category 1If� is a full subcategory of the category fJ6 of 
base spaces. 
PROOF : Clearly "IfIo c "If/, and "IfI c fJI by Corollary 3.9. 

The category 'fII o also satisfies an analog of Proposition 1 .4. 
3.13 Proposition : The category "IfIo is closed with respect to finite disjoint 
unions and finite products. 
PROOF : If the abstract simplicial complexes K and L have countable 
vertex sets Ko and Lo , respectively, then Ko + Lo and Ko x Lo are both 
countable, and the remainder of the proof proceeds as in Proposition 3 . 10. 

In summary, we have obtained inclusions "IfI o c "IfI c fJI of some useful 
categories of topological spaces, each category being closed with respect to 
finite disjoint unions and finite products. We shall identify ''ifI in another 
fashion in Corollary 5.3, and there is an analogous alternate description of 
"Iro. The inclusions 1If� c "IfI c fJI guarantee that spaces in the categories 
1If� and "IfI have all the properties of spaces in the category fJI, many of which 
are more easily established directly in fJ6, without the extra provisions of 
#"0 or "IfI. 
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4. Weak Simplicial Spaces 

In this section we give two new descriptions of the metric topology of a 
simplicial space IK I ,  and we construct a useful locally finite covering of IK I .  
Then we endow IKI with an entirely different topology, in general finer (more 
open sets) than the metric topology. Although the identity map carrying IK I  
i n  the new topology into IK I  i n  the metric topology is not in  general a horn eo
morphism, we shall show that it is always a homotopy equivalence, hence 
that IK I is a base space in either topology. 

Recall that if Ko is the vertex set of an abstract simplicial complex K,  
with direct sum U Ko IR over the real numbers IR, then Ko c UKo IR consists 
of those points x E UKo IR with Xi E [0, 1 ]  and Xi = 0 except for finitely many 
v:rtices i E Ko, such that LiEKoXi = I. The simplicial space IK I  is a subset of 
Ko as before. The metric topologies of ilK" IR, Ko, and IKI arise from a norm 
ilKo IR � IR, which will be denoted 1 1 1 11 in this section, given by Ilxl l , = 
LiEKolxJ 

There are other norms on ilKo IR, one of which is the norm ilKo IR � IR 
given by Ilxll, = maxiEKolxJ I f  Ko is finite, then the metric topology on 
ilKo IR induced by 11 1 100 agrees with the metric topology induced by 1 1 1 1 , .  
However, in general the only related conclusion one can obtain for ilKo IR 
itself comes from the obvious inequality I lx - YII, � I lx - YI I ,  for any X and 
y: the topology induced by 1 1 1 1" is fi�er than the topology induced by 1 1 1 1 , . 
The situation is better on the subset Ko c ilKo R 

4.1 Lemma : For any v!rtex set Ko the topologies induced by 11 1 1 , and 
1 1 1 1 ,. agree on the subset Ko c ilKo IR. 
PROOF : The inequalities Ilx - Yl la: � I lx - YI I , imply that open sets in the 
1 1 1 1 ,  topology o f  Ko  are open in the 1 I IIx topology. Conversely, for any 
x E Ko and any 8 >  0 l�t Ux,,, c Ko be the I I I I,-open neighborhood of x 
consisting of those y E  Ko such that Ilx - Yl11 < 8. If x lies in a geometric 
simplex I I 1  c Ko for a p-simplex 1= { io ,  . .  " ip } c Ko , then Xi = 0 except 
for the p + I vertices i E I. Let Vx,c c Ko be the 1 l l l oo-open neighborhood of 
x consisting of  those y E  Ko such that I lx - yl la::, < 8/2(p + 1). Then for any 
y E  Vx,,, one has LiElIXi - Yd � (p + nl lx - Ylloo < 8/2 ; one aIso has LiEI Yi > 
Li E/[x; - (t;/2(p + I ))] = I - 8/2, which implies Li�llxi - Yil = LifT .vi = 
I - L; E J .\'; < 8 /2. It follows for any.\' E Vx•c that 

I lx - Yl 1 1 = L IXi - Yil + L Ix; - Yil < 8 /2 + 8 /2 = 8, i E / ;fT 
hence that VX,f. c: U x,£' Consequently, open sets in the 1 1 1 100 topology of Ko 
are also open in the 1 1 1 1 1 topology. 
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4.2 Proposition : Let K be an abstrac t simplic ial complex with vertex set Ko 
and simplicial spac e IKI c ilKo � ;  then the norms 1 1 1 1 1 and I I I I  J on ilKo � 
induc e the same metric topology on IK I .  
PROOF : Since IK I c Ko, this i s  an immediate consequence of Lemma 4. 1 . 

Thus the metric topology of lK I introduced in §2 via the norm I I I I  (= 1 I I I d  
can equally well be described in terms of the norm I I I I  x; we simply speak of 
the metric topology of IK I .  

For each vertex i E Ko the ith barycentric coordinate function IK I-- [ 0, 1 ]  
carries each x = LiEKoXi(ji E IKI into Xi E [ 0, 1 ]' 
4.3 Corollary : The metric topology of a simplicial spac e IKI is the coarsest 
topology (fewest open sets) for which eac h barycentric c oordinate function 
IKI-- [0, 1 ]  is continuous. 
PROOF : Since I lx - yl l" = max i E Ko lxi - Yi l ,  this is an immediate conse
quence of the fact that I I I I  x induces the metric topology. 

An open covering { VJ j  of a topological space X is loc ally finite when
ever there is an open neighborhood Vx of each x E X with Vj n Vx void 
except for finitely many indices j. If X � � is a map with value 0 outside a 
closed subset of Vj, then one can compute X � � in terms of finite sums 
on each Vx ' A family { hjL of nonnegative such maps hj is a partition of unity 
subordinate to { VJ j  whenever 'i j hj = 1 . The following specialized partition 
of unity will be needed later. 

4.4 Proposition : For any metric simplic ial spac e IKI there is a partition of 
unity { hd i  E Ko } subordinate to a locally finite c over { Vd i  E Ko} indexed by 
the vertex set Ko ,  such that hi((ji ) = 1 for each i E Ko;  specifi cally, if x E IKI 
lies in the interior of a geometric simplex II I  c IK I  for I = {io , . . .  , ip} E K, 
then x has an open neighborhood Vx with Vi n Vx void for i rt I .  
PROOF : For each i E Ko let Vi denote the set of those x E IK I  such that 
2xi > I lx l l'X) · The family { Vii i  E Ko} clearly covers IK I ,  and since 1 I I I x and 
the barycentric coordinate functions are continuous by Proposition 4.2 and 
Corollary 4.3, each Vi is open. To show that { Vd i E Ko} is locally finite 
suppose that x E IK l lies in the geometric simplex II1 = l io ,  . . .  , ipl . Let Vx be 
the open neighborhood of x consisting of those y E  IK I  with I lx - yl lx, < 
t l lxl loc ; then for any y E  Vx the triangle inequality gives 

I IY l loo � I lx l loo - l lx - yl l ", > I lx l l ", - t l lxl l", = il lx l l ,Xj ' 
If i rt I, then Xi = 0, so that 

for y E  Vx . 
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Hence Ily l l ",. > i l lxll ,� > 2Yi for any y E  Vx, except for the finitely many 
vertices i E l ; that is, Vi ('\ Vx is void except for i E l, as required. 

Now for each vertex i E Ko and each point x E IK l let gi(X) E IR be the 
maximum of the values ° and 3Xi - 21 1x I I  ex, .  Then each gi is continuous by 
Proposition 4.2 and Corollary 4.3, vanishing outside an open subset of Vi . 
Since { Vi l i E  Ko} is locally finite, one can form the sum g = Li gi ' for which 
one has g(x) > ° for all x E IK I ; the desired partition of unity {hi l i E  Ko} is 
then obtained by setting hi = gjg for each i E Ko .  

If I is any simplex { io , ' . .  , ip} c Ko of  an  abstract simplicial complex K, 
then the metric topology induced on the corresponding geometric simplex 
I I I  = l io , . . .  , ipl c IK I  is precisely the usual real topology of the subset of 
those points (xo , . . .  , xp) E IRP+ 1 with Xi E [0, 1 ]  and Xo + . . .  + xp = 1 .  
Thus the topology of I I I  can be independently defined. 

4.5 Definition : For any simplicial space IK I the closed sets of the weak 
topology of IKI are those sets W c IK I for which W ('\ I I I  is closed in each 
geometric simplex III c IK I ; in this topology IK I  is a weak simplicial space. 

We shall use the notations IK lm and IK lw to identify a simplicial space IK I  
in its metric and weak topologies, respectively. The subscripts m or w will 
be dropped whenever a topology is not specified or whenever the topology 
of IK I  is clear in context. 

Observe that the barycentric coordinate functions IK I --+ [0, 1] are auto
matically continuous in the weak topology, so that by Corollary 4.3 every 
open set in IKlm is also an open set in IKlw . Hence the identity IK I --+ IKI 
induces a (continuous) map IKlw .!.. IKlm . Although the inverse of f is not 
necessarily itself continuous, as we shall soon show, there is nevertheless a 
(continuous) map IK lm � IKlw such that f u g  and g o  f are homotopic to 
identity maps, so that IKlw and IK lm are homotopy equivalent ; the proof of 
this result is the business of the remainder of the section. 

Caution : In Definition 4.5, and in analogous situations which occur later, 
we use the terminology of 1. H. C. Whitehead [3] : a "weak topology" on X 
frequently has more open sets than some other topology on X. The words 
"weak topology" are used elsewhere hut not in this book for the coarsest to
pology (fewest open sets) on X such that certain maps X --+ Y are continuous. 

Suppose that Ko consists of all the natural numbers n � 0, and that the 
simplicial complex K consists of the O-simplexes {n }  for all n � ° and 1 -
simplexes {O, n}  for all n > 0. Then each geometric I -simplex 10, n l  is canon
ically homeomorphic to the closed unit interval [0, 1] . Let W c IK I be the set 
which intersects each 10, nl in the point corresponding to 1/n E [0, 1] .  Then 
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according to Definition 4.5 W is closed in IK lw ; but since W does not contain 
the point 15° E IK I ,  the set W is clearly not closed in IKlm . Thus for this sim-
plicial space IKl the continuous bijection IKlw .!.. IKlm is not a homeomor
phism ; specifically, the set-theoretic inverse f - I  is not continuous. 

Despite the preceding example, certain maps ILl m .!!. IKlm of metric 
simplicial spaces do remain continuous when one substitutes IK lw for IK lm · 
Suppose for each x E ILl that the image g(x) E IK l lies in only finitely many 
geometric simplexes of IK I .  Then the metric and weak topologies of IK I 
induce the same relative topology on the image lm 9 c IK I ,  and since the 
inclusion lm 9 c IKIw is continuous the composition ILlm .!!. lm 9 c IK lw is 
also continuous ; that is, the original map 9 can also be regarded as a (con
tinuous) map IL lm -+ IKlw . This observation is an essential ingredient in the 
proof of the following result. 

44.6 Proposition (Dowker[l]) :  For any simplicial complex K the weak 
simplicial space IKlw is homotopy equivalent to the metric simplicial space 
IK lm .  

PROOF : We have already observed that the set-theoretic identity map 
IK I -+ IKI induces a continuous bijection IKlw .!.. IKlm ' which is not neces
sarily a homeomorphism. Let {h i l i E  Ko} be the partition of unity constructed 
in Proposition 4.4, and suppose that x E IK I lies in a geometric simplex 
I I I  c IK I for I = { iQ ,  . . .  , ip }  E K;  then hi(x) = 0 for irt I, and since LiE Ko hi(x) = I ,  
it follows that the point g(x) = LiEKo hi(x)15i E ilKo IR also lies in I l l .  Since the 
h/s are continuous in the metric topology, there is an induced (continuous) 
map IK lm .!!. IK lm from IKlm to itself. By construction, each g(x) lies in only 
finitely many geometric simplexes in IKI, so that 9 is also continuous as a 
map IK lm -+ IK lw ,  as in the preceding paragraph. 

To show that f o g  and 9 0 f are homotopic to identity maps let IK I x 
[0, I] !. ilKo IR be given by F,(x) = ( 1  - t)x + tg(x). For any geometric 
simplex I1I c IK I  we already know that if x E I l l ,  then g(x) E I l l ,  so that the 
image of F lies in IK I .  Since 9 is continuous as a map from IKlm to itself F 
is a homotopy from the identity map IK lm � IKlm to the composition 
F 1 = f u g, and since F restricts to maps III x [0, I] -+ Ill, it also follows that 
F is also a homotopy from the identity map IK lw � IKlw to the composition 
F I = 9 c f· 

Some other expositions of Proposition 4.6 are indicated in Remark 1 0.7. 

4.7 Corollary : The category 1f!" of spaces of the homotopy types of metric 
simplicial spaces IKlm is identical to the category of spaces of the homotop;, 
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types (�f' weak simplicial spaces IK l w ;  a fortiori every weak simplicial space is 
a base space. 
PROOF : We showed in Theorem 3.7 that every metric simplicial space is a 
base space, base spaces being defined in terms of homotopy type. 

5. CW Spaces 

We now describe a classical generalization of the category of weak 
simplicial spaces. It appears directly and indirectly throughout much of 
algebraic and differential topology, and it will appear in later chapters of 
the present work . 

For any natural number 11 > 0 let [Rn be the standard real l1-dimensional 
vector space, in the metric topology arising from the euclidean norm 
[Rn J!J!... IR, I I (x I ' . . .  , xn) 1 1  = JXf + . . .  + x;. The closed n-disk Dn and 
(n - I )-sphere S" - I C Dn consist of those points x E [R" satisfying I lx l l  � I 
and I l x l l  = I, respectively, in the relative topology of W ;  in particular D' 
is a closed interval and Sa consists of two points. An (open) l1-cell i s  any 
space homeomorphic to the interior Dn - sn - 1 of Dn. 

Let {D� : ,  be any family of homeomorphic copies of D" and { S� - I : ,  the 
corresponding family of homeomorphic copies of S" - 1 c D", with disjoint 
unions U,D� and U.S:- 1 , respectively. For any map U. S�- I 1. Y one 
lets � denote the smallest equivalence relation in the disjoint union Y + 
U. D� that identifies each x E U, S:- I with f(x) E Y. The quotient topology 
of Y + U, D�I � is the finest topology (most open sets) such that the pro
jection Y + U, D� --+ Y + U. D�I - is continuous, and Y + U.  D:I - is the 
adjunctioll space of f in this topology. The map f and its restrictions 
S� - 1 � Y are called attaching maps of the adjunction space, and the in
clusion mapping Y into the adjunction space attaches n-cells to Y; speci
fically, the attached n-cells are the homeomorphic images of members of the 
family [D� - S� - I J •. 

A cell complex is a sequence X 0 --+ X I --+ X 2 --+ . . . of maps such that X 0 
is a discrete space and each X" _ 1 --+ X n attaches l1-cells to X 11 _ I ' The singleton 
subspaces of X 0 are the O-cells ()( the complex, and for each 11 > 0 the n-cells 
attached to XII _ 1 are the l1-cells of the complex. Each point of Xn - I is a 
member of one and only one q-cell for some q < 11, and the complex X 0 --+ 
X I --+ X 2 --+ . . . is closure-finite whenever for each n > 0 each attaching map 
S" - 1 � XII _ 1 meets only finitely many cells. , 

For any closure-finite cell complex let limn X 11 be the quotient of the 
disjoint union Un XII by the smallest equivalence relation that identifies 
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each XII -I with its image under the map Xn - I --+ X n ' Each point of limn X"  
is a member of  one and only one n-cell for some n � 0 ,  homeomorphic to  the 
interior Dn - sn - 1 of Dn in the case n > 0, and a set U c limn X n is open in 
the weak topology of lim" X" if and only if the intersection of U with each 
n-cell is open in the topology of Dn - S" - I . A CW space is any topologi
cal space of the form !imn XII for a Closure-finite cell complex X 0 --+ XI --+ 
X 2 --+ . . .  in the Weak topology ; the cell complex is the CW structure of 
the CW space. Closure-finite cell complexes are also called CW complexes. 
( In much of the literature the word "CW complex" is used both for a closure 
finite cell complex and for the resulting topological space. We use the ter
minology of Dold, who calls a space a space; see Dold [8, p. 89] ') 

The simplest example of a CW space is the n-sphere S" itself, for any 
n > O. One starts with a singleton space X 0 = { * } and attaches no cells of 
dimension less than n, giving X 0 = XI = . . .  = X n- I ;  finally one attaches 
a single n-cell D" - sn - 1 via the only possible attaching map sn - 1 --+ X n - 1 = 
{ * } . (Even the O-sphere SO can be constructed in this fashion as a CW space, 
with the obvious meaning of attaching a O-cell.) 

For any CW complex X 0 --+ XI --+ X 2 --+ . . .  and any n � 0 there is an 
obvious inclusion of each X n into the CW space limn X n; X n is the n-skeleton 
of the CW complex, and its image is the n-skeleton of the CW space. A CW 
complex and the corresponding CW space are finite-dimensional if the inclu
sion of the n-skeleton is a homeomorphism for n sufficiently large ; in this 
case the dimension is the least m � 0 such that the inclusion of X" is a homeo
morph ism whenever n � m. 

5. 1 Proposition : Any weak simplicial space is a CW space. 
PROOF : For any abstract simplicial complex K and any n � 0 let Kn be the 
subcomplex obtained by deleting all p-simplexes with p > n. The sequence 
Ko --+ K 1 --+ Kz --+ . . .  of inclusions then induces a corresponding sequence 
IKol --+ IK 1 1 --+ IKz l --+ ' . .  of inclusions of weak simplicial spaces with IK I  = 
limlllKnl as a set. As a topological space IKo l is discrete, and since any geo
metric n-simplex I I I  c /Rn + 1 is trivially homeomorphic to the n-disk D" c /Rn, 
it follows that IKol --+ IK 1 1 --+  IK  2 1 --+ . . .  is a cell complex ; closure-finiteness 
is obvious. The weak topology of IK I  was described in terms of closed sets, 
a set W C  IK I  being closed if and only if W n I I I  is closed in I I I  for each 
I I I  c IK I . However, one can equally well replace each geometric n-simplex 
[io , . . .  , inl = I I I  by its interior I l l ' , consisting of those points XObio + . . .  + 

Xnbin with all coefficients Xo , . . .  , XII positive, which is canonically homeo
morphic to the (open) n-cell Dn - sn -I ; then U c IK I  is open in the weak 
topology of IK I  if and only if U n 111 is open in Il l '  for each 1 E K. 
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There is a non trivial partial converse to Proposition 5 . 1 ,  which we shall 
not prove. We formulate the converse primarily to indicate the size of the 
category !JJ of base spaces. However, in order to keep the exposition as 
nearly self-contained as possible, we shall not apply the converse as such. 

5.2 Theorem (J. H. C. Whitehead [4]) :  Any C W  space is homotopy equiv
alent to a weak simplicial space. 

The proof of Whitehead's theorem involves two steps. One first shows 
that a map Y -+ X of CW spaces is a homotopy equivalence whenever it 
satisfies an apparently weaker condition ; this step can be found in Gray 
[ 1 ,  p. 1 39], Lundell and Weingram [ 1 ,  p. 1 25], Maunder [ 1 ,  pp. 298-300], 
or Switzer [ 1 ,  pp. 87 -90], for example. The second step consists in assigning 
to any CW space X a weak simplicial space IK I  and a map IK I -+ X satisfying 
the preceding condition ; this step can be found in Gray [ 1 ,  pp. 1 45 - 1 52] and 
Lundell and Weingram [ 1 ,  pp. 102- 103], for example. The conclusion that 
the two preceding steps prove Theorem 5.2 is expressed in Gray [ 1 ,  p. 149] 
and Lundell and Weingram [ 1 ,  pp. 1 26- 127]' 

5.3 Corollary : The category "If� of spaces of the homotopy types of metric 
simplicial spaces IK lm is identical to the category of spaces of the homotopy 
types oJ CW spaces. 
PROOF : Corollary 4.7 asserts that � is identical to the category of spaces 
of the homotopy types of weak simplicial spaces, and Proposition 5 . 1  and 
Theorem 5.2 imply that the latter category is identical to the category of 
spaces of the homotopy types of CW spaces. 

(The category if . was initially introduced in Milnor [8] as the category 
of spaces of the homotopy types of CW spaces. However, the equivalent 
characterization of Definition 3.8 is implicit in Milnor's paper.) 

5.4 Corollary : Every C W space is a base space. 
PROOF : We showed in Theorem 3.7 that every metric simplicial space is a 
base space, base spaces being defined in terms of homotopy type. 

One can obtain a shorter proof of Corollary 5.4 by using just the material 
needed for the first step of the proof of Theorem 5.2; a sketch is given in 
Remark 10.6. 

In the remainder of this section we describe CW structures of some other 
useful CW spaces. We shall later give independent proofs that these spaces 
are base spaces, without invoking Theorem 5.2 or its corollaries. 
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We shall describe the CW structures of real and complex projective 
spaces, which we now define. For any n � 0 let lR(n +  1 )* be the space 1R"+ 1 -
{O} consisting of IRn + 1 without its origin, in the relative topology. There is an 
equivalence relation � in lR(n + 1 1* with x � y whenever x = ay for some 
a E IR*. The real projective space Rpn is the quotient lR(n + 1 )* / � in the quo
tient topology. The space Rpn can equally well be regarded as a quotient of 
sn c IRn + 1 by the same equivalence relation. 

5.5 Proposition : Rpn is an n-dimensional CW space, with a cell structure 
consisting of one cell in each dimension q = 0, l, . . .  , 11. 

PROOF : Trivially Rpo is a singleton space { * } .  Let Rpa -+ Rpl -+ RP2 -+ 
. . .  be the sequence ofinclusions induced by the natural inclusions IR 1 -+ 1R2 -+ 
1R3 -+ . . . ; that is, for any q =  1 ,  . . . , n  and any x = (xo , . . .  , Xq _ d E Sq - 1 
the map RPq - 1 -+ RPq carries the point [x] = [(xa, . . .  , Xq _ d] E RPq - I into 
the point [x EJj O] = [(xa " " , Xq - l , O)] E RPq. Let Sq - I !. RPq- l carry 
X E Sq - 1 ( c Dq c lRq) into [X] E Rpq - I ,  and let Dq !. Rpq carry x E Dq 
into [x EJj .J  1 - I lxW] E RPq ; then f and 9 are continuous, and the inclusions 
sq - I -+ Dq and RPq - 1 -+ RPq provide a commutative diagram 

Sq- I  f .  Rpq - I  

j j 
Since .J1 - llxl 1 2 is positive whenever I lx l l  < 1, the restriction g lDq - Sq - I  is 
a homeomorphism onto RPq - Rpq - I , and it follows that f is an attaching 
map with adjunction space Rpq, as required. 

Projective spaces need not be finite-dimensional. Let IR I  -+ 1R2 ...... 1R3 ...... . . . 
be the sequence of canonical inclusions and set lRoo = limn IRn in the weak 
topology ; that is, a set W c  IR'Y is closed whenever each W n IRn is closed. 
Observe that IR-X is also a direct sum of real linear spaces IR I , hence itself 
a real linear space. Specifically, points of IR" are sequences (xO , X 1 , X2 " . .  ) 
of real numbers, only finitely many of which are nonzero, and addition and 
multiplication by scalars are defined as in the finite-dimensional spaces IRn. 
Let IR x *  = R '  - {O} and observe that there is an equivalence relation � 
in IR X * with x '" y whenever x = ay for some a E IR*. The real projective 
space RP' is the quotient IROO* / � , in the quotient topology. 

5.6 Corollary : RP' is a CW space, with a cell structure consisting of olle 
cell ill each dimension. 
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PROOF : The inclusions Rpo -> Rpl -> Rp2 -> . . .  induced by the inclusions 
[R 1 -> [R2 -> [R3 -> . . . provide a limit Iimn RP", in the weak topology, which 
is canonically homeomorphic to the definition [Roo* / - of Rpoo• 

One can replace the real field [R by the complex field C throughout the 
definition of Rpn to obtain the complex projective space C P" = c<n + 1 )*/"" 
which can equally well be regarded as a quotient s2n + l / - of the (2n + 1 )
sphere s2n + 1 C Cn+ 1 . [s2n + 1 consists of those points z = (zo , . . . , zn) E cn + 1 
such that I IzI 1 2 = I zo l 2 + . . . + Iz,,1 2 = 1 .] 

5.7 Proposition : C pn is a 2n-d imensional C W space, with a cell structure 
('()nsisting of one cell in each even dimension 2q = 0, 2, . . .  , 2n. 
PROOF : By analogy with Proposition 5.5 one uses the map D2q .!4 cPq 
carrying � E D2q ( C Cq) into [� Et> J 1 - I lz 1 1 2] E C pq, where 1 1 1 I is the usual 
norm on cq. Since .J 1 - / lZ/ l 2 is real and positive for / lz/ l < 1, the restriction 
9 I D2q - S2q - 1 is a homeomorphism onto C pq - C pq - l , so that the restric
tion g l S2q - l is an attaching map S2q - l  .4 Cpq - l  with adjunction space CPl. 

The definitions of the projective spaces RP"" and cpn suggest the obvious 
definition of the complex projective space C poc ,  and the proofs of the preceding 
two results suggest the obvious proof of the following result :  

5.8 Corollary : C px is a C W  space, with a cell structure consisting of one 
cell in each even dimension. 

Many other expositions of the study ofeW spaces in general are indicated 
in Remark 10.8. 

6. Smooth Manifolds 

I n  this section we briefly describe the category jt of (smooth) manifolds 
and we formulate some standard basic results of differential topology. 
These results quickly imply that any (smooth) manifold is a base space. 

A closed n-dimensional manifold is a compact hausdorff space X with an 
open covering {V j l iE I} and a family {<I>j l iE I }  of homeomorphisms 
Vj � <l>j( Vj) onto open sets <l>j( VJ c [Rn. The open covering is a coordinate 
covering of X by coordinate neighborhoods, and the family {<I>j l iE I }  of maps 
is an atlas for X. 

Suppose that the intersection Vj " Vj c X of two coordinate neighbor
hoods is nonempty. Then <l>j and <l>j restrict to homeomorphisms of Vj " Vj 
onto nonempty open subsets <l>j( Vi " V) c [Rn and <l>j( Vi " V) c [Rn. A 
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closed n-dimensional manifold X is smooth whenever all the induced ho
meomorphisms <l>j(Vj n V) � <l>j(Uj n V) are diffeomorphisms of 
open subsets of !Rn ; that is, the real-valued functions on <l>j( V j n V) c !Rn 
and Cl>iVj n V) c !Rn which define Cl>j 0 Cl>j- 1 and <l>j 0 <l>j 1 ,  respectively, all 
have partial derivatives of all orders. In this case the coordinate covering 
and atlas form a smooth structure on X. 

Let X be a smooth closed m-dimensional manifold with coordinate 
covering { V  j l i E  I }  and atlas {<l>; j i E I }, let Y be a smooth closed n-dimen
sional manifold with coordinate covering {�U  E J }  and atlas {\I'jU  E J }, 
and let X � Y be a map. Then f induces maps \l'j 0 f 0 Cl>i 1 of open subsets 
<l>j(Vj n f- I (�) )  c R'" into Rn, andf i s  itself smooth whenever all the induced 
maps \I' j 0 f 0 Cl>j- 1 are smooth ; that is, all partial derivatives exist as con
tinuous functions on Cl>j(Vj n f- I (�) ). The category of smooth closed mani
folds consists of smooth closed manifolds and smooth maps. If a smooth 
map X 1. Y has a smooth inverse Y .!!. X, then f is a diffeomorphism ; in this 
case we usually do not distinguish between X and Y. 

One example of a smooth closed n-dimensional manifold is the real pro
jective space RP", whose cell structure was given in Proposition 5.5. To de
fine the smooth structure of RP", for each i = 0, . . . , n let Vj c Rpn be the 
open subset of all points [(xo ,  . . .  , xn)] E RP" with Xj #- 0. There is a homeo
morph ism Vj � !Rn with 

Cl>i[(XO ,  . . .  , Xn)] = Xj- I(XO '  . . .  , Xj - 1 ' Xj + I ' . . .  , xn), 
and each composition Cl>j 0 Cl>i- I is the diffeomorphism carrying points 
( Yo , . . .  , Yj - I , Yi +  1 " ' " Yn) E !Rn with Yj #- ° into 

yj I (yo , . . .  , Yj _ 1 , 1 , Yj + l '  . . . , Yj- I ' Yj + I '  . . .  , Yn) E !Rn. 
Suppose that one replaces IRn in the definition of smooth closed n

dimensional manifolds by the closed subset (W) + C !Rn of points (x l '  . . .  , Xn) 
with Xn � 0 ;  if Xn > 0, then (X I " ' " Xn) is an interior point of (!Rn) + , and if 
Xn = 0, then (x I ' . . . , Xn) is a boundary point of (!Rn) + . The result of this 
substitution is the category of smooth compact manifolds. If { V j I j E l } and 
{CI>j I j E I} provide the smooth structure of such a manifold, and if Cl>j(x) is a 
boundary point of (IRn )+  for some j E I and some x E Vi ' then necessarily 
Cl>j(x) is a boundary point of (!Rn) + for all j E I such that x E Vj • The set X 
of such points is the boundary of X .  One easily verifies that the smooth struc
ture of X induces a smooth structure for which X is a smooth closed (n - 1 )
dimensional manifold. The boundary X of a compact manifold X may be 
void, in which case X is a closed manifold. We occasionally use the language 
compact manifold with boundary to identify manifolds which are compact 
but not closed. 
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An arbitrary hausdorff space X, not necessarily compact, is an n-dimen
sional manifold if it can be covered by denumerably many compact n-dimen
sional manifolds. Suppose that the manifolds in such a covering are smooth, 
and let {<I\ l i E  I }  and { 'I'  j Ij E J }  be the atlases of two such smooth mani
folds. Then X is a smooth n-dimensional manifold whenever every non trivial 
restriction 'l'j ' <l>i- 1 is a diffeomorphism of open sets in (!Rn) + . If every point 
of a manifold X is an interior point of one of the manifolds in its denumerable 
covering by compact manifolds, then X is an open manifold; for example, 
!Rn is itself a smooth open n-dimensional manifold. Smooth maps in the 
category . it of smooth manifolds are defined as before in terms of restrictions 
to coordinate neighborhoods. 

Since a smooth manifold is covered by denumerably many compact 
manifolds of the same dimension, its underlying topological space X is 
necessarily second countable in the usual sense that there is a denumerable 
basis of the open sets of its topology. Conversely, any second countable 
hausdorff space X with a smooth structure, { Vi i i E I }  and {<I>i l i E  I }, is a 
smooth manifold. Equivalently, one can characterize smooth manifolds as 
hausdorff spaces with denumerable smooth structures, { Vi l i E  N }  and 
{<I>i l i E  N }, where N = to, 1 , 2, . . . } . This implies that any smooth n-dimen
sional manifold is of the form limi Xi for a sequence X 0 -+ X l  -+ X 2 -+ . . .  of 
inclusions of compact n-dimensional manifolds X 0 ,  X l '  X 2 , . . . . 

Given an open covering { Vi l i E  I }  of a topological space X, another 
open covering { Vi I j E J }  of X refines { V i l i E I }  whenever there is a function 
J � I such that J;j c V p(j) for every j E J. A hausdorff space X is paracom
pact if any open covering of X has a locally finite refinement. The conclusion 
of the following lemma is somewhat stronger than paracompactness. 

6.1 Lemma : Any open covering { Vi l i E  I }  of a manifold X has a countable 
locally finite refinement { Vj l j  E N } such that each closure j:j is compact and 
satisfies j:j c V p(j) .  

PROOF : Let X = limk X k for a sequence X 0 -+ X l  -+ X 2 -+ . . .  of inclusions 
of compact manifolds of the same dimension, and let Xk denote the interior 
Xk - Xko of Xk . For any open covering { V; j i E I }  of X there is a refinement 
{ Vi n (Xk + l - Xk - 2 ) I V, k) E l x N } , where X - 2 = X - l = 0. For each 
k E N  the space Xk - Xk- 1 is compact, and it can therefore be covered by 
finitely many of the open sets Vi n (Xk+ 1 - X k - 2). The latter sets, for each 
k E N, form the desired refinement { Vj lj E N } .  

Suppose that { h  j I j E J }  is a partition of unity subordinate to a locally 
finite cover { Vj U E J }  of a smooth manifold X ;  then { h  J j E J }  is a smooth 
partition of unity whenever each X � [0, 1 ]  is smooth. If { Vj l j  E J }  happens 
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to refine another open covering { Vi l i E I} of X, then { hj l j E J}  is also 
regarded as subordinate to { Vi i  i E I } .  

6.2 Lemma : For any open covering [ Vi l i E I }  of a smooth manifold X there 
is a countable smooth partition of unity {h j I j E N } subordinate to { Vi i i E I } . 

f PROOF : Let IRn � IR be given by 

'
} 

e { - ( 1 - l lx l l ') - ' 
.f (x = 0 

for I lx l l  < 1 
for I lx l l  � 1 ,  

where IRn � IR is the usual euclidean norm. Then f i s  a smooth function 
which is positive for I lxl l < 1 and zero for I lx l l  � 1 .  For any r > 0 and any 
point y E  IRn one easily adjusts f to yield a smooth function IRn � [0, 1 ]  
which is nonzero precisely in the open disk Dy.r o f  radius r about y. Let V 

be any open subset of W, and let V be any open subset with compact closure 
V c  V. Then V can be covered by finitely many such open disks D),.r c V, 
and the sum of the corresponding finitely many functions .f�.r is a nonnegative 
smooth function IRn -+ IR which is positive on V and vanishes outside of U. 

One can refine the given open covering { Vi l i E  I} of X by taking inter
sections with coordinate neighborhoods, so that without loss of generality 
one can assume that { Vi i  i E l } is a coordinate covering ; furthermore, since 
Lemma 6.1 provides a locally finite refinement of the latter covering, one 
may as well assume in addition that { Vd i E I }  is itself a locally finite coor
dinate covering of X, with atlas {<l>d i E I } .  A second application of Lemma 
6 . 1  gives a countable locally finite refinement { J-j  I j E N } of { Vi l i E  I }  such 
that each closure tj is compact and satisfies tj c V p(j) ' Thus there are open 
sets 1ll,)U)( J.j) and III pU)( V pU)} in IRn with <l> pU)( J.j) = III pU){Vj) c <l> PU){ V pU»), so 
that by the result of the preceding paragraph there are smooth nonnegative 
functions IRn � IR such that each gj is positive on <l> p(j)( tj) and vanishes out
side of III p(jl V p(j)}. Each composition V p(j) tllp(j) I III p(j)( V p(j)( V p(j») � IR 
extends to a smooth non negative function X -..!.!.... IR that is positive on tj 
and vanishes outside of V p(j) ' Since { Vi i i E l } and { J-j I j E N } are locally 
finite one can compute the sum f = LjE f'>Jfj , and since { tj j j  E N } covers X, 
it follows that f is everywhere positive. The desired smooth partition of 
unity {hj l j  E N } is then obtained by setting hj = fjlf for each j E N . 

Suppose that a smooth map X � Y is a homeomorphism; then f need 
not be a diffeomorphism. For example, if IR � IR is given by fix) = x3, then 
f is clearly a smooth homeomorphism ; but since the derivative of f vanishes 
at x = 0, the inverse is not smooth. The difficulty can be overcome by im
posing the obvious condition on f, which we do in a more general situation. 
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Let X and Y be smooth manifolds of dimensions m and n with smooth 
structures : Vj l i E  I }.  {<Dd i E I }  and { � I j  E J }, {'P j I j  E J } ,  respectively, and 
let X 1.. Y be a smooth map. By definition, the maps 'Pj 0 J 0 <Dj- I carrying 
open subsets Vj (') J- I ( �) c: /Rm into /Rn are smooth in the sense that all 
partial derivatives exist as continuous functions on Vj (') 1- I ( �) ; in partic
ular, one can compute the m x n jacobian matrix of 'Pj c J u <Dj- I at each 
point of Vi (') J- I ( V;). The map I is an immersion whenever each of these 
jacobian matrices has rank m. 

Next suppose that X 1.. Y is any injective map, not necessarily smooth. 
Then the image I(X) c: Y, in the relative topology, need not be homeo
morphic to X. For example, one easily constructs a (smooth) injective map 
/R 1.. /R2 with 1(0) = (0, 0) and J(x) = ( l /x, sin ( 1 /x» for x � 1. In this example 
the inverse image of every neighborhood of (0, 0) contains arbitrarily large 
real numbers so that the relative topology of the image J(/R) C /R2 is not the 
usual topology of /R ;  thus I is not a homeomorphism onto its image. 

An embedding of a smooth manifold X into a smooth manifold Y is a 
smooth injective immersion X .J.. Y that induces a homeomorphism of X 
onto f(X) c: Y, in the relative topology. 

(A map X J.. Y of topological spaces is proper if and only if the inverse 
image of every compact set in Y is compact in X. One easily verifies that a 
smooth injective immersion X J.. Y is an embedding ifand only if it is propeL) 

We shall extend the definition of embeddings somewhat. Recall from the 
preceding section that /ROC denotes the limit limn /Rn of the sequence /R I -+ 
/R2 -+ /R3 -+ . . .  of canonical inclusions, in the weak topology. For any 
smooth manifold X a map X J.. W' is smooth whenever the composition 
X J.. W -+ /R with each projection /RX -+ /R is smooth. If one regards points 
of /R X  as row vectors with countably many entries, then for each coordinate 
neighborhood of X the jacobian matrix of J consists of countably many 
columns, the number of rows being the dimension of X. A smooth map 
X J.. /R'" is an immersion whenever the rank of each such jacobian matrix is 
the dimension of X. A smooth injective immersion X J.. /R� is an embedding 
whenever it induces a homeomorphism of X onto f(X) c /Ra" , in the relative 
topology. 

6.3 Proposition : F or any smooth manifold X there is at least one embedding 
X -+ /Rx •  
PROOF : Lemma 6. 1 provides a locally finite coordinate covering { V i l i E  I }  
of X such that each closure 0 j is compact. Let {<I>i l i E  I }  be the corresponding 
atlas ; if X is n-dimensional, then each homeomorphism <Dj from Vi to the 
open set <Dj( V j) c /Rn is given by coordinate functions Vi --=L /R, . . . , 
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Vj � IR. According to Lemma 6.2 there is a countable smooth partition 
of unity {hi I j E N } subordinate to { V j l i E  I } ;  specifically, there is a func
tion N � J such that X � [R vanishes outside of some open set l'J c X, and 
such that rj c VP(i) '  where { l'J l j  E N } is also a locally finite covering of X. 

h x" For each j E N  and each k = 1 ,  . . . , n the product l'J � [R therefore � 
extends to a map X � [R that vanishes outside of l'J , and since { l'J U  E N} is 
locally finite, it follows that the denumerably many maps y� induce a map 
X -+ [Rq;. One easily verifies that the latter map is an embedding. 

6.4 Corollary : Any smooth manifold X is metrizable. 

PROOF : As in §2 there is a norm [ROO J!L [R for which each I I (xo , X l ' x2 , • . .  )1 1 
is the (finite) sum LiEf\Jlxi l - For any embedding X .!.. [Rw there is then a 
metric d on X with d(x, y) = I lf(x) - f(y) l l . 

6.5 Proposition : For any smooth compact manifold X there is at least one 
natural number N � 0 for which there exists an embedding X -+ [RN. 

PROOF : If X is compact, then the modifiers "de numerable" or "countable" 
become "finite" throughout the proofs of Lemmas 6. 1 ,  6.2, and Proposition 
6.3. 

Propositions 6.3 and 6.5 are definitely not best-possible results. For 
certain values of n the following result is best possible. 

6.6 Theorem (Whitney Embedding Theorem) : Any smooth n-dimensional 
manifold X has at least one embedding X -+ [R2n. 

This theorem appears in Whitney [7, p. 236] ; its proof is long. A detailed 
discussion of Theorem 6.6 and related embedding theorems is given in 
Remark 10. 1 1 .  

Any n-dimensional sphere sn has at least one smooth structure, con
structed in the obvious way from two coordinate neighborhoods homeo
morphic to [Rn itself. Since one can compose an embedding X -+ [R2n with 
the inclusion [R2n -+ s2n of either coordinate neighborhood of s2n the follow
ing assertion is clearly equivalent to the Whitney embedding theorem : any 
smooth n-dimensional manifold X has at least one embedding X -+ s2n. 

6.7 Theorem (Cairns-Whitehead Triangulation Theorem): Any smooth n
dimensional manifold X is homeomorphic to an n-dimensional metric simpliciai 
space IK I .  

In fact X has a "smooth triangulation" in  the obvious sense. References 
for proofs of Theorem 6.7 are given in Remark 1 0. 1 4. 
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6.8 Corollary : Any smooth manifold is a base space ; hence the category 
. H  of smooth manifolds is a full subcategory of the category f1l of base spaces. 

PROOF : According to Corollary 2.2 any finite-dimensional metric simplicial 
space I K I is a base space. 

A strengthened version of Corollary 6.8 is described in Remarks 10. 1 7  
and 10. 1 8 ;  any (second countable) topological manifold whatsoever is a base 
space. The proof avoids the Cairns-Whitehead triangulation theorem, which 
is not available for topological manifolds. 

Recall that an embedding is a specialized immersion. Immersions are 
themselves of interest, however. For certain values of n the following result 
is best-possible, where s2n- 1 is the usual smooth sphere of dimension 2n - 1 .  

6.9 Theorem (Whitney Immersion Theorem) : Any smooth n-dimensional 
manifold X has at least one immersion X -+ s2n- I . 

References to two proofs of Theorem 6.9 can be found in Remark 1 0. 1 3, 
along with a detailed discussion of related results. 

As in the case of the Whitney embedding theorem there is a trivially 
equivalent alternative version of Theorem 6.9, but with a dimensional 
restriction : if n > 1, then any smooth n-dimensional manifold X has at least 
one immersion X -+ 1R2n - l . The reason for the restriction is that Si itself 
clearly does not immerse in IR I . 

Suppose that X is a smooth manifold of even dimension 2n, with smooth 
structure [ Vj l i E I } and {<I>d i E I } . The space 1R2n is homeomorphic ( in 
many ways) to e, so that the maps 

<I> <1> '- 1 
<l>j( Uj !l V) } , • <l>j(Vj !l V) 

can be regarded as maps from sets in en to sets in e. The manifold X is a 
complex manifold of complex dimension n whenever there is a such a homeo
morphism for each i E I for which all the maps <l>j 0 <l>j- I are holomorphic ; 
that is, the n complex-valued functions on <l>j(Vj !l V) c en which describe 
<l>j <l>j- 1 have local expansions about each point as Taylor series in n complex 
variables. 

We shall later show that are are many real even-dimensional smooth 
manifolds which have no complex structure in the preceding sense; for 
example, the 4-dimensional sphere S4 has no such structure. However, we 
have already encountered some topological spaces which do have such 
structures : the complex projective spaces C pn, whose cell structures were 
described in Proposition 5.7 . To construct a complex structure for cpn one 
merely substitutes e for IR in the construction of a smooth structure for the 
real projective space Rpn, given at the beginning of this section. Incidentally, 
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as topological spaces the projective spaces Rpl and Cpl are the circle Si  
and the 2-sphere S2, respectively ; in particular, S2 does have the complex 
structure it receives from its identification with Cpl .  

For later convenience we record an obvious consequence o f  Lemma 6. l .  
I t  is in part a specialized version of the shrinking lemma of Dieudonne [ 1 ], 
which also appears in Dugundji [2, pp. 1 52- 1 53] ' 

6.10 Proposition : Any manifold X has a countable locally finite covering 
{ U  n I n E  N }  by open sets Un C X with compact closures On ' refining a given 
open covering of X. Furthermore, for such a covering { Un I n E N } ,  there is 
another countable locally finite covering { Vn I n E N } by open sets Vn with 
compact closures Vn C Un for each n E N . 

PROOF : Lemma 6. 1 itself guarantees the existence of { Un I n E N } as well 
as a countable open covering { Wn I n E  N }  and a map N .!!... N such that Wn C 
U p(n) for each n E N .  Let p - l(n) denote the set of those m E N  with p(m) = n, 
and set Vn = U

mE P - l
(n) Wm, for each n E  N .  Then Vn C Un and { Vn l n E  N }  

is an open covering of X. Since each Vn is thus a closed subset of the compact 
set On ' it is itself compact, and since { Un I n  E N } is locally finite, so is { Vn I n E 
N } .  

6.1 1  Corollary : Let X be a smooth manifold with countahle locally finite 
open coverings { Un I n E N } and { Vn I n E N } as in Proposition 6. 10 ;  then there 
is a smooth partition of unity {hn I n  E N } such that each hn is positive on Vn and 
vanishes on X - Uno 

PROOF : One simply repeats the proof of Lemma 6.2, observing that the 
identity map N -> N now replaces the map N .!!... I used in Lemma 6.2 to 
describe { l-J l j E N }  as a refinement of { Ui l i E I }. 

Proposition 6. 10  will be used to prove several approximation theorems, 
whose proofs also depend on the following best-known elementary approxi
mation theorem. 

6.1 2  Theorem (The Stone-Weierstrass Theorem) : Let A(O)  be any real 
algebra of continuous real-valued junctions 0 .!!. � on a compact hausdorff 
space 0, and suppose that (i) A(O )  contains all real-valued constant junctions 
and that (ii) if x # y in 0 then there is at least one function 9 E A(O) such that 
g(x) # g( y) in R Then for any continuous function 0 .!... � whatsoever, and 
for any constant c > 0, there is a g E  A( 0) such that Ig(x) - f(x) 1  < c for every 
x E O. 
PROOF : See Bartle [ 1 ,  pp. 1 85- 1 86] or Royden [ 1 ,  p. 1 74], for example. 
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6.13 Corollary : LetX be any smooth manifold, and let x L (IRmt be any 
(continuous) map (rom X to the euclidean halj:space (IRm) + ; then, jar the usual . 1 1 1 1  • . 
euclidean norm (IRm) -------> IR + and any [; > 0, there is a smooth map X .!!. (IRm) + 
such that I lg(x) - /(x)11 < I; fiJr allY x E X. 

PROOF : The map f consists of m real-valued functions X � IR, . . .  , 
X � IR, X � IR+ . In case X is a compact smooth manifold 0, the 
smooth real-valued functions 0 .!!. IR satisfy the conditions required of the 
algebra A( 0 )  in the Stone-Weierstrass theorem, so that there are smooth 
functions 0 � IR, . . . , 0 � IR such that Igix) - .fj(x) 1 < elm for every 
x E 0, where j = 1 ,  . . . , m  - 1 ;  a minor modification of the Stone-Weier-
strass theorem also provides a smooth function O�IR + such that one 
has Igm(x) - f�J(x)1 < elm for every x E O, and it follows that (g l " . .  , gm ) 
is a smooth map 0 -4 (IRm) + such that I lg(x) - f(x)1 1 < E for every x E O. 
Now let X be any smooth manifold whatsoever. By Proposition 6. 10 there 
is a locally finite covering [ V"ln E N } of X by open sets V" c X with compact 
closures 0", so that the preceding argument provides a smooth map 0" � 
(Rm) +  for each 11 E N  such that I lg"(x) - f(x)1 1 < e for each x E O.", However, 
according to Corollary 6. 1 1  there is a smooth partition of unity {hnln E N ] 
subordinate to [ V"ln E N } , and L"E N 11,,(-/ is then a well-defined map X � 
(IRm) + such that I lg(x) - f(x)1 1 < F. for every x E X, as desired. 

Corollary 6. 1 3  is a special case of a more general approximation theorem 
that implies that any (continuous) map x .L Y of smooth manifolds is 
homotopic to a smooth map ; we need only the latter implication. To start 
the proof one first uses Proposition 6. 10  to find a countable locally finite 
covering [ V� l n E N }  of Y by open sets U�, each of which has a compact 
closure � in some coordinate neighborhood of Y. Thus, if Y is m-dimen
sional, there is an atlas {<l>n 1 n E  N ]  of diffeomorphisms of open sets in Y 
onto open sets in ( IRm) +  such that <l>n( V�) = <l>n( V�) c (IRm) + for each n E  N .  
One then applies Proposition 6. 1 0  repeatedly t o  find a sequence { V� I n E N } ,  
{ V � I n  E N } ,  { V; 1 n E N } ,  . . . of countable locally finite open coverings of 
Y such that each V� + 1 has compact closure satisfying V�+ 1 C V� . The sets 
V� and their closures appear throughout the following lemmas. 

Two maps X J..E.... Y and X � Y are homotopic relative to a subset 
X' c X if they are the restrictions to X x {o} and X x { 1 } ,  respectively, of 
a map X x [0, 1 ]  !. Y such that F(x, t) is independent of t E [0, 1 ]  whenever 
x E X' . 

6.14 Lemma : Let x L Y be a (continuous) map of smooth manifolds, and 
for each q E N let { V'!. I n E N } be the covering of Y described above. Then there 
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is a sequence (fO , JI , J2 , '  . .  ) of maps X � Y, beginning with fo = f, such 
that the following conditions are satisfied for each p E N : 

(i) fp is homotopic to fp+ I , relative to X - f; I (U�+ I ), 
(ii) the restriction of fp+ I to fo I (U�) U . . . u f; I ( U� + 2) is smooth, 
(iii) if 0 � q � n + 2p, then f;1 I (U� + 2) c f; I ( U�+  I )  for all n E N, and 
(iv) if O � q � n + 2p, then f; I (U� + 2) c f;1 1 (U�+ I )  for all n E N . 

PROOF : We shall show that if a finite sequence (j� ,  . . .  , Jp) satisfies all four 
conditions, then there is anj�+ 1 such that (j� ,  . . .  , fp ,fp+ I ) satisfies the same 
conditions. Since U� is compact, it meets only finitely many members of the 
locally finite covering { U� l n E N } .  Hence there is an np E N such that 
U� n U� is void whenever n > np ' for any q E N . Let {IDn l n  E N } be the atlas 
described earlier, and for each U� c Y set V� = IDiU� n U�) c (/Rm) + .  For 
each n E N and q E N the sets j7� + I and j7� - V� are disjoint closed subsets 
of the compact closure j7� = IDP(U�) = IDiO�) c (/Rm) + , and they are there
fore separated by a positive eucJidean distance B� > 0, where B� = 1 if one or 
both of the subsets is void. One then defines B > 0 by setting 

B = min {B� I O  � n � np' 0 � q � np + 2p + 2} .  
(n.q) 

Let f; I (O�) � j7� c (/Rm)+ be the composition f; I (O�) � O� 
� j7�. One applies Corollary 6. 1 3  to find a smooth map f; I (O�) lip . 
(/Rm) +  such that I Igp(x) - gp(x)I I < B for any x E f; I (O�). Since V�+ 2  and 
j7� - V�+ I are disjoint closed sets in j7� the method of Lemma 6.2 yields a 
smooth map j70 --+ [0, 1 ]  with restrictions h I v�+ 2 = 1 and h I j7� - V�+ I = O. 
Since V�+ 2 and j7� - j7�+ I are separated by euclidean distance at 
least B > 0, the points ( l  - th(gix» )gp(x) + th(gp(x» gp(x) of (/Rm) +  all 
lie in � whenever (x, t) E f; I ( O�) x [0, 1] ,  and one thereby obtains a map 
f; I( O�) x [0, 1 ]  J4 V�. By construction, G(x, t) is independent of t E [0, 1 ]  
whenever x E f;  I (O�) - f; I (  U � +  I ), so that G is a homotopy from gp t o  a 
map f; I (O�) � j7�, relative to f; I (O�) - f; I (  U�+ I ). Consequently 
there is a unique homotopy X x [0, 1] .4 Y from fp to a map X � Y, 
relative to X - f; I (U� + I ), such that Flf; I (U�) x [0, 1] = ID; I " G. The 
map j�+ I satisfies condition (i) by its very construction. Since gp+ I is clearly 
smooth on the union of f; 1 (U�+ 2) with any open set in j7� on which gp 
is smooth, fp+ I satisfies condition (ii). Finally, the definition of B and the 
property I I§'p - gpl l < B imply both 

and 

f;1 l ( O� n U�+ 2) c f; l ( O� n U�+ I )  
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whenever 0 � ri � rip and 0 � q � rip + 2p + 2; since O� n U� is void for 
ri > rip , the same conclusions apply whenever ri > rip . for any q E N .  Since 
F is a homotopy relative to X - I; I (  u�+ I ), a fortiori relative to X -
I; I (  O�), the inclusions U� + 2 C U�+ I themselves imply both 

I;; I ( ( Y - O�) n U�+ 2) c I; I ( ( y  - O�) n U�+ I ) 
and 

I· - 1 ( (  Y - 0°) n uq + 2) C I' - I ( (  Y - 0°) n Uq + I . p p n . p + I P n 
for any n and q whatsoever. Consequently both f;; I ( U� + 2) c f; I ( U� + I )  
and I; 1 (U� + 2) c I;; I (U�+  I )  whenever 0 � q � n + 2p + 2 ,  as  required by 
conditions (iii) and (iv). 

6.15 Lemma : f; I (U�+ I ) C fo I (U!) for any p E N . 
PROOF : This is a string 

I; I ( U�+ I )  c f;� dU�) c ' "  c f� I ( U;) c fo 1 ( U!) 

of applications of condition (iii) of Lemma 6. 1 4. 

6.16 Lemma : fo 1 (U;P+ 2 ) c I; I (U�+ 2 )  for any p E N . 
PROOF : This is a string 

fo I (U;P+ 2) C f� I (U;P+ I )  c . . .  c f;� I ( U� + 3) c f; l (U�+  2) 

of applications of condition (iv) of Lemma 6. 14. 

6.17 Lemma : The jamily { U;P+ 2 I p E  N }  of open sets U;P+ 2  covers Y. 

PROOF : F or any y E Y let ny E N be the largest number such that y E U�,, ;  ny 
exists because { U� 1 n E N } is locally finite. Since { u;n, + 2 1  p E N } also covers 
Y, and since u;n,, + 2 c U: whenever q � 2ny + 2, it follows that 

" E  U2n, + 2  U U2n,, + 2  U . . .  U u2n,, + 2  C U2 U U4 U . . .  U U2ny + 2. Y ° I ny ° I n, 

6.18 Lemma : The jamily U; l ( U� + 2 ) l p  E N }  of open setsf; I (U�+  2) covers 
X. 
PROOF : Since fo l ( y) = X, this is a consequence of Lemmas 6. 1 6  and 6. 1 7 :  

fo I (U6 u . . .  U U;P+ 2) = fo I (U6) u . . .  u fo l (U;p + 2) 
C Io I (U6) u . . .  u f; 1 (U� + 2). 

6.19 Theorem : Any (continuous) map X � Y of smooth manifolds X and Y is 
homotopic to a smooth map X --+ Y. 
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PROOF : Let (fo , fl ' J� , . . .  ) be the sequence of maps X � Y constructed 
in Lemma 6. 14, and regard the homotopy of condition (i) as a map X x 
[p/(p + 1 ), (p + 1 )/(p + 2)J � Y ;  specifically, Fp is a homotopy relative to 
X - I; I (  v�+ I ). Since I; l (U�+ I )  c ID I (V!) for any p E N , by Lemma 6. 1 5, 
and since Uo l (V!) l p E N }  is a locally finite cover of X, it follows for any 
x E X that there is a Px E N such that F p(x, t) is independent of the choice of 
t E [p/(p + 1 ), (p + 1 )/(p + 2)J for p > Px ; hence Fp is the restriction to X x 
[p/(p + 1 ), (p + 1 )/(p + 2)J of a well-defined homotopy X x [0, 1 J .!. Y, the 
restriction X x {O} .!. Y being the initial f = J� . Condition (ii) of Lemma 
6 . 14  implies that X x { l } .!. Y is smooth on any open set f; I (V� + 2) e X, 

and since U; 1 (U� + 2 ) l p  E N } covers X, by Lemma 6. 1 8, X x { 1 } .!. Y is 
smooth on X, as required. 

Many other expositions of the study of smooth manifolds in general are 
indicated in Remark 1 0. 1 0. 

7 .  Grassmann Manifolds 

The projective spaces RP", RP"" ,  C po, and C pc< of §5 can be regarded as 
spaces of lines through the origins of the vector spaces �" + I, ��, cn+ I, and 
Coo, respectively ; that is, their points are the I -dimensional subspaces of the 
corresponding vector spaces. More generally, for any natural number m > 0 
there are spaces whose points are the m-dimensional subspaces of �m+ ", 
�<h, cm + ", and Coo. These spaces play a crucial role in the theory of vector 
bundles, and the primary purpose of this section is to develop some of their 
properties, especially the fact that they are base spaces. 

7.1 Definition : For any natural number m > 0 let V denote any of the real 
or complex vector spaces �m+", �oo ,  cm + ", Coo ; the usual topology is imposed 
on �m+"  and cm+", and the weak topology is imposed on �oo and C o: .  Let 
( V  x . . .  x V)* denote the set of m-tuples of l inearly independent vectors in 
V, in the relative topology of the m-fold product V x . . .  x V, and let - be 
the equivalence relation in ( V  x . . .  x V )* with (X I " ' " xm) - ( Y I " ' " Ym) 
whenever the vectors X I ' . . .  , Xm span the same m-dimensional subspace of 
V as the vectors YI ' " . , Ym ' The Grassmann manifold Gm(v )  is the quotient 
( V  x . . .  x V)* / - ,  in the quotient topology. 

For example, the Grassmann manifolds GI (�"+  1 ), G I(�oo), G I (cn + I )  and 
GI (COC ) are precisely the projective spaces RP", Rpoo, CP", and Cpoo . 

Observe that the sequence �m + 1 � IRm + 2 -> �m + 3 -+ . . .  of canonical 
inclusions induces a corresponding sequence Gm(�m+ I )  -+ Gm(�m + 2) ->  
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Gm(IRm + 3) ---> • • • of inclusions for which Gm(w") = Iimn Gm(IRm +n) in the weak 
topology ; similarly Gm(coo) = limn Gm(cm +n). We shall show that each of 
Gm(cm + n) and Gm(cm+ n) is a smooth manifold, a fortiori a base space. More 
generally, if V is any of the vector spaces IRm+ n, IRoo, cm + n, Coo, then Gm(V) 
is a CW space, hence a base space ; however, it will be more convenient to 
prove directly that Gm( V) is a base space. 

We show that if V = IRm+ n, then Gm(V )  has the structure of a smooth 
closed manifold of dimension mn ; the case V = cm + n is similar. Let (8) V be 
the tensor algebra generated over IR by V, let I c (8)v be the two-sided ideal 
generated by squares x ® x E V ® V c  (8) V, and let /\ V be the exterior 
algebra (8) V/I. The tensor algebra is graded by assigning degree m to real 
linear combinations of elements X I ® . . .  ® xm E (8)V for any m vectors 
x I ' . . . ' Xm E V, and since I is homogeneous, there is a corresponding grading 
of /\ V. The real vector space of elements of degree m in /\ V is the m-fold 
exterior product /\ mv ;  the image in /\ mv  of XI ® . . .  ® Xm E (8)V is denoted 
x I /\ . . .  /\ Xm • 

One easily shows that m vectors x I ' . . . , Xm in V are linearly dependent 
if and only if x I /\ . . .  /\ Xm = 0 E /\ m V. A nonzero element of /\ m V is simple 
if and only if it is of the form x I /\ . . . /\ Xm for m linearly independent vectors 
X I " ' " Xm in V. If [X I " ' "  xm + n} is a basis of V, then the (m;n) simple 
elements Xi I /\ . . .  /\ Xim E /\ m V with i I < . . .  < im form a basis of /\ m V. 

I f  YI " . .  , Ym and Z I ' . . .  , Zm span the same m-dimensional subspace of 
V, then for some a #- O  one has Y I /\ ' . .  /\ Ym = azl /\ ' • •  /\ Zm so that each 
point of Gm(v )  is identified up to a nonzero factor with a simple element in 
/\m V; more specifically, there is an injective map Gm(V ) !. G I (/\ m V) that is 
a homeomorphism onto the set Im F c Gl (/\ m V) of 1 -dimensional subspaces 
spanned by simple elements of /\ m V, in the relative topology. Hence it is of 
interest to develop an algebraic criterion for simplicity of elements of /\ m V. 

For m = 1 there is a canonical isomorphism V ---> /\ I V, so that every 
nonzero element of /\ I V is simple. In case m > 1 let /\ m- I V .! IR be any 
real linear functional on the (m - 1 )-fold exterior product /\ m - I V. One 
easily verifies that there is then a unique linear map /\ m V � V with 
value 0 -.J (x 1 /\ ' . .  /\ xm) = L7'= I ( _ 1)i - 1 0(x l /\ • . •  /\ Xi /\ . . .  /\ Xm)Xi E V on 
every simple element x I /\ . . .  /\ Xm E /\ m V, where Xi indicates that Xi is 
deleted. 

7.2 Lemma : rf m > 1 and X E /\ m V is nonzero, then X is simple if and only 
if X /\ (0 -.J X) = 0 E /\m+ 1 V for every linear functional /\ m - I V .! IR. 

PROOF : If X = X I /\ . . .  /\ Xm , then any 0 -.J X is a linear combination of 
x I ' . . .  , Xm , and since (x 1 /\ . . .  /\ xm) /\ Xi = 0 for i = 1 ,  . . .  , m, i t  follows that 
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X /\ (0 -.J X) = O. Conversely. let Vx c V he the sUhspace of all vectors of 
the form 0 -.J X. Since X is nonzero. one has dimlR Vx � m. and if X /\ x = 0 
for every x E Vx • then dimlli Vx � m. Hence dimlli Vx = m. so that X = 
X I /\ . . .  /\ Xm for some basis x I ' . . . •  Xm of Vx ' 

For any simple element X E Am V the identities X /\ (0 -.J X) = 0 are the 
Pliicker relations. If {x I • . . . •  Xm + n} is a basis of V. then any X E A m V is 
uniquely of the form 

i l < . .  ' < im 

for real numbers a(i l . ' . . •  im). For any permutation n of {t • . . . •  m} let 
a(n(i l ) • . . . •  n(im) ) = e(n)a(i l  • . . . •  im). where e(n) = ± t  according as n is 
even or odd ; if two or more ofthe indices i l ' . . . •  im in { l  . . . . .  m + n }  happen 
to agree let a(i I '  . . . • im) = O. Then for any ordered (m - 1 )-tuple (i I '  . . . •  
im - d and any ordered (m + 1 )-tuple (jo • . . .  , jm) of indices in P . . . . . m + n }  
the Plucker relations for simple X E Am V are of  the form 

m 
L ( _ 1 )ka(i l . · · · . im - I . jk)a(jo , · · · .k · . .  , jm) = O. 
k = O  

where Jk indicates that jk is missing. We use the Plucker relations in the 
latter form for the Plucker coordinates a(i I • . . .  , im) . 

7.3 Proposition : For any natural numbers m > 0 and n > 0 the Grassmann 
manifold Gm( [Rm + n) has a smooth structure for which it is an mn-dimensional 
smooth closed manifold. 

PROOF : Let { X I " . . , xm +n} be a basis of [Rm+ n, and suppose that 

L a(i I '  • • . •  im)xi, /\ • • • /\ Xim 
i t < . .  ' < im 

is a simple element of Am [Rm + n. representing a point in the image Im F of 
Gm([Rm+n ) � GdAm [Rm+n ). For m fixed indices il < . . .  < im among 
{ t • . . . •  m + n} let Vi, . . . .  , i", e lm F be the open set of those points with 
a(il • . . . •  im) =I O. For any other m indicesjl < . . .  < jm among {t • . . . .  m + n J 
suppose that there are m - p indices in the intersection {i I ' . . . •  im} n 
UI " " , jm} ' The Plucker relations imply that there is a real polynomial 
ff:: : : : :  i::; of degree p in mn variables whose value on the mn real numbers 

is the quotient 

a(i l • . . . •  Tk • • • • •  im • j) 
a(i I • . . . •  im) 

aU I " "  . jm) 
a( i  I ' . . .  , im) '  
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here Tk indicates that ik is missing, and j is any of the n indices distinct from 
i l , . . •  , im • Thus the map Vi" . . .  , i", 

.p' I ' . . .  , i", � IRmn carrying the point with 
projective coordinates a(j I , . . .  , jm) E IR into the point of IRmn with mn 
coordinates 

a(i l '  . . .  , Tk , • • •  , im , j) 
. . E IR a (I I ' . . .  , Im) 

is a homeomorphism. Since the (m; n) open sets Vi ,  . . . . .  i", C I m  F cover Im F, 
they form a coordinate covering { Vi " . . . , im I i l < . . .  < im } , with corre-
sponding atlas {<I>i " . . . . iJ i1 < . . .  < im} .  The homeomorphism <l>iI , . . .  , j", 0 
<1>.- 1 . from lI • .  · ·  . Im 

to 

<I> iI , . . .  , j.,,( Vi ,  . . . .  , im n ViI ,  . . . .  jJ c IRmn 
is given by the mn quotients 

j:iI ,  . . .  ,.k . . . . jm,klfb . . . . .  /m I t • . . . • " )1 ' 1 ,  . . . •  'rn 
of polynomial functions, whose denominators are non vanishing in 

<l>i " . . . , dVi, . . . . , i", n ViI , . . .  , jJ. 
Since such quotients are trivially smooth this completes the proof. 

Alternative proofs of Proposition 7.3 are cited in Remark 10.21 .  
Each complex Grassmann manifold Gm(cm+ n) is similarly a closed 

complex manifold of complex dimension mn, hence real dimension 2mn. 

7.4 Corollary : The Grassmann manifolds Gm(jRm+n) and Gm(cm+ n) are base 
spaces. 
PROOF : According to Corollary 6.8 any smooth manifold is a base space. 

There is an alternative way to show that Gm(lRm + n) and Gm(cm + n) are 
base spaces, which applies equally well to Gm(jRcc) and Gm(c<x-) : one shows 
that they are CW spaces, hence via Corollary 5.4 that they are base spaces. 
In fact, we have already carried out this program for the case m = 1 ,  the 
Grassmann manifolds G1 (lRn+ 1 ), G 1 (IROO), G 1 (1(:"+ 1 ), G 1 (COO ) being the pro
jective spaces Rpn, RP''' , cpn, CP"", respectively; CW structures of these 
spaces were given in Proposition 5.5, Corollary 5.6, Proposition 5.7, and 
Corollary 5.8. More generally, CW structures of arbitrary Grassmann 
manifolds are constructed i'1 Lundell and Weingram [ 1 ,  pp. 1 3 - 1 5] and 
(in the real case) Milnor and Stasheff [ 1 ,  pp. 73-81] ' 
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There is also a direct proof that Grassmann manifolds are base spaces. 

7.5 Proposition : All the Grassmann manifolds Gm(�m+ n), Gm(�" ), Gm(cm + n ), 
Gm(c" ) are base spaces. 
PROOF : We consider Gm(�x J, the other cases being similar. The space �'h 
is a direct sum of copies of�, which one endows with the usual inner product. 
If {x . , X2 , X3 " . . } is an orthonormal basis of �� then the exterior product 
/\ m �� is also a direct sum of copies of �, with an orthonormal basis 
{Xi, /\ . .  · /\ xi . .. I i . < . . .  < im} .  As in Proposition 7.3 Gm(�OC ) can be regarded 
as the submanifold of those points of G . (/\ m �Cfo) whose projective coefficients 
a(i . ,  . . .  , im) E � satisfy the PlUcker relations. In the next two paragraphs we 
show that Gm(�x'J is of first type and metric, hence a base space. 

For each index ( i . , . . . , imJ let Vi , . . . . . i", denote the open set of those 
points in Gm(�ooJ with la(ip . . .  , imJ I > max l a(j. , . . .  , jmJ I ,  where the 
maximum is computed over the finitely many indices (j . , . . .  , jm) with 
a(j . , . . .  , jm) =f. ° and (j . ,  . . .  , jmJ =f. ( i . , . . . •  imJ. Similarly, for any set 
{ri , . . . . . iJ i .  < . . . < im} of mutually distinct positive numbers, let Vi, . . . . . in< 
denote the open set of those points in Gm(�x ) with ri, . . . . .  iJa(i . ,  . . .  , imJ I  > 
max rh . . . . . i • .. Ia(j . ,  . . .  , jmJ I .  Clearly { Vi, . . . . . iJ i . < . . . < imJ is a mutually 
disjoint family, { Vi , . . . . . in> I i. < . . . < im} is a mutually disjoint family, and 
the two families collectively cover Gm(IROC ) ;  it remains to show that each 
Vi , . . . . .  i "' .  each VJ, . . . . .  ion ' and each nonvoid intersection Vi ,  . . . . .  ion n 
VJ, . . . . . im is of Oth type. Each point of Vi ,  . . . . .  i ... can be regarded as a one-
dimensional subspace of /\ m IR '  spanned by an element of the form 
(Xi I + y . J  /\ . . .  /\ (Xi", + YmJ, where each of Y. , . . .  , Ym is orthogonal to the 
subspace of �x spanned by Xi " . . .  , Xi". '  If t E [0, 1 ] ,  then (Xi, + ty . )  /\ . . .  /\ 
(Xim + tYm) also represents a point of Vi , . . . . .  i", ' so that Vi , . . . . . i", trivially 
contracts to the point represented by Xi, /\ . . .  /\ Xi". : a fortiori Vi ,  . . . . .  i ... is 
of Oth type. Similarly each VJ, . . . . . im is of Oth type. An intersection 
Vi, . . . . . ion n VJ, . . . . . im is nonvoid if and only if ri , . . . . .  im < ri , . . . . . i", and 
finitely many other similar inequalities are satisfied. In this case points of 
Vi , . . . . . i'" n Vi, . . . . . im are represented by points (Xi, + ( .xi, + Y t l /\ · · · /\  
(Xi". + (mXi". + YmJ E /\ m �" , where each of Y • • . . .  , Ym is orthogonal to the 
subspace of �cx spanned by Xi " . . .  , Xi"" xii ' . . . , Xi", ; the coefficients t . ,  . . . , 
tm satisfy ri , . . . . . i...lrh . . . . . i'" < I t • . . .  tml < J and finitely many other similar 
inequalities. If t E [0, 1 ] ,  then (Xi , + t . xi, + (.I' d ' " (xin> + tmxi", + tYm) also 
represents a point of Vi , . . . . . i'" n Vi, . . . . . i", ' so that Vi ,  . . . . . i". n Vi, . . . . . im 
contracts to a set represented by a set W c  /\ m �a: of points (Xi, + t \Xi) /\ . . ' /\ (Xi", + tmxi..,J in which t l , . . .  , tm satisfy finitely many inequalities. 
Furthermore, W is a disjoint union of (finitely manyJ contractible relatively 
open sets, so that Vi , . . . . . im n VJ, . . . . . in> is a corresponding disjoint union 
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of contractible open sets ; that is, Vi, . . . .  , im n J.-}' . . . . . jm is of Oth type as 
required. 

To show that Gm([Roc ) is metric, let A m IR"  � [R be the euclidean norm 
on the direct sum A m [Roo, corresponding to the inner product used in the 
preceding paragraph. Since every element of the projective space G1 (A m W C )  
is an  equivalence class [x] of  nonzero elements x E A m [R, one may as  well 
choose representatives x that lie on the unit sphere : I Ix l 1 2 = 1 .  There is then 
a metric G1 (A m [ROO) X G 1(A m [ROO) � IR given by 

d( [x], [ y] )  = min l lx - y1 1 2 , 
x,y 

where the minimum is computed over representatives x, y of [x], [y] lying 
on the unit sphere, and the embedding Gm(lRoo) !. G 1 (A m 1R(0) induces a 
metric on Gm([ROO), as desired. 

8 .  Some More Coverings 

This section contains two unrelated results. The first result asserts that 
any base space whatsoever is homotopy equivalent to a paracompact space 
with an especially useful covering. The second result is a more specialized 
covering theorem. 

We start by quoting some classical general topology. Recall that a 
hausdorff space X is paracompact if and only if any open covering { Vi l i E  I }  
has a locally finite refinement { J.-}  U E J }, and that any partition of unity 
{hj I j E J }  subordinate to { J.-}  U E J }  is also regarded as being subordinate to 
{ V; j i E I } . 
8.1 Lemma : If X is paracompact, then there is a partition of unity subordinate 
to any open covering of x. 

The proof of Lemma 8.1 can be found in Dugundji [2, pp. 1 52- 1 53, 1 70], 
for example. 

8.2 Lemma (Stone [1] ) :  Any metric space is paracompact. 
Proofs of Lemma 8.2 can be found in Dugundji [2, pp. 1 67- 1 69, 1 86], 

and Kelley [ 1 ,  pp. 1 29, 1 56- 160], for example. 

8.3 Proposition : Any base space is homotopy equivalent to a paracompact 
hausdorfl space X E :JI  for which there is a countable locally finite open 
covering { V" I n E N } such that each connected component of each V" is 
contained in a contractible open set in X. 
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PROOF : Definition 1 .2 states that any base space is homotopy equivalent 
to a metrizable space X of finite type. Since metric spaces are trivially 
hausdorff, Lemma 8.2 implies that X is paracompact. Definition 1 . 1  states 
that a space is of Oth type if it is a disjoint union of contractible spaces, of 
nth type if it has an appropriate covering by spaces of (n - l )th type, and 
of finite type if it is of nth type for some n. It follows that X has a covering 
by contractible open sets, and since X is paracompact, Lemma 8. l provides 
a partition of unity { hj l j  E J }  subordinate to that covering. For each j E J 

let Vj C X be the open set of points x E X with hj(x) > 0;  then { l'j l i E J }  is 
a locally finite covering of X such that each connected component of each 
l'j is contained in a contractible open set in X. 

The covering { l'j  I j E J} is not necessarily countable. For any finite sub
set I c J let H-J c X be the open set of those x E X such that 

min h j(x) > max h j(x) . 
j E I  i f l  

Then H-J i s  a subset o f  l'j whenever j E I ,  so that each connected component 
of each H-J is contained in a contractible subspace of X ;  furthermore { W1} I 
trivially covers X. Let II I be the number of indices in I, and suppose for 
I' i= I that 11' 1 = I l l ; then clearly H-J n W1, = 0. Hence for each natural 
number n > 0 each connected component of the open set Vn = U III = n W1 is 
also contained in a contractible open subspace of X. 

Trivially { V  n I n E N } is a countable open covering of X, and it remains 
only to show that it is locally finite. Since { l'j I j E J }  is locally finite, for each 
x E X there is an n > 0 and an open neighborhood of x which meets at most 
n of the sets l'j; consequently that neighborhood of x does not intersect V m 
for any m > n, which completes the proof. 

For later use we record the following minor improvement of a special 
case of Proposition 2. 1 .  

8.4 Proposition : Let X be a smooth compact manifold with interior X.  Then 
there is a finite covering { VI ' . . .  , V q} of X by open cells such that each 
nonvoid intersection Vj n Vj is a cell Uk in the covering, and such that the 
closures in X satisfy V j n Vj = Dj n Dj . 
PROOF : By the Cairns-Whitehead triangulation theorem (Theorem 6.7) 
X is homeomorphic to an n-dimensional metric simplicial space IK I ,  where 
n is the dimension of X. Since X is compact, one can assume that the vertex 
set Ko of the abstract simplicial complex K is finite. For each vertex i E Ko 
let Y; c  ilKo IR consist of all points LiE Ko Xj<,j 

E UKo IR such that xj > (n + 2 ) - 1 . 
Then the finite family { WI ' . . .  , �} of all nonvoid intersections of the open 
convex sets Y; c ilKo IR has the properties that each nonvoid intersection 



9. The Mayer -Vietoris Technique 4 1  

W; n HI; is o f  the form Wk for some k = k(i, j), and that W; n HI; = W; n Wj • 
The same two properties are inherited by the family { V" . . .  , �} of inter
sections J.."; = W; n IK I ; furthermore { VI ' . . .  , Vq : is a covering of IK l o  by 
open /I-cells. To complete the proof one chooses { U " . . .  , U q} to be the 
family of inverse images of the sets VI ' . . .  , Vq under the homeomorphism 
X � IKI · 

9. The Mayer-Vietoris Technique 

We now develop a technique which will later be applied to prove certain 
theorems involving an arbitrary space X of finite type (Definition 1 . 1 ). Since 
the theorems will depend only on the homotopy type of X, one can regard 
the technique as a method for proving corresponding theorems for any 
space X' homotopy equivalent to a space of finite type ; for example, X' 
might be any base space (Definition 1 .2). Specifically, the technique will be 
used to prove best-possible versions of the Leray-Hirsch theorem (Prop
osition II .7.2) and the existence of Thorn classes (Propositions IV.1 .3 and 
IX.2. 1 ). In a specialized form the technique will be used to prove the existence 
of fundamental classes (Propositions VU .3 and VII .2.3) and the Poincare
Lefschetz duality theorem (propositions VI .2.3 and VII.2.7). 

For any space X of finite type let (I)(X) denote the category of open sets 
U c X, morphisms U � V in (I)(X) being inclusions, and let (I)(X) � 9Jl be 
any contra variant functor from (I)(X) to a category 9Jl of modules over a 
fixed commutative ring. Such a functor is additive whenever for any mutually 
disjoint family { U  b} b of open sets U b C X the module h(U<I U <I) is the direct 
sum Uoh(U<I). For any U E (I)(X) and V E (TJ(X) there are four morphisms 

U � U u V  
V � U u V  

and 

in (T)(X) and four corresponding morphisms 
h (U u V) --±-. h (U) 
h (U u V) � h( V) and 

U n V � U  
U n V �  V 

h (U )  � h (U n V )  
h( V )  � h ( U  n V )  

in 9)1. For any Cl. E h (  U u V )  let it.vCl. = itCl. EEl itCl. E h (  U )  EEl h ( V ), and for any 
fJ EEl " E h( U) EEl h( V) let jt.v(f3 EEl y) = jU3 - jty E h( U n V ). The induced 
sequence 

h (U u V )  � h(U )  EEl h( V )  iuy ,  h (U n V )  
of homomorphisms is automatically exact at the term h( U )  EEl h (  V ). 
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Let {hm I m E Z}  be any family of additive contravariant functors from 
&(X )  to Wl, indexed by the integers Z, and suppose for each ordered pair 
( V, V) E (o(X )  X (o(X) and each m E Z that there is a module homomorphism 
J�,v for which 

, , . � hm- 1(V) EEl hm- I (V ) it . .· I hm- I ( V  n V )  b'V.'\ hm( v u V )  
it.v I hm(V )  EEl hm( V )  it.v I hm(v n V )  bV.v I . . .  

is a long exact sequence. In this case {hm I m  E Z} is a Mayer-Vietoris functor 
on �;(X ). 

For example, if {hm I m E  Z} is the restriction to (0(X )  of singular coho
mology {Hm I m E Z} with a given commutative coefficient ring HO( { * } ), then 
there are classical connecting homomorphisms J�.v for which { hm I m E Z ]  is 
a Mayer-Vietoris functor on (o(X). (The cohomology version of the Mayer
Vietoris sequence can be found in Artin and Braun [2, pp. 1 37- 143], Hu 
[5, pp. 28-29], and Spanier [4, pp. 1 86- 190, 2 1 8, 239], for example, Since 
V and V are open sets in X, the pair ( V, V) E (o(X) x (o(X) automatically 
satisfies the conditions required for the construction of connecting homo
morph isms.) 

A natural transformation fJ from a Mayer-Vietoris functor { hm I m E Z :  to 
a Mayer-Vietoris functor { km I m E Z} consists of homomorphisms 

hm( V ) � km(v) 
in Wl such that the diagram 

hm - I ( V  n V )  bV.l.t, hm(v u V )  � hm(V ) EEl hm(v ) it v , hm(U n V )  I,"," I," , I 
'
". "  I ,"" 

km- I ( V n V) di� .,\ km( V u V)  
it.v , km( V )  EEl km(V ) it. v ,  km( V n V ) 

commutes for each V E (o(X ), V E (o(X), and m E Z. It will be assumed that 
fJ respects the additivity of the functors hm and km ; specifically, for any 
mutually disjoint family { Vb} b of open sets Vb C X the diagrams 

hm ( Ua Va) � lia hm(Va) 

I,·· ". I u. 
'

". 
km (Ua Vd) � liJ km(Va) 

commute. The main result of this section is that if X is of finite type and each 
hm(V) � km(V )  is an isomorphism whenever V E (o(X) is contractible, 
then each hm(x) � km(x) is an isomorphism. 
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9.1 Lemma (The 5-1emma) : Let 

A \  � Az � A3 � A4 � As  ]., ] 0, ] 0 ,  ] " ] 0, 

B\ � B2 � B3 � B4 � Bs 

he a commutative diagram in a category �lJl of modules over a fixed ring, each 
row heing exact. If e \ ,  O2 , 04 , Os are isomorphisms, then 03 is also an iso
morphism. 
PROOF : This is an easy and classical diagram chase, which will be left to 
the reader. 

9.2 Lemma : Let V he a space of nth type, as in Definition 1 . 1 ,  and let e be 
a natural traIl.V()fmation of a M ayer-Vietoris functor { hm I m E Z }  011 c'D( V )  to 
a Mayer-Vietoris jimctor {km l m E Z} on (()( V ). Suppose for each V E (I)( V )  
of ( 11 - I )th type that each hm( V) � km( V )  is an isomorphism ; then each 
hm( V )  � km( V )  is an isomorphism. 
PROOF : By hypothesis there is some finite q for which V is covered by q 

families [ V  1 .a}" . . . , [ V  q.y L of open sets V p./J E (O( V ), such that each family 
is mutually disjoint and such that each intersection of any sets in the covering 
is of (n - l )th type. For p = 1, . . . , q let Up denote the (disjoint) union 
U IJ V p.p E (!I( V), and let { D.}. denote the finite family consisting of all 
possible intersections of the sets V \ ' . . . , V q ; the sets V \ 0  • . •  , V q themselves 
are in the family [ D.}  . . which consists of at most 2q - 1 distinct open sets, 
possibly including the void set. Clearly each D. is a disjoint union of spaces 
of (11 - l )th type, although not necessarily itself of (n - l )th type. For each 
s > 0 let 2s( V)  c (T)( V )  consist of those open sets W c V which are unions 
of at most s members of the finite family { D.} •. Then V = V \  u ' "  u Vq E 
dq( V ). We shall show by induction on s that if W E  2s( V ), then each 
hm( W)  � km( W )  is an isomorphism. 

Since d d V )  is precisely the family { D.}. itself, it follows that any W E 
,2 \  ( V )  is a disjoint union U � V � of open sets V � c V that are spaces of 
(11 - l )th type. The additivity properties of the given functors and of 0 
itself then provide commutative diagrams 

hm(w )  � Uo hm(vo) ] OW ]11" ", 
km( w)  � Uo km(v�), 
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and since each Ou. is an isomorphism by the hypothesis of the lemma, each 
Ow is also an isomorphism, for any W E  .El, ( V ). 

Now suppose that each Ow' is an isomorphism for any W' E .Els _ , ( V ), 
and suppose that W E  .El.,( V ). Then W is a union W' u W" of some W' E 
It, - , ( V )  and some W" E .Eld V) ( c .:z,_ , ( V» , and by the de Morgan laws 
W' (', W" is also a member W'" E !2s- , ( V ), Consequently the four homo
morphisms labeled either Ow' EFl Ow" or Ow'" in the commutative diagram 

'. bm - t 
hm - '( W) EFl hm - ' (W") lw' .w", hm - ' ( W''') � hm( w) j.w •. w jow j 'w 

km - ' ( W) EFl k"' - ' (W") itv, . w", km - l (W ''') bw-, Iv", km(w) 
itv, . w", hm(w') EFl hm( W") it,.., . w", hm( W") j.w •. w jow 

ity, . w", km(w') EFl km( W") ity, .w", km( w") 
are isomorphisms by the inductive hypothesis, It follows from the 5-lemma 
that Ow is also an isomorphism, which completes the inductive step. Since 
V = U 1 U . . .  u Uq E .:ziV), each hm( v) � km(v )  is therefore an iso
morphism as claimed. 

9.3 Theorem (The Mayer-Vietoris Technique) : Let (D(X) be the category 
of open sets on a space X of finite type, as in Definition 1 . 1 ,  and let 0 be a 
natural transjormation of a M ayer-Vietoris functor {hm I m E  Z }  on (D(X) to a 
Mayer-Vietoris jimctor {km lm E Z }  on (D(X). If each hm(u)  � km(u )  is 
an isomorphism whenever U E (D(X) is contractible, then each hm(x) � km(x) 
is also an isomorphism, 
PROOF : We shall show by induction on n that if V E (D(X) is of nth type, 
then Ov is an isomorphism. If V E (D(X) is ofOth type, then there is a mutually 
disjoint family { U  .I} .I of contractible open sets Ub E (D(X) such that V = 
Ub U 0' so that the additivity properties of the given Mayer-Vietoris functors 
and 0 itself provide commutative diagrams 

hm(v )  � Ud hm(uo) j.v jl lo ,vo 
km(v )  � Ud �(Ub)' 
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Since each (}U6 is an isomorphism by hypothesis, it follows that (}y is also an 
isomorphism. Now suppose that hm(u)  � km(U )  is an isomorphism for 
each U E (O(X) of (n - 1 )th type, and let V E @(X) be of nth type. Since V is 
open in X, it follows that each hm( U )  � km( U) is an isomorphism for each 
U E (O( V) of (n - 1 )th type, so that each hm( V )  � km( V) is an isomorphism 
by Lemma 9.2. This completes the inductive step, and since X is itself of nth 
type for some n � 0, this also completes the proof of the theorem. 

As announced at the beginning of this section there will be several later 
applications of the Mayer-Vietoris technique. The applications will use 
slightly embellished versions of Theorem 9.3, and for convenience we present 
those versions as corollaries. 

For any space X of finite type one can regard a Mayer-Vietoris functor 
( h'J l q E :E l as a single functor (i'(X) Uqhq • .  911<$ carrying each U E ((!(X) into 
a direct sum llqE ", hq(U )  of abelian groups, indexed by the integers :E. Let R 
be a :E-graded ring that is commutative in the usual sense that if u E R and 
l' E R are of degrees p and q, then uv = ( - 1 )pqvu is degree p + q, and suppose 
that �Jlf is the category of :E-graded R-modules. Then 9Jlf c dtl$ and we 
shall consider functors Uq hq from ((; (X) to ml�. 
9.4 Corollary : Let (()(X) be the category of open sets on a space X offinite 
type, let R be a graded commutative ring as above, and let llq hq .! llq kq be 
a degree-preserving natural transformation of M ayer-Vietoris functors from 
(i!(X) to mlf.  rF (}u is an R-module isomorphism whenever U E @(X) is a con-
tractible open set, then () is a natural equivalence ; in particular, llq hq(X) � 
llq kq(X) is an R-module isomorphism. 
PROOF: Immediate consequence of Theorem 9.3. 

The next variant of the Mayer-Vietoris technique is closer to Theorem 
9.3 itself. 

9.5 Corollary : Let () be a natural tran�Formation of M ayer-Vietoris functors 
W I q E :E ]  and [ kq I q E :E} as in Theorem 9.3, and let n E :E be a fixed integer. 
IF hq( U )�kq( U )  is an isomorphism lrhenel'er q � 11 and the open set U E (()(X) 
is co/lt/'(lctible, then hq(X) � kq(X) is  (11/ isol11orphism whenever q � 11. 

PROOF : One proceeds exactly as in the proof of Theorem 9.3, observing 
that if p � q � 11 then the 5-lemma produces isomorphisms only when 
p < q � 11. 

In Chapters VI and VII we shall use a refinement of the Mayer-Vietoris 
technique, for which we single out particular base spaces. Let X be a smooth 
compact manifold with interior X. According to Proposition 8.4 there is a 
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finite covering { V  I , . . .  , V q} of X by open cells such that each nonvoid 
intersection Vj n Vj is � cell !jk in the s,overing, and such that the closures 
in X satisfy Vj n Vj = Vi n Vj . Let .2(X) be the category whose objects are 
unions of the sets V I ' . . . , V q ' (One does not need "unions of intersections 
of the sets V I , . . .  , V q" since each non void intersection is automatically a 
union of the sets V I " ' " Vq .) Morphisms in .2(X) are inclusions. A Mayer
Vie!oris functor on .2(X) is a family {hq I q E lL} of contra variant functors from 
.1(X) to a category 9R of modules for which there is a long exact Mayer
Vietoris sequence for each pair ( V, V )  E .2(X) x .E?(X), as before. The only 
difference is that we now restrict V and V to 2(X) ;  the category (I)(X) of all 
open sets in X is not needed as such. 

Here are two examples. Let H*(-) denote singular cohomology with 
coefficients HO( { * } ), and let H*(X, -) denote relative singular homology with 
the same coefficients, where X is the given smooth compact manifold. 

9.6 Proposition : Suppose that X is a smooth compact manifold ; then there 
is a Mayer-Vietoris jimctor {hq l q  E lL }  on 2(X) with hq(V) = Hq(O ) for every 
V E .:2(X). 
PROOF : It follows from Proposition 8.4 that the closure in X of any element 
of .£1(X) is itself finitely triangulable. Hence one can construct the connecting 
homomorphisms (jt.v of the classical Mayer-Vietoris cohomology sequence 

. . .  �Hq - I (O  n V ) <lb�f , Hq(O u V )  ib .v , Hq(O) (B Hq(i7) 
jb .v, W( O n V )  � . , .  

for any ( V, V )  E 2(X). Proposition 8.4 also guarantees that V n V = 0 n V, 
and since one always has V u V = 0 u V, this completes the proof. 

9.7 Proposition : Suppose that X is an n-dimensional smooth compact mani
fold; then there is a M ayer-Vietoris jimctor {hq I q E lL }  on .£1(X) with hq( V) = 
Hn- q(X, X - V) for every V E .£1(X). 
PROOF : This time each X - V is itself finitely triangulable, so that one can 
construct the connecting homomorphisms of the classical relative Mayer
Vietoris homology sequence to complete the proof. 

We shall construct a third Mayer-Vietoris functor on .E?(X) in Chapter VI .  
Here i s  the specialized Mayer-Vietoris technique promised earlier. 

9.8 Theorem (Mayer-Vietoris Comparison Theorem) : Let X be a smooth 
compact manifold with interior X, and let 0 be a natural transformation of 
Mayer-Vietoris functors {hq l q  E lL }  and { kq l q  E lL} on .2(X). If hq(Vj) � 
kq( U i) is an isomorphism for each of the open cells V I ' . . . , U r in .£1(X) when-
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ever q � 0, it follows that hq(X) � kq(X) is an isomorphism whenever 
q � O. Similarly, if hq( Vi) � kq( VJ is an isomorphism for each of the open 
cells V I " . . , Vr in ';!!(X) for any q E 71, it jollows that hq(X) � kq(X) is 
all isomorphism jar any q E 71. 

PROOF : The 5-lemma applies exactly as in the proof of Lemma 9.2. 

1 0 . Remarks and Exercises 

10.1 Remark : The category (!J was identified in Osborn [6, pp. 745, 754] 
as the natural category of topological spaces that serve as base spaces, in 
the sense described in the next chapter. Indeed, the defining properties of 
Definition 1 .2, the closure properties of Proposition 1 .4, the inclusion 
if '  c dB of Corollaries 3.9 and 5.4, and the Mayer-Vietoris technique of 
Theorems 9.3 and 9.8 will be used not only in the next chapter, but through
out the entire book. The definition of dB, the inclusion if' c r!J, and the 
Mayer-Vietoris technique were suggested by a construction in Connell 
[ I ,  pp. 499-50 1 ] ;  Connell attributes the construction to E. H. Brown. 

It is possible to replace the category fJJ by the category 1(1 (Definition 3.8 
and Corollary 5.3) or by the category 1(10 (Definition 3 . 1 1 and the obvious 
analog of Corollary 5.3). However, many constructions appearing later in 
the book are most easily carried out in fJJ itself, rather than in "If' or in if� , 
and there seems to be little point to frequent appeals to the inclusions 
'If � c 'If '  c ;]d. 

On the other hand, the relative size of fJJ is not itself a virtue. Although 
several major existence and uniqueness theorems (Theorems V.5. 1 ,  X .4. 1 ,  
XI.6. 1 ,  and X1 .7.3) are more easily established for the category dB, one is 
frequently interested in corresponding results (Theorems V.5.2, X .4.2, 
XI.6.2, and X1 .7.7) for the category Jf of smooth manifolds. The inclusion 
. It  c dB of Corollary 6.8 permits one to use the existence assertions of the 
former results to obtain corresponding existence assertions in the latter 
results ; however, the uniqueness assertions in the latter results are somewhat 
more delicate. 

10.2 Remark : In Definition 1 . 1  the terminology "space of finite type" was 
chosen for convenience ; the same phrase undoubtedly appears in many 
other contexts with different meanings, and no confusion is intended. 
However, Definition 1 . 1  itself may recall another definition, and there may 
indeed be some faint relation between the two concepts : a topological space 
X is of Ljusternik-Schnirelmann category n � ° (according to one of the two 
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most common conventions) if X can be covered by n + 1 ,  but not by n, open 
contractible spaces. 

The Ljusternik-Schnirelmann category was introduced in Ljusternik and 
Schnirelmann [ 1 ]  as a topological setting for variational problems ;  it is still 
used for that purpose, as in Ljusternik [ 1 ], Maurin [ 1 ], and Palais [ 1], for 
example. The homotopy invariance ofthe Ljusternik-Schnirelmann category 
suggests its importance in algebraic topology per se, and it has been inves
tigated in that spirit by Fox [ 1 , 2] and many later authors. Ganea [ 1 ]  
provides a 1962 survey o f  the subject, and there are more recent developments 
in Berstein [1] ,  Borsuk [2], Coelho [ 1], Draper [ 1 ], Ganea [2, 3], Hardie 
[ 1 , 2, 3], Hoo [ 1], Luft [ 1 , 2], Moran [ 1 , 2, 3, 4], Ono [ 1 , 2], Osborne and 
Stern [ 1] , Singhof [ 1 , 2], and Takens [ 1 ,  2] for example ; lames [3] provides 
a 1978 survey of the subject. 

10.3 Remark : The superficial similarity of spaces of n th type (Definition 1 . 1 )  
to spaces of Ljusternik-Schnirelmann category n has just been considered. 
However, the Ljusternik-Schnirelmann category ignores all properties of 
intersections of the sets in given coverings by open contractible sets, whereas 
such properties are of paramount interest in Definition 1 . 1 .  Intersections in 
open coverings are considered in Nagata [ 1 ,  pp. 1 33- 1 37] in the form of 
"multiplicative refinements." For example, a separable metric space is of 
dimension � n if and only if for every open covering there is a multiplicative 
refinement of length � n + 1 ;  the appropriate definitions can be found in 
Nagata [ 1] .  (There is a corresponding result in H urewicz and Wallman 
[ 1 ,  pp. 54, 66, 67], which ignores intersections.) A somewhat more specialized 
result concerning minimal open coverings of manifolds, with well-behaved 
intersections, can be found in Osborne and Stern [ 1 ] . 

10.4 Remark : There is an omission in the list fJ4, "11/', 1110 of categories 
considered in Remark 10. 1 .  A hausdorff space X is compactly generated if a 
subset A c X is closed whenever all intersections A n B c  X with compact 
subsets B c X are closed. The category $' of compactly generated spaces 
( =  Steenrod's convenient category) was introduced and investigated in 
Steenrod [6] ; the definition and elementary properties can also be found in 
Cooke and Finney [ 1 ,  pp. 86- 105], Gray [ 1 ,  pp. 50-61 ], and G. W. White
head [ 1 ,  pp. 1 8-20]' For example, any metric space is compactly generated. 

Some alternate "convenient categories" are introduced in Vogt [ 1 ,  2] and 
compared to Steenrod's convenient category. 

The categories of Steenrod and Vogt are indeed convenient for much 
of homotopy theory : Steenrod's category suffices for more than 700 pages in 
G. W. Whitehead [ 1 ] ,  for example. However, Steenrod's definition is not 
itself homotopy invariant, and it would not serve especially well in the very 
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next chapter of this book, which uses frequent homotopy equivalences. One 
can perhaps replace f!J by the category 0/1 of spaces that are homotopy 
equivalent to compactly generated spaces : f!J c r1/i since any metric space is 
compactly generated, and according to a result in May [ 1 ,  p. 28], for any 
X E r1/i there is a homotopy class of weak homotopy equivalences X' ---+ X 
relating some X' E 1f' ( c f!J) to X. However, f!J will suffice for the purposes 
of the present work. 

10.5 Remark : Simplicial complexes and metric simplicial spaces, consid
ered in §2, are also discussed in Cairns [6, pp. 65-89], Hilton and Wylie 
[ 1 ,  pp. 14-52], Maunder [ 1 ,  pp. 3 1 -62], Spanier [4, pp. 1 07- 129], for 
example. 

10.6 Remark : The telescope of Definition 3.3 was suggested to the author 
by a corresponding construction in Connell [ 1 ] .  A similar construction is 
used for a related purpose in Bendersky [2, pp. 1 6- 1 7] .  Incidentally, the 
inclusion 111 c f!B of Theorem 3.7 (and Corollaries 3.9 and 5.4) was proved 
more rapidly in Osborn [6], but by a more sophisticated method. Specif
ically, although Osborn [6] uses a simpler telescope IK I* than the one 
constructed in Definition 3.3, there is no direct construction of a homotopy 
inverse to the obvious projection IK I*  ---+ IK I .  Instead, one observes that 
IKI* ---+ IK I is a weak homotopy equivalence, and according to a classical 
result of J. H. C. Whitehead [4] it follows that IK I* ---+ IK I  is a homotopy 
equivalence in the usual sense, as in this book. Whitehead's theorem was 
cited following Theorem 5.2; it can also be found in Gray [ 1 ,  p. 1 39], Lundell 
and Weingram [ 1 ,  p. 1 25], Maunder [ 1 ,  pp. 298-300], and Switzer [ 1 ,  
pp. 8 7  -90], for example. 

10.7 Remark : The proof of Proposition 4.6 (Dowker [ 1 ] )  can also be 
found in Lundell and Weingram [ 1 ,  p. 1 3 1 ], M ilnor [8, p. 276], and Dold 
[8, pp. 354-355], for example. 

10.8 Remark : CW spaces were first considered in J. H. C. Whitehead [3]. 
Other expositions can be found in Cooke and Finney [ 1 ], Gray [ 1 ,  pp. 1 1 3-
1 21], Hilton [ 1 ,  pp. 95- 1 1 3], Hu [3, pp. 1 1 1 - 149], throughout Lundell and 
Weingram [1] ,  Massey [6, pp. 76- 104], Maunder [ 1 ,  pp. 273-3 10], through
out Piccinini [ 1], Rohlin and Fuks [ 1 ,  Chapter 1 1], Spanier [4, pp. 400-418], 
Switzer [ 1 ,  Chapter V], and G. W. Whitehead [ 1 ,  pp. 46-95] ' 

There are CW spaces which are not simplicial in any sense (other than 
homotopy equivalence). Specific examples of such spaces can be found in 
Metzler [ 1 ]  and in Bognar [ 1], for example. 
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10.9 Remark : According to Corollary 5.4 every CW space is a base space, 
a fortiori homotopy equivalent to a metric space, so that Lemma 8.2 (Stone 
[ 1 ] )  guarantees that every CW space is homotopy equivalent to a para
compact space. A stronger statement is available : every CW space is itself 
paracompact. This was established by Miyazaki [ 1 ], following partial 
results of Bourgin [ 1 ]  and Dugundji [ 1 ] .  Proofs of Miyazaki's theorem can 
be found in Postnikov [ 1 ]  and Lundell and Weingram [ l , pp. 54-55]. 

1 0.10 Remark : There are many elementary introductions to the category 
M of smooth manifolds, which was described very briefly in §6. See Auslander 
and MacKenzie [2], Boothby [ 1] , Guillemin and Pollack [ 1] , M. W. Hirsch 
[4], Hu [6], Lang [ 1], Milnor [ 1 5], Rohlin and Fuks [ 1 ,  Chapter I l l ] ,  or 
Wallace [5], for example. 

10.1 1 Remark : The Whitney embedding result of Theorem 6.6 is neither 
the easiest nor the best-possible embedding theorem for smooth manifolds. 
The "easy" Whitney embedding theorem asserts that any smooth n-dimen
sional manifold X admits at least one smooth embedding X -+ 1R2n + 1 . This 
result was announced in Whitney [ 1 ]  and proved in Whitney [3]. Other 
proofs of the "easy" Whitney embedding theorem can be found in T. Y. 
Thomas [ 1 ,  2], in Whitney [9], Auslander and MacKenzie [2, pp. 106-1 16], 
de Rham [1 , pp. 9- 1 6], Greene and Wu [ 1 ], Guillemin and Pollack [ 1 ,  
pp. 39-56], and i n  the 1966 revised edition o f  Munkres [ 1 ], for example. 

The "hard" Whitney embedding result X -+ 1R2n of Theorem 6.6 appears 
in Whitney [7, p. 236] ; its proof occupies all 27 pages of that paper. 

A long-standing "best-possible" embedding conjecture is that any 
smooth n-dimensional manifold X admits a smooth embedding X -+  
1R2n- �(n) + 1 , where cx(n) is the number of I 's in the dyadic expansion of the 
dimension n. (See Gitler [ 1 ], for example.) One can definitely do no better : 
in Chapter VI we shall show for each n > 0 that there is a smooth closed 
n-dimensional manifold which cannot be embedded in 1R2n - �(n) ;  no stronger 
counterexamples are known. 

Although the "best-possible" embedding conjecture remains unproved, 
there is at least one faint suggestion of its truth. According to a result of 
R. L. W. Brown [2, 3], every smooth closed n-dimensional manifold is 
equivalent to one which smoothly embeds in 1R2n - �(n) +  1 : the equivalence is 
"cobordism," which will be discussed in Chapter VI. 

In lieu of a proof of the "best-possible" embedding conjecture, there 
have been many improvements upon the "hard" Whitney embedding theo
rem. It is known for every n > 1 ,  with the possible exception of the case 
n = 4, that every smooth orientable n-dimensional manifold embeds in 
1R2n- 1 ; the case n = 4 is probably not an exception. It is also known for 
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every natural number n > 1 not of the form 2' that every smooth nonorient
able n-dimensional manifold em beds in jR2n - 1 ;  the cases n = 2' definitely 
are exceptions since the real projective spaces Rpn do not embed in jR2n - l  
for these values of n. The fact that Rpn is an exception for n = 2' will be 
established in Proposition VI.4.9, and the remainder of the preceding results 
will be considered in more detail in Remark V 1 .9. 1 6, with appropriate 
references. 

1 0.12  Remark : There are several analogs of the Whitney embedding theo
rems. For example, any n-dimensional separable metric space is homeo
morphic to a subset of jR2n +  1 ; proofs are given in Hurewicz and Wallman 
[ 1 ,  pp. 60-63] and Nagata [ 1 ,  pp. 10 1- 108] ' 

F or any II-dimensional simplicial space IK I there is a simplicial embedding 
IK I  � [R211 +  I ; this analog of the "easy" Whitney embedding theorem is 
proved in Seifert and Threlfall [ 1 ,  German edition, pp. 44-46 ; English 
edition, pp. 45-47], and Cairns [6, pp. 78-80] ' In case IK I is an n-dimensional 
triangulated manifold there is a simplicial embedding IK I  � jR2n, due to 
van Kampen [ 1 ] .  A necessary and sufficient condition for the existence of 
simplicial embeddings IK I - jR2n of n-dimensional simplicial spaces IK I in 
general is given in Wu [ 10, p. 237], and it is shown to be satisfied by 
n-dimensional triangulated manifolds in Wu [ 10, p. 257] ; this provides 
another proof of van Kampen's analog of the "hard" Whitney embedding 
theorem. 

Any two simplicial embeddings IK I � [R2n +  2 and I K I  � jR2n + 2 of  an  n
dimensional simplicial space I K! are always isotopic in the sense that there 
is a simplicial map IK I  x [0, 1] � [R2n + 2 such that each IK I � [R2n + 2 is itself 
a simpliciai embedding; if lK I is a triangulated manifold of dimension n > 1, 
then any two simplicial embeddings IK I  � [R2n + 1 and IK I � [R2n +  1 are iso
topic. These results, also due to van Kampen [ 1 ], are proved in Wu [ 1 0, 
pp. 207, 258]. 

1 0.13 Remark : The Whitney immersion result of Theorem 6.9 is neither 
the easiest nor the best-possible immersion theorem for smooth manifolds. 
The "easy" Whitney immersion theorem asserts that any smooth n-dimen
sional manifold X admits at least one smooth immersion X _ s2n. This 
result was announced (along with the "easy" embedding result) in Whitney 
[ 1 ]  and proved in Whitney [3]. Another proof of the "easy" Whitney im
mersion theorem can be found in Auslander and MacKenzie [2, pp. 1 06-
1 33]. 

The "hard" Whitney immersion result X � S2n- l of Theorem 6.9 appears 
in Whitney [8, p. 270] ; its proof occupies all 47 pages of that paper. The 



52 I .  Base Spaces 

same result appears in M .  W. H irsch [ 1 ,  p. 270], with an alternative proof 
that has had far-reaching consequences. 

A long-standing "best-possible" immersion conjecture has recently 
been proved by Cohen [ 1], the proof depending upon results and techniques 
of M. W. Hirsch [ 1]  and Brown and Peterson [4, 5] : for any n >  I any 
smooth compact n-dimensional manifold X admits an immersion X -+  
[R2n - a(n), where a(n) is the number of I 's in the dyadic expansion of the di
mension n. This result will be described in more detail in Remark VI.9. l 4. 
One can definitely do no better : in Chapter VI, for each n > 0, we shall 
show that there is an easily constructed smooth closed n-dimensional mani
fold which cannot be immersed in [R2n - a(n) - 1

. 
As for embeddings, a weaker result of R .  L. W. Brown [2, 3] asserts that 

every smooth closed n-dimensional manifold is equivalent to one which 
smoothly immerses in \R2n - a(n) : the equivalence is "cobordism," which will 
be discussed in Chapter VI. 

10.14 Remark : The Cairns-Whitehead triangulation result of Theorem 6.7 
was first proved for closed smooth manifolds in Cairns [ 1 , 2]' The result 
was extended to arbitrary smooth manifolds in J. H. C. Whitehead [ 1] . 
Discussions and simplifications of the combined result can be found in 
Cairns [3, 4, 5], and other versions of the proof can be found in Whitney 
[ 10, pp. 1 24-135], in J. H. C. Whitehead [5], and in the 1966 edition of 
Munkres [ 1], for example. 

10.15 Remark : One of the primary goals of differential topology is a 
reasonable classification (in some sense) of all smooth manifolds. One cannot 
expect a complete classification, however, even up to homotopy type, for the 
following reason. At the end of Chapter 7 of Seifert and Threlfall [ 1 ]  one 
learns that for any prescribed finitely presented group G whatsoever there 
is a closed oriented 4-dimensional manifold X whose fundamental group is 
G;  the details of the construction can be found in ofMassey [4, pp. 143 - 1 44], 
for example. Quite independently of differential topology, Boone [ 1 , 2, 3], 
Britton [1] ,  and P. S. Novikov [ 1 , 2] showed that the word problem for 
finitely presented groups is recursively unsolvable; this led Adyan [ 1 ]  and 
Rabin [ 1 ]  to conclude that the isomorphism problem for finitely presented 
groups is recursively unsolvable. The topological and group-theoretic pieces 
of the puzzle were juxtaposed by Markov [ 1 , 2, 3] to conclude that no 
algorithm exists for classifying oriented 4-dimensional manifolds, a fortiori 
that no algorithm exists for classifying all smooth manifolds. There are some 
related results in Boone, Haken, and Poenaru [ 1 ] .  

The lack o f  a universal recipe i s  no  obstacle to useful partial results, 
however. The classification of compact 2-dimensional manifolds is a classical 
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result, for example, which can be found in Massey [4, pp. 1 0- 1 8] ' Certain 
6-dimensional manifolds are classified in Jupp [ 1] .  There is a complete 
classification (up to homeomorphism) of closed (n - I )-connected (2n + 1 )
dimensional smooth n-dimensional manifolds for n > 7 due to Wall [2] ; the 
same result is known for certain smaller values of n as a result ofWilkens [ 1 ]  
(and Wall [2] ), and related classifications appear in Tamura [ 1 , 2, 3]. Finally, 
according to Cheeger and Kister [ 1 ]  there are only countably many closed 
topological manifolds ; a fortiori, up to homeomorphism there are only 
countably many closed smooth manifolds. A 1 975 survey of the classification 
problem appears in Sullivan [2], and a 1 978 survey appears in T. M. Price [ 1 ] .  

10.16 Remark : The topological manifolds mentioned i n  the previous Remark 
are merely locally euclidean hausdorff spaces whose topologies have a 
countable basis of open sets. For example, the underlying topological space 
of a smooth manifold is a topological manifold. Before one deals with the 
inverse question of finding smooth structures on a given topological manifold 
it is of interest to consider a broader question : can a topological manifold be 
triangulated ? One-dimensional manifolds pose no problem, and the triangu
lation of surfaces was established by Rad6 [ 1 ], whose proof can be found in 
Ahlfors and Sario [ 1 ,  pp. 44-46] . The triangulation of 3-dimensional mani
folds was first established by Moise [ 1 ], and an alternative method was later 
supplied by Bing [ 1 ], with the same result. 

The 4-dimensional case remains a mystery. However, for n > 4 the 
following results were established independently by Kirby and Siebenmann 
[ 1 ]  ( reproduced in Kirby and Siebenmann [2, pp. 299-306]), and by 
Lashof and Rothenberg [2] . If X is any closed n-dimensional topological 
manifold (n > 4), or any open n-dimensional topological manifold (n > 5), 
and if H4(X ;  7L/2) = 0, then X can be triangulated ; furthermore, if H3(X ; 7L/2) 

= 0, then any two triangulations of X are equivalent in an obvious sense. 
The 7L/2 cohomology conditions are known to be necessary. In fact, in 

every dimension n > 4 there is a closed topological manifold with no trian
gulation (as a manifold). An elementary discussion of the results described 
in this remark can be found in Schultz [3] . 

10.17 Remark : The negative results of the preceding remark are offset by 
the following homotopy property of arbitrary topological manifolds, which 
remain locally euclidean hausdorff spaces whose topologies have a countable 
basis of open sets. Every topological manifold is homotopy equivalent to a 
simplicial space IK I . 

More specifically, a simplicial space IKI is locally finite if and only if each 
point of IK I has a neighborhood which meets only finitely many geometric 
simplexes of IK I ; equivalently, IK I is locally finite whenever the Dowker 
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homotopy equivalence IK Iw � IK lm of Proposition 4.6 is a homeomorphism. 
Furthermore, as in §6 a map X � Y is proper if and only if the inverse image 
of any compact set in Y is compact in X ;  a proper homotopy equivalence is a 
homotopy equivalence in a given category of topological spaces and proper 
maps. According to a result in Kirby and Siebenmann [2, p. 123] every 
topological manifold is proper homotopy equivalent to a locally finite simplicial 
space IK I .  

10.18 Remark : By combining the weaker of the two preceding assertions 
with Theorem 3.7 one obtains the following generalization of Corollary 6.8 : 
any topological manifold is a base space ; hence the category of topological 
manifolds is a full subcategory of the category f1I of base spaces. 

10.19 Remark : The Cairns-Whitehead triangulation theorem (Theorem 
6.7) precludes smooth structures for nontriangulable manifolds ; in fact, there 
are even triangulable manifolds with no smooth structure, such as the 10-
dimensional manifold of Kervaire [3] . However, a topological manifold can 
also have more than one smooth structure, a result first established for the 
7 -sphere S7 in M ilnor [ 1] .  Since then, smooth structures on spheres have 
been thoroughly treated in Milnor [6, 7], Kervaire and Milnor [ 1] ,  and 
Eells and Kuiper [3], for example; we shall consider some of this material 
in Volume 3 of the present work. 

Most products SP x sq of spheres have more differentiable structures 
than the sphere Sp+ q, and more differentiable structures than the product 
of the corresponding numbers for the factors SP and sq. Some recent results 
concerning such products can be found in de Sapio [ 1 ,  2], Kawakubo [ 1 ,  2], 
and Schultz [ 1 ,  2], for example. 

10.20 Remark : Here is a procedure that produces new smooth manifolds 
from old ones. Let X be a given smooth manifold, and let X � X be a smooth 
involution that is free in the sense that there are no fixed points; this provides 
an obvious equivalence relation '" in X for which the quotient X / '" is a 
new smooth manifold with X as a double covering. For example, for any 
n > 0 the antipodal map sn � sn of the standard n-sphere S" is a free involu
tion for which the resulting quotient sn / '" is the real projective space Rpn 
of the same dimension. 

In the special case n = 3 Livesay [ 1 ]  shows that the antipodal map is 
essentially the only free involution of S3 : any free involution S3 � S3 is 
smoothly equivalent to the antipodal map. However, according to Milnor 
[ 16], Hirsch and Milnor [ 1 ], and Fintushel and Stern [ 1], there are "exotic" 
free involutions of the standard spheres S7, S6, Ss,  S4 whose quotients S"/ '" 
are not diffeomorphic to the corresponding projective spaces Rp7, Rp6, Rp5, 
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RP4. (The "exotic" involution S4  -> S4 is recent, although the quotient S4  1 � 
had been constructed in Cappell and Shaneson [ 1]  earlier by other means. 
Although S41 - is not diffeomorphic to Rp4, it is homotopy equivalent to 
Rp4.) 

More generally, Browder and Livesay [ 1 ]  provide an invariant, further 
described in Livesay and Thomas [1] ,  which leads to the following result of 
Orlick and Rourke [ 1 ] :  for each k > ° there are infinitely many distinct free 
involutions of S4k + 3 (and of certain exotic spheres L4k+ 3). The quotients of 
S4k + 3 (and L4k + 3) provide a large supply of smooth closed manifolds of 
dimensions n = 4k + 3. There is a criterion for the existence of exotic free 
involutions of S" (and exotic spheres L"), valid for any n � 5, in L6pez de 
Medrano [ 1 ,  p. 67] ' 

One can also use certain smooth involutions X -> X that are not free to 
create smooth quotient manifolds XI - ; however, the results are not always 
new. For example, complex conjugation induces an involution CP2 -> CP2 
of the complex projective plane CP2, for which one easily establishes that 
Cp2/_  is a smooth manifold ; however, Kuiper [ 1 ]  and Massey [5] inde
pendently established the disappointing result that Cp2 1 � is merely the 
standard 4-sphere S4. 

Here are some easily constructed smooth manifolds which will play a 
role in later remarks ; their construction is similar to the construction of 
RP" from the standard n-sphere S". Any odd-dimensional sphere s2n+ 1 can 
be regarded as the subspace of those points (zo , Z 1 ,  . . .  , Zn) E en + 1 such that 
Izo l 2 + IZ I 1 2 + . . . + IZnl 2 = 1 .  Let ql " ' " qn be any integers which are 
relatively prime to a fixed integer p > 0, and let s2n + 1 .!!... s2n + 1 be the diffeo
morphism given by h(ZO , Z I " ' " =n) = (e21[iiPzo , e21[iQ l iPZ l " ' " e21[iQniPz,,). 
Then h is periodic with period p, with no fixed points, and the quotient of 
s2n + 1 by the resulting equivalence relation is a smooth closed (2n + 1 )
dimensional manifold, the lens space L(p ;  q h  . . . , qn)' The 3-dimensional lens spaces L(p ;  q) were first constructed in Tietze [ 1 ] .  
Later work of Reidemeister [ 1 ]  and J .  H .  C. Whitehead [2] established that 
L(7; 1 )  and L(7 ;  2), for example, are homotopy equivalent but not homeo
morphic. R. Myers [ I ]  generalizes the result of Livesay [ I ]  concerning S3 by 
showing that all involutions of L(p ;  (J) are equivalent to those induced by 
the action of the orthogonal group ; similar results are valid for certain 
involutions of period greater than 2. 
1 0.21 Remark : In 1 844 Grassmann [ 1 ]  described the Grassmann mani
folds Gm([Rm + II ), the exterior products /\ m [Rm+ n, the embeddings Gm([Rm + n) � 
G 1 (/\111 [Rill + n ), and the Pliicker relations, all of which are used in Proposition 
7.3. Despite the 1 862 amplifications in Grassmann [2], Grassmann's work 
was not fully appreciated until it was reexamined and further developed by 
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Hermann Casar Hannibal Schubert, beginning in 1 886 ; Schubert's work is 
briefly cited in Remark V.7.3. By 1 897 elementary differential geometry was 
easily presented in Grassmann's setting, as in Burali-Forti [ 1 ]. In 1921 
Corrado Segre, who had understood and applied Grassmann's work as a 
student during the 1 880's, wrote a much-respected encyclopedia article 
identifying Grassmann manifolds as the very source of higher-dimensional 
algebraic geometry ; Segre's enthusiasm appears in C. Segre [ 1 ,  p. 772] . 

The Plucker relations and Proposition 7.3 can be found in Kleiman and 
Laksov [1] ,  for example. Alternative proofs of Proposition 7.3 appear in 
Milnor and Stasheff [ 1 ,  pp. 57-59] and in Lanteri [ 1 ] .  

10.22 Exercise : Show that any connected base space X E :!4  is  path wise 
connected. Hint : First prove the property for metric spaces of finite type, 
then observe that pathwise connectedness is a homotopy property. Some of 
the materials for this exercise can be found in Hu  [3, pp. 84-90] , for example. 

10.23 Remark : The fundamental properties of Mayer-Vietoris sequences 
were discovered long before the general notion of an exact sequence existed, 
in Mayer [ 1]  and Vietoris [ 1 ] .  Exact sequences as such were introduced by 
Eilenberg and Steenrod [ 1 ] , and later by Kelley and Pitcher [ 1 ] . 

10.24 Remark : Bott and Tu [ 1 ,  pp. 42-53] prove a generalized version of 
Proposition 8.4, using Riemannian metrics rather than triangulations, 
which they apply in their elegant presentation of the Mayer-Vietoris 
technique for smooth manifolds. 



CHAPTER 1 1  
Fiber Bundles 

o. Introduction 

Let E � X be a map onto any space X, and suppose for some space F 
that there is a homeomorphism E ! X x F for which 

'I' 

commutes, where n 1 is the first projection. Then E � X represents a trivial 
jiber bundle. 

More generally, let E � X be locally trivial in the following sense, for 
some space F :  there is an open covering { U i l i E  J }  of X and a corresponding 
family {'Pi l i E I }  of homeomorphisms n- 1 (Ui) � Ui x F for which each 

rr ' (\�;XF 

Uj 
commutes. Then the projection E � X represents a jiber bundle with total 
space E over the base space X, the jiber being F. 

57 
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The preceding description is incomplete. If the intersection Vj n Vi of 
two sets in the open covering {V j l i E  I} of the base space X is nonvoid, 
then the restrictions of the corresponding homeomorphisms 'Pj and 'Pj to 
n - I (Vj n V) c E induce a homeomorphism 'Pj C 'Pj- I such that 

(Vj n V) x F  'i'} c 'i',- " ( V; n V) x F  

Vj n Vj 

commutes. Such a homeomorphism is necessarily of the form 'Pj " 'Pj- I (x, fl 
= (x, I/I{(x)(f)), where I/I{ carries each x E Vj n Vj into a homeomorphism 
F ",{(X) ,  F of  the fiber; i n  particular, I/I�(x) 0 I/I{(x) is the identity for any 
x E Vj n Vj, so that I/I� and 1/1' carry any x E Vj n Vj into inverse homeo
morphisms of the fiber. Since any transformations F -4 F whatsoever obey 
the associative law, it follows that each I/I{ can be regarded as a map of 
Vj n Vj into a group G of home om or ph isms of the fiber, called the structure 
group of the given fiber bundle; the continuity of the compositions 'Pj 0 'Pj- I 
imposes a specific topology on G for which the group operation G x G -4 G, 

( ) - 1 
the group inverse G � G, and the action G x F -4 F of G on F are 
continuous. The maps Vj n vr-.!LG are the transition junctions of the 
representation E � X of the bundle, with respect to the covering { V j l i E  I }  
and corresponding family {'Pj l i E  I } .  

The structure group G is part o f  the definition o f  a fiber bundle, and its 
choice is critical. For example, if one is interested in preserving given prop
erties of the fiber F, one does not choose G to consist of all homeomorphism 
F -4 F; thus if F = �m and one wants to preserve vector addition in �m and 
multiplication by scalars, one chooses G to be the general linear group 
GL(m, �), or one of its subgroups. On the other hand, if G consists only of 
the identity map F -4 F, then any projection E � X representing the given 
bundle is necessarily of the form X x F � X, so that the bundle is trivial. 

The classical M6bius band provides the simplest non trivial fiber bundle. 
Let E � Si be the projection of the M6bius band E onto the unit circle S i , 

1T 

E 
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as indicated in the accompanying figure, the fiber F being the closed unit 
interval [ - 1, 1 ] .  One can cover the base space Si by two open sets V 0, V I 
homeomorphic to open real intervals, for which there are obvious homeo
morphisms n - I ( Vj) � Vj x [ - 1 , 1 ] '  The intersection Vo n V I consists 
of two disjoint open sets Vo and VI , which one can regard as subsets of V 0 ,  
for example. The M6bius band E is completely described b y  requiring the 
homeomorphism 

( VO n V d  x [ - 1 , 1 ]  '1' , 'I'() ' )  ( VO n V d x [- 1 , 1 ]  

to carry (x, f )  E ( V  0 n V d x [ - 1 ,  1 ]  into (x, f) or  (x, -f) according as 
x E Vo or x E VI ' In this case one takes the structure group G to be Z/2 in 
the discrete topology, which acts on [ - 1 , 1 ] via multiplication by + 1 or - 1 . 

One traditional definition of fiber bundles is given in § 1 ,  followed in §2 
by an equivalent description which is closer to the preceding sketch. Nothing 
in these two sections requires any properties of the base spaces X ;  however, 
many later results do require some sort of restriction. Accordingly, fibre 
bundles have arbitrary base spaces X, and fiber bundles have base spaces X 
in the category fJI of Definition 1 . 1 .2. Portions of the rationale for the eventual 
restriction to fiber bundles appear in §§3, 4, 5, and 7 ;  beginning in §7 there 
are only fiber bundles. 

Contractible spaces were used in Definition 1 . 1 . 1  as building blocks for 
spaces of finite type, leading to the category :lA. In §3 it will be shown that 
fibre bundles over contractible spaces are trivial bundles, the building blocks 
for fibre bundles in general. 

In §4 it will be shown for any map X' 1. X in the category :lA and for any 
fiber bundle over X that the corresponding "pullback" fiber bundle over X' 
depends only on the homotopy type of f. The proof uses certain properties 
of the category &I, which was defined in terms of homotopy types. 

We have already observed that the structure group G is an integral part 
of the description of a fiber bundle, and that it is desirable to "reduce" G to 
as small a subgroup K e G  as possible. In §5 it is shown that if the structure 
group of a fiber bundle (base space in fJI) is a Lie group with finitely many 
connected components, then one can "reduce" G to a compact subgroup 
K e G. In particular, in §6 it is shown that one can always "reduce" the 
linear groups GL(m, IR), GL + (m, IR), and GL(n, C) to specific compact sub
groups O(m) c GL(m, IR), O+ (m) c GL + (m, IR), and V(n) c GL(n, Cl, as 
structure groups of fiber bundles. 

In §7 a basic step is provided for assigning cohomology classes in 
H*(X ;  1\) to fiber bundles over base spaces X E fJI, where 1\ is an appro
priate coefficient ring. The provisions describing the category :lA are essential 
for the result, which will be used several times in later chapters. 
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1 .  Fibre Bundles and Fiber Bundles 

Some of the ingredients of a fiber bundle over a space X are afiber F and a 
structure group G of homeomorphisms F � F, as we have just learned. We 
shall assume that G acts on the left of F;  that is, (g lg2)f = Y I (gzf) E F for 
any g l E G, g2 E G, and f E F. Although the fiber F may be any topological 
space, the topology ofG must be admissible : the group operation G x G -+ G, 

( )  - 1 the group inverse G ------+ G, and the action G x F -+ F of G on F must be 
continuous. The action G x F -+ F must also be effective : the identity is the 
only element g E G such that gf = f for every f E F. The space X is the base 
space of the bundle; we shall later require X to belong to the category f!J of 
base spaces, as in Definition 1 . 1 .2. 

For any map E � X of a space E onto a space X, and for any x E X, let 
Ex denote the inverse image n- I ( {x} ) of {x} c X under n. A non void set 
Sx of home om or ph isms Ex !!. F is G-related whenever for any h E Sx , hi E Sx , 

h 9 h - I h' and g E G the compositions Ex -+ F -+ F and F ----+ Ex -+ F belong to Sx 
and G, respectively. Equivalently, for any fixed h E  Sx , the set Sx consists of 
all compositions Ex !!. F � F, where Y E G, 

Given two maps E � X and E' � X' onto spaces X and X', and given 
points x E X and x' E X' and G-related sets Sx and Sx' of homeomorphisms 
Ex !!. F and E'x' � F, respectively, a G-related isomorphism is any homeo
morphism Ex -+ E'x' such that every composition F � Ex -+ E'x' � F 
belongs to G. 

If 

E -----�� E' 

. j j . 
X __ �J __ �� X' 

commutes and x E X, then for Ex = n - I ( {x} ) c E and Ej(x) = n' - 1 ({ f(x) } )  
c E '  i t  i s  clear that f induces a map Ex -+ Ej(x) ' 

1 . 1  Definition : Given a fiber F and a structure group G of home om or ph isms 
F -+ F, a family of fibers over a space X is a surjective map E '::' X and an 
assignment to each x E X of a G-related set Sx of homeomorphisms Ex -+ F. 
If E � X and E' � X' are families of fibers with the same fiber F and same 
structure group G, then a morph ism from E � X to E' � X' is a pair of maps 
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x 1.. X'  and E � E such that 

E ----------�) E' 

. j j . 
X ____ �I ____ �) X' 

commutes, and such that for each x E X the induced map Ex -+ EJ(x) is a 
G-related isomorphism. 

For any family E � X offibers one calls E the total space, n the projection, 
and X the base space. For the moment the base space X may be any topo
logical space ; the restriction X E fJI will be imposed later. 

For any given fiber F and structure group G it is clear that families of 
fibers are the objects of a category rt'(F, G) whose morphisms are commutative 
diagrams. Here is a way to construct new such objects and morph isms. 

1 .2 Definition : Let E '  � X' be a family of fibers in the category ce(F, G), 
let X 1.. X' be any map, and let E c X x E '  consist of those (x, e') E X x E '  
with f(x) = n'(e') E X', in the relative topology. The pullback of E '  � X' 
along f is the restriction E � X to E c X x E '  of the first projection X x 
E' � X. 

1 .3 Lemma : Let E' � X' be a family of jibers in the category ce(F, G), and 
let X 1.. X' he a map. Then the pullback E � X also belongs to ce(F, G), and 
there is a canonical map f such that 

E -----�) E' 

. ] 
X ____ """f'--__ -----» X' 

is a morph ism in ({' (F, G). 

PROOF : This is a direct verification, in which E � E' is defined as the restric
tion to E c X x E' of the second projection X x E' � E'. 

Here are the most obvious families of fibers. 

1 .4 Definition : Given a fiber F and a structure group G, as before, the 
product family ql .fihers over a space X is the first projection X x F � X ;  
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for each x E X the G-related set Sx of homeomorphisms Ex -+ F consists of 
the maps Ex = { x} x F = F � F, for all g E G. 

1 .5 Lemma : Pullbacks of product families of jibers are product families of 
jibers. 
PROOF : Let X' x F � X' be a product family, and let X � X' be any 
map. The total space E of the pull back along 9 consists of those (x, (x', f) )  E 
X X (X' x F) with g(x) = 1t 1 (x', f) = x', which is canonically homeomorphic 
to X x F, and the map E -.':. X is the first projection X x F � X. 

The isomorphisms in the category rt'(F, G) are clearly those morphisms 

E -------+) E' 

"I I" 
X __ --"--J __ -+) X' 

for which both f and f are homeomorphisms. However, we shall be interested 
primarily in those isomorphisms in which X = X' and f is the identity ; such 
isomorphisms are of the form 

for a homeomorphism g. 

E 1 ) E' 

� /  X 

1 .6 Lemma : Let X .!.. X' be any map. Then pullbacks along f of isomorphic 
families of .fibers over x' are isomorphic families of jibers over X. 
PROOF : Given a morphism 

E' -----=-1'----+) E' 

� /  X' 
in which g' is a homeomorphism, the corresponding diagram 

E I ) E 

� /  X 
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for the pull backs is just the restriction of 

to E c X x E', which consists of those (x, e' ) E X x E' with f(x) = n'(e'). 
The map E � E is then the restriction to E of a homeomorphism id x g', 
and hence itself a homeomorphism. 

We now pass from the category (t(F, G) of families of fibers, for a given 
fiber F and structure group G, to the category of isomorphism classes of 
families of fibers ; as before we consider only isomorphisms of the form 

E � E' 

� /  
X 

Lemma 1 .6 guarantees that if � denotes an isomorphism class of families of 
fibers over a space X', then the pull backs along any map X 1. X' also form

' 

such an isomorphism class, denoted J'�. One simply calls J'� the pullback 
of � along X � X' . Clearly if X 1. X' !!. X" is a sequence of maps then for 
any isomorphism class C over X", then one has J'g!C = (g 0 !l!C as 
isomorphism classes over X. 

1 .7 Definition : Let X be an arbitrary topological space. The trivial bundle 
� over X with fiber F and structure group G is the isomorphism class of the 
product family X x F � X of fibers. 

1 .8 Lemma : Let �' be a trivial bundle over a space X', and let X 1. X' be 
an arhitary map ; then the pullhack .t�' is the corresponding trivial bundle 
over X. 

PROOf : Lemmas 1 .5 and 1 .6. 

Now let � be an arbitrary isomorphism class of families of fibers over a 
space X, and let U -.!.. X be an inclusion U e X. The pull back i '� is the 
restriction � I U of � to U c X. 

1 .9 Definition : For a given fiber F and structure group G, an isomorphism 
class � of families of fibers over a topological space X is a fibre bundle over 
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X whenever there is an open covering { V i l i E I }  of X such that each restric
tion � I Vi is a trivial bundle. A jiber bundle is any fibre bundle over a space 
X in the category :!J of base spaces, as in Definition 1 . 1 .2. 

For the moment we work with fibre bundles in general. However, the 
major theorems of §4 and §5 will be proved only for fiber bundles, and the 
remainder of the book concerns only certain fiber bundles. 

1 .10  Proposition : Let X 1. X' be any map and let �' be a jibre hundle over 
X' for a given fiher and structure group. Then the pullback f�' is a fibre 
bundle over X for the same jiber and 'structure group. 
PROOF : By hypothesis X' has an open covering { V� I k E l } such that each 
restriction �' I V� is trivial. If V k = f- I ( V�) e X, then { V  k I k E I }  is an open 
covering of X, and for each k E I the map f restricts to a map Vk !!. V�. Let 
V k -!... X and V� .J... X' be the inclusion maps, so that 

X __ ---".1_· -----+) X' 
commutes. Then 

f�' I V k = i !f�' = (f <) i)!�' = (j " g)!�' = g:i' �' = g!(�' I VI,), 
and since each �' I V� is trivial by hypothesis, Lemma 1 .8 guarantees that 
each f�' I Vk is trivial, as required. 

One frequently identifies a fibre bundle over X by choosing a single 
representative E � X of the isomorphism class � of families of fibers, arbi
trarily calling E the total space and re the projection of the bundle. This is 
a harmless abuse of language since E � X is related to any other repre
sentative E' � X by a commutative diagram 

E ) E' 

� /  X 
in which f is a homeomorphism inducing a G-related isomorphism Ex --+ E� 
for each x E X. It will be useful to simplify the preceding criteria for E � X 
and E' � X to represent the same fibre bundle over X. 



I .  Fibre Bundles and Fiber Bundles 65 

Recall that the topology of the structure group G is admissible, meaning ( ) - 1  
that the group operation G x G � G, the group inverse G ------> G, and 
the action G x F � F of G on F are continuous. Recall also that G acts 
effectively on F, meaning that the identity is the only element g E G such 
that gf = f for every f E F; that is, a given homeomorphism F � F is 
induced by at most one element of G. 
1 . 1 1  Lemma : Let f be any map such that 

X X\7X F  

X 

commutes, and which induces a homeomorphism F � F in G jar each x E X ; 
then f is a homeomorphism. 
PROOF : Since G is effective, there is a unique map X !. G such that 
f(x, .n = (x, l/I(x)U) ) for every (x, .n E X x F. Since the topology of G is 
admissible, the composition X !. G � G is continuous. Hence one can 
define a continuous inverse X x F � X x F by setting f - 1 (x,f) = 
(x, I/I(x) - \n ) for every (x, .n E X x F. 

1 . 12  Proposition : Let E � X and E' � X represent .fibre bundles � and �' 
with .fiber F and structure group G over the same space X. If' there is a map 
f such that 

E , E' � /  X 
commutes and induces G-related isomorphisms Ex � E� jar each x E X, then 
f is necessarily a homeomorphism, and hence � = �'. 

PROOF : There are open coverings [ V i i i E l } and [ V  j I j E J ]  such that the 
restrictions � I Vi and �' I V j are trivial ; hence for K = I x J and V k = Vu.j) = 
Vi n V j there is a single open covering [ V k I k E K }  of X such that the 
restrictions � I V k and �' I V k are trivial. The latter restrictions are therefore 
represented by product families, for which f induces maps fk such that each 
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commutes, inducing a homeomorphism F -+ F in G for each x E U k ' By 
Lemma 1 . 1 1 each fk is a homeomorphism, so that f is necessarily bijective. 
To show that f is a homeomorphism it remains only to show that it is an 
open map ; but if V c  E is open, then f( V)  c E' is a union of open sets 
f( V n n - 1 ( U  d )  c E', also provided by Lemma 1 . 1 1 .  

1 .13 Corollary : Given a fiber F and structure group G, let the families 
E � X and E' � X' of .fibers represent fibre bundles � over X and �' over X', 
respectively. Then for any morph ism 

E ----------.. E' 

. j 
X __ ----'--f __ ->. x' 

of families of .fibers � is the pullback t�' of �' along f. 
nil  1(' PROOF : The total space E" of the pull back E" ------> X of E' -+ X' consists 

of those (x, e') E X x E' with f(x) = n'(e') E X. Since f 0 n = n' c f, there is 
consequently a map E .!.  E" with g(e) = (n(e), f(e) ) for each e E E. Trivially 

E g • E" 

� /  X 
commutes, where n" is induced by the first projection X x E' � X. 
Furthermore, for each x E X the induced map Ex -+ E� carries e E Ex into 
(x, f(e) ) E E� ; therefore, since f induces G-related isomorphisms Ex -+ E� , 
the maps Ex -+ E� are also G-related isomorphisms. Hence g is a homeo
morphism by Proposition 1 . 1 2. 

2. Coordinate Bundles 

The informal description of fiber bundles given in the Introduction to 
this chapter began with something more concrete than Definition 1 .9. 
Although the informal description was used primarily as motivation for the 
structure group G, it too can be molded into a formal definition of fiber 
bundles, equivalent to Definition 1 .9. 
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Assume that a fiber F and structure group G are given, where G has 
an admissible topology and acts effectively on F. Let E � X be a map onto 
a space X. Suppose that there is an open covering { Vd i E I }  of X, let 
E I Vi = 1[ - 1 ( V;) for each Vi , and suppose that there is a corresponding 
family {'P j l i E  I }  of homeomorphisms 'P j such that each 

E l  Vj '1', ) Vj x F 

� /  
Vi 

commutes. If the intersection Vj (\ Vj of two sets in the covering is nonvoid, 
then 'Pj and 'Pj induce a homeomorphism 'Pj (> 'Pj- I such that 

'I' 'I' - 1 (Vj (\ V) x F J ' )  ( Vj (\ V) x F 

\ /  
Vi (\ Vj 

commutes, and one necessarily has 'Pj . . 'Pj- I (x,f ) = (x, t/J{(x)(f) ) for each 
(x,f) E ( Vj (\ Vj) x F, where t/J{ carries each x E Vj (\ Vj into a homeomor-
h · F ",{(x) F p Ism --4 . 

2. 1 Definition : If each of the preceding t{I{'s is a (continuous) map from 
Vj (\ Vj to the structure group G of homeomorphisms F -+ F, then E � X 
is a coordinate bundle with respect to the covering { Vd i E I }  of X. 

The maps E l  Vj � Vj x F required for Definition 2 . 1  are the local 
trivializations of the coordinate bundle E � X, and the induced maps 
Vj (\ Vj � G upon which the definition is based are the transition functions. 
As before, 1[ is itself the projection of the total space E onto the space X, and 
for each x E X one lets Ex denote the fiber 1[ - I( {x} )  over x. 

In §1 we considered arbitrary families E � X of fibers, fibre bundles 
being locally trivial equivalence classes of such families. A coordinate bundle 
is clearly just a locally trivial family of fibers. 

2.2 Proposition : Let ( be a fibre hundle. consisting of equivalence classes of 
families E � X (�j' fibers as in Definition 1 .9 ;  then every family E � X rep
resenting ( is a coordinate hundle. 
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PROOF : Let E � X represent �. By definition there is an open covering 
{ Uj l i E  I }  of X such that each � I U j is a trivial bundle, so that for E l  U i = 
11: - I (U;) one has a homeomorphism 'Pj such that 

E I\";X F 

Uj 
commutes and induces G-related homeomorphisms Ex � {x} x F. I f  
Uj n Uj i s  non void, i t  follows that the homeomorphisms 'Pi and 'Pj induce 
a composition (U j  n U) x F 'l'j o 'l', I )  (U j  n U) x F carrying (x, f) into 
(x, t/I{(x)(f) ), where t/I{(x)(f) E F depends continuously on (x, f), and where 
each t/I{(x) is a homeomorphism. Since each Ex � {x} x F is G-related, 
each composition {x} x F � Ex � {x}  x F belongs to G, by definition 
of G-relatedness. Hence t/I{ is a (continuous) map Uj n Uj --+ G, as required. 

Thus if one identifies a fibre bundle over X by choosing a single repre
sentative E � X of an isomorphism class � of families of fibers, that repre
sentative is always a coordinate bundle. 

Proposition 2.2 also provides the desired relation between Definition 1 .9 
and the informal description of fibre bundles given earlier. 

2.3 Corollary : Any fibre bundle is an equivalence class of coordinate bundles. 
PROOF : The equivalence relation is the isomorphism 

E ) E' 

� /  X 
of families of fibers over the same space X, now restricted only to those 
families which happen to be coordinate bundles. 

We already know from Proposition 1 . 1 0  that pull backs of fibre bundles 
are fibre bundles, so that Proposition 2.2 implies that pullbacks of coordi
nate bundles are coordinate bundles. Here is a more explicit version of the 
same result. 

2.4 Proposition : Let E' � X' be a coordinate bundle with respect to an open 
covering { U; l i E  I }  of a space X', let E � X be its pullback along a map 
X � X', and let Uj = g- I ( U;) for each i E 1 ;  then E � X is a coordinate 
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bundle with respect to the open covering { Vi l i E  I }  of X. Specifically, if 
Vi n Vj � G are the transition junctions oI E' � X', then the compositions 
I/Jij g are the transition junctions Vi n Vj -.!L G of the pullback E � X. 

PROOF : Let 

E , E' 

. ] j . 
X , X' 

be the pull back diagram. Since pull backs of products are products, the local 
trivializations E' I Vi � Vi x F of E' � X' pull back to corresponding 
local trivializations E l  Vi � Vi X F of E � X. For any nonvoid inter
section Vj n Vj C X this provides a commutative diagram 

( Vj n V) x F � E l  Vj n Vj � ( Vi n V) x F , , ;, 1 ''''0" , ] j . .  M 

( V' V' ) F '1': E' I v' v' 'l'j ( V' V') F j n j x +---- i n j ------'----> i n j x . 

Each of the compositions 'I' j 0 'I'i- 1 and 'I'j '.' 'I'i - 1 is described via a transi
tion function, I/J{ and I/Jij, as in Definition 2. l ,  and the outer rectangle of the 
diagram maps any (x, f) E ( Vi n V) x F as indicated : 

(g(x), f) f------ (g(x), I/Jij(g(x) )f). 
The result I/J{(x)f = I/J/(g(x))f for any (x, f) E ( V j n V) x F implies I/J{ = 
I/J/ g, as claimed. 

Suppose that E � X is a coordinate bundle with an open covering 
[ Vi i i  E I }  of X and a family {'I'd i E I }  of local trivializations E l  Vi � Vi X 
F. Then if Vj n Vj n Vk is non void, the restrictions of 'I'j ,  'I'j '  and 'I'k 
trivially satisfy ('I' k 'I' j- 1 ) ('I' j • 'I'j- 1 ) = 'I' k 'I' ;- 1 as self-homeomorphisms 
of ( V j n Vi n Vd x F to itself; conseq uently the corresponding transition 
functions satisfy 1/J'(x)I/J{(x) = I/J�(x) in G for every x E Vi n Vj n Vk• Con
versely, this condition suffices for the construction of a coordinate bundle. 
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In the following construction we assume as before that a fiber F and structure 
group G are given, that G acts effectively on F, and that G has an admissible 
topology. 

2.5 Proposition : Let { Vd i E I }  be an open covering of a space X, and 
suppose for every nonvoid intersection Vi n Vj that there is a map Vi n Vj 
£ G. The maps 1jJ{ are the transition functions of a unique coordinate 
bundle with fiber F and the given action G x F --+ F if and only if for every 
nonvoid intersection Vi n Vj n Vk and every x E Vi n Vj n Vk the identity 

is satisfied in G. 

./,k . 
./,k 'l'ix)IjJ{(x) = 'l' i (X) 

PROOF : We have just learned that the condition is necessary. To prove the 
converse, observe that if i = j = k, then the condition becomes 1jJ:(x)IjJ:(x) = 
1jJ:(x), so that 1jJ: maps any x E Vi into the identity 1 E G ;  similarly if one 
merely assumes i = k, one has 1jJ{(x)IjJ�(x) = 1jJ:(x) = 1 ,  so that 1jJ�(x) = 
(1jJ{(X) ) - l for every x E Vi n Vj • Let - be the relation in the disjoint union 
Ui(Vi x F) for which (Xi o h) - (Xj ,f) whenever Xi = xj E Vi n Vj and 
fJ = 1jJ{(xJJ; E F. The hypothesis of the proposition guarantees that - is 
transitive, and the preceding consequences of the hypothesis guarantee that 
- is reflexive and symmetric. Hence - is an equivalence relation, and one 
sets E = Ui(Vi x F)/- in the quotient topology. The first projections 
Vi x F � Vi induce a map E � X, and one easily verifies that E � X is 
the desired coordinate bundle, uniqueness being trivial. 

In the next chapter we shall use Proposition 2.5 to construct new fibre 
bundles out of old ones, sometimes changing both the fiber and the struc
ture group. 

2.6 Definition : Let G x F --+ F and G' x F' --+ F' be effective actions of 
transformation groups G and G' on topological spaces F and F', respectively, 
the topologies of G and G' being admissible. A morph ism of transformation 
groups is a pair (r, $) of maps G ..!:. G' and F .!.  F' such that r is a group 
homomorphism and the diagram 

G x F ------+1 F 

, , · l l· 
G' x F' ------+1 F' 

commutes. 
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In  the following result a morphism of  transformation groups i s  applied 
to a fibre bundle � over a space X to construct a new fibre bundle t over the 
same space X. One chooses any coordinate bundle E � X representing �, 
for a family ['P j l i E  I }  of local trivializations with respect to an open covering 
[ Vj l i E  I }  of X, and one constructs a new coordinate bundle E' � X, for a 
family [ 'P; l i E  I }  of local trivializations with respect to the same open 
covering. One then verifies that the fibre bundle �' represented by E' � X 
depends only on � itself. 

2.7 Proposition : Let (G -:. G', F ! F') be a morphism of transjormation 
groups, and let X be a topological space. Then to any jibre bundle � over X 
with structure group G and jiber F the morph ism (r, <1» assigns a unique jibre 
bundle �' over X with structure group G' and jiber F', satisfying the following 
condition : jar any coordinate descriptions of � and �' (as above), there is a 
projection-preserving map E � E' whose restriction fl Vj to each E l  Vj C E 
provides a commutative diagram 

E I Vj --:''-----41 Vj x F ,w ,j j ;" . 
E' I Vj :: 1 Vj x F' . 

PROOF : Let V j n V i  � G be the transition functions corresponding to 
I "' . ;  "'; r : 'Pj i E l}, and let Vj n Vj � G' be the compositions Vj n Vj ---'--+ G -+ G', 

for nonvoid intersections Vj n Vj• Since r is a group homomorphism, the 
conditions t{!�(x)t{!I(x) = t{!7(x) imply that t{!/(x)t{!/(x) = t{!/(x) whenever 
Vj n Vj n Vk is nonvoid, for any x E Vj n Vj n Vk • By Proposition 2.5, 

the maps t{!,/ are the transition functions of a unique coordinate bundle 
E' � X with fiber F' and group action G' x F' -+ F'. The total spaces E and 
E' are quotients of disjoint unions Uj(Vj x F) and Uj(Vj x F'), and the 
local trivializations E l  Vj � Vj x F and E' I Vj � Vj x F' arise from the 
projections of Uj(Vj x F) and Uj(Vj x F') onto each Vj x F and Vj x F', 
respectively. The relation (xj , j;) "" (Xj , jj) in Uj(Vj x F) means that Xj = 

Xj E Vj n Vj and ./j = t{!1(x;l.t; E F, and since 

G x F -----+1 F 

j. 
G'  x F'  ------>1 F' 
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commutes, it follows that both Xi = Xj E Vi n Vj and <1>fj = <1>(t/!{(x;).f;) = 

(rt/!{(x) )(�t;) = t/!;j(x)(<1>/;) ;  that is, the relation (x; , <1>f;) - (Xj ' <1>fj) is satisfied 
in Ui( Ui x F'). Consequently F � F' induces a map Ui (Vi x F) ---+ 
Ui( Ui x F'), which in turn induces a projection-preserving map 

E = Ui(Vi x F )/- � Ui( Vi x F')/ - = E'. 

The remainder of the proof consists of direct verifications. 

2.8 Definition : Let (G ':' G', F � F') be a morphism of transformation 
groups. Then for any fibre bundle � over a space X, with structure group G 
and fiber F, the induced bundle with respect to (f, <1» and � is the bundle �' 
of Proposition 2.7. 

It is clear that the construction of induced bundles is functorial in the 
following sense, for the morphism (r, <1» and bundle � of Definition 2.8 : for 
any map X .!!. X one has (g!�)' = g!�' over X. The proof consists of direct 
verifications, similar to the verifications omitted from the proof of Proposi
tion 2.7. This property will henceforth be used with no further comment. 

The following result will be used in the next chapter to verify that differ
ent morphisms of transformation groups sometimes lead to the same induced 
bundle. 

2.9 Proposition : Let (r, <1» be a morph ism of tran�/imnation groups consist
ing of a group automorphism G ':' G and an action F .!.  F of G, and let � he 
allY fibre bundle with fiber F alld structure group G over a space X ;  thell the 
induced bundle �' over X satisfies �' = �. 
PROOF : Proposition 2.7 provides a commutative diagram 

E -----�l E' 

� /  
X 

of coordinate bundles representing � and �', respectively, so that according 
to Proposition 1 . 1 2  one need only verify that f induces a G-related isomor
phism Ex ---+ E� for each x E X. It suffices to show that if x E Vi n Vj n Vk, 
and if 'l'j' 'I'�, and fi denote restrictions of the maps El Vj� Vj x F, 

E' I  Vk � Vk X F, and E l  Vi � E' I Vi of Proposition 2.7. then the 
composition {x l  x F � Ex � E� � {xl x F is induced by an element 
of G. Since f I Vi = '1';- 1 . .  (id x <1» 0 'l'i by Proposition 2.7, the preceding 
composition is the restriction to [x}  x F of 'I' � G '1'; - l e  (id X <1» 'l'i 'I' j- 1 ,  
SO that one must show for the transition functions V i  n V k � G and 
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U U t/J� G h h . .  F t/J;"(x) CIl t/Jj(x) . r . 
j n ; ----> t at t e compositIOn � F IS a translormatIOn 

in G ;  but since "'�(x) E G and ",;k(X) E G, this is an immediate consequence 
of the hypothesis <l> E G. 

3. Bundles over Contractible Spaces 

In this section we prove a result which directly implies that any fibre 
bundle over any contractible space is trivial. 

3.1 Lemma : Let IJ be a fibre bundle over the product X x [0, 1 J of an arbi
trary topological space X and the closed unit interval [0, 1 J, and let t be any 
point in [0, 1 ] ' If each of the restrictions IJ I X  x [O, tJ and IJ I X  x [t, I J  is 
trivial, then IJ is itself trivial. 
PROOF : Let F and G be the fiber and structure group as usual, and let 
E � X x [0, 1 J represent IJ. By hypothesis there are trivializations E I X x 

[O, tJ � X x [O, tJ x F and E IX  x et, I J  � X x [t, I J  x F. The re
strictions of 'P 0 and 'P 1 to E I X x { t) induce a homeomorphism X x { t }  x 
F 'I' I 'I'() I ,  X x [ t} x F carrying any (x, t,f ) E X x { t } E F into (x, t, "'(x)f) E 
X x { t} x F for a unique "transition function" X x { t }  !. G, just as in the 
preceding section. (The quotation marks indicate only that the domain 
X x { t }  of '" is not open in X x [0, 1 J ;  however, there is no change in the 
existence and uniqueness of "'.) There is then a map X x [t, I J  x F .!. X x 
et, 1 J x F given by 'P(x, s, f) = (x, s, ",c,r If) for which the composition 
'P •. 'P I is a new trivialization E I X x et, 1 J � X x et, 1 J x F. The induced 
homeomorphism X x { t} x F '1''1 , '1',, 1 , X  X { t} x F carries (x, t, f) E X  x 
[ t} x F into (x, t, "" (x)f) E X X [ t }  x F for a new "transition function" 
X x [ t} � G with constant value 1 E G, so that '¥ 0 and 'P'I are restrictions 
of a common trivialization E I X x [0, 1 J --- X x [0, 1 J x F, as required. 

3.2 Lemma : Let { WI ' . . .  , Wq} be a finite open covering of [0, 1 J such that 
each W; is an interval, and let IJ be a fibre bundle over X x [0, 1 J, for any space 
X. If each (d the restrictions IJ I X X WI , ·  . •  , IJ  I X x Wq is trivial, then IJ is 
itself trh'ial. 
PROOF : Renumbering WI , . . . , Wq if necessary, there are q + 1 real numbers 
to ,  t l , ·  . . , tq with 0 =  to < t l < . . . < tq = 1 such that [t; _ " t;] c W; for 
i = 1 ,  . . . , q. The inclusions X x [t; _ I , tJ c X x W; imply that each re
striction IJ I X x et; _ I '  tJ is trivial, and the result is then an obvious iteration 
of Lemma 3. 1 .  
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3.3 Lemma : Let X be any space, and let '1 be any fibre bundle over the 
product X x [0, 1 ] .  Then there is at least one open covering { Vi i  i E l } of X 
such that each restriction '1 1  Vi x [0, 1 J is trivial. 
PROOF : By Definition 1 .9 there is an open covering { lJU E J } of X x [0, 1 ]  
such that each restriction '1 l lJ i s  trivial. Any point (x, t )  E X x [0, 1 ]  has a 
neighborhood basis of sets of the form V x W for an open neighborhood 
V of x and an interval W c [0, 1 ]  that is open in [0, 1 ]  and contains t in its 
interior. Hence each (x, t) E X x [0, 1 J lies in at least one neighborhood of 
the form V x W, where V x W c  lJ for at least one j E J. Since restrictions 
of trivial bundles are trivial (as in Lemma 1 .8) it follows that there is a 
covering of X x [0, 1 ]  by sets of the form V x W such that each restriction 
'1 1  V x W is trivial, where W is an interval that is open in [0, 1 ] .  For each 
x E X let i!lJx be the family of all such products V x W for which x E V and 
V x W c  lJ for somej E J. Since [0, IJ is compact, there is a finite subfamily 
{ Vt X Wt , . . .  , Vq x Wq} of i!IJx such that { Wt ,  . . .  , �} covers [0, 1 ] ,  and for 
V x = Vt n . . .  n Vq each of the restrictions '1 1  V x x Wt , • • • , '1 1  V x x � is 
trivial. Lemma 3.2 then implies that '1 1  V x x [0, 1 ]  is itself trivial, so that 
{ V x I x E X} is a covering of the desired form. 

3.4 Proposition : Let X be any space, and let '1 be a fibre bundle over the 
product X x [0, 1] such that the restriction '1 1  X x {O} is trivial. Then 11 is 
itself trivial. 
PROOF : Let E --+ X x [O, l ] represent '1, and let E I X  x {o] .!. X x {O] x F 
be a fixed trivialization of '1 1  X x {O}. By Lemma 3.3 there is an open covering 
{ Vi i i E I }  of X such that each '1 1  Vi x [0, 1 ]  is trivial, and one can use the 
procedure of Lemma 3.1 to guarantee that there are trivializations E l  Vi x 

[O, IJ � Vi x [0, 1 ]  x F such that each restriction E l  Vi x to} � Vi X 
to} x F coincides with the corresponding restriction of '1'. Hence the tran-
sition functions Vi n Vj x [0, 1 ]  � G have the constant value l/I{(x, O) = 

1 E G on each nonvoid intersection Vi n V j x to} .  For each i E I let E I Vi X 
[0, 1 ]  � Vi X to} x F be the composition of 'l'i with the map Vi x [0, 1 ]  x 

F --+ Vi X {O} x F that carries (x, t, f) into (x, O, f). Since l/I{(x, 0) = 1 for each 
non void intersection Vi n Vj, it follows that the restrictions E l  Vi n Vj x 

[0, 1] � Vi n V j x {O} x F and E I Vi n V j x [0, 1 ]  � Vi n U j x {O} x F 
agree, so that there is a well-defined map f for which the diagram 

E • X x {O} x F 

j j 
X x [0, 1 ]  ------'f�) X x {O} 
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commutes, where f(x, t) = (x, 0) for each (x, t) E X x [0, 1 ] ' By Corollary 1 . 1 3, 
1] is then the pullback along X x [0, 1 ] ..£. X x to} of the trivial bundle 
1] 1 X x {O} ,  so that by Lemma 1 .8 1] is itself trivial, as asserted. 

Here is the main result of the section. 

3.5 Proposition : Let � be any fibre bundle over any contractible space X ;  
then � is trivial. 
PROOF : By hypothesis X is homotopy equivalent to the singleton space 
( * } ,  so that there is a composition X � { * } � X that is homotopy equivalent 
to the identity map X -> X ;  that is, there is a map X x [0, 1 ]  ..£. X whose 
restrictions X x to} � X and X x { t }  -.!..!..... X are the composition h o g  
and the identity map, respectively. Let 1] be the pull back t� over X x [0, 1 ], 
and observe that 1] I X x 10} = f�� = g!h!� and '1 I X x { l }  = h� = �. Since 
the bundle h!� over ( * } is necessarily trivial, it follows from Lemma 1 .8 that 
its pull back 1] I X x {O} is also trivial. Hence Proposition 3.4 implies that 1] 
is trivial, so that Lemma 1 .8 implies that its restriction � ( = '1 1  X x { 1 }) is 
also trivial, as asserted. 

4. Pull backs along Homotopic Maps 

Let X" � X and X" -.!..!..... X be homotopic maps into an arbitrary 
space X, and let � be any fibre bundle over X. We shall show that if X" is 
homotopy equivalent to a paracompact space then f�� = f'1 � over X". I n  
particular, i f  j� and f1 are homotopic maps in  the category f!J of  base spaces, 
then f�� = f'1 � over X" E f!J for any fiber bundle � over X E f!J. 

4.1 Lemma : Let E -> Y represent any fiber bundle 1] over an arbitrary space 
Y, and suppose that Y � Y is a map that restricts to the identity outside of 
some open set V c Y. If the restriction 1] 1 V is trivial, then there is a morphism 

E ____ �K� __ -->. E 

I j 
Y ----�g�---->. Y 

in the sense of Definition 1 . 1  such that g restricts to the identity outside of E 1 v. 
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PROOF : Let the restriction of g to E l y - V be the identity, and for any 
trivialization E I V ..!. V x F of Yf I V let the restriction of 9 to E I V be the 
composition 'P - 1 ' (g l V x id) 0 'P. 

4.2 Lemma : Let X' be a paracompact space, let E -+ X' x [0, 1 ]  represent 
any fibre bundle Y/ over the product X' x [0, 1] ,  and let X' x [0, 1] -!. X' x { I } 
carry any (x', t) into (x', 1 ). Then there is a morphism 

E __ 1 __ • E I X' x { l }  

I j 
X' x [0, 1 ]  � X' x { l }  

in the sense of Definition 1 . 1 .  

PROOF : According to Lemma 3.3 there is a t  least one open covering 
{ V i i  i E l } of X' such that each restriction '1 1  Vi x [0, 1 ]  is trivial. Since X' 
is paracompact, one may as well assume that { Vd i E I }  is locally finite and 
that there is a partition of unity {hi l i E I }  subordinate to { Vi i i E I } .  For any 
well-ordering of the index set I, and for each i E l, let ki _ 1 = Lj < i h j and let 
li- I C X' x [0, 1 ]  consist of those (x', t) E X' x [0, 1 ]  such that t � ki - I (x' ) ;  
in particular, for the initial element ° E l one has Yo = X' x [0, 1 ] .  Define 
li- I � li c Yi - I  by setting 9i(X' , t) = (x', max(ki(x'), t» , so that 9i is the 
identity outside of the open set ( Vi X [0, 1 ] )  n li _ I '  Since the restriction 
Yf I Vi X [0, 1] is trivial, it follows from Lemma 4.1 that there is a morphism 

I Ill; I E li - 1 --=---+. E li 

j j 
li - 1 ----"y.:....' ---+) Y; 

in the sense of Definition 1 . 1 .  Since { Vi i  i E l } is locally finite, each x' E X' 
has a neighborhood V x' such that the restrictions of 9i and gi to V x' and 
E I V x' , respectively, are identities except for finitely many indices i l , . . .  , ip E l. 
Furthermore (Ux' x [0, 1 ] )  n li = Vx' x { l }  whenever i l < i, . . .  , ip < i, 
so that the composition 

1 I I1 I E = E I Yo � " ' --' E li- I --. E li -- ' " 

1 1 1 
X' x [0, 1] = Yo � . . . -- li- l � y -------+ • . •  I 
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is a well-defined morph ism of the desired form 

E ----=---->. E l  X' x { 1 }  

j j 
X' x [0, 1] � X' x { I } . 

Here is a special case of the main theorem of the section. 

4.3 Proposition : Let X' � X and X' � X be homotopic maps of a 
paracompact space x' into an arbitrary space X. Then .fh� = tl � over X' for 
any fibre bundle � over X. 

PROOF : By hypothesis there is a map X' x [0, 1 ]  L X with restrictions j� 
and fl to X' X to} and X' x { l } ,  respectively. Hence for '1 = t� one has 
'1 1 X' x lO }  = fh� and '1 1 X' x { l }  = tl �' Let E ---> X' x [0, 1 ]  represent '1. 
The left-hand morphism in the composition 

E l X' x {O} __ h_--->. E __ K=-------.. E l X' x { l }  

j j j 
X' x lO }  � X' x [0, 1 ]  � X' x { l }  

is the pullback diagram of an inclusion, and the right-hand morphism is 
provided by Lemma 4.2. Since X' x {O} � X' x { I }  is the identification 
homeomorphism and E I X' x to} � E I X' x { l }  induces G-related iso
morphisms in each fiber, it follows from Proposition 1 . 1 2  that '1 1 X' x to} = 
'1 1 X' x { I } :  that is, f�� = tl�' as asserted. 

In order to extend Proposition 4.3 to the case in which X' is replaced 
by any space X" homotopy equivalent to X' we first refine Lemma 3.3, 
which was used in the proof of Proposition 4.3. 

4.4 Lemma : Let X" be any space, let '1 be any fibre bundle over the product 
X" x [0, 1] ,  and let { Vi i  i E l } be any open covering of X" such that each 
restriction '1 1 Vi x {O} is trivial. Then each restriction '1 1 V i x [0, 1 ]  is also 
trivial. 

PROOF : In Proposition 3.4 replace X and '1 by Vi and '1 1 Vi x [0, 1] ,  
respectively, for each i E I .  



78 [ I .  Fiber Bundles 

4.5 Lemma : Let X" � X' be a homotopy equivalence of a space X" with a 
paracompact space X', with homotopy inverse X' � X". Then g!h!( = ( for 
any fibre bundle ( over X'I. 

PROOF : Since X' is paracompact, there is a locally finite open cover 
{ V;  1 i E l } of X' such that each restriction h !( 1 V; of the pullback h!( over X' 
is trivial, and there is a partition of unity {ki 1 i E l } subordinate to { V; 1 i E l } .  
Let Vi  = g- t (V;), and let X" � IR be the composition k i  0 g, for each i E l. 
Then, even though X" is not itself necessarily paracompact, { Vi i  i E l } is a 
locally finite cover of X" such that each restriction g!h!( 1 Vi is trivial, and 
{ hi 1 i E l } is a partition of unity subordinate to { Vi i  i E l } .  Since 9 and h are 
homotopy inverses, there is a map X" x [0, 1] !.. X" whose restrictions 
X" x to} � X" and X" x { l }  � X" are the composition h o g and the 
identity map, respectively. Let '1 be the pull back 1'( over X" x [0, 1 ], and 
observe that '1 1 X" x to} = J6( = g!h!' and '1 1 X" x { 1 }  = I't ( = (. Since 
each restriction g!h'( 1 Vi is trivial, that is, since each restriction '1 1 Vi X {O} 
is trivial, Lemma 4.4 implies that each restriction '1 1 Vi x [0, 1 ]  is trivial. 
Hence if E" ...... X" x [0, 1] represents 1], then one can use the partition of 
unity { hi 1 i E I }  to construct the right-hand morphism in the composition 

E" 1 X" x {O} -------+1 E" -------+1 E" 1 X" x { l }  

I I I 
X" x to} --+ X" x [0, 1 ]  --41 X" X { l )  

exactly as in the proof of Lemma 4.2 ; the left-hand morphism of the same 
diagram is the pull back diagram of an inclusion. It follows as in Proposi
tion 4.3 that '1 1 X" x {O }  = '1 1 X" x { 1 } ;  that is, g!h!( = ( as asserted. 

Here is the main theorem of the section. 

4.6 Theorem : Let X" be homotopy equivalent to a paracompact space, and 
let X" � X and X" � X be homotopic maps of X" into an arbitrary 
space X. Then J�� = /'t� for any fibre bundle � over X . 
PROOF : Let X" ..!!. X' be a homotopy equivalence from X" to a para
compact space X', with homotopy inverse X' � X", so that g!h:l�� = f�� 
and g!h'J!t � = .f't � over X" by Lemma 4.5. However, the compositions 
X' � X" � X and X' � X" � X are homotopic maps from the para
compact space X' to X, so that Proposition 4.3 yields h!f�� = Uo r h) '� = 
Ut n h)!� = h'J!t� .  Consequently f�� = g!(h'J��) = g!(h'J!t �) = /'

1 
� as claimed. 
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We shall use only the following special case of Theorem 4.6. Recall from 
Definition 1 .9 that a fiber bundle is any fibre bundle whose base space lies 
in the category !!4 of Definition 1 . 1 .2. 

4 7 P 't' L X" Io X d X" fI X b h . . h . ropOSI Ion : et --+ an ______ e omotoplc maps In t e 
category :J4 ()f' base spaces (Definition 1 . 1 .2), and let � be a fiber bundle over 
X ;  thell f6� = 1'1 

� over X". 
PROOF : One of the provisions of Definition 1 . 1 .2 is that any base space 
X" E .ciJ is homotopy equivalent to a metrizable space X'. Since any metrizable 
space X' is paracompact, by Lemma 1 .8.2, Theorem 4.6 applies. 

The product of any base space X E !!4 by the closed unit interval [0, 1 ]  E !!4 
is also a base space X x [0, 1 ]  E ffI, by Proposition 1 . 1 .4. 

4.8 Corollary : Given a base space X E fJ4, any fiber bundle 11 over the product 
X x [0, 1 ]  is the pullback n!1 � along the first projection X x [0, 1 ]  � X, 
fi)r some jiber bundle � over X. 
PROOF : Let X � X x [0, 1 ]  be the inclusion x H (x, 0) and set � = i611. 
Since the composition X x [0, 1 ]  � X � X x [0, 1 ]  is homotopic to the 
identity, Proposition 4.7 gives n!l � = n!l i�l1 = (io ' 0  nd!l1 = 11 as claimed. 

4.9 Corollary : Given a base space X E fJ4, any jiber bundle over the product 
X x [0, 1] call be represented by a coordinate bundle of the form E x 

[0, 1 ]  � X x [0, 1 ]  for a coordinate bundle E � X over X. 
PROOF : Immediate consequence of Corollary 4.8 . 

Corollary 4.9 gives a clearer view of Proposition 4.7. Let X" x [0, 1 ]  � X 
be a homotopy of maps f� and fl from X" E ffI to X E !!4, and let � be any 
fiber bundle over X. Then the pull back I'� can be represented by a coor-1[" x id dinate bundle of t�e form El' x [0, 1 ]  --------> X" x [0, 1 ]  for some coordi-
nate bundle El' � X", so that f6� and 1'

1 
� are represented by El' x to} 

� X" x to} and El' x { l}  � X" x { I } , respectively ; a fortiori 
fo� = .tl �' 

4.10 Proposition : Let 
E' ----�g�--�. E 

. [  [. 
X'  __ ----"--0 __ --->. X 
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be a morph ism of coordinate bundles such that g is a homotopy equivalence in 
the category f!l of base spaces .. then g is also a homotopy equivalence. 
PROOF : Let � be the fiber bundle represented by E � X, with pull back g!� 
represented by E' � X', and let X � X' be a homotopy inverse of g. Then 
X � X is homotopic to the identity map, so that h!g!� = � by Proposi
tion 4.7 : hence there is a pull back diagram 

E ___ h __ --+I E' 

"I I · 
X ____ h __ �1 X' 

for some h,  which provides a composed morphism 

E __ �g _h ____ 41 E 

·1 I" 
X __ �g '_h __ 41 X 

of coordinate bundles. Let X x [0, 1 ]  � X be the homotopy from g h to 
the identity map X 4 X. By Corollary 4.9 the pull back f� is represented 
by a coordinate bundle of the form E x [0, 1 ]  � X x [0, 1] ,  whose 
restrictions E x to} 4 X X to} and E x { 1 }  --... X x { 1 }  represent h!g!� and 
�, respectively. The pull back diagram along f is then of the form 

X x [0, 1 ]  _-=-f----+, X, 

where f provides a homotopy from E � E to the identity map E --... E. 
Similarly there is a homotopy from E' � E' to the identity map E' --... E', 
which completes the proof. 

5 .  Reduction of Structure Groups 

Let � be a fibre bundle with structure group G and fiber F over a space 
X, and let K be a subgroup of G. The action G x F 4 F restricts to an action 
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K x F -> F. Hence, for the inclusion homomorphism K .:. G and the identity 
map F � F, the pair (r, <1» is a morphism of transformation groups in the 
sense of Definition 2.6. 

5.1 Definition : The structure group G of a fibre bundle � over X can be 
reduced to a subgroup K e G  if and only if � can be induced, as in Defi
nition 2.8, by applying (f, <1» to some fibre bundle over X with structure 
group K. 

For example, the structure group G of any trivial bundle can obviously 
be reduced to the trivial subgroup { 1 }  c G. 

The reduction theorem of this section concerns any fiber bundle � with 
structure group G over any X E fJI. It asserts that if H c G is a subspace 
homeomorphic to a euclidean space lW, and if K e G  is a closed subgroup 
such that every element of G is uniquely of the form hk for h E H and k E K, 
then the structure group G of � can be reduced to K. The homeomorphism 
H -> W need not be a group isomorphism. 

A Lie group is any topological group G that is also a smooth manifold, 
for which the group operation G x G -> G and the operation G � G 
carrying elements into their inverses are both smooth maps. For example, 
the general linear groups GL(m, �) and GL(n, IC) are trivially Lie groups. At 
the end of this section we quote the very general Iwasawa�Mal'cev theorem, 
which asserts that if G is a Lie group with only finitely many connected 
components, then there is a decomposition G = H K as in the preceding 
paragraph, in which K is any maximal compact subgroup of G ;  hence the 
reduction theorem permits one to replace any such structure group G by a 
compact Lie group. Although we do not prove the full Iwasawa�Mal'cev 
theorem, which can be found in several references given later, we do devote 
the next section to the special cases required in this book, in which G is 
either a complex general linear group GL(n, C), a real general linear group 
GL(m, �), or the subgroup GL + (m, �) c GL(m, �) of those elements in 
GL(m, �) with positive determinants; the corresponding maximal compact 
subgroups are the unitary groups V(n) c GL(n, IC), the orthogonal groups 
O(m) c GL(m, �), and the rotation groups O+(m) c GL + (m, �), respectively. 

Before embarking on the proof of the reduction theorem, we rephrase 
Definition 5. 1 directly in terms of coordinate bundles. Let E ":  X be a coor
dinate bundle representing �, and let { Vi i  i E l } be an open covering of X 
for which there are trivializations E l  Vi � Vi X F ;  the transition functions 

� 1 Vi n V j � G are defined as usual by the req uirement that 'P j 0 'P i- (x, f) = 
(x, t/!{(x).f) E (Vi n V) x F for any (x, f) E ( Vi n V) x F. For any family 
: Ai l i E  I} of maps Vi � G there are new trivializations E I Vi � Vi X F 
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consisting of compositions E l  Vj � Vj x F � Vj x F in which 
Aj(x,f) = (x, )'i(x)f). There are then new transition functions Vj (\ Vj � G 
for the same coordinate bundle E � X and same covering { V j l i E  I }  of X, de
fined by the requirement that 'Pj 'P; - I (x,f)  = Ai I . 'PJ 

. .  'P,:- I ... Aj(x,f)  = 
(x, (A}X) - I . "'{(x) . A;(.X) )f) = (x, ",/(x)f) for any (x, f) E {Vi (\ Vj) x F;  that 
is, ",/(x) = A/X) - I . "'{(x) · Ai(X) E G for any x E Vi (\ Vj • Clearly the struc
ture group G can be reduced to a subgroup K e G  if and only if one can 
find a family {Ai l i E  I }  of maps Vi !.+ G such that Aj(X) - I . "'{(x) . Ai(X) E K 
for each x E Vi n Vj • To prove the reduction theorem it therefore suffices 
to find such a family {Ad i E I }  of maps Vi � G. 

5.2 Definition : Let E � X be any coordinate bundle over a space X ;  a 
section of E � X is any (continuous) map X � E such that X � E � X is 
the identity on X .  

In the following lemma the fiber i s  any euclidean space [RP; however, 
the unspecified structure group does not necessarily act linearly on W. 

5.3 Lemma : Let X be a paracompact hausdorff space for which there is a 
countable locally finite open covering { V  n I n E N } such that each connected 
component of each Vn is contained in a contractible open set in X. Then for 
any coordinate bundle E � X with fiber [RP there is a section X � E. 

PROOF : Any paracompact space is normal (as in Dugundji [2, p. 1 63], or 
Kelley [ 1 ,  pp. 1 58- 1 69], for example), so that there is a countable locally 
finite refinement { v" I n E N } of { V n I n E N } by open sets VII whose closures 
satisfy Vn c V n' Since each connected component of each V" is cOt:ltained in a 
contractible open set in X it follows from Proposition 3.5 and Lemma 1 .8 that 
there are local trivializations E I V n � V" x [RP, hence local trivializations 
E l  V,,� v" x W. Let w" = 170 u . . . U V" for each 11 E N, and observe 
that since Wo = Vo , a section Wo � E l  Wo is given by O'o(x) = 'Po I (X, O) 
for any x E Wo . For any section w,,- I � E l  Wn- I  the restriction 
0',, - 1 1 V" (\ Wn- 1  can be composed with 'Pn to yield a map 

V- W 17,, _ 1  E l  V- W '1'" ( V- W ) ITllP n (\ n - I  ----+ n (\ n - I  ----> ,, (\  ,, - I X Im ,  

and since Vn (\ W,, - I is a closed subset of a normal space, the Tietze exten
sion theorem ( in Dugundji [2, pp. 1 49 - 1 50], for example) permits one to 

d V- W '1'" 11 "  - 1 ( v.
- w ) ITllP V- tn v.- ITll P I exten n (\ n _ I ) n (\ ,, - I X Im to a map ,, �  " x  Im .  t 

follows that the composition VII � VII X W � E I VII is the restriction to 
Vn C W" of a section Wn � E l  Wn whose restriction to Wn - 1 C W" is an - I '  
Since { v,, 1  n E  N }  covers X each x E X lies in some W,, ' and since { VII I  n E  N :  
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is locally finite, one has 0",, + l(X) = O",,(x) for n sufficiently large. Hence there 
is a well-defined section 0" = limn� ':t"  O"n , as claimed. 

Now let K be any closed subgroup of a topological group G, and let '" 
be the equivalence relation in G with g' - 9 if and only if g' = gk for some 
k E K. The quotient GI"" ,  in the quotient topology, is the homogeneous space 
GIK. Since K is not necessarily a normal subgroup of G, the homogeneous 
space G I K is not necessarily a group. However, there is a natural action 
G x GIK --.. GIK of G on GIK given by left-multiplication. The kernel of the 
natural action is the largest subgroup Ko c K that is normal in G, so that 
for G = GIKo there is an effective transformation group G x GIK --.. GIK. 

Let E -.:'. X be any coordinate bundle with fiber F and structure group 
G, with respect to some open covering { Vi i  i E l } of X. Any local trivializa
tions E l  Vi � Vi X F provide transition functions Vi n Vj � G as 
always : tI'j tI'i- 1 (X,f)  = (x, ",{(x)f) for (x, f) E ( Vi n V) x F. For any 

r - � closed subgroup K e G  let G --.. GIKo = G and G --.. GIK denote the canon-
ical surjections, where r is in fact a group epimorphism. If one sets ${(x) = 
[(",{(x) ) E G for any x E Vi n Vj , then the conditions "" (x) · "'{(x) = "'7(x) 
imply $,(x) . ${(x) = $7(x) for any x E Vi n Vj n Vk; hence according to 
Proposition 2.5 there is a unique coordinate bundle if !.  X with fiber GIK 
and structure group G defined with respect to the covering { Vi l i E I }  by 
means of the transition functions Vi n Vj � G. We temporarily call 
E !.  X the associated bundle with respect to the given coordinate bundle 
E -.:'. X and given closed subgroup K of the structure group G. 

5.4 Lemma : Let X satisfy the conditions of Lemma 5.3, let E -.:'. X be any 
coordinate bundle with structure group G, and suppose that H c G is a sub
space homeomorphic to a euclidean space IRP and that K e G  is a closed 
sub group such that every element of G is uniquely of the form hk for h E  H 
and k E K. Then there is a section X � E of the associated bundle E !.  X. 
PROOF : The hypotheses guarantee that the homogeneous space G I K is 
homeomorphic to H, hence also to W. Hence by Lemma 5.3 there is a section 
X � £, as claimed. 

5.5 Lemma : Let G be a topological group with a subspaceH c G and closed 
subgroup K e G  as in Lemma 5.4, and let G � G I K be the canonical surjection. 
Then there is a map GIK -..:. G such that the composition GIK � G � GIK is 
the identity. 
PROOF : It has already been noted that GIK is homeomorphic to H, and 
one can identify any h E H as an element of G ;  let r denote the composition 
GIK --.. H e  G. 
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If the coordinate bundle E � X is described in terms of a given covering 
l Vi l i E  I }  of the space X, then the associated bundle E � X can clearly be 
described in terms of the same covering; that is, if there are local trivializations 
E l  Vi � Vi X F of E � X, then there are also local trivializations E l  Vi 

.p .  - il -
-----'-+ Vi X G I K of E --+ X. Although 'f'i and 'f'i are not directly related, the 
compositions 'f'j ' 'f'i-_1 and 'Pj 0 'Pi- I provide transition functions Vi n Vj 

I/IJ I/IJ - - it � G and Vi n Vj � G that are related by the very definition of E --+ X ;  

specifi�ally, �{ is the composition Vi n l!j L G � G. For each i E I let 
E l  Vi !..!.. GIK be the composition E l  Vi � Vi X GIK � GIK, where 7[2 
is the second projection. 

5.6 Lemma : For any x E Vi n Vj and any e E Ex one has �{(x)�i( e) = �p) 
in GIK. 

PROOF: By definition of �i and �j one has 'PM) = (X' �i(e) ) and 'Pj(e) = 
(x, � )e) ), and by definition of the associated bundle E � X the trivializations 
'Pi and �j are related only by the requirement that ( Vi n V) x 

GIK "'J '1',- ' ,  ( Vi n V) x GIK carry any (xJ) into (x, �{(x).l), for .l E GIK. 
Hence 

(x, �{(x)�le ) )  = 'iij'ii i- I (x' �i(e ) ) = 'iiP) = (x, �)e ) ), 

to which one applies 7[2 to complete the proof. 

5.7 Definition : Let the coordinate bundle E � X satisfy the conditions of 
Lemma 5.4, and let E � X be the associated bundle with fiber GIK and 
structure group G. If E � X and E � X are defined with respect to an open 
covering { Vd i E I }  of X, and if the local trivializations E l  Vi � Vi X GIK 
are given by 'ii i(e) = (1t (e), �i( e ) ), then the reducing maps Vi � G are the 
compositions 

V· iJIU; , E l  V ·  t GIK � G I I , 
where (j I Vi is the restriction to Vi of the section X � E of Lemma 5.4, and 
where GIK � G is defined in Lemma 5 .5. 

5.8 Lemma : Let Vi n Vj � G be the transition junctions and Vi .j G the 
reducing maps of the coordinate bundle E � X of Definition 5.7 ; then 

$(IjJ{(x) ' A.i(x) = $())x) ) E GIK 

where G � GI K is the canonical surjection. Hence A.ix) - 1 . 1jJ{(x) . i'i(X) lies 
in the kernel of $. 
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PROOF : Since G/K � G .!. G/K is the identity by Lemma 5.5, it follows 
from Lemma 5.6 that 

<t>(I/!{(x) . Ai(X) ) = �{(X)<t>(Ai (X» 
= �l(x)�i(i1(x» = � j(i1(x) ) = <t>(2j(x) ). 

5.9 Lemma : Let the coordinate bundle E � X satisfy the conditions of 
Lemma 5.4 ;  then its structure group G can be reduced to the given closed 
subgroup K e G. 
PROOF : If Vi (\ Vj -£ G are transition functions for E � X with respect 
to the covering { V n I n E I\J }  of X, then for any maps V i � G whatsoever one 
obtains new transition functions Vi (\ Vj � G for the same coordinate 
bundle by setting t/I;j(x) = A/X) - 1 ' I/!{(x) ' ;'i(x) E G for any x E Vi (\ Vj • In 
particular, if one chooses V i � G to be the reducing maps of Definitions 5.7, 
then it follows from Lemma 5.8 that the canonical surjection G .!. G/K carries 
each I/!;j(x) into the point <t>(K) E G/K, hence that t/I/(x) E K, as required. 

5.10 Theorem (Reduction Theorem) : Let � be any jiber bundle with struc
ture group G over any base space X E .?J, and suppose that there is a subspace 
H c G homeomorphic to a euclidean space W, and a closed subgroup K e G, 
such that every element of G is uniquely of the form hk for h E  H and k E K .  
Then the structure group G of � can be reduced to the subgroup K e G. 

PROOF : By Proposition 1 .8.3 there is a homotopy equivalence X � X' of 
any X E 81 with a space X' E fJ8 for which there is a countable locally finite 
covering { V  n I n E I\J }  such that each connected component of each VII is 
contained in a contractible open set in X' ; that is, X' satisfies the conditions of 
Lemma 5.3 . If X' � X is a homotopy inverse of g, then the pull back h!� of e 
over X' is represented by a coordinate bundle E' � X' that satisfies the 
conditions of Lemma 5.4. Hence by Lemma 5.9 the structure group G of 
the fiber bundle h!� can be reduced to the subgroup K e G. Since � = g!h!�, 
by Lemma 4.5, it follows that the structure group G of e can also be reduced 
to the subgroup K e G, as claimed. 

Suppose that � is a fiber bundle whose structure group is an arbitrary 
Lie group G with only finitely many connected components. We shall quote 
one of the major triumphs of the theory of Lie groups, which permits one to 
apply the preceding reduction theorem to obtain a very satisfying result. As 
promised earlier, however, explicit proofs will be given in the next section 
for the groups GL(n, q, GL(m, IR), and GL + (m, IR) ; in these cases Theorem 5. 10  
will permit one to regard any fiber bundle with one of  these groups for its 
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structure group as a fiber bundle whose structure group is one of the compact 
Lie groups U(n) e GL(n, q, O(m) e GL(m, [R), or O+ (m) e GL + (m, [R), respec
tively. 

Any Lie group G with only finitely many connected components possesses 
a maximal compact subgroup K e G, and one can show that any other 
maximal compact subgroup of G is of the form g- I Kg for some g E G. This 
property of Lie groups is closely associated with the following theorem. 

5.1 1 Theorem (lwasawa-Mal'cev Decomposition Theorem) : Let G be any 
Lie group with only finitely many connected components, and let K E G  be 
any maximal compact subgroup ofG. Then there are one-parameter subgroups 
H I ' . . .  , Hp of G, each isomorphic to the additive group [R I , such that every 
element of G is uniquely of the form (h i ' . .  hp)k for h i E H  1 ,  . . . , hp E H  P ' 
and k E K .  

Proofs of  Theorem 5. 1 1  can be found in Iwasawa [ 1 ], Cartier [ 1 ,  pp. 
22- 1 5-22-16], Mostow [ 1 ,  pp. 47-48], and in Hochschild [ 1 ,  pp. 1 80- 186], 
for example. Theorem 5. 1 1  is usually called the "Iwasawa decomposition 
theorem"; however, a rationale for including Mal'cev's name is given in 
Remark 8.22. 

5.12 Proposition : Let � be afiber bundle over any base space X E fJ4, whose 
structure group G is any Lie group with only finitely many connected com
ponents .. then the structure group G can be reduced to a compact subgroup 
K e G. 
PROOF : This is an immediate consequence of Theorems 5 . 1 1 and 5 . 10. 

One can obtain a slightly weaker version of Proposition 5 . 1 2  without 
appealing to the Iwasawa-Mal'cev decomposition theorem : see Corollary 
6. 14. 

6. Polar Decompositions 

In this section we show that if G is any of the linear groups GL(n, Cl, 
GL(m, [R), or GL +(m, [R), then there is a subspace H e G diffeomorphic to a 
euclidean space [RP, and a (maximal) compact subgroup K e G, such that 
every element of G is uniquely of the form hk, for h E  H and k E K. The 
compact subgroups K are the unitary groups U(n) e GL(n, q, the orthogonal 
groups O(m) e GL(m, [R), and the rotation groups O +(m) e GL + (m, [R), 
respectively, which are easily shown to be compact. Hence the reduction 
theorem (Theorem 5. 1 0), and the results of this section, imply for any fiber 
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bundle whose structure group G is one of the groups GL(n, q, GL(m, IR), 
or GL + (m, IR) that G can be reduced to one of the compact subgroups U(n), 
O(m), or O+ (m), respectively. 

Let GL(n, C) be the general linear group of invertible n x n matrices of 
complex numbers, acting as usual on the left of the complex vector space 
en of column vectors. One assigns GL(n, q the relative topology as an open 
subset of en', so that it is a complex manifold of complex dimension n2 , 
hence real dimension 2n2, covered by a single coordinate neighborhood. 
The group product GL(n, q x GL(n, q � GL(n, q and group inverse 
GL(n, C) � GL(n, q are trivially smooth, so that GL(n, q is a complex 
Lie group. 

The usual hermitian inner product en x en -S C is given by setting 
<x, y) = X IYI + . . .  + XnYI + . . .  + xnYn for column vectors x and y with 
entries X I ' . . .  , Xn and YI ' . . .  , Yn ' where Y I ' . . .  , Yn are complex conjugates 
of Y I , . . .  , Yn ' The adjoint A * E End en of any A E End cn is defined by 
requiring that <Ax, y) = <x, A*y) for all (X, Y) E cn X en, and A is self
adjoint with respect to < , ) if A* = A. A self-adjoint element A E End en is 
positive if <Ax, x) � ° for all x E en, with equality holding only for x = 0. 
It is clear that positive elements A, B E End en belong in the general linear 
group GL (/I, C) c End en and that the sum of two positive elements A,B E 
GL(n, Cl is a positive element A + B E  GL(n, q. 

For any endomorph ism A of en, a classical existence and uniqueness 
theorem for ordinary differential equations provides a unique map 
IR � End en such that (d/dt) Y = A Y, with prescribed initial value y(o) E 
End en ; the uniqueness theorem also implies that Yes) yet) = yes + t) for 
any s, t E IR. The solution Y of the initial value problem (d/dt) Y = A Y for 
y(o) = 1 E GL(n, q is the exponental of A, written yet) = eAt. Thus eAseAt = 
eA(s + t )  for all oS, t E IR, and since eAu = 1 it follows that e- AteA1 = I, hence 
that eAt E GL(n, C) for all t E R 

If B E End en is self-adjoint, then the differential equations (d/dt) Y = BY 
and (d/dt) Y = B* Y are one and the same, so that eBt = eB*t = (eBt)* for all 
t E IR. Since eBt = eBt/2eBt/2 = (eBt/2 )*eBt/2 , it follows for any x E cn that 
<eBtx, x) = <eBti2x, eBt/2x) � 0, with equality if and only if x = 0. Hence 
eB1 E GL(n, C) is positive for any self-adjoint B E  End en and any t E C. 

For any positive A E GL(n, Cl and any S E  [0, 1 ] the sum 1 ( 1 - s) + As 
is positive, hence an element of GL(n, q, and the logarithm of A is defined 
by setting 

ln A = (A - I ) i� o (l( 1 - s) + AS) - I  ds. 

6.1 Lemma : For any positive A E GL(n, Cl one has eln A = A .  



88 I l .  Fiber Bundles 

PROOF : Set B = A - J, so that J + Bst is positive for any S E  [0, 1 ]  and 
t E [0, 1 ] ' Then In(l + Bt) = Bt S:= o(l + Bst) - I  ds, the value at t = 1 being 
In A. Since 

d d t dt Bt(l + Bst)- I + ds (I + Bst) - I  = 0, 

it follows that 

d il d t -d In(l + Bt) = - -d (I + Bst) - I ds = Bt(l + Bt) - 1 t s = O  S 
hence that 

consequently 

d 
dt In(l + Bt) = B(I + Bt) - I ; 

� eln(/ + Bt) = B(I + Bt) - I eln(/ +Bt) dt 
for all t E [0, 1], the value of eln(/ + Bt) at t = ° being J. Since J + Bt is another 
solution Y of the initial value problem (d/dt) Y = B(I + Bt) - I  Y for y(o) = J, 
the uniqueness theorem for ordinary differential equations gives eln(/ + Bt) = 
J + Bt for all t E [0, 1] ; in particular, for t = 1 one has eln A = A, as claimed. 

6.2 Lemma : For any self-adjoint B E End en one has In eB = B. 
PROOF : Compute 

� In eBt = � ( I (eBt - I ) (I ( 1  - s) + eBts) - 1  ds dt dt Js = o  

= B�t f.�0 (I(1 - s) + eBts) - 2 ds 
il d 

= BeBt - s(l ( 1  - s) + eBts)- 1 ds s= o ds 
and In eBo = 0 ;  

another solution Y of the initial value problem (d/dt) Y  = B for y(o) = ° is 
given by setting Y(t) = Bt, so that the uniqueness theorem for ordinary 
differential equations gives In eBt = Bt for all t E R, including the case t = 1 .  

Lemmas 6.1  and 6.2 together imply that the exponential map is a diffeo
morphism from the self-adjoint elements B E End en onto the positive 
elements � E GL(n, C); the logarithm is the inverse map. 
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The square root of any positive element of GL(n, IC) is given by setting 
p = eB/2, where B E End e is self-adjoint ; it follows from Lemmas 6 . 1  
and 6.2 that pp = eB. For any A E GL(n, 1C) one has (AA*x, x) = 
(A*x, A*x) � 0 for any x E e, with equality only for x = 0, so that AA*  
is positive. The square root IA I  = � AA* E GL(n, IC) is the modulus of A .  
Clearly I A I  is a positive element eB E GL(n, lC), where B = ln AA*/2, by 
Lemmas 6. 1 and 6.2 . 

An element B E GL(n, IC) is unitary whenever BB* = I ;  that is, B- I = B*. 
I f  B and C are both unitary, then (BC)(BC)* = BCC*B* = BB* = I, and 
also B- I (B- I )* = B- 1 B = I, so that the unitary elements of GL(n, IC) form 
a subgroup U(n) c GL(n, IC), the unitary subgroup. 

6.3 Proposition (Polar Decomposition of GL(n, C» : Any element A E 
GL(n, IC) is uniquely of the form eBC, where eB is positive and C E U(n). 
PROOF : The modulus IA I  is uniquely of the form eB for the self-adjoint 
element B = In AA*/2, so that A = eBC for C = IA I - I A. Since IA I* = I A I ,  
one has CC* = IA I - I AA* IA I - I = IA I - I IA I 2 IA I - I  = I ,  so that C i s  unitary. 
For any other such decomposition eFG of A the equality eBC = A = eFG 
gives e- FeB = GC- I , which is unitary, so that e - F e2Be- F = (e- F eB)(e - F eB)* = 
I. Hence e2B = e2F, so that B = ! In e2B = ! In e2F = F, which in turn implies 
C = G. 

6.4 Corollary : For any n > 0 there is a subspace H c GL(n, 1C) dijJeomorphic 
to IR1"2 such that every element of GL(n, IC) is uniquely of the form hk for 
h E H and an element k in the unitary subgroup U(n) c GL(n, IC). 
PROOF : We have already observed that Lemmas 6 . 1 and 6.2 imply that 
the exponential map is a diffeomorphism from the self-adjoint elements 
B E  End e to the positive elements eB E GL(n, IC), and the self-adjoint 
elements B E  End cn form a real vector space [Rn2. 

Since GL(n, C) is of real dimension 2n2, it follows from Corollary 6.4 that 
the unitary group U(n) is of real dimension n2 ; it is not itself a complex 
manifold. 

6.5 Corollary : For any n > 0 the inclusion U(n) -+ GL(n, IC) is a homotopy 
equivalellce. 
PROOF : Let GL(n, C) -+ U(n) project eBC E GL(n, IC) onto C E U(n). Then 
U(n)-+GL(n, C)-+ U(n) is the identity, and the map GL(n, IC) x [0, 1 ]-+GL(n, C) 
taking (eBC, t )  into eB1C i s  a homotopy from the identity GL(n, IC) -+ GL(n, IC) 
to the composition GL(n, C) -+ U(n) -+ GL(n, IC). 
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We now consider real analogs of the preceding results, replacing the 
hermitian inner product Cn X C" � C by the usual euclidean inner 
product IRm x IRm � IR. The ad joint A * E End IRm of any A E End IRm 
satisfies <Ax, y) = <x, A*y) for all (x, y) E IRm x IRm, and self-adjoint elements 
B E  End IRm and positive elements A E GL(m, IR) are defined exactly as in the 
complex case, as are the exponential eB E GL(m, IR) of any B E  End IRm and 
the logarithm In A E End IRm of any positive A E GL(m, IR). Real analogs of 
Lemmas 6. 1 and 6.2 then imply that the exponential map is a diffeomorphism 
from the self-adjoint elements of End IRm to the positive elements of G L(m, IR). 
The orthogonal subgroup O(m) c GL(m, IR) consists of those A E GL(m, IR) 
such that AA * = I ;  that is, A - I = A *. 
6.6 Proposition (Polar Decomposition of GL(m, IR» : Any element A E 
GL(m, IR) is uniquely of the form eHe, where eH is positive and e E O (m). 
PROOF : This is a real analog of Proposition 6.3. 

6.7 Corollary : For any m > 0 there is a subspace H c GL(m, IR) dif.[eomor
phic to IRm(m + 1 )(2 such that every element of GL(m, IR) is uniquely of the form 
hk for h E H and an element k in the orthogonal subgroup O(m) c GL(m, IR). 

PROOF : The real analogs of Lemmas 6. 1 and 6.2 imply that the exponential 
map is a diffeomorphism from the self-adjoint elements B E End IRm to the 
positive elements eH E GL(m, IR), and the self-adjoint elements B E  End IRm 
form a real vector space IRm(m + 1 )(2 . 

6.8 Corollary : For any m >  0 the inclusion O(m) --+ GL(m, IR) is a homotopy 
equivalence. 
PROOF : This is an obvious real analog of Corollary 6.5. 

Recall that GL + (m, IR) is the subgroup of those elements in GL(m, IR) 
with positive determinants ; the rotation group is the subgroup O+ (m) = 
O(m) n GL + (m, IR) c GL + (m, IR). 

6.9 Proposition (Polar Decomposition of GL + (m, IR» : Any element A E 
GL + (m, IR) is uniquely of the }(Jrm eHe, where eH is positive and e E O+ (m). 
PROOF : This is an immediate corollary of Proposition 6.6. 

6.10 Corollary : For any rn > 0 there is a subspace H c GL + (m, IR) dif.[eomor
phic to IRm(m + 1 )(2 such that every element of GL + (m, IR) is uniquely of the form 
hk for h E H and an element k in the rotation subgroup O + (m) c GL + (rn, IR). 

PROOF : See Corollary 6.7. 
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6.1 1  Corollary : For any m >  0 the inclusion O + (m) -> GL + (m, IR )  is a homo
topy equivalence. 
PROOF : See Corollaries 6.5 and 6.8. 

In  order to present the main result of this section, it is necessary to know 
that the subgroups U(n) c GL(n, C), O(m) c GL(m, IR), and O + (m) c 
GL +(m, IR) are closed ; in fact, they are even compact. 

6.12 Proposition : For any n > 0 and m >  0 the unitary group U(n), the 
orthogollal group O(m), and the rotation group O + (m) are compact. 
PROOF : For any matrix (a�) E U(n) one has a!a� + . . . + a;a� = b q for the 
Kronecker delta bpq , by definition of U(n). For p = q it follows that fa� 1 2 � I ,  
so that (a�) E (["2 l ines in the compact subset (D2t c cn2, where D2 c C is 
the closed unit disk. Since limits of points (a�) E (D2r' satisfying the algebraic 
relations a!a� + . . .  + a;a� = bpq themselves satisfy the same relations, U(n) 
is a closed subset of the compact set (D2t2, hence compact. Analogous proofs 
apply to O(m) and O +(m). 

6.13 Theorem (Linear Reduction Theorem) : Let � be any jiber bundle 
over any base space X E 3d whose structure group G is one of the linear groups 
GL(n, C), GL(m, IR), or GL + (m, IR) ;  then G can be reduced to one of the com
pact subgroups U(n) c GL(n, q, O(m) c GL(m, IR), or O + (m) c GL + (m, IR), 
respectively. 
PROOF : By Proposition 6. 1 2  the given subgroups are compact, a fortiori 
closed, and it remains to apply the general reduction theorem (Theorem 5 . 10) 
to Corollaries 6.4, 6.7, or 6. 10, respectively. 

6.14 Corollary : Let � be any fiber bundle over any base space X E [JI whose 
structure ?)roup G is a linear Lie group with only finitely many connected 
components ; specifically, G is a subgroup of GL(m, IR) jar some m > O. Then 
� can be regarded as a .fiber bundle with a compact structure group. 
PROOF : One simply regards � as a fiber bundle with structure group 
GL(m, IR), to which Theorem 6. 1 3  applies. 

Corollary 6. 14 is essentially a weak version of Proposition 5 . 1 2. However, 
its proof does not require the Iwasawa-Mal'cev decomposition theorem, and 
in any event most interesting Lie groups with at most finitely many connected 
components are linear. (The first example of a connected nonlinear Lie 
group appeared in Birkhoff [ I ] ;  the example appears as an exercise in 
Hochschild [ I ,  p. 225] ' A method for constructing other nonlinear Lie 
groups is given in J. F. Price [ 1 ,  pp. 1 1 9- 12 1 ,  1 56- 1 57]') 
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Fiber bundles with structure groups GL(n, q, GL(m, IR), GL + (m, IR), or 
equivalently V(n), O(m), 0 + (m), will occupy the rest of the book. It is therefore 
reasonable to begin looking at the topologies ofthese groups. For the moment 
we merely count their connected components. 

6.15 Lemma : Let H be a connected closed subgroup of a topological group 
G such that the homogeneous space GjH is connected .. then G is connected. 
PROOF : If G is covered by two nonvoid open sets V and V, then their 
images V' and V' in GjH are two non void open sets covering GjH. Since 
GjH is connected, there is an x E G whose image x' E GjH lies in the inter
section V' n V'. The inverse image W of the set {x' }  c GjH is trivially 
homeomorphic to H, hence connected, so that the two nonvoid sets V n W 
and V n W, which cover W, have a non void intersection ; a fortiori V n V 
is nonvoid. 

6.16 Lemma : The rotation group O+(m) c O(m) is connected for every 
m > O. 
PROOF : We proceed by induction of m, observing that 0 +( 1 )  consists of a 
single point. Regard O+(m) as a transformation group, acting via rotations 
of the (m - I )-sphere S ... - I  c IR"', and embed O +(m - 1 )  in O+ (m) as the 
subgroup leaving some fixed unit vector e E sm- I invariant. For any other 
f E Sm- ' there is at least one g E O+ (m) with ge = f E S"'- ' ,  and an easy 
verification shows for any h E O+ (m) that he = f E sm - I  if and only if h and 
g have the same image in O+(m)jO+(m - 1 ). Since the image S ... - I  of the 
induced one-to-one map O+(m)jO+ (m - 1) -4 sm - l  is compact, the map is a 
homeomorphism. Since sm- I  is connected, so is O+(m)jO + (m - 1 ), and 
since 0 + (m - 1) is connected by the inductive hypothesis, 0 + (m) is connected 
by Lemma 6. 1 5, as required. 

6.17 Lemma : The orthogonal group O(m) has two connected components for 
every m >  O. 
PROOF : Multiplication of the connected component O+ (m) c O(m) by an 
element in O(m) with determinant - 1  provides a diffeomorphism from 
O+(m) to the complement O(m) - O+(m). 

6.18 Lemma : The unitary group V(n) is connected for every n > O. 
PROOF : The construction of Lemma 6. 1 6  is easily modified, beginning with 
the circle V( I )  = S i ,  to yield a homeomorphism of the homogeneous space 
V(n)jV(n - 1 )  with the (2n - i )-sphere s2n- 1  c l[:"; since V(n - 1 )  is 
connected by the inductive hypothesis, V(n) is connected by Lemma 6. 1 5. 
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6.19 Proposition : For any n > 0 and any m > 0 the group GL(n, q has one 
connected component, and GL + (m, IR) is one ol the two connected components 
ql GL(m, IR). 

PROOF : By Lemmas, 6. 16-6. 1 8, the statements are valid for the subgroups 
U(n) c GL(n, q, O(m) c GL(m, IR), and O+ (m) c GL + (m, IR), and by Corol
laries 6.5, 6.8, and 6. 1 1  the inclusions are homotopy equivalences. 

7. The Leray-Hirsch Theorem 

We henceforth consider only fiber bundles rather than fibre bundles, 
both of which appeared in Definition 1 .9 ;  that is, all base spaces, now and 
forever more, belong to the category r!4 of Chapter I .  

Suppose that E � X is  a coordinate bundle for some X E r!4, representing 
a fiber bundle � over X. For any commutative ring A with unit let H*(X) 
and H*(E) be the singular cohomology rings H*(X ;  A) and H*(E ; A), 
respectively, with coefficients in A. Since H*(-) is a contravariant functor, 
there is an induced ring homomorphism H*(X) � H*(E), and one can use 
rr* to regard H*(E) as a left H*(X)-module, the product f3 . (J, E H*(E) of 
rI. E H*(E) by a scalar f3 E H*(X) being the cup product rr*f3 U (J, E H*(E). 

Up to canonical isomorphisms the H*(X)-module H*(E) depends only 
on the fiber bundle �, and not upon the particular coordinate bundle E � X 
chosen to represent �. For if E' � X is any other coordinate bundle rep
resenting � there is a homeomorphism f such that 

E' • E 

� /  X 

commutes, so that H*(E) ..!:.: H*(E') is an isomorphism of H*(X)-modules, 
as claimed. 

There is even more latitude in the construction of the H*(X)-module 
H*(E), up to canonical isomorphisms. For any map X' .!!. X in the category 
;� of base spaces, and for any coordinate bundle E � X, there is a pull back 
diagram 

E' ---=-------+. E 

. j j . 
X' --�g�-�. X, 
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hence a commutative diagram 

H*(X) � H*(X') 

� j j. , 
R* H*(E) -��I H*(E') 

of ring homomorphisms. One can regard g* as a module homomorphism 
over the ring homomorphism g* ;  that is, g*(f3 . IX) = g*(n*f3 u IX) = g*n*f3 u 
g*1X = n'*g* f3 u g*1X = (g* f3) . (g*lX) for any IX E H*(E) and f3 E H*(X). If g is a 
homotopy equivalence, then H*(X) � H*(X') is a ring isomorphism : this is 
an immediate consequence of the homotopy axiom for singular cohomology. 

7.1 Lemma : If X' ..!!.. X is a homotopy equivalence in ;J)J, then for any coor
dinate bundle E � X the homomorphism H*(E) ; H*(E') is an isomorphism 
over the ring isomorphism H*(X) � H*(X'). 
PROOF : In the pull back diagram 

E' ____ �K� __ �I E 

. j j . 
X '  ----�g----�I X 

the map g is also a homotopy equivalence, by Proposition 4. 10. 
In the following result H*( ) continues to denote singular cohomology 

with coefficients in a fixed commutative ring A with unit. For any coordinate 
bundle E � X over any X E ;J)J, and for any x E X, let Ex .:!:<. E denote the 
inclusion of the fiber Ex over x ;  then H*(E) 4 H*(Ex) is a homomorphism 
of modules over the ground ring A. An element IX E H*(E) is homogeneous 
whenever IX E Hq(E) for some fixed index q E �, in which case J:IX E Hq(Ex) 
for each x E X. 

7.2 Theorem (Absolute Leray-Hirsch Theorem) :  Let E � X be a coor
dinate bundle over any base space X E .rJA, let H*(-) be singular cohomology 
H*(- ; A) with coefficients in a commutative ground ring A with unit, and 
suppose that there are finitely many homogeneous elements lX I ' . . .  , 1Xr E H*(E) 
such that for each x E X the A-module H*(Ex) is free on the basis 
{ J:IXI , . . .  ,1:lXr} ;  then the H*(X)-module H*(E) is free on the basis { IX  I '  . . .  , 1Xr} ' 
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PROOF : First suppose that X' .!!. X IS any homotopy equivalence, with 
pull back diagram 

E' __ ----'R'----_---->. E 

· l  l · 
X' -----"-9 __ -->. X 

as usual. For any x' E X' the map g induces a G-related isomorphism 
E:t , � Eg(x'l of fibers, hence a A-module isomorphism H*(Eg(x'l) g�,. 
H*(E't ' )' Since j;,(g*C() = g;,j;(X' IC( for any C( E H*(E), it follows that each A
module H*(E�,) is free on the basis U;,(g*C( I )' . . . , jx,(g*C(r)} ' Hence by Lemma 
7. 1 one can substitute E' � X' for the given coordinate bundle E � X when
ever X' .!!. X is a homotopy equivalence. In particular, since X E []d, there is 
a homotopy equivalence X' .!!. X such that X' is metrizable and of finite 
type, by Definition 1 . 1 .2, so that one may as well assume throughout the 
remainder of· the proof that X is itself of finite type, as in Definition 1 . 1 . 1 .  

Suppose that C( 1 E Hq'(E), . . .  , C(r E Hqr(E) for integers q l '  . . .  , q" let q 

be any integer, and for each open set V c X let hq( V)  be the direct sum 
Hq- q ' (V) EB " ' EB Hq - q,,( V )  of A-modules, where Hq- q;(U ) = 0  for q -

qi < O. If R is the cohomology ring H*(X ) of the base space X itself, then one 
can use the ring homomorphism R = H*(X) --> H*(V)  induced by the 
inclusion V c X to regard the direct sum UqE Z hq(V )  as a graded R-module, 
via cup product in H*( V). It follows from the classical Mayer-Vietoris 
cohomology exact sequence that one thereby obtains a Mayer-Vietoris 
functor UqEZ hq on the category (fJ(X)  of open sets V c X to the category 
�mf of E-graded R-modules, as in Corollary 1 .9.4. 

We now construct another Mayer-Vietoris functor UqEZ kq from CC'(X)  
to 9Jlf ,  and we later construct a natural transformation UqEJ' hq .!!. Uq E J' kq 
to which to apply Corollary 1 .9.4. For any open set V c X let E I V = 1[ - I (V )  
as usuaL and for any integer q let kq( V )  be the A-module Hq(E I V). I f  
E I V � V i s  the restriction to  E I V of  the original coordinate bundle 
E � X (over the space X of finite type), one can then combine the homo
morphism R = H*(X ) --> H*(V )  � H*(E I V) with cup product in H*(E I V )  
to regard the direct sum UqE l� kq( V )  (=  H*(E I V ) )  as a graded R-module. It 
follows from the classical Mayer-Vietoris cohomology sequence that one 
thereby obtains another Mayer-Vietoris functor, UqEJ' kq, from (D(X )  to 
�m:,  as promised. 
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Now recall that hq(U )  = Hq - q ,(U ) EEl '  . . EEl Hq - qr(U ) for each q E 7L and 
V E (9(X), and that the hypothesis of the theorem provides elements a l  E 
Hq'(E), . . . , ar E Hqr(E). Let E l  V � E be the inclusion map, and recall 
that E l  U � V denotes the restriction of E � X. Then for each fJi E 
Hq- q,(v )  one has ntfJi E Hq- q'(E I V)  and jtai E Hq'(E I  V ), for i = 1 ,  . . .  , r, 
so that there is a well-defined map hq(V)  -+ kq(V)  carrying each fJI EEl ' . .  EEl 
fJr E hq( V)  into the sum D = 1 nt fJi u jtlXi E kq( V ). One easily verifies that 
the direct sum of such maps, over all q E 7L, is an R-module homomorphism 
Uqd, hq(V)  � UqE l kq(V)  and that the family {8u }u  of such homomor
phisms is a natural transformation UqEl  hq -!!.. UqEl  kq of Mayer-Vietoris 
functors on (9(X) to IDlW. 

The final step in the proof of Theorem 7.2 is to show that 8 is a natural 
equivalence, a fortiori that Ox is an H*(X)-module isomorphism. If V E (9(X) 
is contractible, then the restriction E I V � V represents a trivial bundle 
over V, by Proposition 3.5, so that there is a homeomorphism f such that 

E l  V r I V x F � /  
V 

commutes, where F is the fiber and n l  is the first projection. If V contracts 
to x E V, then Uqel hq(V)  � UqE l kq(V)  is canonically equivalent to the 
homomorphism H*({x} )  EEl '  . .  EEl H*( {x} }  -+ H*(EJ, which carries fJI EEl 
" ' EEl fJr into 'i7= l nt fJi u jtai E H*(Ex), where H*( {x} ) = HO({x}) = A. 
Since H*(EJ is free on the basis { jta l >  . . .  , jtar}, by hypothesis, it follows 
that 8u is an isomorphism for contractible V E (9(X). Since X is of finite 
type, the Mayer-Vietoris technique applies in the form of Corollary 1 .9.4, 
with the consequence that the H*(X)-module homomorphism H*(X) EEl 
. . . EEl H*(X) � H*(E) carrying any PI EEl '  . . EEl fJr E W -q ,(X) EEl ' . . EEl 
Hq- qr(X) into n*fJI u a l  + . . .  + n*fJr u ar E Hq(E ) is an isomorphism ; 
that is, H*(E) is a free H*(X)-module with basis { a l "  . .  , ar}, as asserted. 

In a certain sense Theorem 7.2 is a generalization of a Kiinneth theorem, 
as follows. 

7.3 Corollary : Let X E � be any base space, and let F be any space whose 
cohomology H*(F) ( =  H*(F; A» is a Jree A-module on finitely many homo
geneous gen,erators ; then Jor the projections n I and n 2 oJ X x F onto X and 
F, respectively, the map H*(X) ®A H*(F) -+ H*(X x F) carrying fJ ® a into 
ntfJ u n!a is 00 H*(X)-module isomorphism. 
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PROOF : Apply Theorem 7.2 to the trivial coordinate bundle X x F � X. 
The label attached to Theorem 7.2 suggests that there is a corresponding 

relative Leray-H irsch theorem. There is such a theorem, its proof being 
virtually identical to that of Theorem 7.2 itself. We require only a very 
specialized relative Leray-Hirsch theorem, however, which will be for
mulated in a later chapter. 

8 .  Remarks and Exercises 

8.1 Remark : The first organized account of the material of this chapter 
appeared in Steenrod [4, Part I], in 1 95 1 .  Steenrod profoundly influenced 
the development of fiber bundles, and Part I of his book, at least, remains 
surprisingly modern. 

More recent introductory accounts of fiber bundles (in general) can be 
found in Borel and Hirzebruch [ 1 ,  Chapter 1 1] ,  Auslander and MacKenzie 
[2, Chapter 9], Holmann [1] ,  H usemoller [ 1 ,  Part I], Liulevicius [2, Chapter 
I] and Liulevicius [3, Chapter I], in the beginning pages of Lees [ 1 ], Eells 
[1] ,  Porter [2, Chapter 2], and Rohlin and Fuks [ 1 ,  Chapter IV], for example. 

Expository accounts of more general jiber spaces (or jibrations), con
sidered later in these Remarks, can be found in Cart an [3, Exposes 6, 7, 8], 
Schwartz [1 , Part I], Hu [2, Chapter Ill], May [1, pp. 1 -30], Switzer 
[ 1 ,  Chapter 4], and G. W. Whitehead [ 1 ,  pp. 29-75], for example. 

8.2 Remark : The first explicit definition of a coordinate bundle is due to 
Whitney [2], and it was further amplified in Whitney [4, 5, 6] ' The impor
tance of Whitney's brief original paper and its successors was quickly 
recognized. Related notions of jiber spaces (without structure groups) were 
soon independently introduced by Hurewicz and Steenrod [ 1 ]  and by 
Eckmann [1] ,  followed by Fox [3] ; fiber spaces will be discussed further in 
Remarks 8.5-8.8. Simultaneously Ehresmann and Feldbau [1], and later 
Ehresmann [3, 4] considered alternatives to Whitney's construction, with 
structure groups. The general definition of coordinate bundles with arbitrary 
fibers F and appropriate structure groups G had become mathematical 
folklore before its first appearance as an incidental feature of Steenrod [2], 
and the equivalence relation providing fibre bundles (and fiber) bundles in 
the sense of the present chapter was equally well understood before its 
first publication in Steenrod [4]. 

8.3 Remark : The distinction between fibre bundles and fiber bundles is a 
convenient technical device whose introduction is justified by the appearance 
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of the category PA in several major results of this chapter : Proposition 4.7, 
the general reduction theorem (Theorem 5 . 10) and its application ( Proposi
tion 5. 1 2), the linear reduction theorem (Theorem 6. 1 3), and the Leray
Hirsch theorem (Theorem 7.2). These are some of the reasons for introducing 
the category PA in the first place. The author apologizes to those readers who 
might prefer an interchange of the spellings "fibre" and "fiber." 

8.4 Remark : One can achieve some of the results of the preceding remark 
by restricting the bundles themselves, rather than their base spaces. Accord
ing to Dold [5] a fibre bundle � over a base space X (not necessarily in PA) 
is numerable if there is a covering { U  i l i E  I }  of X and a corresponding 
locally finite partition of unity {hi l i E  I }  such that (i) the covering 
{ hi- 1 (0, 1 ] l i E I } refines { Ui l i E I }  and (ii) each restriction � I Ui is trivial. 
Clearly if X is metric (a fortiori paracompact) and of finite type (as in 
Definition 1 . 1 . 1 ), then Proposition 3.5 implies that any fibre bundle over X 
is numerabfe. By Definition 1 . 1 .2 any space in PA is homotopy equivalent to 
such a space X, so that one can use Lemma 4.5 to conclude that any fiber 
bundle whatsoever is automatically numerable. An equivalent definition of 
numerability occurs in Derwent [3]. 

8.5 Remark : A map E � X has the covering homotopy property with 
respect to a space Y if any commutative diagram 

Y x {O} , E 

1 I · 
Y x [O, l ]  , x  

(with left-hand inclusion map) admits a homotopy lifting f for which 

Y x [0, 1] , X 

is also commutative. Borsuk [ 1 ] introduced homotopy Iiftings and the 
covering homotopy property. One of the principal features of the fiber 
spaces E � X of H urewicz and Steenrod [ 1 ]  is the covering homotopy 
theorem, which asserts that such fiber spaces have the covering homotopy 
property with respect to any space Y whatsoever ;  the proof requires restric
tions on the base space X'. Fox [4] showed conversely that any map E '::' X 
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satisfying the conclusion of the covering homotopy theorem is a fiber space 
in the sense of Hurewicz and Steenrod; Fox's result requires further restric
tions on X. 

The covering homotopy theorem is also valid for the more general fiber 
spaces of Hu [ 1 ] .  Accordingly, Hurewicz [ 1 ]  (and later, Curtis [ 1 ] ), defined 
even more general fiber spaces as "locally trivial" maps E � X satisfying 
the conclusion of the covering homotopy theorem ; the base space X is 
required to be paracompact. 

8.6 Remark : A Hurewicz fibration is any projection E � X whatsoever 
that satisfies the covering homotopy property with respect to any space Y. 
This definition ignores the "local triviality" condition of Hurewicz [ 1 ] ;  one 
can easily construct Hurewicz fibrations which are not "locally trivial," as 
in H usch [1] ,  for example. However, there are easily defined conditions 
which do guarantee "local triviality" of Hurewicz fibrations, some of which 
can be found in Raymond [ 1 ] .  Other recent information about Hurewicz 
fibrations is in Arnold [ 1 ]  and in Jaber and Alkutibi [ 1 ] .  

8.7 Remark : Serre [ 1 ]  considers projections E � X that satisfy the covering 
homotopy property just with respect to polyhedra Y ;  in fact, it suffices to 
restrict the polyhedra Y to be cubes [0, 1 ]" of arbitrary dimension n, as in 
Spanier [4, pp. 374-376], for example. R. Brown [1] gives an example of 
such a Serre .libration that is not a Hurewicz fibration. 

8.8 Remark : One of the implications of Hu [ 1 ]  is that every fibre bundle 
over a suitable base space satisfies the covering homotopy theorem ; an 
independent proof of the same result appears in Steenrod [4, pp. 50-54] ' 
Since then Huebsch [ 1 ,  2] and Derwent [ 1 ]  provided simplified proofs of 
the covering homotopy theorem for fibre bundles over arbitrary para
compact base spaces ; a special case (of interest for Chapter Ill) is in Szigeti 
[ 1  ] .  

8.9 Remark : We have deliberately avoided some of the most natural and 
beautiful fiber bundles since they will not be used explicitly in the sequel ; 
however, they will appear in some later exercises. Any topological group 
G has an obvious effective action G x G -+ G upon itself, for which the 
topology of G is trivially admissible : left-multiplication. A principal G-bundle 
�p is any fiber bundle in the sense of Definition 1 .9, in which a topological 
group G serves both as the structure group and as the fiber, the action 
G x G -+ G being left-multiplication. 

If E � X is any coordinate bundle with structure group G acting on a 
fiber F, and with transition functions Ui n Uj � G defined with respect 
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to an open covering { U  i l i E  I} of the base space X, then there is a principal 
coordinate bundle Ep � X with fiber G, obtained by letting the transition 
functions "'{ act on G rather than F. 

Principal G-bundles were first suggested by Ehresmann [3, 4], in terms 
of the fibrations of Ehresmann and Feldbau [ 1 ] .  

8.10 Exercise : Show that the preceding construction can be used to  replace 
any fiber bundle � with structure group G by an associated principal G-bundle 
�p, which is independent of the specific coordinate representations E � X 
and Ep � X. 

8.1 1  Exercise : Let Ep � X represent a principal G-bundle �p, and 
observe that there is a well-defined action Ep x G -+ Ep in which G acts on 
the right of Ep . Suppose that there is also an effective action G x F -+ F of 
G on the left of a topological space F, for which the topology of G is 
admissible. Then the product Ep x F has an equivalence relation - with 
(e', f') - (e, f) whenever (e', f') = (eg - I , gf) for some g E G, and there is a 
quotient E = Ep x F/- in the quotient topology ; furthermore, the pro
jection Ep � X induces an obvious projection E � X. Show that E � X 
is a coordinate bundle with structure group G and fiber F. 

8.12 Exercise : Let Ep � X represent a principal G-bundle �p, and let � 

be the fiber bundle represented by the coordinate bundle E � X at the end 
of the preceding exercise. Show that � depends only on the given principal 
G-bundle �p , independently of the coordinate bundle Ep � X representing 
�p . 

8.13 Exercise : Show that the constructions of Exercises 8.10 and 8. 1 2  are 
inverse, in the obvious sense. That is, show that the composition of the 
construction of Exercises 8. 1 0  and 8. 1 2  yields the given bundle � of Exercise 
8.10, and that the composition of the constructions of Exercises 8. 1 2  and 8. 10  
yields the given principal G-bundle �p  of Exercise 8. 1 2. (Caution : It i s  always 
assumed that the action of G on the fiber F is effective.) 

8.14 Remark : To some extent Exercise 8. 1 3  permits one to concentrate 
exclusively on principal G-bundles, and many books on differential geometry 
(and other subjects) use this consequence to advantage. Principal G-bundles 
are defined and studied in Bishop and Crittenden [ 1 ,  pp. 4 1-45], Kobayashi 
and Nomizu [ 1 ,  pp. 50-54], and Koszul [ 1 ,  Chapter 11], for example, in 
each case before the general definition of a fiber bundle is introduced. 
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However, the choice of G itself as a fiber i s  not always a virtue, for the same 
reason that the study of an effective transformation group G x F ----. F is 
frequently easier than the study of the left-multiplication G x G ----. G. For 
example, the usual action GL(n, JR) x JR" ----. JRn of the general linear group is 
much clearer, in terms of the geometry of JR", than is the left-multiplication 
GL(n, JR) x GL(n, JR) ----. GL(n, JR). 

8.15  Exercise : Let G be a topological group and let E � X represent a 
principal G-bundle � with a section X � E. Show that � is the trivial principal 
G-bundle, represented by the first projection X x G � X. (See Steenrod 
[4, p. 36] .) 

8.16 Exercise : Let G be a topological group and let E � X represent any 
principal G-bundle �. 

Show that the pullback n!� is the trivial principal 
G-bundle over E. 

8.17 Exercise : According to the preceding exercise, n!� can be represented 
by a coordinate bundle E x G � E, and the composition E x G � E 
� X represents a principal (G x G)-bundle '1 over X, not necessarily trivial. 
Observe that the pull back diagram 

E x G � X x G  F-j I,,, 
E " . x  

for the trivial principal G-bundle over X also provides a principal (G x G)
bundle '1 over X with the same representation E x G � E ::. X. Show 
that in general '1 and � are nevertheless different principal (G x G)-bundles. 
(See Akin [2].) 

8. 18 Remark : One of the most useful features of principal fiber bundles is 
that they can be classified in the following sense. For any topological group 
G there exists a universal principal G-bundle YG over a classifying space 
BG E .oJI such that any principal G-bundle over any base space X E r!4 is a 
pullback fYG'  with respect to a map X � BG that is uniquely defined up to 
homotopy. We shall establish an analogous homotopy classification theorem 
in the next chapter, which will suffice for all the remaining chapters. 
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Chern and Sun [ 1 ]  provided the first homotopy classification theorem, 
for any classical linear Lie group G, applying to principal G-bundles over 
certain base spaces. HelIer [ 1]  described an algebraic setting which estab
lished the existence (but not the construction) of universal principal G
bundles for an arbitrary topological group G, base spaces being suitably 
restricted. The first general construction of a universal principal G-bundle 
for an arbitrary topological group G was given by M ilnor [2], thereby 
providing a homotopy classification theorem for principal G-bundles over 
moderately restricted base spaces ;  the restrictions were somewhat relaxed 
by Lusztig [ 1], and further relaxed by Gel'fand and Fuks [ 1 ]  and Segal [ 1 ] .  
An entirely different construction of  universal principal G-bundles appears 
in Cartan [4], in a simplicial setting. 

It was observed in tom Dieck [ 1 ]  that Milnor's construction applies to 
numerable principal bundles over arbitrary base spaces. Since any fibre 
bundle over a base space X E !!4 is automatically numerable, by Remark 8.4, 
it follows that M ilnor's construction classifies any principal bundle over any 
X E !!4. 

8.19 Remark : If EG --+ BG represents a universal principal G-bundle �G' 
then the total space EG is contractible. Conversely, if the total space EG of a 
principal G-bundle �, is contractible then � is universal. An early version of 
this characterization of universality appears in Steenrod [4, pp. 102 - 103], 
and the general case is in Dold [5]. Also see tom Dieck [ 1 ]  and Liulevicius 
[2, p. 53] for portions of Dold's result. 

8.20 Remark : One can pass from the category of topological groups to 
the larger category of associative H-spaces with unit in carrying out Milnor's 
construction. This was done by Dold and Lashof [ 1 ]  (who had further 
applications in mind), and improvements to their work were added by Fuchs 
[ 1]  and Gottlieb [ 1 ] .  The Dold-Lashof construction led to an entirely 
different construction of universal bundles, by Milgram [ 1 ], and it was 
observed in Steenrod [8] (and by an earlier reviewer) that Milgram's con
struction could be reformulated to provide a satisfying identity for classifying 
spaces : BG x BH = B(G x H). Steenrod also observed that in case G is an 
honest topological group, then the total space EG of M ilgram's universal 
principal G-bundle is itself a group containing G as a subgroup, for which 
the homogeneous space EG/G is precisely the classifying space BG. Milgram 
and Steenrod define the universality of EG --+ BG via contractibility of EG, 
as in Remark 8. 1 9, for any associative H-space G. 

An excellent alternative version of the Milgram--Steenrod construction 
is given in May [ 1 ,  pp. 3 1 -54], and a sketch of the original version is given 
in Porter [2, pp. 1 32- 1 65] ' 
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One can even pass beyond the category of associative H -spaces with unit 
to the category of all topological spaces, for which there exist the "classifying 
spaces" of Segal [ 1] . A very minor alteration of Segal's construction, applied 
to an honest topological group G, simply reproduces the original construction 
of Milnor [2] ; this was observed by Accascina [ 1 ]  and others. 

Incidentally, if G is a topological group, and if BG and B' G are classifying 
spaces in the category .� of base spaces, each satisfying the homotopy 
classification theorem with respect to principal G-bundles over base spaces 
in f!J, then BG and B'G are trivially homotopy equivalent. However, if BG and 
B'G apply to different categories of base spaces, then their homotopy equiva
lence is less clear. A very general homotopy equivalence theorem is developed 
in tom Dieck [2, 3], to assist anyone with a desire to stray outside the 
category dB. 

8.21 Remark : In Thorn [4] two coordinate bundles E .::. X and E' � X over 
the same base space X are jiber homotopy equivalent (or of the same .jiber 
homotopy type) whenever there is a homotopy equivalence of E and E' via 
maps that preserve projections onto X. The definition applies equally well to 
more general fibrations, and fiber homotopy equivalence has been studied 
extensively by Dold [ 1 , 5], Fadell [ 1 , 2, 3], and Stasheff [ 1 , 2, 3], for example. 
Specifically, Fadell [3] shows that any Hurewicz fibration E � X over any 
X E if � (Definition 1 .3. 1 1 )  is fiber homotopy equivalent to a coordinate 
bundle, for some fiber F and structure group G. According to Allaud [ 1 ]  
the same result is true for Hurewicz fibrations over any X E 11' (Definition 
1 .3.8), and it is probable that the same result is also true even more generally 
for Hurewicz fibrations over any base space X E !JI  whatsoever (Definition 
1 . 1 .2). 

The classification offiber homotopy types offiber bundles began in Dold 
[ 1 ]  and continued in Curtis and Lashof [ 1 ] , Dold and Lashof [ l ], Fuchs [ 1 ], 
Stasheff [ 1 , 2, 3], and Siegel [ 1] .  Although we shall not attempt to describe 
any classifications here, the reader is hereby warned that many results of 
later chapters concern properties of fiber bundles that are in fact merely 
properties of their fiber homotopy types. This phenomenon will be identified 
as it arises. 

8.22 Remark : The Iwasawa-Mal'cev decomposition theorem (Theorem 
5 . 1 1 )  is the culmination of many efforts by ChevaIley and others to generalize 
the familiar polar decompositions of Propositions 6.3, 6.6, and 6.9. Theorem 
5.1 1 was first published in Mal'cev [ 1], in 1 945 ; however, Chevalley, who 
reviewed Mal'cev's paper, identified several gaps and obscurities. Iwasawa, 
who knew Chevalley's review, but who could not obtain a copy of Mal'cev's 
paper even as late as 1949, published a new proof of Theorem 5 . 1 1 ,  which is 
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formulated in Iwasawa [ 1 ,  p. 530]' Iwasawa's proof can be found in Cartier 
[ 1 ,  pp. 22- 1 5, 22- 16], in Mostow [ 1 ,  pp. 47-48], and in Hochschild [ 1 ,  
pp. 1 80-186]' 

Since Mal'cev directly inspired Iwasawa's work, and since Mal'cev's 
efforts probably contain the bulk of a correct proof, Mal'cev certainly 
deserves at least hyphenated credit for the result. Hence Theorem 5. 1 1  is the 
Iwasawa-Mal 'cev theorem. 

8.23 Remark : The Leray-Hirsch theorem (Theorem 7.2) was established 
by Leray [ 1 , 2, 3, 4, 5] and G. Hirsch [ 1 , 2, 3, 4, 5, 6], with mild restrictions 
on the base space. Leray's work coincides with the development of spectral 
sequences; Hirsch's constructions are somewhat more geometric. The 
clarification of spectral sequences by Serre [ 1 , 2] paved the way for simpli
fications of Leray's technique, with results which can be found in Kudo [ 1 ,  2], 
Blanchard [1] ,  E. H. Brown [ 1] ,  Dold [4], Vastersavendts [1] ,  and Dold [6], 
for example. 

A particularly important special case of the Leray-Hirsch theorem (for 
sphere bundles) is implicit in much earlier work of Gysin [ 1 ] ;  explicit 
geometric proofs of this special case were given by Thorn [ 1 ]  and by Chern 
and Spanier [ 1 ] ;  the latter proof was extended by Spanier [ 1] .  Another 
historically important special case (for bundles over spheres) appears in 
Wang [ 1] .  

Since the Leray-Hirsch theorem is independent of the structure group, it 
is clear that it applies equally well to more general fibrations ; for example, a 
corresponding result for Serre fibrations is given in G. H irsch [8] .  

The first application of a Mayer-Vietoris method to prove even a special 
case of the Leray-Hirsch theorem appears in Milnor [3, pp. 1 36- 142], 
material which is repeated in Milnor and Stasheff [ 1 ,  pp. 105 - 1 14] ; the 
base space is severely restricted. The same technique is applied in Spanier 
[4, pp. 258-259] and in Husemoller [ 1 ,  1 st ed., pp. 229-230] to prove the 
Leray-Hirsch theorem in general, but with the same restrictions on the base 
space. The Mayer-Vietoris proof of the Leray-Hirsch theorem over any 
base space X E f!J first appeared in Osborn [6] ; it is based upon the method 
of Connell [ 1 ,  pp. 499-501], which Connell attributes to E. H. Brown. 

8.24 Remark : According to Proposition 3 .5, any fibre bundle over a con
tractible base is trivial. Hence, if E � X represents a fibre bundle, then the 
Ljusternik-Schnirelmann category of the total space E is clearly related to 
the Ljusternik-Schnirelmann category of the base space X. This observation 
leads to several results, some of which are in Svarc [ 1 ,  2, 3], Ginsburg [ 1 ]. 
Varadarajan [ 1], Hardie [ 1 ], Palais [ 1 ], Ono [2], and Moran [ 1 , 2] ' 



CHAPTER III 

Vector Bundles 

O. Introduction 

A vector bundle is any fiber bundle whose fiber and structure group are 
a vector space and its general linear group, respectively, the general linear 
group acting in the usual way on the vector space. Vector bundles arise 
naturally in differential topology. For example, if X is a smooth m-dimen
sional manifold, then there is a well-defined tangent bundle over X with 
fiber IRm and structure group GL(m, IR). 

For notational convenience we first consider real vector bundles, de
scribed and illustrated in the first ten sections of the chapter. The main 
result is that there is a "universal" real vector bundle ym over the base space 
Gm(�"' )  E [JA, such that any vector bundle with fiber �m and structure group 
GL(m, �) over any base space X E :14  is a pull back tym ofym along some map 
X 1. Gm(�"- ) ;  the map .f is uniquely defined up to homotopy. 

Analogous descriptions and illustrations of complex vector bundles are 
provided in § l l merely by substituting the complex field IC for the real field 
� throughout, with occasional complex conjugations ; in particular, there 
is a "universal" complex vector bundle over the base space Gm(lCoo)  E :14. 
Some relations between real and complex vector bundles are explored in § 1 2. 

1 .  Real Vector Bundles 

This section consists of definitions and the rationale for the name "vector 
bundle." 

1 05 
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1 .1 Definition : A real vector bundle of rank m, or simply a real m-plane 
bundle, is any fiber bundle whose fiber is the real m-dimensional vector space 
IRm and whose structure group is the general linear group GL(m, IR) of in
vertible m x m matrices, acting in the usual way on IRm. A real line bundle is 
a real vector bundle of rank 1 .  

Throughout the bulk o f  this chapter we  frequently omit the adjective 
"real" ;  complex vector bundles are first introduced in § 1 1 .  Since the fiber 
IRm of an m-plane bundle � has the structure of a vector space, which is 
preserved under the action of the structure group GL(m, IR), one expects for 
any coordinate bundle E � X representing � that the fibers Ex are also m
dimensional vector spaces. 

1 .2 Proposition : If a coordinate bundle E � X represents a real m-plane 
bundle � over a base space X E 'fJB, then the jibers Ex are real m-dimensional 
vector spaces in a natural way ; furthermore, if E' � X also represents �, then 
there is a natural vector space isomorphism Ex -> E� for each x E X. 
PROOF: As in §II. 1 ,  E � X is a family of fibers F = IRm with structure group 
G = GL(m, IR), and for each x E X there is a GL(m, IR)-related family Sx of 
homeomorphisms Ex � IRm ; that is, if h E  Sx, h' E Sx , and 9 E GL(m, IR), then 

h h - I h' the compositions Ex -> IRm � IRm and IRm -- Ex -> [Rm belong to Sx and 
GL(m, IR), respectively. For any r1 , r2 E IR  and e l , e2 E Ex one can use any 
h E  Sx and the linear structure of IRm to obtain h- 1(r l h(ed + r2h(ez ) )  E Ex . 
For any other h' E Sx the composition h'h - l E GL(m, IR) preserves the linear 
structure of IRm so that h'h - l (rl h(ed+ r2h(ez) = rlh'(ed+ r2h'(e2) E IRm ; that 
is, h- l (rl h(ed + r2h(e2» ) = Jr l (r l h'(ed + r2h'(e2» )  E Ex . Thus h - l (r l h(ed+ 
r2h(e2) is an element r l el + r2e2 E Ex that is independent o f  the choice of 
h E  Sx , and one thereby obtains a linear structure in Ex ; trivially Ex � IRm 
is itself an isomorphism with respect to the linear structures of Ex and IRm, 
which completes the proof of the first assertion. I f  E' � X also represents �, 
then there is a commutative diagram 

E ----------�. E' 

� /  X 

for a homeomorphism f that induces a GL(m, IR)-related isomorphism 
Ex � E� for each x E X, as in §II .1 ; that is, if h E Sx and h' E S�, then the 
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composition [Rm � Ex � E� � [Rm belongs to GL(m, [R). I t  follows from 
the preceding definition of the linear structures of Ex and E� that Ex � E� 
is a vector space isomorphism, as required. 

1 .3 Proposition : Let E � X and £ � Y be coordinate bundles representing 
a real m-plane bundle � over X E :l4 and a real n-plane bundle I] over Y E  fJI, 
and suppose for some p � 0 that there is a commutative diagram 

E ------�----�l £ 

j ' 
X ----��--�l Y 

such that each induced map Ex � £g(X) is linear of rank p ;  then if E' � X and 
E' � Y also represent � and 1], there is a commutative diagram 

E' ------g-' ----�l £' 

. \  \' 
X ----�g�--�l Y 

such that each induced map E� � E�(x) is also linear of rank p. 
PROOF : As in Proposition 1 .2 there are commutative diagrams 

and 

for homeomorphisms ( and f such that each Ex � E� and £y � £� is a 
vector space isomorphism. It suffices to set g' = f "  g 0 (- I  and to observe 
that each fg(x) gx c f; 1 is of rank p. 

Proposition 1 .3 leads unambiguously to morphisms in a category whose 
objects are real vector bundles. 

1 .4 Definition : Let X � Y be a map of base spaces and let � and I] be 
vector bundles over X and Y, represented by coordinate bundles E .:. X and 
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E � Y, respectively. A bundle homomorphism � --+ rJ of rank p � 0 is rep
resented by any commutative diagram 

£ __ ----"K'----__ ) E 

· 1 I· 
x __ -----"-9 ___ ) Y 

such that each induced map £x � Eg(x) is linear of rank p. 

2. Whitney Sums and Products 

For any real vector spaces [Rm and [Rn the direct sum [Rm EB [Rn and tensor 
product [Rm ® [Rn are also vector spaces, [Rm+ n and [Rmn, and one expects 
corresponding constructions for vector bundles; these constructions and 
their properties are the goal of this section. Specifically, let � be an m-plane 
bundle over a base space X E f!A, let �' be an n-plane bundle over a base 
space X' E f!4, and recall from Proposition 1 . 1 .4 that f!4 is closed with respect 
to products ; we shall construct an (n + m)-plane bundle � + �' and an nm
plane bundle � x �' over the base space X x X' E f!4. I n  case X = X' these 
constructions will lead to an (m + n)-plane bundle � EB �' and an mn-plane 
bundle � ® �' over X itself, and for any vector bundles �, �', C over the same 
X E f!A the identities (� EB 0 EB �" = � EB (�' EB �"), � EB �' = �' EB �, (� ® 0 ® 

C = � ® (�' ® C), � ® �' = �' ® �, and (� EB 0 ® C = (� ® C) EB (�' ® C) 
are easily verified. 

We start with addition of vector bundles. Given coordinate bundles 
£ � X and £' � X' that represent an m-plane bundle � over X E f!A and an 
n-plane bundle �' over X' E f!A, respectively, the cartesian product £ x 

E' � X x X' is a coordinate bundle with fiber [Rm x [Rn and structure 
group GL(m,[R) x GL(n, [R). Since X x X' E f!A by Proposition 1 . 1 .4, 
£ x £' � X x X' represents a fiber bundle rJ over X x X', in the sense 
of Definition 11. 1 .9, which is trivially independent of the choices of coordi
nate bundles representing � and �'. The fiber [Rm x [Rn of rJ is the underlying 
topological space of the direct sum [Rm EB [Rn, so that there is a homeomor
phism [Rm x [Rn .!. [Rm EB [Rn of topological spaces. There is also a group 
homomorphism GL(m, [R) x GL(n, [R) � GL(m + n, [R) with 

l(A, B) = (� �) 
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for any invertible m x m matrix A E GL(m, �) and invertible n x n matrix B E  GL(n, �). Clearly r and <1> form a morphism (r, <1» of transformation 
groups in the sense of Definition II .2.6, which one can apply to '1 to induce a 
new bundle over X x X', as in Proposition 1 1 .2.7. 

2.1 Definition : Let � be an m-plane bundle over X E fIB, let �' be an n-plane 
bundle over X' E fIB, and let '1 be the fiber bundle with fiber �m X �" and 
structure group GL(m, �) x GL(n, �) over X x X' E fIB, as in the preceding 
discussion. The sum � + �' is the (m + n)-plane bundle over X x X' induced 
from '1 by the preceding morph ism (r, <1» of transformation groups, as in 
Definition 11 .2.8, in which GL(m, �) x GL(n, �) � GL(m + m, �) and 
�m x �" .!. �m EB �". 

One can obviously reduce the verbiage of Definition 2. 1 .  As it stands, 
however, there is an entirely analogous construction of a product of the 
m-plane bundle � and the n-plane bundle �' beginning with the same fiber 
bundle '1 over X x X', but using a different morphism of transformation Ol> groups. Let �m x �" -+ �m ® �" ( = �m") be the map 

<1>« x ' ,  . . .  , xm), ( i ,  . . .  , y"» = (x li ,  . . .  , x ly" ;  . . .  ; xmy ' ,  . . .  , xmy") 

and let GL(m, �) x GL(n, �) � GL(mn, �) be the group homomorphism with 

[(A , B) = 

(a �B . . .  a�B) a7B a;;:B 
for any invertible m x m matrix (a ' a l ) :1 :

m 
= A E GL(m, �) a7 . . .  a;;: 

and any invertible n x n matrix B E  GL(n, �). Clearly the new pair, r and 
<1>, also forms a morphism (r, <1» of transformation groups in the sense of 
Definition n .2.6. 

2.2 Definition : Let � be an rn-plane bundle over X E fIB, let �' be an n-plane 
bundle over X' E 31, and let '1 be the fiber bundle with fiber �m x �" and 
structure group GL(rn, �) x GL(n, �) over X x X' E fIB as in the earlier 
discussion. The product � x �' is the mn-plane bundle over X x X' induced 
from '1 by the preceding morphism (r, <1» of transformation groups, as in 
Definition 11 .2.8, where 

GL(rn, �) x GL(n, �) � GL(rnn, �) and �m x �" .!. �m ® �". 
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There is a noticeable asymmetry in Definition 2.2. What happens if one 
replaces the given morphism (r, II» of transformation groups by another 
obvious choice ([', II>')? Specifically, let IRm x IRn � IRm ® IRn ( = IRmn) be 
the map 

1I>'( (x l , . . .  , xm), (i ,  . . .  , yn) )  = (X l i, . . . , xmi ; . . . ; X l yn, . . .  , xmyn), 

and let GL(m, IR) x GL(n, IR) � GL(mn, IR) be the group homomorphism with (Ab: . . .  A

A

�
:

b

n

�

l) 
f'(A, B) = : 

Ab� 
for any invertible m x m matrix A E GL(m, IR) and any invertible n x n matrix 

Clearly the pair ([', 11>') forms a morphism of transformation groups in the 
sense of Definition 11.2.6. 

2.3 Proposition If one substitutes the preceding morph ism ([', 11>') of trans
formation groups for the morph ism (r, II» of transformation groups used in 
Definition 2.2, one obtains the same mn-plane bundle � x �' over X x X'. 

PROOF : Observe that there are factorizations f' = [" 0 [ and 11>' = 11>" c 11> 
for a morphism ([", 11>") induced by a change of basis in IRmn, where [" is an 
automorphism of GL(mn, IR) and 11>" itself belongs to GL(mn, IR). It follows 
from Proposition 11 .2.9 that ( [", 11>") leaves � x �' unchanged, as required. 

F or any topological space X the diagonal map X � X x X carries each 
x E X into (x, x) E X X X. In the following definition we implicitly use the 
following special case of Proposition 1. 1 .4 :  if X E !?4, then X x X E !?4. 

2.4 Definition : Let � and �' be vector bundles over the same base space 
X E !?4, and let � + �' and � x �' be their sum and product over X x X, as 
in Definitions 2. l and 2.2, respectively. The Whitney sum � Et> �' over X and 
the Whitney product � ® �' over X are the pull backs A!(� + n and A!(� x n 
along the diagonal map X � X x X. 

There are many equivalent ways of defining the Whitney sum � Et> �' and 
Whitney product � ® �' of an m-plane bundle � and an n-plane bundle �' 
over the same X E !?4. For example, if E � X and E' � X represent � and 
�', respectively, so that E x E' � X x X represents a fiber bundle '1 over 
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x X X E (JJ with fiber Rm X R" and structure group GL(m, !R)  X GL(n, !R), 
then there is a pull back , = [�hl along the diagonal map X � X x X, which 
can itself be used to define � EEl �' and � ® �' . Let (rtf>, et>tf» denote the mor
phism of transformation groups used in Definition 2. 1 ,  with GL(m, !R) x 

rffi $8 
GL(n, !R) ----+ GL((m + n, !R) and !Rm x !Rn ----+ !Rm EEl !Rn, and let (r®, et>®) 
denote the morphism of transformation groups used in Definition 2.2, with 

rffi $® 
(GL(m, !R) x GL(Il, !R) ----> GL(mll, !R) and W' x !Rn ----+ !Rm ® !Rn. 
2.5 Proposition : Given an m-plane bundle � and an n-plane bundle �' over 
X E dd, let , be the preceding bundle Ill/] over X, with jiber !Rm x !Rn and 
structure group GL(m, !R) x GL(n, !R). Then � EEl �' is the bundle induced from 
, by the morph ism (rtf>, et>tf» of transformation groups, and � ® �' is the bundle 
induced from , by the morph ism (r®, et>®) of transformation groups. 
PROOF : According to the discussion following Definition 1 1 .2.8, the con
struction of fiber bundles induced by a given morphism of transformation 
groups commutes with the construction of pull backs. 

2.6 Proposition : For any real vector bundles �, �', C over the same base 
space X E (JJ one has (� EB 0 EEl C = � EEl (�' EEl �"), � EEl �' = �' EEl �, 
(� ® �') ® �" = � ® K ® C), � ® �' = �' ® �, and (� EEl 0 ® �" = 

(� ® C) EB (�' ® C) over x. 

PROOF : These identities are al l immediate consequences of Proposi
tion 1 1 .2.9. We prove the commutative law � EEl �' = �' EEl �, for example. If 
� is an m-plane bundle and �' is an n-plane bundle, then � EEl �' is induced 
from the bundle ' of Proposition 2.5, with fiber !Rm x !Rn and structure group 
GL(m, !R) x GL(n, !R), by applying the morph ism (rtf>, et>tf» of transformation 
groups. Let !Rm + n .!. !Rm + n be the change of basis et>(x I , . . .  , Xm , Y I ,  . . .  , Yn) = 
( )' I " " ' )'II ' X I " " , xm ), inducing an inner automorphism GL(m + n, !R) 
� GL(m + n, !R), and observe that et> itself belongs to GL(m + n, !R). Then 
�' EEl � is induced from the same bundle , of Proposition 2.5 by applying the 
composition (r ( rtf>, et> (' et>tf» = (r, et» 0 (rtf>, et>tf» , and since (r, et» is a mor
phism of transformation groups satisfying the hypotheses of Proposition 
1 1 .2.9, one has � EB �' = �' EEl � as claimed. (Incidentally, the commutative law 
� ® �' = �' ® � for products was essentially proved by a similar method in 
Proposition 2.3, except for pulling back the resulting identity along the 
diagonal map X � X x X.) 

Proposition 2.6 asserts that the set of real vector bundles over a fixed 
X E fJB satisfies most of the axioms required of a commutative ring, with 
respect to the operations EEl and ®.  I n  fact, there are even neutral elements 
with respect to sums and products. 
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2.7 Definition : For any base space X E f!4 and any natural number m � 0, 
the trivial real m-plane bundle em over X is the vector bundle represented by 
the first projection X x IRm � X. 

Clearly the trivial O-plane bundle eO and the trivial line bundle e 1 satisfy 
� EEl eO = � and � (8) e 1 = � for any real vector bundle � whatsoever over the 
same base space. Consequently, except for additive in verses the real vector 
bundles over a given base space X E fJ4 form a commutative ring with unit, 
with respect to EEl and (8). There is an analogous situation for complex vector 
bundles, which will be further exploited in Volumes 2 and 3. 

3.  Riemannian Metrics 

An inner product on a real vector space IRm is any symmetric bilinear 
map IRm x IRm S IR such that < e, e> > ° for all nonzero vectors e E IRm. 
We shall establish the existence and demonstrate the usefulness of corre
sponding "inner products" for any vector bundle over any base space 
X E f14. 

For any real m-plane bundle � over X E fJ4 let ( be the bundle fl.!IJ over 
X with fiber IRm x IRm and structure group GL(m, IR) x GL(m, IR), as in 
Proposition 2.5, for �' = �. If { V i l i E  I }  is an open covering of X, with local 
trivializations E l  Vi � Vi X IRm of a coordinate bundle E � X repre
senting �, then { Vi x vj l (i, j) E I x I }  is a corresponding covering of X x X 
for the bundle IJ. Since the subfamily { Vi x vd i E I }  covers the image of 
the diagonal X � X x X, it follows that there are corresponding local 
trivializations E" I Vi � Vi x (IRm x IRm) ofa corresponding representation 
E" � X of the bundle (. Specifically, transition functions Vi (\ vj --"'l.. 
GL(m, IR) describing the coordinate bundle E � X provide transition func
tions Vi (\ Vj (obl.ob/) ) GL(m, IR) x GL(m, IR) describing the coordinate bun
dle E" � X. 

If Ex is the fiber over x E X of the coordinate bundle E � X, then Ex x Ex 
is the corresponding fiber E� of the coordinate bundle E" � X. Suppose 
that E" � IR is any map which restricts to an inner product Ex x Ex = 
E� � IR over each x E X. I f  E' � X is any other representation of �, 
and if E" � X is the corresponding representation of (, then the fiber 
E�' = E� x E� over each x E X is related to the fiber E� = Ex x Ex by an 
element in the image of the diagonal GL(m, IR) -+ GL(m, IR) x GL(m, IR). 
Hence if E'" !.. E" is an isomorphism of coordinate bundles representing (, 
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and if E'" � IR is the composItIon Em -.!. E" � IR, it follows that 
< , ) ' also restricts to an inner product E� x E� = E�' � IR over each 
x E X. Consequently the following definition is independent ofthe coordinate 
bundle E � X chosen to represent �. 

3.1 Definition : Let � be a real m-plane bundle over X E !!4, represented by 
a coordinate bundle E � X, and let E" � X represent the preceding 
bundle C with fiber IRm x IRm and structure group GL(m, IR) x GL(m, IR). A 
riemannian metric on � is any map E" � IR that restricts to an inner 
product Ex x Ex -+ IR for each x E X. 

3.2 Lemma : If X E !!4 is paracompact, then there is a riemannian metric on 
any real vector bundle � over X. 

7t n / I  
PROOF : Let E -+ X and E" --+ X represent � and ( as before, and suppose 
that { Vj l i E  I} is an open covering of X with local trivializations E l  Vj � 
Vj x IRm, Since X is paracompact, one may as well suppose that { Vj l i E  I }  
is locally finite, and that there i s  a partition of unity {hi 1 i E l} sub?,rdinate 
to { Vj l  i E I } .  For the corresponding local trivializations E" I Vi � Vi x 

(IRm x IRm), and for any fixed inner product IRm x IRm � IR, there is a map 
Vj x (IRm x IRm) � IR carrying each (x, (et o e2» E Vi x (IRm x IRm) into 
the real number hj(x)<e 1 , e2) j .  Since hi vanishes outside Vi ' each composition 
hj< , ) i J 'P;' extends to a map E" hi< . > i  0 '1';' I IR that vanishes outside V;,  
and one trivially verifies that the well-defined sum Li E I hi< , ) i 0 '1';' i s  a 
riemannian metric. 

3.3 Lemma : Let < , ) be a riemannian metric on an m-plane bundle � over 
any X E !!4, and let X' � X be any map in !!4 ;  then there is a riemannian metric 
< , )' on the pullback !'� over X' E !!4. 

7t 1t" 
PROOF : If E -+ X and E" --+ X represent the bundles � and (, as before, 
and if E' � X' and E'" � X' represent the pull backs !'� and 1'(, then 
there is a commutative diagram 

E'" • E" 

" j j " 
X' I • X, 

as in Lemma II . 1 .3, for which the composition E'" -.!. E" � IR IS the 
desired riemannian metric on !,�. 



1 1 4 Ill.  Vector Bundles 

3.4 Proposition : Given any real vector bundle � over any base space X E /JA, 
there is a riemannian metric on �. 
PROOF : By Definition 1 . 1 .2 the space X is homotopy equivalent to a 
metrizable space X' of finite type ; by Lemma l .8.2 (Stone [ 1 ] )  the metrizable 
space X' is paracompact. Thus there is a homotopy equivalence X !!. X' of 
X with a paracompact space X'. Let X' � X be a homotopy inverse of g. 
Since X' is paracompact, the pullback h!� over X' has a riemannian metric 
by Lemma 3.2, so that the pull back g!h!� has a riemannian metric by Lemma 
3.3 ; but g!h!� = � by Lemma 1 1.4.5. 

We now set the scene for a useful application of Proposition 3.4. Recall 
from Definition 1 .4 that if � and '1 are vector bundles over base spaces X and 
Y, represented by coordinate bundles E � X and E � Y, respectively, then 
a vector bundle morphism � --. '1 of rank p � 0 is represented by any com
mutative diagram 

E ----�g�-----., E 

" j j. 
x ----�g�-----., Y 

such that each restriction Ex � Eg(x) is linear of rank p. In particular, if ,, '  " El ----+ X and E --. X represent vector bundles � I and � over the same 
X E fJI, then a vector bundle morph ism � 1 --. � of rank p is represented by 
any commutative diagram 

such that each restriction E� � Ex is linear of rank p. 
3.5 Definition : Let � 1 --. � be a vector bundle morph ism 

such that each restriction E� � Ex is a monomorphism ; then � I is a 
sub bundle of �. 
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For example, let � I  and � 2  be real vector bundles of ranks p and q, 
respectively, over X E !!J, with Whitney sum � I  EB �2 of rank p + q. I f  1[ 1 

2 n1 2 1t 1 X x2 El ----+ X and E --+ X represent �I and � , then El x E2 j X X X 
represents a fiber bundle I] with pull back , = 1l!I] along the diagonal map Ll. X -+ X x X as before ; the fiber and structure group of , are IRP x IRq and 
GL(p, IR) x GL(q, IR). One obtains a coordinate bundle E � X representing 
�I EB �2 by applying (ri:tl, <I>i:tl) to " as in Proposition 2.5. The fibers Ex are 
direct sums E! EB E; for each x E X, and there is a well-defined map El � E 
that identifies E! as a direct summand of Ex for each x E X ; continuity of 
g is an easy exercise. Thus �I is a subbundle of � I  EB �2, as expected. 

3.6 Proposition : Let � I be a subbundle of a vector bundle � over a base space 
X E 86 ;  then there is another subbundle �2 of � such that � = � I  EB �2 .  

PROOF : Suppose that � I  is of rank p, represented by a coordinate bundle I • 
El � X, and that � is of rank rn, represented by a coordinate bundle 
E � X. By definition there is a commutative diagram 

such that each restriction E! � Ex is a monomorphism. Let E" � IR 
represent a riemannian metric on �, inducing an inner product Ex x Ex = 

E� � IR over each x E X. One identifies E! as a linear subspace of 
Ex via the monomorphism gx ' and there is an orthogonal complement E; 
of E! with respect to < , >x, of rank q = rn - p. The projection E � X re
stricts to a projection E2 � X of the union E2 = UXEX E; c E. We shall 
show that E2 � X is a coordinate bundle representing a vector bundle � 2 ;  
trivially one then has � I  E8 e = �. 

Let { Vi i  i E [ }  be any open covering of X for which there are local 
trivializations E I Vi � Vi X IRm, so that there are corresponding local 
trivializations E" I Vi � Vi x (IRm x IRm). The riemannian metric E" � 
IR induces a riemannian metric Vi x (IRm x IRm) � IR for each i E [, 
which can be regarded as a nonsingular symmetric matrix whose entries are 
real-valued continuous functions on Vi ' By the classical Gram-Schmidt 
process one can choose an orthonormal basis of IRm, for each i E [, such 
that the first p basis elements span the image under 'Pi of El l Vi e E l Vi ' 
scalars being real-valued continuous functions on Vi; the remaining q basis 
elements, for each i E [, span the image under 'Pi of E2 1 Vi c E l  Vi ' 
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Suppose that Vi (\ Vj is nonempty and that the preceding bases are 
chosen for each of the indices i E I and j E I. The transition functions 
Vi (\ vj .!i... GL(m, IR) for the coordinate bundle E � X can then be re
garded as a family of linear transformations IRP EB IRq t/li(x) I IRP EB IRq that 
depend continuously on x E Vi (\ Vj and preserve the summands [RP and IRq. 
The restrictions IRq t/li(X) I IRq then also depend continuously on x E Vi (\ Vj' 
and they provide the transition functions Vi (\ Vj � GL(q, IR) of a coor
dinate bundle representing a q-plane bundle �2. Since the transition functions 
I/I{.2 arise from local trivializations E2 1 V i � Vi X IRq of the projection 
E2 � X, it follows that E2 � X is itself a coordinate bundle representing 
a q-plane bundle �2 as required. 

Proposition 3.6 is one of several classical applications of riemannian 
metrics. One can also use riemannian metrics to show, for example, that the 
structure group GL(m, IR) of any real m-plane bundle over any X E !!l can be 
reduced to the orthogonal subgroup O(m) c GL(m, IR) ; however, since this 
is a special case of the linear reduction theorem (Theorem 1 1.6. 1 3), the 
details will be left as an exercise. (See Remark 1 3. 1 7.) 

4. Sections of Vector Bundles 

For any base space X E !!l let Co(X) be the ring of real-valued continuous 
functions X -+ IR. In this section we develop a one-to-one correspondence 
between real vector bundles over X and (isomorphism classes of) certain 
CO(X)-modules. 

We begin with a special case of Definition 1 1.5.2. 

4.1 Definition : Let E � X represent a vector bundle over X E !!l; a section 
of E � X is any (continuous) map X !!.. E such that X !!.. E � X is the identity 
on X. 

According to Proposition 1 .2, if E � X represents a vector bundle, then 
the fiber Ex over each x E X is a vector space in a natural way. We use this 
structure to turn the set of sections X � E of such a bundle into a CO(X)
module. 

4.2 Lemma : If E � X represents a vector bundle, then for any two sections 
X � E and X � E, andfor any f E CO(X), there are unique sections X � E 
and X � E such that (0' + O" )(X) = O'(X) + O" (X) and (jir)(x) = f(x)O'(x) in Ex 
for each x E X. 
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PROOF : Although uniqueness is automatic, one must verify that a + a' and 
fa are continuous. I f  E � X represents a real m-plane bundle, for example, 
there is an open covering { Vi l i E  I }  of X with local trivializations E I Vi  
� Vi X [Rm, and it suffices to verify for the restrictions a l V ; ,  a' l Vi ' and 
fl Vi that 

and 

V 'I' ; '· (a IU ; + a' I U ; l  V fIllm i � i X In. 

V 'I'; o (  f I U , ) ( a I U;) V fIllm i ) i X lm 
are continuous for each i E l. However, 'P i u a I Vi carries x E Vi into 
(x, (a , (x), . , . ,  am(x) ) )  E Vi X [Rm for a " , . .  , am E CO(Vi), and 'Pi 0 a' l Vi carries 
X E Vi into (x, (a', (x), ' . .  , a�(x) ) E Vi X [Rm for a'" . . .  , a� E COt Vi), and sums 
a 1 + a'l , . .  , , am + a� and products fa 1, . . . , fam of continuous functions 
Vi -+ [R are continuous. 

4.3 Proposition : If E � X represents a vector bundle, then the set ff of 
sections X � E forms a CO(X)-module with respect to the addition and scalar 
multiplication of Lemma 4.2. 

PROOF : Let the zero-section X � E carry each x E X into 0 E Ex , and for 
any section X � E let X � E carry each x E X into - a(x) E Ex . One 
verifies as in Lemma 4.2 that 0 and - a are continuous, and that a + ( - a) = 

O. The remaining module axioms are trivially satisfied. 

4.4 Definition : I f  E � X represents a vector bundle over X, then the CO(X)
module ff of Proposition 4.3 is the corresponding module of sections. 

Clearly if E � X and E' � X represent the same vector bundle � over 
X E :!J, then the isomorphism 

of coordinate bundles induces a CO(X)-module isomorphism ff -+ ff' of the 
corresponding modules of sections. Hence a vector bundle � over X E f!4 
induces an isomorphism class of CO(X)-modules. By abuse of language one 
frequently picks a particular coordinate bundle E -.':. X representing � and 
calls the corresponding CO(X)-module ff the module of sections of �. 
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One feature of Lemma 4.2 and Proposition 4.3 deserves further comment. 
I fCO(X ; Vj) denotes the ring of restrictions to Vj C X of continuous functions 
X ---+ R, then the local trivialization E l  Vj � Vj x [Rm turns the CO(X)
module !IF into the free CO(X; Vj)-module (CO(X ; Vj) )m of rank m. Further
more, there is another way of describing both CO(X ;  Vj) and (CO(X ;  Vj) )m. 
Let I(Vj) C CO(X) be the ideal of all continuous functions X .!.. [R with 
f(x) = o for x E Vj ;  then CO(X ; VJ is isomorphic to the quotient CO(X)/I(Vj), 
and (CO(X;  Vj) )m is isomorphic to the quotient of the CO(X)-module (CO(x) )m 
by the submodule I(Vj)(cO(x) )m. More generally, a CO(X)-module !IF is 
locally free of rank m if there is an open covering { Vj l i E  I }  of X such that 
each CO(X)/I(Vj)-module !IF/I(VJ!IF is free of rank m. Thus if E � X repre
sents an rn-plane bundle, then the corresponding CO(X)-module of sections 
is locally free of rank m. 

4.5 Proposition : For any X E f?J let !IF be a locally free Co( X)-module of 
rank m. Then !IF is the module of sections of a coordinate bundle E � X 
representing a real rn-plane bundle � over X ;  furthermore, � is unique. 
PROOF : Let { Vj l i E  I }  be an open covering of X such that each !IF / I( V j)!IF 
is free of rank rn, and fix a basis for each !IF / I( Vj)!IF; the choices of bases 
induce a CO(X ; VJmodule isomorphism !IF /I( Vj)!IF ---+ (CO(X;  Vj) )m for each 
i E I. If Vj (\ Vj is nonempty, then !IF/I(Vj (\ Vj)!IF is also free of rank m, 
and it inherits a basis from !IF / I( V J!IF and a basis from !IF / I( V).'#' ;hence there 
is an invertible m x m matrix of elements in CO(X ; V j (\ V) relating the two 
bases. Such a matrix is precisely a continuous map Vj (\ Vj � GL(m, IR), 
and since the basis of each !IF/I(Vj)!IF is fixed, the conditions t/I'(x)t/I{(x) = 
t/I}(x) of Proposition 1 1.2.5 are trivially satisfied ; that is, the maps t/I{ are the 
transition functions of a coordinate bundle E � X representing a real m
plane bundle � over X. Uniqueness of � is clear. 

4.6 Theorem : For any X E f!J and any m � 0 there is a one-to-one correspon
dence between the real rn-plane bundles � over X and the isomorphism classes 
of locally free CO(X)-modules !IF of rank m. 
PROOF : Since any vector bundle is itself defined as an isomorphism class of 
coordinate bundles, this is an immediate consequence of Propositions 4.3 
and 4.5. 

If !IF is a module of sections of a real m-plane bundle over X E .rJB, then the 
dual CO(X)-module !IF* = Homco(X)(!IF, Co(X) ) is itself locally free of rank m. 
In light of Proposition 4.5 it is reasonable to identify the rn-plane bundle 
that has !IF* as its module of sections. 
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4.7 Proposition : For any X E !!4  let .'#' he a locally free CO(X)-module of 
rank m, and let .#'* he its dual Homcu(x)('�' CO(X» . Then §i" and §i"* are 
modules of sections of coordinate bundles representing the same real m-plane 
bundle over X. 
PROOF : By Proposition 4.5, §i" is the CO(X)-module of a coordinate bundle 
E � X representing a real m-plane bundle � over X, and by Proposition 3 .4 
there is a riemannian metric on �. As in Definition 3 . 1  the riemannian metric 
is defined in terms of inner products Ex x Ex � IR that depend contin
uously on x E X, so that any two sections (J E §i" and r E  §i" determine an 
element «(J, r) E CO(X) with value «(J(x), r(x» x on x E X. Consequently there 
is a nondegenerate bilinear map §i" x §i" � CO(X) over CO(X), which 
induces an isomorphism §i" -+ §i"* carrying any r E  §i" into the element 
§i" � CO(X) of Homco(x)(§i", CO(X» . Thus §i" and §i"* are isomorphic 
CO(X)-modules, and the result follows from Theorem 4.6. 

A nowhere-vanishing section of a vector bundle � over X E f!4 is any section 
X � E of a coordinate bundle E � X representing � such that (J(x) # 0 E Ex 
for each x E X. 

4.8 Proposition : 1/ all m-plane bundle � has a nowhere-vanishing section, then 
� = 1; 1 EB ,/ jin' the trivial line hundle /-: 1 and some (m - I )-plane bundle 1]. 

PROOF : Let E � X represent �, let X � E be the nowhere-vanishing section, 
let E' c E be the set of all points of the form mIx) for any real number I' E R 
and let E' � X be the restriction to E' of E � X. Since every (J(x) is nonzero, 
it follows that every element of E' is uniquely of the form mIx) for some real 
number ,. E R so that there is a coordinate bundle isomorphism 

E' . X x 1R 1 

� /  X. 
Thus the inclusion E' -+ E identifies /; 1 as a subbundle of �, and Proposition 
3 .6 implies the desired result. 

5 .  Smooth Vector Bundles 

For any smooth manifold X the algebra C' (X) of smooth functions X -+ IR 
can be substituted in the preceding discussion for the algebra CO(X) of 
continuous functions X -+ R locally free C X (X)-modules being substituted 
for locally free CO(X)-modules. A smooth analog of Theorem 4.6 then relates 
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isomorphism classes of locally free C<Xo(X)-modules to corresponding smooth 
vector bundles. Some smooth vector bundles of primary interest in differential 
topology are defined via this relation in the next section. 

We begin with a discussion which leads directly to the definition of 
smooth vector bundles. 

The underlying topological space of the general linear group GL(m, !R) 
of invertible m x m matrices is an open subset of !Rm2, in the relative topology, 
so that GL(m, !R) is itself a smooth manifold of dimension m2 : it can be covered 
by an atlas consisting of a single coordinate neighborhood. Furthermore, 
the group product GL(m, !R) x GL(m, !R) -> GL(m, !R) and group inverse 
GL(m, !R) � GL(m, !R) are trivially smooth maps, so that GL(m, !R) is a 
Lie group. Clearly the usual action GL(m, !R) x !Rm -> !Rn! of GL(m, !R) on the 
vector space !Rn! is also smooth. 

Recall that coordinate bundles E ..:r.  X were described in general via 
local trivializations in Definition Il .2. ! .  The local trivializations were homeo
morph isms, transition functions were required to be continuous maps of 
open subsets of X into the given structure group G, and G was required to 
act continuously on the given fiber. According to the preceding paragraph, 
if X is a smooth manifold one can reasonably specialize Definition II .2 .! 
to coordinate bundles E ..:r.  X with fiber !Rn! and structure group GL(m, !R), 
but with the additional requirements that local trivializations be diffeomor
phisms and that transition functions be smooth maps of open subsets of X 
into GL(m, !R). 

Specifically, suppose that E � X is a smooth map of smooth manifolds, 
and that there is an open covering { Ud i E I }  of X with local trivializations 
'l'i that are diffeomorphisms such that each 

E I V ·  '1', , V·  x !Rn! 

� }  Ui 

commutes, where E l  Vi = n - 1 ( VJ, as always. If the intersection Ui (\ Vj 
of two sets in the covering is nonvoid, then there is a composed diffeomor
phism 'I' j 0 'l'i- 1 such that 

( u; n� " " "7') d �' 

Vi (\ Vj 
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commutes. One necessarily has 'Pj 'Pi- 1 (X,f) = (x, t{I{(x)f) for each (x,f )  E 

( Vi n V) x [Rm, where [Rill � [Rm a diffeomorphism for each x E Vi n Vj. 

5.1 Definition : I f  each of the preceding t{lfs is a smooth map from Vi n Vj 
to the group GL(m, [R), acting in the usual way on [Rm, then E � X is a smooth 
coordillate bundle over the smooth manifold X, with fiber [Rm and structure 
group GL(m, [R). 

The terminology of coordinate bundles in the sense of Definition 1 1 .2. 1 
applies equally well to the specialized smooth coordinate bundles of 
Definition 5. 1 .  Specifically, the diffeomorphisms E I Ui � Vi X [Rm are local 
triviali:ations and the smooth maps Vi n V j � GL(m, [R) are transition 
functions, which automatically satisfy the conditions t{I�(x)t{I{(x) = t{I�(x) of 
Proposition 1 1 .2.5. 

Two smooth coordinate bundles E � X and E' � X with fiber [Rm and 
structure group GL(m, [R) over the same smooth manifold X are isomorphic 
if there is a diffeomorphism f such that the diagram 

commutes and induces a vector space isomorphism Ex � E� for each 
x E X. Isomorphism of such smooth coordinate bundles is trivially an equiv
alence relation. 

5.2 Definition : A smooth real vector hundle of rank m over a smooth mani
fold X is any isomorphism class of smooth coordinate bundles E � X with 
fiber [Rm and structure group GL(m, [R), for the usual action GL(m, [R) x 
[Rm -t [Rill . 

Since smooth maps are also continuous, it follows that smooth vector 
bundles can also be considered as vector bundles in the sense of Definition 1 . 1 .  
In  fact, we shall learn in §9 that any vector bundle whatsoever over a smooth 
manifold can be represented by a smooth coordinate bundle, a result which 
suggests that Definition 5.2 is superfluous. However, if one is given a smooth 
vector bundle, one can study its smooth properties as such. 

5.3 Proposition : Let E' � X' be a smooth coordinate hundle representing a 
smooth m-plane bundle �' over X'. Then the pullback E � X of E' � X' along 
any smooth map X .!!.. X' is also a smooth coordinate bundle ; a fortiori, the 
pullback g!�' is a smooth m-plane bundle over X. 
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PROOF : Let E' � X' be defined as a coordinate bundle with respect to an 
open covering { V; l i E  I }  of X ' ;  by Definition 5 . 1  it is smooth if and only if 
the transition functions V; n Vj � GL(m, IR) are smooth. If one sets 
Vi = 9 - I (V;) for each i E l, then according to Proposition 11 .2.4 E � X 
is a coordinate bundle with respect to the open covering { Vi i  i E l } of X, 
its transition functions Vi n Vj !i.. GL(m, IR) being the compositions 
t/J;j c g l  Vi n Vj . Since 9 is smooth, the latter compositions are smooth, so 
that E � X is smooth by Definition 5 . 1 . 

5.4 Definition : Let E � X be a smooth coordinate bundle, representing a 
smooth vector bundle over a smooth manifold X. A smooth section of 
E � X is any smooth map X � E such that X � E � X is the identity on X. 

The set g; of smooth sections X � E of any smooth coordinate bundle 
E � X representing a vector bundle forms a CL(X)-module, as in Proposi
tion 4.3. Specifically, for any er E g;, er' E g;, andf E CCG(X) one defines er + er' 
and fer by setting (er + er')(x) = er(x) + er'(x) E Ex and (jir)(x) = f(x)er(x) E Ex 
for each x E X ; the verifications that er + er' E g; and fir E g; are analogous 
to corresponding verifications in Lemma 4.2, with C<L(X) instead of Co(X). 

5.5 Definition : If E � X represents a smooth vector bundle over a smooth 
manifold X, then the preceding CX;(X)-module g; is the corresponding 
module of smooth sections of E � X. 

For any smooth vector bundle � over a smooth manifold X one frequently 
chooses a particular smooth coordinate bundle E � X to represent �, calling 
the corresponding C' (X)-module g; the module of smooth sections of �, by 
abuse of language. 

A e'C(X)-module g; is locally free of rank m � 0 if there is an open 
covering { Vi i i  E I }  of X such that each COO(X)jl(V;l-module g;jl(V;)g; is 
free of rank m, where l( Vi) c eX'(X) is the ideal of those functions that vanish 
on Vi . 

5.6 Proposition : For any smooth manifold X and any m � 0 there is a 
one-to-one correspondence between the smooth real vector bundles � of rank m 
over X and the isomorphism classes of locally free eX (X)-modules g; of 
rank m. 
PROOF : This is the smooth version of Theorem 4.6, which one proves 
merely by substituting C�'(X) for Co(X) throughout the proofs of Proposi
tions 4.3 and 4.5. 
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We shall later illustrate Proposition 5.6 with specific examples. 
An alternative characterization of riemannian metrics was used, without 

identifying it as such, in the proof of Proposition 4.7. We shall soon prove a 
smooth analog of Proposition 4.7, and for variety we begin with the smooth 
analog of the alternative characterization of riemannian metrics. 

5.7 Definition : For any smooth manifold X, and for any locally free C'"(X)
module .'F of fixed rank m � 0, a smooth riemannian metric is a symmetric 
bilinear map Si x Si � C"'(X) such that for each a E Si and each x E X 
one has < a, a)(x) > 0 whenever a(x) =1= O. 

The proof of the following existence theorem is essentially a smooth 
version of the proof of Lemma 3.2. 

5.8 Proposition : For any smooth manifold X, and for any locally free C"'(X)
module y; of fixed rank m � 0, there is at least one smooth riemannian metric 
y; x y; � C<X (X). 

PROOF : Let { Vi i i  E I} be an open covering of X such that each COO(X)/I(Vi)
module y; / I( V;)Si is free, where I( V;) c C"" (X) is the ideal of smooth func
tions vanishing on Vi '  Since X is paracompact, by Lemma 1 .6. 1 ,  one may as 
well suppose that { Vi l i E  I }  is locally finite ; by Lemma 1 .6.2 there is a smooth 
partition of unity { hd i E I} subordinate to { Vi l i E  I } . For each i E I the 
CX (X)/I(Vi)-module Si/I(Vi)Si is isomorphic to (C"(X)/I(vj» m, and one 
constructs a symmetric bilinear map 

Si/I(Vi)Si x Si/I(V;)Si � COO(X)/I(Vj) 

via the usual m x m matrix with l 's down the diagonal and O's elsewhere. 
Since hi vanishes outside Vi ' each < , )i induces a symmetric bilinear map 
Si x .'F h ;( . >; • C'X (X), for which h;(,x) <a, a) (x) > 0 whenever both hj(x) > 0 
and a(x) =1= O. Since {h i l i E  I }  is a partition of unity, the sum LiE I  hi< , )i is 
then a well-defined map Si x .'F � C.« (X) of the desired type. 

5.9 Proposition : For any smooth manifold X let Si be a locally free eX (X)
module of .fixed rank m � 0, and let Si* be the dual, Homc"'(x)(Si, C"'(X» . 
Then .'F and y;* are modules of smooth sections of smooth coordinate bundles 
representing the same smooth m-plane bundle over X. 

PROOF: This is the smooth version of Proposition 4.7, and its proof is 
identical to that of Proposition 4.7, except that one uses the smooth rie
mannian metric Y; x .'F � CX:(X) of Proposition 5.8 in place of a merely 
continuous riemannian metric. 
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Let E � X be any smooth coordinate bundle that represents a vector 
bundle over a smooth manifold X, and let X � E be a continuous section 
of E � X. Can one approximate a in some sense by a smooth section X � E 
of E � X?  

I n  order to pose a more precise question let ff x ff � C'"(X) 
(c CO(X) ) be a riemannian metric for the COO(X)-module .� of sections of 
E � X, as in Proposition 5.8, and observe that ff can also be regarded in 
the obvious way as a CO(X)-module. The riemannian metric induces a 
euclidean norm ff � CO(X), which carries each section a E ff into the 
positive square root .J (a, a) E CO(X), assigning the classical euclidean 
norm I la(x) l lx = (a(x), a(x) x to the vector a(x) E Ex for each x E X. Clearly 
I la l l  = 0 E CO(X) if and only if a E ff is the zero-section ; furthermore the 
Schwarz inequality I (a, r) 1 � I lal l l lr l l  and resulting triangle inequality 
I la + rl l  � I la l l  + I lr l l  are satisfied in CO(X) for any sections a, r E ff because 
they are satisfied in each Ex . We shall show for any continuous section 
X � E and any strictly positive function I> E CO(X) that there is a smooth sec
tion X � E such that Ilr - al l < 1> ;  that is, we shall show that I lr(x) - a(x) l lx < 
t:(x) for each x E X. 

5.10 Lemma : Let a x IRm � a be the product m-plane bundle over a 
smooth compact manifold a, let ff be the CO(a)-module of continuous sections 
- - 1 1 1 1  0 -V --+ V x IRm, and let ff ----+ C (V )  be any euclidean norm. For any strictly 

positive function I> E CO( a) and any continuous section a � a x IRm there is 
then a smooth section a � a x IRm such that I lr - al l < 1>.  

PROOF : The given section a can be regarded as an m-tuple (a I , . . .  , am) of 
elements ai E CoCa ), and the euclidean norm arises from a riemannian 
metric which can be regarded as a corresponding m x m symmetric matrix 
(9ij) of functions Yu E Co( a) such that each (Yij(x) ) is positive-definite. In 
particular gii > O in CO(a), and one can set Mi = maxxE o gjj(x) ; the maximum 
value exists because a is compact. Similarly one sets 1>0 = minx E 0 I>(x) > O. 
The Stone-Weierstrass theorem (Theorem 1.6. 1 2) applies to the algebra 
A(a) = C"(a), so that for each ai E CoCa ) there is a ri E caeCa)  such that 
Iri(x) - ai(x) 1 < Bo/mMi for all x E a. Let a � a x Rm be the section corre
sponding to the m-tuple (r l ,  . . . , ri - I , ai, . . .  , am), for i = 1 ,  . . . , m ;  in par
ticular a = ao and am is a smooth section r, so that it remains only to show 
that I lr - all < 1>. However, 
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so that 

I lai - ai - . I I  = ylYu lTi - ai l < f.o/m ;  
the triangle inequality then gives 

l iT - a l l  = I lam - 0'01 1 ;:::;; I la .  - 0'0 1 1  + . . .  + I lam - am- dl < Bo ;:::;; B, 
as required. 
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5.1 1 Proposition : Let E � X be any smooth coordinate bundle representing 
an m-plane bundle over a smooth manifold X, let :F be the CO(X)-module of 
(continuous) sections X � E, and let :F � CO(X) be any euclidean norm. 
For any strictly positive function B E CO(X) and any continuous section X � E 
there is then a smooth section X � E such that l iT - al l  < B. 
PROOF : For any covering of X by open sets V such that each restriction 
E I V is trivial, Lemma 1.6. 1 provides a countable locally finite refinement 
[ V;, I  n E  N }  by open sets V� with compact closures O� , and it follows that 
there is a smooth local trivialization E l  V;, � V� x [Rm for each n E  N. By 
Proposition 1.6. 1 ° one can shrink { V;, I n E N} to a new open covering 
{ V n I n E N } with compact closures On C V�,  and by Corollary l.6. 1 1 there 
is a smooth partition of unity {h" l n  E N} subordinate to { V" l n  E N } .  For 
each n E N the local trivialization '11" and the given euclidean norm 1 1 1 1 induce 

I - 1 1 1 1  ° - ° - I -a euclidean norm :F V" � C (V") on the C (V")-module :F V" of con-
tinuous sections 011 '1'" <1�u" ) 0" x [Rm, with 1 1'11" 0 0' 1  O" l ln(x) = 1 10' 1 O" I I (x) 
for each restriction 0" � El 0" and each x E O" . Since 0" is compact, 
Lemma 5 . 10 provides a smooth section 0" � E l  0" such that I IT" - a l O" I I (x) < 
B(X), for each n E N and each x E On . The partition of unity {h" I n E  N }  
consists of smooth functions X � [0, 1 ]  such that h" vanishes outside of V" 
for each n E  N, so that each smooth section T" can be extended to a smooth 
section X � E that vanishes outside V" . Since { V" I n E N } is locally 
finite, the sum LII E N h"T" is a well-defined smooth section X � E of E � X. 
Finally, for any x E X let N x be the finite subset of  those indices n E N with 
x E VII ' and observe that since L"E Nx h"(x) = 1, one has 

= L h"(x) I IT" - a 1 0 1I 1 1 (x) < L h"(x)B(x) = B(X) ; n E �x n E Nx 
that is, l iT - al l < E for a smooth section X � E, as claimed. 
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As in Proposition 4.8, a section X � E of a coordinate bundle E � X 
representing a vector bundle over a base space X E fJI is nowhere-vanishing 
whenever O"(x) "# 0 E Ex for each x E X. 

5.12 Proposition : Let E � X be any smooth coordinate bundle representing 
a vector bundle over a smooth manifold X. Then if there is a continuous 
nowhere-vanishing section X � E there is also a smooth nowhere-vanishing 
section X � E. 

PROOF : Let !F � Co(X) be a euclidean norm as before. Since X � E is 
nowhere-vanishing, one has 1 1001 1 (x) > 0 for every x E X, so that there is a 
strictly positive function E = 1 1 10"1 1  E Co(X). By Proposition 5 . 1 1 there is then 
a smooth section X � E with I lr - 0"1 1  < E = 1 1 10" 1 1 , for which the triangle 
inequality gives I lr l l  � 1 10"1 1 - I lr - 0"1 1  > 1 1 10" 1 1 > 0, as required. 

6.  Vector Fields and Tangent Bundles 

There is an obvious contravariant functor from the category of smooth 
manifolds to the category of real-valued function algebras, which we have 
already used : to any smooth manifold X one assigns the algebra C":'(X) of 
smooth real-valued functions X � IR, and to any smooth map Y � X one 
assigns the algebra homomorphism C': (X) � COO(Y )  carrying X � IR into 
the composition Y � X � IR. There is also a contravariant functor that 
assigns a specific C<l(X)-module cff(X) to each smooth manifold X, and that 
assigns a module homomorphism cff(X) � cff( Y) over the ring homomorphism 
C"'(X) � C'X)(y)  to each smooth map Y � X. We shall show that if X is 
m-dimensional, then cff(X) is a locally free C""(X)-module of rank m, so that 
Proposition 5.6 provides a canonical smooth m-plane bundle r(X) over X, 
assigned to X itself. The properties of r(X) characterize much of the differ
ential topology of X itself. 

The next few paragraphs are devoted to the construction of the dual 
cff*(X) of cff(X), which will lead to cff(X) itself, and to some elementary prop
erties of the resulting bundle r(X) over X. 

6.1 Definition : F or any smooth manifold X, a smooth vector field 011 X is 
any real linear map CX'(X) .!:. COO(X) such that LUg) = (Lf)g + I(Lg) for any 
l E  C"(X) and 9 E C'x,(X). 

For example, if X is the smooth manifold IRm, and if X l , . . .  , xm E C''' (lRm) 
are the projections IRm � IR that provide the usual coordinate functions on 
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[Rm, then the partial derivations (!j{ixl , , , . , u/oxm are vector fields on [Rm, 
Similarly, if X is the smooth submanifold ([Rm) +  c [Rm with nonnegative mth 
coordinate, then D/Dx l " " , (!j(lXm are vector fields on ([Rm) + ,  

I f  L and M are vector fields on a given smooth manifold X ,  and if 
9 E CX (X), then there are vector fields L + M and gL on X that carry any 
f E C (X) into (Lf) + (Mf) E CX (X) and g(Lf) E CL(X), respectively, It is 
clear that the set of all vector fields on X forms a C' (X)-module with respect 
respect to these definitions, For example, if g l " , " gm E coc([Rm), then 
g l (!jDX i + ' "  + gm D/uxm is a vector field on �m, 

6.2 Definition : For any smooth manifold X, the CX (X)-module C*(X) of 
smooth vector fields on X consists of smooth vector fields L,  with respect to 
the preceding addition and scalar multiplication. 

The goal of the next few lemmas is to show that if X is an m-dimensional 
smooth manifold, then C*(X) is a locally free CT(X)-module of rank m. 
6.3 Lemma : Vector fields annihilate constant .functions. 
PROOF : Let 1 E C '  (X) be the constant function on X with value 1 E R  
For any vector field C" (X) !:. C" (X) on X one then has L( 1 )  = L(1 2) = 2L( 1 ) ;  
hence L( I )  = 0, so that L(d )  = cL( 1 )  = 0 for any C E [R. 
6.4 Lemma : For any smooth manijold X and any open subset V c X, let 
f E C '  (X) and 9 E C (X) have common restrictions f l V = 9 I V E CX ( V ). 
Then for any vector .field CX (X) !:. CX (X) 011 X the images Lf E C'(X) and 
Lg E C' (X) have commoll restrictions If I V = Lg l V E C"(V ). 
PROOF : For any x E V Lemma 1 .6.2 provides an h E  C" (X) that vanishes 
outside V and satisfies h(x) = 1 .  Then er - g)h = 0, so that (Lf - Lg)h + 

U - g)Lh = O. Evaluation at x yields (Lf)(x) - (Lg)(x) = 0, and since x is an 
arbitrary point of V, one has Lf l V = Lg l V. 

Lemma 6.4 asserts that any vector field L is local in the sense that L/ I V 
depends only on / I V ;  we shall rephrase the result with this in mind. 

If V is any open set of a smooth manifold X, and if I( V) c COC(X) is the 
ideal of smooth functions X ..... [R that vanish on V, then the inclusion V c X 
induces a homomorphism C"'(X) ..... C'(V )  whose image is the quotient 
algebra C' (X)/I( V ). One defines smooth vector fields CX (X)/I(V ) � 
C'(X)//( V) by the obvious requirement that M( (f l V)(g l V»  = 

MU I V)(g l V) + (/ 1  V)M(g l V) for any / 1  V and g l V in C"'(X)/I(V ). 

6.5 Lemma : Let V be any open set of a smooth manifold X, and let C' (X) ..... 
CX (X)//( U )  be the restriction map carrying any f E CX (X) into f i V E 
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CX1(X)jI(U). Then any vector field CX' (X) � COC (X ) on X induces a unique 
vector field LI V such that 

C"(X) __ --=L=--_---+. CL (X) 

I j 
CC' (X)jI (U) __ I--,--" l v_--+. CX (X)jI (U)  

commutes. 
PROOF: This is just a rephrasing of Lemma 6.4, as promised. 

6.6 Lemma : Let xl , . . .  , xm E C"' « lRm) + ) be the usual coordinate functions 
on the submanifold (IRm) + C IRm with nonnegative mth coordinate. Then for any 
vector field C'J« lRm) + ) � C'X1 ( (lRm) + ) one has L = (Lx l )ojox l + . . .  + 
(Lxm) iJjaxm for the functions LXi,  . . .  , Lxm E COO( (IRm) + ). 

PROOF : The line segment joining any two points Xo E (IRm)+ and X I E (IRm) + 
lies entirely in (IRm) + , so that for any f E C""( (IRm) + ) and each index i = 

1 ,  . . . , m  one can define a function J; E CCIJ«lRm)+ x (IRm)+ )  by setting 

Then 

and 

f,1 of 
J;(xo , x d  = ;-. (Xo + t(X I - xo) ) dt. r = O  uxl 

, f l �{ f(xd - !(xo) = Jr = o at (Xo + t(X I - xo) ) dt 

m 
= L (Xii - x�)./;(xo , X d, 

i = I 
for Xo = (xb , · ·  . , xo) and X I = (x l .  . . .  , xT). For fixed Xo E (IRm) + the latter 
identity becomes 

m f - f(xo) = L (Xi - X�).t;(Xo , . ) 
i = I 

in C<Xo(lRmt ), to which one applies L and Lemma 6.3 to conclude that 

m m 
(Lf)(xd = ,L (Lxi )(xd./;(xo , xd + ,L (Xii - X�)L./;(xo , xd 1 =  I 1 =  I 
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for any X l  E (IRm) + . In particular, if Xo is any point of (IRm) + and X I = xo ,  then 

m . m . of (Lf)(xo) = 
i
�

l 
(Lx' )(xo)j;(xo , xo) = 

i
�

1 
(Lx' )(xo) oxi (Xo), 

so that 11= Li'= I (Lxi)(oI/iJxi) for any f E coo« lRm) + ) ; that IS, L = 
Li'= I (Lxi ) (£7/iJxi ) as claimed. 

If V and V' are open sets of a smooth manifold X such that the closure 
o of V satisfies 0 c V', then every restriction fl V E COC'( V ) of an element 
f E CT(X) is trivially the restriction g 1 V E CL( V) of the element g = 
f 1 V' E Co: ( V'). The following lemma provides a useful converse assertion. 

6.7 Lemma : Let V and V' be open sets of a smooth manifold X such that 
o c V' ; then the inclusion V' c X induces an isomorphism C"'(X)/I(V ) ----> 
CX (V ')/I(V )  of the restrictions to V of the algebras of smooth functions on 
X and V'. 

PROOF : The induced homomorphism CX' (X)/I(V )  -+ C�(V')/I(V )  is triv
ially injective, and it remains to show that the restriction g 1 V E Coo( V )  of 
any g E C" ( V') is also the restriction f 1 V E C"" ( V) of some f E COCo(X). Since 
X is paracompact, by Lemma 1 .6. 1 ,  it is also normal. (See page 1 63 of 
Dugundji [2], for example.) Hence there is an open set V" c X such that 
o c V" and 0" c V'. By Lemma 1 .6.2 there is a smooth partition of unity 
subordinate to the covering of X by the two open sets V" and X\ 0 ;  in 
particular, there is an h E  COO(X) such that h i  V = 1 and h(X\ 0") = O. For 
any g E CX( V') the product (h 1 V')g E Coo( V') vanishes on the open set V'\ 0", 
and since 0" c V', the function (h 1 V')g is the restriction f l  V' of a function 
f E C' (X) that vanishes on X\O". Since h i  V = 1, it follows that fl V = g 1 V 
as required. 

6.8 Proposition : For any smooth m-dimensional manifold X the Coo(X)_ 
module @"*(X) of smooth vector fields on X is locally free of rank m. 
PROOF : By Proposition 1 .6. 10  there is a countable open covering { V� I n E  N }  
of X and an atlas {$" 1 n E N },  which consists o f  homeomorphisms 
V;, � V� onto open sets $,,( V;,) = V;, c (IRm) + ; the homeomorphisms $" 
are in fact diffeomorphisms, by definition of the smooth structure of X. By 
Proposition 1 .6. 1 0 one can also shrink { V;, I n E N } to a new open covering 
[ V" 1 n E N } with 0" c V� for each n E N, and the diffeomorphisms $n 
provide new open subsets $n( Un) = Vn c (IRm) +  with v" c V� for each n E  N. 

We shall show for each n E  N that the CX(X)/I(Vn)-module C*(X)/ 
I(Vn)C*(X) is free of rank m. Since COCo(X)/I(Vn) -+ COO(V�)/I(V,,) is an 
isomorphism, by Lemma 6.7, and since vector fields are local, by Lemma 6.5, 
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it suffices to show for each n E  N that the CX ( U�)jI(V,.)-module t1 *( V�)j 
l(Vn)g*(V�) is free of rank m. Since the diffeomorphisms V� � V;, c (IRm) + 
restrict t6 diffeomorphisms V n � Vn c (IRm) + , it therefore suffices to show 
for any open sets V c (IRm) + and V' c (IRm) + with if c V' that the 
CX�( V')jl( V )-module t*(V')jl(V )8*( V') is free of rank m. 

Since C'"( (IRm) + )jl( V )  � cool V')jl( V) is an isomorphism, by Lemma 6.7, 
and since vector fields are local, by Lemma 6.5, we are left with the task of 
showing for any open set V c  (IRm)+ that the CX'((lRm) + )jl( V )-module 
t&'�*( (lRm) + )jl( VW( (lRm)+ ) is free of rank m. However, this is an immediate 
consequence of Lemma 6.6, which asserts that the C" ( (lRm) + )-module 
0"*( (IRm) + ) is free of rank m, one basis being (JjOX I , . . . , (JjiJxm. 

According to Proposition 5.6, if X is a smooth manifold, then any locally 
free CX�(X)-module g; of rank m determines a unique real m-plane bundle � 
over X ;  specifically, the elements of g; are the smooth sections of some 
coordinate bundle E '::' X representing �. According to Proposition 6.8, if X 
is of dimension m, then a particular locally free CX'(X)-module 8*(X) of rank 
m is available for such an application. 

6.9 Definition : For any smooth manifold X the tangent bundle r(X) is the 
smooth real vector bundle over X represented by the smooth coordinate 
bundle whose sections are vector fields L E 8*(X). 

We shall give a more direct construction of a particular smooth 
coordinate bundle E � X whose sections are vector fields, which will give 
a better understanding of the tangent bundle r(X) it represents. 

Let { V j l i E  I }  be an open covering of the smooth m-dimensional manifold 
X by coordinate neighborhoods Vj , chosen as in Proposition 6.8, and let 
{<I>d i E l }  be a corresponding atlas of diffeomorphisms Vj � cI>j( V J, where 
each <I>j( V j) is open in (IRm) + . For any non void intersection V j n V j the 
composition <I>j(Vj n Vj) <l>j <l>,

- l
) <I>j(Vj n V) is a diffeomorphism of open 

sets in (IRm) + that can be described directly in terms of coordinate functions : 
for any (xl , . . .  , xm) E <I>j(Vj n V) one has 

<I>j c <I>j I (X I , . . .  , xm ) = ( y1 (X I ,  . . .  , xm), . . . , ym(xl , . . .  , xm) )  E cI>i Vj n V) 

for uniquely defined smooth real-valued functions yl , . . .  , ym on <I>j( Vj n V j) c 
(IRm)+ . The inverse diffeomorphism <I>j(Vj n Vj) <l>, c <l>; ' )  cI>j(Vj n V) has a 
similar description : for any ( y l , . . .  , ym) E cI>iVj n V) one has 

<I>j n cI>j- I ( yl , . . .  , ym) = (Xl ( y l , . . .  , ym), . . .  , xm( yl , . . .  , y"') ) E <l>j( Vj n V) 

for uniquely defined smooth real-valued functions Xl , . . .  , xm on cI>i Vj n U) c 
(IRm) + . The partial derivatives iJyqjiJxP and oxPjoyq provide m x m jacobian 
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matrices 

and 

(cJyq 0 <1» = o P I X 

- c' <I> -Cxp 

) 
iJyq 

j -

oyl 

oxl 

oym 
(1x l 

cJxl 

uy l 

tixm 
ayl 

<1>; 

c <1>; 

, <l>j 

<l>j 

. . . 

. . . 

. . .  

. . . 

oyl 
- 0 <1> . 
oxm I 

oym - 0 <1> . 
oxm I 

oxl 
- c. <I> . 
oym J 

oxm - 0 <1> . 
oym J 

1 3 1  

of smooth functions on V; n V j e X, each being the inverse o f  the other. I n  
particular, since U"ryq/axp C) <1>;) is invertible, it can be regarded as a smooth 
map V; n Vj -.!i..... GL(m, [R) carrying any U E  V; n Vj into ( (oyq/oxP)(<I>;(u) ) )  E 
GL(m, [R). If V; n Vj n Vk is nonvoid, the chain rule implies for any 
u E V; n Ui n Vk that t/I�(u) . t/I{(u) = t/lf(u) E GL(m, [R), so that by Propo
sition 11 .2.5 the smooth maps V; n Vj -is GL(m, [R) are the transition 
functions of a unique coordinate bundle with structure group GL(m, [R) and 
fiber [Rm. Since the structure group GL(m, [R) acts on the left, as always, we 
regard elements of [Rm as column vectors. 

6.10 Proposition : Let X be a smooth m-dimensional manifold with an open 
coordinate covering { V; l i E  I} and atlas {<I>; l i E  I } . For each nonvoid 
V; n Vj c X let 

(X l , . . .  , Xm) t--> ( yl (X l , . . .  , Xm), . . .  , ym(X I , • . .  , xm) )  

be the coordinate description of the difJeomorphism 
<I>;(V; n V) cJ>j cJ>,- 1 , <l>j(V; n Vj), 

and let V; n V j � G L(m, [R) be the transit ion junctions given by the jacobian 
matrices, t/I:(u) = ( (DP/(1xP)(<I>;(u) ) )  for u E V; n Vj, as above. The smooth 
sectiolls ut the resulting smooth coordinate bundle E � X are the elements of 
the C¥  (X)-module 8 *(X) of vector fields on X, as in Df!finition 6.2. 

PROOF : I t remains only to identify the sections X -> E of the resulting 
bundle with the vector fields on X. The usual coordinate functions on ([Rm) + 
provide a distinguished basis of vector fields on ([Rm) + , the partial derivations 
with respect to the coordinates, which restrict to corresponding bases 
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((Jjax ' ,  . . .  , % xm) and (oNi, . . .  , % y"') of vector fields on cDj(Vj f\ V) C 
(jRm) + and cDiVj f\ Vj) C ([Rm) + ,  respectively. For any f E CXJ(Vj f\ V) let 

and let 

oU 0 cDj- l )  
L f = 0 cD, p oxP , 
M j' = 

oU 0 cD j- I ) 0 cD , 
q oyq J '  

so that (L I , . . .  , Lm ) and (M I ,  . . .  , Mm) each form a basis o f  the vector 
fields on Vj f\ Vj, which are restrictions to Vj f\ Vj of corresponding bases 
of the vector fields on Vj and Vj , respectively. The restrictions satisfy 
relations 

where the matrix entries merely serve as coefficients for the vector fields 
L I , . . .  , Lm . Suppose that a section X --. E is given, inducing restrictions 
Vj � E l  Vj and Vj � E l  Vj. For fixed local trivializations E l  Vj � Vj x [RnJ 

and E I V j � V j x [Rm each of the restrictions (J and r can be regarded 
as a column vector 

and 

of smooth real-valued functions on Vj and Vj' which can be identified with 

.' L, + . . .  + <T"L. � (L" . . .  , L.I (:) 
and with 
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as vector fields on Vj and Vj, respectively. One must verify that these vector 
fields have the same restrictions to V j n V j '  Since 

C)�  
ay! - . ' <1>. 
a 1 I ,x 

aym :)T 0 <1>; 
( X  

ayl - 0 <1>. 
Dxm I 

Dym - ,. <1>. 
ilxm I 

(:) 
by definition of the transition functions t/!{ = (ayq/oxp " <l>j), one has 

over Vj n Vi'  as desired, the two jacobian matrices being inverses. Thus 
any section of the coordinate bundle E � X constructed from the given 
transition functions determines a unique vector field on X, as required ; the 
converse assertion is trivial. 

One can regard Proposition 6. 1 0  as an alternative description of the 
tangent bundle r(X) of the smooth manifold X. However, both 6.9 and 
Proposition 6.10 describe a specific coordinate bundle whose isomorphism 
class is the tangent bundle r(X); one can easily represent r(X) by other co
ordinate bundles. For example, Proposition 5.9 asserts that one can replace 
the C' (X)-module g*(X) of vector fields COC'(X) � C()(X) by its dual 
g**(X) = Homc£(x)(6'*(X), C'X(X) ) ;  we shall do so in the next result. 

For any module .'F whatsover over a commutative ring, C'O(X), for 
example, there is always a canonical homomorphism from � into the 
second conjugate .:y;** = Hom('�(x)(Homc L (X)(�' CX'(X» , COO(X» , carrying 
any 0 E .'F into that element 8** E �** that maps any L E  g* into the value 
of L on e. If � is a free C" (X)-module of finite rank, then the canonical 
homomorphism � -+ �** is trivially an isomorphism ; similarly, if � is 
merely locally free of finite rank, then one can use smooth partitions of unity 
in an obvious way to conclude that � -+ �** is an isomorphism. For this 
reason we shall use the notation g(X) rather than g**(X) to describe the 
dual of g*(X); in Remark 1 3.20 and Exercise 1 3.2 1  the notation g(X) is 
justified by a direct construction. 
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6.1 1 Definition : For any smooth manifold X the C�(X)-module tff(X) of 
differentials on X is the dual Homcoo(x)(tff*(X), COO (X) ) of the COO(X)-module 
tff*(X) of smooth vector fields on X. 

There are some classical differentials. For any 9 E C"" (X) there is a 
C'xC(X)-linear map tff*(X) � C""(X) carrying any vector field L E  tff*(X) into 
the function Lg E COO(X) ; consequently dg E tff(X). Similarly, for any natural 
number p � 0 and any 2p elements f" . . .  , fp , g"  . . . , 9 p E COO(X) there is a 
differential f, dg l + . . .  + fpdgp E tff(X) carrying any L E tff*(X) into f,(Lgd + 
. . .  + fp(Lgp) E COO(X). 

In case X = IRm the m coordinate functions X l , . . .  , xm lead to m differ
entials dX I , . . .  , dxm. Since ox;/oxj 

= 1 or ox;/ox
j 

= 0 according as i = j or 
i =1= j, it follows that (dx I , . . .  , dxm) is the basis of tff(lRm) dual to the basis 
(% x ' ,  . . .  , % xm) of tff*(lRm). A similar remark applies to (IRm) +  and to any 
open subset of (IRm) + . 
6.12 Proposition : For any smooth manifold X the tangent bundle r(X) is the 
smooth real vector bundle over X represented by the smooth coordinate bundle 
whose sections form the COO(X)-module tff(X) of differentials on X. 
PROOF : Since tff(X) is defined as the dual tff**(X) = Homcoo(x)(tff*(X), C'X (X) )  
of the COCl(X)-module tff*(X) of vector fields on X, this i s  an immediate con
sequence of Definition 6.9 and Proposition 5.9. 

In view of Proposition 6 . 12 it is of interest to have an analog of Proposi
tion 6 . 10, using tff(X) in place of tff*(X). We use the notation of the discussion 
preceding Proposition 6.10. 

In place of the jacobian matrices (8yQ/oxP 0 <1>;) and (oxP/oyq " <1» dis
played earlier, we shall use the transposed jacobian matrices 

'C-P ) �:q c <l>j = 

and 

'Cyq ) --� - 0 <1>; -(lXP 

oxl 
oi 0 <l>j 

ox1 - 0 $ . 
oym 

) 

0-1 .y " <1>; OXI 

Oyl - c <1>. 
OXm I 

. . . 

oxm 
oi 0 <l>j 

oxm - 0 <1> . 
oym 

) 

oym - c <1> . 
OX I I 

oym 
,', <1>; OXm 
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each of which is the inverse of the other. In particular, since Vrxp/vyq , <1» 

is invertible, it can be regarded as a smooth map Vj n Vj -.!.L GL(m, IR) 
carrying any u E Vj n Vj into '( (cxP / cyq )(<I>j(u) ) )  E GL(m, IR). If the intersection 
Vj n Vj n Vk is nonvoid, the chain rule implies for any U E V j n Vj n Vk 
that I/I�(U). I/I{(U) = ifJ7(u) E GL(m, IR), so that by Proposition 11 .2.5 the smooth 
maps Vj n Vj � GL(m, IR) are the transition functions of a unique co
ordinate bundle with structure group GL(m, IR) and fiber IRm. As before, 
since the structure group GL(m, IR) acts on the left, the elements of Rm will 
be regarded as column vectors. 

6.13 Proposition : Let X be a smooth manifold with an open coordinate 
covering ( Vd i E I }  and atlas {<I>j l i E  I } .  For each nonvoid V j n V j let 
( i, . . . , ym) I--> (xl ( i ,  . . .  , ym), . . .  , xm( i, . . . , ym) )  be the coordinate de-
scription of the diffeomorphism <l>i Vi n V j) 4>; 4>; I I <l>i( Vi n V j), and let 
Vj n Vj � GL(m, R) be the transition functions given by the transposed 
jacobian matrices, I/I{(U )  = ' « uxP/ilyQ)(<1>j(u) ) )  for U E Vj n Vj, as above. The 
smooth sections of the resulting smooth coordinate bundle E � X are the 
elements of the CT (X)-module C(X) of differentials on X, as in Definition 6. 1 1 . 

PROOF : The coordinate functions on (IRm) + restrict to bases (dXl , . . .  , dxm) 
and (di , . . .  , dym) of the differentials on <1>j (Uj) c (IRm) + and <l>j(V) c (IRm) + ,  
and we use their further restrictions to <1>j( U j n V) and <I> j (  V j n V). In 
particular, (d(x l <1>;), . . .  , d(xm , <1>;) ) and (d( i o <1» ,  • • .  , d( ym " <1» ) are 
bases of the differentials on Vj n Vj , and by the chain rule they satisfy the 
relations 

that is, 

(d( yl <1» ,  . . . , d(ym " <1» )  

= (d(x I . <1>;), . . .  , d(xm , <1>j) ) 

for q = 1 ,  . . . , m ;  

Suppose that a section X -> E i s  given, inducing restrictions Vj  � E l  V j  and 
Vj � E l  Vj . For the fixed local trivializations E l  Vi � Vi X IRm and 
E I V j � V j x IRm each of the restrictions (J and r can be regarded as a 
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column vector, 

and 

of smooth real-valued functions on Vi and Vj , which can be identified with 

" ' d( x' , <1>,) + . . .  + a· d(x· " <1>,) � (d( x' , <1>,), • • •  , d(x'" ' <1>,) ) (:) 
and 

" d(y'  , <1» + . . .  + " d(y· , <l>j) � (d(y '  , <1>;), • • .  , d( Y" ,, <I> j) ) (:) 
as differentials on Vi and Vj, respectively. One must verify that these differ
entials have the same restrictions to Vi (') Vj . Since 

by definition of the transition functions I/I{ = t(axPjayq 0 <1» ,  one has 

(d( i " <1» ,  . • .  , d( ym 0 <1>j) ) 
(!;l) 

rlt! 

over Vi (') Vj,  as desired, the two transposed jacobian matrices being in
verses. Thus any section of the coordinate bundle E � X constructed from 
the given transition functions determines a unique differential on X, as 
required ; the converse assertion is trivial. 
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It is worth noting that the differing transition functions Vi n Vj � 
GL(m, IR) appearing in Propositions 6. 1 0  and 6. 1 3  are transposed in verses 
of each other, where the resulting smooth coordinate bundles both represent 
the same tangent bundle ,(X): in Proposition 6. 1 0  one has I/J{ = (aploxp , <1>;) 
and in Proposition 6. 1 3  one has I/J{ = '(DxPIDy'I 0 <1>). Although the map 
GL(m, IR) ":' GL(m, IR) carrying each invertible m x m matrix into its trans
posed inverse is indeed a group automorphism, r is not part of a morphism 
(r, <1» of transformation groups to which one can apply Proposition 1 1 .2.9 to 
conclude directly that the resulting coordinate bundles represent the same 
vector bundle. On the other hand, the preceding situation is part of a more 
general phenomenon : if coordinate bundles E .: X and E' � X are described 
by transition functions Vi n Vj'-.!.L GL(m, IR) and Vi n Vj � GL(m, R) " ,,' that are transposed in verses of each other, then E --+ X and E' --+ X represent 
the same real m-plane bundle over X, for any X E PA. (See Exercise 1 3.24.) 

Throughout this section we have considered the COO(X)-modules g*(X) 
and g(X) associated with smooth representations of the tangent bundle ,(X) of 
a smooth manifold X. One can replace g*(X) and g(X) by CO(X) Q9COO(X)g*(X) 
and Co(X) Q9COO(X) g(X), however, which represent the same tangent bundle 
,(X) ; that is, one can replace smooth sections of coordinate bundles repre
senting ,(X) by continuous sections of the same coordinate bundles. Thanks 
to Propositions 5. 1 1  and 5 . 12, the use of continuous sections presents no 
serious handicap, however, as the following result suggests. 

Suppose that E � X is the smooth coordinate bundle whose sections 
X � E are vector fields COC'(X) � COO(X) on a given smooth manifold X. The 
sections X � E are smooth maps, by construction ; however, one can also 
consider sections X � E that are merely continuous, as just noted. Accor
dingly, we distinguish between smooth vector fields and continuous vector 
fields on the same smooth manifold X. 

6.14 Proposition : Suppose that X is a smooth manifold that admits a nowhere
vanishing continuous vector field L ;  then X also admits a nowhere-vanishing 
smooth vector field M. 
PROOF : Continuous and smooth vector fields are continuous and smooth 
sections X � E and X � E, respectively, of that smooth coordinate bundle 
E � X whose smooth sections are smooth vector fields, elements of g*(X). 
Hence the result is a special case of Proposition 5. 1 2. 

In the opening paragraph of this section we indicated that there is a con
travariant functor on the category of smooth manifolds that assigns to each 
smooth manifold X and to each smooth map Y --+ X a COO(X)-module g(X) 
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and a module homomorphism 6"(X) � 6"( Y )  over the algebra homomorphism 
C' (X) � C (  Y ), respectively. We have constructed the CX(X)-module 8(X), 
somewhat indirectly ; however, we have not yet constructed the homomor
phism 6"(X) � 6"( Y ). Since both constructions will be carried out more 
directly in Remark 1 3.20 and Exercises 1 3.2 1  and 1 3.22, we only sketch the 
latter homomorphism here ; it will not be required in the sequel. 

Suppose that y .!.  X is a smooth map of smooth manifolds. The induced 
algebra homomorphism C" (X) � C""( Y )  carries any smooth function 
x !.. /R into the composition Y � !R ; that is, cD*f = f '  cD. Following 
Definition 6. 1 1  it was noted that for any natural number p � 0 and any 2p 
elements f" . . . , .f� , g "  . . .  , ?Jp E C'(X) there is a differential f, dg , + . . .  + 
.f�dgp E 8(X) carrying any L E  6"*(X) into .f� (Lg t l + . . .  + .f�(Lgp) E C'·(X). 
There is a corresponding differential UI . cD) d(g , cD)+ · . .  + ( .f� cD) d(gp cD) E 
8'( Y ), and one easily verifies via local coordinate systems and smooth 
partitions of unity that there is then a unique module homomorphism 

�* �. 6"(X) ---+ 6"( Y )  over Cct:.(X) ---+ Cc.<, ( Y )  such that cD*U,dg , + . . .  + .f�dgp) = 
(/" cD) d(Y I " cD) + " · + ( .f� cD) d(gp ' cD) for any fl , . . .  , .f� , g l , . . .  , gp E 
CY (X). A more satisfying construction of 6"(X) � 6"(Y )  will appear in 
Remark 1 3.20 and Exercises 1 3.2 1 and 1 3.22, as promised earlier. 

We now compute a concrete example of a tangent bundle. Let /R* c /R 
denote the nonzero real numbers and let /R(n + ' )* denote the nonzero vectors 
in /R" + ' , in the relative topologies. The real projective space RP" is the 
quotient /RI" + ' )* I'" of !RI" + ' )* by the equivalence relation '" with x' "" x 
whenever x' = ax E /R(n + ' )* for some a E /R*, as in §I .5 ; alternatively, RP" is 
the Grassmann manifold G'(/R" + I ), which is smooth by Proposition 1 .7.3. 
Let E c /R(" + ' )* X /R"+ '  consist of those pairs (x, y) E /R(" + ' )* X /R" + '  such 
that y is orthogonal to x in the usual inner product of /Rn + I .  There is then a 
quotient El::::: of E by the equivalence relation ::::: with (x', y') ::::: (x, y) when
ever x' = ax E /RI/! + ' )* and y' = ay E /Rn + 1 for the same a E /R*. If (x' y') ::::: 
(x, y), then x' '" x, so that the first projection /Rln + ' )* X /R" + 1 � /R(II + 1 )* 

induces a projection El::::: � RP" of quotient spaces, which is continuous in 
the quotient topologies. 

6.15 Proposition : The preceding projection El::::: � Rpn is a smooth coordi
nate bundle chat represents the tangent bundle r(Rpn)  of the real projective 
space RP". 

PROOF: According to Definition 6.9, r (RplI) is represented by the smooth 
coordinate bundle whose sections are vector fields C'-(RP" )  !:. C �  (RP" ) ;  we 
shall identify El::::: -.':. RP" with that coordinate bundle. First observe that 
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C '  ( RP") can be regarded as the subalgebra of those functions f E C'(!R(n+ 1 )*) 
that are homogeneous of degree O. Thus if !R/II + 1 )* � !R(n + 1 )* is multiplica
tion by a E !R*, one has I E 1C' (!Rpn) ( c IC x(!R(n + 1 )*) ) if and only if I 0 ma = 

f for each a E !R* ; equivalently l E  C' (Rpn)( c I[;x(!R(n + 1 )* ) ) if and only 
iff is constant on each line through 0 E !R"+ 1 . For any 

one then has 

(
yO
) Y = : E !R" + I , 

y" 

a (y° i'RxO + . . .  + .\''' (1/£'1x'')f . mll = ( y° c'liixO + . . .  + Y" C/(ix")U c. mll) 
= ( yO (ljl1.xO + . . .  + y" (1/2x" )f 

for any I E I C' (RP")( c lC " (!R(" + I )*) ), by the chain rule. Hence, if x' = 

aX E !R1,, + I )*, one obtains a vector field IC / (RP")� IC"' (RP") only by 
imposing the second condition y' = a.\' E lRl"+ I in the equivalence relation 
(x', .1") � (x, .1') described earlier, for the same a E R*. Since any f E CX (RP") 
is constant along each line through 0 E !R"+ I , it follows that Lxf(x) = 0 
for each x E !R(" + 1 )* , so that Lx vanishes at the equivalence class in RP" of 
x E !R(II + 1 )*. However, the values of the vectors Ly for any y E  !R"+ I ortho
gonal to x span an n-dimensional vector space at the preceding point of 
RP", and since RP" is an n-dimensional smooth manifold this completes 
the proof: if E c !R(II + 1 )* X !R"+ 1 consists of those pairs (x, y) E lRl(" + 1 )* X 
!R" + I such that y is orthogonal to x, then El � .: RP" represents the tangent 
bundle r(RP"), as claimed. 

There is a useful corollary of Proposition 6. 1 5. This time we replace 
E c lRl(" + 1 )* X !R" + I by the entire space lRl(n + 1 )* X !Rn + 1 and let E" be the 
quotient !R(" + 1 )* X lRl" + I / � by the equivalence relation � with (x, y' ) � (x, y) 
whenever x' = ax E !R(II + 1 )* and .1" = ay E !R" + I for the same a E !R*, as 
before. The first projection !R(" + 1 )* X !R" + I ....."'..... !R(II + 1 )* still induces a pro
jection E" � RP" of quotient spaces, which is continuous in the quotient 
topologies. 

6.16 Corollary : The preceding projection E" � RP" is a smooth coordi
nate bundle that represents the Whitney sum r(RP") Et> C l of the tangent bundle 
r(Rpn ) and the trivial line bundle /;1 over the real projective space RP". 

PROOF : The product representation RP" x !R I ....."'..... RP" of the trivial bundle 
can be regarded as a projection of quotients in an obvious fashion : there is 
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an equivalence relation � in !R(II + I )* x !R I with (x', s') � (x, s) whenever 
x' = ax E !R(n + I )*, for some a E !R*, and s' = s, independently of a E !R*, and 
the first projection R(n + 1 )* X !R I � !R(n + 1 )* induces Rpn x !R I � Rpn. 
However, in place of !R(n + \ )* X !RI one can substitute the space E' c 
!R(n + 1 )* X !Rn + I of points of the form (x, z) for any x E !R(n + 1 )* and any 
scalar multiple z = sx of x. The corresponding equivalence relation ::::; in E' 
then sets (x', z') ::::; (x, z) whenever x' = ax and z' = az for the same a E !R*. 
The first projection !R(n + 1 )* X !Rn + 1 � !R(n+ 1 )* induces a projection 
E'/ � � Rpn that can be identified with RP" x !R I � RP" by observing 
that each (x, z) E E' is of the form (x, sx) for a unique S E  !R. The coordinate 
bundle El � -". Rpn representing r(Rpn) in Proposition 6. 1 5  and the coor
dinate bundle E'/� � Rpn just constructed to represent /: 1 are of the same 
nature; the only difference is that E c !R(n + 1 )* X !Rn + I consists of those 
pairs (x, y) such that Y is orthogonal to x, while E' c !R(n + 1 )* X !Rn+ I consists 
of those pairs (x, :;) such that z is a scalar multiple of x. The equivalence 
relation � is defined in the same way in each case, and since any element of 
!Rn + I is uniquely of the form Y + z for Y orthogonal to x E !R(" + 1 )* and :; a 
scalar multiple of the same x E !R(n + 1 )*, it follows that the Whitney sum 
r(Rpn) EB r. 1 is represented by the quotient map !R(n + I )* X !Rn + l / � � 
!R(" + 1 )*1 - induced by the first projection !R(n + 1 )* X !R" + I � !R(" + 1 )* , as 
claimed. 

7. Canonical Vector Bundles 

For any natural numbers m >  0 and n > 0 the real Grassmann manifold 
Gm(!Rm + n) is a smooth closed mn-dimensional manifold, as in Proposi
tion 1.7.3 ; in particular, the real projective space RP" = G I(!Rn + I )  is a smooth 
closed /I-dimensional manifold. In this section we construct a smooth 
coordinate bundle representing a particularly useful nontrivial m-plane 
bundle i': over each Gm(!Rm + " ) ; applications will occur later. We also show 
that (11 + I ))'� = r(Rpn ) EB B I , where (/I + l )i� is the Whitney sum of 11 + I 
copies of the canonical line bundle y� over Rpn, where r (Rpn ) is the tangent 
bundle of Rpn, and where /:1 is the trivial line bundle over Rpn. 

We briefly recall the construction of the Grassmann manifolds Gm(!Rm + n ), 
which first appear (for V = !Rm +" ) in Definition 1 .7. 1 .  Let (!Rm + nr* denote 
the set of ordered m-tuples (x I ,  . . .  , xm) of linearly independent vectors 
x I , . . .  , Xm E !Rm + ", in the relative topology of the m-fold product !Rm + n X . . . x 
!Rm+ n, and let '" be the equivalence relation in {!Rm+nr* with (x I '  . . .  , xm) -(Y I , . . .  ' Ym) whenever (X I ' · · · '  xm) and ( Y I , · · · ,  Ym) span the same m-plane 
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in [Rm + lI. Then G"'([R'" + 11 )  is the quotient ([Rm + 11 )"'* / '" in the quotient topology ; 
that is, G"'([Rm + ll ) is the set of m-planes in [Rm + ll in an appropriate topology. 

If (X I " ' " x"' ) and ( Y I , " "  y",) span the same m-plane in [Rm +n, then 
there is an m x m invertible matrix (a�) E GL(m , [R) such that xp = I;= I a�Yq 
for each p = I . . . . . 111 ; that is, (a : . . . a:�

) (x l . · · · . Xm) = ( y l ' · · · , J'm) : . • 
a�J . . .  a:;: 

where each of X I '  . . .  , X"" Y I '  . . . , y", is a column vector with m + n entries. 
We shall write this relation in either of the equivalent forms (x I • . . . • xm) = 
( Y I  • . . . • .I'm)(a�) or ( Y I ' . . . •  Ym) = (x I ,  . . . • xm)(a�) - I for (a�) E GL (m, [R). 

for 

Elements of the product space ([Rm + n )"'* x [Rm are of the form 

(IX "  ' , , , x.,I, (�) ) 
and 

and we write 

(X"  ' , , , xml, C) ) � (I ! h ' ' , , I'm I, C)) 

whenever both ( Y  I ,  . . . • Ym) = (x I • . . . •  x",)(a�) - I and 

for the same (a�) E GL(m, [R). Trivially � is an equivalence relation in 
([R," + /J j"'* X [Rm, and we temporarily let E denote the quotient space 
([R", + n ),"* x [Rm/� . in the quotient topology. Clearly if 

(Xh " " x.,I, C)) � (r " " "  l'.I, C)) 

in ([R", + n )",* X [R"'. then (X I , . . .  , xm) '" ( Y I " ' "  Ym) in ([Rm + n )m*, so that the 
first projection ([Rm + ll )m* x [Rm � ( [Rm + n jm* induces a projection E � 
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Gm([Rm +n ) of quotient spaces. Furthermore, if 

then for some (a�) E GL(m, [R) one has 

t 1 .1' I + . . . + tmYm = ( Y I " ' " .I'm) (t;l ) 
tm 

so that the equivalence class e E E of 

defines a specific point Si x 1 + . . .  + smxm in the m-plane n:(e) c [Rm + 11 spanned 
by (x I • . . .  , xm) E ([Rm +n )m*. Thus E consists of pairs (n:(e), e) in which n:(e) E 
Gm([Rm+ ,,) is an m-plane in [Rm + " and e is a point in the m-plane n:(e). 

7.1 Lemma : The projection E � Gm([Rm + n) is a smooth coordinate bundle 
with structure group GL(m, [R) andjiber [Rm, representing a smooth real m-plane 
bundle over the Grassmann manifold Gm([Rm+ n). 
PROOF : Recall from Proposition 1 .7.3 that the smooth structure ofGm([Rm + n ) 
was obtained via the canonical embedding Gm([Rm+ n ) !.. G I (/\ m [Rm+ lI ) and a 
fixed basis {X I ' . . .  , Xm + ll} of[Rm+ n . Each open set Vi, . . . . . i", C Im F consisted 
of projective equivalence classes of points 

'\' ( . . ) /\m f1l>m + 1I L.j, < . . .  < j", a .1 1 ' . . .  , .I  m X j, /\ . . . /\ X j", E "'" 
such that a(i l '  . . .  , im) =1= 0, and the PlUcker relations implied that all 
ratios a(j 1 ,  . . . , jm)/a(i 1 , . . . , im) are polynomial functions of the mn ratios 
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a(i l '  . . .  , 7. , . . . , im , j)/a(i l '  . . . , im). Here is another description of the same 
set Ui ,  • . . . •  i", in terms of the inner product IRm+n x IRm + n � IR with 
<Xi. Xi) = Dij : Ui , .  . i ... consists of the projective equivalence classes of all 
points of the form (Xi ,  + Yi , ) II '  . ' 11  (Xi", + Yi • . . l. with automatic PlUcker 
relations, where the nonzero elements among Yi "  . . . , Yim are orthogonal to 
the subspace spanned by Xi "  . . .  , Xi". ' In this description one has 
a(i 1 , . . .  , im) = I ,  each a(j 1 , . . . , jm) is the coefficient of x j, 11 . . . 11 Xjm in 
the expansion of (X i ,  + Yi , ) II " ' II (X i", + Yin)' and each a(j l , . . . , jm) is a 
polynomial function of the mn coordinates a(i I ,  . . . , tk o . . . , im , j). 

As above, each point of E I Ui,  • . . . •  i ... is a pair (n(e), e) in which n(e) is the 
m-plane spanned by Xi, + Y; ' "  . .  , Xi", + Y;", and e is a point 

there is a local trivialization E l  Ui , . . . . . i ... � Ui, • . . . • i", X Rm carrying 
(n(e), e) into 

If U j, . . . . . j", C Im F is any other set of the preceding form, then U i , . . . . . i", n 
U j, . . . . .  j", is automatically non void, and one must show that the transition 
function Ui , . . . . . i"' n U;, . . . . . j ... � GL(m, lR) induced by 'Pj ·.· 'Pi- 1 is 
smooth. 

Suppose that the intersection [ i 1 , • • •  , im } n U l '  . . .  , jm} contains m - p 

indices, which we temporarily assume to be ip + 1 = jp+ I "  . .  , im = j", for 
notational convenience ; the adjustment required for the general case will 
be indicated later. In the notation relative to U i , • . . . •  i", one has 

if and only if the coefficient a(j 1 , . . .  , jm) of xj, 11 . . . 11 xj.., in the expansion 
of (Xi , + 'vi , )  11 '  . ' 11  (Xi", + Y;."l is nonzero. This happens i f  and only i f  there 
is a nonsingular matrix 

B =  
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for the (m - p) x (m - p) identity matrix I, such that (xi I + Yi " . . . , Xim + Yi..,) = 
(xj" . . .  , xj..,lB modulo the subspace [Rn- P c [Rm+n  orthogonal to  the subspace 
spanned by Xi " . . .  , Xim ' Xj" . . .  , Xjp ' Up to a ± sign each b{ is the coefficient 
a(i l , . . . , Tk , . . . , im , j) of Xi , I\ " ' I\ Xk l\ " ' I\ Xim I\ Xj in the expansion of 
(xi I + Yi , ) 1\ . . .  1\ (Xim + YiJ. Since a(j I , . . .  , jm) is_ a homogeneous polynomial 
of degree p in the mn coordinates a(i I , . . .  , ik > . . . , im , j), it follows that 
a(j l ' " . , jm)B- I  has homogeneous rational entries of degree zero in 
the same coordinates. Furthermore, if A = (a(j l " "  , jm)B- I ) - l , and if 
(Xi, + Yi , , · · · ,  xim + Yi,..l E ([Rm+n )"'* is a ViI . . . . . im-description representing a 
point in the intersection Vi I . . . . .  im (l Vi. . . . . .  im' then (Xi I + Yi " . . .  , Xi,,, + J'i..,lA -

1 
is the corresponding Vj , • . . . •  jm-description representing the same point. 

Now recall that the total space E of y� is a quotient ([Rm + n)m* X [Rm / � ,  
where 

for the same nonsingular matrix A. Consequently the transition function 
Vi I " . . ,im (l Vi."  . . . jm --"i.. GL (m, [R) carries any point with Vi , . . . . .  im-coor
dinates a(i 1 ,  . . . , ik , • • •  , im , j) into the preceding nonsingular matrix A with 
homogeneous rational entries of degree zero in the same coordinates ; in 
particular 1jJ{ is smooth. 

To complete the proof of Lemma 7.1 it remains only to discard the 
specialized hypothesis i p + I = j P + I , . . .  , im = jm · Whenever { i  I > . . . , im} and 
UI > "  . , .im} have m - p elements in common, one can reorder the entire 
set { 1 , . . .  , m + n} to produce the specialized hypothesis, and the only 
effect of undoing the reordering is a permutation of the rows of A and a 
possibly distinct permutation of the columns of A. This does not affect the 
assertion of the lemma. 

7.2 Definition : The smooth coordinate bundle E � Gm([Rm+n) of Lemma 7.1 
represents the canonical real m-plane bundle y� over the Grassmann manifold 
Gm([Rm+ n). In the case m = 1 ,  for which G1([Rn+ l ) = Rpn, the smooth coor-
dinate bundle E � GI ([Rn+ I ) of Lemma 7 . 1  represents the canonical real line 
bundle }'/� over the real projective space RP". 
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We next establish the identity (n + I )')'� = r(RP") Ee [; 1 mentioned at the 
beginning of the section. The method will be to find a coordinate bundle 
E' � Rpn representing (n + I )y� that can be compared to the coordinate 
bundle El' � RP" of Corollary 6. 1 6, representing !(Rpn )  Ee [; 1 . Although 
the construction of E' � Rpn will appear to differ from that of El' � RP", 
we shall show that they are nevertheless identical coordinate bundles. 

Let !R(' + 1 )* be the space of nonzero vectors in !R" + I ,  in the relative 
topology, let !R* be the nonzero real numbers, let � '  be the equivalence 
relation in !R(n + 1 )* X !R" + I with (x', y') � , (x, y) whenever both x' = ax E !R(" + 1 )* 
and y' = a - I y E  !R" + I for the same a E !R*, and let E' be the quotient space 
!R(n + l )* X !Rn + I/� ', in the quotient topology. If (x', y') � '  (x, y), then x' and 
x satisfy the equivalence relation x' - x used to define the real projective space 
!R(n + 1 )* / _ = RP", so that the first projection !R(n + 1 )* X !Rn + I � !R(" + 1 )* 
induces a projection E' � Rpn. 

7.3 Lemma : The preceding projection E' � RP" is a smooth coordinate 
bundle that represents the Whitney sum (11 + l )i� of 11 + I copies of the 
canonical line hundle I',: over Rpn. 

PROOF : We briefly recall the general construction of the total space of the 
coordinate bundle E � Gm(!Rm +" )  representing I'::'. One introduces an equiv
alence relation � in !R(m + n)m* X !Rm with 

for the same (a�) E GL (m, !R), and one sets E = !R(m + n)m* X !Rm/� . In case 
111 = l one can regard multiplication by a - I E !R* as the action of (a�) E 
GL(m, !R), so that the total space of the coordinate bundle E � RP" repre
senting i',: can be described as follows : one introduces an equivalence relation 
� in !R(n + I )* X !R I with (x, s) � ( y, t) whenever ( y, t) = (ax, a - I s) for some 
a E !R*, and one sets E = !R(n + 1 )* X !R I / � . A point of E is then a pair (n(e), e), 
consisting of a I -dimensional subspace n(e) c !R"+ I spanned by some 
x E !R(n + I )* and a point sx = e E  n(e); if ( y, t) = (ax, a - I s), then one has the 
same subspace n(e) E !Rn + I and the same point ty = (a- I s)(ax) = sx = e E 
n(e). In order to conform to the notation of Corollary 6. 1 6  we write x' in 
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place of y, so that ')'/� has a total space E = 1R1(1I + 1 l* X 1R1 1 / � with (x', t) � (x, s) 
whenever (x', t) = (ax, a - I s) for some a E 1R1*. The corresponding total space 
E' of the Whitney sum (n + l )}'� of n + 1 copies of Y/� is then the quotient of 
1R1(" + 1 1* X 1R1"+ 

1 by the equivalence relation � I with 

whenever both x' = ax E 1R1(" + 1 ,* and 

for the same a E 1R1*. The quotient E' = 1R1(1I + 1 )* x 1R1" + 1 / � I and the obvious 
projection E' � RP" are precisely the definitions used in the statement of 
the lemma, in the notation (SO) 

y =  . 
.")" 

and 

7.4 Proposition : Let !(RP") EB e 1  be the Whitney sum of the tangent bundle 
!(RP") and the trivial line bundle B 1 over the real projective space RP", and 
let (n + 1 )y� be the Whitney sum of n + 1 copies of the canol1ical line bundle 
y� over RP" ; then !(RP") EB B1 = (n + l )y� . 

PROOF : According to Corollary 6. l 6  !(RP") EB e 1 is represented by a coor
dinate bundle E" � RP" with E" = 1R1(1I + 1 ,* X 1R1" + 1 / � ,  where (x', y') � 
(x, .I') E 1R1(" + 1 ,* X 1R1" + 1 whenever (x', y' ) = (ax, ay) for some a E 1R1*. According 
to Lemma 7.3 , (11 + l )y,� is similarly represented by a coordinate bundle 
E' � RP" with E' = 1R1(" + 1 )* X 1R1" + 1 / � I ,  where (x', y') � I (x, y) E 1R1(" + 1 )* X 
1R1"+ 1 whenever (x', y') = (ax, a - I y) for some a E 1R1*. Each of the projections 
E" � RP" and E' � RP" is induced by the first projection 1R1(" + 1 1* X 
1R1" + 1 � 1R1(" + 1 ,* ; however, one must reconcile the evident difference in the 
equivalence relations � and � '. Observe that if S" c 1R1(1I + 1 1* is the usual 
unit sphere, then one can alternatively describe RP" as the quotient S"I '" , 
where x' '" x E S" whenever x' = ax for some a E 1R1* as before, and since x 
and x' are both unit vectors, one either has a = 1 or a = - 1 ; that is, in this 
description of RP" one can replace the group GL( l , IR1) = 1R1* by the subgroup 



8. The Homotopy Classification Theorem 1 47 

O( 1 ) = [ + I . - I ] c [R* .  Thus E" = S" x [R" + I / � ,  where (x', y') � (X, Y) E  
S" x [R"+  I whenever (x', y' )= (ax, ay) for some a E 0( 1 ), and similarly E' = S" x 
[R" + I ;: � ', where (x', y') � '  (x, Y) E S" x [R" + I whenever (x', y' ) = (ax, (/ - I y) 
for some (/ E O( I ), the projections E" � RP" and E' � RP" both being 
induced by the first projection S" x [RII + I � S". Since a- I = a for both 
elements (/ E 0( 1 ), it follows that E" � RP" and E' � RP" are the same 
coordinate bundle, hence that r (RplI ) Efl 1: 1 = ( 11 + l )')t� '  as claimed. 

8. The Homotopy Classification Theorem 

One can replace the canonical real m-plane bundle y: over the Grassmann 
manifold Gm([Rm + ,, )  E &d by a corresponding real m-plane bundle ym over the 
Grassmann manifold Gm( [R x, )  E !]d. We shall show that if � is any real m-plane 
bundle whatsoever over an arbitrary base space X E flJ, then � is the pull back 
fym of ym along a map X � Gm( [R x ) that is uniquely determined up to 
homotopy. For any real m-plane bundle � over a compact space X E :!J (or 
over a finite-dimensional simplicial space X = IKI E ;JA, or over a smooth 
manifold X E JI c .'iI), one can substitute an appropriate finite-dimensional 
Grassmann manifold Gm([Rm + lI ) for Gm( [R x ) ;  the homotopy uniqueness of 
X � Gm( [R x  ) is then replaced by an "ersatz homotopy uniqueness" of the 
corresponding map X --> Gm([Rm + " ). In the latter cases it follows for some 
11 > 0 that there is an n-plane bundle IJ over X for which � Efl IJ = em + 11. 

The real linear space [Ra was defined in § 1 .5 as the direct limit lim,,� x, [R", 
in the weak topology ; elements of [R "  are sequences of real numbers that 
contain only finitely many nonzero entries. I t  will be useful, although not 
essential, to regard elements x E [R'" as infinite column vectors 

for evident typographical reasons we shall occasionally abandon this con
vention. The Grassmann manifolds Gm([Rm + " )  and Gm([ROC ) were both defined 
in Definition 1.7. 1 ; by Proposition 1 .7.5 they both belong to the category flJ 
of base spaces. Briefly, if ([Roc )m* is the set of ordered m-tuples (x b . . .  , xm) of 
linearly independent vectors x I , . . .  , Xm in [R'X , then there is an equivalence 
relation � in ( [R xy'* with (x b . . . , xm) � ( .1' 1 ' . . .  , .I'm) whenever (x I ,  . . .  , xm) 
and ( .I' I - . . .  , .I'm) span the same m-plane in [R x ,  and one sets Gm([R oo )  = 
([Rx )m* I � in the quotient topology. As in the previous section, the relation 
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(X I " " , Xm) - (Y I , . . . , Ym) is the same as requiring that (X I , " " Xm ) =  
( Y l - . . . , Ym)(a�) for a unique invertible m x m matrix (a�) E GL (m, IR); 
equivalently, (X l - " " xm) - ( Y I , " " Ym) E (IROCl)m* whenever ( Y I " ' " Ym) = 
(x I ,  . . .  , xm)(a�) - 1 for a unique (a�) E GL(m, IR). 

We mimic the construction of the canonical m-plane bundle y: over 
Gm(lRm +n), which will lead to the corresponding m-plane bundle I'm over 
Gm(IROC» . Elements of the product space (IROCl)m* x IRm are of the form 

We write ((X " . . .  , x.), C)) � ((Y" . . . , y.), C)) 

for the same (a�) E GL(m, IR), and we let E� denote the quotient space 
(IROCl)m* x IRm/:::::: in the quotient topology. As in the finite-dimensional case, 
if 

in (lRe'T* x IRm, then (X I ,  . . .  , xm) '" (Y I , " " Ym) in (lRoc)m*, so that the first 
projection (1R"')m* x IRm � ( lRoo)m* induces a projection EOC � Gm(lRx ) ;  
as before, the preceding hypotheses imply t1 Y I + . . . + rm Ym = S I X I + . . .  + 
smxm E lRoc, so that elements of EOC may be regarded as pairs (nOC(e), e) in which 
e is a point Si x I + . . . + xmxm in the m-plane n""(e) c IRcr, spanned by 
(X l - . . . , xm)· 
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8.1 Lemma : The projection ECk � Gm(�cx,) is a coordinate bundle with 
structure group GL(m, �) and jiber �m, representing a real m-plane bundle 
over the Grassmann manifold Gm(�x'). 
PROOF : One constructs local trivializations E l  Vi l . . . im � Vil  . . .  im X �m 
with resulting transition functions Vi > ' "  im n Vi! " . jm � GL(m, �) that 
consist of invertible m x m matrices exactly as in the proof of Lemma 7. 1 ;  
although smoothness of the latter entries is not defined, one easily verifies 
that they are continuous, as required. 

" co  
8.2 Definition : The coordinate bundle E'· --> Gm(�c>:; ) of Lemma 8 . 1  
represents the universal real m-plane bundle ym over the Grassmann manifold 
Gm(� X ). In the case m = 1, for which G l (�X ) = RP''", the coordinate bundle 
E" � Gl (�oc )  of Lemma 8 . 1  represents the universal real line bundle over 
the real projective space Rpoc. 

We now embark upon a sequence of lemmas that will lead to the main 
theorem of the section. They will be formulated in the following terminology. 

8.3 Definition : Let E � X be a coordinate bundle with structure group 
GL(m, �) and fiber �m over a base space X E �, representing a real m-plane 
bundle over X. A Gauss map is any map E � �oo that restricts to a linear 
monomorphism Ex � �OC, for the fiber Ex c E over each x E X. 

Morphisms of arbitrary families of fibers were characterized in Definition 
1 1 . 1 . 1 ,  and coordinate bundles are merely locally trivial families of fibers. I n  
particular, for the structure group GL(m, �) and fiber �m, a morph ism from 
the coordinate bundle E � X of Definition 8.3 to the coordinate bundle 
E" � Gm(�" ) of Definition 8.2 is a commutative diagram 

E � E" 

.j j .' 
X f � Gm(W ) 

such that for each x E X the restriction Ex � Ej(x) is a linear isomorphism 
of real n-dimensional vector spaces. 

8.4 Lemma : Given Cl coordinate bundle E � X as in Dejinition 8.3, there is 
a one-to-one correspondence between Gauss maps E � �w and morph isms " ,,� from E -> X to ECJ --> Gm(�oc ). 
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PROOF : Let E � jReo be a Gauss map for the given coordinate bundle. Then 
for any e E E the fiber E,,(e) over nee) E X is mapped isomorphically onto an 
m-dimensional subspace g(E,,(e)) c jR <X, , and e E E is itself mapped into a 
point gee) E g(E,,(e)). Since elements of Gm(jRoo)  are m-planes in jR<X' ,  one can 
define X � Gm(w)) by settingf(x) = g(Ex) for each x E X, and since elements 
of the fibers E fIx) over f(x) E Gm(jRoo) are points of the m-plane g(Ex) c W < ,  
one can define E !.. EOO by setting fee) = (g(E,,(e)), g(e) ) for each e E E. The 
resulting commutative diagram 

E j EOC 

·1 j ,. 
X f • Gm(IR<X' )  

i s  the corresponding morphism of coordinate bundles with structure group 
GL(m, jR) and fiber jRm. Conversely, suppose that one is given such a morphism 
of coordinate bundles. Then the composition E � X � Gm(IRCfJ) carries any 
e E E into an m-dimensional subspace fenCe) ) c lRoo, and by commutativity 
of the diagram defining the morphism one has fee) E fenCe) ) ;  the composition 
E !.. fenCe) ) c Wo is itself the corresponding Gauss map E � lRoo . 

In the next two lemmas we shall show for any Gauss maps E � jRC£ 
and E � jR<X' that there i s  a Gauss map E x [0, 1 ]  � IR<L for the coordinate 
bundle E x [0, 1] � X x [0, 1 ], such that g l E  x {o} = go and such that 
g I E x { 1 }  = g l . We temporarily write elements of IROO as row vectors rather 
than column vectors, for typographical reasons. 

8.5 Lemma : Let E � X represent a real m-plane bundle over a base space 
X E f!J, let E � jR>O  be a Gauss map carrying any e E E into (go(e), g ' (e), 
g2(e), . . .  ) E jRoo, and let E � jROO be the Gauss map carrying any e E E into 
(0, gO(e), 0, g l (e), 0, g2(e), . . .  ) ;  then there is a Gauss map E x [0, 1 ]  � jRX for 
the coordinate bundle E x [0, 1 ]  � X x [0, 1 ], carrying any point 
(e, t) E E x [0, 1] into (1 - t) go(e) + tg l(e) E jRoc, .  
PROOF: The map g is trivially linear on each fiber (E x [0, 1 ] )(X.I)' and the 
restrictions g l E  x {O} and g l E  x { l }  are monomorphisms since go and g l 
are Gauss maps ; it remains to show for any t E (0, 1 )  that the restriction 
g I E x { t }  is a monomorphism. Suppose that gee, t) = ° E IRa: for some 
e E E and some t E [0, 1] such that t ¥- O  and 1 - t ¥- 0. The vanishing of 
the Oth entry of gee, t) would imply that gO(e) = 0; hence the vanishing of the 
first entry of gee, t) would imply that g l (e) = 0; hence the vanishing of the 
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second entry of g(e, t) would imply that g2(e) = 0 ;  and so on, which would 
imply the contradiction g(e) = 0 E [Ra: . 

8.6 Lemma : Let E -::. X represent a real m-plane bundle over X E :14, and 
let E � [RX and E � [ROC be any Gauss maps. Then there is a Gauss map 
E x [0, 1] ..; [RX for the coordinate bundle E x [0, 1 ]  � X x [0, 1 ] ,  such 
that g l E  x to} = go and g l E  x { l }  = g l ' 

PROOF : For any e E E let go(e) = (g8(e), gb(e), g6(e), . . .  ) and let gt(e) = 
(g?(e), g l (e), gi(e), . . .  ). By Lemma 8.5 one can replace go by a Gauss map 
E � RX with go(e) = (0, g8(e), 0, gb(e), 0, . . . ), and one can similarly replace 
g l by a Gauss map E � [Ret: with gde) = (g?(e), 0, g J (e), 0, gi(e), . . . ). There 
is then a Gauss map E x [0, 1 ] .! [R C< given by setting g(e, t) = ( 1  - t)go(e) + 
tg t (e) for any (e, t) E X x [0, 1] , for which g l E  x to} = go and g l E  x { l }  = 

g l , as required. 

8.7 Lemma : Let X � Gm([Rx ) and X � Gm([R<X )  be maps of an arbitrary 
ha se space X E .!J8 into the Grassmann manifold Gm([R"'), and let f�ym and 
tl I'm be the corresponding pullbacks over X of the universal m-plane bundle 
I'm over Gm(W' ) ;  then f�},m = tl I'm if and only if fo is homotopic to fl ' 
PROOF: If .f� is homotopic to fl , then f�)ym = ttI'm by Proposition 1 1 .4.7. 
Conversely, if 16�,m = ll i,m, then there is a coordinate bundle E -::. X that 
represents both f�)),m and ll l'm, and by Lemma 11. 1 .3 there are morph isms 

E f" E' E f l  ) EJ ) 

. j j .. and . j j., 
X 10 ) Gm([R" ) X Il ) Gm([R" ) 

f "  ,, '  go d g l  b h rom E --> X to E' ----> Gm([RL ). Let E -> [RX an E --> [Ret: e t e corre-
sponding Gauss maps, as in Lemma 8.4. By Lemma 8.6 there is then a Gauss 
map E x [0, 1 ]  ..; [R x for the coordinate bundle E x [0, 1 ]  � X x [0, 1 ]  
such that g l  E x ( O )  = go and g I E x { I }  = g l ' and Lemma 8.4 provides a 
corresponding morphism 

E x  [0, 1 ]  ) E" 

« ;' j j . <  
X x  [0, 1 ]  f ) Gm(W' ). 
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Since g I E x {O} = go and g I E x [ I }  = g 1 ,  the restrictions 

E x lO} f" � EX E x { 1 }  f l  I E'x 

. j j .. and 
.j j .. 

X x to} � Gm([RJ ) X x ( l }  I1 � Gm(W ) 

are the given morph isms, so that X x [0, 1 ] L Gm([RQ)  is a homotopy from 
f� to f1 ' 

8.8 Lemma : Let E � X represent any real m-plane bundle � over a base space 
X E :1d ;  thell there is at least one Gauss map E .!.  [RC>: . 

PROOF : According to Proposition 1 .8.3 any base space X E :1d is homotopy 
equivalent to a paracompact hausdorff space X' E fJl with a countable open 
covering { V� I n E N } such that each connected component of each V� is 
contained in a contractible open set in X'. Let X L X' be the homotopy 
equivalence, with homotopy inverse X' .!!.. X, and let �' be the pullback g!�. 
Since X' is paracompact, one has t�' = fV� = � over X by Lemma 1 1 .4.5, 
so that if E' � X' represents �', then there is a morphism 

E ------->� E' 

. j 
X ______ �J ____ �� X' 

of coordinate bundles, as in Lemma n . l .3. Since each restriction Ex � Ej(x) 
is an isomorphism of real m-dimensional vector spaces, the composition 
E ..!.  E' � [ROC! of f with any Gauss map E' � [ROC for E' � X' will be a Gauss 
map E � WC, for E � X, as desired. 

Thus it remains to construct a Gauss map E' � [Roc ; that is, one may as 
well suppose at the outset that E � X itself represents a real m-plane bundle 
bundle � over a paracompact hausdorff space X E fJl with a countable locally 
finite open covering { V  n I n  E N } such that each connected component of each 
VII is contained in a contractible open set in X. Since any fibre bundle over 
any contractible space is trivial, by Proposition 1 1 .3 .5, each restriction � I V n 
is trivial, and one chooses a trivialization E l  V'I � Vn x [Rm for each 
n E N. Since X is paracompact, there is a partition of unity [hil i n E N} 



8. The Homotopy Classification Theorem 1 53 

subordinate to the countable locally finite open covering ( Un I n E N ] ,  and 
there is then a well-defined map E �" E r j h"'I',, . 

( !Rm)" = !R'" carrying any e E E 
into the sequence 

( lzo(rr(e) )'Po(e), h 1 (rr(e) )'P t ie), h2(rr(e) )'P2 , • • •  ) E ( !R"') X ;  

trivially the map Ln E  N hn'P n is itself a Gauss map g. 

8.9 Theorem (Homotopy Classification Theorem) : Any real m-plane bundle 
� (wer a hase space X E .� is (/ pullhack t/m of the universal real m-plane 
hundle /n over Gm( !R '  ) E dd, alony a map x L  Gm(!R" ) that is unique up to 
homotopy. 
PROOF : Let E � X be any coordinate bundle representing �. By Lemma 8.8 
there is a Gauss map E � !R Y ,  so that Lemma 8.4 provides a morphism 

E • EX 

. j j . ' 
X J • Gm(!R X )  

to the coordinate bundle E" � Gm(!Rx ) representing ym ; hence � = frm 
for the map X L Gm(!Rx ), by Corollary 1 1 . 1 . 1 3. The uniqueness of f up to 
homotopy was proved in Lemma 8.7. 

The homotopy classification theorem justifies the extravagant language 
of Definition 8.2 : the m-plane bundle ym is indeed universal. The base space 
Gm(!R ' ) of /' is itself dignified by a suitable name : it is the ciassi/}'iny space 
for real m-plane bundles. Specifically, according to the homotopy classifi
cation theorem there is a one-to-one correspondence between the real m
plane bundles over any base space X E .OJ and the set [X, Gm( !RV )] of homo
topy classes of maps X --+ Gm([ Rx ). 

In the proof of the next result we use an alternative description of the 
coordinate bundle E X  � Gm(!R X )  of Lemma 8. 1 ,  which represents the 
universal real m-plane bundle rm. The total space EX is the quotient (!R :X  )m* x 

!Rml :::: , as before ; however, there is another way of expressing the equivalence 
relation :::: . One has (r" , . . . , x.i, C)) � (I J'" ' ' ' '  y.i, C)) 
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in (IR X )"'* X IR'" if and only if XI /\ . . .  /\ Xm = aY I /\ . . .  /\ Ym E I\m IR x ,  for some 
a E IR*, and S I X I + . . .  + smx", = t lY I + . . .  + tmYm E 1R 1 . The subspace E f  * 
of nonzero fibers in EX is then the quotient (lRx )m* x IRm* / � ,  for the same 
equivalence relation � .  It follows that one can use a change of basis to 
represent any equivalence class 

in the fashion 

for the (nonzero) vector Ym = S I X I + . . . + smxm E IR :X * . Thus E X *  consists 
of pairs erm' P m - d for Ym E IR"'*, where P m - I is the (m - l )-plane spanned 
by Y l ' . . .  , Ym - 1 ; that is, Pm - 1 is any (m - I )-plane not containing Ym ' 

8.10 Proposition : For any m > I let EOC � Gm(IR'X' ) represent the universal 
real m-plane bundle ym, and let EX * be the space of nonzero jibers in E X .  Then 
there is a homotopy equivalence Gm- 1 (lRcYJ) � EX * such that the composition 
Gm- I ([R''' ) � Ex* � Gm(IRL)  classifies the Whitney sum ),m - I Et)!;1 over 
Gm- l (IR'" ) . 
PROOF : Let lRo be the subspace of all vectors in IR CXo with Oth entry 0 E iR ;  
then the inclusion IRQ  c IROO  i s  a homeomorphism whose inverse is the 
obvious translation of coefficients. Since the inclusion is linear, there is an 
induced inclusion Gm- I (IRQ) ..!.. Gm - 1(IROO) that is also a homeomorphism. 
If Yo E [R'f *  is the fixed vector with Oth entry I E IR and all other entries 
o E IR, there is a map Gm- I (IRQ') � E" * that carries any (m - I )-plane 
P m - l E  Gm - I (lRo' ) into the pair ( Yo , P m - d. 

Let Gm- I (IRCL)  � EX * be the composition ho n ; - 1 . The second projection, 
mapping ( Ym , Pm _ d E E"'* to Pm - I E Gm- I (IRX ), is a map Em* ..!:. Gm - I (IR 'X' ) 
for which the composition k c h  is trivially the identity map on Gm - 1 (IR X ). 
To show that h u k is homotopic to the identity map on Em* one lets 
Em* x [0, I] !.. E"'* carry ( (  y"" Pm _ d, t) into ( ( I  - t) Ym + tyo, Pm - d. Then 
F 0 is the identity map on Em* and F I is the composition h 0 k ;  thus h is a 
homotopy equivalence. 
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Since IT '  h is induced by the inclusion lR(m - 1 )* -> IRm* carrying 
( Y I ' . . . , Ym - t l into ( Yo ,  Y I ' . . . , Ym - d, which induces a (linear) isomorphism 

( t°, t I Y I + . . . + tm - I Ym _ t l -> ( t°yo + t l Y I + . . .  + tm - I Ym _ t l 
over each 

[(Yb ' "  , Ym - t l] H [( Yo , Y I " " , Ym - t l], 

it follows that there is a pull back diagram 

E 7l" ;<'  h 

. j 
Gm - I ( W ) 1t .l- h 

E '· ) . 

j . < 
) Gm(IR' ) 

in which the left-hand vertical arrow represents e l  EEl ym - 1 ( = ym - I EEl e l ). 
Hence (n'" u h) 'ym = ),m - I EEl e l ; that is, na " h  classifies ym - l EEl e l ,  which 
completes the proof. 

Proposition 8. 1 0 omits the case m = 1 ;  here it is. 

8.1 1  Proposition : If E X  � RP"" represents the universal real line bundle 
y l ,  then the space ECJ * of nonzero .libers in Ea' is homeomorphic to IRw* ; 
furthermore, lRoc' *  is contractible. 

PROOF : This time £X' *  is a quotient 1R"4  x IR*/� with (x, s) � ( y, t) if and 
only if sx = ty E IR" * ;  that is, Ea� *  = IR Cl) *. Now let lRoo* � IROO* be the 
obvious shift such that for every x E IR"�* the initial coefficient of j(x) E lRoc *  
is 0 E IR. One easily verifies that ( 1  - 2t)x + 2tj(x) E lRoo*  for every (x, t) E 
IR" * x CO, !], and, if Xo E IRG( * has initial coefficient 1 E IR, then (2t - l )xo + 
(2 - 2t)j(x) E IR"' *  for every (x, t) E IR""'*  x [! , 1 ] . Hence there is a contraction 
IR X' *  x [0, 1 ] -> IR" * to Xo E IR"' * .  

There are other homotopy classification theorems that apply to restricted 
categories of base spaces, or to vector bundles other than the real m-plane 
bundles of Definition 1 . 1 .  Here is one example of such a theorem ; there will 
be other examples later. 

8.12 Proposition : For any compact base space X E :JB  and any m > ° there 
is an n > ° with the following property : any real m-plane bundle � over X is a 
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pullback fy: of the canonical m-plane bundle y: over the Grassmann manifold 
Gm(lRm +n ) E 24, along some map X � Gm(lRm + n ). 
PROOF : Let E � X represent �. Since X is compact, one can replace the 
countable open covering { Un I n E N } used in Lemma 8.8 by a finite open 
covering { V l '  . . . , Up} of X, with the same properties. In this way one 
obtains a Gauss map E � IRmp c IRa: , and for n = m(p - 1 )  the evident 
analog of Lemma 8.4 then provides a corresponding morphism 

E • E' 

. j j . 
X f • G"'(lRm + "), 

8.13 Corollary : Let � be any real m-plane bundle over a compact hase space 
X E 9lJ ;  then for some n > 0 there is an n-plane bundle '1 over X such that the 
Whitney sum � EB '1 is the trivial bundle em+ n  over X. 

PROOF: Recall that Gm(lRm + lI) consists of m-planes V c:  IRm+n, so that if 
V.L C IRm+n is the orthogonal complement of V with respect to a fixed inner 
product on IRm+ n, then there is a diffeomorphism Gn([Rm + n) .!!. Gm(lRm+n) 
carrying V.L into V, as one easily verifies. Hence the total space of the bundle 
g Jy� over Gm(lRm + n ) consists of pairs (n(g(e') ), e') in which n(g(e') ) is an m
plane V c  IRm+ n and e' is a point of the orthogonal n-plane V.L C IRm+ n. 
Since the total space of y� consists of pairs (n(e), e) in which n(e) is an m
plane V c  IRm+ n and e is a point of V, it follows that the total space of 
y� Efl gJy� consists of pairs (n(e), e + e') in which nee) is an m ·plane V c IRm+ n 
and e + e' is any point of IRm +n ; this is precisely the description of the trivial 
bundle em+ n over Gm(lRm+n), so that y: EB g Jy� = em+ n• Consequently if � = 
ty�, as in Proposition 8 . 12, then one can set '1 = tgly� to conclude that 

� Efl '1 = t(y� EB g!y�) = tem + n = em + n, 
as desired. 

Proposition 8 . 12 lacks one feature of the homotopy classification theorem 
(Theorem 8.9). The classifying map X !.. Gm(lRoc) of Theorem 8.9 is unique 
up to homotopy ; but the finite classifying map X !.. Gm(IR", + n) of Proposi
tion 8. 1 2  is in general not unique up to homotopy. Fortunately there is a 
simple remedy in the latter case. 
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Let E � Gm(Rm+n) represent the canonical m-plane bundle y;:' over 
Gm([Rm +n ), and for any n" � n let E" � Gm([Rm +n' ') represent the canonical 
m-plane bundle y;:'" over Gm([Rm + n' ' ). The usual linear inclusion [Rm+ n ---+ [Rm + n" 

then provides a commutative diagram 

E In,tI" 

.j 
Gm([Rm + 11 ) �J,l . 'I " 

l E  

j . 
I Gm( [Rm + 11") 

that is a (linear) isomorphism in each fiber, so that gn,n" is a finite classifying 
map for y;:' itself; that is Y;:' = g� ,n"y;:'" , Clearly if n � n' � n", then one has 

d m ! ! m Th d gn' ,n" . gn,n' = gn,n" an Yn = gn,n,gn' ,n"Yn' " e maps gn,n' , g'n,n" , an gn' ,n" are 
finite classifying extensions, 

8.14 Proposition (Ersatz Homotopy Uniqueness Theorem) : Let � be a real 
m-plane bundle over X E :Jl  such that � = toY;:' and � = tl y� for maps 
X � Gm([Rm+n) and X � Gm([Rm+ n') . Then there is an n" � max (n, n '), 
with finite classifying extensions gn,n" and gn' ,n" , respectively, such that the 
compositions 

and 
X � Gm([Rm +n') � Gm([Rm+ n' ') 

are homotopic maps from X to Gm([Rm + n' '), for which 
( f' ! m ;; ( f' )! m gn,n" c 0) YII" = " = gn' ,n" 0 1 Yn' "  

PROOF : One may as well assume that n' � n, in which case one sets n" = 

m + 2n' ; then m + n" = 2(m + n') � 2(m + n), If E � X represents �, then 
the maps fo and f, are equivalent to finite-dimensional Gauss maps E ---+ 
[Rm+ 1I C [Rm +n' and E ---+ [Rm+n', respectively, so that the compositions gn,n" " fo 
and gll',n" I, both correspond to finite-dimensional Gauss maps E ---+ [R2(m + n' ) 
in which the last m + n' entries are identically zero, The latter condition 
provides just the right amount of elbow room for obvious finite-dimensional 
analogs of Lemmas 8.5 and 8.6 ;  the homotopy from the composition 
gll,II" '� Io to the composition gn' ,II" 0 f, is then constructed as in Lemma 8,7, 

Proposition 8. 14 was discovered in 1 949, among the unpublished papers 
of the late Friedrich Adolph Karl Ersatz. 
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9 .  More Smooth Vector Bundles 

We prove that any vector bundle whatsoever over a smooth manifold 
can be represented by a smooth coordinate bundle, as announced in §S. 

The first step is a simplicial analog of Proposition 8 . 12, which does not 
require compactness. 

9.1 Proposition : Given natural numbers m > 0 and q > 0, set n = mq. Then 
any real m-plane bundle � over any q-dimensional metric simplicial space IK I  
is a pullback ty� of the canonical m-plane bundle y� over the Grassmann 
manifold Gm(�m+ n), along some map IK I  L Gm(�m+ n). 

PROOF : Since there is a canonical homeomorphism IK' I  � IKI , for the first 
barycentric subdivision K' of the simplicial complex K, one may as well 
regard � as a bundle over IK' I . According to Proposition l.2. 1 ,  I K' I is of 
first type. Specifically, since K is q-dimensional, there is a covering 
{ Vo,�}�, . . .  , { Vq.y}y of IK' I  by q + 1 families of contractible open sets 
V p.P c IK' I ,  the sets in each family { V  p,p} p being mutually disjoint. Let 
V p = Up V p,P c I K' I for each p = 0, . . . , q, so that { V  0 ,  . . . , Vq} is a finite 
open covering of IK ' I .  Since any fibre bundle over a contractible space is 
trivial, by Proposition Il.3.5, it follows that each restriction � I V p,P is trivial, 
and since each family { V  p,p} fl is mutually disjoint, it follows that each 
restriction � I V p is trivial. Thus if E � IK' I represents �, then one can choose 
q + 1 specific trivializations E l  Vo � Vo X �m, . • .  , E l  Vq � Vq X �m 
and a partition of unity {ho , . . . , hq} subordinate to { V 0 ,  . . .  , V q} to obtain 

ho'l'o + " . + hq'l'q ( + 1 ) '  8 h I f a Gauss map E , Rm q as 10 Lemma 8 . .  T e ana og 0 
Lemma 8.4 then provides a corresponding morph ism 

E 

. j 
IK ' I J 

where E' � Gm(�m + n )  represents "I;:'. 

, E' 

j . 
, Gm(�m+ " ), 

Since Proposition 1 .4.6 (Dowker [ I ] )  provides a homotopy equivalence 
IK lm � IK lw  from any metric simplicial space IK lm to its weak counterpart 
IK lw ,  Proposition 9. 1 applies equally well to q-dimensional weak simplicial 
spaces. Hence, one may as well omit the metric condition from the statement 
of Proposition 9. 1 .  
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9.2 Corollary : Let � be any real m-plane bundle over any finite-dimensional 
simplicial space IK I ;  then for some n > 0 there is an n-plane bundle IJ over IK I  
such that the Whitney sum ' EB IJ is the trivial bundle em +n over IK I . 
PROOF : Substitute Proposition 9.1 for Proposition 8. 1 2  in the proof of 
Corollary 8. 1 3. 

If the simplicial space IK I in Corollary 9.2 is q-dimensional, then Prop
osition 9.1 permits one to set n = mq. However, there is also a direct proof, 
using a general position argument, in which one can set n = q. 

The second step toward the main theorem of this section combines 
Proposition 9. 1 with Theorem 1 .6.7 (the Cairns-Whitehead triangulation 
theorem) and Theorem 1.6. 19 ( that any map of smooth manifolds is homo
topic to a smooth map) ; one also uses Proposition 1.7.3 (that the Grassmann 
manifold Gm(\Rm+ n) is a smooth closed mn-dimensional manifold). 

9.3 Proposition : Given natural numbers m > 0 and q > 0, set n = mq. Then 
any real m-plane bundle � over any smooth q-dimensional manifold X is a 
pullback fl l'�1 of the canonical m-plane bundle y: over Gm(\Rm +n) along a 
smooth map X � Gm(\Rm+ n). 

PROOF : By the Cairns-Whitehead theorem X is homeomorphic to a q
dimensional metric simplicial space IK I ,  so that by Proposition 9.1 � is a 
pull back f�y: along some map X � Gm(\Rm + n). By Proposition 1 1 .4.7 one 
can replace fo by any map X � Gm(\Rm +n ) homotopic to fo , and by Theo
rem 1 .6. 19 one can choose a smooth such map .f� . 

9.4 Corollary : Let � be any real m-plane bundle over any smooth manifold X ;  
then .ll)r some n > 0 there is an n-plane bundle IJ over X such that the Whitney 
sum � EB IJ is the trivial bundle em + n over X. 
PROOF : Substitute Proposition 9.3 for Proposition 8. 1 2  in the proof of 
Corollary 8. 1 3. 

If the smooth manifold X in Corollary 9.4 is q-dimensional, then Prop
osition 9.3 permits one to set 11 = mq. However, there is also a direct proof, 
using the transversality theorem, in which one can set n = q. (See pages 
99- 10 1  of M. W. Hirsch [4], for example.) 

The main result of this section is another corollary of Proposition 9.3. 

9.5 Theorem : Given a smooth manifold X, any real vector bundle � over X 
can be represented by a smooth coordinate bundle E � X ;  that is, any real 
vector bundle over X is itself smooth, as in Definition 5.2. 
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PROOF : I f  � is an m-plane bundle, then � = fY� for some n > 0 and some 
smooth map X � Gm([Rm + n), by Proposition 9.3. Since y� is smooth by 
Lemma 7. 1 ,  it follows from Proposition 5.3 that its pull back fY� is smooth. 

1 0 . Orientable Vector Bundles 

The familiar parlor-trick "one-sidedness" of the M6bius band E reflects 
the failure of the tangent bundle !(E) to be orientable, in the sense described 
in this section. To define orientability of any real m-plane bundle � over any 
X E !JI one first constructs a real line bundle !\ m � over X, from which one 
obtains a fiber bundle o(�) over X with structure group 0( 1 )  ( = 1'/2) and 
fiber SO ( = 1'/2) ; the bundle � is orientable if and only if o(�) is trivial. Fol
lowing the construction of o(�) we shall show that � is orientable if and only 
if it is of the form fym for a map X 1. Gm(IRoc,) that factors through the total 
space of the bundle o(ym) over Gm([Rcx,). Finally we show that the canonical 
line bundle yl over Rpl ( = Si )  is not orientable, and that the tangent bundle 
!(E) of the M6bius band E is not orientable. 

Let E .::. X represent a real m-plane bundle � over X E :?J, and for any 
natural number p > 0 let E x ' . .  x E n x · . .  x n ) X X . . . x X be the product 
of p copies of E .::. X. The pull back of the product along the diagonal map 
X � X x . . .  x X is a coordinate bundle E' � X with fiber [Rm x . . . x [Rm 
and structure group GL(m, [R) x . . .  x GL(m, [R), and we recall from Propo
sition 2.5 that one can construct the Whitney sum � EB . . .  EB � and product 
� ® . . .  ® � by applying the morph isms (rEB, <l>EB) and ( r®,  <I>®) to E' � X ;  
these bundles have structure groups GL(mp, IR), GL(mP, [R) and fibers 
IRm EB '  . .  EB [Rm, IRm ® . . . ® [Rm, respectively. We now modify E' � X for 
another purpose. 

Let G L(m, [R) itself act on the left of [Rm x . . . x [Rm, with g(x I '  . . . , x p) = 
(gx l ,  • . •  , gxp) for every g E GL(m, [R) and (x l o  . . .  , xp) E IRm x . . .  x [Rm. I f  
the original coordinate bundle E .::. X is  defined with respect to a covering 
{ Uj l i E I}  and transition functions Uj n Uj � GL(m, IR), one can then 
construct a new coordinate bundle E" � X with respect to { U  j l i E  I }, 
with fiber [Rm x . . . x [Rm and structure group GL(m, [R): one uses the same 
transition functions !/If and the preceding action of GL(m, [R) on [Rm x . . .  x [Rm. 

Now let [Rm x . . .  x [Rm � !\p [Rm be the map carrying (x 1 0  • . .  , xp) E 
IRm x . . .  x [Rm into the exterior product x I 1\ • . .  1\ X p E !\p [Rm, and let 
GL(m, [R) � GL«;), [R) be the group homomorphism carrying g E GL(m, IR) 
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into that element of GL( (;), [R) with value gx 1 /1. . . . /I. gxP on any x 1 /1. . . . 
/I. xp E /\p [Rm. The pair (r, <1» is a morphism of transformation groups in 
the sense of Definition 1 1.2.6, so that by Proposition 1 1.2.7 one can apply 

,," (r, <1» to the coordinate bundle El' -----+ X to obtain an (;)-plane bundle over 
X, which is independent of the coordinate bundle E � X chosen to represent 
the m-plane bundle �. 

10.1 Definition : Given an m-plane bundle � over X E fJI, the pth exterior 
power /\p � is the preceding (;)-plane bundle over X. 

If m = p, then /\ m � is a line bundle over X, and since gx 1 /I. • • •  /I. gXm = 

(det g)x 1 /I. • . •  /I. Xm for any (x 1 , . . . , Xm) E [Rm x . . .  x [Rm the group homo-
morphism GL(m, [R) ':' GL( 1 ,  [R) merely carries g E GL(m, [R) into its deter
minant det g, acting via scalar multiplication on /\ m [Rm. 

Let (/\ m [Rm)* C /\ m [Rm consist of the nonzero elements y E  /\ m [Rm, 
observe that (/\ m [Rm)* is preserved under the action of G L( 1 ,  [R), and let '" 
be the equivalence relation in (/\ m [Rm)* with y' -- y if and only if y' = ay for 
some a > O. The canonical surjection (/\ m [Rm)* � (/\ m [Rm)* j -- maps 
(/\ m [Rm)* onto a space (/\ m [Rm)* j -- withjust two elements, and ifGL + ( 1 ,  [R) c 
GL( 1 ,  [R) is the subgroup consisting of multiplications by positive real num
bers the canonical epimorphism GL( 1 ,  [R) .s GL( 1 ,  [R)jGL + ( 1 ,  [R) has image 
Zj2, which acts on (/\ m [Rm)* j -- by interchanging the two elements. The pair 
(r', <1>') is another morph ism of transformation groups in the sense of 
Definition 1 1 .2.6, carrying the transformation group GL(1 ,  [R) x (/\ m [Rm)* -+ 
(/\ m [Rm)* into the transformation group Zj2 x (/\ m [Rm)* j '" -+ (/\ m [Rm)* / "' . 

10.2 Definition : Let � be any real m-plane bundle over any X E fJI, and let 
(/\ m �)* be the fiber bundle with fiber (/\ m [Rm)* and structure group GL( 1 ,  [R), 
obtained from the mth exterior power /\ m � by removing the zero-section. 
The orientation bundle o(�) over X is induced by applying the preceding 
morphism (r', <1>') of transformation groups to (/\ m �)*, as in Definition 11 .2.8. 

There is another way of describing o(�), which we sketch. According to 
the linear reduction theorem (Theorem 11.6. 1 3 )  one can reduce the structure 
group GL(m, [R) of � to the orthogonal subgroup D(m) c GL(m, [R), and 
Proposition 3.4 provides a riemannian metric < ,  > for any coordinate 
bundle representing �. One easily alters < , >, if necessary, in such a way 
that the action of D(m) on each fiber Ex preserves the inner product 
Ex x Ex � [R ;  in fact, this is automatically the case if one uses < , > 
itself to reduce GL(m, [R) to D(m) c GL(m, [R), as suggested at the end of §3. 
Hence one can replace GL(m, [R) by D(m), and E by the subspace of fibers of 
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unit length, to obtain the sphere bundle associated to �, with structure group 
O(m) and fiber sm- ' . 

As part of Definition 10. 1 ,  we introduced a transformation group 
GL(m, IR) x (Rm x . . . x IRm) -+ IRm x . . .  x IR"', and we applied a morphism 
(r, <1» carrying any g E GL(m, IR) into det g E GL( 1 , IR) and any (x" . . . , x",) E 
IR"' x . . .  x IRm into the exterior power x , /\ . . .  /\ Xm E /\"' IR"' = IR ' ; in 
effect, however, we replaced IR"' x . . .  x IR"' by the subspace (IR"')"'* c IR"' x 

. . .  x IR"' of ordered bases of IRm. One can apply the same morph ism (r, <1» 
to the transformation group O(m) x (S"' - , )"'* -+ (S"' - ' t*, where (sm - ' )"'* c 
(IRmt* consists of orthonormal bases of IR"'; in this case (r, <1» carries any 
9 E O(m) into det 9 E O( 1 )  and any (x" . . .  , xm) E (S"' - , )m* into a point 
x, /\ . . . /\ x", in the O-sphere SO E IR ' . The orientation bundle o(�) of Defini
tion 10.2 is clearly the result of applying the preceding morph ism (C <1» of 
transformation groups to the sphere bundle associated to the given m-plane 
bundle. 

The preceding description ofthe orientation bundle o(�) suggests that one 
should regard its structure group as the orthogonal group O( 1 )  ( = 7L/2) and 
its fiber as the O-sphere SO ( = 7L/2). In any event, the coordinate bundle rep-
resenting o(�) will be denoted O(�) � X ;  it is the double covering of X 
associated to �. 

10.3 Proposition : Let X' � X be any map of base spaces, and let � be any 
real m-plane bundle over X. Then 0(1'�) = I'o(�) over X' ; that is, there is a 
map O(f) preserving the action of 0( 1 )  such that the diagram 

X' __ --"-f_---» X 
commutes. 

PROOF : Any pull back diagram 

E' ------�> E 

" I  I " 
X' __ --"---f -----+> X 

for � and I'� induces a corresponding pull back diagram for (/\"' �)* and 
1'(/\ m �)*, and one obtains the result by applying (ri, <1>'). 
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Observe that since the fiber of o(�) consists of two points, o(�) is trivial 
ifand only if there is a section X � O(�) of the coordinate bundle representing 
o(�). 

10.4 Definition : A real m-plane � is orientable if and only if the orientation 
bundle o(�) is trivial ; that is, � is orientable if and only if the mth exterior 
power 1\ m � is the trivial line bundle e l .  An orientation of � is a specific section 
X � O(�), which orients �. 

We shall later describe orientability of � more concretely in terms of the 
transition functions Ui n U i � GL(m, IR) for any coordinate bundle 
representing �. 

10.5 Proposition : Any orientation (J of a real m-plane bundle � over X E fJl 
induces an orientation (J' of the pullback f � of � along a map X' 1. X in fJl ;  
thus, if � is oriented, then so is any pullback f �. 
PROOF : We use the diagram of Proposition 1 0.3. For any x' E X' the point 
(J(f(x') )  E O(�) is the image under OU) of precisely one of those two points 
of O(f�) that project onto x', and one lets (J'(x') E OU! �) be that point. The 
composition X,� O(f ! �) 1t(J!� ) .  X' is the identity, by construction, and 
continuity of (J' is trivial. 

Since the total space O(�) of the orientation bundle o(�) of a real m-plane 
bundle � over X E f14 is a double covering of X, it is trivial to verify that O(�) 
itself belongs to fJl. Hence it makes sense to pull back bundles along the 
projection map O(�) � X; one can even pull � itself back along 1t(�) to 
obtain an m-plane bundle 1t(�)'� over O(�) E fJl. 

10.6 Proposition : !f O(�) � X represents the orientation bundle o(�) of a 
real m-plane bundle � over X, then the pullback 1t(�)'� is an orientable m-plane 
bundle over O(�), oriented in a canonical way. 
PROOF : The commutative diagram of Proposition 10.3 becomes 

O(n(�)'�) O(1t(�)) • O(�) 

.,.,,, ', , j j .", 
O(�) 1t(�) . X  

in this case. Let y be any point in the lower left-hand copy of O(�). The same 
point y in the upper right-hand copy of O(�) is then the image of precisely 
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one of the two points of O(n((f() whose projection under n(n(()'( )  is y, and 
one lets O"(y) E O(n(()'() be that point. The composition O(() � O(n«()'() 

,,(,,(
�)!�) , O«() is the identity, by construction, and continuity of 0" is trivial. 

We have observed that if ( is a real m-plane bundle over X E fJI, then 
O«() E fJI. In particular, if ym is the universal m-plane bundle over the Grass
mann manifold Gm(lRoo), as in Definition 8.2, then o(ym) E fJI. 
10.7 Definition : For any m > 0 let Gm(IROO) be the total space o(ym) of the 
orientation bundle o(ym) of the universal real m-plane bundle ym over Gm(IRCX ) ;  
that is, Gm(IROO) � Gm(lRoo) represents o(ym). The pull back n(ym)'ym over 
Gm(IROC ) is the universal oriented m-plane bundle ym. 

According to Proposition 10.6, ym has a canonical orientation. 

10.8 Proposition (Homotopy Classification Theorem) : Let ( be a real m
plane bundle over X E fJI. Then ( is orientable if and only if ( = !'r for some 
map X L Gm(IROO). 
PROOF : If ( = !'r, then ( is orientable by Proposition 10.5. Conversely, 
suppose that ( is any orientable bundle over X E fJ4, and let X � Gm(1R C$. ) 
classify ( as a real m-plane bundle, so that ( = f 'ym ; such an .f exists by 
Theorem 8.9. The pull back diagram of Proposition 10.3 is then of the form 

O(() OU) , Cm(\R" ) 

.," 1 1 ,,,-, 
X _----'--f_ ..... , Gm(IR'x ). 

Since any orientation of ( is a section X � O«() of the bundle o((), by defi
nition, the composition X � O«() � X is the identity, so that .f = 
n(ym) n O(f) " 0". If X 1. (jm(lRoc ) is the composition O(f) n 0", then ( = 
(n(ym) o .lhm = !,n(ym)'ym = !,ym as desired. 

Briefly, Proposition 1 0.8 asserts that ( is orientable if and only if it can 
be classified by a map of the form X 1. Gm(IROO) � Gm(IROC ), where Gm(IR"' ) 
is the double covering of Gm(lRoc,) with respect to ym. The map .1 is the oriented 
c/ass!lying map, determining a specific orientation of �. 

One can give direct constructions of Gm(IROO ) and the universal oriented 
m-plane bundle ym over ChIROO) that superficially resemble the correspond
ing unoriented constructions more closely than does Definition 1 0.7. 
According to Definition 1 .7. 1 the unoriented Grassmann manifold Gm(lRoc, )  
can be regarded as the quotient (lRoo)m* /- of (lRoo)m* by the equivalence 
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relation � with (x I ,  ' . , , xm) '" ( Y I '  . , . , Ym) whenever X I  /\ ' . .  /\ Xm = 
aY I /\ '  . ' /\  Ym E 1\ m IRa: for some a E IR*. If one replaces the latter condition 
by the requirement that a > 0, then the result is a new equivalence relation 
", '  for which one easily establishes (IROCo)m* / ", ' = Cm(IROO). Similarly, one can 
describe the total space EJc of the universal oriented m-plane bundle ym as a 
quotient IRm* x IRm/ � '  in which 

if and only if X /\ ' " /\ X = ay' /\ . . . /\ )' E I\mlR x, for some a > ° and 1 m 1 m ' , 
Si X I + . , , + smXm = t l Y I + ' . , + tmYm E lRac, .  The subspace Eoo*  of nonzero 
fibers in EX is then the quotient (1R" )m* x IRm*/� ', for the same equivalence 
relation � ', 

- it J:  -
10.9 Proposition : For any m >  I let E'" ----+ Gm(IROO) represent the universal 
oriented m-plane bundle ym, and let Eoo* be the space of nonzero fibers in ECL .  
Then there is a homotoPY equivalence cm - I (IR"' ) ! Eoo* such that the com
position Cm- I (IRX ) ! E "' * � Cm(IR"" )  classifies the oriented Whitney sum 
ym - I EB £ 1 over Cm - I (IRCX ). 

PROOF : The proof is virtually identical to that of Proposition 8. 1 0, using 
the preceding description of EX' � Cm(IROO )  in place of the corresponding 
description of E" � Gm(IR't ). (One also uses the property that if m is even, 
then £ 1 EB ym - I and ym - I EB £ 1 have opposite orientations.) 

Let � be any real m-plane bundle over any X E !!A, as before. The canonical 
involution of the double covering o(�) � X is the well-defined homeo
morphism o(�) ..:. o(�) that interchanges the two points of the fiber of o(�) 
over each x E X. If � is orientable, then for any orientation X .!:. o(�) the 
opposite orientation is the composition X � o(�) ; the resulting oppositely 
oriented m-plane bundle is usually denoted - �,  

Since Cm(W )  = o(ym), there is a canonical involution of Cm(IRCL), 

10.10 Proposition : If m is odd the canonical involution Cm(IR" ) ":'  Cm(IR X )  
is homotopic to the identity, 
PROOF : Let ( . . .  ; xr , xr + l ; " ' ) denote any element (xO, X I ; X2 , X 3 ; " ' ; 

X" Xr + I ; , , . ) E IR >  , where r is even, and let IRCL x [0, I ]  L IROC be the map 
that carries any ( ( . , . ; X" Xr+ I ; , . .  ), t) into 

( . , , ; Xr cos nt - Xr + I sin nt, xr sin nt + Xr- I cos nt ; , . , ) , 
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The restriction f l [Roc x { t} is a linear isomorphism for each t E [0, 1] ,  the 
restriction f l [Roc, x {O} is the identity, and the restriction f l [RCL' x { I }  
carries ( . . .  ; X" Xr+ l ; " ') into ( . . . ; - x" - Xr+ l ; " .). Hence if E � Gm([R'X ) 
represents the universal bundle I'm, then there is an induced homotopy 
E x [0, 1] !. E from the identity E -+ E to the map E -=-!.... E that carries 
each e E E,,(e) into - e E E,,( -e) , where n( - e) = n(e). If m is odd and E' � 
Gm([R"-') represents the mth exterior power /\ m I'm over Gm([R<X ), F induces a 
homotopy F' from the identity E' -+ E' to the map E' � E. The restriction 
of F' to any fiber is an isomorphism for each t E [0, 1], so that there is a 
corresponding homotopy of maps of the total space of the bundle (/\ m ym)* 
(Definition 1 0.2), which induces the desired homotopy of maps of the total 
space Gm([R<Xl) of o(ym). 

We now replace iR<X1 by [Rm+n for m + n < 00 .  

10. 1 1  Definition : For any m >  ° and n > ° let Gm([Rm+ n) be the total space 
0(1':) of the orientation bundle o(y�) of the canonical real m-plane bundle 
y� over the Grassmann manifold Gm([Rm + n) ; that is, Gm([Rm + n) � 
Gm(lRm +n) represents o(y�). The pullback n(y�)!y� over cm(lRm + n) is the 
canonical oriented m-plane bundle y� .  

Since Gm([Rm + n) i s  a smooth closed mn-dimensional manifold, by Prop
osition 1 .7.3, the same is true of the double covering Cm(JRm+ n). Further
more, the bundle y� over Gm(lRm + n) is canonically oriented by Proposition 
10.6. 

10.12 Proposition : Let X E PJ be homotopy equivalent either to a compact 
space or to a finite-dimensional simplicial space, and let � be any real m-plane 
bundle over X. Then � is orientable if and only if � = l'y� for some finite 
n > ° and some map X .L Gm(lRm + n). If X is a smooth manifold, then � is 
orientable if and only if a smooth such 1 exists. 
PROOF : By Propositions 8 . 12, 9. 1 ,  or 9.3 one has � = f'y� for an appropriate 
map X .!... Gm([Rm + n), and one substitutes [Rm+n for [ROC throughout the proof 
of Proposition 10.8. 

10.13 Proposition : If m and n are both odd natural numbers, the canonical 
involution cm(lRm+ lI )  � Gm(lRm + n) is homotopic to the identity. 
PROOF : Since m + n is even, one can substitute [Rm + n for IR:X in the proof 
of Proposition 1 0. 10. 
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10.14 Corollary : For any odd m and any n > 0 the canonical real m-plane 
bundle y� over Gm(�m+ lI ) is nonorientable. 
PROOF: The inclusion �m+ '  --> �m+ n induces a map Gm(�m+ l ) � Gm(�m + n) 
for which y';' = f}'�, so that nonorientability of y';' implies nonorientability 
of y�, by Proposition 1 0.5. Hence it suffices to consider only the case that 
n is the odd number 1 ,  for which Proposition 1 0. 1 3  guarantees that 
Gm(/Rm+ ' ) -.:. Gm(�m+ ' )  is homotopic to the identity. If y';' were orientable, 
then since the double covering Gm(�m+ ' )  of Gm(�m+ l ) is the total space 
O(y';') of the orientation bundle o(y';'), it would consist of two disjoint copies 
of Gm(�m+ I ), and T would interchange the two copies of Gm(�m + ' ) ;  however, 
such a map T would not be homotopic to the identity. 

Since trivial vector bundles are clearly orientable, Corollary 10. 1 4  inci
dentally guarantees that the bundles y� are not trivial when m is odd. The 
simplest case is the canonical real line bundle yl over RP' ,  the base space 
RP' being diffeomorphic to the circle st . 

We now develop a more concrete characterization of orientability. Let 
SO be the O-sphere { + 1, - 1 j ,  and let the orthogonal group 0( 1 )  act on SO 
as usual, via multiplication by + 1 or - 1. Any coordinate bundle E � X 
with fiber SO and structure group 0( 1 )  over a space X E fJB is a double covering 
of X in the sense defined earlier ;  in fact, since 0( 1 )  c GL( I ,  �), one easily 
constructs a real line bundle .le over X such that E � X is precisely the double 

. 0( ' ) It(),) X covenng A -------> . 

10.15 Lemma : Let E � X be a double covering of a space X E fJI, a coordi
nate bundle with respect to some open covering { Vi i  i E I }  of X. Then E � X 
is trivial if and only if there is a family of transition functions Vi n Vi J1. 0( 1 )  
each (?f which has the constant value 1 E 0(1 ). 

PROOF : Clearly E � X is trivial if and only if there is a section X � E. Let 
{'P d i E  I} be a family of local trivializations E I Vi � Vi X SO. If a section 
a exists, then each composition Vi � E l  Vi � Vi X SO maps each 
x E Vi into (x, ± 1 )  E Vi X SO, and one can alter the local trivializations in 
such a way that ('Pi 0 a l  Vj)(x) = (x, + 1 )  for each i E I and each x E Vi ' The 
transition functions 'PI are defined by the requirement that the compositions 

'I' '1" 1 • Vi n Vi x SO J i ) Vi n Vi x SO maps (x, ± 1 )  into (x, t/11(x)( ± 1 ) ) ;  
hence, using the altered local trivialization 'Pi '  one has t/11(x) = 1 E 0( 1 )  for 
x E Vi n Vj , as required. Conversely, if the latter conditions are satisfied, 
then there is a unique section X � E such that for each i E I the composition 
'Pi n a l  Vi carries each x E Vi into (x, + 1) E Vi X SO. 
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The following property of orientable vector bundles is frequently used as 
the definition of orientability, where GL + (m, IR) c GL(m, IR) is the subgroup 
of elements with positive determinants, as usual. 

10.16 Proposition : A real m-plane bundle � over any X E !JI  is orientable 
if and only if the structure group GL(m, IR) can be reduced to the subgroup 
GL +(m, IR) c GL(m, IR). 

PROOF : Let E � X be a coordinate bundle representing �, with respect to 
some open covering { Vi i  i E l } of X. Then according to the discussion 
following Definition 1 1 .5 . 1  we must show that � is orientable if and only if 
there is a family of transition functions Vi n Vj --£ GL(m, IR) whose values 
all lie in the subgroup GL + (m, IR) c GL(m, IR). The coordinate bundle E � X 
induces a double covering E' � X that represents the orientation bundle o(�) 
with respect to the same covering { Vi i  i E l } .  Specifically, for each t{I{ the 
corresponding transition function Vi n Vj � 0(1 )  for E' � X is given by 
setting t{I/ = det t{lU ldet t{l1 I . By Lemma 1 0. 1 5  the orientation bundle o(�) is 
trivial if and only if there are transition functions t{I/ for E' � X such that 
t{lij(x) = 1 E 0( 1 )  for each x E Vi n Vj • Hence the bundle � is orientable 
if and only if there are transition functions t{I{ for E � X such that 
det t{l{(x) > 0 for each x E Vi n Vj, as claimed. 

10.17 Corollary : A real m-plane bundle � over any X E [Jl is orientable if 
and only if the structure group can be reduced to the rotation subgroup 
O+(m) c GL(m, IR). 

PROOF : By the linear reduction theorem (Theorem 1 1 .6. 1 3) the structure 
group GL +(m, IR) can always be reduced to the subgroup O + (m) c GL + (m, IR). 

10. 18 Corollary : Let � be any real m-plane bundle over any base space 
X E ,qJ ; then the Whitney sum � E8 � is orientable. 
PROOF : If � is represented by a coordinate bundle using some open covering 
{ Vi i i E l } of X and transition functions Vi n V j � G L(m, IR), then � E8 � 
is also represented by a coordinate bundle using the same covering 
{ Vd i E I }  and transition functions Vi n Vj � GL(2m, IR); however, 
det(t{I{ E8 t{I{) = (det t{I{)2 > 0 over Vi n Vj • 

One can easily strengthen Corollary 10. 1 8 :  � E8 � has a natural orientation, 
which will appear just before Proposition 1 2.8. 
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10.19 Corollary : Let � and �' be real vector bundles over any base space 
X E ;!,d, and suppose that � is orientable; then �' is orientable if and only if 
� Et> �' is orient able. 

PROOF : If � and �' are represented by coordinate bundles using open 
coverings { Vi i  i E l } and { V  j I j E J }  of X, respectively, then they can both 
be represented by coordinate bundles using the common open covering 
[ Vi n vj l ( i,j) E I x J }  of X ;  the latter covering will be denoted { Vi l i E  I }  for 
convenience. By hypothesis, the transition functions Vi n Vj � GL(m, IR) 
for the representation of � can be chosen in such a way that det ",f > 0 over 
Vi n Vj . If Vi n Vj � GL(n, IR) are transition functions for the represen
tation of �', then Vi n Vj "';EF!I/I;J . GL(m + 11, IR) are transition functions for 
a representation of � Et> � ' ;  however, det(",' EEl "'/) = (det ",,)(det "'/), where 
det "'! > 0, over Vi n Vj. 

The Mobius band was introduced for motivation at the beginning of this 
section. We now sketch the proof that its tangent bundle is indeed non
orientable. 

First, recall that the Mobius band was described in §II .O as the total space 
E of a coordinate bundle E � S i  ( = Rpl )  whose fiber is the closed interval 
[ - 1 , + 1] c IR and whose structure group is 71/2, acting on [ - 1 , + 1] via 
multiplication by + 1 or - 1 ;  that is, 71/2 = 0( 1 )  c GL( 1 ,  IR). I t  is clear that 
E -::. Rpl is merely a restriction of a coordinate bundle E' � Rp! representing 
the canonical line bundle yl over RPI . In any event, one can pull the tangent 
bundle r(E) or r (E') back along the zero-section Rp! -+ E c E' to obtain a 
2-plane bundle a!r(E) over Rpl ,  and a direct computation shows that 
a!r(E) = ,' I EEl 10 1 for the trivial line bundle 10 1 • However, yl is nonorientable 
by Corollary 10. 1 4, so that a!r(E) is nonorientable by Corollary 10. 19, so 
that r (E)  is nonorientable by Proposition 10.5, as claimed. 

1 1 . Complex Vector Bundles 

One can replace the real field IR by the complex field C throughout the 
development of vector bundles, with virtually no other changes. The re
placement is more than an idle exercise, however, even if one is only in
terested in real vector bundles. For example, "complexifications" of real 
vector bundles will be used in Volume 2 to compute the real cohomology 
rings H*(Gm(lR x ) ; IR) of real Grassmann manifolds ; Theorem 8.9 suggests 
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the real importance of such cohomology rings. Complex vector bundles are 
also used in the very definition of K-theory, in Volume 3, which is used to 
solve the classical problem of real vector fields on spheres. However, com
plex vector bundles are of geometric interest in their own right, especially 
if one studies complex manifolds by looking at their tangent bundles. 

As always, the base space of a fiber bundle belongs to the category !28 of 
base spaces. 

1 1 .1  Definition : A complex vector bundle of rank n, or simply a complex 
n-plane bundle, is any fiber bundle whose fiber is the complex vector space 
C" and whose structure group is the general linear group GL(n, q of inver
tible n x n matrices, acting in the usual way on C". A complex line bundle 
is a complex vector bundle of rank 1 .  

The obvious complex analog of  Definition 2.4 or  Proposition 2.5 provides 
the Whitney sum ( EB (' and product ( ® (' of complex vector bundles ( and 
(' over the same base space, with the associative, commutative, and distri
butive properties described for real vector bundles in Proposition 2.6. 

If one substitutes hermitian inner products C" x Cn � C for real 
inner products [Rm x [Rm � [R in Definition 3. 1 ,  then the result is a 
hermitian metric for a given complex n-plane bundle (. The obvious complex 
analog of Proposition 3.4 then guarantees that any complex vector bundle 
(over a base space X E f!J, as always) has a hermitian metric. Consequently 
there is a complex analog of Proposition 3.6 : for any complex subbundle (I 
of a given complex vector bundle ( there is another subbundle (2 of ( such 
that ( = ( I EB e. 

One can also use hermitian metrics, as in the real case, to show that the 
structure group GL(n, Cl of any complex n-plane bundle over any X E f!J 
can be reduced to the unitary subgroup U(n) c GL(n, Cl; however, since 
this is a special case of the linear reduction theorem (Theorem 1 1 .6.13), the 
details will be left as an exercise (Exercise 1 3. 19). 

Definitions 7.2 and 8.2 have obvious complex analogs, which provide 
the canonical complex m-plane bundle y:;' over the Grassmann manifold 
Gm(cm+n) and the universal complex m-plane bundle ym over the Grassmann 
manifold Gm(coc,), respectively ; in particular there is a canonical complex 
line bundle y� over the projective space cpn, and a universal complex line 
bundle yl over the projective space CP'XJ . We already know from Proposi
tion 1 .7.5 that Gm(cm+ n)  E f!J and Gm(coo) E f14. 

1 1 .2 Theorem (Homotopy Classification Theorem) : Any complex m-plane 
bundle ( over a base space X E f!J is a pullback tym of the universal complex 
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rn-plane bundle '/' over Gm(C X ) E Jd, alon9 a map X !.... Gm(cx )  that is unique 
up to homotopy. 
PROOF : Substitute C for IR throughout the proof of Theorem 8.9. 

1 1 .3 Proposition : For any n > I let EX � G"(CX ) represent the universal 
complex n-plane bundle yn, and let E" * be the space of non zero fibers in EX . 
Then there is a homotopy equivalence Gn- I (CL) � E"'* such that the com
position Gn - I (CX )  � E Y  * � Gn(c" ) classifies the Whitney sum yn - I EB £ 1 
over Gn - I (C ,, ). 

PROOF : Substitute C for IR (and n for m) throughout the proof of Proposi
tion 8. 1 0. 

1 1 .4 Proposition : U' EQ � C PQ represents the universal complex line 
bundle " I , then the space EL * of nonzero .fibers in E'" is homeomorphic to the 
contractible space crx *. If E � C pn represents the canonical complex line 
bundle y� , for a 9iven n > 0, then the space E* of non zero fibers in E is homeo
morphic to Ct/l + 1 )*, trivially homotopy equivalent to the (2n + 1 )-sphere s2n +  I . 

PROOF : As in Proposition 8. 1 1 , P *  is a quotient e" * x C*/::::; , with 
(x, s) ::::; ( y, t) if and only if sx = ty E C � * ;  similarly E* is a quotient Cln + 1 )* x 
C*/::::; , with (x, s) ::::; ( y, t) if and only if sx = ty E Cln + I )* . The proof that 
C x. * is contractible follows the pattern of the corresponding proof for IR�*, 
given in Proposition 8. 1 1 . 

The homotopy classification theorem for complex vector bundles has 
finite analogs, just as in the real case. Here are some corresponding complex 
uniqueness and existence results, in that order. 

1 1 .5 Proposition (Ersatz Homotopy Uniqueness Theorem) :  Let , be a 
complex rn-plane bundle over X E :!J  such that , = f� y�' and , = fl" �' for 
maps X � Gm(cm + n )  and X � Gm(cm + n' ), where y� and y; are canonical 
complex rn-plane bundles. Then there is an n" � max(n, n') with finite class i
j}'ing extensions Gm(cm + n )  � Gm(cm +n") and Gm(cm + II ' )  � Gm(cm+ /I") 
such that 9n.n" j� and 9/1'.n" )  j� are homotopic maps from X to Gm(cm + /I ' ' j, 
f(JI' which 

(g/l.n" , j�)ly;, = , = (9n ' .II ' " fJy;, .  
PROOF : Substitute C for IR throughout the proof of Theorem 8. 1 4. 

1 1 .6 Proposition : Let X E ;j(J be a compact space, a .fi nite-dimensional sim
plicial space, or a smooth manifold, and let ' be a complex rn-plane bundle 
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over X. Then there is a natural number n > 0 such that ( is a pullback ty�' 
of the canonical complex m-plane bundle y': over Gm(cm h) along a map 
X � Gm(cm+ n ). 
PROOF : Substitute C for IR throughout the proofs of Propositions 8. 1 2, 9 . 1 ,  
or  9.3, respectively. 

1 1 .7 Corollary : Let X E Bd be a compact space, a finite-dimensional sim
plicial space, or a smooth manifold, and let ( be a complex m-plane hundle 
over X. Then for some n > 0 there is a complex n-plane hundle (' over X such 
that the Whitney sum ( Et>  (' is the trivial complex bundle cm +n  over X. 
PROOF : This is the complex analog of Corollaries 8. 1 3, 9.2, or 9.4, respec
tively. 

1 1 .8 Theorem : Any complex m-plane bundle ( over a smooth manifold X can 
be represented by a smooth coordinate bundle E � X ;  that is, any complex 
vector bundle over X is itself smooth. 
PROOF : By Proposition 1 1 .6, ( is a pullback j"y': of the canonical complex 
m-plane bundle y': along some map X .!.. Gm(cm +n ), and by Proposition 
1.6. 1 9  one can choose f to be a smooth map. One then substitutes C for IR 
throughout the proofs of Lemma 7 . 1  and Proposition 5.3 to conclude that 
y': and ty': are smooth. 

1 2. Realifications and Complexifications 

For any complex n-plane bundle ( over a base space X E f1l there is a 
corresponding oriented 2n-plane bundle (1J;l over X;  one can also ignore the 
orientation of (1J;l and simply regard it as a real 2n-plane bundle over X. 
Similarly, for any real m-plane bundle � over a base space X E f1l there is a 
corresponding complex m-plane bundle �cc over X. The constructions ( )1J;l 
and ( lee are studied in this section. 

Recall from Definition 11 .2.6 that a morphism from a transformation 
group G x F --+ F to a transformation group G' x F' --+ F' is a pair (r, <1» of 
maps G � G' and F .! F' such that r is a group homomorphism and the 
obvious diagram commutes. For any fiber bundle ( with structure group G 
and fiber F over a space X, the morphism (r, <1» induces a new fiber bundle 
C with structure group G' and fiber F' over the same space X, as in Proposi
tion 1 1.2.7 and Definition 11.2.8. 
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Let G = GL(I1, C), and let r assign to any (b� + ic�) E GL(n, C) the real 
211 x 211 matrix consisting of 2 x 2 blocks 

(b� - c�) c� b� ' 
where b� and c� are real and i = J=l. Similarly let F = en, and let en ! 1R2n 
carry column vectors with pth entry xP + iyP into column vectors whose 
(2[1 - [ )th and (2p)th entries are xP and yP, respectively, where p = 1, . . . , n. 
One easily verifies that ( r, <1» is a morph ism from the transformation group 
GL(n, C) x en -> en to the transformation group GL(2n, IR) X 1R2n -> 1R2n, 
12.1 Definition : For any complex n-plane bundle ( over a base space 
X E !J the realificatiol1 (� is the real 2n-plane bundle over X induced by the 
preceding morphism (f, <1» .  

Let l E  GL(I1, C) be the identity element, so that if E GL(n, C) is scalar 
multiplication by i = J=1 E IC. Since (iI )2 = - I E GL(n, iC), the element 
J = r(il ) E GL(2n, IR) satisfies J2 = - [ E  GL(2n, IR); furthermore J com-
mutes with every element in the image of GL(n, iC) ..:. GL(2n, IR). 

12.2 Definition : Let E � X be a coordinate bundle that represents a real 
m-plane bundle � over X E P4. A vector bundle morph ism 

is a complex structure in E � X whenever the restriction Ex � Ex over 
each x E X satisfies J� = - I for the identity element I E GL(m, IR). 

Clearly a complex structure in one coordinate bundle representing � 
induces a complex structure in any other coordinate bundle representing �, 
so that one can regard a complex structure as a structure in � itself. Equally 
clearly, the endomorphism J = r(il ) E GL(2n, IR) induces a complex struc
ture in the rea[ ification (� of the complex l1-plane bundle (. We shall show 
that a real vector bundle has a complex structure if and only if it is of the 
form (� for a complex vector bundle ( ;  furthermore, ( is unique. 

1 2.3 Lemma : If J E GL(m, lR) satisfies j2 = - I E GL(m, IR), then m is an 
even number 2n and there is a basis of 1R2n of the form (e" J e 1 ; . . . ; en , J en). 

PROOF : For any nonzero e, E IRm suppose there were a linear relation Je , = 
Ice , over IR ;  then (A2 + l )e1 = (J2 + [)e,  = 0, so that A2 + 1 = 0, which is 
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not possible in /R. Hence (e l , Jed spans a 2-dimensional subspace V c  /Rm, 
and J induces an endomorph ism J of/RmjV such that J2 = - I. The induction 
on dimension is clear. 

It follows from Lemma 1 2.3 that up to a change of basis in �2n one has 
J = f(if ) for the homomorphism GL(n, q ":'  GL(2n, �). We shall henceforth 
use the basis of �2n described in the proof of Lemma 12.3. 

12.4 Lemma : rr A E GL(2n, �) satisfies AJ = JA for J = f(if), then A lies 
in the image of GL(IJ, q ..:. GL(2n, �). 

PROOF : For the basis (e l , Je l ; . . .  ; en , Jen) of /R2n there are unique real 
11 x 11 matrices B = (b�) and C = (c�) such that Aep = L.�=  db�eq + c1,JeqJ 
for p = 1 ,  . . . , n, and since AJ = JA, one also has A(Jep) = JAep = 
L.:= d - c�eq + b�Jeq J ;  hence A = nB + iC). 

12.5 Proposition : A real vector bundle � has a complex structure J if and 
only if it is the realification (Oll of a complex vector bundle ( ,' furthermore ( is 
unique. 
PROOF : If � = (Oll ' then f(if ) is a complex structure J in �. Conversely, 
suppose that J is a complex structure in �, and let { Vi l i E  I }  be an open 
covering of the base space X E f!J of � for which there are trivializations 
E l  Vi � Vi X /Rm of a representation E � X of � . The restriction of J to 
E l  Vi induces a map Vi � GL(m, /R) such that 

('I'j ( J c 'l'i- I )(x, e) = (x, J;(.x) e) E Vi X /Rm 

for every (x, e) E Vi X �m, and since J2 
= - 1, one has Ji(xf = - I  E GL(m, /R) 

for every x E Vi ' It follows as in Lemma 1 2.3 that m is an even number 2n 
and that there is a basis (e" Jie l ; . . .  ; en , Jien) of sections of E l  Vj � Vi' for 
each i E I. With respect to any such basis the matrix representation (J;(.x) ) E 
GL(2n, /R) consists of n blocks 

down the main diagonal, with zeros elsewhere ; in particular, (1;) = (J) over 
any nonvoid intersection Vi (1 Vj . The transition function Vi (1 Vj � 
G L(2n, /R) is given by 

('I' j ' 'I' j- I )(x, e) = (x, I/J{(x)e) for (x, e) E ( Vi (1 V) X /R2n, 

so that the identity 

('I' j n 'l'i- I ) " ('I' j '.' J l 'I' j- 1 ) = 'I' j 0 J n 'I' j- J = ('I' j " J u 'I' j- 1 ) ('I' j ( 'I' j- I ) 



1 2. Realifications and Comp1exifications 1 75 

implies ( 1/J{)(Jj) = (J)(I/Jf) E GL(2m, IR). Since (1;) = (J) and (1;)2 = - (1 ), 
Lemma 12.4 then implies that (I/Jf) lies in the image of GL(n, q -:. GL(2n, IR). 
The uniqueness assertion is an easy exercise. 

Briefly, Proposition 1 2.5 asserts that any complex vector bundle ( can 
equally well be regarded as a real vector bundle � with a complex structure J. 

By Proposition 1 1 .6. 1 9, GL(n, C) and GL(211, IR) consist of one and two 
components, respectively, and since the homomorphism GL(n, q -:. 
GL(2n, IR) necessarily carries the neutral element into the neutral element, 
it follows that the image of r lies in the component GL + (2n, IR) c GL(2n, IR). 
Hence Proposition 10. 1 6  guarantees that any realification (I];! is orientable. 
In fact, there is a natural orientation X � O((I];!) given by letting the image of 
each X E  X be the equivalence class of e l l de l /\ e2 /\ Je2 /\ " ' /\ en /\ Jen E 
(/\ 2"E,)* for any representation E � X of (I];! and any linearly independent 
elements e l ,  • • •  , ell E E,. 

According to the discussion preceding Proposition 1 0. 1 0, if a real m-plane 
bundle � over X E :!4 has an orientation X � O(�), then the oppositely oriented 
m-plane bundle - � has the orientation X � O(�), where r is the canonical 
involution of O(�). We have just defined one natural orientation of the 
realification (I];! of any complex n-pIane bundle ' over any X E :JB. The other 
natural orientation X -> O((I];!) of (I];! is given by letting the image of each x E X  
be the equivalence class of e l /\ e2 /\ . . .  /\ en /\ J e l /\ Je2 /\ . . .  /\ J en E (/\ 2n Ex)* .  
One easily verifies that the two natural orientations of the realification (I];! of 
any complex n-plane bundle ( differ by a factor ( _ 1 )n(n - 1 )/2 . 

The preceding discussion suggests the converse question :  is a given 
oriented 2n-plane bundle � the realification SI];! of a complex n-plane bundle 
S? Here is the case n = 1 .  

12.6 Proposition : Any oriented 2-plane bundle � is the realification of a 
unique complex line bundle l. 

PROOF : Let E � X represent �, with trivializations E l  Vi � Vi X 1R2 over 
the sets Vi in some open covering { Vj l i E I }  of the base space X of �. For 
each i E I the trivialization 'Pj provides a basis [ Si '  ti} of the sections 
Vi -> E l  Vi ' According to Corollary 1 0. 1 7  one can reduce the structure 
group of � to the rotation group 0 + (2), which consists of real 2 x 2 matrices (COS 0 - sin () ) 

sin 0 cos 0 ' 
so that the bases {Si , tj} can be chosen in such a way that Sj =  Sj cos O + 
/ j sin O and tj = - sj sin O + ti cos O over any nonvoid Vj n Vj C X, for some 
map Vi n Vj 0 = 01 . S i . For each i E l one defines E l  V j � E l  Vi by setting 
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J jSj = tj and Jjtj = - Sj ,  so that Jf is multiplication by - 1  E IRL Over any 
nonvoid Vj n Vj C X one has 

JjSj = Jj(Sj cos O + tj sin O) = -sj sin tJ + tj cos O = tj = Jh 
and 

J;tj = Jj( - Sj sin 0 + tj cos 0) = -Sj cos O - tj sin 0 = - Sj = J/j . 
Thus J; j Vj n Vj = Jj l V j n Vj for any nonvoid Vj n Vj C X, so that Jj 
and Jj are the restrictions J I Vj and J I Vj of a globally defined complex 
structure J. It follows from Proposition 1 2.5 that � = )'R for a unique complex 
line bundle A over X, as asserted. 

The preceding result occurs only in dimension 2, a reflection of the fact 
that the obvious homomorphism V(1 )  --+ 0+ (2) is an isomorphism. For 
n >  l one has monomorphisms V(n) --+ 0 + (2n), but not isomorphisms. 
Furthermore, for n > l one can always find an oriented 2n-plane bundle 
that is not a realification. For example, we shall show in Volume 2 that the 
tangent bundle T(S4) of the 4-sphere is not a realification. 

The usual inclusion IR --+ C of the real field into the complex field provides 
an obvious morphism ( r, <1» of the transformation group G L(m, IR) x IRm --+ 
IRm into the transformation group GL(m, IC) x cm --+ cm. 
12.7 Definition : For any real m-plane bundle � over a base space X E 36 
the complexifjcation �<C is the complex m-plane bundle over X induced by the 
preceding morphism. 

Recall from Corollary 10. 1 8  that if � is a real m-plane bundle over X E &11, 
then the Whitney sum � Er> � is orientable. In fact there is a natural orientation 
X --+ O(� Er> �) in which the image of any x E X is the equivalence class of 
e l /\ . • .  /\ em /\ e'l /\ . . . /\ e� E (/\ 2m Ex)*, where (e t > . . .  , em) and (e'I ' . . .  , e�) 
are corresponding bases of the fibers over x of the two summands in � Er> �. 
12.8 Proposition : For any real m-plane bundle � one has 

�<CIRI = ( _ 1 )",(111 - 1 )(2 � Er> �, 
./iw the natural oriel1tatiol1s of �u and � Er> �, respectively. 
PROOF : This is an exercise in definitions, using the other natural orientation 
of �u. 

Let GL(n, C l  � GL(n, IC) and en � en consist of complex conjugations, 
so that (C <1» is a morph ism of transformation groups, as in Definition 11 .2.6. 
For any complex n-plane bundle ( the complex conjugate bundle � is the 
bundle induced by applying (r, <1» to (, as in Definition 11.2.8. Any coordinate 
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bundle E � X representing ( also represents �, except that scalar multi
plication in each fiber by any complex number x + iy is redefined to be scalar 
multiplication by the complex conjugate x - iy. 
12.9 Proposition : Let '� and �� be the naturally oriented 2n-plane bundles 
associated to a complex n-plane bundle , and its conjugate �, respectively .. then 
�� = ( - I )"s� . 
PROOF : The bundles ( and � trivially have the same realifications, and it 
remains to verify that the natural orientations differ by the factor ( - 1 )". Let 
E � X represent (�, and let X !... O«(�) be its natural orientation. If e l ' . . .  , en 
are any linearly independent elements of Ex, for any x E X, the value of o'(x) 
is the equivalence class of 

el /\ Je t /\ ez /\ Jez /\ . . . /\ en /\ Jen E (/\ 2n Ex)*, 

by definition of 0'. Similarly, if X � O(�R) is the natural orientation of�� ,  the 
value of r(x) is the equivalence class Qf 

e I /\ ( - J e d /\  e2 /\ ( -Je2) /\ . . .  /\ en /\ ( -Jen) E (/\ 2n Ex)*. 

The factor ( - 1 )" is clear. 

In the following proof we use a fixed product PQ E GL (2n, q, for which 
(r', <1>') is defined as a morphism of transformation groups with r' A = 
(PQ)A(PQ)- I E GL(2n, Cl and <I>'e = (PQ)e E c2n for any A E GL(2n, q and 
e E C2n. If one applies (r', <1>') to a given 2n-plane bundle C then the result is 
again S' itself: one uses PQ to change the basis of en in every trivialization of 
any coordinate bundle representing C (See Proposition 11 .2.9.) 
1 2. 10 Proposition : ,�C = , Efl � .Ic)r allY complex vector bUlldle (. 
PROOF : Let ( r, <1» be the composition of the morphisms used in Definitions 
12 . 1  and 1 2.7 to define realification and complexification, respectively ;  for 
example, the image under r of (b� + ic�) E GL(n, q is the matrix in GL(2n, C) 
consisting of 2 x 2 blocks (b� - c�) c� b� ' 
where h� and c� are complex numbers whose imaginary parts happen to 
vanish. Then s�c is obtained by applying ( r, <1» to (. Let P E  GL(2n, Cl 
satisfy Pezp - 1 = ep and Pe2p = en+ p for the usual basis (e l , . . .  , e2n) of c2n, 
where p = 1, . . .  , 11, and let Q E GL(2n, q consist of 2 x 2 blocks 

( 1 i) 
1 - i  
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down the main diagonal, with zeros elsewhere. If (r', ct>') is the morphism 
carrying any A E GL(2n, C) and e E C2n into (PQ)A(PQ) - l E GL(2n, C) and 
(PQ)e E C2., respectively, then by the preceding remark the result of applying 
the composed morphism (r', ct>') " (r, ct» to ( is still just (lRlc , However, for 
any A E GL(n, C) and e E C" one has 

( r' 0 rjA = (� �) E GL(2n, C) 

and ($' 0 $)e = e Efl e E C2., so that the bundle induced by applying the 
composition (r', $') 0 (r, $) to ( is also ( Et> r. 
12. 1 1  Proposition : ec = ec for any real vector bundle e ·  
PROOF : Suppose that e i s  a real m-plane bundle over X E :11, represented by 
a coordinate bundle E � X with trivializations { 'I' i l i E  I }  defined over the 
sets of an open covering { Vi i  i E I }  of X. Let E' � X and E" � X be 
the corresponding representations of the realifications eu and (;;dlRl ' respec
tively. If { e l ' . . .  , em} is any basis of the sections Vi � E I Vi arising from a 
trivialization E l  Vi � Vi X �m, and if J is the complex structure of eCIRl' 
then there are corresponding bases {e l " ' " em , Je l , • • •  , Jem} and { e l , . . .  , 
em , - Je l , · . •  , - Jem} for E' I Vi and E" I Vi ' It is clear that the real linear 
isomorphism E' I Vi � E" I Vi satisfying fi(e) = ej and fMe) = - Jej for j = 
1 ,  . . .  , m preserves the complex structure, and that there is a globally defined 
real linear isomorphism E' ..!. E" with fi = fl Vi for each i E I, which also 
preserves the complex structure. Hence eCIRl and (edlRl are isomorphic via an 
isomorphism that preserves the complex structure, so that ec = ec by 
Proposition 1 2.5. 

1 3. Remarks and Exercises 

13.1 Remark : Introductory accounts of vector bundles can be found in 
Atiyah [2, Chapter I], Dupont [ 1 ,  Chapter I], M. W. Hirsch [4, Chapter 4], 
Husemoller [ 1 ,  Chapter 3], Kahn [ 1 ,  Chapter 4], Karoubi [2, Chapter I], 
Lang [ 1 ,  Chapter 3], and Milnor and Stasheff [ 1 ,  Section 2], for example. 

13.2 Remark : Introductory accounts of tangent bundles in particular can 
be found in Auslander and MacKenzie [ 1 ], [2, Chapter 4], M. W. Hirsch 
[4, Chapter 1] ,  Lang [ 1 ,  Chapter 3], and Lashof [ 1  J .  

13.3 Remark : According to the linear reduction theorem (Theorem 11.6. \ 3) 
the structure group GL(m, �) of any real m-plane bundle can be reduced to 
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the orthogonal group O(m) c GL(m, IR), which maps the (m - I )-sphere 
sm- I C IRm into itself; moreover, the behavior of O(m) on [Rm is entirely 
determined by its behavior on sm - I . With this observation in the background, 
vector bundles were first considered by Whitney [2, 4, 5, 6] as sphere bundles. 
In particular, tangent bundles to n-dimensional manifolds were introduced 
as (n - I )-sphere bundles, and Whitney's first consideration of Grassmann 
manifolds appeared within the same framework. 

One can also consider more general non linear sphere bundles that are 
smooth fiber bundles with fiber sm - I (over smooth manifolds), whose 
structure group is the group Diffo sm - I of all orientation-preserving diffeo
morph isms sm- I _ sm - I . S. P. Novikov [2] and Taniguchi [ 1 ]  contain 
examples of such sphere bundles which are genuinely nonlinear : the structure 
group Diffo sm - I  cannot be reduced to the rotation group O+ (m) ( c O(m) ). 

Pontrjagin preferred the linear fiber IRm (and structure group GL(m, IR) ) 
in his approach to tangent bundles, in Pontrjagin [ 1 , 3, 4, 5] ' 

13.4 Remark : Both Whitney and Pontrjagin had the germ of the homotopy 
classification theorem (Theorem 8.9) in their very first constructions. The 
first explicit recognition of a homotopy classification theorem (actually an 
""ersatz homotopy classification theorem") occurs in Steenrod [2], and later 
in Chern [2, 3] and in Wu [5]. 

According to the linear reduction theorem (Theorem 11.6. 1 3) one can 
reduce the structure groups GL(m, IR) and GL(m, q of real and complex 
m-plane bundles to the orthogonal group O(m) c GL(m, IR) and the unitary 
group U(m) c GL(m, C), respectively. Since the homotopy classification of 
such vector bundles is equivalent to the homotopy classification of the 
associated principal bundles, it follows that the classifying spaces Gm(IRG( ) 
and Gm(C:L) of Theorems 8.9 and 1 1 .2 are classifying spaces BG in the sense 
of Remark 1 1 .8. 1 8, for G = O(m) and G = U(m). For this reason, one fre
quently writes BO(I11) and BU(m) in place of Gm([R"' ) and Gm(C "' ). 

13.5 Remark : Other early definitions oftangent bundles appear in Steenrod 
[ 1 ] and in Ehresmann [5]. Stiefel [ 1 ]  does not contain any vector bundles 
per se, in spite of its importance ; instead, Stiefel works entirely with vector 
fields, which were later regarded as sections of tangent bundles. 

13.6 Remark : The more general identification of vector bundles with 
corresponding modules of sections first occurs in Serre [4] and in Swan [ 1 ], 
with the observation that the "locally free" modules !F of Theorem 4.6 and 
Proposition 5.6 are precisely the projective modules over the rings CO(X) 
and COO(X), respectively. In the case of tangent bundles, direct descriptions 
of corresponding modules of differentials and their dual modules of vector 
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fields can be found in Osborn [2, 4] and in Sikorski [ 1] .  One can even 
describe the underlying rings of smooth functions themselves algebraically, 
as in S. B. Myers [ 1 ]  and in Nachbin [ 1], for example. 

Kandelaki [ 1 ]  gives a sweeping generalization of the results of Serre and 
Swan, and L�nsted [ 1 ]  shows that if X is a finite CW space, then one can 
replace the ring CO(X) in Theorem 4.6 by a subring A c CO(X) that is 
Noetherian, with Krull dimension equal to the dimension of X :  vector 
bundles over finite CW spaces are "algebraic" in a reasonable sense. 

13.7 Remark : If E .::. X represents the tangent bundle r(X) of a smooth 
manifold X, then for eaGh x E X the fiber Ex is the corresponding tangent 
space. One can describe Ex as the vector space of derivations of the ring of 
germs of smooth functions at x into the real field fR, an observation due to 
Chevalley and Bohnenblust. (See Chevalley [ 1 ,  pp. 76-78] for the analytic 
case, and Flanders [ 1 ,  pp. 3 1 3-3 14] for the smooth case.) However, if X is 
merely a C-manifold for 0 < r < 00, then the identification no longer works 
properly. (See Papy [ 1 ,  2], Newns and Walker [ 1], and Osborn [ 1 ] .) One 
can impose restrictions on the derivations for which one does recover Ex in 
the latter cases, as in Osborn [ 1], Sanchez Giralda [1] ,  L. E. Taylor [1] ,  and 
Ellis [ 1 ] ;  however, the simplest procedure is to always let "smooth structure" 
mean "COO structure." (Incidentally, "universal" derivations in the sense of 
Kahler provide further surprises, not only in the cases 0 < r < 00 but also 
in the cases r = 0 and r = 00 ;  see Osborn [3, 5], for example.) 

13.8 Remark : Tangent bundles are also more sensitive than one might 
expect to the global properties of the underlying manifolds : one cannot 
reasonably ignore second countability (or paracompactness). For example, 
the tangent bundle of the "long line" is a real line bundle, as one expects ; 
however, it is not the trivial real line bundle. (See Morrow [1] . )  

13.9 Remark : In spite of the preceding cautionary remarks, even topolog
ical manifolds have tangent bundles in a certain sense. The first such definition 
was given by Nash [ 1 ], who successfully generalized constructions we shall 
describe for the smooth case in Chapter VI . Nash's definition can also be 
used to generalize various classical results, as in Fadell [4], R. F. Brown [ 1 ], 
and Brown and Fadell [ 1 ] ;  the smooth versions of these results will appear 
elsewhere in this work. 

Milnor later introduced (tangent) microbundles, in Milnor [ 1 1 ,  1 4], 
which were not intended to be fiber bundles in the sense of Chapter 11. 
However, results of Kister [ 1 ,  2] show that the tangent micro bundle of an 
n-dimensional topological manifold is a fiber bundle with fiber fRn ; the 
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structure group is not GL(n, [R), of course, but the group of all homeo
morphisms [R" ---> [R" that leave the origin fixed. More generally, a fiber 
bundle with fiber [R'" is a topoloyical [Rm bundle whenever the structure group 
consists of all homeomorphisms �m ---> �m that leave the origin fixed ; thus 
the results of Milnor and Kister assign a tangent topological �n bundle to 
any n-dimensional topological manifold. Further properties of such tangent 
bundles appear in Lashof and Rothenberg [ 1 ], Kuiper and Lashof [ 1] ,  
Kister [3], Derwent [2], and Kurogi [ 1] ,  for example. Lashof [ 1 ]  provides 
an excellent survey of tangent bundles in general. 

13.10 Remark : Vector bundle s urns can be constructed by other means 
than the one used in Definition 2. 1 .  Let � y� x �,,-. ---> �oc map any pair 
( (XO , X l ,  . . . ), CVO ' Y l ,  . . .  ) ) E �X x �cx into (xo ' YO , X l > Y l , . . . ) E � 'XJ, and 
observe that if U c � t  and V c �x are linear subspaces of dimensions m 

and 11, respectively, then the image of U x V c �'" x �cx: is a linear subspace 
W c � x  of dimension m + 11 ;  hence there is an induced map Gm(�oc, )  x 

G"(� " ) ':::' Gm + n(�x ) of Grassmann manifolds. If � and �' are vector bundles 
of ranks m and n over X E � and X' E �, classified by maps X .!.. Gm(R'J )  
and X' � G"(RX ), respectively, then the composition 

X x X' � G"'(R" ) x Gn(�"' ) ,:::, Gm+ n(�<XJ) 

classifies a unique (m + n)-plane bundle � + �' over X x X' E fJI. 

13. 1 1  Exercise : Verify that the preceding (m + n)-plane bundle � + �' is 
the (m + /I)-plane bundle � + �' of Definition 2. 1 .  

1 3. 12  Remark : Vector bundle products can be constructed by other means 
than the one used in Definition 2.2. Let N be the set {a, 1 , 2, . . . } of natural 
numbers, and let N x N ..:. N be any bijection. Let �cn x �':N ---> �a, map 
any pair ( (XO , X l , " ' ), ( YO , Y l o " . ) ) E �"-' X �a into that element of �oc 
whose e(i, j)th entry is Xd'j E � for each (i, j )  E N x N, and observe that if 
U c R X  and V c �Y' are linear subspaces of dimensions m and n, respectively, 
then the image of U x V C  /RX  x /RX is a linear subspace W C  /RX of 
dimension mn; hence there is an induced Seyre map Gm(/R"' ) x G"(�X ) � 
Gmn(�x ) of Grassmann manifolds. If � and �' are vector bundles of ranks 
m and 11 over X E d(J and X' E d(J, classified by maps X 1. Gm(/R"" )  and 
X' �GII(� X ), respectively, then the composition 

X x X' � Gm([RCL) x G"(/R X ) ':' Gmn(/Roo) 

classifies a unique (mn)-plane bundle � x t over X x X'. 
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13.13 Exercise : Verify that the preceding (mn)-plane bundle � x �' is the 
(mll)-plane bundle � x �' of Definition 2.2. 

13. 14 Remark : Exercises 1 3 . 1 1  and 1 3. 1 3  provide alternative constructions 
of the Whitney sum � EEl �' and product � ® �' of two vector bundles � and �' 
over the same base space X E fJI. If X � X x X is the diagonal map, then 
one simply sets � EEl �' = d!(� + 0 and � ® �' = d!(� X �') for the bundles 
� + �' and � x �' over X x X E f!4, as described in Remarks 1 3. 1  0 and 1 3 . 1 2. 

13.15 Remark : Direct sums U x V 1---+ U EEl V and tensor products U x V 1---+ 
U ® V are continuous Junctors in the sense that there are induced maps 

Hom(U, U') x Hom( V, V') -+ Hom(U EEl V, u' EEl V') 
and 

Hom( U, U') x Hom( V, V') -+ Hom( U ® V, u' ® V'), 

which are themselves continuous, for any vector spaces U, V, U', V'. One 
can therefore use the method in Atiyah [2, pp. 6-9], for example, to construct 
Whitney sums � EEl �' and products � ® �' directly, without introducing 
� +�' and � x �' . This construction also appears in Husemoller [ 1 ,  pp. 65-67], 
for example. The commutative diagram 

G x F ------>. F 

I· 
G'  x F'  -----+) F' 

used in Definition 1 1 .2.6 to define a morphism (r, <1» of transformation groups 
is a generalized version of the condition describing continuous functors ; in 
particular, the morphisms (r, <1» of transformation groups used to construct 
� + �' and � x �' in Definitions 2.1 and 2.2 are rephrased versions of the 
continuous functors U x V 1---+ U EEl V and U x V 1---+ U ® V, respectively. 

13.16 Exercise : Verify that the Whitney sum � EEl ( and product � ® �' of 
Definition 2.4 (or Proposition 2.5) coincide with the Whitney sum � EEl �' 
and product � ® �' described via continuous functors in Atiyah [2, pp. 6-9]' 

13.17 Remark : The linear reduction theorem (Theorem 11.6. 1 3) implies that 
the structure group GL(m, IR) of any real m-plane bundle � over any base 
space X E f!4 can be reduced to the orthogonal subgroup O(m) c GL(m, IR). 
The existence of a riemannian metric on � (Proposition 3.4) leads to an 
alternative proof of the same result, as follows. 
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Let E '::" X represent e, let { Vi l i E  I }  be any open covering of X with 
local trivializations E l  Vi � Vi X !Rm, and let Vi x (!Rm x !Rm) � !R be 
the restriction to Vi of a fixed riemannian metric on e. Let (e l ' . . .  , em) be 
the usual orthonormal basis of !Rm with respect to the usual inner product 
!Rm x !Rm � !R, and for each p = 1 ,  . . . , m  and each x E Vi let sp(x) = 
'Pi- I (x, ep) E Ex . Then (SI(X), . . .  , sm(x» is a basis of Ex , and one applies the 
Gram-Schmidt process to obtain a basis (S'I (x) , . . .  , s�(x» that is orthornor-
mal with respect to the inner product {x }  x (!Rm x !Rm) � !R. Thus a 
given basis (s I '  . . .  , sm) of local sections Vi -> E provides a new basis 
(S'I ' . . . , S�I) of local sections Vi ---> E, with s� = I;= I )"�Sq for a map 
Vi � GL(m, !R) carrying each x E V i into a triangular matrix in GL(m, !R). If 
Vi X !Rm � Vi X !Rm carries each (x, e )  E Vi X !Rm into (x, ).i(x)e) E Vi X !Rm, 
the composition E l  Vi � Vi X !Rm � Vi X !Rm is a new local trivial
ization E l  Vi � V i  X !Rm• There are then new transition functions 
Vi (\ Uj £ GL(m, !R), defined by requiring ('Pj c 'P; - I Hx, e) = (x, I/1/(x)e) 
for every (x, c) E Vi (\ Vj x !Rm, and one easily verifies that 1/1/(x) E O(m) for 
every x E Vi (\ Vj. Hence the structure group GL(m, !R) of e can be reduced 
to the subgroup O(m) c GL(m, !R), as claimed. 

13.18 Exercise : Carry out the verification required to complete the proof 
of the preceding reduction theorem. 

13.19 Exercise : The linear reduction theorem (Theorem 1I .6. l 3) implies 
that the structure group GL(n, C) of any complex n-plane bundle e over any 
base space X E 24 can be reduced to the unitary group V(n) c GL(n, C). 
Prove the same result by imposing a hermitian metric on , and following 
the pattern of Remark 13 . l 7  and Exercise 1 3. l 8. 

13.20 Remark : The eX (X)-module C(X) of differentials on a smooth 
manifold X was described in Definition 6. l 1 as the dual of the COO(X)-module 
6' *(X) of smooth vector fields on X :  however, one can also construct C(X) 
directly. The ring CX'(X x X) of smooth functions X x X !... !R is an algebra 
over the ring C (X) of smooth functions x 1. !R, with fF E COO(X x X) 
defined by setting (fF)(x, y) = f(x)F(x, y) E !R for any (x, y) E X X X. Let 
J c CX (X x X) be the ideal of those F E CY�(X X X) that vanish on the 
diagonal d(X) c X x X, and let C(X) be the quotient CXl(X)-module 
J /12• There is a real linear map C"'(X) ---> J carrying any f E CXl(X) into the 
function with value f( y) - f(x) E !R on (x, y) E X X X, and there is an induced 
real linear map C' (X ) � C(X) that satisfies the classical product rule d(fg) = 
fdg + g df· 
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A smooth map Y .!.  X induces an algebra homomorphism CX� (X x X) 
-> C"(  Y x y ), which in turn induces a module homomorphism 8(X) � 
t3"(Y )  over the induced ring homomorphism C"�(X) � C ( y ), where 
<I>*f = f 0 <I> for any f E C'"'(X), so that <1>* 4f = d(<I>*f). 

13.21 Exercise : Verify that the CCXc(X)-module t3'(X) of Remark 1 3.20 is 
canonically isomorphic to the C<X (X)-module tS'(X) of Definition 6. 1 1 .  

13.22 Exercise : Verify for any smooth map Y .!.  X that the induced homo
morphism tS'(X) � tS'( Y) of Remark 13 .20 agrees up to canonical isomor
phism with the homomorphism tS'(X) � tS'( Y )  constructed following 
Proposition 6. 1 4. 

13.23 Remark : There is a severe penalty for replacing C'"'(X x X) by the 
subalgebra C"' (X)  ® COO(X) c COO(X x X) in the constructions of Remark 
1 3.20. Some of the resulting pathology is described in Osborn [3] . 

13.24 Exercise : Let E � X and Et � X represent real m-plane bundles 
over the same X E fll, and suppose that they are described by transition 
functions Vi n Vj -> GL(m, IR) whose values are transposed inverses of each 
other. Show that E � X and Et � X represent the same real vector bundle. 

13.25 Exercise : Replace "real" by "complex" in the preceding exercise, 
using conjugate transposed inverses. Show that the given coordinate bundles 
represent complex conjugate m-plane bundles. 

13.26 Remark : A smooth n-dimensional manifold X is parallelizable when
ever the tangent bundle ,(X) is the trivial bundle en over X. For example, 
any Lie group G is parallelizable :  the left-invariant vector fields provide a 
basis of sections of r(G). The spheres SI ,  S3, and S7 are also paralleJizable ; 
in fact Si  and S3 are the underlying manifolds of the Lie groups V( 1 )  and 
V(2), respectively. However, there are no other parallelizable spheres, a 
result of Bott and Milnor [ 1 ]  and Milnor [4], which was later simplified by 
Atiyah and Hirzebruch [3] ; a proof will be given in Volume 3. 

Products of spheres are better behaved. One result of Kervaire [ 1 ]  is 
that SP x sq is parallelizable whenever at least one of the numbers p > 0 or 
q > 0 is odd. Staples [ 1 ]  gives a simpler proof of the same result. 

A classical result of Stiefel [ 1 ]  asserts that every orientable 3-dimensional 
manifold is parallelizable ; more generally, Dupont [3] shows that every 
orientable (4k + 3)-dimensional manifold has at least three linearly inde-
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pendent vector fields. Dediu [ 1 , 2, 3J obtains similar results for (4k + 3)
dimensional lens spaces, k � 0; lens spaces are defined in Remark 1 . 1 0.20. 

Since parallelizability of the real projective space RP" would imply 
parallelizability of the corresponding sphere sn, it follows that Rp·, Rp3, 
and Rp7 are the only parallelizable real projective spaces. The question 
concerning more general real Grassmann manifolds is apparently still open. 

1 3.27 Exercise : Recall the identity r(RP") EB c ·  = (n + 1 )}',� of Proposition 
7.4, where RP" is the Grassmann manifold G· (�" + · )  and }'� is the canonical 
real line bundle over G· (�n + I ). Show more generally that 

r(Gm(lRm + ,,) ) EB ()'� ® }'�) = (m + n)}'�, 

where i'�' is the canonical m-plane bundle over the Grassmann manifold 
Gm(�m +" ). 

13.28 Remark : The preceding exercise is not entirely trivial ; its solution 
can be found in Hsiang and Szczarba [1 J, along with corresponding results 
for the complex and quaternionic cases. In the latter cases the summand 
I'� ® i'� is replaced by }'� ® y�, for the conjugate bundle y�. Different gen
eralizations of these results are given in Borel and Hirzebruch [1 J and in 
Lam [4]. 

13.29 Remark : Whitney sums mi',� of m copies of the canonical real line 
bundle }',� over Rpn serve other useful purposes. For example, the immersion 
problem for real projective spaces Rpn is equivalent to the problem of find
ing the largest numbers of linearly independent sections of my� for all m > 0 
and n > O. The immersion problem for real projective spaces is approached 
from this point of view in Lam [3J and Yoshida [ 1 , 2] ' (Recent catalogs of 
best-possible immersions Rpn -+ �2" - k  can be found in  Gitler [ I J, lames 
[1] ,  and Berrick [ 1 ] .) 

13.30 Remark : If a complex vector bundle ( over a polyhedron IK I has a 
finite structure group G c GL(n, C), then there is a finite covering X .!.. IK I 
such that the pull back t( over X i s  trivial ; see Deligne and Sullivan [ 1 ] .  
The corresponding statement i s  false in  the real case; see Milnor [5] . 

13.31 Remark : If Y E  211 is a closed subspace of X E fJ4, then any trivial 
bundle f:" over Y is the restriction to Y of a corresponding trivial bundle 
f:n over X. In general, however, a vector bundle over Y e  X is not the restric
tion to Y of a vector bundle over X, even when X and Y are real projective 
spaces or lens spaces. Counterexamples can be found in Horrocks [ 1  J, 
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Schwarzenberger [3], Maki [ 1 ], and Kobayashi, Maki, and Yoshida [ 1 ], 
for example. There is an especially easy complex counterexample in Schwar
zenberger [4, pp. 65 -66]' 
13.32 Exercise : According to Definition 3 . 1 ,  a riemannian metric on a real 
m-plane bundle � over X E f!4 restricts to an inner product < , > x for each 
fiber Ex ; in particular, there is a matrix representation of < , >x as a diagonal 
matrix with m positive entries. One can equally well consider nondegenerate 
metrics of type (p, q) : the latter requirement is replaced by requiring the 
existence of a diagonal representation of each < , >x with p positive entries 
and q negative entries, where p + q = m. Show that � possesses such a metric 
of type (p, q) if and only if it is the Whitney sum of a real p-plane bundle and 
a real q-plane bundle. 

13.33 Remark : According to Theorem 9.5, any (continuous) real vector 
bundle over a smooth manifold can be represented by a smooth coordinate 
bundle. Can a (continuous) complex vector bundle over a complex manifold 
X be represented by a holomorphic coordinate bundle? For complex line 
bundles the answer is affirmative, and for complex 2-plane bundles the 
answer is affirmative in the special cases X = Cp2 (Schwarzenberger [ 1 ,  2] ) 
and X = CP3 (Atiyah and Rees [ 1 ] ). These results, and others, are presented 
in detail on pages 1 1 1 - 1 38 of Okonek, Schneider, and Spindler [1] ,  where 
it is shown for n � 3 that every complex vector bundle over CP" can be 
represented by a holomorphic coordinate bundle. However, a construction 
of Rees [ 1 ]  strongly suggests that for each n > 4 there is a complex 2-plane 
bundle over C P" that cannot be represented by a holomorphic coordinate 
bundle. 

Here is an apparently narrower problem : can a (continuous) complex 
vector bundle over a complex algebraic variety be represented by a coor
dinate bundle which is algebraic in the obvious sense? A basic result of 
Serre [3] implies that this question reduces to the preceding one : a complex 
vector bundle over a complex algebraic variety is algebraic if and only if it 
is holomorphic. 

13.34 Remark : If E � X represents a real m-plane bundle �, then 7t is itself 
a homotopy equivalence; hence the fiber homotopy equivalence relation of 
Remark 1I .8.2 1 is of little direct interest. However, if E .. � X represents the 
corresponding (m - i )-sphere bundle �S > described in Remark 1 3.3. the 
projection 7ts is no longer a homotopy equivalence. Accordingly, two real 
vector bundles � and rJ over the same base space are defined to be fiber 
homotopy equivalent (or of the same fiber homotopy type) whenever the state-
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ment is true of the corresponding sphere bundles �s and 1Js ; fiber homotopy 
equivalence of complex vector bundles is described in terms Df their realifica
tions. It is clear that one can equally well consider fiber homotopy equiva
lence of vector bundles over different base spaces, provided the base spaces 
themselves are homotopy equivalent in the usual sense. 

The first major application offiber homotopy equivalence coincided with 
its very definition in Thorn [4] : the jiber homotopy type of the tangent bundle 
LeX) of a smooth closed manifc)ld X is independent of the smooth structure 
assigned to X. A stronger versiDn of Thorn's result occurs in Benlian and 
Wagoner [ 1 ] : if two smooth closed manifolds are homotopy equivalent, then 
their tangent bundles are jiber homotopy equivalent ;  a simplified proof of this 
statement is given in Dupont [2]. Incidentally, Benlian and Wagoner also. 
show that if the given homotopy equivalent manifDlds are n-dimensional, 
and if one of the manifolds has k linearly independent vector fields fDr some 
k � (n - 1 )/2, then the other manifold also has k linearly independent vector 
fields. 

Fiber homotopy equivalence provides a natural setting for other results. 
Recall that parallelizability of Lie groups was easily established in Remark 
13 .26, and that H-spaces are natural generalizations of Lie groups. Accord
ing to. Kaminker [ 1 ], the tangent bundle of any (smooth) H-space is fiber 
homDtopy equivalent to a trivial bundle ; this is clearly the natural general
izatiDn of parallelizability. 

13.35 Remark : In general one cannot strengthen the preceding remark to. 
conclude that a hDmotopy equivalence X .!.. X' pulls the tangent bundle 
LeX') back to the tangent bundle LeX). HDwever, one does have f!(X') = 

LeX) in certain special cases considered in Shiraiwa [ 1 ]  and Ishimoto [ 1 ] .  

13.36 Remark : Two vector bundles � and 1J over the same base space are 
stably equivalent if � E8 If = 1J E8 eq for trivial vector bundles f'p and (',q. For 
example, PropositiDn 7.4 asserts that the (n + I )-fold Whitney sum (n + l )y� 
of the real canonical line bundle y� over RP" is stably equivalent to the tan
gent bundle !(RP"). In Shiraiwa [2] one learns that if X .!.. X' is a homotopy 
equivalence of closed even-dimensional smooth manifolds such that fLeX') 
is stably equivalent to LeX), then the stronger conclusiDn fLeX') = LeX) is 
valid. 

There are natural homotopy classification theorems for stable equiva
lence classes of vector bundles. For each m >  0, let Gm( � � ) -+ Gm + I ( � 'l ) 
classify the Whitney sum I'm E8 /; 1 of the universal real m-plane bundle }'"' 
and the trivial line bundle (', 1 over Gm( � X ) . In the notation of Remark 1 3.4, 
this is a map BO(m) ---> BO(m + 1 ), and Dne can form the inductive limit 
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BO = limm BO(m). Clearly the stable equivalence classes of real vector 
bundles over any X E :}9 are classified by homotopy classes of maps X ---; BO. 
Similarly, the stable equivalence classes of complex vector bundles over any 
X E :Jd  are classified by homotopy classes of maps X ---; BU = lim", BU(m), 
where B U(rn) is also defined in Remark 1 3.4. 

Stable equivalence classes will be studied in more detail in Volume 3 :  
they are the very essence of K-theory. However, representations of such 
classes are of independent interest. For example, Fossum [ I ]  shows that 
every real or complex vector bundle over any sphere sn is stably equivalent 
to a vector bundle represented by an algebraic coordinate bundle. In the 
special case n = 4k > 1 6  Barratt and Mahowald [ 1 ]  show that any real 
vector bundle over S4k is either stably trivial or stably equivalent to a bundle 
of rank 2k + 1 that is irreducible in the sense that it is not a Whitney sum of 
non trivial bundles of lower rank ; an alternative proof of the same result 
appears in Mahowald [ 1 ]. Glover, Homer, and Stong [ 1 ]  show for any 
k > 0 that the tangent bundle r( Cp2k) of the complex projective space C p2k 

is similarly irreducible, as a complex vector bundle; this partially strengthens 
a result of Tango [1] ,  that for allY 11 > 2, there is an irreducible complex 
vector bundle of rank 11 - l over C P". 

13.37 Remark : Surfaces have special properties as base spaces. Cavenaugh 
[ 1 ]  shows that every non trivial real 2-plane bundle over any orientable 
surface is irreducible in the sense of the preceding remark. Moore [ 1 ]  sharp
ens the result of F ossum [ 1 ]  as follows : every vector bundle over the 2-sphere 
S2 can itself be represented by an algebraic coordinate bundle. (The latter 
result is clearly related to the result of L0nsted [ 1], cited in Remark 1 3.6, 
that any vector bundle over any finite CW space is "algebraic" in a reasonable 
sense.) 

13.38 Exercise : Let X be an m-dimensional CW space as in §1.5, so that 
X has no n-cells for any n > m, and for some fixed n > rn let � be a real n
plane bundle over X. Use induction on p = 1 ,  . . .  , m and the fact that every 
map SP - 1 ---; S" - 1 is homotopic to a constant map for p < n to show that � 
has a nowhere-vanishing section. (This is an easy exercise, which is carried 
out in Husemoller [ 1 ,  p. 99], for example ; it will also be done in detail in 
Volume 2 of the present work, for any m-dimensional weak simplicial space 
K) 

13.39 Exercise : Use Exercise 1 3.38 and Proposition 4.8 to conclude that if 
11 > rn, then any real l1-plane bundle � over an m-dimensional CW space X 
is of the form '1 Efl en-m for some real m-plane bundle '1 over X. 
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13.40 Remark : The geometric dimension of a real vector bundle � is the 
least integer n such that � is stably equivalent to a real n-plane bundle '1 ;  in 
case � is stably trivial its geometric dimension is 0. For example, according 
to Exercise 1 3.39 the geometric dimension of any vector bundle over an 
m-dimensional CW space is at most m. However, stronger results are possible 
in some cases : Remark 1 3.36 asserts for k > 4 that the geometric dimension 
of any real vector bundle over the sphere S4k is either ° or 2k + 1 .  There are 
other base spaces over which all real vector bundles have severely limited 
geometric dimensions ; several examples can be found in Sjerve [1] ,  Hill [ 1 ], 
and Davis and Mahowald [ 1 ] .  

13.41 Remark : Given an m-plane bundle � ,  a stable inverse of  � is any n
plane bundle '1, over the same base space and for some n � 0, such that 
� Efl '1 = em + ... The existence of stable in verses of real m-plane bundles over 
certain kinds of base spaces was established in Corollaries 8. 1 3, 9.2, and 9.4, 
and there were indications of upper bounds on n. In the following situation 
one can take n = m. 

For any X E fJI and any point * E X the (reduced) suspension �X is the 
quotient of the product X x [0, 1] by the subspace X x {o} u {* } x [0, 1 ]  u 
X x { I }, in the quotient topology. If X E !JI  is a compact hausdorfT space, 
and if � is a complex m-plane bundle over �X, then there is a complex m
plane bundle '1 over �X such that � Efl '1 = e2m• A proof is given in Ch an 
and HofTman [ 1] .  

13.42 Remark : The equivalence relations of Remarks 1 3.34 and 1 3.36 lead 
to a useful weaker equivalence relation. Two vector bundles � and '1 over 
the same base space are J-equivalent (or stably jiber homotopy equivalent) if 
there are trivial bundles eP and eq such that � Efl eP and '1 Efl eq are fiber homo
topy equivalent in the sense of Remark 1 3.34. For example, the theorems of 
Benlian and Wagoner [ 1 ]  described in Remark 1 3.35 first appeared as J
equivalence theorems in Atiyah [ 1 ]  and Sutherland [ 1 ], respectively. The 
following J-equivalence theorem is due to Atiyah and Todd [ 1 ]  and to 
Adams and Walker [ 1 ]  with a later simplification in Lam [2] : a necessary 
and sufficient condition that the m-fold Whitney sum my� of the canonical 
complex line bundle y� over cpn be J-equivalent to a trivial bundle is that 
m be divisible by an integer i(m, n) defined in Atiyah and Todd [ 1 ] .  An 
application of this result will be indicated in Remark VI.9.22. 

13.43 Exercise : Let Y � £ be the zero-section of a smooth coordinate 
bundle £ .::. Y representing a real vector bundle '1 over a smooth manifold 
Y. Show that O'!,(£) = '1 Efl ,(  Y) for the homotopy equivalence 0'. 
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13.44 Remark : Let X .!.  Y be the restnctIOn of a smooth embedding 
X --+ [Rn of a smooth manifold X to an open tubular neighborhood Ye [Rn 
of f(X) c [Rn, so that f is a homotopy equivalence. Then any vector bundle 
� over X is of the form tY/ for a vector bundle Y/ over Y, and since r( Y )  = en 
over Y the preceding exercise implies (0- 0 f)!r(E) = � E!1 en over X. Thus, up 
to the homotopy equivalence 0- 0 f, any vector bundle � over X is stably 
equivalent to the tangent bundle of a smooth manifold E. 



CHAPTER IV 

71/2 Euler Classes 

O. Introduction 

Let H*(X ; "Zj2) be the singular "Zj2 cohomology ring of a base space 
X E .!Jd. In this chapter we assign a cohomology class e(�) E Hn(x; "Zj2) to 
any real n-plane bundle � over X. Such classes will be used in Chapter V 
to obtain further "Zj2 classes w(�) = 1 + W I (�) + . . .  + wi�) E H*(X ; "Zj2) 
for �, with wi�) = e(�), which have many useful geometric applications. 

Let E � X represent �, and let E* c E consist of the nonzero elements 
in E. The Mayer-Vietoris technique is used in §1 to construct a relative 
cohomology class U � E Hn(E, E* ; "Zj2), whose properties are further described 
in §2. The zero-section X � E and inclusion E J.. E, E* then provide a 
composition 

H*(E, E* ; "Zj2) !. H*(E; "Zj2) � H*(X ; "Zj2), 

hence a class e(�) = a*j* U, E H"(X ; "Zj2) as desired. 
For the universal real line bundle yl over Rpoo (Definition I l l .8.2) the 

class e(y l )  E H l(RPX ; "Zj2) plays a privileged role : the cohomology ring 
H*(Rr' ; "Zj2) is the polynomial ring "Z/2 [e( y l )] over "Z/2 generated by 
e(y l )  E Hl (RPX ; "Zj2). Similarly, for the canonical real line bundle Y1  over Rpl 
(Definition Ill .7.2) the class e(y l )  E HI(Rpl ; "Zj2) generates H*(Rpl ; "Z/2), 
subject to the condition e(yD u e(y l )  = O. These properties of e(y l )  and e(YD 
lead to an axiomatic characterization of all the classes e(�), given in §6. 

The notations H*(- , -) and H*(-) are used co�sistently in this chapter, 
and in the remainder of this volume, to denote singular cohomology 

1 9 1  
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H*(� ,� ; 7l../2) and H*(�; 7l../2) with 7l../2 coefficients. Other coefficient rings 
will appear in Volumes 2 and 3. 

1. The 7L/2 Thorn Class U� E H"(E, E*) 

Let E � X represent a real n-plane bundle � over a base space X E fJ6, 
and let E* consist of the nonzero elements in E. We use the local behavior 
of H*(E, E*) to construct a class U � E H"(E, E*). Specifically, for each x E X 
let Ex = n - I ( {x} )  and E� = Ex n E*, and let Ex , E� 4 E, E* be the inclusion 
of pairs ; then U � will be defined by the behavior of the images of the homo
morphisms H"(E, E*) � H"(Ex , E�). An obvious first step is to describe the 
7l../2 cohomology modules H*(Ex , E�), each of which is isomorphic to 
H*(!R", !R"*). 

1 . 1 Lemma : If n > 0, the 7l../2-module H*(!R", 1Rl"*) vanishes except for (/ 
single generator in H"(!R", !R"*). 
PROOF : The excision and homotopy axioms for cohomology permit one to 
replace the pair !R", !R"* by the pair D", S"- I , where D" c !R" is the unit 
n-disk and its boundary S" - I c !R"* is the unit (n - I )-sphere. For the 
inclusions S"- I � D" and D" .4 D", S" - l the usual exact cohomology sequence 

� Hq- I (D") ...!:..... Hq - I (S" - I ) 
d � '. -- Hq(D", S" - I ) � Hq(D") � . . .  

contains many O's ;  in particular, all terms with q < 0 vanish. In case 4 > 1 
the result follows from the portion 

o ---. Hq- I (S"- I ) � Hq(D", S" - l ) ---. 0 
of the preceding exact sequence and the known behavior of Hq - I (S" - I ). 
For smaller values of q the exact sequence is 

o � HO(D", S" - I ) � HO(D") � HO(S"- I ) 
� H 1(D", S"- I ) L o. 

If n > 1 ,  then HO(D") !. HO(S" - I ) is an isomorphism, so that HO(D", S" - I ) = 
0 =  Hl (D", S" - I ). If n = 1 ,  then one has HO(D1 ) = 7l../2, HO(So) = 7l../2 EB 7l../2, 
and i*(a) = a Efl ( - a) for any a E HO(D 1 ) ;  hence necessarily HI(D I , So) = 7l../2 
and 3(a EB b) = a + b for any a EB b E HO(So). 

Let E � X represent a real n-plane bundle over X E f!lj and define E* c E 
as before. 
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1 .2 Lemma : HP(E, E*) = 0 for p < n. 
PROOF : Since HP(E, E*) depends only on the homotopy type of the base 
space X E 2B, one can assume that X is of finite type as in Definition 1 . 1 . 1 .  
(This normalization is described i n  detail in the proof o f  Theorem 1 1.7. 2, 
the absolute Leray-Hirsch theorem.) Let @(X) denote the category of open 
sets U c X, and let E l  U = n - I (U )  and E* I u = n - 1(U )  (') E* for any 
U E (1:!(X). There is then a Mayer-Vietoris functor { hq l q  E Z }  on @(X) to 
1:/2-modules, with hq(U )  = W(E I u, E* I U) for any U E @(X) ; the connecting 
homomorphisms are the classical ones for relative cohomology, where E* I U 
is open in E l  U. There is also a trivial Mayer-Vietoris functor { /(1 l q  E 1: }  on 
@(X) to 1:/2-modules, with /(1( U)  = 0 for any U E (i'J(X). Finally there is a 
unique natural transformation (J from {hq l q E 1: }  to {/(1 l q  E 1: }  which an
nihilates everything. If U E @(X) is contractible to a point x E U, then 
hq( U) = Hq(Ex , E:) by the homotopy axiom for cohomology, where 
Hq(Ex , E:) = W(lRn, lRn*) = O  for q < n  by Lemma 1 . 1 .  Thus hq(U ) � 
kq(U )  = 0 is an isomorphism whenever U is contractible and q < n, so 
that Hq(E, E*) = hq(X) � /(1(X) = 0 is also an isomorphism whenever 
q < n, by Corollary 1.9.5. 

The main result of this section is obtained by refining the trivial Mayer
Vietoris functor { /(1 1  q E 1:}  of the previous proof. For any U E @(X) let 
kq(U )  = 0 as before except in the case q = n, and let kn(u)  be the Z/2-module 
of functions U ..... 1:/2 which are continuous in the discrete topology of Z/2. 
For any ordered pair (U, V) E @(X) X @(X) the sequence 

o ----+ kn( U u V) it . v  I kn( U)  EB kn(v ) jt ,v I kn( U (') V) ----+ 0 

is trivially exact for the Mayer-Vietoris homomorphisms it.v and jt,v of 
§1.9, so that {kq l q  E 1:} is still a Mayer-Vietoris functor. There is a natural 
transformation (J from the old { hq I q E Z }  to the new { /(1 1  q E 1: }  which anni
hilates hq(U)  for every U E @(X) and every q t= n. To define hn(u )  � kn(U )  
let Ex , Ex 4 E l  u, E*  I U be the inclusion o f  pairs for any x E U ,  where 
W(Ex , E:) = 1:/2 by Lemma 1 . 1 ,  and for any rI. E hn(u) = Hn(E I U, E* I U) let 
(Juri. be that function U ..... 1:/2 in kn( U) with value j:rI. E 1:/2 on x E U. 

1 .3 Proposition : If E � X represents a real n-plane bundle � over a base 
space X E 2B, then there is a unique class U � E Hn(E, E*) such that j: U � E 
W(Ex , E:) is the generator of the Z/2-module H*(Ex ,  E:) for each x E X. 

PROOF : As in Lemma 1 .2 one can assume that X is of finite type, and for 
any contractible U E @(X) one has isomorphisms hq(U )  � kq(U )  whenever 
q � n, including the case q = n ;  hence Corollary 1 .9.5 provides isomorphisms 
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hq(X) � kq(X) for q � n, including the case q = n. In particular the iso
morphism h"(X) � k"(X) carries a unique cohomology class U� E h"(X) = 
H"(E, E*) into the constant function X -+ 71/2 with value I E 7L/2. 

1 .4 Definition : If E � X represents a real n-plane bundle � over a base 
space X E !J4, then the 7L/2 Thorn class of � is the unique class U � E H"(E, E*) 
such that j�U� E Hn(Ex , E�) is the generator of H*(Ex ,  E�) for each x E X. 

The coordinate bundle E � X of Definition 1 .4 induces an isomorphism 
H*(X) � H*(E) of cohomology rings, which one can combine with the 
relative cup product H*(E) ® H*(E, E*) � H*(E, E*) to regard H*(E, E*) as 
an H*(X)-module. Specifically, the product of any a E H*(E, E*) by any scalar 
fJ E H*(X) is n*fJ u a E H*(E, E*). 

1 .5 Proposition (A Relative Leray-Hirsch Theorem): !f E � X represents 
a real n-plane bundle � over X E fJ6, then the H*(X)-rnodule H*(E, E*) is the 
free H*(X)-rnodule generated by the Thorn class U � E H"(E, E*). 
PROOF : For each x E X the class j� U� E Hn(Ex , E�) generates the 7L/2-
module H*(Ex , E�), by Proposition 1 .3, and the remainder of the proof is 
identical to that of Theorem 1 1.7.2 (the absolute Leray-Hirsch theorem) 
with the singleton set { U�} in place of {ab " "  ar} . 

2.  Properties of 7L/2 Thorn Classes 

We now establish two properties of 7L/2 Thorn classes. In order to 
formulate the first property suppose that X' .!. X is a map in the category 
fJI of base spaces and that E � X represents a real n-plane bundle � over X. 
If E' � X' represents the pull back t� over X', there is then a map E' -.!. E 
which induces a linear isomorphism on each fiber, and for which the diagram 

E' ------+. E 

. j j . 
X' __ ----'--f __ ---+. X 

commutes as in Lemma 11 . 1 .3. In particular, f carries the set E'* c E' of 
nonzero elements into the corresponding set E* c E, so that there is an 



2, Properties of 7L/2 Thorn Classes 1 95 

induced map E', E'* !.. E, E* of pairs. Consequently there is also an induced 
map WeE, E*) ..!: Hn(E', E'*) in Zj2 singular cohomology. 

2.1 Proposition : Let E � X represent a real n-plane bundle � over a base 
space X E rJI, let X' � X be any map in rJI, and let E' � X' represent the 
pullback f� over X' E rJI. Then Un = f* U� E Hn(E', E'*), for the Zj2 Thorn 
classes U� E Hn(E, E*) and U J!� E Hn(E', E'*). 
PROOF : For any y E X' there is a commutative diagram 

E, E* ...... ----1,,,,1 
E f(y) , E/(y) �. ----=.c y- E� , E�*, 

where fy is the restriction of f to the fiber pair over y, hence a commutative 
diagram 

Hn(E, E*) __ c· _->� Hn(E', E'*) 

" '" j j ft 

Since fy is a homeomorphism of the pair Ey , E;, the induced isomorphism 
f; carries the generator j/(y)U � of Hn(E J(y) , Ej(y» ) into the generator of 
W(E� , E�*) ;  thus j;(f* U�) is the generator of W(E� , E�*) for each Y E X'. 
According to Proposition 1 .3, however, the Thorn class U J!� E Hn(E', E'*) is 
the unique class with this property of f*U� E Hn(E', E'*). 

In order to formulate the second property of Zj2 Thorn classes we recall 
that if X E rJI and X' E rJI, then X x X' E rJI, by Proposition 1 . 1 .4. We also 
recall from Definition I II.2. l that if E � X and E' � X' represent real vector 
bundles � and �', then one applies a morphism (r, <1» of transformation 
groups to the product E x  E' � X x X' to obtain a coordinate bundle 
representing a real vector bundle � + �' over X x X' ; r and <I> are the 
obvious maps GL(n, !R) x GL(n', !R) --> GL(n, !R) Efl GL(n', !R) c GL(n + n', !R) 
and !Rn X !Rn ' --> !Rn + 11', respectively, which can conveniently be ignored. If E* 
and E'* are the sets of nonzero elements of E and E', respectively, then 
E* x E' u E X E'* is the set of nonzero elements of E x E', so that 

(E, E*) x (E', E'*) = (E X E', E* X E' u E X E'*) = (E X E', (E X E')*). 
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2.2 Proposition : !f E � X and E' � X' represent real vector bundles e and 
e' over X E 81 and X' E f!4, respectively, then the cross product of the 1l./2 
Thorn classes U� E Hn(E, E*) and U�, E Hn'(E', E'*) satisfies 

U� x U� , = U�+ � , E Hn+ n'(E  x E', (E x E')*), 
PROOF : For any point (x, x') E X X X' let Ex , E� 4 E, E*, E�" E�� � 
E' E'* and E" E"* � E" E"* be inclusions of fiber pairs where " (x,x' ) , (x,x') , , 
E" = E x E', Then j(x,X ') = jx x jx" so that 

jtx.x ') (U� x U�,) = (jx X jx ')*(U� X U�,) 
= «jx x jx' )* " x ) ( U� @ U�. )  
= ( x  Q U: ® j:, ) )( U � ® U�,) 
= j: U� x j:,U�" 

by naturality of the cross product. Since j:U� E Hn(Ex , E:) and j:,U�, E 
Hn' (E�" E�"f) are generators, by definition of Thom classes, and since 

H*(Ex , E:) ® H*(E�" E�"f) � H*(E;�,x' ) ' E;�;x'» ) 
is an isomorphism by the Kiinneth theorem, it follows for each (x, x') E X X X' 
that jtx,X')( U� x U�,) i s  the generator of Hn+n'(E(�,x, ) , E(�,x' » )' However, 
U�+f E Hn+n (El', E"*) is uniquely characterized by this property of U� x U �" 
so that U� x U�, = U�+ �" as claimed. 

3 .  7L/2 Euler Classes 

We now construct the most accessible characteristic classes of real vector 
bundles, establish two of their algebraic properties, and apply those prop
erties to obtain a necessary condition for the existence of nowhere-vanishing 
sections of real vector bundles. 

3.1 Definition : Let E � X represent a real n-plane bundle e over X E f!4, 
with 1l./2 Thorn class U � E Hn(E, E*), let X � E be the zero section, and let 
E� E, E* be the inclusion. Then the 1l./2 Euler class e(�) E Hn(x) is given by 
setting e(e) = (J*j*U� . 

The trivial property that e(e) belongs to Hn(x) c H*(X) will play a role 
in the axiomatic characterization of 1l./2 Euler classes, given later. Here is the 
first non trivial property of 1l./2 Euler classes. 
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3.2 Proposition (Naturality) : Let X' � X be any map in the category f!4 of 
base spaces, let � be a real n-plane bundle over X, and let t� be its pullback. 
Then e(f�) = f*e(�), for the 7l../2 Euler classes e(�) E H"(X) and e(t�) E 
H"(X'). 
PROOF : If E' � X' represents t�, then as in §2 there is a map E' -+ E which 
is a linear isomorphism on each fiber, inducing a map E', E'* !.. E, E* of 
pairs such that the diagram 

E, E* • E', E'* 

i l I i' 
E E' 

al I a' 
X .  f X' 

commutes, for the zero section (J' and inclusion j' associated to t�. Since 
Un = f*U� E Hn(EI, E'*) by Proposition 2. 1 ,  it follows that e(t�) = 
(J'*j'* U  n = (J1*j'*f *U� = f*(J*j* U� = f*e(�), as claimed. 

One easily shows the equivalence of the following two properties of 7l../2 
Euler classes, and we identify both of them by the name "Whitney product 
formula." There will be many further "Whitney product formulas" through
out this work, 

3.3 Proposition (Whitney Product Formula) : Let E � X and E' � X' rep
resent real vector bundles � and �' of ranks n and n' over base spaces X E rJl 
and X' E f!4, respectively, so that E x E' � X X X' represents the bundle 
� + �' (){ rank n + n' over X x X E rJl. Then the cross product of the 7l../2 
Euler classes e(�) E H"(X) and e(�') E Hn'(x') satisfies 

e(�) x e(�') = e(� + 0 E H"+n'(x x X). 
PROOF : Let X � E and X' � E' be the zero sections, and let E .!.. E, E* and 
E' � E', E'* be the inclusions, associated to � and to �', respectively. Since 
(E, E*) x (E', E'*) = (E x E'), (E X E')*, as in Proposition 2.2, it follows that 
X x X' � E X E' and E x E' � (E, E*) x (E', E'*) are the zero sec
tion and inclusion associated to � + �'. According to Proposition 2.2 the 
7l../2 Thorn classes satisfy 

U� x U�, = U� + �, E Hn(E x E', (E X E')*), 
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so that by naturaJity of the cross-product one has 

as claimed, 

e(�) x e(�') = a*j* U� x a'*j'*U�, 
= ( x  c (a* ® a'*) .o (j* ®j'*) )( U� ® U�,) 
= ( (a x a')* 0 (j x j')* " x ) (U� @ U�,) 
= (a x a')*(j x j')*(U� x U�,) 
= (a x a')*(j x j')*U� + �, 
= e(� + 0, 

Here is an equivalent formulation of Proposition 3,3, 

3.4 Proposition (Whitney Product Formula) : Let � and �' be real vector 
bundles over the same base space X E f!J, and let � EEl �' be their Whitney sum, 
Then the cup product of the 2/2 Euler classes e(�) E Hn(x) and e(�') E Hn'(x) 
satisfies e(�) u e(�') = e(� EEl 0 E Hn+ n'(x). 

PROOF : If X � X x X is the diagonal map, then 

e(�) u e(0 = A*(e(�) x e(c;' ) )  = A*e(� + 0 
= e(A'(� + �') ) = e(� EEl �'), 

by the definition of the cup product, Proposition 3.3, Proposition 3.2, and 
the definition � EEl �' = A'(C; + �'), respectively, 

The following lemma will be used to establish a necessary condition for 
the existence of nowhere-vanishing sections of real vector bundles. 

3.5 Lemma : If en is the trivial real n-plane bundle over a base space X E !!4, 
for any n > 0, then e(en) = ° E Hn(x). 
PROOF : e" can be classified by a constant map into Gn(��), which can be 
expressed as the composition X .!. { * } � G"(W' ), where * E G"(�OO) is the 
constant value and g is the inclusion ; that is, e" = jVy" for the universal n
plane bundle y" over G"(�'l ), Since H"( {* } )  = ° one has e(g"l) = 0, hence 
e(c;") = eU"'g'r" ) = f*e(g'y" ) = ° by Proposition 3.2, 

3.6 Proposition : �r a real n-plane bundle � over a base space X E !!4 admits a 
nowhere-vanishing section, then the 2/2 Euler class vanishes : e(�) = ° E H"(X). 
PROOF : By Proposition 111 .4.8, � = e l EEl 1] for the trivial line bundle e l and 
some (n - 1 )-plane bundle '1; hence Proposition 3.4 and Lemma 3.5 yield 
e(�) = e(B I EEl '1) = e(e l ) u e(rll = 0. 
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According to Proposition 1 .5, if E ..':. X represents a real n-plane bundle 
� over X E f1J, then the H*(X)-module H*(E, E*) is free of rank one, the 
unique generator being the 2/2 Thorn class U � E H"(E, E*). It follows that 
cup product by U� induces an H*(X)-module isomorphism H*(X) -+ 
H* + "(E, E*). 

3.7 Definition : Let Ue E H"(E, E*) be the 2/2 Thorn class of a coordinate 
bundle E ..':. X representing a real n-plane bundle � over a base space X E f1J. 
The 2/2 Thom isomorphism H*(X) � H* + "(E, E*) maps any f3 E H*(X) into 
n*f3 u U� E H* + "(E, E*). 

The 2/2 Thorn isomorphism provides a new characterization of 2/2 
Euler classes, as follows. 

3.8 Proposition : !f E ..':. X represents a real n-plane bundle � over X E f1J, 
with 2/2 Thom class U� E H"(E, E*) and 2/2 Thom isomorphism H*(X) � 
H* +"(E, E*), then the 2/2 Euler class e(�) E H"(X) is given by 

e(�) = <1>Z I ( U� U U�) 

for the cup product U � u U � E H2"(E, E*). 

PROOF : Since E ..':. X � E is homotopic to the identity, one can apply 
Definition 3.7 to e(�) = a*j* Ue E H"(X) to compute 

<1>ee(�) = n*(a*j* U�) u U� = j* U� u U� = U� u U� . 

4. Gysin Sequences and H*(RpOO ; 7Lj2) 

The goal of this section is to compute the 2/2 cohomology of real pro
jective spaces, including RP":' 

4.1 Definition : Let E ..':. X represent a real n-plane bundle � over X E f1J, 
let E* be the nonzero portion of E, let H*(E*) � H* + I (E, E*) be the con
necting homomorphism in the 2/2 cohomology exact sequence of the pair 
E, E*, and let H*(X) � H* + "(E, E*) be the 2/2 Thorn isomorphism of 
Definition 3.7. The Gysin map H* + "(E*) � H* + I (X) is the composition 
", - I ,  'V� 0 :  

H* +"(E*) ! H* + " +  I (E, E*) � H*+ I (X). 

Trivially the Gysin map '¥ � is a 2/2-module homomorphism of degree 
1 - n. 
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4.2 Proposition (The Gysin Sequence) : Let E "::' X represent a real n
plane bundle � over X E :14, let E* � X be the restriction of n to the nonzero 
portion of E, let 'P� be the Gysin map, and let H*(X) � H* +n(x) be cup 
product by the 7l./2 Euler class e(�) E Hn(x). Then the sequence 

. . .  --+ W+n- 1 (E*) � Hq(X) � Hq+n(x) � Hq+ n(E*) -+ . . . 

is exact. 
PROOF : The bottom row of the accompanying diagram is the 7l./2 coho
mology exact sequence of the pair E, E*, 

. . .  ----+ Hq+n - l (E*) --'I'.:...:�,----+. Hq(X) 

j ;' j ., 
. . .  ------> Hq+n- l (E*) � Hq+n(E, E*) � Hq+n(E) � Hq+n(E*) -----> 

and the vertical maps are aU isomorphisms. The left-hand square commutes 
by definition of 'P� , and the right-hand square commutes because E* � X 
is the composition of the inclusion E*..!. E and the projection E � X. To 
show that the middle square commutes, observe that if X � E is the zero 
section, then E � E is homotopic to the identity, so that the endomor
phism Hn(E) � Wee) is the identity ; hence for any (3 E Hq(X) one has 

as required. 

n*({3 u e(�» = n*{3 u n*((j*j* U�) = n*{3 u j*U� 
= j*( n* (3 u U�) = j*cJ> �(3, 

4.3 Proposition : Let y l be the universal real line bundle over RpCL, with 7l./2 
Euler class e(y l ) E H1(RpOO). Then the 7l./2 cohomology ring H*(RpOO) is a 
polynomial ring in a single variable over 7l./2, the generator being e(y l ) . 
PROOF : If E � Rpoo represents y l , then E* = lRoo*, which is contractible, 
as in Proposition 111.8. 1 1 . The Gysin sequence (for n = 1 )  is then of the form 

Hq(lRoc*) � Hq(RpOO) � Hq+ I (RPOC ) � Hq+ 1 (R'=), 

where W+ 1 (IROO* )  = 0 for q � 0, and where Hq(lRcx,* )  = 0 for q > 0; in 
particular, ue(y l ) is an isomorphism for q > O. Furthermore, the beginning 
of the Gysin sequence is 

HO(RpOO) � HO(lRoo* )  � HO(RpOC ) � Hl(RPOO) --+ 0, 

where the initial homomorphism 1f* is the trivial isomorphism 2/2 -+ 2/2, 
so that ue(}, l ) is also an isomorphism for q = O. Since HO(RpX ) = 7l./2, this 
completes the proof. 
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A similar method applies to the 2/2 cohomology ring H*(RP") for any 
finite n > O. 

4.4 Proposition : For any n > ° let y� be the canonical line bundle over RP", 
with 2/2 Euler class e(y� ) E HI(RP"). Then the 2/2 cohomology ring H*(RP" )  
is a truncated polynomial ring in a single variable over 2/2, the generator being 
e()'� ) and the relation being e(y� )" +  I = O. 
PROOF : If E � RP" represents 1',: , then, as in Proposition I I I.8. l l ,  E* is a 
quotient IR(" + 1 )* X IR* / � , with (x, s) � ( y, t) if and only if sx = ty E IR(" +  1 )* ;  
that is, E* = IR(" + 1 )*, which is trivially homotopy equivalent to the sphere 
S". Since Hq(S" ) = ° for 0 < q < n, the argument used for Proposition 4.3 
shows that HO(RP") = 2/2, that W(RP") � Hq + I (Rpn) is an isomor
phism for 0 � q < n - 1 ,  and that Hn- I (RP") � H"(Rpn) is a mono
morphism ; the latter conclusion implies that H"(Rpn) contains 2/2 as a 
submodule. Since Rpn is an n-dimensional CW space, by Proposition 1.5.5, 
one has Hq(RP") = 0 for q > n. In particular, since Hn+ l (Rpn) = 0, the Gysin 
sequence terminates in the fashion Hn(S") '1'/1, . Hn(Rpn) ---+ 0, and since 
H"(S") = 2/2, the monomorphism H,, - I (RP" )  � H"(RP") is in fact an 
isomorphism, which completes the proof. 

4.5 Corollary : For any n > ° let Rpn !. Rpx classify the canonical line 
bundle y� over RP" ; then for any p � n the induced 2/2-module homomorphism 
HP(RP" ) ---S HP(RP") is an isomorphism carrying e(y l jP into e(y�)p. 
PROOF : HP(RPX ) is free on the single generator e(y l jP, and HP(Rpn) is free 
on the single generator e(y� )p. Since y� = Fyl , it follows from the naturality 
of 2/2 Euler classes (Proposition 3.2) that e(y� ) = f*e(y l ), hence that e(y� j P  = 
f*e(y l jP, as required. 

Observe that Propositions 4.3 and 4.4 establish the existence of nonzero 
71/2 Euler classes, hence that the condition of Proposition 3.6 for the existence 
of nowhere-vanishing sections is nonvacuous. In particular, y I and y� admit 
no nowhere-vanishing sections ; a fortiori, they are not trivial line bundles, 

5 .  The Splitting Principle 

In general, an n-plane bundle � over a base space X E f!I is not a Whitney 
sum of n line bundles. Nevertheless, one can always find a map X' .!!. X in 
the category &d such that the pull back g!� over X' E f!I is a Whitney sum of 
n line bundles, and such that the induced homomorphism H*(X) � H*(X') 
of 71/2 cohomology rings is a monomorphism. This result will be used often 
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to verify properties of cohomology classes assigned to arbitrary vector 
bundles : one need only consider sums of line bundles. The construction of 
g will itself be used in the next chapter to define further 1'./2 characteristic 
classes. 

For any n-plane bundle � over a base space X there is a corresponding 
fiber bundle p� over X with fiber Rpn- l , the group being the projective group. 
To construct p� let E .!:. X represent � and let E* c E consist of nonzero 
points, as usual. For each x E X one identifies two points of E� c Ex if and 
only if one point is a real (nonzero) multiple of the other ; the total space of 
p� is the quotient of E* by this equivalence relation, in the quotient topology. 
There is an obvious induced projection onto X, each fiber is homeomorphic 
to Rpn- l , and the action of GL(n, IR) on the fibers in E induces an action of 
the corresponding projective group on the fibers in p� . 

5.1 Definition : Given any real n-plane bundle � over X E fJH, the preceding 
bundle p� over X is the projective bundle associated to �. 

For convenience we use the symbol p� ambiguously to denote either the 
projective bundle associated to � or to denote its total space ; in most of 
what follows p� will represent the total space. Since the fiber Rpn- l of the 
projective bundle p� is a finite CW space, by Proposition 1.5.5, one easily 
shows that the total space P � itself belongs to the category fJH of base spaces. 

Let p� !.. X represent the preceding projective bundle over the base space 
X. One can pull the original n-plane bundle � back along f to obtain an 
n-plane bundle f'� over P� . One can also identify an especially attractive 
line sub bundle A.� of f'�, as follows. The elements of p� can be regarded as 
I -dimensional subspaces L of the fibers Ex c E, and the total space of f'� 
consists of those pairs (L, e) E p� x E such that L c Ex and e E Ex ; the total 
space of the line subbundle A.� is then defined to consist of those points (L, e) E 

p� x E such that e E L, in the relative topology of the total space of f'� . 
5.2 Definition : For any real n-plane bundle � over a base space X E fJH, the 
preceding line sub-bundle A.� of f'� over the base space P � E fJH is the splitting 
bundle of � ;  the 1'./2 Euler class e(A.�) E H I (P�) is the splitting class of �. 

The Z/2-module H*(P�) becomes an H*(X)-module with respect to the 
product f3 . IX = f*f3 U IX E H*(P�) of f3 E H*(X) and IX E H*(P�). 

5.3 Proposition : For any real n-plane bundle � over a base space X E f!4, the 
H*(X)-module H*(P�) is free on the basis { 1 , e(A.�), . . .  , e(A.�t - l } ,  where 
e().�) E Hl(P�) is the splitting class of �. 
PROOF : For each x E X let p�.x � p� be the inclusion of the fiber of the 
projective bundle over X. Then if E�P� represents the splitting bundle A.� 
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over P� , there is a pull back diagram 

P �.x __ -"'ix"--_--->. P � 

in which p�.x is homeomorphic to Rpn- l ; up to this homeomorphism the 
map Ex � p�.x represents a bundlej�A� which corresponds to the canonical 
line bundle Y� - 1 over Rpn- l . Since H*(Rpn- l ) is a free 2/2-module on the 
basis { I , e(y� _ J l, , . .  , e(y,: _  dn- 1  }, by Proposition 4.4, it follows that H*(P�.xl 
is a free 2/2-module on the basis { I , e(j�A�), . . .  , e(j�A�)n- l } .  Since e(j�A�) = 
j�e().�) by naturality of 2/2 Euler classes (Proposition 3.2), we have therefore 
shown for each x E X that the 2/2-module H*(P�.x) is free, with basis 
{ j� I , .i�e().�), . . .  , .i�e(),�)" - I } .  Hence the absolute Leray-H irsch theorem 
(Theorem 11.7.2) guarantees that H*(P�) is a free H*(X)-module, with basis 
J 1 ( . ) ( . )n - l \  I '  d 'l ' e j.� , . . .  , e ),� J, as c aIme . 

5.4 Corollary : Let P � 1. X represent the projective bundle associated to a 
real n-plane bundle � over a base space X E fJI;  then the induced homomorphism 
H*(X) 1. H*(P�) of 2/2 cohomology modules is a monomorphism. 
PROOF : The image of f* is precisely the free H*(X)-submodule of H*(P�) 
spanned by the element 1 in the basis { I , e(A�), . . .  , e(A�)"- I } of H*(P�). 

We have reached the goal of this section. 

5.5 Proposition (The Splitting Principle) : Let � 1 " "  ' �r be finitely many 
real vector hundles over the same base space X E fJI. Then there is a map X' .!!.. X 
in ;Jd such that each of the pullbacks g!� l ' . . .  , g!�r over X' E fJI is a lthitney 
sum of line bundles, and such that H*(X) � H*(X') is a monomorphism of 
2/2 cohomology rings. 
PROOF : Since pull backs of sums of line bundles are sums of line bundles, 
and since compositions of monomorphisms are monomorphisms, it suffices 
to consider just the case r = 1 .  Let � be an n-plane bundle over X and let 
Pc 1. X represent the corresponding projective bundle. Then the splitting 
bundle ).� is a line subbundle of the pullback .t� over P� E fJI;  by Proposition 
111 .3.6 there is an ( '1 - 1 )-plane subbundle I] of .t� such that .t� = ),� Ee l], 
and H*(X) L H*(P�) is a monomorphism by Corollary 5.4. One applies 
the same construction to 1], splitting off a line subbundle by a map p� ----> p� 
which induces a 2/2 cohomology monomorphism H*(P�) ----> H*(P�), and the 
induction is clear. 
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5.6 Definition : A splitting map for finitely many real vector bundles � I ' . . .  '�r 
over the same X E :!4 is any map X' � X in the category :!4 such that each 
of g!� I ' . . . , g!�r is a Whitney sum of line bundles, and such that H*(X) .!!:... 
H*(X') is a monomorphism of E/2 cohomology rings. 

Proposition 5.5 asserts that splitting maps always exist, for real vector 
bundles and E/2 cohomology. They are not necessarily unique, however, 
nor need their construction be the one given in Proposition 5.5. In particular, 
for any n > 0 the universal real n-plane bundle t over GII([R"") admits an 
especially nice splitting map, as follows. 

Let 1' 1 be the universal real line bundle over RP"', let (RP"")II denote the 
n-fold product Rpoo x . . .  x RP"', and let y l + . . . + 1'1 be the corresponding 
sum ofn copies of 1' 1 over (Rpoot, as in Definition I I I.2. 1 .  Then if(Rpoot � 
RPC/:' denotes the jth projection map, for j = 1 ,  . . . , n, one has 1' 1 + . . . + 
r, 1 = pr!1 )) 1 Ef) '  . . Efl pr�y l , so that y l + . . .  + i, 1 is itself a Whitney sum of 11 
real line bundles over (RPOO)II, hence an n-plane bundle. Consequently the 
homotopy classification theorem (Theorem III .8.9) provides a classifying 
map (RP"")" � GII(ROO) for 1' 1 + . . .  + 1' 1 ; that is, 1' 1 + . . . + }, I = h!t for the 
universal real n-plane bundle I'll over G"(ROO). 

5.7 Proposition : Any classifying map (RP"')" � GII(ROC') for the real n-plane 
bundle 1'1 + . . .  + 1' 1 over (RpOOt is also a splitting map for the universal real 
n-plane bundle t over GII([ROO). 
PROOF : Since h!yll is already a Whitney sum pr!l y l Ef) . . .  Ef) pr�y l of n line 
bundles, it remains only to show that H*(GII([ROC))  � H*( (RpX!)") is monic. 
Let X.!. GII([ROO) be any splitting map for t, as in Proposition 5.5, so that 
j'y" is a sum A I Ef) . . .  Ef) All of line bundles A I ,  . . . ' }'II over X and 
H*(GII(lRoc, ) )  � H*(X) is monic; trivially f classifies A I Ef) . . . Ef) A" . If the 
maps X � Rpoc., . . .  , X � RP"" classify the line bundles A I , " " All ' 
and if g denotes the map X (", . . . . .  "n) ) (RPOO)II, then the composition 
X � (RPOO)II � GII([ROO) also classifies A l Ef) . . . Ef) All ' By the homotopy classi
fication theorem (Theorem I I I.8.9) the classifying maps f and h o g  for 
}' I Efl ' . . Ef) All are necessarily homotopic, and consequently there is a com
mutative triangle 

H*(G"(W»)) _----'--J._--+) H*(X) 

� /  
H*( (RpOO)"). 

Since f* is monic, it follows that h* is also monic, as required. 
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A finite-dimensional version of Proposition 5.7 will be established in 
Proposition V.4.6. 

6. Axioms for 7Lj2 Euler Classes 

The following description of 7l../2 Euler classes will serve as a model for 
characterizing many characteristic classes of many categories of vector 
bundles. 

6.1 Theorem (Axioms for 7l../2 Euler Classes) : For real vector bundles � 
over hase spaces X E .JjJ there are ullhjue homogeneous 7l../2 singular cohomology 
classes e(�) E H*(X) which sa t is}}' the .fol/owing axioms : 

( 1 )  Naturality : �f � is a real vector bundle over X E :14, and if X' .!. X is 
a map in the category �, then e(t�) = f*e(�) E H*(X'). 

(2) Whitney product formula :  �f � and I] are real vector bundles over 
the same X E 21, with Whitney sum � Efl I] over X, then e(�) u e(I]) = e(� Efl 1]) E 
H*(X) .fiJl· the cup product e(�) u e(I]) . 

( 3 ) Normalization : Ill' : is the canonical real line bundle over Rpl ( = S I ), 
then e()' : )  is the generator of HI (Rpl ). 
PROOF : The Euler classes of Definition 3 . 1  satisfy Axioms 1 ,  2, and 3 by 
virtue of Propositions 3.2, 3.4, and 4.4, respectively. Conversely, suppose 
that e( ) satisfies Axioms 1 , 2, and 3, let 1' 1 be the universal real line bundle 
over RP" , and let Rpl .!. RP'" classify the canonical line bundle 1'1 over Rpl . 
Then HI(RPCX ) L HI(Rpl ) is an isomorphism by Corollary 4.5, and 
f*e(y l ) = e(fy l ) = e(y l l  by Axiom 1 ,  so that e(y l ) E HI(RPOO) is necessarily 
the generator of H*(RP"'), by Axiom 3. Now let l be the universal real n

plane bundle over Gn([Roc ) and let (RPoc)n � Gn([R"' ) be the splitting map for 
yn described in Proposition 5.7, with 

h!y" = ), 1 + . . . + i = pr!li Efl ' " Efl pr�y l 

for the n projections (RPx)" � RP'X . Then by Axioms 1 and 2 one has 

h*e(y" ) = e(h!yn) = e(pr!ly l Efl ' . .  Efl pr�y l ) 
= e(pr!l y l ) u . . .  u e(pr�y l ) = prte(y l ) u . . . u pr�e(y l ), 

which is a unique element of Hn« RPoc )n) since e(y l ) is uniquely defined, as 
we have just learned. Since h* is monic by Proposition 5.7, it follows that 
ell) is a unique element of Hn( Gn([R<XJ» . By one final appeal to the homotopy 
classification theorem (Theorem 111 .8.9) any real n-plane bundle � over any 
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X E &B can be classified by a map X � G"(\R"') which is unique up to 
homotopy, so that by Axiom l one has e(�) = e(g!y") = g*e(y" ) E Hn(x) for 
a unique homomorphism Hn(Gn(\Rc.< ) ) � Hn(x) and the unique element 
e(yn) E Hn(Gn(\R"' ) ). 

7 .  Zj2 Euler Classes of Product Line Bundles 

If ), and 11 are real line bundles over the same base space X E fJ4, then the 
product A ® 11 is also a real line bundle over X, and the real line bundles 
over X form an abelian group with respect to this product. Furthermore, 
the map carrying the real line bundle A over X into the 2/2 Euler class 
e().) E Hl(X) is an isomorphism. In this section we verify only that the latter 
map is a monomorphism ; proofs of the stronger result are indicated later. 

7.1  Proposition : For any base space X E fJ4 let r(X) denote the set of real 
line bundles over X, with the product r(X)  x r(X) --+ r(X) carrying (A, Il) E 
r(X) x r(X) into ). ® 11 E r(X). Then r(X) is an abelian group in which every 
element is of order 2. 
PROOF : The associative and commutative properties 

(A ® 11) ® v = A ® (11 ® v) and 

were observed in Proposition 1 1 1.2.6, and the trivial line bundle t: l E r(X) is 
the neutral element : A ® t: l = A. for every A E r(X). By the linear reduction 
theorem (Theorem 1 1.6. 1 3) the structure group GL(\R, 1 )  of any real line 
bundle can be reduced to the orthogonal group 0( 1 ), which consists of two 
elements, in the discrete topology, and since the square of each of these 
elements is the neutral element, it follows for any real line bundle A. that 
A ® A. = t: l . Thus each A. E r(X) is of order 2, so that each A E r(X) is its own 
mverse. 

7.2 Definition : The abelian group .(X) of Proposition 7. 1 is the real line 
bundle group of the base space X E f!4. 

The following trivial example will be used later. 

7.3 Proposition : r(S I )  = 7L/2. 

PROOF : There is a covering { U  0 '  U d of the circle SI  by two slightly 
lengthened open half-circles U 0 and U 

I 
such that the intersection U 0 n Ul 

consists of two connected components Vo and VI ' Since the structure group 
GL( I ,  \R) of any real line bundle A. over Si can be reduced to 0( 1 )  c GL( 1 ,  \R) 
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as before, where 0( 1 )  = { + 1 ,  - I }, any transition functions describing A 
assume only one of the values + 1 or - 1 on each of the components Vo and 
VI ' If the values agree, then the result is A = [; 1 , and if the values differ, then 
the result is }. = yt (over the base space SI = Rpl ). 

For any real vector bundles � and 17 over the same base space X E f!4 
the product bundle � x 1'/ over X x X was described in Definition I I I .2.2, 
the product � ® 1'/ over X being the pullback �!(� x 1'/) along the diagonal 
map X � X x X, as in Definition 1 1 1.2.4. We use the former product in the 
following lemma. 

7.4 Lemma : Let y l be the universal real line bundle over Rp"O, and let 
RP"" x RP" .!!. Rpoo classify the real line bundle y l x y l over Rpoo x Rpoo. 
�f RpCl' x RP'" � Rpoo and Rpoo x Rpoc, � Rpoo are first and second 
projections, respectively, and if lX I ' IX2 , and IX denote the generator e(y l ) in 
each of the three copies of HI (RpOO), it follows that h*IX = n:TIXI + n:�IX2 E 
HI (RPOC x RPOO). 
PROOF : By the Kiinneth theorem HI(RPOO x RpOO )  is isomorphic to 
HO(RP" ) ® HI(RPOO) + HI (RPOO) ® HO(RpOC'), where HO(RpOO) can be re
garded as the ground ring 71./2 in each summand. Since IX I and IX2 generate 
the initial two copies of HI (RPX ) it follows that h*IX = b ln:TIX I + b2n:�IX2 
for unique elements b l , h2 E 71./2, and it remains to show that b l = b2 = 1 .  
Choose a base point * E RP ' and let Rpcx � Rpoc x RP� carry X I E Rpx 
into (x I ' * ) E RP" x RPx . Then n: I i I i s  an identity map and n: 2 i I i s  a con
stant map, so that 

and 

Furthermore, the pull back i!l (y l x 1, 1 ) is clearly the bundle y l over the first 
copy of RPoo, so that 

iTh*IX = iTh*e(y l ) = e(i !l h !y l ) 
= e(i !I (y l x y l » = e(y l ) = IX I . 

Hence 

so that h i = I .  A similar argument shows that b2 = 1 .  

7.5 Proposition : For any real line bundles A ,  J1 over a base space X E f!4 one 
has etA ® !l) = e(A) + e(J1) E HI (X); that is, the computation of 71./2 Euler 
classes of real line bundles over X induces a homomorphism r(X) --. HI(X) 
of ahelian groups. 
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PROOF : Let X .!. RP'" and X .!..,. RpCIJ classify A and J1., respectively, let 
RP" x RP'" � Rpoo classify y l x y l , and let X � X x X be the diagonal 
map ; then the composition 

X � X x X � RP"" x Rpoc � RP" 
classifies ). ® J1.. Since n 1 (f X g)� = I and n2(f x g)� = g, the preceding 
lemma implies 

as claimed. 

e(A ® J1.) = �*(f x g)*h*rx 
= �*(f x g)*(nirxl + n!rx2 ) 
= (n l(f x g)�)*rx l + (n2(f x g)�)*rx2 
= I*rx l + g*rx2 = e(A) + e(J1.), 

The homomorphism r(X) --+ Hl(X) is in fact an isomorphism, for any 
X E 16. However, for the moment we prove only that it is a monomorphism ; 
proofs that it is an isomorphism are indicated in Remarks 9.7 and 9.8. 

7.6 Lemma : r(S I ) --+ Hl(SI ) is an isomorphism Ior the circle S I  E 16. 
PROOF : By Proposition 7.3, nSl ) = 2/2, the nonneutral element being the 
canonical real line bundle yl over Rpl ( = SI ) ;  but e(yD "# 0 E Hl (Rpl ) by 
Proposition 4.4. 

7.7 Proposition : r(X) --+ Hl(X) is a monomorphism Ior any X E fII. 
PROOF : I f  e(A) = 0 for a real line bundle A over X, and if Si .!. X is any map, 
then by naturality of 2/2 Euler classes (Proposition 3.2) one has e(f ').) = 
I*ep,) = 0 E Hl(S I ) ;  hence by Lemma 7.6, fA = c l over S i . However, since 
each connected component of X is path wise connected (Exercise 1. 1 0.22), 
A is trivial if (and only if) fA is trivial for every map Si .!. X. 

In Chapter V we shall derive a necessary and sufficient condition for 
any real n-plane bundle � to be orientable, formulated in terms of a 2/2 
cohomology class. The proof will depend upon the special case that � is a 
Whitney sum of real line bundles, which we now consider. 

7.8 Lemma : Let � be the Whitney sum A l EB . . .  EB )'11 oIn real line bundles 
A I , . . . , An over X E 16, let A l ® . . .  ® An E nX) be the product q{ the same 
line bundles, and let An � E r(X) be the nth exterior power of �, as in Definition 
III . to. l ;  then An � = A l ® . . .  ® An ' 

PROOF : Let S be the linear subspace of the real tensor product 0n [R" 
spanned by elements X I ® . . .  ® Xn such that X l '  . .  , , Xn are linearly de-
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pendent in [R", and let T be the I -dimensional linear subspace of A" [R" 
spanned by elements e I ® . . .  ® e" such that each ei E R" vanishes outside 
the ith summand of [R". The classical computation 

(ei ® ej + ej ® ei) + ei ® ei + ej ® ej = (ei + e) ® (ei + e) 
shows that ei ® ej + ej ® ei E S, hence that ®" [R" = S EB T, so that A" [Rn = 
®n [Rn /S � T, by definition of An [Rn. 

7.9 Proposition : A Whitney sum )' 1 Efl . . .  EB All of real line bundled\ >  . . .  ' )'n 
over a base space X E f!l is orientable if and only if the 1L/2 Euler classes 
satisJj' 

e(Ad + . . .  + e(An) = 0 E H I(X). 

PROOF : Let � = A I EB ' . .  EB All '  Then according to Definition 1 1 1. 1 0.4, � is 
orientable if and only if the n th exterior power An � is the trivial line bundle 
e l over X. Hence by Lemma 7.8, � is orientable if and only if Al ® . . .  ® An = 
£ 1 E [(X). By Proposition 7.7, [(X) -+ HI(X) is a monomorphism, so that � 
is orientable if and only if e(/, I ® . . .  ® ;,,, ) = 0 E HI(X), and by Proposition 
7.5 one has e(/' I  ® . . . ® ),,,) = e(Ad + . . . + e()'II)' 

The following computation will play a crucial role in the construction 
of other 1L/2 characteristic classes, in Chapter V. 

7.10 Proposition : �f' A is a line subbundle of' a real n-plane bundle � over a 
base space X E f!l, then e(A. ® �) = 0 E Hn(x). 
PROOF : By Proposition 111 .3.6, � = ), EB I] for some (n - 1 I-plane bundle 1], 
so that ), ® � = (A ® A) EB (A ® 1]) = £ 1 EB ( for the (n - I )-plane bundle ( = 
A. ® 1]. Hence e(A ® �) = e(£ 1 EB () = e(£ I ) u e(() = 0 as in Proposition 3.6. 

8. The 7L/2 Thorn Class V� E Hn(p�$ h P�) 
There are many constructions of 1L/2 Euler classes other than the ones 

given in Definition 3. 1 and Proposition 3.8. We consider an alternative in 
this section. 

Let E � X represent a real n-plane bundle � over a base space X, let 1 
denote the trivial bundle el over X, and let � EB 1 be the Whitney sum of � 
and 1 .  Then the total space P �Efl l of the projective bundle associated to 
� EB 1 consists of equivalence classes [e EB s l ,,(e)] of nonzero elements 
e EB s l ,,(e) in the total space of � EB I, where e E E projects to n{e) E X, and 
where s l ,,(e) is a real multiple in the fiber over n{e) of a fixed nowhere
vanishing section of 1 .  The subset of those [e EB s l ,,(e)] E P�Efl I with s = 0 is 
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clearly the total space Ps of the projective bundle associated to �, so that 
there is an inclusion P { � P { EfH and an inclusion P {fI1 1 ..!... P {fI1 1 > P { .  

8. 1 Definition : The zero-section X � P�fI1 1 carries each x E X into the 
point [0 Efl IJ  E P�1'fJ I ' 

If P �fI1 1 � X represents the preceding projective bundle associated to 
� Efl 1, then H*(P;I'fJ I ' P;) is clearly an H*(X)-module with respect to the 
product [J . ex = 1f* [J u ex E H*(P ;fI1 1 > P;) of [J E H*(X) and ex E H*(P�1'fJ I > p{). 
We shall show that H*(P{EfJ I > Ps) is isomorphic to the H*(X)-module 
H*(E, E*), and that if � E H"(P �EfJ 1 , P {) corresponds to the Thorn class 
V; E H"(E, E*), then r*j* V� is the 7Lj2 Euler class e(�) E Hn(x). 

In order to prove the preceding assertions, let PtfI1 1 c P;1'fJ 1 consist of all 
points of the form [e Efl s I ,,(e) ] for e #- O. In the following lemma the letters 
i and j each represent three distinct (but obvious) inclusions. Let E � P;EfJ 1 
carry e into [e Efl I,,(e)], with restriction E* � PtfI1 I ' let P�EfJ I .4 P�EfJ I be 
the identity map, let P { � PtEf Jl be an inclusion of subspaces of P �1'fJ I , and 
set fo = (fl ,12) and go = (g l , g2) ' 

8.2 Lemma : There is a commutative diagram 
__ tJ_ ..... H*(E, E*) _----'-j*_--+. H*(E) __ i_* � 

+ i'] H*(E*) � . .  , n] 
. . .  � H*(P�EfJ I ' P;) � H*(P;fJ) d � H*(P;) � 

in which the four homomorphisms f� , g� ,  gT, gi are isomorphisms. 
PROOF : Commutativity is immediate since f2 and g2 are restrictions of 
J� and 9 I '  Since fl and f2 are injections of E and E* into P {EfJ 1 \P; and 
PtEfJ 1 \P� , respectively, f� is an isomorphism by the excision axiom, and gj 
is trivially an isomorphism. To show that g� is an isomorphism define 
PtEfJ I � p{ by setting h2([e Efl s I ,,(e)] ) = [el, so that h2g2 is the identity on 
P { .  Then 9 2h 2 carries [e Efl s l ,,(e )] into [e Efl 0 I ,,(e)] (for e #- 0), a map which 
is trivially homotopic to the identity. Thus 92 is a homotopy equivalence, so 
that g� is an isomorphism. Finally, since gj and g! are isomorphisms the 
5-lemma implies that g� is also an isomorphism. 
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The isomorphisms .f� and g6 of Lemma 8.2 provide new Thorn classes 
W� = f6 - 1 U� E Hn(p�$ 1 , Pt$ t l and V� = g� � E Hn(p�$ l ' P.;). We are pri
marily interested in V� . 

8.3 Proposition : For any real n-plane bundle � over a base space X the 
H*(X)-rnodule H*(P�$ l ' P�) is .free on a single generator � E Hn(p';$ l ' P�), 
and r*j* �  is the Euler class e(�) E Hn(x). 

PROOF : The first statement is just Proposition 1 .5, combined with the 
isomorphism H*(E, E*) g�f�- I • H*(P�$ l '  P�) of Lemma 8.2. To prove the 
second statement one applies HnH to the commutative diagram 

f,r� 
P';$ l (  X, 

and one combines the result with the j* portion of Lemma 8.2 to conclude 
that the diagram 

also commutes ; hence 

r*j* � = r*j*g6W� = a*j*f� � = a*j* U.; = e(�), 

as claimed. 

9 .  Remarks and Exercises 

9.1 Remark : Thorn isomorphisms and Thorn classes (of sphere bundles 
over polyhedral base spaces) first appeared in Thorn [ 1] ,  with sketches of 
elementary proofs ;  the constructions were extended in Thorn [4], using 
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sheaf theory. Both Thorn [ I ]  and [4] contain the identity <I> �eW = U � u U � 
of Proposition 3.8, of which special cases had appeared in Whitney [6, p. 1 1 9] 
and in Gysin [ 1 ] .  Thorn [4] also contains the Gysin sequence in more or 
less the form reported in Proposition 4.2. An independent development of 
the Thorn isomorphism and the Gysin sequence was given by Chern and 
S panier [ 1] .  

The Mayer-Vietoris argument for the existence of  Thorn classes can be 
found in Milnor [3] and in Milnor and Stasheff [ 1] .  An entirely different 
approach to the Thorn isomorphism theorem is given in Cockroft [ 1], and 
a generalization of Thorn classes to nonspherical fibrations appears in 
Schultz [4]. Also, see Bott and Tu [I, pp. 63-64]' 

9.2 Remark : If E --+ X represents a vector bundle, the pair E, E* is the 
corresponding Thorn complex. The same terminology is sometimes applieq 
to the one-point compactification of E itself, which is more often called the 
Thorn space of the given bundle : the cohomology of the Thorn complex and 
the Thorn space coincide except in degree O. (The original construction of 
Thorn [ 1 ,  4], applied to sphere bundles rather than vector bundles, presents 
yet a third variant of Thorn complexes and Thorn spaces.) 

Thorn spaces were used by Atiyah [ 1 ]  to show that the J -equivalence 
type of the tangent bundle r(X) of a smooth manifold X depends only on 
the homotopy type of X. (This result was strengthened by Benlian and 
Wagoner [ 1 ]  and Dupont [2], as noted in Remarks I I I . 1 3.34 and I I I. 1 3.42.) 
Atiyah's result (applied to normal bundles rather than tangent bundles) is 
also valid for arbitrary closed topological manifolds : see Horvath [ 1] .  Other 
properties of Thorn spaces and their relations to J-equivalence can be found 
in Held and Sjerve [ 1 -3], for example. 

The most important application of Thorn spaces occurs in the compu
tation of cobordism rings, considered later in their work. 

9.3 Exercise : Show for' any real vector bundle � over a base space X E f!B 
that the total space p� of the corresponding projective bundle also belongs 
to f!J, as claimed following Definition 5. 1 .  ( If one replaces the category f!J by 
the category "If! c f!J of Definition 1.3.8 and Corollary 1.5.3 one obtains a 
stronger result, which can be found in Stasheff [ 1 ]  and in Schon [ 1 ] : If  
E � X is any fibration with base space X E "If! and fiber F E 'Ir, then E E "If!.) 

9.4 Remark : The cohomology ring H*(Rpn ; 7Lj2) was computed in 
Proposition 4.4. This computation and other computations of the 7Lj2 
homology and cohomology of Rpn can be found in Artin and Braun [2, 
pp. 1 78- 1 81] ,  Feder [ 1 ], Gray [ 1 ,  pp. 1 94-195, 285-286], Greenberg 
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[ 1 ,  p. 1 4 1 ], H u  [4, pp. 1 33- 1 38], Lam [ 1 ], Massey [6, pp. 241 -242], Maunder 
[ 1 ,  pp. 1 40, 1 69- 1 70, 348-349], Spanier [4, pp. 264-265], and Ta [ 1 ], for 
example. 

9.5 Remark : The splitting principle of Proposition 5.5 was introduced in 
Borel [ 1 ] .  It was used in Grothendieck [ 1 ]  to provide axioms for certain 
characteristic classes we shall study later ; Grothendieck's axioms are similar 
to those of Theorem 6. 1 .  We shall use Grothendieck's procedure often, in 
other circumstances described in later chapters. 

9.6 Exercise : Let }'� be the canonical real line bundle over the real projec
tive space Rpn, and let r(Rpn) be the tangent bundle of Rpn. Show that 

if n is even 
if n is odd. 

9.7 Remark : We constructed a ,Z/2-module homomorphism r(X) -+ 
H '(X ; 1'/2) for any X E fJl in Proposition 7.5, and we showed in Proposition 
7.7 that it is a monomorphism. A stronger result is valid : the ,Z/2-module 
homomorphism r(X) -+ H' (X ;  1'/2) is an isomorphism. 

To start the proof recall that any X E fJl is homotopy equivalent to a 
metric space of finite type (Definition 1 . 1 .2), a fortiori homotopy equivalent 
to a paracompact space. Lemma 1 1 .4.5 implies that r(X) is invariant under 
homotopy equivalence, and since H I (X ;  1'/2) is also homotopy invariant, 
one can therefore assume at the outset that X is paracompact. Clearly one 
may as well further assume that X is connected, hence pathwise connected 
by Exercise 1 . 1 0.22. 

Now let 7r 1 (X) be the fundamental group of X, let 7r 1 (X) -+ H I (X ; ,Z) be 
the Hurewicz map, and let H I (X ; 'z) -+ H I (X ; 'z/2) be the coefficient 
homomorphism. Both homomorphisms are surjective, so that if L e  7r 1 (X) 
is the kernel of the composition 7r I (X) -+ H I (X ;  1') -+ H I (X ; 1'/2) the 
quotient group 7r I (X)/ L is a ,Z/2-module isomorphic to H I (X ;  1'/2). Since 
1'/2 is a field, 7r I (X)j L is free, and since X is pathwise connected, one can 
represent each element of a basis B of 7r, (X)/L by a map Si -+ X carrying a 
fixed base point in S i  to a fixed base point in X. It follows that there is a 
bouquet VB Si of circles attached at a common base point, and a base
point-preserving map VB Si .!. X such that (i) the singular homology 
homomorphism H I(VB SI ; 'z/2) � HI(X ; 'z/2) is an isomorphism, and 
(ii) the homomorphism r(X) J: r(V B SI ) induced by pulling line bundles 
back alongf is an epimorphism ; the second property is an easy consequence 
of the paracompactness of X. 
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Since E/2 is a field, one has H t(X ; E/2) = Hom(Ht (X ;  E/2), E/2) and 
H I (VB SI ) = Hom(H I (VB SI ; E/2), E/2) = Hom(UB HI (Si ; E/2), E/2) = 
OB H I(S I ; E/2), for direct sums UB and direct products OB ' Clearly 
l(V B SI ) = OB l(SI ), so that naturality of E/2 Euler classes (Proposition 3.2) 
provides a commutative diagram 

[(X) ) HI(X ; :l.12) 

" j  + 
O l(SI ) '" n HI (SI ; E/2) 
B B 

with an epimorphism f' and an isomorphism f*. The bottom map is also 
an isomorphism, by Lemma 7.6, so that [(X) --+ Hl(X ; E/2) is an epi
morphism. Since the latter map is also a monomorphism, by Proposition 7.7, 
this completes the proof. 

9.8 Remark : Another proof of the preceding result is briefly sketched in 
Husemoller [ 1 ,  2nd ed., pp. 235-236]. 

9.9 Remark : If one substitutes complex line bundles for real line bundles 
in Definition 7.2, the resulting analog of l(X) is the Picard group of X, 
which is isomorphic to H2(X;  E);  details will appear in Chapter X. Picard 
groups of complex algebraic varieties are frequently defined by other means ; 
see Griffiths and Harris [ 1 ,  pp. 1 3 3- 1 35], for example. 



CHAPTE R V 

Stiefel-Whitney Classes 

O. Introduction 

Let .I/2 [t] be the polynomial ring in a single variable t over the field 
.I/2, and let f(t) E .I/2 et] be a polynomial 1 + a l t + . . . + aptP with leading 
term 1 E .I/2. Then for any real m-plane bundle � over a base space X E !!8 
the splitting class e(A�) E H1 (P; ; .I/2) leads to an inhomogeneous charac
teristic class u f(�) E H*(X;  .I/2). The case f(t) = 1 + t provides the total 
Sti�tel- Whitney class w(�) E H*(X ;  .I/2), which can be used to compute 
all the other classes uA�). More generally, if .I/2 [[t]] is the formal power 
series ring in a single variable t over .I/2, and if {(t) E .I/2 [et]] is a formal 
power series 1 + a I t + a2t2 + . . . with leading term 1 E .I/2, there is a cor
responding inhomogeneous characteristic class u A�) in the direct product 
H**(X ;  .I/2). The classes u f(�) and their properties are developed in §1 and §2. 

For each q � 0 the qth summand of the total Stiefel-Whitney class 
w(�) E H*(X ;  .I/2) of a real m-plane bundle � over X E !!8  is the q th Stieje/
Whillley class Wq(�) E W(X ;  .I/2). One easily shows that wo(�) = 1 E 
HO(X ;  .I/2), that wmW E Hm(x ;  .I/2) is the .I/2 Euler class e(�) of Definition 
IV.3. t .  and that Wq(�) = 0 E Hq(X ;  .I/2) for q > m. In particular, it is shown 
in §4 that ifym is the universal real m-plane bundle over the Grassmann mani
fold Gm(IR ' ), then H*(Gm(lRcxc) ;  .I/2) is the polynomial ring .I/2 [wl (ym), . . .  , 
wmb,m)] over .I/2 generated by the Stiefel-Whitney classes WI(ym), . . .  , wm(ym). 
This result, combined with the homotopy classification theorem, Theorem 
I I I .8 .9, provides an alternative characterization of all .I/2 characteristic 
classes of real vector bundles. 

2 1 5  
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Many Stiefel-Whitney classes have a direct geometric interpretation. 
For example, it is shown in §3 that the first Stiefel-Whitney class W I (� ) E 
H'(X;  71./2) of any real vector bundle � over any X E ffl vanishes if and only 
if � is orientable. A formal result proved in §6 wi11 lead in the next chapter to 
several geometric properties of smooth manifolds X, which are proved by 
computing Stiefel-Whitney classes of their tangent bundles r(X). 

As in the previous chapter, the notations H*(-, -) and H*(-) are used 
consistently to indicate singular cohomology H*(-, - ;  71./2) and H*(-; 71./2) 
with 71./2 coefficients. 

1 .  Multiplicative 71./2 Classes 

Let � be a real m-plane bundle over a base space X E ffl, let P� E ffl be the 
total space of the corresponding projective bundle, as in Definition IV.5. l ,  
and let ),� be the splitting bundle and e(}"�) E H '(P�) the 71./2 splitting class, as 
in Definition IV.S.2. According to Proposition IV.S.3 the H*(X)-module 
H*(P�) is free on the basis { I , e(A�), . . .  , e(),�t - I ] .  It follows that the opera
tion ue(i ,) of cup product by the splitting class is a cyclic H*(X)-module 

, • ue(,i.� ) endomorphlsm H*(P�) ----+ H*(P�) of degree + 1 .  More generally, for 
any polynomial I(t) E 71./2 et] the operation uf(eU�) )  of cup product by the 
class I(e()"�) )  E H*(P�) is also an H*(X)-module endomorph ism 

H*(P�) 
uf(e(A�) ) = f(ue(,i.< ) )� H*(P�), 

which is in general inhomogeneous. Since H*(P�) is a free H*(X)-module of 
rank m < 'XJ one can form the determinant of the endomorphism I( ue(}.,) ), 
with value in H*(X). 

-

1 . 1  Definition : Let I(t) be any polynomial 1 + a l t + . . .  + aptP over 71./2, 
with leading term 1 E 71./2, and let � be any real m-plane bundle over a base 
space X E .q(j. The multiplicative 71./2 class uf(�) E H*(X) is given by uf(�) = 
det f(ue(A�) ). In the special case f(t) = 1 + t the class uf(�) is the total 
Sti�M-Whitney class : w(�) = det(u(1 + e(i�) ) )  E H*(X). 

Clearly if f(t) is of degree p over 71./2, then the class uf(�) E H*(X) is of 
the form I + uf. d�) + . . .  + uf.mpW, where Uf,q(� ) E Hq(X) for q = 1" . .  , mp ; 
that is, one has uf.OW = 1 E HO(X) and uf,iO = 0 E Hq(X) for q > mp. In  
particular, the total Stiefel-Whitney class w(�) E H*(X) of the real m-plane 
bundle � over the base space X E ffl is of the form 1 + WI(�) + ' . .  + wm(�) ;  
for each q = 1 ,  . . .  , m the class WqW E W(X) is the q th Stiefel-Whitney class 
of �. 
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1 .2 Proposition : Let J1 be a real line bundle over a base space X E f.J6, with 
1'./2 Euler class e(Jl) E HI(X). Then Ior any polynomial I(t) = I + a l t + . . . + 
a/P E 1'./2 et] with leading term I the multiplicative 1'./2 class u f{Jl) E H*(X) 
sati�fies 

uf(f.1) = I(e(Jl) ) = 1 + a 1 e(Jl) + . . . + ape(Jl)P ; 
in particular, the total Stit;fel-Whitney class w(J1) E H*(X) is given by w(J1) = 
1 + e(Jl). 
PROOF : Since Jl is of rank one, any representation PI' � X of the corre
sponding projective bundle is a homeomorphism, for which 'it!Jl is the split
ting bundle )'1' over PI" Hence e(AI') = e(1f!J1) = 1f*e(J1), and since f3 . a = 

1f* f3 u a for f3 E H*(X) and a E H*(P 1'), by definition of scalar multiplication 
in the H*(X)-module H*(PI')' it follows that the endomorph ism I(ue(AI') ) 
of H*(P/J is scalar multiplication by I(e(Jl)) . Since H*(P 1') is of rank one over 
H*(X), this implies that u All) = det I( ue(A/,) ) = I(e(Il ) ), as claimed. 

Now let X' � X be any map of base spaces, and let � be any real vector 
bundle over X. The pullback diagram for the bundle g!� over X' induces a 
corresponding pull back diagram 

P g!� __ ---'K"--_-+� P � 

j j 
X' -----"---------->� X 

of projective bundles, over which one can place the diagram for the pull back 
g!A� of the splitting bundle A� , as indicated : 

f: -------+� E. 

j j 
P 9!� ----'g'------+� P � 

j j 
X' ----=--9 ------>� X. 

If E denotes the total space of�, then E. consists of pairs ( Ix , ex) for each x E X, 
where Ix E P� can be regarded as a I -dimensional subspace of the fiber Ex , 
and where ex E Ix . There is a corresponding description of the total space E.' 
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of the splitting bundle Ag !� , for which uniqueness of the preceding pullback 
diagram guarantees that )'g! � = g IA� . 
1 .3 Proposition (Naturaiity):  Let X' .!!. X be a map in the category :!4 of 
base spaces, let � be a real m-plane bundle over X, and let gl� be the pullback 
over X'. Then for any polynomial f(t) E Z/2 Et] with leading term 1 E Z/2 the 
multiplicative Z/2 class uf(gl�) E H*(X') satisfies uf(gl�) = g*uf(�); in par
ticular, the total Stiejel-Whitney class W(gl�) E H*(X') satisfies W(gl�) = 
g*w(�). 
PROOF : The lower portion of the preceding diagram guarantees that 
H*(P�) � H*(Pg!�) is a module homomorphism over the ground ring homo
morph ism H*(X) r. H*(X') ; that is, g*(P . a) = (g*p) . (g*a) for P E  H*(X) 
and a E H*(P�). Furthermore, since Ag!� = gl).� , it follows from the naturality 
of Z/2 Euler classes (Proposition IV.3.2) that e(Ag!�) = g*e(A�), hence that g* 
carries the ordered basis ( 1 , e(A�), . . . , e(A.;)m - t ) of H*(P�) into the ordered 
basis ( 1 , e(Ag !�), . . . , e(Ag !.;)m - t ) of H*(P g!�). Since the endomorphism 
H*(P�) � H*(P.;) is cyclic, it has a matrix representation 

with respect to the former basis, where PI ' . . .  , Pm E H*(X). It follows that 
H*(Pg!.;l 

ueOg!�) , H*(Pg!�) is represented by 

with respect to the latter basis, hence that 

Uf(gl�) = det f(ueVg!.;) )  = g* det I(ue(l,.;) )  = g*uf(�)' 
as claimed. 

We briefly reexamine the preceding matrix representation of the endo
morphism ue(},.;) with respect to the basis ( 1 ,  e(},.;), . . . , e()'.;)m - t ). By defini
tion, ue().�) carries e(),.;)q - t into e(A.;)q for CJ < m, and ue()..;) carries e(;'.;)m - t 
into Pm . 1 + Pm _ t . e(A�) + . . .  + P t ' e(),�)m - t , representing e().�lm E Hm(p �). 
It follows that PI E H t (X), . . . , Pm E Hm(x), and in particular that P t , . . . , Pm 
are of strictly positive degree in H*(X). Hence, if 

f(t) = 1 + a t t + " ' + aptP 
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and 

Llf(�) = det f(ue(;) )  = 1 + uf. I (�) + . . .  + uf.mpW, 
then for each q ;:2 mp the class uf.q(�) E Hq(X) depends only on the coefficients 
1, (/ 1 ' . . .  , (I" of /(t). Thus if one replaces polynomials f(t) E ?L/2 et] by formal 
power series ,/( t) = 1 + (l I t  + (/ 2 t2 + . . . E ?L/2[[tJ], one can compute anal
ogous classes Llf(�) in the direct product H**(X) of the modules Hq(X). 

1 .4 Definition : let f(t) be any formal power series 1 + a l t + a2t2 + . . .  E 
?L/2 [et]] over ?L/2, with leading term 1 E ?L/2, and let � be any real m-plane 
bundle over a base space X E f1B. Then the multiplicative ?L/2 class uf(�) E 
H**(X) is given by uf(�) = det /(ue(;.�) ), for the endomorphism f(ue(A.:) ) 
of the free H**(X)-module H*"'(P�). 

One can extend Proposition 1 .3 from polynomials f(t) E ?L/2 et] to for
mal power series f(t) E ?L/2 [et]] . 

1 .5 Proposition (Naturality) :  Let X' !!.. X be a map in the category f1B of 
hase spaces, let � be a real m-plane bundle over X, and let g!� be the pullback 
over X'. Then for any formal power series f(t) E ?L/2 [et]] with leading term 
1 E ?L/2 the multiplicative ?L/2 class uf(g!�) E H**(X') satisfies uf(g!�) = 
g*ufW. 

PROOF : The proof of Proposition 1 .3 remains valid if one substitutes 
"formal power series" throughout for "polynomial." 

The advantage of using formal power series f(t) E ?L/2 [et]] rather than 
polynomials, and the rationale for insisting that the leading term of f(t) be 
1 E ?L12, lies in the existence of multiplicative inverses I lf(t) E ?L/2 [et]], 
which one can compute directly from f(t}. For example, the multiplicative 
inverse of 1 + t ( = 1 - t), as an element of ?L/2 [et]], is the formal geometric 
series 1 + t + t2 + ' . .  E ?L/2 [et]]. The relation between the classes ufW 
and u l lf(�) will be developed later. 

In most applications the cohomology H*(X) of the base space X E [JB 
will itself be finite, so that H*(X) = H**(X). However, if X = RP'\ for 
example, then H*(RP X ) is indeed a proper subring of H**(RPX ). 

2. Whitney Product Formulas 

We show for any formal power series f(t) E ?L/2 [et]] with leading term 
1 E ?L/2, and for any real vector bundles � and 1/ over the same base space 
X E .dd, with Whitney sum � Efl 1/ over X, that uf(� Efl 1/) = ufW u uf(1/ ) E 
H**(XJ. 
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Let H*(X) be the singular Z/2 cohomology ring of a base space X E :14, 
and let H*(X)[t] be the polynomial ring in a variable t over H*(X). If � is a 
real vector bundle over X, then the free H*(X)-module H*(P�) becomes a 
free H*(X)[tJ-module H*(P�)[t] in the obvious way, and one can construct 
endomorph isms of H*(P�) [t] . 

2.1  Definition : For any real vector bundle � over a base space X E :!J, the 
characteristic polynomial a�(t) E H*(X) [t] is the determinant of the endo
morphism u(t · 1 - e(A�) )  of the free H*(X)[tJ-module H*(P�) [t], cup 
product by t . 1 - e(A�). 

The Cayley-Hamilton theorem guarantees that the endomorphism 
H*(P�) u�(ve(A�)) I H*(P�) vanishes, and since ue(A�) is a cyclic endomor
phism, the kernel of the epimorphism H*(X)[t] --+ H*(P�) carrying t into 
e(A�) is precisely the principal ideal (a�(t» . Hence one can regard the H*(X)
module H*(P�) as the quotient H*(X)[t] /(a�(t» . 

Now suppose that E --+ X represents a real m-plane bundle � over the 
base space X E PJ, and that E' --+ X represents the Whitney sum � Et> 11 of � 
and a real n-plane bundle 11 over X, for any m > 0 and any n > O. The inclusion 
diagram 

induces an inclusion diagram 

of corresponding projective bundles, and there is an induced H*(X)-module 
homomorphism H*(P�!fJ�) � H*(P�). 

2.2 Lemma : The kernel of i* is the principal ideal 
(a�(e(A�E!l�» ) c H*(P�!fJ�)' 

PROOF : Since the splitting bundle A� is the restriction of the splitting bundle 
A�!fJ� to P� c P�!fJ�' it follows that A� = i 'A.�!fJ�' hence that e(A�) = i*e(A�!fJ�)' 
Since H*(P�) is isomorphic to the quotient H*(X)[t]/(a�(t» , this completes 
the proof. 
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Observe that the splitting bundle A�E!l" of � EB IJ and the pull back n�E!l�� of 
the bundle � are both real vector bundles over the base space P�E!l� E !JB. 

2.3 Lemma : e(A�E!l� ® n�E!l��) = (T�(e(A�E!l�» ' 
PROOF : Since A� is a line subbundle of the bundle n�� over P� , it follows 
from Proposition IV.7. 1 0  that 

i*e(i.�E!l�  ® n�E!l��) = e(i!A�E!l� ® i'n�E!l��) = e(A� ® n��) = O. 
Hence e(A�E!l� ® n�EIl��) E ker i*, so that Lemma 2.2 implies that 

e(A�E!l" ® n�E!l��) = eta �(e(A�E!l�» 
for some !Y. E H*(P�E!l�)' If � is of rank rn, then both e()'�E!l�  ® n�E!l��) and 
(T,(e(}.�E!l" » )  lie in Hm(p�E!l " )' so that !Y. E HO(P�EIl�)' Hence !Y. is of the form 
ntE!l�f3 for a unique f3 E HO(X); that is, e(A�EIl " ® n�E!l��) = f3 . (T�(e(A�E!l�» )' 

In order to verify that f3 = I ,  observe that for any x E X there is an 
inclusion diagram 

{xl _---"'i x=--------» X, 
and since any bundle over {x} is trivial it follows that k�n�E!l�� is the trivial 
bundle cm over P�E!l�. x ' hence that 

k:e(A.�E!l� ® n�E!l��) = e(k�A�E!l� ® k�n�EIl��) 

The same diagram shows that 

= e(k�A.�EIl� ® cm ) = e(rnk�A�E!l�) 
= e(k�A�E!l�)m = k:e(A�EIl�r. 

H*(P�EIl�) � H*(P�EIl�. xl 
is a module homomorphism over the ring homomorphism H*(X)il 
H*( {x } )  � 71/2, and since j: clearly annihilates everything outside of 
HO(X) c H*(X), it follows that k: annihilates all coefficients of (T �(t) lying 
outside of HO(X) c H*(X), so that k�(T�(e(A�E!l�) ) = k�e(A�EIl�)m. Thus the 
identity e()'�E!l" ® n�E!l " �) = f3 . (J �(e(A.�E!l" ) )  has the consequence k:e(A.�E!l�)m = 
U:f3l ' k�eU�E!l',l"'. However, H*(P�EIln. x) is the free H*( {x} )-module on the 
basis { l , k�e(A�E!l" )' " ' ' k�e(A�E!l,,)m + n - l } ,  where rn+ n - I  �n and H*( {x} ) �  
71/2, so that j�f3 = 1 .  Hence f3 has the value 1 on each path component of 
X, which means that f3 = 1 E HO(X), as required. 
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2.4 Proposition : Let 1T�(t) E H*(X) [t] and 1T�(t) E H*(X)[t] be the charac
teristic polynomials of real vector bundles � and I] over the same base space 
X E �; then 1T�(t) . lTit) = IT�Eil�(t). 
PROOF : Two applications of Lemma 2.3, combined with the Whitney 
product formula for 1Lj2 Euler classes (Proposition IV.3.4) give 

1T�(e()"�Eil" ) ) u 1T,,(e(A�Eil�) ) = e()"�Eil� ® 1!�Eil��) U eV�Eil" ® 1!�Eil" I] ) 
= e()"�Eil� ® 1!�Eil�( � 61 1]) ), 

and since A�Eil" is a line subbundle of 1!�Eil�(� 61 1]), Proposition IV.7 . 1O  implies 
that the latter expression vanishes. Thus the map t f---+ e(A� Eil" ) annihilates the 
polynomial lT�(t) . 1T,,(t), which has highest-order term ('" + n ; but IT�Eilit) is the 
unique polynomial with this property. 

2.5 Proposition (Whitney Product Formula) : For any polynomial f(t) E 
1Lj2 [t] with leading term l E  1Lj2, or for any formal power series f(t) E 1Lj2 [[t]] 
with leading term 1 E 1Lj2, and for any real vector bundles � and I] over the 
same base space X E �, with Whitney sum � 61 1]  over X, it follows that 

uf(� 61 1]) = uf(�) U uf(l]) E H*(X), 
or that 

uA� 61 1]) = uA�) U uf(l]) E H**(X) ; 
in particular, for f(t)= I + t E 1Lj2 et], one has w(� 61 1]) =  w(�) U w(l]) E H*(X). 
PROOF : Suppose that the characteristic polynomials of � and I] are given 
by 1T�(t) = tm - r:i. 1 (," - 1 - . . .  - r:i.m . 1 and 1T�(t) = tn - f3 l tn - 1  - • • •  - f3n 

. 1 ,  
respectively, so that the cyclic endomorphisms ue(;,�) and u e(;.�) have 
matrix representations 

and 

with respect to the ordered bases ( I ,  e()"�), . . .  , e().�)'" - I ) and ( I ,  e(l.,,), . . .  , 
e(i,,),' - I ), respectively. The cyclic endomorphism ue(AcEil,,) has a correspond-
ing matrix representation with respect to the ordered bases ( I ,  e, . . .  , em + n - I ), 
where e = e(A�Eil�) ; however, in this case the basis ( I ,  e, . . .  , em - 1 ; 

IT �(e), IT �(e)e, . . .  , IT �(e)en - I ) is of more interest. To compute the matrix 
representation of ueU�Eil�) with respect to the latter basis observe that 
(ue(A�Eil�) )eP - l  = eP for 1 � P < m, and that 

(ue()'�Eil,,) )e"' - l  = e"' = IXm I + . . .  + r:i.1e"' - 1 + 1T�(e). 
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Similarly (ue(i-�EB" ) )O' �(e)eq - 1 = 0' �(e)eq for ! ;:::; q < n, and 

(ue(;'�EB., ) )O'.;(e)e"- 1 = /i,,(J�(e) + . ' . + /I I O'.;(e)e,, - 1 + (J.;(e)O'q(e). 
However, in the second computation one has O'.;(t)O'q(t) = O'�®.,(t) by Propo
sition 2.4, so that (J.;(e)(J.,(e) = (J�EB.,(e) = O'';EB.,(ue()..;®.,) ) ! = 0 by the Cayley
Hamilton theorem ; thus 

(ue(}.,®.,) )O'.;(e)e" - 1 = /i,,0',(e) + . , . + f3I O'.;(e)e,, - I . 
It follows that the matrix representation C of ue().,EBq) with respect to the 
basis ( l ,  e, . . .  , e'" - 1 ; 0' ,(e), 0' ,(e)e, . . .  , O'.;(e )e" - I ) for e = e()'';EBq) is given by 

C = (� �} 
where D consists of O's except for a single 1 E 7L/2 in the upper right-hand 
corner. Consequently, for the given f E 7L/2 [et]] with leading term ! E 7L/2 
there is a matrix D f with formal power series entries for which 

'(C _ (f(A) 0 ) 
.I ) - D f f(B) , 

so that 

Uf(� Efl 11) = detf(C) = detf(A) u detf(B) = uf(�) u Uf(I1), 

as claimed. 

2.6 Corollary : Let f,m be the trivial m-plane bundle over a base space X E :JA. 
Thell for allY formal power series f(t) E 7L/2 [et]] with leading term 1 E 7L/2 
it .follows that U f(f,m) = 1 E H**(X). 

PROOF : Letf(t) = 1 + a l t + (/ 2tZ + . .  ' . Then as in Proposition 1 .2 one has 

UAf. I ) = f(e(f, l ) )  = 1 + (/ l e(f, I ) + aze(f, I )Z + . . .  

for the trivial line bundle f, 1 over X, and since e(f, l ) = 0 by Lemma IV.3.5, 
one has U f(f, l ) = l . The Whitney product formula then gives 

uf(t;"') = uf(S I Efl ' "  Efl L: 1 ) = Uf(/; I )  U . . . U Uf(S I )  = I ,  

as claimed. 

In the following result we use the elementary symmetric functions 
O' l ( t l , " "  tOOl )  = t l + . . .  + tm , · · · , O'",(t l , · · · , t", )  = t1 . . .  tm in the polyno
mial ring 7L/2 [t I ' . . .  , tm] in m variables t I ,  . . . , tm . The elementary sym
metric functions are characterized by the condition 

( I  + t d ' "  ( l  + tm ) = 1 + O'd t [ o  . . .  , tm) + . . .  + O'm( t l , " "  tm)· 
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2.7 Corollary : Let A t ,  . . .  , Am be m real line bundles over the same base 
space X E :1I, and let A l EB ' . .  EB Am be their Whitney sum. Then for each 
q = 1 ,  . . .  , m the qth Stiejfd-Whitney class WPt EB . . .  EB )'m) E Hq(X) is the 
qth elementary symmetric function aie(}. t l, . . .  , e(Am) )  in the 7l./2 Euler classes 
eO·d, . . .  , e(Am)· 
PROOF : By the Whitney product formula (Proposition 2.5) and Proposi
tion 1 .2 one has 

1 + wt(A t  EB ' . . EB Am) + . . . + Wm(A I EB ' . .  EB Am) 
= W(A t EB ' . . EB Am) = W(A t J  U . . .  U W()'m) 
= ( l + e(A I ) )  U . . .  U ( 1  + e()'m) )' 

2.8 Corollary : For any real m-plane bundle � over any base space X E :JB one 
has wm(�) = e(�) E Hm(x). 
PROOF : For any Whitney sum A l EB ' . .  EB Am of m real line bundles Cor
ollary 2.7 and the Whitney product formula for 7l./2 Euler classes (Proposi
tion IV.3.4) give 

Wm(A I EB ' . . EB Am) = e(A t J  U . . .  u e()'m) = e(A I EB . . .  EB I'm )' 

For any real m-plane bundle � over X E gjone applies the splitting principle 
(Proposition IV.5.5) to find a map X' .!!. X in :JB such that g!� is a Whitney 
sum 1' 1 EB ' . .  EB ;'m of line bundles over X' E .!4  and H*(X) � H*(X') is a 
monomorphism. By naturality of Stiefel-Whitney classes (Proposition 1 .3), 
the preceding special case, and naturality of 7l./2 Euler classes (Proposition 
IV.3.2), it then follows that 

g*wm(�) = wm(g!�) = Wm(A I EB ' . .  ffi Am) 
= e(A t  EB ' . .  EB Am) = e(g! �) = g*e(�) 

for the monomorphism g*. 
For any formal power series f(t) E 7l./2 [[t]] with leading term 1 E 7l./2 

one can use the Whitney product formula of Proposition 2.5 to compute 
the multiplicative 7l./2 class uA�) E H**(X) of any real m-plane bundle � over 
any X E gj in terms of the Stiefel-Whitney classes Wt(�), . . .  , wm(�)' The 
computation depends upon a simple algebraic device. 

Let 7l./2[[  U t , Uz , . . .  ]] denote the graded formal power series algebra in 
denumerably many variables U I ,  U2 , . . .  , in which up is assigned degree p 
for each natural number p > 0 ;  for example, any monomial (u t l" 1 . . .  (up)"p 
is of degree n !  + 2nz + . . .  + pnp ' If n > p, then no polynomial of degree p 
contains Un ' so that every element of 7l./2 [[ U I ,  U2 , . . .  ]] is uniquely of the 
form Ln � o Pn(U ! " ' " un), where Pn(u ! ,  . . .  , un) is a degree n polynomial in 
U ! , . . .  , Un ' In what follows we suppose that Po = 1 E 7l./2. 
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F or any natural n urn ber p > 0 let lL/2 [[t 1 , . . •  , t p]] denote the graded 
formal power series algebra in which each of t I ,  . . .  , t p is assigned degree 1 ; 
for example, any monomial (t t l'" . . .  (tp)"1' is of degree n l + . . .  + np ' Then 
if f(t) E lL/2 [[t]] has leading term 1 E lL/2, the product f(t t ! " ' f(tp) E 
1'/2 [[ t I ,  . . .  , t p]] is symmetric in t I , . . .  , t p ' It follows that if u'( , . . .  , u� are 
the elementary symmetric functions 0' 1 (t ( , . . .  , t p) = t I + . . .  + t p '  . . .  , 
O'p( t l , " "  tp) = t l ' " tp in t ( ,  . . .  , tl" then there are unique polynomials 
PII(u l , . . . , ull) of degree n in lL/2 [ [u I " ' " UII] ]  such that 

f(t d '  . . f(tp) = L PII(U'I , " " u�) + L Pn(U'I ,  . . . , u�). 
tI > p 

Suppose that u'{ ,  . . .  , u� _ 1 are the elementary symmetric functions 
O'dt l , . . .  , tp _ d' ' ' ' , O'p _ I (t I ,  . . .  , tp _ l ) in t l ,  . . .  , tp _ 1 obtained from 
U'I " ' "  u� by setting tp = 0; clearly u� = t l . . · tp _ 1 · 0  = O. Since f(O) = 1 ,  
one has 

n > p - I 

Since there are no polynomial relations among the elementary symmetric 
functions, it follows for each n � 0 that there is a unique Pn(u l , . . .  , un) E 
lL/2 [[ U I ' . . .  , Un]] of degree n such that P n(U'I , . . . , u�) is the term of degree 
n in f(t I )  . . .  f(tp), for any p � n. 

2.9 Definition : For any formal power series f(t) E lL/2 [et]] with leading 
term 1 E lL/2 the corresponding multiplicative sequence Lni:; 0 P n(u I ,  . . .  , uII) E 
lL/2 [[ U I ,  U2 , • • •  ]] is determined by requiring the n th degree term of 
f(t \) . . .  f(t,,) E lL/2 [et I ' . . . , tn]] to be Pn(U'I ' . . . , u�), where U'I ' . . . , u� are 
the elementary symmetric functions in t \ '  . . .  , tll . 

For example, if f(t) = 1 + ( then one clearly has Pn(u l , . . .  , un) = UII for 
each Il > O. 

2.10 Proposition : Let Lll i:; O PII(u l , . . .  , UII ) E lL/2 [[u\ , uz ,  . . .  ]] he the mul
tiplicatil'e sequellce of any formal power series f(t) E 1'/2 [[t]] with leading 
term 1 E 1'/2, and let � be any real m-plane bundle over a base space X E !?4. 
Then the lL/2 singular cohomology class uf(�) E H**(X) is given by 

uf(� ) = L uf.,,(� ) 1(1/' uf. /g) = Pn(wI (�)" ' " wn(�) ) E H
n(x), 

n i:; O 
where WII(�) E H"(X) is the nth Stiejet-Whitney class of � for n � m, and 
where WII(�) = 0 for n > m. 
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PROOF : By applying a splitting map X' -. X, if necessary, one may as well 
assume that � is a Whitney sum A I EEl . . .  EEl Am of line bundles. Then 

uf()- I EEl ' . .  EEl Am) = uf(A , ) U . . .  U Uf(Am) = f(e(A t l ) U . . .  U f(e(Am) )  
by Proposition 2.5 and the obvious extension o f  Proposition 1 .2 t o  formal 
power series, so that uA�) is of the form Ln� o Pn(U l (�)" ' " un( � ) )' where 
un<�) is the n th elementary symmetric function in e(A t l, . . .  , e(}'m) for n � m, 
and where un(�) = 0 for n > m. However, Corollary 2.7 guarantees that wn(�) 
is the nth elementary symmetric function in e(A t l, . . .  , e(Am) for n � m. 

There is another useful version of the Whitney product formula, ex
pressed in terms of cross products rather than cup products. Recall that if 
X I x X 2 � X 1 and X I X X 2 � X 2 are the first and second projections 
of a product X I X X 2 of topological spaces X I and X 2 ' the cross product 
of any rJ. E H'(X I ) and any fJ E HS(X 2) is a cup product : rJ. x fJ = prtrJ. U 
pr�fJ E W+S(X I X X 2)' Recall also that the category fIJ is closed with respect 
to products (Proposition I . 1 .4), and that if � 1 and �2 are real vector bundles 
over X I E fIJ and X 2 E fIJ, respectively, then the bundle � 1 + �2 over X 1 x 

X2 E fIJ  is the Whitney sum pr!l � l EEl prh�2 of the pullbacks pr!I � 1 and 
prh�2 over X I x X2 • 

2.1 1 Proposition (Whitney Product Formula) : For any formal power se
ries fIt) E 7L/2 [[t]] with leading term 1 E 7L/2, and for any real vector bundles 
� 1 and � 2 over X l  E fIJ and X 2 E go, respectively, the sum � I + � 2 over X 1 X 
X 2 E fIJ satisfies 

Uf(� l + �2) = uf(� t l  x Uf(�2) E H**(X 1 X X 2)' 
PROOF : Replace �, �' and X in Proposition 2.5 by pr!I � I '  pri�2 ' and X I x 

X 2 ' respectively. Then Propositions 2.5 and 1 .5 imply 

as claimed. 

3 .  Orientability 

uf(� 1 + �2) = uf(pr!l � l EEl pri� 2) 
= uf(pr!l � l ) U uf(pri�2 ) 
= pr!uA� t l U pr�uf(�2) 
= u f( � t l  x u f( � 2), 

First Stiefel-Whitney classes provide a criterion for the orientability of 
arbitrary real vector bundles; it is essentially a generalization of Proposition 
IV.7.9. 
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3.1 Lemma : Let /\ m � he the mth exterior power of a real m-plane bundle 
� over a hase space X E .cJB ; then e(/\ m �) = W I (�) for the EI2 Euler class 
e(/\ m �) E HI(X) and the first Stil!feL-Whitney class WI (�) E HI(X). 
PROOF : Let X' !. X be a splitting map for �, so that .t� is a Whitney sum 
A l EB ' . .  EB Am of real line bundles over X' and H*(X) L H*(X') is a 
monomorphism. It suffices to show that f*e(/\ m �) = f*w I (�) E HI(X'). On 
the one hand, f*e(/\ m �) = e(f! /\ m �) = e(/\ m .t�) by naturality of EI2 
Euler classes and naturality of exterior powers, and since .t� = A I EB · ·  'EBAm , 
Lemma IV.7.8 and Proposition IV.7.5 give 

f*e(/\ m �) = e(/\ m(f!W = e(A I @ . . .  @ Am) 
= e(}' I ) + . . .  + e(Am) E H I (X') . 

On the other hand, 

f* w(�) = w(.t�) = W{}' I EB ' . .  EB Am) = w(},d u . . . U W(Am) 
= ( I  + e(A I ) )  U . . . U ( l  + e(Am) )  E H*(X') 

by naturality and the Whitney product formula for (total) Stiefel-Whitney 
classes, and by Proposition 1 .2. In HI(X') this implies .f*WI (�) = e{}. J l + 
. . .  + e(l.m) = f*e(/\m�), and since f* is a monomorphism one has W I (�) = 
e(/\ m �) E H I (X), as claimed. 

3.2 Proposition : A real m-plane bundle � over a base space X E r!J is orien
table if and only if its first Stil!fel-Whitney class satisfies WI (�) = 0 E H I (X). 
PROOF : By Definition I II . lO.4, � is orientable if and only if /\ m � is the 
trivial line bundle over X, and by Proposition IV.7.7 one has /\ m � = /: 1 E r(X) 
i f  and only if the 7L12 Euler class satisfies e(/\ m �) = 0 E HI (X). Hence the 
result follows from Lemma 3. 1 . 

We now show that the 7L12 cohomology ring H*(Gm(lRoc ) )  of the 
Grassmann manifold Gm(IR"" ) is the polynomial algebra generated over EI2 
by the Stiefel-Whitney classes wl (ym), . . .  , wm(ym) of the universal bundle ym 
over G"'(IR ' ) ;  similarly, for any q > 0 and sufficiently large n > 0, the portion 
of the ring H*(G"' (IR," + II) )  in degrees 0, . . .  , q is isomorphic to the corre
sponding portion of 7L/2 [ IV 1 (),�' ), . . . • w"'( )';;' )] . 

In the next lemmas ( RPX )'" is the m-fold product RP ' x . . .  x Rpcc 
of copies of the real projective space RP " ,  and }, I + . . .  + / is the 
corresponding sum of m copies of the universal real line bundle over Rpoc , 
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as in Definition I I I.2. l ; that is, y l + . . .  + y l is the Whitney sum pr!1 y l EB ' . .  
EB pr�yl , where (RP":r � Rpoo is the jth projection map, for j = I ,  . . .  ,m. 
We recall from Proposition IV.5.7 that if (Rpcx t � Cm([R"' ) classifies 
i, 1 + . . . + y l then h is also a splitting map for the universal real m-plane 
bundle ym over Cm([R"'') , 

According to Proposition IVA.3 the 71./2 cohomology ring H*(RP�) is 
the polynomial ring over 71./2 generated by the 71./2 Euler class e(y l ) E 
HI (RP�). Hence the Kiinneth theorem guarantees that the cross product 
H*(RpOO) ® . . .  ® H*(RP(Xj) � H*( (RP"T) is an isomorphism, so that 
H*( (RP '''T) is the polynomial ring over 71./2 generated by the elements 
pje(y l ), . . .  , p!e(y l ) E H I « RP(Xjt). 

4.1 Lemma : Let (RPoo)m � Cm([ROO) classify the bundle y l + . . .  + y l over 
(RP, )m ; then the image of H*(cm([R1� ) ) !!: H*« RPOCr) lies in the ring of 
symmetric functions in the elements prje(y l ) ,  . . .  , pr!e(y l ) E HI « RPx n. 
PROOF : Let (RpOOt '::' (RP'T be any permutation of the m factors in 
Rpoo x . . .  x RP"'. Then the composition (RP'''T '::' (RPoo)m � Cm([ROO) also 
classifies y I + . . . + Y I , so that the homotopy classification theorem provides 
a commutative triangle 

H*(Cm([ROO) )  h* I H*« RpOCT )  � /  H*« Rpoon· 
In particular, the image of h* is invariant under 7l*. 

4.2 Lemma :  Let (RPoo)m � Cm([ROO) classify the bundle y l + . . .  + y l over 
(RpCLt ; then the image of H*(Cm([ROO) )  � H*« RpOOt) contains the ring of 
symmetric junctions in the elements prje(y l ), . . .  , pr!e(y l ) E HI « RP'T). 
PROOF : For each i =  I ,  . . .  , m  let Wi(ym) E Hi(cm([ROO) )  be the i th Stiefel
Whitney class of the universal real m-plane bundle ym. Then 

h*wi(ym) = wi(h!ym) = W;(y l + . . .  + y l ) 
= wi(pr!l y l EB '  . .  EB pr�y l ) 

by naturality of Stiefel-Whitney classes, where wi(pr!ly l EB ' . .  EB pr�y l ) is 
the ith elementary symmetric function O'i(e(pr!1 y l ), . . .  , e(pr�y l ) )  by Corollary 
2.7, and where e(pr}y l ) = prje(y l ) for j = 1 ,  . . .  , m  by naturality of 71./2 
Euler classes. It remains to recall that the ring of symmetric functions in a 
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polynomial ring in m variables is generated by the m elementary symmetric 
functions. 

4.3 Proposition : For any m >  0 the 7l./2 cohomology ring H*(Gm(�x»  of 
the Grassmalln manifold Gm(�>:,) is the polynomial ring 7l./2 [w l (ym), . . . ,wm(ym)] 
generated over 71/2 by the Stiefel-Whitney classes Wi(ym) E Hi(Gm(�"'» of the 
universal m-plane bundle I,m (wer Gm(�x )  ./or i = 1 ,  . . . , m. 
PROOF : According to Proposition IV.5.7, if (RPoo)m � Gm(�oo) classifies 
�, I + . . . + / then h is also a splitting map for in. In particular, one can 
use the induced monomorphism H*(Gm(�x » � H*« RpcrT) to identify 
H*(Gm(�a » as a subring Htnv( (RpOOt) c H*« RP"T), and Lemmas 4. 1 and 
4.2 imply that Htnv( (RP"'t) is precisely the subring generated by the elemen
tary symmetric functions lTi(prfe(y l ), . . .  , pr!e(/ » , for i = 1, . . . , m. How
ever, lTi(prfe(y l ), . . . , pr!e(y l » = h*wi(ym), as in the proof of Lemma 4.2, 
and since 11* is a monomorphism, H*(Gm(�oo» is therefore the polynomial 
ring over 7l./2 generated by wl(ym), . . .  , wm(ym), as claimed. 

Proposition 4.3 provides an elegant alternative characterization of the 
Stiefel-Whitney classes of any real vector bundle whatsoever. One temporar
ily ignores the provenance of the generators wl(ym), . . .  , wm(ym) of H*(Gm(�oo» ,  
merely identifying H*(Gm(�')' ) )  as a polynomial ring 7l./2 [W I ' . . .  , wm] over 
7l./2 with one generator wi E Hi(Gm(�"' ) )  in each degree i = 1, . . .  , m. Then 
if X .!... Gm(w: ) classifies a given m-plane bundle � over a base space X E !!4, 
naturality of Stiefel-Whitney classes yields Wim = wi(tym) = f*whm) = 
f*wi. The abbreviated result Wi(�) = I*wi can be regarded as a definition of 
the ith Stiefel-Whitney class Wi(�) E Hi(X) of �. 

The computation H*(Gm(�x, » = 7l./2 [w l , . . .  , wm] of Proposition 4.3 
has further importance : it shows that every 7l./2 characteristic class of any 
m-plane bundle � over any X E !!4 can be computed from the Stiefel-Whitney 
classes w t !�), . . .  , wm(�)' For if a characteristic class ui�) E Hq(X) satisfies 
the naturality condition, and if X .!... Gm(/Rx) classifies �, then Uq(�) = 
uitym) = I*uiym), where uiym) E Hq(Gm(/RC1 » is necessarily a polynomial 
vq(w 1 , • • •  , wm) in W1 , • . •  , Wm ; hence 

ui�) = I*viw l " ' " wm) = vlf*w l , . . . , I*wm) 
= vq(w l (tym), . . .  , WnU'),m) )  = viwl(�)" . .  , wm(�» ' 

For example, we already know from Corollary 2.8 that the 7l./2 Euler class is 
given by e(�) = wm(�) E Hm(X), and Proposition 2. 10  gives a specific pre
scription uf(�) = Ln Pn (Wlm, . . .  , W.(�» E H**(X) for any f(t) E 71./2 [[t]] 
with leading term 1 E 71/2, where W.,(�) = 0 for 11 > m. 



230 V. Stiefel-Whitney Classes 

Proposition 4.3 can also be proved in other ways. One of the nicest alter
natives is an induction which uses H*(Gm - l([Roo ) )  to compute H*( Gm([Roo) ). 
The case m = 1 is the identity H*(G1 ([ROO) )  = H*(RpOO) = 1'/2 [e(yl )] of 
Proposition IV.4.3, which was obtained from a Gysin sequence. The fol
lowing key to the inductive step is also obtained from a Gysin sequence. 

4.4 Proposition : For any m > 1 let ym - 1 and ym be the universal real vector 
hundles over Gm - I ( [R ' )  and Gm( [R ' ), respectively, let ue(l'm) he cup product 
by the E/2 Euler class e(y"' ) E H(Gm(w ) ), alld let G'" - I ([R 1 ) .£.  Gm(w ) classih' 
the real m-plane bundle ym - 1 9 1: 1  over Gm - I ([R'''' ). Then there are 1'/2-module 
homomorphisms g for which there is an exact sequence 

. . .  � Hq(Gm([ROO) )  � w+m(Gm([Roc,) )  
� Hq+m(Gm - 1 ([R"') )  � Hq+ I (Gm(W ' ) )  --+ . . .  

of E/2-modules. 
PROOF : According to Proposition I II.S.10, if EOO � Gm([ROO) represents 
ym, then there is a homotopy equivalence Gm - 1 ([Rocl� Eoo* such that the 
composition Gm- I ([ROO) � Eoo* � Gm([ROO ) is a classifying map for ym - I 91:1 . 
Since classifying maps are unique up to homotopy, we automatically have 
f* = h* 0 noo* in the following diagram, whose top line is the Gysin sequence 
for ym, as in Proposition IV.4.2. Since h* is an isomorphism, one can set 
g = 'f'"m u (h*r- I to complete the proof: 

. . .  � H'''(G"(� H' :r' )  7' (G'(�lf ) )  � . . .  

Hq+m(Gm - l (\Roo) ). 
We omit the application of Proposition 4.4 as an inductive step in the 

computation of the rings H*(Gm([ROO) ) ;  it is an easy exercise, which appears 
with a brief hint as Exercise 7.4. 

Here is a finite-dimensional version of Proposition 4.3. 

4.5 Proposition : For allY m > 0 and any q > ° there is all N(m, q) > ° such 
that for any 11 � N(m, q) the E/2 cohomology ring H*(Gm([Rm+ n ) )  agrees in 
dimensions 0, 1 ,  . . . •  q with the polynomial rillg 1'/2[Wl (Y�)" ' " wm(Y�)] 
generated over 1'/2 by the Stiefel-Whitney classes wr(Y�) E W(Gm([Rm+ n) )  of the 
canonical real m-plane bundle y� over Gm([Rm + n). 
PROOF : Let y� be the canonical real line bundle over the projective space 
Rpq, and let y� + . . . + y� be the sum ofm copies ofy� over the m-fold product 
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RPq X . • .  X RPq = (RPqt;  that is, }'� + . . .  + y� = pr!I }'� EB . . .  EB pr�,y� for 
the III projections (RPq)1II � RPq, as usual. Since (Rpqt is a smooth 
qm-dimensional manifold, by Proposition 1 .7.3, it follows from Proposition 
I I I .9.3 that there is an N(m, (I) > 0 for which there is a "finite classifying 
map" (Rpq)," � cm( lRm + ,,) for " �  + . . .  + i'� whenever n � N(m, q) ;  that is, 
" I + . . . + " I = k!,.,1II for 11 > N(m (I) If  cm( lRm + ,,) � Cm( IR J· )  classifies I'm (in Jq Iq I 1I = , . n 
the usual sense), then the composition j k classifies I'� + . . .  + Y� . Now 
let R pq � RP' classify the real line bundle I'� over Rpq, so that the m-fold 
product (Rpqt � (RPXT satisfies " �  + . . .  + }'� = ( irn)!( y l  + . . .  + i ) ;  if 
(RP ' T  � Cm( IR ' ) classifies / + . . . + 1' 1 , then the composition h "  jm is 
another classifying map for " �  + . . . + ,,� . By the homotopy classification 
theorem (Theorem 1 1 1 .8.9) the two classifying maps j 0 k and h '  jm for " I  + . . . + " I are homotopic so that there is a commutative diagram I q I q ' 

H*(Cm(R'XJ) )  � H*(cm(Rm + n) )  

� j j. 
H*« Rp'X )",) (irn)' )  H*« Rpq)m )  

of  d'/2-modules. We already know for Lemmas 4. 1  and 4.2 that h* i s  a mono
morphism whose image Htnv( (RP ' . )m )  C H*( (Rr' )m ) consists of those ele
ments invariant under the automorphisms induced by permutations of the 
factors Rpx , as in the proof of Proposition 4.3. By Corollary IV.4.S 
HP(RP"' ) .!:  HP(RPq) is an isomorphism for p � q, so that (im)* induces 

( irn)* isomorphisms HFnv« RPoc )m) -----> HFnv« (Rpq)m) for p � q, for the corre-
sponding sub-ring H�v « (Rpq)''' ) c H*( Rpq )m ). Hence for each p � q there is 
a commutative diagram 

HP(Cm(R'") )  j' ) H P( cm(Rm + n) )  

+ j " 
H{'..v« RP",)", ) ( irn). ) Hf....« Rpq)m) '" 

for any 11 � N(m, q), with isomorphisms 11* and ( im)* . Thus j* is a mono
morphism (and k* is an epimorphism). 

Now let X .!.. cm( lRm + n ) be any splitting map for '/�', so that H*(G(lRm + n) )  
L H*(X) is a monomorphism and ty::' is a sum 1" 1 EB . . . EB I"m of 
line bundles over X ;  the composition j "  f classifies A l EB . . .  EB Am ' I f  
X I ,  Rp x X I,,, R p CJC  I ' f '  , . I h h ---+ , . . •  , ---+ e assl y I" I ' . . . , I"m ' respective y, t en t e map 
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X 1 = ( / ,  . . . . • 1,,, , ,  (RP"T induces a homomorphism H*« RP"T) � H*(X) ;  
the composition h " / also classifies A l EEl . . .  EEl Am ' Since j 0 I and h o /  both 
classify A l EEl ' . .  EEl )'m the homotopy classification theorem (Theorem 1 1 1 .8.9 )  
provides a homotopy commutative diagram 

Gm([ROO) , Gm([Rm+ /I ) 

· 1 1f 
(RP", )m , x, 

hence a commutative diagram 

HP(Gm([Roo) )  � HP(Gm([Rm + n) )  .j jr 
whenever p � q and n � N(m, q). We already know that h *  is a monomor
phism with image H�v( (Rpoo)",), and that j* and I* are monomorphisms. 
Consequently the preceding diagram reduces to 

HP(Gm([ROO) )  j* , HP(Gm([Rm + n) )  mono 

+ -+ 
Hfnv«RPoo)m) /* ) HP(X), 

where h* is an isomorphism and the composition I* 0 j* is a monomorphism. 
It follows that /* is a monomorphism, which becomes an isomorphism in the 
further reduced diagram 

HP(Gm([Rm + n) )  m.+ 
Commutativity of the latter diagram guarantees that the monomorphism 
f* is also an epimorphism, hence an isomorphism ; consequently j* is also 
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an isomorphism, assuming as always that p � q and n � N(m, q) . Since 
j*w.('),m) = wru,),m) = wr(Y�) E W(Gm(�m +n » for r = 1 ,  . . .  , m, Proposition 
4.3 implies the desired result. 

In the preceding proof we appealed to Proposition I I I.9.3 for the exis
tence of a "finite classifying map" (RP'l)m � Gm(�m+n) for the bundle Y� + . . . 
+ Y � over (RP'lt, for sufficiently large n > 0. The following property of such 
maps is a finite-dimensional version of Proposition IV.5.7. 

4.6 Proposition : Given q > 0, any "finite classifying map" (RP'l)m � Gm(�m + n ) 
for the real m-plane bundle Y� + . . .  + Y� over (RP'lt is also a splitting map 
for the canonical real m-plane bundle Y� over Gm(�m + n), in the restricted sense 
that HP( Gm(�m +n) )  � HP( (RP'l)m) is monic for p � q and n � N(m, q). 
PROOF : The preceding proof contains a commutative diagram 

Hfnv«RPL)m) (i:J* ) Hfnv«RP'l)m) 

with isomorphisms 11* and ( im)*, and we later verified that j* is also an iso
morphism. Hence k* is an isomorphism onto the submodule Hfnv« Rpq)m) c 
HP( (Rpq)m), for p � q and n � N(m, q). 

5 .  Axioms for Stiefel-Whitney Classes 

We now establish an axiomatic characterization of Stiefel-Whitney 
classes of real vector bundles over arbi trary base spaces X E fJI, following the 
pattern used in Theorem IV.6. 1 for lL/2 Euler classes. Even if one considers 
only smooth real vector bundles over smooth manifolds, the corresponding 
axioms uniquely describe Stiefel-Whitney classes, as we also show. 

5.1 Theorem (Axioms for Stiefel-Whitney Classes, for the Category fJI) : 
F or real vector bundles � over base spaces X E fJI, there are unique inhomo
geneous lL/2 cohomology classes w(�) E H*(X) which satisfy the following 
axioms : 

(0) Dimension : If � is Cl real m-plane bundle over X E fJI, then w(�) E 
HO(X) EEl ·  . .  EEl Hm(x) c H*(X). 
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( 1 ) Naturality : If X' .!!. X is a map in f1l, and if � is a real vector hundle 
over X, then w(g'�) = g*w(�) E H*(X'). 

(2) Whitney product formula : If � and I] are real vector bundles over the 
same X E f1l, with Whitney sum � EB I] over X, then w(�) U w(I]) = w(� EB 1]) E 
H*(X), for the cup product w(�) U w(n). 

(3) Normalization : If yl is the canonical real line bundle over Rpl 
( = Sl ), then w(")' l l  = 1 + e(Y l l  E HO(Rpl ) EB Hl(Rpl ), where e(Y l l  is the gen
erator of H*(Rpl ). 

PROOF : The total Stiefel-Whitney classes of Definition 1 . 1  trivially satisfy 
Axiom (0), and they satisfy Axioms ( 1  )-(3) by virtue of Propositions 1 .3, 2.5, 
and 1 .2, respectively. Conversely, suppose that w( ) satisfies Axioms (0)- (3), 
let y l be the universal real line bundle over Rpac, and let Rpl .!... RpOCJ classify 
the canonical line bundle y l  over Rpl . Then w(y l l  E HO(Rpl ) EB H1 (Rpl ) by 
Axiom (0), and HO(RpOO) EB HI(RPOO) � HO(Rpl ) EEl H1(Rpl ) is an isomor
phism such that f*(1  + eV) )  = 1 + e(Y l l  for the generator eV) E H 1(RP"- ), 
by Corollary IVA.5. Since one has f*w(y l ) = w(f 'y l ) = w(y l l  = 1 + e(Y l l  
by Axioms ( 1 )  and (3), for the same isomorphism j"*, it follows that 
W(y l ) = 1 + e(y l ). Now let "r be the universal real m-plane bundle over 
Gm(lRoo) and let (RpOOr � Gm(IROCJ) be the splitting map for ym described in 
Proposition IV.5.7, with 

h'ym = yl + . . .  + yl = pr'l yl EB '  . . EB pr�y l 

for the m projections (RPoc')m � Rpoc . Then by Axioms ( 1 )  and (2) one has 

h*w(ym) = w(h 'ym) = w(pr� y l EB '  . .  EB pr�yl ) 
= w(pr'l y l ) U . . .  u w(pr�yl ) 
= pr!w(y l ) u . . . u pr!w(y l ), 

which is a unique element of H*« Rp<XT) since W(y l ) is uniquely defined, as 
we have just learned. Since h* is monic, by Proposition IV.5.7, it follows that 
w(ym) is a unique element of H*(Gm(lRoo ) ). By one final appeal to the homo
topy classification theorem (Theorem 1 1 1.8.9) any real m-plane bundle � over 
any X E f!4 can be classified by a map X .!!. Gm(lRoc, )  which is unique up to 
homotopy, so that by Axiom ( 1 )  one has w(�) = w(g'ym) = g*w(ym) E H*(X) 
for a unique homomorphism H*(Gm(IR"' ) )  � H*(X) and the unique element 
w(ym) E H*(Gm(lRoo ) ). 

Now let .A denote the category of smooth manifolds and smooth maps, 
as before. We know from Corollary 1 .6.8 that j{ c /!J, and we know from 
Theorem 1 1 1 .9.5 that every real vector bundle � over any X E j/ is itself 
smooth, in the sense that it can be represented by a smooth coordinate 
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bundle E � X. Since many applications of characteristic classes concern 
only smooth manifolds X E JlI and their tangent bundles ,(X), for example, 
it is of interest to know that the preceding characterization ofStiefel-Whitney 
classes applies equally well to the subcategory JII c ffB. 

5.2 Theorem (Axioms for Stiefel-Whitney Classes, for the Category .�"t) : 
For smooth real vector bundles � over smooth manifolds X E Jlt, there are 
unique inhomogeneous 7Lj2 cohomology classes w(�) E H*(X) which satisfy 
the following axioms : 

(0) Dimension : If � is a smooth real m-plane bundle over X E •. 11, then 
w(�) E HO(X) E8 . . .  E8 H"'(X) c H*(X). 

( 1 )  Naturality : It' X' ..!!.. X is a smooth map, and !t' � is a smooth real 
vector bundle over X, then w(g !�) = g*w(�) E H*(X'). 

(2) Whitney product formula : rt' � and Yf are smooth real vector bundles 
over the same smooth manifold X E .It, with Whitney sum � E8 'l over X, then 
w(�) u 11'('1) = w(� E8 '1) E H*(X), for the cup product w(�) u w('1). 

(3) Normalization : Ify l is the canonical real line bundle over Rp! ( = S ! ), 
thell w(y l l  = 1 + e(}' l )  E HO(Rp ! )  E8 H !(Rp ! ), where e(Y l l  is the generator of 
H*(Rpl ). 

PROOF : The existence of such classes follows automatically from the inclu
sion . ,ff c ffB and Theorem 5 . 1 .  Conversely, suppose that w( ) satisfies Axioms 
(0)-(3). For any q > 0 one easily obtains w(y: ) = 1 + e(Yq! )  E HO(Rpq) E8 
H !(Rpq) from Corollary IV.4.5 and Axioms (0), 0 ), and (3), exactly as in the 
proof of Theorem 5. 1 ,  where y: is the canonical real line bundle over Rpq, 
and where e(yi ) E H 1(Rpq) is the uniquely defined generator of H*(Rpq). 
Now, for any m > 0, let q = m, so that there is a finite classifying map 
(Rpm)", � Gm(�m + n) for the real m-plane bundle y� + . . .  + y� over (RP",)m 
whenever n � N(m, q) = N(m, m), as in Proposition 4.5 ; that is, 

k!y� = y� + . . .  + y� = pr!! y� E8 . . . E8 pr�y� 

for the canonical real m-plane bundle y� over Gm(�m + n). By Axioms ( 1 ) and 
(2) one has 

k*w(y�) = w(k!y�) = w(pr!l Y� E8 ' . .  E8 pr�y�) 
= w(pr!! y�,) u . . .  u w(pr�y�) 
= prtw(y�) U . . .  U pr!w(y�), 

and since we already know that w(y�) = 1 + e(y�), it follows that k*w(y�) is 
a uniquely defined element of H*( (Rpm)"'). However, Axiom (0) guarantees 
that w(y�) vanishes in degrees above m, and since q = m, Proposition 4.6 
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guarantees that HP(Gm(�m + n) )  � HP( (Rpm)m) is monic for p � m ;  hence 
w(y�) is uniquely defined in H*(Gm(�m+ n», for any n � N(m, m). Finally, if 
� is any smooth real m-plane bundle over any X E At, then Proposition 
II I .9.3 provides a finite classifying map X .!.. Gm(�m + n) for sufficiently large 
n. By Theorem 1.6. 1 9  one can assume that f is itself smooth ; furthermore, 
one may as well suppose n � N(m, m), so that Axiom ( 1 )  implies w(�) = 
w(ty�) = f*w(y�) E H*(X) for the preceding class w(y�) E H*(Gm(�m + n) ). 

The final step of the preceding proof clearly does not depend on the 
choice of the finite classifying map f; for if w( ) and w( ) both satisfy the 
axioms, the earlier steps of the proof give w(y�) = w(y�) E H*(Gm(�m+ n ) ), 
hence 

w(�) = w(f'y�) = f*w(y�) = f*w(y�) = w(f ly�) = w(�) E H*(X). 
However, there is also an explicit demonstration that the choice of f is 
immaterial. Suppose that X � Gm(lf�m+ n') is another smooth finite classifying 
map for the smooth real m-plane bundle � over X E At, for some n' � N(m, m). 
The ersatz homotopy uniqueness theorem (Proposition 1 11 .8. 1 4) then pro
vides (smooth) finite classifying extensions gn.n" and gn'.n" for which the 
compositions 
X !." Gm(lr�m + n) � Gm(lRm+ n' ' ) and X � Gm(�m+n') � Gm(�m+ n' ') 

are homotopic. The axioms then imply 

as expected. 

f*w(y�) = f*w(g�,n"y�, ,) = f*g�.n"w(y�, , ) 
= (gn.n" 0 f)*w(y�, ,) = (gn' .n" 0 g)*w(y�, ,) 
= g*g�' .n"w(y�, ,) = g*w(g�'.n"y�, ,) 
= g*w(y�,) 

Since the Grassmann manifolds Gm(�m + n) are both closed and smooth 
(Proposition 1.7.3), they are a fortiori compact and triangulable, One there
fore has analogs of Theorem 5.2 in which the category At of smooth mani
folds is replaced by any one of several categories of topological spaces. For 
example, Theorem 5.2 is valid for real vector bundles over spaces in the 
category of smooth closed manifolds. Theorem 5.2 is also valid if one replaces 
.It by the category of those compact spaces which happen to lie in 81, or by 
the category of finite-dimensional simplicial spaces (which automatically lie 
in 81 by Corollary 1.2.2 and Proposition 1 .4.6). In each case one of Proposi
tions 111 .8. 1 2, 111 .9. 1 ,  or I I I.9.3 furnishes the required finite classifying maps. 
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6. Dual Classes 

Since 7L/2 is a field, and since we work exclusively with formal power 
series I(t) E 7L/2 [et]] with leading term 1 E 7L/2, it follows for each such I(t) 
that there is a unique formal power series ( l /f)(t) E Z/2 [et]] with leading 
term 1 E Z/2 for which I(t) . ( l /I)(t) = 1 E 7L/2 [et]]. For example, if I(t) = 
1 + t, then O/I)(t) = 1 + t + t2 + . . . . 

6.1 Definition : For any formal power series I(t) E Z/2[[t]] with leading 
term 1 E Z/2, and for any real vector bundle � over a base space X E!?J, the 
multiplicative Z/2 class u 1 /fW E H**(X) is the dual class of the multiplicative 
Z/2 class uA�) E H**(X). In particular, for I(t) = 1 + t and ( l /f)(t) = 1 + 
t + t2 + . . .  , the class u l lf(�) E H**(X) is the dual StieIel-Whitney class of 
�, denoted w(�). 

6.2 Lemma : For any real line bundle J1. over a base space X E !?J, and Ior any 
formal power series f(t) E Z/2 [et]] with leading term 1 E Z/2, it follows that 
uf(J1.) U Ul lf(J1.) = 1 E H**(X). 

PROOF : There is a unique multiplicative homomorphism Z/2 [et]] -
H**(X) carrying t into e(J1.), and since J1. is a line bundle, the relation f(t) . 
( l /f)(t) = 1 defining ( 1 /f)(t) and Proposition 1 .2 imply that 

uf(J1.) U u 1 1f(J1.) = I(e(J1.) )  U ( l /f)(e(J1.) )  = 1 E H**(X). 

6.3 Lemma : For any real vector bundle � over a base space X E !!4, and Ior 
any formal power series f(t) E Z/2 [et]] with leading term 1 E Z/2, it follows 
that u l lf(�) is the unique class such that uA�) U u l lf(�) = 1 E H**(X). 

PROOF : Any splitting map X' ..!!... X provides a sum g!� = J1. 1 Ee '  . .  Ee J1.n of 
g** line bundles J1. 1 ' . . .  , J1.n over X' and a monomorphism H**(X) � H**(X'), 

and one uses Lemma 6.2 to complete the proof. 

6.4 Proposition : Suppose that � and 1'/ are real vector bundles over the same 
base space X E .rJd, and suppose that there are trivial bundles eP and eq over X 
such that � Ee 1'/ Ee eP = eq• Then for any formal power series f(t) E Z/2 [et]] 
with leading term 1 E 7L/2 it follows that U 1 lfW = u f(I'/) E H**(X). 

PROOF : Since the leading coefficient of f(t) is 1 E Z/2, it follows that the 
coefficient of uf(�) in HO(X) is also 1, and since Z/2 is a field, there is a unique 
cohomology class r:J. E H**(X) with ufW U r:J. = 1. However, uf(�) U ul /f(�) = 
1 by Lemma 6.3, so that u l /f(�) = r:J.. On the other hand, according to Corol
lary 2.6 one has uf(eP) = 1 and uf(eq) = 1, so that one can apply the Whitney 
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product formula to the identity � EEl '1 EEl f.P = f.q to conclude that u j(�) u 
UA'1) = 1 ,  so that Uj('1) = rI.. Hence u l lf(�) = rI. = UA'1), as claimed. 

6.S Corollary : Suppose that � and '1 are real vector bundles over the same 
base space X E PA, and suppose that there are trivial bundles f.P and Bq such 
that � ffi '1 ffi BP = cq• Then the Sti�f£>/-Whitney class w('1) E H*(X) and dual 
Stieje/-Whitney class w(�) E H**(X) satisjj' w('1) = w(�) E H**(X ); a jortiori 
w(�) E H*(X). 

We recall once more that in most applications the base space X will have 
a finite-dimensional cohomology ring H*(X), so that H*(X) = H**(X). 

7. Remarks and Exercises 

7.1 Remark : Stiefel-Whitney classes were first constructed in Stiefel [ 1 ]  
and in Whitney [2], independently written papers of 1 935. 

Stiefel considered the existence of k l inearly independent vector fields 
on a smooth n-dimensional manifold X. Suppose for convenience that X 
is oriented and that it has a fixed triangulation K ;  the (n - k)-skeleton 
IKn - kl c IKI = X consists of all geometric p-simplexes in IK I  with p � n - k. 
There are always k linearly independent vector fields on IKn - kl . However, 
Stiefel found an obstruction class in Hn - k + I (X) whose vanishing is a con
dition for the existence of k linearly independent vector fields on IKn - k + 1 1 ,  
where the coefficient group of Hn - k + l (X) is 7L or 7Lj2 according as n - k is 
even or odd. Since vector fields can equally well be regarded as sections of 
the tangent bundle ,(X), Stiefel's obstruction classes can be regarded as 
characteristic classes of ,(X); furthermore, if one reduces the coefficient ring 
7L to 7Lj2, then Stiefel's obstruction classes are precisely the Stiefel-Whitney 
classes Wn - k + l ('(X) ) E Hn -k + I (X ;  7Lj2). 

We already noted in Remark I I I. l 3.3 that the first definition of fiber 
bundles is in Whitney [2] ; the very same paper contains a sketch which 
generalizes Stiefel's construction to arbitrary oriented sphere bundles over 
a polyhedron IK I .  In either paper one can ignore the orientation by reducing 
the coefficient ring 7L to 7Lj2 ; however, one then loses part of the obstruction 
information. 

A more recent account of Stiefel [ 1 ]  and Whitney [2] is given in Steenrod 
[ 4, pp. 190-199], and a summary of the same material is given in E. Thomas 
[2, pp. 1 59-16 1 ] ; the homotopy computation leading to the coefficient 
groups 7L and 7Lj2 is presented in modern dress on pages 202-203 of G. W. 
Whitehead [ 1 ]  for example. The special case k = 1 will be treated in detail 
in Chapter VIII of the present work, and the cases 1 < k � n will be sum
marized in the Remarks at the end of that chapter. 
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There are many other constructions ofStiefel-Whitney classes, in addition 
to that of Definition 1 . 1 .  One of these (suggested by Proposition 4.3) is dis
cussed in the following remark, an entirely different one of Thorn [ 1 ,  4] and 
Wu [3] is presented in Exercise 7. l 7  and Remark 7. 1 8, and de Carvalho [ 1 ]  
contains yet another construction, for example. However, the original meth
ods of Stiefel [ 1 ]  and Whitney [2] are still of current interest : Stern [ 1 , 2] 
assigns Stiefel-Whitney classes to the topological jRm bundles of Remark 
11 I. 1 3.9, with an interpretation as obstruction classes in the sense ofStiefel [ 1 ]  
and Whitney [2] (over suitably restricted base spaces). 

7.2 Remark : Following Proposition 4.3 it was observed that the Stiefel
Whitney classes Wl (�)' . . .  , wm(�) of a real m-plane bundle � over any X E f14 
could be defined by setting Wj(�) = f*wj for the generators W I o . . . , Wm E 
H*(Gm(jRX ) ;  7l../2) ; over appropriate base spaces one can replace Gm(jRoc) by 
Gm(jRm + n ) for suitably large n and appeal to the ersatz homotopy classification 
theorem for a similar result. This technique was first introduced in Pontrjagin 
[ 1 ], the details appearing in Pontrjagin [5]. The technique also appears in  
Ch ern [2, 3], in  Wu [2, 5], in  Takizawa [ 1], and in Borel and Hirzebruch 
[ 1 ,  pp. 483-487], for example ; a group-theoretic interpretation of the con
struction is given on pp. 496-497 of the latter paper. Hodge [3] contains one 
of the many early complex analogs of the same technique. 

7.3 Remark : The preceding characterization of Stiefel-Whitney classes 
requires the structure of the ring H*(Gm(w" ) ;  7l../2), which we computed in 
Proposition 4.3 in terms of the particular Stiefel-Whitney classes w1 (ym), . . .  , 
wm{"/n). However, the study of H*(Gm(jR ' ) ; 71../2) and H*(Gm(jRm + n) ; 71../2) 
antedates the very definition of cohomology. In order to trace the early 
history of H*(Gm(jRm+ n ) ;  7l../2) we begin with the work which led to the first 
computation of the complex analog, H*(Gm(icm+ n) ;  7l..), considered in  Vol
ume 2. 

During the 1 870's Hermann Cisar Hannibal Schubert developed a tech
nique for solving certain geometric intersection problems in jR3, the enu
merative calculus of Schubert [ 1]. The technique was applied during 1 886 
to similar problems in (complex) vector spaces of arbitrary finite dimension, 
for which the Grassmann manifolds G"'(CnI + tI) provided a natural setting. 
In particular, Schubert varieties were constructed as submanifolds of 
GnI(CnI +n) in Schubert [2], and it was shown (with the rigor of 1 886) that 
certain Schubert varieties represent cycles whose dual cohomology classes 
form a convenient basis of the cohomology modules H*(Gm(cm + n) ;  7l.. ). 
Intersections of such Schubert cycles were computed in Pieri [ 1 ]  and in 
Giambelli [ 1 ], furnishing 1 894 and 1902 versions, respectively, of the cup 
product structure of H*(Gm(cm+ n) ;  7l.. ). Todd [ 1 ]  later used the original 
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methods of Schubert [2] to derive Giambelli's results from those of Pieri. 
In 1934 Ehresmann [ 1 ]  used topological intersection theory to give the first 
rigorous statement and proof of the Schubert "basis theorem" for Gm(cm hi). 
Schubert varieties and Schubert cycles are constructed for Gm([Rm + n) as they 
are for Gm(cm + n), and in 1937 Ehresmann [2] used topological intersection 
theory to establish an analogous "basis theorem" for Gm([Rm +n). In 1942 (and 
1 947) Pontrjagin [ 1 , 5] used Ehresmann's methods to give a corresponding 
"basis theorem" for the oriented double covering ch[Rm +n ) of Gm([Rm +n). 
(The cohomology of Gm(cm +n) and c;m([Rm+ n) will be considered in Volume 2.) 

Meanwhile, Hodge [1 J developed a rigorous and entirely algebraic jus
tification for the Schubert "basis theorem", in 1 94 1 ,  followed by a further 
investigation of intersections of Schubert cycles in Hodge [2] . The Schubert 
calculus computation of H*(Gm(cm + n) ;  .:E) is presented in Hodge and Pedoe 
[ 1 ,  Chap. XIVJ and in Griffiths and Harris [ 1 ,  pp. 193-206J ; as in all the 
work just cited, there is no explicit mention of cohomology. General exposi
tions of Schubert calculus are given in Zeuthen [ 1 ], Pieri and Zeuthen [ IJ, 
Severi [1, 2], Kleiman and Laksov [IJ, and Kleiman [ 1] . 

In 1 947 Chern observed that the closest real analog of H*(Gm(cm +n ) ;  Z) 
is H*(Gm([Rm+ n) ;  Z/2), with the coefficient ring .:E/2, and he used Schubert 
calculus in Chern [2,)] to provide the first proof of Proposition 4.5. 
Chern's results inspired entirely different computations of H *(Gm([Roo) ;  .:E/2) 
and H*(Gm([Rm +n) ; .:E/2), such as the ones used for Propositions 4.3 and 
4.5, respectively. Other computations of H*(Gm([ROO) ;  .:E/2) are sketched in 
Exercise 7.4. and Remark 7.5, and similar computations of H*(Gm([R") ; .:E/2) 
are given in Milnor [3, pp. 26-3 1 ]  and in Milnor and Stasheff [ 1 ,  pp. 83 -
88] ; an alternative using spectral sequences is given in Liulevicius [2, 
1 1 7 -122]. 

7.4 Exercise : Use Proposition 4.4 to compute H*(Gm([ROO) ;  .:E/2) by induc
tion on m. (Hint :  The initial step is in Proposition IV.4.3. To establish the 
inductive step observe that the homomorphisms f* in the exact sequence of 
Proposition 4.4 are surjective, hence that there are short exact sequences 

0 .... Hq(Gm([Roo» ue(ym) � Hq +m(Gm([Roo» � Hq+m(Gm - I ([Roo» .... 0.) 

7.5 Remark :  Since H*(RpOC' ; .:E/2) is the polynomial ring generated over 
.:E/2 by the .:E/2 Euler class e(y l ) = Wl (y l ) E H1(Rpl ), one can use Remark 7.2 
to define the Stiefel-Whitney class w1(1e) E Hl(X;  Z/2) of any line bundle le 
over any X E �, hence the total Stiefel-Whitney class 1 + W1 (le) E H*(X ;  .:E/2). 
The Whitney product formula (Proposition 2.5) and the splitting principle 
(Proposition IV.S.S) then provide yet another characterization of Stiefel
Whitney classes, essentially the uniqueness theorem proved earlier. This 
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construction originated in Grothendieck [ 1], in a slightly different setting; 
it can also be found in Braemer [ 1] .  

7.6 Exercise : Some of the preceding remarks indicate alternative construc
tions of Stiefel-Whitney classes, and there are more to come. For example, 
show that the special case f(t) = 1 + t of Definition 1 . 1  is equivalent to the 
following formula of H irsch for any real m-plane bundle � over any X E f!jj : 

e(}.�)m + w l(�)e(A�)m - l + . . .  + Wm - l (�)e(A�) + wm(�)1 = 0 

in the free H*(X)-module H*(P�), where ;.� is the splitting bundle over P� E f!4. 
This identity was apparently known to Chern and Wu before its publication 
(in a slightly different setting) in G. Hirsch [7] .  The language "formula of 
Hirsch" appears in Hirzebruch [3, p. 75]. 

7.7 Remark : The axiomatic characterization of Stiefel-Whitney classes 
reported in Theorems 5. 1 and 5.2 was first given in Hirzebruch [2] ; it can 
be found in Hirzebruch [3, p. 73] ' 

7.8 Remark : A special case of the Whitney product formula of Proposition 
2.5 was first announced as a "duality theorem" in Whitney [6], without proof. 
The proof is implicit in Chern's computation of the ring structure of 
H*(cm([Rm + n) ;  1'/2) in Chern [2, 3], for example, and an explicit proof appears 
in Wu [ 1 ]. More recent product formulae in H*(cm([Rm + n) ;  1'/2) can be 
found in Oproiu [ 1] . 

7.9 Exercise : Use the identity e(A ® 11) = e(A) + e(ll) of Proposition IV.7.5 
to prove the following property of Stiefel-Whitney classes : For any natural 
numbers m � 0 and n � 0 there is a unique polynomial P m,n in m + n variables 
over 1'/2 such that 

w(� ® 1]) = Pm,n(W l(�)" ' " wm(�) ; w 1 (1]), · · · , wn(1J) )  
for any real vector bundles � and I] of ranks m and n, respectively, over the 
same base space X E ;]B. (This is a relatively easy exercise ; however, alternative 
approaches to its solution can be found in Borel and H irzebruch [ 1 ]  and in 
E. Thomas [ 1 ]. ) 

7.10 Remark : In Thorn [4] one learns that the total Stiefel-Whitney class 
w(�) of a vector bundle � depends only on the l-equivalence class of �. This 
suggests that Stiefel-Whitney classes should be assigned directly to 1-
equivalence classes ; it also suggests that one should try to construct Stiefel
Whitney classes directly from less information than a vector bundle carries. 
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For example, since Thorn [4] also shows that the J-equivalence class of 
the tangent bundle !(X) ofa smooth manifold X is independent of the smooth 
structure assigned to X, it follows that w( r( X) ) is independent of the smooth 
structure of X. Nash [ 1 ]  proves the latter result directly ; in fact, Nash's 
construction assigns total Stiefel-Whitney classes to arbitrary topological 
manifolds X, the results agreeing with w(!(X) ) for smooth manifolds X. 
(Nash's construction also leads to generalizations of several classical results 
about tangent bundles of smooth manifolds, as noted earlier in Remark 
I I I . 1 3.9, in Fadell [4], R. F. Brown [ 1] ,  and Brown and Fadell [ 1] . ) 

Stiefel-Whitney classes of more general fibrations, including the topo-
10gical IRm bundles of Remark 111 . 1 3.9, have been constructed more recently 
in Teleman [ 1 , 2, 3] and Bordoni [ 1 ] . According to Teleman [2], the spe
cialization to the tangent topological lRn bundle of an n-dimensional manifold 
X provides an alternative computation of Nash's total Stiefel-Whitney class 
of X. It has already been observed in Remark 7 . 1  that the individual Stiefel
Whitney classes arising in such constructions can be interpreted as obstruc
tion classes, as in Stern [ 1 , 2] ' 

An earlier construction of the Stiefel-Whitney classes of the preceding 
paragraph can be found in Vazquez [ 1], using generalizations of methods 
described in some of the following remarks ; an application of the result 
appears in Vazquez [2]. 

7.1 1  Exercise : Let A be any commutative ring with unit, and let Po = I ,  
Pl(ud, P2(U 1 , u2 ), • • •  be a sequence o f  polynomials Piu l , . . .  , un) E 
A[U l " "  , Un] such that if Uq is assigned degree q, then Pn(U l ' . . .  , un) is of 
degree n. The sequence can be regarded as an element Ln;, o Pn(u l , · · · , uti) 
of the formal power series ring A [[U l , U2 , • . •  ]], as in Definition 2.9 ; for 
example, if uo = I ,  then LII ;, o un is itself such an element. One can compute 
the formal product 

-

( L Pn(u1 , · · · , Un)) ( L Pn(V l , · · · , Vn)) = L Pn(W1 , · · · , Wn)' ni; O n i; O ni; O 
Show that ifLn;, o Piu l " ' " un) is the multiplicative sequence assigned to a 
formal power series f(t) E A[[t]] as in Definition 2.9, then it is multiplicative 
in the present sense. 

7.12 Exercise : Conversely, let Ln;, o Pn(U1 , . . .  , un) be multiplicative in the 
sense of Exercise 7. 1 1 ;  show that it is the multiplicative sequence assigned 
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as in Definition 2.9 to the formal power series 

j ( t )  = L P,,(t, O, O, . . .  , 0) E A[[tJ ]. 
'I � O 

7.13 Remark : Multiplicative sequences were introduced in Hirzebruch [ 1 ] . 
Other expositions can be found in of Hirzebruch [3, pp. 9 - 1 6], Milnor 
[3, pp. 1 1 1 -1 16], and Milnor and Stasheff [ 1 ,  pp. 2 19-222]. 

7.1 4  Remark : Thorn provided a useful alternative construction of Stiefel
Whitney classes in Thorn [ 1 , 4]' In order to discuss it we first describe a 
classical 1l./2 cohomology operation which is not ordinarily presented in 
beginning algebraic topology courses. Let H*(-, -) (and H*(-) ) denote 
singular cohomology with 1l./2 coefficients, as before, and for each pair 
(X, Y) of topological spaces with Y e  X let Sqi denote a 1l./2-module 
homomorphism H*(X, Y )  -+ H*(X, Y )  of degree i � 0, carrying each sum
mand W(X, Y) into the summand Hn + i(X,  Y). The direct sum Sq = SqO EEl 
Sq 1 EEl Sq 2 . . .  is the Steenrod square if it satisfies the following axioms : 

(0) Dimension : If IX E H O(X, Y )  Efl ' . . Efl H"(X, y ), then Sqi IX = ° jor 
i >  n. 

( I )  Naturality : Iff is any map from a pair (K, Y') to a pair (X, y ), 
thell Sq f*IX = I* Sq IX E H*(X', Y') jiH any IX E H*(X, Y). 

(2) Cartan formula : The cup product IX U f3 E H*(X, Y )  of IX E H*(X, y )  
and 13 E H*(X, Y )  satisfies 

Sq(1X U Il) = Sq IX U Sq fi. 
(3 )  Normalization : If IX E H"( X, Y)  .f(n· any n � 0, then 

lInd Sq" IX = IX U IX E H2,,(X, y ). 

The Steenrod square first appeared in Steenrod [3], and the preceding 
axiomatic characterization (including the Cartan formula) first appeared in 
Cartan [ 1 ] .  Early general expositions of the Steenrod square can be found 
in Exposes 14 and 15 of Cart an [3], in Thorn [5] and Wu [6], and in Steenrod 
[5] ; the latter papers contain generalizations for other primes p than the 
prime p = 2, independently presented in Bott [ 1 ] .  Somewhat more recent 
expositions of the Steenrod square (and its generalizations) can be found in 
Steenrod and Epstein [1 , pp. 1 1 2- 1 1 3, 1 24- 132], Spanier [4, pp. 269-276], 
Mosher and Tangora [ 1 ,  pp. 12-32], and Steenrod [9], for example. R. J. 
Milgram developed a simplified construction of the Steenrod square, first 
published in Gray [ 1 ,  pp. 3 10-323] ' 

7. 15 Remark : Among the consequences of the preceding axioms are the 
Adem relations, which will figure in later remarks and exercises, and which 
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can be found in most of the preceding references ; they were discovered 
independently by Adem [ 1 ,  2] and Cartan [2]. 

7.16 Remark : The Cartan formula of Remark 7 . 14  can also be expressed 
in terms of cross products. Recall (from Dold [8, pp. 22 1 -222], Greenberg 
[ 1 ,  p. 201] , or Spanier [4, p. 253], for example) that if X and Y are any 
topological spaces whatsoever, then the cross product H *( X) ® H *( Y )  -: 
H*(X x Y )  can be obtained as the composition 

H*(X) ® H*( Y) pr1 ® pr� ) H*(X x Y)  ® H*(X x Y ) "::' H*(X x Y )  

for the projections X x Y � X and X x Y � Y. Naturality and the 
preceding Cartan formula for Sq then imply Sq(� x 13) = Sq ex x Sq 13 E 
H*(X x Y )  for any � E H*(X) and 13 E H*( Y ). There is an obvious relative 
version ofthe same result, and both versions are regarded as Cartan formulae. 
Conversely, if X � X x X is the diagonal map one uses the composition 

H*(X) ® H*(X) -: H*(X x X) � H*(X) 

to define cup products in H*(X), so that naturality and the latter Cartan 
formula for Sq imply the absolute version of the Cartan formula of Remark 
7 . 14 ;  the relative version of the same construction is clear. 

7.17 Exercise : Let � be a real n-plane bundle over X E f!4, with �/2 Thorn 
class U� E H"(E, E*) and �/2 Thorn isomorphism H*(X) � H* + "(E, E* ), 
and let Sq be the Steenrod square of Remark 7. 1 4. Use the axiomatic char
acterization of Stiefel-Whitney classes (Theorem 5 . 1 )  to show that 

w(�) = <l>Z l (Sq U�) = <l>Z 1 Sq <I>�( 1 )  E H*(X) 

for the element 1 E HO(X). 

7.18 Remark : The identity w(�) = <l>z 1 Sq <I>�( I )  can also be written in the 
concrete form n*w(�) u U� = Sq U� E H*(E, E*). Since H*(E, E*) is the free 
H*(X)-module generated by the Thorn class U�, this clearly characterizes 
w(�). 

7.19 Remark : If � is a real n-plane bundle over X E 81, then Corollary 2.8 
and Proposition IV.3.8 provide an identity wnC�) = e(�) = <l>Z l( U� U U�) E 
H"(X). Since U � u U � = Sq" U � ,  this identity can be regarded as the 
dimension n portion of the identity w(�) = <l>Z l (Sq U�) of Exercise 7. 1 7 ;  in 
fact, one uses this observation as a part of Exercise 7. 1 7. 

7.20 Remark : Since �/2 is a field, one can regard the Steenrod square as an 
automorphism of the �/2 cohomology rings H*(X, y ), satisfying the obvious 
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naturality condition ; in particular, there is an inverse Steenrod square Sq - 1 
which is also natural. The same remarks apply if one substitutes the group 
of units in H**(X, y )  for H*(X, y ) ; that is, Oth entries are required to be 
1 E HO(X, y), and one considers products only. One can therefore define 
the total Wu class of any real vector bundle � over any base space X E f!J by 
setting 

Wu(�) = Sq - 1 w(�) = Sq - 1 <I>Z I Sq <I>�( 1 )  E H**(X) 

for the total Stiefel-Whitney class w(�) E H*(X) ( c H**(X) ) and the Thorn 
isomorphism <I>� ; that is, Wu(�) E H**(X) is the unique class such that 
Sq Wu(�) = w(�) E H*(X). 

7.21 Exercise : Show that there is a formal power series f(t) E 1"/2 [Et]] 
with leading term 1 E 1"/2 such that Wu(�) = uJ(�) E H**(X), as in Definition 
1 .4, for any vector bundle � over any X E .CJI. 

7.22 Exercise : Show that the "Wu series" of Exercise 7.2 1 is given by 
f(t)= 1 + Iq � 0 t2 q E 1"/2 [Et]]. Show furthermore that f(t)2 = f(t2) =  f(t) + t, 
and that ( 1 /f)(t) = Iq� 0 t2 q - I E 1"/2 [[t]]. 

7.23 Remark : Wu classes of tangent bundles first appeared in Wu [3]. 
The definition was extended to arbitrary real vector bundles by Adams [3], 
who observed that Wu classes could be computed in terms ofStiefel-Whitney 
classes. The specific recipe Wu(�) = Sq - 1 <I>�- I Sq <I>�( 1 )  was given by Atiyah 
and Hirzebruch [2]. Exercises 7.21 and 7.22 provide an alternative construc
tion of Wu classes, without Steenrod squares. 

7.24 Exercise : Let (�) denote the 1"/2 image of the usual binomial coefficient 
(�) whenever a � h � 0, let ( -d ) = 1 E 1"/2, and let (b) = ° E 1"/2 otherwise. 
Show that the Stiefel-Whitney classes Wo = 1, w l , w2 , • • •  of any real vector 
bundle satisfy the following Wu relation : 

SqJ Wk = I . wj _ 1 U WH i' . j (k - j + i - I) 
i = O  I 

7.25 Remark : The Wu relation of Exercise 7.24 first appeared in Wu [4], 
the complete proof appearing in Wu [7] ; a proof related to that of Wu [7] 
is given in Borel [2]. One can also use the Adem relations of Remark 7. 1 5  
to obtain the same result, as in Hsiang [ 1 ] .  The best way to prove the Wu 
relations involves a technique developed in Brown and Peterson [ 1 ] .  

7.26 Remark : Any real m-plane bundle � over a contractible base space 
Y is the trivial bundle em, by Proposition 1 1 .3.5, so that Corollary 2.6 gives 
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UJm = uJ(em) = 1 E H**( Y )  for any f(t) E 7l./2 [et]] with leading term 
1 E 7l./2; equivalently, all the Stiefel-Whitney classes Wl (�)' . . .  , wm(�) vanish. 
There are other base spaces Y with the latter property. For example, let X 
be any CW space and choose a point * E X. As in Remark 1 1 1 . 1 3.41 the 
(reduced ) suspension LX is the quotient of the product X x [0, 1] by the 
subspace X x {O} u { * } x [0, 1 ]  u X x { 1 } , in the quotient topology ; by 
iteration one obtains the n101d (reduced) suspension Ln X for any n � O. One 
of the consequences of Atiyah and Hirzebruch [3] is that all the Stiefe\
Whitney classes of any real vector bundle over Ln X vanish whenever n � 9 ;  
that is, such suspensions have the preceding property o f  contractible base 
spaces Y. According to Sutherland [2], weaker results of a similar nature 
apply to the Stiefe\-Whitney classes of real vector bundles over suspensions 
L2X and L5X. 

7.27 Remark : The Stiefel-Whitney classes of various specialized real 
vector bundles satisfy certain polynomial relations, some of which will 
be developed for geometric applications in the next chapter. For example, 
we shall learn in Corollary V1.8.6 that if r(X) is the tangent bundle of any 
smooth closed n-dimensional manifold X, then the Wu class Wu(r(X» = 
1 + WUl (r(X» + . . .  + Wuir(X» satisfies Wup(r(X» = 0 E HP(X) when
ever 2p > n ;  since the individual Wu classes are polynomials in the Stiefel
Whitney classes wl(r(X» , . . .  , wn(r(X» , the result can be regarded as a set 
of polynomial relations among the latter classes. In Brown and Peters on 
[ 1 , 2] one finds all the polynomial relations satisfied by w1( r(X» , . . .  , wir(X» 
for every smooth closed n-dimensional manifold X. Incidentally, E. H. Brown 
[2] and Stong [ 1 ]  provide independent proofs that if 2p � n, then there are 
no such "universal" polynomial relations P(wl(r(X» , . . .  , wir(X» = 0 E 
HP(X) in degree p. 

In sufficiently high degrees there are "universal" polynomial relations 
satisfied by the dual Stiefel-Whitney classes w1(r(X» , . . .  , wir(X» of every 
smooth closed n-dimensional manifold X, where 1 + w1 (r(X» + . . . + 
wn(r(X» = w(r(X» = uJ(r(X» for f(t) = 1 + t + t2 + . . . E 7l./2[ [t] ]. Such 
relations were investigated in Massey [ 1 , 3] and in Massey and Peterson [ 1 ] ;  
the latter paper shows that i f  0 � p < (J( n), where (J( n) is the number o f  1 's 
in the dyadic expansion of n, then wn-ir(X» = 0 for every smooth closed 
n-dimensional manifold X. The set of all polynomial relations satisfied by 
w1(r(X» , . . .  , wn(r(X» for every smooth closed n-dimensional manifold X 
is implicitly described in Brown and Peterson [ 1 , 2] :  one merely replaces 
w by w throughout their original argument (and result) ; related results are 
given in Bendersky [ 1 ]  and in Papastavridis [2] . The result itself is an 
essential ingredient of our later Remark V 1.9. l 4. 
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7.28 Remark : According to Proposition 3.2 one can reasonably define 
orientability of a smooth manifold X by the requirement that wl(r(X) ) = 
° E HI(X). An orientable manifold which satisfies the additional relation 
w2(r(X)) = 0 E H2(X) is called a spin manijold. (Alternative characterizations 
of spin manifolds are given in Borel and Hirzebruch [2, p. 350], the end of 
Milnor [ 1 2], and at the beginning ofMilnor [ 1 6].) The total Stiefel-Whitney 
class w(r(X) ) of a spin manifold automatically satisfies further relations, 
some of which are discussed in Wilson [ 1] ,  for example. 

7.29 Remark : Since realifications of complex vector bundles are somewhat 
specialized, one expects their Stiefel-Whitney classes to satisfy universal 
polynomial relations. For example, the realification (I!;! of a complex vector 
bundle ( is naturally oriented, so that w I((I!;!) = 0 by Proposition 3.2 ; other 
such relations will appear in the second volume of this work. There are also 
universal polynomial relations satisfied by the Stiefel-Whitney classes of 
realifications of "quaternionic bundles," some of which appear in Mar
chiafava and Romani [ 1 , 2, 3]. 

7.30 Remark : One of the classical results of differential topology is that 
S i , S3, and S7 are the only standard spheres which are parallelizable in the 
sense of Remark 111 . 1 3.26 ; that is, if S" has n linearly independent vector 
fields, then n = 1, 3, or 7. This result was proved in Bott and M ilnor [ l J  
and Milnor [4], using the following property of Stiefel-Whitney classes : 
If S" is the base space of a real vector bundle � with wR) -1= 0, then n = 1 , 2, 4, 
or 8. (Incidentally, the result of Barratt and Mahowald [ 1 ]  reported in 
Remark III . l 3.36 instantly implies that if n = 4k > 1 6, then w.(�) = 0 for 
any real vector bundle � over S".) 

In the third volume of this work we shall formulate and prove a result 
of Adams [ 1 , 2], one of whose principal corollaries is that S i ,  S3, and S7 
are the only parallelizable standard spheres. Adams's original proof, which 
also appears in Cartan [5], uses many of the techniques introduced in this 
chapter, including Steenrod squares ; however, the proof given later will be 
based on an entirely different technique of Adams and Atiyah [ 1 ] .  

7.31 Remark : There i s  a more general result than the one just described : 
the maximum number of linearly independent vector fields on the standard 
sphere S" is known for any n > O. One of the early guidelines for the com
putation was provided by Stiefel [2], who used Stiefel-Whitney classes to 
show that if n = 2ku - 1 for an odd number u, then the projective space RP" 
cannot have 2k linearly independent vector fields. Steenrod and Whitehead 
[ 1]  used Steenrod squares to obtain the same result with S" substituted for 
RP", and their work eventually led to the complete solution of the problem, 
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in Adams [4] . (We shall not attempt to present a proof of this result. Adams's 
original proof is outlined in Eilenberg [ 1  J and in Husemoller [ 1  J, and some 
simplifications by Karoubi are reported in Gord!=>n [ 1] ,  for example; Adams 
himself streamlined the proof in many ways, and a major simplification 
appeared in Woodward [ 1 ] .  A complete proof is given in Karoubi [2J, 
incorporating all improvements through 1978 ; a complete proof is also 
given in Mahammed et al. [1 J, incorporating all improvements through 1980.) 

7.32 Remark : To any finite-dimensional real representation V of a finite 
group G one can associate a real vector bundle �v over the classifying space 
BG of Remark 11 .8. 1 8 ;  the total Stiefel-Whitney class w( � v) E H*(BG) is 
then the total Stiefel-Whitney class w( V) of the representation V. Segal and 
Stretch [ IJ present an alternative construction of w(V), which leads to new 
results about group representations. 

7.33 Remark : There is an algebraic construction of Delzant [ 1  J, which 
assigns Stiefel-Whitney classes to certain "quadratic modules" rather than 
to real vector bundles ; the construction was further developed in M ilnor [ 19] ' 
A related construction exists for real vector bundles, given in Patterson [ 1 ] ;  
however, this variant produces only the terms 1 + Wl (�) + W2(�) o f  the total 
Stiefel-Whitney class w(�) of a real vector bundle �. A recent exposition of 
the constructions of Delzant and M ilnor is in Chapter 4 of M icali and 
Revoy [ 1 ] .  

7.34 Remark : Lemma 6.3 is a special case of a more general result, with 
essentially the same proof. Let f(t) and g(t) be any formal power series in 
lLj2 [[t]J with leading terms 1 E lLj2, so that the product Ug)(t) is also such 
a formal power series. Then for any real vector bundle � over a base space 
X E !!8  one has uf(�) u Ug(�) = Ufg(�) E H**(X). Thus � induces a homo
morph ism from the multiplicative group of formal power series in lLj2 [[tJ] 
with leading terms 1 E lLj2 to a corresponding multiplicative group in 
H**(X; lLj2). 



CHAPTER VI 

Unoriented Manifolds 

o. Introduction 

Let r( X) be the tangent bundle of a smooth manifold X that is not neces
sarily orientable. Several geometric properties of such manifolds X can be 
described in terms of the multiplicative Z/2 classes u f(r(X) ) E H*(X ; Z/2) 
of the bundles r(X). For example, if X is /I-dimensional one can use the dual 
Stiefel-Whitney class w(r(X)) E H*(X;  Z/2) to provide necessary conditions 
for the existence of immersions or embeddings X ----+ [R2n - P for a given p > o. 
As another example, if X is a closed such manifold the Stiefel-Whitney 
classes w1 (r(X) ), . . .  , wn(r(X) )  provide elements in Z/2 whose vanishing is 
a necessary and sufficient condition for X to be the boundary of a smooth 
compact (/I + l )-dimensional manifold Y. 

The chapter begins with some standard properties of the Z/2 homology 
module H *(X, X ;  Z/2) and Z/2 cohomology module H*(X ; Z/2) of any 
smooth compact n-dimensional manifold X with boundary X. The best
known feature of H *(X, X ;  Z/2) is the existence of a fundamental Z/2 homol
ogy class I1x E H niX, X ;  Z/2), which is used to provide the Z/2 Poincan}-
Lefsellet:: duality isomorphisms Hq(X ; Z/2) � Hn_q(X, X ;  71/2) for any 
q E 71. The classes I1x and isomorphisms nI/x are introduced in §§ l and 2, 
respectively. 

The classes I/x and isomorphisms nI/x are temporarily ignored in §§3 
and 4, which treat the immersion and embedding problems mentioned 
earlier. Specifically, §3 consists entirely of the computation of the dual 
Stiefel-Whitney classes w(r(Rpn» of real projective spaces Rpn. Then im
mersibility and embeddability criteria for arbitrary smooth manifolds X are 
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established in §4, in terms of the dual Stiefel-Whitney classes w(r(X) ) ;  the 
computation of §3 provides explicit examples of n-dimensional manifolds 
X which can neither be embedded nor immersed in 1R2n- p for p � 0 unless p 

is sufficiently small. 
If 1 + w , (r(X)) + . . .  + wn(r(X) ) is the total Stiefel-Whitney class 

w(r(X) ) E H*(X; 2/2) of a smooth closed n-dimensional manifold X, then 
for any ordered n-tuple (r "  . . .  , rn) of natural numbers such that r , + 2r2 + 
. . .  + nrn = n the Kronecker product (w, (r(X) )" u . . .  U wn(r(X) )''', JJ.x> E 
2/2 is the (r" . . .  , rn) th Stiefel-Whitney number of X. In §5 it is shown that if 
X is the boundary Y of a smooth compact (n + I )-dimensional manifold Y, 
then all the Stiefel-Whitney numbers of X vanish. The converse assertion 
is also true, although not proved here, and the combined results can be used 
to compute the unoriented cobordism ring 91, whose elements are equivalence 
classes [X] of smooth closed manifolds X. 

The set of diffeomorphism classes of smooth closed manifolds X itself 
forms a semi-ring JlI, and there is a natural epimorphism ull -> 91 whose kernel 
corresponds to those manifolds which are boundaries. For any formal 
power series f(t) E 2/2 [[t]] with leading term I E 2/2 there is a homomor
phism illf � 2/2 whose construction uses the multiplicative 2/2 classes 
uf(r(X)) of the tangent bundles r(X) of manifolds representing elements of 
vII. The intersection (if ker G(f) properly contains the kernel of the epi
morph ism illf -> 91, so that the homomorphisms G(f) can equally well be 
regarded as homomorphisms 91 � 2/2. Such Stiefel-Whitney genera 
GU), in either interpretation, are considered in §6. 

The boundary X of any smooth closed manifold X is void. Consequently 
if X E °11 is n-dimensional its fundamental class JJ.x is an element of H.(X;  2/2), 
and the 2/2 Poincare-Lefschetz duality isomorphism nJJ.x reduces to the 
Poincare duality isomorphism H*(X;  2/2) Dp = n /, x  I H *(X ; 2/2). Since 2/2 
is a field one has H *(X ;  2/2) = Hom;rdH*(X;  2/2), 2/2), so that Dp can 
equally well be treated as a nondegenerate bilinear form 

H*(X ;  2/2) ® H*(X;  2/2) � 2/2, 

which happens to be symmetric. The dual 2/2 Thorn form 
H*(X ; 2/2) ® H*(X ; 2/2) � 2/2 

is constructed geometrically in §7 as an element 

j*Tx E W(X x X;  2/2) ( :::; H*(X ;  2/2) ® H*(X ;  2/2) ), 

thereby providing a specific inverse H *(X ; 2/2) � H*(X; 2/2) to the 
2/2 Poincare duality isomorphism Dp . One of the most useful properties of 
j*Tx is that if X � X x X is the diagonal map, then t1*j*Tx E W(X ;  2/2) 
is the 2/2 Euler class e(r (X)) of the tangent bundle r(X). 
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For any smooth closed manifold X E r1lI, and for any formal power series 
f(t) E 1L/2 [et]] with leading term 1 E 1L/2, the 1L/2 multiplicative class 
uAr(X)) E H*(X;  1L/2) depends only on the homotopy type of X ;  in particu
lar, uj(r(X) ) is independent of the smooth structure assigned to X. The 
volume closes with a proof of this classical result, due to Thorn and Wu. 

As in the previous two chapters, the notations H*(-, -) and H*(-) are 
used to indicate singular cohomology H*(-, -; 1L/2) and H*(-; 1L/2) with 1L/2 
coefficients. A corresponding convention applies to direct products H**(-) 
and to singular homology H*(-, -) and H*(-). 

1 .  Z/2 Fundamental Classes 

Let X be a smooth compact n-dimensional manifold with boundary 
X = X\X, where X is the interior of X. We shall show that the 1L/2 homology 
module HiX, X) is free, with one basis element for each connected compo
nent of X ;  in case X is closed, in the sense that X is void, the result applies 
to Hn(X). 

For example, for any n > 0 let Dn be the n-disk, whose boundary iJn is 
the (n - I )-sphere sn- I ;  in case n = 1, SO consists of just two points. A por
tion of the exact homology sequence of the pair Dn, sn - 1 is 

Hn(D") � H"(Dn, S"- I ) � H,, _ I (sn - l ) � H"_ I (Dn), 
where H"(Dn) = O. If n >  1 ,  then H"_ I (Dn) = 0, so that H"(Dn, sn - l ) = 
H"_ I (sn - l ) = 1L/2, and if n = 1 ,  then the preceding exact sequence is 

O �  H1(D 1 , SO) -----"----. 1L/2 (B 1L/2 � 1L/2, 

which implies HI(DI , So) = 1L/2. Thus Hn(D", S" - I ) is the free 1L/2-module 
of rank 1 for every n > O. 

1 . 1  Lemma : Let X be any n-dimensional manifold with interior X. Then jor 
any x E X the 1L/2-module Hn(X, X\ {x} )  is free of rank 1 ,  and Hq(X, X\{x} )  = 
o jor q #- n. 
PROOF : Since x lies in the interior X e X, it also lies in the interior of some 
n-cell D" c X, and since the inclusion D", D"\ {x }  ---. X, X\{x} is an excision, 
it suffices to consider just the case X = Dn. The boundary S" - I of Dn is a 
strong deformation retract of Dn\ {x}, so that the 5-lemma provides isomor
phisms Hq(Dn, S" - I ) .2. HiDn, Dn\ {x} )  for all q E lL ; however, we have just 
just observed that Hn(Dn, sn- l ) = 1L/2, so that H"(Dn, D"\ {x} j  = 1L/2. A 
similar argument gives Hq(D", D"\{x} )  = 0 for q #- n. 



252 VI. Unoriented Manifolds 

One feature of Lemma 1 . 1  deserves special mention. Since there is one 
and only one nonzero element in 7l./2, there is also one and only one generator 
of the 7l./2-module Hn(X, X\ {x})  for any x E X : there are no choices to make. 
In later chapters, where H *( - ) will have coefficients other than 7l./2, corre
sponding results will require choices. 

In Proposition 1.8.4 we learned that if X is a smooth compact manifold 
with interior X, then there is a finite covering { V I " ' " Vq } of X by open 
cells such that each nonvoid intersection Vi n V; is a cell V k in the covering, 
and such that the closures in X satisfy Vi n Vj = Di n Dj . Then in Prop
osition 1.9.7 we let !2(X) be the category whose objects are unions of the 
sets V I ' . . .  , V q ' morph isms being inclusion�, and we learned that there is 
a Mayer-Vietoris functor {hq l q  E 7l.} on !2(X) with hq( V) = Hn-iX, X\ V) 
for every V E !2(X). 

There is another Ma¥er-Vietoris functor { kq I q E 7l.} on !2(X), defined as 
follows. For any V E !2(X) let kO(V)  be the 7l./2-module of continuous func
tions V -+ 7l./2, in the discrete topology of 7l./2, and let 0( V) = 0 for q # O. 

If V -+ V is a morphism (inclusion) in !2(X), then the restriction to U of any 
element of kO(V )  is clearly an element of kO( V), so that kO is indeed a con
travariant functor from !2(X) to the category Wl of 7l./2-modules. The re
mainder of the verification that { kq I q E 7l. } is a Mayer-Vietoris functor on 
l(X) is trivial. 

For any U E !2(X) and any rx E hO(V ) ( = Hn(X, X\U»  let Ourx be the 
function U -+ 7l./2 whose value on any x E V is the image of rx under the 
homomorphism Hn(X, X\U)  -+ Hn(X, X\ {x} )  = 7l./2 induced by the inclusion 
(X, X\ U) -+ (X, X\  {x}). A function U -+ 7l./2 is continuous if and only if it is 
constant on each connected component of V, and since V is an open set in 
a manifold one can take "connected component" to mean "arcwise connected 
component." Now suppose that x and y are distinct points ofthe same arcwise 
connected component of U, so that they are end points of an embedded arc. 
One can fatten the arc into a closed n-cell Dn c U containing both x and y 
in its interior Dn, for which the image of rx under the homomorphism 
Hn(X, X\U) -+ Hn(X, X\Dn) = Hn(Dn, sn - l ) = 7l./2 is the common value of 
Ourx(x) and Ourx(y). Hence Ourx is continuous, so that the map rx f--> Ourx is a 
7l./2-module homomorphism hO( U) � kO( U). Naturality of the homomor
phisms {Ou} for U E !2(X) is trivial, and since kq( U) = 0 for q # 0, the con
struction automatically extends to a natural transformation h ! k of May er
Vietoris functors { hq } and {0 }  on !2( X). 

1 .2 Lemma : For any smooth n-dimensional compact manifold X with interior o 0 Ox 0 X the 7l./2-module homomorphisms hq(X) --+ kq(X) are isomorphisms for 
q � o. 
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PR<?OF : Let {�7 ]  be the family o{ open n-cells V I '  . . . , V q used to construct 
.d(X). Then hq(D7) = Hn-iX, X\Di) = Hn- (Di, S;, - I ) for a closed n-cell D'l o q 0 
with boundary S'l- I , so that hO(Dl) = 7l.j2 and hq(D7) = 0 for q < O. Since o 0 o ·  ':I 0 kq(D;,) = 0 for q < 0, the homomorphisms hq(Di) � kq(D'l) are the trivial 
isomorphisms 0 -4 0 for q < O. For any !Y. E hO(Di) ( = H n(D'l, Si - 1 ) )  the func
tion 0;' � 7l.j2 carries x E Oi into the image of !Y. under H n(Di, Si - I ) -4 o . �1 H,,(D'l, Di\ {x }) = 7l.j2, so that the homomorphisms hO(D'l) � kO(Di )  are 
also isomorphisms. Hence the Mayer-Vietoris comparison theorem (Theo
rem I.9.8) implies the desired result. 

1 .3 Proposition : For any smooth n-dimensional compact manifold X with 
boundarv X = X\X, the 7l.j2-module Hn(X, X) is free, with one basis element 
for each' connected component ()t' X. 
PROOF : For q = 0, Lemma 1 .2 provides an isomorphism H,.(X, X ) = o Ox 0 0 H ,,(X, X\X) � kO(X), where the 7l.j2-module kO(X) consists of the con-
tinuous functions X -4 71.j2. Clearly kO(X) is free, with one basis element 
for each connected component of X. 

Since there is only one nonzero element in 7l.j2, the basis elements 
assigned by Proposition 1 .3 are unique, so that their sum is also unique. 

1 .4 Definition : For any smooth n-dimensional compact manifold X with 
boundary X, the fundamental 7l.j2 homology class Jix E Hn(X, X) is the sum 
of the basis elements described in Proposition 1 .3. 

1 .5 Corollary : Let X be any smooth n-dimensional compact manifold with 
interior X and houndary X = X\X, and jar any x E X let jx be the inclusion 
(X, X) = (X, X\X) -4 (X, X\{x} ). Then the fundamental class Jix E Hn(X, X) 
is uniquely ciJaracteri::ed hy the property that Ux)*!lx E H n(X, X\ {x ] ) generates 
.feJl' each x E X. 
PROOF : This is just a reformulation of the case q = 0 of Lemma 1 .2. 

1 .6 Coro!lary : Let X he a smo?th compact n-dimensionf:ll manifold, with 
interior X and (smooth) houndary X = X\X as usual, let .:!l(X) be the category 
of open sets in X described just before Proposition I.9.6, and for any V E .:!l(X) 
I�t 0 be the closure of V in X, with houndary U = O\U. Then there is a 
unique class Ji(j E Hn( 0, U) with the property that if ( 0, U) � ( 0, O\{x}) is 
the inclusion .fiJr any x E V the element (jx)*Jio generates H n( 0, 0\ {x  j). 
PROOF : The method of Lemma 1 .2 and Proposition 1 .3 applies equally 
well to any U E .'2(X), not just to X E .:!l(X) itself. 
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The class J.lo is the jimdamental 7L/2 homology class of a, for any V E :2(X). 
I t  will appear along with the following constructions as part of a Mayer
Vietoris argument in the next section. 

1 .7 Corollary : If X is a smooth compact manifold as in Corollary 1 .6, then 
for any inclusion V !.. V of V E ..2(X) into V E :2(X) there is an induced 71/2-- ..!.  f* - -'-module homomorphism Hn_q( V, V )  � Hn- q(V, V)  for every q E 71, such that 
for q = 0 one has f*J.lv = J.lo E Hn(O, a). 
PRQ9F : Let fJ and h be the inclusions ( V, V) = ( V, V\ V) --+ ( V, V\ V) and 
( a, a) = (a, o\V) --+ ( V, V\V), respectively. Then h is an excision, so that - -'- h. - -Hn-q(V, V) --+ Hn-q( V, V \V) is an isomorphism, and one can define f* as 
the composition (h*)- t 0 g* . The property f*J.lv = J.lo is a consequence of 
the characterization of fundamental classes given in Corollaries 1 .5 and 1 .6. 
I .S Corollary : If X is a smooth compact n-dimensional manifold, then there 
is a Mayer-Vietoris functor { /(I j q  E 7L}  on ..2(X) with /(I(V) = Hn-i o, ti) for .. every V E !2(X) and every q E 71, such that the homomorphisms kq(V  u V )  � 
/(I(V) EB kq(V )  and /(I(V) Et> kq(V )  iu,v . kq( V  n V )  are obtained as in §1 .9 by 
applying Corollary 1 .7 to the inclusions V � V u V, V � V u V, 
V n V � V, and V n V � V. 
PROOF : According to Proposition 1.9.7 there is a Mayer-Vietoris functor 
{ kq j q  E 7L} on !2(X) with. kq(V)  = Hn-iX, X\V)  for each V E ..2(X). How
ever, the excision (a, a) = ( a, o\V) --+ (X, X\V)  induces isomorphism 
Hn_q(o, 6) � Hn_q(X, X\V), and one uses further such excision isomor
phisms to verify that the homomorphisms iu.v and}u.v implicit in Proposition 
1 .9.7 correspond to the homomorphisms iu ,v and }u,v obtained from Corol
lary 1 .7. 

In case X is closed in the usual sense that its boundary X is empty, then 
the fundamental class of Definition 1 .4 is an element of H n(X). 

In case X does have a nonempty boundary X, then X is itself an (n - 1 )
dimensional manifold which is closed and smooth. Furthermore, the con
necting homomorphism J in the exact 71/2 homology sequence 

j. . (j • i. Hn(X) --'--+ Hn(X, X) ----. Hn - t (X) --+ Hn- t (X) 
carries the fundamental class J.lx E Hn(X, X ) into a class JJ.lx E Hn- t (X). 
1 .9 Proposition : Let X be a smooth compact n-dimensional manifold with a 
nonempty boundary X, and with fundamental 7L/2 homology class J.lx E 
HiX, X). Then the class JJ.lx E Hn - 1(X) is the jimdamental 7L/2 homology 
class ilK E Hn- t (X ) (�f the boundary X. 
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PROOF : As in Corollary 1 .5 the class P-x E Hn- 1 (X) is uniquely characterized 
by the property that if X � X, X\[ y} is the inclusion induced by any 
y E  X, then (jy)*P-x generates Hn- I(X, X\ (  y } ) ; we shall show that cP-x has the 
same property. Let x E X lie in the same arcwise connected component of X 
as y E  X, let I be an arc connecting x and y, with interior in X, and let 
(X, X )  � (X, X\{x } )  be the inclusion. Then I can be fattened to an n-cell Dn 

x 

v 

containing I\ { y] in its interior (see the accompanying figure). One easily 
verifies that the diagram 

commutes, all maps except the three connecting homomorphisms a arising 
from inclusions. Three of the vertical maps are excision isomorphisms, as 
indicated, and the two lower maps are isomorphisms because they are 
portions of long exact sequences 

HII(Dn) ------+ H,lD", Dn\{x]J -f--+ H,, _ I (D"\{x) )  ------+ H n- I (Dn ) 
and 

HI _ I (D"\1 ) ------+ HII - 1 (D"\ {x ] ) � Hn_ 1 (Dn\{x}, Dn\l ) � Hn- 2(DnV ) 

whose outer terms vanish because Dn is an n-cell and Dn\l is homotopy 
equivalent to an n-cell. (For n = 2 the second sequence still produces the 
desired isomorphism because H o(Dn\l )  � H o(Dn\{ x J )  is an isomorphism ; the 
adjustments needed for the degenerate case n = 1 are trivial.) Since jx*P-x 
generates HII(X, X\ ( x l ), it follows that jy*Dp-x generates Hn- I (X, X\ [  y)), as 
required. 
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2 .  Z/2 Poincare-Lefschetz Duality 

Let X be a smooth compact n-dimensional manifold with boundary X, 
and let Jlx E HiX, X) be the fundamental Z/2 homology class of Definition 
1 .4. One of the classical products of singular homology and cohomology is 
the cap product Hq(X) ® Hn(X, X) � Hn_q(X, X) for q E Z, some of whose 
properties will be recalled as needed. (Further details about cap products 
are readily available on pages 238-245 of Dold [8] and on pages 254-255 
of Spanier [4], for example.) In particular, cap product nJlx by the funda
mental Z/2 homology class Jlx is a Z/2-module homomorphism Hq(X) � 
Hn_q (X, X)  for any q E Z. We show in this section that nJlx is an isomor
phism for any q E Z. 

We continue to use the category �(X) of open sets described just before 
Proposition 1.9.6. Specifically, �(X) consists of unions of certain open n-cells 
V I ' . . . , V r covering X, such that each nonvoid intersection V j n V j of two 
such open n-cells is itself one ofthe open n-cells V k '  and such that the closures 
in X satisfy Vj n Vj = Vj n Dj in addition to the usual identity Vj u Vj = 
Dj u Dj . One Mayer-Vietoris functor {hq l q  E Z}  on �(X) is given in Prop
osition 1.9.6 itself: one has hq(V )  = Hq( D) for every V E �(X). Another 
Mayer-Vietoris functor {k'I l q  E Z} on �(X) is given in Proposition 1.9.7, 
and modified via excision isomorphisms in Corollary 1 .8 :  one has kq( V) = 
Hn -iD, U) for every V E �(X). The following lemma will be used to construct 
a natural transformation from {hq l q  E Z} to {k'I l q  E Z} .  

2 . 1  Lemma : Let V � V be a morph ism (inclusion of one open set into 
another) in �(X), inducing an inclusion V 1.. V, hence a Z/2-module homorphism 
Hq(V )  L Hq(D)  for any q E Z, and let H"_q(V, V) L H,, _ q(V, U) be the 
induced Z/2-module homomorphism of Corollary 1 .7. Then cap products by 
the Z/2 jimdamental classes Jlr E Hn( V, V)  and JltJ E Hn(D, U) provide com
mutative diagrams 

Hq(V )  f* , Hq(D) 

""' j j e", 
Hn-iV, V )  f* , H"_ q( D, D). 

PROOF : The lower Z/2-module homomorphism f* was described in 
Corollary 1 .7 as a composition, which appears in the bottom line of the 
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following diagram : 
Hq( V )  <-( __ id_* __ Hq( V )  _---"-f_* --->. Hq( 0) 

n" ' j 0" ." [ n',,, , j " " "  

Hn - �( V' V\U )  ( �  Hn-q( O, 0). 
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Each of the two squares commutes by naturality of the cap product (as on 
page 239 of Dold [8] or on page 254 of Spanier [4] ). The ambiguity of the 
definition of the middle vertical arrow is quickly resolved : each of the classes 
g*J1v E Hn( V, V\ U )  and h*J1u E Hn( V, V\U)  is uniquely defined by the 
property that if ( V, V\U ) � ( V, V\{x } )  is the inclusion for any x E U, then 
each ofUx)*Y*!lp and Cix)*h*{lrr is the unique generator of HIl( V, V\ {x } ) .  

2.2 Lemma : For any smooth compact n-dimensional manifold X with 
houndary X there is a natural tran.iformation 0 from the M ayer-Vietoris 
jimctor W 1 q E 1' :  on Jl(X) to the M ayer-Vietoris jimctor {/(I 1 q E 1' :  on ..'1!(X). 
the homomorphisms hq( U) � kq( U )  being cap products Hq( 0) � 
HII _ q( 0, 6) by 1'/2 fundamental classes J1u E HiD, 6), for each U E 2(X)  
and each q E 1'.  

PROOF : One must show that the diagram 

hq( U  u V )  � hq(U) $ hq( V )  � hq( U  (\ V )  

j " "  
j '"0', [. , • •  

kq(U u V )  � kq(U) EB kq( V )  � kq( U (\ V) � kq + l ( U  U V) 
commutes for every U E 2(X), V E 2(X), and q E 1'. However, both the 
left-hand and middle squares break into two copies of Lemma 2. 1 ,  using 
the inclusions U � U u V and V � U u V for the left-hand square, 
and using the inclusions U (\ V � U and U (\ V � V for the middle 
square. The right-hand square commutes by the stability property of the 
cap product (as on pages 239-240 of Dold [8] ), of which a special case 
asserts that the diagram 
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commutes, for the Mayer-Vietoris connecting homomorphisms £5 and a in 
cohomology and homology, respectively. 

2.3 Theorem (Z/2 Poincare-Lefschetz Duality) : Let X be a smooth com
pact n-dimensional manifold, with boundary X and Zj2 fundamental class 
Jix E H,,(X, X); then for each q E Z  the cap product Hq(X) � H,, _iX, X) 
is a Zj2-module isomorphism. 

PROOF : Let 0 be the natural transformation of Lemma 2.2, from the 
Mayer-Vietoris functor {hq l q  E Z}  on �(X) to the Mayer-Vietoris functor 
{kq I q  E Z}  on �(X). Let D" be any one of the open n-cells V I ' . . .  , V r used 
to construct the category �(X), the closure of V" being an n-disk D" with 
boundary S,, - I . Both Hq(D") = 0 and H,,_ q(D", S" - I ) = 0 for q #- 0, and 
since 1 n Jiv"= Jiv" for the generator 1 E HO(D") and the fundamental Zj2 class 
Jivn E H ,,(D", S" - I ) (as on page 239 of Dold [8] or on page 254 of Spanier [4] ) 
it follows that each hq(Uj) � kq(Uj) is an isomorphism. Hence each 
hq(X) � 0(X) is an isomorphism by the Mayer-Vietoris comparison 
theorem (Theorem 1.9.8); that is, W(X) � H,, _ q(X, X) is an isomorphism 
for any q E Z, as asserted. 

Recall that a compact manifold is closed if its boundary is empty. 

2.4 Corollary (Z/2 Poincare Duality) : Let X be a smooth closed n
dimensional manifold with Zj2 fundamental class Jix E H,,(X) ;  then for any 
q E Z the cap product Hq(X) � H,, _ q(X) is a Zj2-module isomorphism. 
PROOF : This is the special case X = 0 of Theorem 2.3. 

There are also Zj2 Poincare-Lefschetz duality isomorphisms 
H,, - q(X, X) -+ Hq(X) that specialize to Poincare duality isomorphisms ;  see 
Exercise 9.4 1 .  Explicit inverses to Poincare duality isomorphisms will appear 
in Corollary 7.9. 

3. Multiplicative Z/2 Classes of Rpn 

As indicated in the Introduction on this chapter, we now put Zj2 funda
mental classes Jix and Zj2 Poincare-Lefschetz duality isomorphisms nJix 
aside, temporarily. The classes Jix will reappear in §5, and the isomorphisms 
nJix will reappear in §7. 

In this section we compute the Stiefel-Whitney classes w(r(RP" ) )  and 
the dual Stiefel-Whitney class w(r(RP") )  of the (tangent bundle of the) real 
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projective space RP". The former computation will show that w l(r(RP") )  = 0, 
hence that RP" is orientable, if and only if n is odd. The latter computation 
will be used in the next section to obtain necessary conditions for the exis
tence of immersions RP" S 1R2,, - p  and embeddings RP" c 1R2" - q. 

3.1 Proposition : Let r(RP") be the tangent bundle of Rpn, and let y� be the 
canonical real line bundle over Rpn. Then 

w(r(Rpn ) )  = ( 1  + e(y� ) )n + 1 
for the total Sti�tel-Whitney class w(r(Rpn) )  E H*(Rpn) and Euler class 
e(y� ) E HI (Rpn). 
PROOF : In Proposition I1I .7.4 we learned that r(Rpn) tf) [; 1 = (n + l )y� , so 
that the Whitney product formula and the normalization of Stiefel-Whitney 
classes give 

w(r(Rpn) )  = w(r(Rpn ) )  u W([; I ) = w(r(Rpn) tf) [; 1 )  
= w( (n + l )y� ) = w(y� )n + 1 = ( 1  + e(y� ) )n + l , 

as claimed, since w([; I ) = 1 by Corollary V.2.6. 
In computing the product ( I  + e(y� ) )n+ I it is understood that the highest 

term e(I'� )" + 1 vanishes, since the (n + 1 )st cohomology module Hn+ l (Rpn) 
of the n-dimensional CW space Rpn vanishes. I t  is also understood that if one 
expands ( 1  + e(y! ) )n + I by the binomial theorem, then the coefficient of 
e(y! JP is the :lj2 image of the integral binomial coefficient (n ; I ). 

3.2 Corollary : Rpn is orientable it n is odd .. Rpn is nonorientable if n is even. 
PROOF : The :lj2 image of (n i I ) is ° E :lj2 if n is odd, and 1 E :lj2 if n is even. 
However, the product of this coefficient and e(y� ) E H I(Rpn) is the first 
Stiefel-Whitney class wdr(RP" ) ), to which one then applies Proposition 
V.3.2. 

We need the following lemma to compute the dual Stiefel-Whitney class 
w(r(Rpn) )  E H*(Rpn). 

3.3 Lemma : For any element ry, of a :lj2-algebra, and for any natural number 
r � 0, one has ( 1  + ry,)2r = 1 + ry,2r. 

PROOF : This is trivial for r = 0, and the computation 

(I + ry,)2r ' I = ( ( 1  + ry,)2r)2 = ( l  + ry,2r)2 = 1 + 2ry,2r + ry,2r + I = 1 + ry,2r + I 

is the inductive step. 
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3.4 Proposition : rr 2' � n < 2' + I the dual Stiefel-Whitney class of Rpn is 
given by w(r(Rpn) ) = ( 1 + e(y� ) )2r + l - n - 1 E H*(Rpn), where e(Y� ) E HI (RP" ) 
is the 1L/2 Euler class of the canonical line bundle Y � . 
PROOF : Since H2r+ I (Rpn) = 0 by the hypothesis n < 2' + 1 , Proposition 3 . 1  
and Lemma 3.3 imply that 

w(r(Rpn ) )( l + e'(y� ) )2r + l - n - 1 = ( 1 + e(y� ) )n +  1 ( 1 + e(y�) )2r + l - n - 1 
= ( 1 + e(Y� )fr + 1 = 1 , 

hence that ( 1 + e(y� ) )2r + l - n - 1 is the unique class satisfying the conclusion 
of Lemma V.6.3. 

4. Nonimmersions and Nonembeddings 

According to the Whitney immersion theorem (Theorem 1.6.9) there is 
at least one immersion X --+ s2n- 1 of any smooth n-dimensional manifold X 
into the (2n - I )-sphere s2n - l ; if n > 1 ,  then there is at least one immersion 
X .!. 1R2n- 1 of X into the euclidean space 1R2n- l . Similarly, according to the 
Whitney embedding theorem (Theorem 1.6.6) there is at least one proper 
embedding X � 1R2n of X into the euclidean space 1R2n. We shall show for 
some dimensions n > 0 that these results are best-possible : for certain n > 0 

there are smooth n-dimensional manifolds which cannot be immersed in 
1R2n- 2 nor embedded in 1R2n- 1 . The proof gives a suggestion of best-possible 
results for any dimension n > O. 

In view of the Whitney immersion and embedding theorems, it is reason
able to try to find the largest natural number p � 0 such that a given smooth 
n-dimensional manifold X immerses in 1R2n- p  or embeds in 1R2n - p. The 
tangent bundle r(1R2n - P) is the trivial bundle e2n - p  over 1R2n- p, and e2n - p  has 
a riemannian metric induced by the usual inner product 1R2n - p  X 1R2n- p 
S IR. Then if X 1. 1R2n- p is an immersion, the pull back j'r(1R2n - P) is the 
trivial bundle e2n - P over X, and according to Lemma 1 11 .3.3 there is an 
induced riemannian metric < , > on j'r(1R2n- PI. Since f is an immersion, 
the tangent bundle r(X) of X itself is a subbundle of f'r(1R2n- PI, of rank n, 
and according to Proposition 1 1 1 .3.6 the riemannian metric on f'r(1R2n - P) 
provides a well-defined subbundle v f of rank n - p such that r(X) EB v f = 
f'r(1R2n - P) = e2n - P over X. 

4.1 Definition : For any immersion X .!. 1R2n - p  of a smooth n-dimensional 
manifold X into the euclidean space 1R2n - P, the preceding (n - pI-plane 
bundle v f over X is the normal bundle of the immersion f. 
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Since r(X) E8 vJ = [;2n- P, it follows from Corollary V.6.S that the total 
Stiefel-Whitney class w(vJ) E H*(X) of the normal bundle vJ agress with the 
dual Stiefel-Whitney class w(r(X) ) E H*(X) of the tangent bundle : w(l'J) = 
w(r(X) ). Furthermore, since w(r(X))  is independent of f, one can use its 
properties to establish properties of any immersions X -4 1R2n - P, including 
their nonexistence for sufficiently large values of p. We now carry out such a 
program. 

4.2 Lemma : Let w(r(X) ) be the dual Stie.tel-Whitney class of the tangent 
bundle of" a smooth n-dimensional manifold X, and suppose that X immerses in 
1R2n- p  for some p > 0; then wq(r(X) )  = 0 E Hq(X) for any q > n - p. 
PROOF : The normal bundle vJ of any immersion X !. 1R2n - p  is of rank 
n - p, so that wivJ) = 0 for q > n - p by the dimension axiom of Theorem 
V.S .2. However, we have just noted that w(v J) = w(r(X) ), so that wq(r(X) )  = 0 
for q > n - p, as claimed. 

Thus if wq(r(X ) )  ¥ 0 for some q > n - p then X cannot possibly immerse 
in 1R2n- p. Here is the simplest example of such a result. 

4.3 Proposition : If n = 2r for r � 0, then the real projective space Rpn does 
not immerse in 1R211 - 2. 

PROOF : According to Proposition 3.4 the dual Stiefel-Whitney class of 
Rpn is given by 

w(r(Rpn) ) = ( l  + e(y� ) )2r + 1 _ 2r - 1 = ( 1  + e(y� ) )n - I , 

so that wn_ l(r(Rpn) )  is the nonzero element e(y� )n - I E Hn- 1 (Rpn). 
There is a natural generalization of Proposition 4.3, which will be given 

in the following notation. 

4.4 Definition : For any natural number n > 0 let lX(n) > 0 be the number of 
I 's in the dyadic expansion of n ;  that is, if n = ao2° + a l2 1 + . . .  + ar2r, 
where the natural numbers ao ,  a I , . . .  , ar are either 0 or 1 ,  then lX(n) = 
LJ= o aj • 
4.5 Proposition : For any natural number n > 0 there is a smooth closed 
n-dimensional manifold X that does not immerse in 1R2n- a(n) - I . 
PROOF : For the set J of those indices j with aj = 1 in the expansion n = 
ao2° + . . .  + ar2r, let X be the product njEJ RP2J• Then, for the projec
tions X � Rp2J, the tangent bundle of X is a Whitney sum r(X) = 
EBjEl prjr(Rp2 1 ), so that the dual Stiefel-Whitney class of r(X) is a cup 
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product w(r(X) ) = Djd w(pr�r(Rp2i) )  = Iljd prjw(r(Rp2i) ). The highest
order nonvanishing class in w(r(Rp2i ) )  is w2i _ l (r(Rp2i ) )  = e('}'�i)2j -

l E 
H2i - 1 (Rp2\ as in Proposition 4.3. Since the Kiinneth isomorphism 
®jd H*(Rp2i )  � H*(X) carries the highest-order nonvanishing tensor 
product ®jd W2i _ 1 (r(Rp2i ) )  into the cup product DjE}  prjw2i _ 1 (r(Rp2i ) ), 
and since LjEA2j - 1 )  = n - a(n), it follows that wn- a(nl(r(X) ) #- 0 E 

Hn- a(nl(X). Hence by Lemma 4.2 the product X cannot immerse in 1R2n -a(nl - 1 . 

One cannot improve Proposition 4.5 without further specialization, for 
the following reason : jar any natural number n >  1, every smooth n-dimen
sional manifold X immerses in 1R2n- a(nl. This "best-possible" immersion 
theorem of Cohen [ 1 ]  is briefly discussed in Remark 9. 14. 

Proper embeddings are specialized immersions, for which there are 
improved versions of Propositions 4.3 and 4.5. Specifically, an immersion 
X � 1R2n - p  is an embedding if it is injective ( .f(x) = f(y) E 1R2n - p implies 
x = y E  X), and it is proper if inverse images of compact sets in jR2n -p are 
compact in X. For example, any embedding of a compact manifold is 
necessarily proper. 

For any proper embedding X � 1R2n - p  of a smooth n-dimensional 
manifold X, for any B > 0, and for any connected open set V c X whose 
closure V is diffeomorphic to a closed disk Dn c [Rn, let Ci V) denote the set 
of points y E 1R2n- p such that If(x) - yl < B for some x E V. Since the closure 
CiV) is compact, the inverse image f- 1 (CE(V ) )  consists of at most finitely 
many connected components, so that for sufficiently small B > 0 the set 
f - l (CE( V ) )  contains no points outside the connected component of V e X. 
In what follows, a cocoon C( V) C 1R211 - p of the image f( V)  1R2n - P is any 
set of the form CEt Yl, where B > 0 is chosen in such a way that .r l (C 3e( V ) )  
contains no points outside the connected component o f  V e X. 

4.6 Lemma : Let E � X represent the normal bundle v f of a proper embedding 
X � 1R2n- P of a smooth n-dimensional manifold X .  Then there is a dijJeo
morph ism of some open neighborhood of the zero-section of E onto an open 
neighborhood E c 1R211 - P of the image f(X) C 1R2n - p. 

PROOF : Let x = (Xl ,  . . . , x") be local coordinate functions on some open 
set in X, so that the restriction of f is given by f(x) = (.f1(X), . . .  , j2n - p(x) ) 
for smooth functions fl , . . .  , Fn - P on an open set U C [Rn, for which the 
jacobian matrix (ap/axj) = (.f�) has rank n. By restriction to a connected 
open subset V c  U, with closure V diffeomorphic to Dn c Rn, and by a 
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relabeling of coordinates, if necessary, one can suppose that 

(f1 
det : 

j' l . n 

. . .  1'7) 
: # 0. 

n 
I t  follows for each x E V and each y = (yn 1- I ,  . . .  , y2n- p) E \Rn - p  that there 
is a unique z = z(x, y) = (Z l , . . .  , z2n - P) E \R2n -p such that 

f} 1'7 1'7 1- 1 ff - p  Zl 0 

e , n f� f�+ I 0 
0 yn + 1 

0 
0 . 1 y2n - p  

hence a well-defined smooth map V x \Rn - p !. \R2n - p carrying any point 
(X, Y) E  V x \Rn- p  into 

, (p(x) + Zl(X, y), . . .  , pn- p(x) + z2n - p(x, y» E \R2n-p. 
Clearly F is affine in y, so that the restriction of F to V x {O} is f itself, and 
the restriction of the jacobian determinant of F to V x {O} is 

(fl 
det : 

f� 

. . .  f�) 
: # O. 
f� 

Since I is an embedding, the inverse function theorem guarantees that the 
restriction ofFto someopen neighborhood W of V x {O} is a diffeomorphism. 
We let E( V )  c \R211 - p be the (open) intersection F( W) n C(V), for any cocoon 
C( V )  C \R2n- p off( V). 

The n linear conditions IJ z1 + . . . + fJn - pz2n - p  = 0 appearing in the 
definition of z(x, y) guarantee that for each (x, y) E V x \Rn - p the vector 
z(x, y) E \R2n - P is orthogonal to the tangent space at f(x) of the embedded 
f(X), in the usual inner product of \R2n-p ;  hence z(x, y) can be identified as 
a point in the fiber over x E V of the normal bundle v f of the embedding 
x L  [RZII - p. Specifically, one can regard V x \Rn- p  as a trivialization of the 
restriction of the normal bundle to V c X, an open neighborhood of V x {O} 
being identified with the neighborhood E( V) of I(V). Since E (V ) lies in the 
cocoon C(V), it is clear for any covering { V } of X by open sets V of the type 
described earlier that the union UV E( V) is a diffeomorphic image E C \R2n -p 
of an open neighborhood of the zero-section of E, as required. 
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4.7 Lemma : Let v f be the normal bundle of a proper embedding X .!. [R211 - P 
of a smooth manifold X of dimension n > O. Then the 71/2 Euler class vanishes : 
e(vf) = 0 E W - P(X). 

PROOF : By definition, e(vf) = a*j* UV! for the 71/2 Thorn class U,,! E 

Hn-P(E, E*), where E "::' X represents vf' where E � E, E* is the inclusion, 
and where X � E the zero-section. By the excision axiom one may as well 
replace E by any open neighborhood of the image of a, which we also denote 
E, with a corresponding E* c E. Then Lemma 4.6 provides the isomorphisms 
f'6, fT, and I* in the accompanying commutative diagram, and the remain-

ing homomorphisms are induced by the obvious inclusions. The inclusion 
E � [R2n - p  induces an excision E, E\f(X) � [R2n-p, 1R2n - p\f(X), it follows 
that g'6 is also an isomorphism. Since Hn - p([R2n-P)  = 0,  it then follows that 

e(vf) = a*j* UVf = f*r*j*(g'6)- I (f'6) - 1 UVj = 0 E Hn-p(x), 

as asserted. 

4.8 Theorem : Let w( r(X» be the dual Stiefel-Whitney class of the tangent 
bundle r (X) of a smooth n-dimensional manifold X, and suppose that there is a 
proper embedding X .!. 1R2n-p ;  then wir(X» = 0 E Hq(X) for q � n - p. 
PROOF : The normal bundle v f is an (n - p)-plane bundle and one has 
w(r(X» = w(vf), where wivf) = 0 for q > n - p as in Lemma 4.2. However, 
according to Corollary V.2.8 wn-p(vf) is just the 71/2 Euler class e(vf) E 
Hn-P(X), which vanishes by Lemma 4.7. 

4.9 Proposition : If n = 2' for r � 0, then the real projective space Rpn does 
not embed in [R2n- I . 

PROOF : Since Rpn is closed, a fortiori compact, any embedding is proper. 
However, w,, _ I (r(RP" ) )  is the nonzero element e(y� )" - I E H,, - l (RP") as in 
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Proposition 4.3, so that Theorem 4.8 forbids an embedding of Rpn into 
1R2n - • . 

For any n > 0 the number cx(n) > 0 is described in Definition 4.4. 

4.1 0  Proposition : For any natural number 11 > 0 there is a smooth closed 
n-dimellsional man!fc)ld X which does not emhed in 1R2n - a(n). 
PROOF : In the proof of Proposition 4.5 it was shown that wn- a(n)(t(X» -# 
o E w-a(n)(x) for the closed manifold X = njEJ Rp2j• Since any embedding 
of a closed manifold is necessarily proper, Theorem 4.8 therefore forbids 
any embedding of X into 1R2n - a(n). 

5 .  Stiefel-Whitney Numbers 

Let X be any smooth closed n-dimensional manifold, and let (I' . ,  . . .  , I'll) 
be any ordered set of natural numbers such that 1'1 + 21'2 + . . .  + nrn = n .  
We shall use the total Stiefel�Whitney class w(r(X» of the tangent bundle 
r(X) to assign an element of 7l./2 to each (1' . ,  . . . , I'll)' One obtains the value 
o E 7l./2 for each (1' 1 "  . . , I'll) if (and only if) X is the (smooth) boundary Y of 
a smooth compact (n + l )-dimensional manifold Y. 

If 1 + wl(r(X» + . . .  + wll(r(X» is the total Stiefel�Whitney class 
w(r(X» E H*(X) of the tangent bundle r(X) of the smooth closed n-dimen
sional manifold X, and if (I' I ,  . . . , I' n) is an ordered n-tuple of natural numbers 
such that r . + 21'2 + . . .  + /I/"" = n, the product w .(r(X»' 1 u . . . U w/l(r(X»'" 
in H*(X) belongs to W(X). The boundary X of X is void since X is closed, so 
that the fundamental 7l./2 homology class of Definition 1 .4 is an element 
J1x E Hn(X). Consequently the Kronecker product W(X) ® HiX) � 7l./2 
assigns an element of the ground ring 7l./2 to the manifold X and the n-tuple 
(1' . ,  . . . , I'll)' as follows. 

5.1 Definition : Let X be a smooth closed n-dimensional manifold, and let 
(1'. , . . .  , I'll ) be any natural numbers such that r. + 21'2 + . . . + nrn = n. Then 
the ( 1' . , . . . •  rll) th Stielel�Whitney number of X is the element 

<w .{'r (X»'1 U . . . U wn(r(X» '", J1x) E 7l./2. 

5.2 Proposition : Suppose that Y is a smooth compact (n + I )-dimensional 
manifold with boundary Y, so that Y is a smooth closed n-dimensional manifold ; 
then all the Stiefel�Whitney numbers of Y vanish. 
PROOF : According to Proposition 1 .9 the fundamental E/2 homology class 
J1y E Hn(Y )  is the image of the fundamental 71./2 class J1y E Hn+ I ( Y, Y) under 
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the connecting homomorphism D of the exact homology sequence 
j • c . i. Hn+ I ( Y )  � Hn + I ( Y, Y) � H.( Y )  -----+ Hn( Y )  

for the pair Y, Y;  that is, J-l i'  = OJ-l y .  Furthermore, the connecting homo
morphism c5 of the corresponding exact cohomology sequence 

H"( Y) � Hn( y) � Hn+ 1 ( y, Y) � H" + I( Y )  
is the adjoint of 0 with respect to the Kronecker product ( , > ;  that is, 
(0(, DV> = (c5IX, v> for any IX E Hn(y )  and any v E Hn+ I ( Y, Y ). Consequently 
the (r l , • • •  , rn) th Stiefel-Whitney number of Y satisfies 

<w;' . . .  W�n, J-li'> = (w;' . . .  w�n, DJ-Iy> = (c5(w;' . . .  w�n), J-Iy> ,  

where 

w;' . . . w�n = wl (r( Y ) )" u . . . U wn(r( y ) )'n ; 
We shall show that c5(w;' . . .  w�n) = O. . 

Let r (Y) be the tangent bundle of Y itself. Then for the inclusion Y � Y 
ofthe boundary Y, the restriction i !r( Y )  of r( Y )  to Y is the Whitney sum 
r (Y )  EB e1 of the tangent bundle r ( Y )  and the trivial line bundle e l spanned 
by the inward-pointing unit vectors normal to Y, with respect to any 
riemannian metric on r (Y ). Since 

w(r( Y ) )  = w(r (Y )  E9 e l ) = w(i !r (y ) )  = i*w(r (Y ) )  
for the total Stiefel-Whitney classes w(r( Y ) )  E H*( Y )  and w(r( Y ) )  E H*( Y ), 
it follows that 

c5(wl(r( Y) )" u . . .  U wn(r( y ) )'n) = c5i*(wl (r( Y ) ),' U . . . U w.(r( y ) )rn) = 0 
as desired, since c5i* annihilates Hn( Y )  in the exact cohomology sequence of 
the pair Y, Y. 

5.3 Remark : Proposition 5.2 is due to Pontrjagin [5]. The converse asser
tion is also true, due to Thorn [3, 6-8]. Thus a smooth closed manifold is a 
boundary if and only if all its Stiefel-Whitney numbers vanish. We shall not 
prove the converse of Proposition 5.2. 

The following result depends only on Proposition 5.2. 

5.4 Corollary : IJ n is even, then the real projective space RP" is not the 
boundary oJ any (n + I )-dimensional manifold. 
PROOF : By Proposition 3. 1 ,  w(r(Rpn ) )  = ( 1  + e(y� ) )n + 1 ,  with binomial co
efficients computed in 71/2, where according to Proposition IV.4.4, H*(Rpn) is 
the polynomial ring over 71/2 generated by the 71/2 Euler class e(y� ), modulo 
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the relation e(}'�t+ 1 = 0. In particular, if n is even, then (" � 1) = 1 E 2/2, so 
that w,,(r(RP" ) )  is the generator e(}'� t E H"(RP" ). Hence the (0, . . .  , 0, I )th 
Stiefel-Whitney number of RP" satisfies (w,,(r (Rpn) ), IlRpn> = 1 # 0, so that 
Proposition 5.2 prevents Rpn from being a boundary. 

5.5 Proposition : rr n is odd, then all StieJel-Whitney numbers oJ the real 
projective space RP" vanish. 
PROOF : If 11 = 2m - 1 for m >  0, then Proposition 3 . 1  and the technique of 
Lemma 3.3 give w(r(RP") )  = ( 1  + e(y� ) )2m = ( 1  + e(}'� )2 )m ; in particular, all 
the odd Stiefel-Whitney classes of RP" vanish. However, ifr l + 2r2 + . . . + nr" 
is to equal the odd number n, then rp # ° for at least one odd number p ;£ n, 
so that 

5.6 Corollary : If n is odd, then the real projective space Rpn is the boundary 
of some (n + I )-dimensional manifold. 
PROOF : Remark 5.3 and Proposition 5.5. 

5.7 Definition : Two smooth closed n-dimensional manifolds X and X' are 
cobordant if their disjoint union X + X' is the boundary ofa smooth compact 
(n + 1 )-dimensional manifold Y. 

If X is any smooth closed n-dimensional manifold, then X + X is the 
boundary of X x [0, 1 ], so that cobordism is a reflexive relation. Since the 
disjoint union X + X' is assigned no order cobordism is a symmetric rela
tion. Finally, if X + X' is the boundary of Y and X' + X" is the boundary 
of Y', then one can identify the common portion X' of Y and Y' to create a 
smooth compact (n + I )-dimensional manifold Y" with boundary X + X" ;  
hence cobordism is also a transitive relation. I n  summary, cobordism i s  an 
equivalence relation. 

Let [X] and [X'] denote the cobordism classes of smooth closed mani
folds X and X', respectively. If X and X' are of the same dimension, then 
one easily verifies that the class [X + X'] of the disjoint union X + X' 
depends only on [X] and [X'], and for any dimensions one easily verifies 
that the class [X x X'] of the smooth product X x X' also depends only on 
[X] and [X']. Hence the set m of cobordism classes of smooth closed mani-
folds admits a sum m x m -:t:. m and a product m x m � m. Furthermore m 
is graded by dimension : if m" c m consists of classes represented by smooth 
closed n-dimensional manifolds, then m is the disjoint union of the subsets 
91" , and sums and products satisfy �lln x m" � �n" and mm x 91" � mm + ,, '  
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5.8 Lemma : The set 91 of cobordism classes is a graded commutative ring 
with respect to the preceding operations 

and 

PROOF : This is a trivial verification. In particular, since X + X is the 
boundary of X x [0, 1 ], it follws that - [X] = [X], hence that every element 
of 91 is of order 2 with respect to addition. 

5.9 Definition : The preceding graded commutative ring 91 of cobordism 
classes of smooth closed manifolds is the unoriented cobordism ring. 

5.10 Proposition : If [X] = [X'] in m. for two smooth closed n-dimensional 
manifolds X and X', then X and X' have the same Stiefel-Whitney numbers ; 
conversely, if X and X' have the same Stiefel-Whitney numbers, then 
[X] = [X']. 

PROOF : The first assertion is a rephrasing of Proposition 5 .2, and the second 
assertion is a rephrasing of Remark 5.3. 

There is an alternative way to construct the un oriented cobordism ring 
91. Observe that if DP and Dq are disks of dimensions p and q with boundaries 
SP - I and sq - I , respectively, then each of the (p + q - l )-dimensional mani
folds DP x Sq - I and SP- I x Dq has sr I x sq - 1 as its boundary. Suppose 
that DP x Sq - I  is smoothly embedded in a smooth closed manifold X 0 of 
dimension p + q - 1. One can then remove DP x sq - I from X 0 ,  leaving a 
boundary sr I X Sq - I ;  since Sp - I  x Sq - I  is also the boundary of Sp- I  x Dq, 
one can (smoothly) insert Sp - I  x Dq into · X o\DP x sq - I , identifying 
common points on the common boundary Sp- I x sq - I , to obtain a new 
smooth closed manifold X I ,  also of dimension p + q - 1 .  Two such mani
folds X 0 and X 1 are surgically related; in general, surgically related manifolds 
are not diffeomorphic to each other. 

5.1 1  Definition : Two smooth closed manifolds X 0 and X q of the same 
dimension are surgically equivalent if and if there are smooth closed manifolds 
X I , . . .  , Xq _ 1 such that Xi - I is surgically related to XJor each i = 1 ,  . . . , q. 

Clearly surgical equivalence is an equivalence relation, and the set of 
equivalence classes [X] of smooth closed manifolds X forms a commutative 
semi-ring 91' with respect to disjoint union and smooth product : [X] + 
[X'] = [X + X'] and [X] . [X'] = [X x X']. The semi-ring 91' is graded by 
dimension. We shall show that 9l' is canonically isomorphic to the un
oriented cobordism ring 91. 

Let 1 I I I p  and 1 I I Iq denote the usual euclidean norms on [RP and �q. The 
product [RP x �q then carries a norm I I I I  with I I (x, y) 1 1  = max { l lx l lp , l ly l lp } , 
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and DI' x S'I - I  U SI' - I  X Dq is the unit sphere in �p +q with respect to 1 1 1 1 . 
By stretching the unit sphere DP x Sq - l  U SI' - I X Dq at the "equator" 
sr I x sq - 1 it follows that 

DP x Sq - I  X {O} U Sp - I  X Sq - I  X [0, 1] U Sp- I  X Dq x { l }  
is the boundary of a (p + 'I)-cell in W +q, hence homeomorphic to the sphere 
Sp + q - I c �p + q. 

5. 12 Lemma : Any two surgically related smooth closed manifolds are co
bordant ;  consequently any two surgically equivalent smooth closed manifolds 
are cobordant. 
PROOF : Suppose that X 0 and X I are smooth closed manifolds of dimension 
p + q - 1, where one replaces some DP x sq - I C X 0 by SI' - I X Dq to obtain 
X l , as before. Then X 0 \Dp x sq - 1 and X l \Sp - I X Dq are each diffeomorphic 
to a smooth compact manifold X with boundary SI' - I X sq - I .  Let Y be the 
union of the product X x [0, 1] and the (p + q)-cell with boundary 

DP x Sq - I  X {OJ u Sp - 1 X Sq - I  x [0, 1 ]  U Sp- I  x Dq x { l }  
described earlier, with the obvious boundary identifications : the two bound
aries DP x sq - 1 X {O} are identified with each other, the two boundaries 
SI' - 1 X sq - 1 X [0, 1] are identified with each other, and the two boundaries 
sr I X Dq x { I }  are identified with each other. Then Y is a smooth compact 
(p + q)-dimensional manifold with boundary Xo x {O} + X l  X { l } , as 
required. 

The converse of the second assertion of Lemma 5 . 12  requires some 
elementary Morse theory, which we sketch. According to Definition I I1 .6. l 1 
the dtfierential of a smooth function Y .!... � on a smooth manifold Y is the 
er,( Y j-linear map g*( Y j  � C" ( Y j  carrying any smooth vector field 
L E g*( Y )  into the smooth function If E C"( Y ). A critical point of f is any 
point y E  Y at which d{ vanishes ; that is, (Lf)(y) = 0 for every L E g*( Y j. 

5.13 Lemma (Regular Interval Lemma) : Let Y be a smooth compact n
dimensional manifold whose boundary is the disjoint union of two smooth closed 
(n - I )-dimensional manifolds X a and X b ,  and let Y.!... [a, b] c IR be a smooth 
function with no critical points, such that Xa = f- I (  {a } )  and X b = f- I (  {b } ). 
Then there is a difieomorphisrn Y .!!. X a X [a, b] whose composition with the 
second projection X a X [a, b] � [a, b] is f itself; a fortiori X a is diffeo
morphic to X b '  
PROOF : There is a smooth riemannian metric @'*( Y j  x g*( Y j  � CC(  Y j  
by Proposition m.5.8, which induces an isomorphism g (  Y )  --+ g*( Y )  carrying 
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dI E C( y)  into a vector field gradI E C*( y ) such that <M, gradf> = 
Mf E e"( Y )  for any M E  C*( Y ). By hypothesis df is nowhere-vanishing; 
hence grad f is also nowhere-vanishing, so that <grad f, grad f> is every
where positive on Y. It follows that there is a unique vector field L E  C*( y) 
such that <grad f, gradf>L = grad f, for which one trivially has Ll = 
< L, grad f> = 1 E C"'(  Y ). The definition of L also yields the identity 
<grad f, grad f> (L, L> = 1, and since Y is compact, it follows that there are 
positive constants A and B such that 0 < A � (L, L> � B < 00 uniformly 
on Y. 

In order to construct Y !!. X a X [a, bJ we shall first construct its inverse 
Xa x [a, b ] � Y by solving ordinary differential equations. In outline, ob
serve that partial differentiation with respect to the coordinate t E [a, bJ 
provides a vector field a jat on X a X [a, b J. We shall show that there is a 
uniquely defined h such that h*(a/at) = L on Y and h (x, a) = x for each 
X E  Xa ' 

For any e E [a, bJ let Xc be the closed set r l ( {e}) c Y. Since Y is com
pact Xc is also compact, so that it is contained in the union of finitely many 
open coordinate neighborhoods Y' in Y. As in Proposition 1.6. 10  one can 
shrink each of the open coordinate neighborhoods Y' to a smaller open 
coordinate neighborhood Y" whose (necessarily compact) closure satisfies 
V "  c Y', in such a way that Xc is also contained in the union of the finitely 
many open sets Y" ;  one may as well assume that Xc actually intersects each 
Y". 

If ( y ' ,  . . . , y") are coordinate functions on one of the former coordinate 
neighborhoods Y', the restriction of L to Y' is of the form P a/ay ' + . . . . + 
In a/ayn for smooth functions [ 1 , . . .  , In on Y', as in Lemma I II.6.6. Suppose 
temporarily that e lies in the interior (a, b) of the closed interval [a, b J. Then 
according to the classical existence and uniqueness theorem for ordinary 
differential equations there are positive constants 15 > 0 and e > 0 and a 
unique n-tuple (h i ,  . . .  , h") of smooth real-valued functions on the inter
section Xc n V" x [e - 15, e + eJ such that 

ah ' Tt (x ; t) = I ' (h ' (x ;  t), . . .  , h"(x ; t) ), 

ahn Tt (x; t) = I"W(x; t), . .  " hn(x ; t) ), 

such that each x E Xc n V "  has coordinates (h ' (x ; c), . . . , hn(x ; e) ), and such 
that each n-tuple (h ' (x ; t), . . .  , h"(x ; t) ) is the coordinate description of a 
point in the larger neighborhood Y'. The constants 15 > 0 and e > 0 depend 
on the geometry (in !Rn) of the inclusion V" c Y' and on the constants A and 
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B described earlier, with ° < A � <L, L) � B < 00 ;  however, A and B them
selves depend only on the given function Y � [a, b] and the choice of the 
riemannian metric < , ), so that 6 and e effectively depend only on the inclusion 
Y" c y'. In the special cases c = a or c = b one has b = ° or e = 0, respectively. 

One can rewrite the preceding system of differential equations in the form 

ilh I 11 ilh" (I (i a - - + " ' + - - = 11 - + " ' + 1" -(it ai ilt ay" (ii ay" ' 

or equally well in the coordinate-free form h*(Nat) = L. Since Xc is contained 
in the union offinitely many of the coordinate neighborhoods Y", the unique
ness of the n-tuples W, . . . , h" ) implies for c E (a, b) that there are positive 
constants be > ° and ee > 0 and a unique map Xc x [c - be > C + ec] l!... Y with 
h*(t'/c't) = L over the image of 11, and h(x, c)  = x for each x E Xc ' Since 

one has /(I1(x, t) ) = t for each t E [c - be > C + erJ . Hence for any closed sub
interval [t, t'] c [c - be > C + Br] there is a bijection from Xt ( =f- ' ( { t })) to 
Xt' ( =  r \[ t']) )  which identifies the Xt-end-point of each integral curve of 
L with the Xt ,-end-point of the same integral curve; one easily verifies that 
the preceding bijection is a diffeomorphism from Xt onto Xt, . In the special 
cases c = (/ or c = b one has 6a = ° or eb = 0, respectively. 

To complete the proof of the regular interval lemma it suffices to note 
that finitely many of the intervals [c - be > c + erJ cover [a, b], so that there 
is a unique diffeomorphism Xa x [a, b] � Y such that h*(ojat) = L on all of 
Y and h(x, a) = x for x E X a '  It follows as in the local case that f(l1(x, t) ) = t 
for any (x, t) E X a X [a, b]. Furthermore, if the inverse diffeomorphism 
y� Xu x [a, b] carries Y E Y into (x, t) E Xa x [a, b], thenf(y) = t = pr2(g( y) ), 
so that f = prz C' g as claimed. 

Now let Y � R be a smooth function on a smooth manifold Y of dimen
sion 11 = P + q, and suppose that y E  Y is a critical point of f. If there are 
coordinate functions u l , . . .  , uP, VI , . . . , vq on some neighborhood of y, all 
vanishing at y, such that 

f = fly) - [(U I )2 + . . .  + (uP)Z] + [(v 'f  + . . .  + (vqf] 
in that neighborhood, then y is a nondegenerate critical point of f, with 
critical value f( y) E R (There is a less restrictive-appearing characterization 
of non degenerate critical points; however, for the moment we merely observe 
that df does indeed vanish at y, so that y is at least a critical point of f in 
the earlier sense.) 
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For notational convenience let u = (u l , . • .  , uP), V = (V i ,  . . . , vq), I Iu l 1 2 = 
(U I )2 + . . .  + (UP)2, and I I vl 1 2 = (V I )2 + . . .  + (vq)2 . For any £ > 0 let D�;q c 
IRp+ q be the disk of radius 2£ about 0 E W+q, consisting of those (u, v) E W+q 
such that I I ul 1 2 + I I v l 1 2 � (2£)2, and for any c5 > 0 let S� + q - I c W +q be the 
sphere of radius c5 about 0 E W+q, consisting of those points (u, v) E W + q 
such that I I ul 1 2 + I I v l 1 2 = c52. The notations DP, Dq, Sp - I , Sq - I without sub
scripts will denote standard disks and spheres of the indicated dimensions, 
identified only up to diffeomorphism. 

5.14 Lemma : For any £ > 0 let f = - l lu l 1 2 + I Iv l 1 2 on D�; q ; thenf- I ( {  _ £2 j) 
is difjeomorphic to sr i X Dq and f- I ( { + £2 } )  is diffeomorphic to DP x sq - I . 
PROOF : If 0 � c5 � 2£, then the intersection r I ( {  - £2 }) n S� +q - I consists 
of those (u, v) E D�; q such that - l lu l 1 2 + I I v l 1 2 = - £2 and I I u l 1 2 + I I v l 1 2 = cS2 ; 
that is, I Iu l 1 2 = i (c52 + £2) and I Iv l 1 2 = i(c52 - c2). Clearly f- I ( {  _ c2 } )  n S� +q -- I 
is void for 0 � c5 < £, of the form sr I x { * } for cS = £, and of the form 
SP - I X sq - I for £ < cS � 2c, so that f- I ( { - £2} )  is diffeomorphic to SP - I X 
Dq. Similarly r I ( { + £2 } )  is diffeomorphic to DP x sq - I . 
5.15 Lemma : Let Y be a smooth compact n-dimensional manifold whose 
boundary is the disjoint union of two smooth closed (n - I )-dimensional mani-
folds X a and X b ,  and let Y 1. [a, b] c IR be a smooth function with a single 
critical point y E Y, which is nondegenerate, whose critical value C E IR sati.'ifies 
a < c < b, and for which Xa = f- I ( {a ) )  and Xb = r I ( {b }) .  Then Xa is sur
gical/ y related to X b '  
PROOF : One has f = C - l lu l 1 2 + I I v l 1 2 in some neighborhood of the critical 
point j', as in Lemma 5 . 14, with (u, v) = (0, 0) at y itself. One can choose 
[; > 0 sufficiently small that a < C - £2 and c + £2 < b, and also suffi
ciently small that D�:q lies in the preceding neighborhood of y. By the 
regular interval lemma (Lemma 5 . 1 3) Xa is diffeomorphic to XC - E' and 
XC+ E' is diffeomorphic to Xb, so that it remains to show that XC - E' is surgi
cally related to XC + E2 . Let YI = f- I ([C - £2, C + £2]) n D�:q, and let Yz be 
the closure in Y of the complement f- 1 ( [  c- £2, C + £2])\ YI . Then X c- E2 n YI 
and Xc + E2 n YI are diffeomorphic to SP - I X Dq and DP x sq - I , respectively, 
by Lemma 5. 14, and since XC- E2 n Y2 and XC + f.' n Y2 are mutually diffeo
morphic, by the regular interval lemma, it follows that XC - E' is surgically 
related to Xc+ e l ,  as required. 

5.16 Lemma : Let Y be a smooth compact n-dimensional manifold whose 
boundary is the disjoint union of two smooth closed (n - 1 )-dimensional 
manifolds X 0 and X I ' Then there is a smooth function Y 1. [0, 1 ]  with X 0 = 
r l( {O}) and X I = f- 1 ( { l } ), and with only finitely many critical points, all 
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of' which are nondegenerate, whose critical levels are mutually distinct real 
numbers in the open interval (0, 1 ). 

PROOF : We omit the proof of this classical result, which is Lemma 1 on 
pages 4 1 -42 of Milnor [9] and Theorem 2.5 on page 9 of M ilnor [ 1 8] .  I t  
also follows from Corollary 6.8 o n  page 3 7  ofMilnor [ 1 3] and from Theorem 
1 .2 on pages 147- 148 of M. W. Hirsch [4]. 

A function Y � [0, 1] satisfying the conclusion of Lemma 5 . 16  is an 
admissible M orse junction. 

5.17 Theorem : Two smooth closed manifolds Xo and XI of the same dimen
sion are surgically equivalent if and only if they are cobordant. 
PROOF : According to Lemma 5 . 12  any two surgically equivalent smooth 
closed manifolds are cobordant. Conversely, if the disjoint union of two 
smooth closed (n - 1 )-dimensional manifolds X 0 and X I is the boundary 
of a smooth compact n-dimensional manifold Y, Lemma 5 . 16  provides an 
admissible Morse function Y � [0, 1 ]  with critical levels C l "  • • , Cr satisfying 
° < C l < . , . < Cr < 1 ,  where r is the number of (nondegenerate) critical 
points. Let ao = 0, let aq = t(cq + cq + d for q = 1 ,  . . .  , r - 1 ,  let ar = 1 ,  
and let Xllq = f- I ( {aq } )  for q = 0, . . .  , r. Then Lemma 5. 1 5  asserts that 
X Uq is surgically related to X Uq + 1 for q = 0, . . .  , r - 1, so that X 0 is surgically 
equivalent to X I ' as claimed. 

5.18 Corollary : The semi-ring 9l' of surgical equivalence classes of smooth 
dosed manifolds is canonically isomorphic to the unoriented cobordism ring 91. 
PROOF : Since addition and multiplication in each of 91' and 91 are induced 
by disjoint unions and smooth products of smooth closed manifolds, this 
follows immediately from Theorem 5. 1 7. 

5.19  Corollary : Two smooth closed manifolds represent the same surgical 
equivalence class if' and only if they have the same Stiefel-Whitney numbers. 
PROOF : This follows immediately from Proposition 5 . 10 and Theorem 5. 1 7. 

One can extend Definition 5 . 1  in an obvious way without altering the 
preceding results. Let 2:/2 [0' I ,  . . .  , 0',,] be the polynomial ring over 2:/2 in 
which each 0' p is assigned degree p, for p = 1, . . .  , n ;  that is, each monomial 
0';1 . .  , O'�;' E 2:/2 [0' 1 " " ' 0',,] is assigned degree rl + 2r2 + . . .  + nr" . A 
polynomial p(O' \ >  . . .  , 0',,) E 2:/2 [0' 1 " " ' 0',.] is homogeneol)s (d' degree n if 
it is a sum of monomials of degree n. For any smooth closed n-dimensional 
manifold X, there is then an element p(w l(r(X) ), . . . , w,,(r(X) ) )  E H"(X) 
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providing a sum <p(w l ('r(X) ), . . .  , w.(r(X) ) ), J1x) E 7L/2 of the Stiefel
Whitney numbers of Definition 5 . 1 ,  also called a Sti�feL-Whitney number. 

For later convenience, we define particular such Stiefel-Whitney num
bers. Let 7L/2 [t h . . .  , tn] be the polynomial ring over 7L/2 in which each t p 
is assigned degree 1 ,  for p = 1 ,  . . . , n. According to the fundamental prop
erty of elementary symmetric polynomials, there is a unique s,,(a l , . . .  , an) E 
7L/2 [a h . . . , a p], which becomes t'l + . . . + t� E 7L/2 [t b . . .  , tn] when one 
replaces al , . . .  , an by the elementary symmetric polynomials t 1 + . . . + 
tn , . . .  , t l . . .  t,, ; clearly sn(a l , . . .  , an) is homogeneous of degree 11 in the 
sense of the preceding paragraph. 

The following definition will be used in Remark 9.23. 

5.20 Definition : For any n > 0 and any smooth closed n-dimensional 
manifold X, the number 

<s.(w t !r(X) ), . . .  , w,,(.(X) ) ), J1x) E 7L/2 

is the basic Stiefel-Whitney number sn(X) of X. 

6. Stiefel-Whitney Genera 

The set 01/ of diffeomorphism classes of smooth, not necessarily orientable, 
closed manifolds X is a commutative semi-ring with respect to disjoint unions 
and smooth products. The subset 5 c Ol/ of sums of two copies of any X E 011 
is an ideal in 0/1, in the obvious sense, and there is an equivalence relation 
'" in 011 with X 0 - X 1 if and only if there are elements X 2 + X 2 and X 3 + X 3 
in 5 with X 0 + X 2 + X 2 = X I  + X 3 + X 3 .  The algebraic operations in ull 
induce corresponding operations in the quotient 01//5, and if [X] E 011/5 is 
the equivalence class of X E 01/, then the relation [X] + [X] = 0 E 011/5 
implies that 01//5 is a commutative ring ujj in which every element is of 
order two. 

The quotient of 01/ by the ideal represented by smooth closed boundaries 
is precisely the un oriented cobordism ring 91 of Definition 5.9 : the natural 
epimorphism 01/ --+ 91 factors out boundaries. The purpose of this section is 
to introduce certain other homomorphisms 01/ --+ 7L/2 which will serve as 
models for later constructions. 

For convenience we use the same notation X to denote either a smooth 
closed manifold in 01/ or its equivalence class [X] E oii. Since every element 
of ujj is of order two, ujj can be regarded as a (graded) 7L/2-algebra. 

For any n-dimensional X E 011 the 7L/2 cohomology module Hq(X) 
vanishes for q > n, so that H**(X) = H*(X). Let r(X) be the tangent bundle 
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of X, and for any formal power series f(t) E 1'/2[[ t]] with leading term 1 E 1'/2 
let uj(r(X)) E H*(X) be the resulting multiplicative 1'/2 class, as in Defini
tion V.1 .4. Since X is closed, in the usual sense that its boundary X is 
empty, the fundamental 1'/2 homology class of Definition 1 .4 is an element 
/lx E Hn(X). The Kronecker product (u[(r(X) ), /lx) E 1'/2, in which the 
homogeneous element /lx of degree n annihilates all cohomology classes 
except in degree n, clearly depends only on X as an element of ''It. 

6.1 Definition : For any formal power series f(t) E 1'/2 [et]] with leading 
term 1 E 1L/2, and for any X E ''It, the Kronecker product (uj(r(X) ), /lx) E 1L/2 
is the Fgenus G(f)(X) of X. 

6.2 Proposition : For any formal power series f(t) E 1L/2 [et]] with leading 
term 1 E 1L/2, there is a semi-ring homomorphism Oil � 1L/2 carrying each 
X E (}II into the j:genus G(f)(X) E 1L/2. 

PROOF : Since addition in ''It is induced by disjoint union of manifolds, the 
additivity of G(f) is trivial. For any X I  E "lt  and X 2 E "lt  the tangent bundle 
of the product X I X X 2 E ''It is given by r(X 1 x X 2) = pri r(X d Et> pr�r(X 2) = 
r(X I ) + r(X2), for the projections X I  x X2 � X I and X I  x X2 � X2 , 
so that the cross-product version of the Whitney product formula (Propo
sition V.2. 1 1 )  gives 

uf(r(X I x X2) )  = uAr(Xd + r(X2) )  
= uj(r(Xd )  x uj(r(X2) ) E H*(X I x X2). 

The characterization of fundamental 1L/2 homology classes appearing in 
Corollary 1 .5 immediately implies that the fundamental lL/2 homology class 
/lx, x X2 E H *(X I x X 2) of X I x X 2 is the cross product /lx, x /lx2 E H *(X I x X  2) 
of the fundamental lL/2 homology classes /lx, E H*(Xd and J..lX2 E H*(X2)· 
Since /lx, and /lx2 are homogeneous, their degrees being dim X I and dim X 2 ,  
the classical relation between cohomology cross-products and homology 
cross-products implies 

G(f)(X I x X2) = (uj(r(X 1 x X2) ), /lx, x x) 
= (uj(r(X I l )  x uj(r(X 2) ), /lx , x /lx) 
= (uj(r(X d ), /lx) (u [(r(X 2) ), /lx) 
= G(f)(X I )  . G(f)(X 2), 

as desired. (See page 2 1 7  of Dold [8], e.g., for the cross-product relation ; 
there are no ± signs in the present computation because the coefficient 
ring is 1L/2.) 
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One can equally well apply the term j�genus to the 7L/2-algebra homo-
. � (i(!) 7L/2 ' d d b P " 6 2 morph Ism 41 ------> In uce y roposltlOn . . 

Any formal power seriesf(t) E 7L/2 [Et]] with leading term 1 E 7L/2 induces 
a multiplicative sequence Ln� 0 P n(u [ ,  . . . , un) E 7L/2 [[ u l ' U 2 ,  . . . ]] as in 
Definition V.2.9. Furthermore, if X is of dimension n, then Proposition 
V.2. l0  guarantees that G(.f)(X) = <Pn(wdr(X)), . . .  , wn(r(X) ) ), llx) . Thus 
G(f)(x) is a 7L/2-linear combination of the Stiefel -Whitney numbers of X ;  
i t  is therefore reasonable to call G(f) a Stie!el-Whitney genus, as in the title 
of this section. According to Proposition 5.2 this remark implies that 
G(f)(X) = ° whenever X is the boundary Y of a smooth compact (n + 1 )
dimensional manifold Y. Consequently 011 (i(!) ) 7L/2 annihilates the kernel 
of the natural epimorphism 011 --. 91 onto the unoriented cobordism ring 91, 
so that G(f) can equally well be regarded as a 7L/2-algebra homomorphism 
91 --. 7L/2, which we shall also denote G(f). However, there are many nonzero 
elements of 91 which lie in the intersection of the kernels of all 7L/2-algebra 
homomorphisms 91 ..... 7L/2, as we shall learn in Remark 9.33. 

The simplest Stiefel-Whitney genus Oll � 7L/2 is induced by the poly
nomial !(t) = 1 + t E 7L/2 [t] ( e 7L/2 [[t]] ). In this case the corresponding 
multiplicative sequence Ln� o Pn(U l " ' "  un) satisfies Piu l , . . .  , un) = Un for 
each n > 0, as we observed following Definition V.2.9. Hence if X is a smooth 
closed n-dimensional manifold one has uf.n(r(X))  = wn(r(X) ) E Hn(X), and 
by Corollary V.2.8 wn(r(X) ) is the 7L/2 Euler class e(r(X)) of r(X). Conse
quently 

G(f)(X) = <uf(r(X)), flx) = <uf.n(r(X) ), flx) 
= <wir(X)), flx) = <e(r(X)), flx) E 7L/2. 

6.3 Definition : For any smooth closed manifold X E Oll the 7L/2 Euler 
characteristic X2(X) is the element <e(r(X) ), flx) E 7L/2. 

Since we have just observed that the 7L/2 Euler characteristic is merely a 
specialized Stiefel-Whitney genus, Proposition 6.2 guarantees that it too 
can be regarded as a 7L/2-algebra homomorphism of} � 7L/2 or as a 7L/2-
algebra homomorphism 91 � 7L/2 ; the kernel of the latter homomorphism 
is geometrically characterized in Remark 9.25. 

7. 7L/2 Thorn Forms 

For any smooth closed manifold X E Oll let H*(X) � H *(X) be the 
7L/2 Poincare duality map (')flx of Corollary 2.4 and let H*(X ) ® H*(X) � 
7L/2 be the corresponding bilinear symmetric 7L/2 Po in care form, with 
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(a, fJ)p = <a, DpP) = <rx u P, J.1x) E 1l./2 for any (a, p) E H*(X) x H*(X); since 
Dp is an isomorphism ( , )p is nondegenerate. We shall construct a bilinear 
symmetric 1l./2 form H *(X) @ H *(X) � 1l./2 which is dual to ( , Jp , in the 
obvious sense, hence a specific inverse H *(X) � H*(X) of the 1l./2 Poincare 
duality map. The form ( , h is an element j* T x E H"(X X X), where n is the 
dimension of X ;  its behavior will provide the major result of the next section. 
In this section itself we shall furthermore show that if X � X x X is the 
diagonal map, then l1*j* Tx is the 1l./2 Euler class e(r(X» E Hn(x) of the 
tangent bundle r(X). As in the rest of the chapter, all coefficients lie in 1l./2. 

Let E � X represent the tangent bundle r(X) of a smooth closed mani
fold X E JII. One can identify X with the image a(X) c E of the zero section 
X .::. E, and since one can also identify X with the image I1(X) c X x X 
of the diagonal embedding X � X x X there is a canonical diffeomor
phism a(X) --. 11(X). One can extend a(X) -+ I1(X) in many ways to a diffeo
morph ism of open neighborhoods of a(X) c E and I1(X) c X x X, as in the 
following lemma. 

..... Fo - Ft Recall that two maps E � X x X and E --+ X x X are homotopic 
relative to a subset a(X) c E if they are the restrictions to E x {O} and 
- - F E x { I  J ,  respectively, of a map E x [0, 1 ]  -+ X x X, such that F(x, t) E 
X X X is independent of t E [0, 1 ] whenever x E a(X). In the following 
lemma X x X � X and X x X � X are the first and second projec
tions of the product X x X. 

7. 1 Lemma : Let E � X represent the tangent bundle r (X) of a smooth 
closed manifold X E "71. Then there are embeddings E � X x X and E � 
X x X of some open neighborhood E c E of the image a(X) c E of the zero
section X � E, which restrict to the diffeomorphism a(X) -+ MX), and such 
that each of" the compositions 

X � E � X x X � X  
and 

is the identity 011 X. Furthermore, there is a homotopy F from F 0 to F 1 ,  relative 
to r(X) c E, which induces a homotopy from the restriction 

E\a(X) � X x X\I1(X) 
to the restriction 

E\a(X) � X x X\I1(X). 
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PROOF : The initial stage of the construction can be found on pages 1 08- 109 
of Bishop and Crittenden [ 1] ,  on pages 32-40 of Helgason [ 1 ], or on pages 
32-40 of Helgason [2]. One introduces an affine connection in LeX), such 
as the Levi-Civita connection associated to a riemannian metric on L eX). 
This provides an expqnential map Ex � X for each x E X, defined on an 
open neighborhood Ex c Ex of 0 E Ex , with the following properties : each 
expx is a diffeomorphism such that expxO = x E X, and there is an open 
neighborhood E c E of a(X) c E such that each expx is the restriction to 
Ex c E of a map E -+ X. One can therefore define E x [0, 1] � X x X, as 
required, by setting 

F(e, t) = (exP1t(e, (te), eXP1t(e,( - ( l  - t)e) ). 
For any X E 011 the 71/2 cohomology module H*(X x X, X x X\d(X)) 

i s an H*(X)-module with respect to the composition 

H*(X) ® H*(X x X, X x X\d(X) ) 
pri ® id , H*(X x X) ® H*(X x X, X x X\d(X)) 

U , H*(X x X, X x X\d(X) ) 
carrying any rx ® T E H*(X) ® H*(X x X, X x X\d(X) ) into (rx x 1 ) u T E 
H*(X x X, X x X\d(X)). The 71/2 cohomology module H*(E, E*) is also 
an H*(X)-module, as usual, with respect to the product 

H*(X) ® H*(E, E*) � H*(E) ® H*(E, E*) � H*(E, E*) 
carrying rx ® U E H*(X) ® H*(E, E*) into n*rx u U E H*(E, E*). For any 
x E X let 

X, X\{x ]  = {x} x X, {x}  x X\d(X) � X x X, X x X\d(X) 
be the left inclusion, and let Ex , Ei :!:. E, E* be the inclusion of the fiber pair 
over x, where E '::' X represents the tangent bundle r(X) as usual. 

7.2 Lemma : For each X E !lIJ  and each x E X there is an H*(X)-module 
isomorphism G1 and a 7L/2-module isomorphism G1•x such that the diagram 

of 71/2-module homomorphisms commutes. 
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PROOF : Let D c X x X be the image F o(if) of the embedding F 0 of 
Lemma 7. 1 ,  define a neighborhood Y e  X of x E X by setting {x }  x Y = 
( {x ]  x X) n D, and observe that the inclusion Ix induces a commutative 
diagram 

H*(X x X, X x X\�(X)) ---�-----> H*(D, D\Ll(X) )  

. , j j .: 
H*( {x] x X, {x l  x X\Ll(X) ) � H*( {x}  x Y, {x} x Y\Ll(X) ) 0 ] ]0 

H*(X, X\{x} )  ----"-----+ H*( Y, nIx} )  

with horizontal excision isomorphisms. If Ex = E n Ex , E: = E n  E:, and 
E* = E n E*, the inclusion Ex , E: 4 E, E* also induces a commutative 
diagram 

H*(E, E*) --"'---+ H*(E, E*) _j ]n 
with horizontal excision isomorphisms. Since the composition 

X --+ E � X  x X � X  

is the identity map, F 0 induces a commutative diagram 

Ex , Ei _--,F,-"o.:.::.x_�. {x l  x Y, {x }  x Y\Ll(X) = Y, Y\{x l  b] le 
E, E* _----'--"f",,'------>. D, D\Ll(X) 

with vertical inclusions, hence a commutative diagram 
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with isomorphisms F� and F�.x ' To complete the proof one defines G, and 
G,.x to be the obvious compositions of excision isomorphisms with Ft; and 
F�.x ' respectively. The proof that G, is an H*(X)-module isomorphism is a 
direct verification. 

One can interchange the two factors X x X in Lemma 7.2, in which case 
H*(X x X, X x X\L\(X» is an H*(X)-module with respect to the compo
sition carrying 

f3 ® Y E  H*(X) ® H*(X x X, X x X\L\(X» 
into 

(l x f3) U Y E  H*(X x X, X x X\L\(X» ; 

for any x E X the right inclusion is 
X, X\{x} = X x {x} ,  X x {x J \L\(X) X x X, X x X\L\(X). 

As in Lemma 7.2 one then has an H*(X)-module isomorphism Gr and 
,z/2-module isomorphisms Gr•x such that the diagrams 

H*(X x X, X x X\L\(X» c:: ' H*(E, E*) 

� l I-
H*(X, X\ {x } )  __ G_r .'-x -----+. H*(Ex , E�) '" 

of ,z/2-module homomorphisms commute. 

In the following lemma we temporarily ignore the two H*(X)-module 
structures of H*(X x X, X x X\L\(X» . 

7.3 Lemma : The isomorphisms G, and Gr from H*(X x X, X x X\L\(X» 
to H*(E, E*) are the same lL/2-module isomorphisms. 
PROOF : G, is defined up to excision isomorphisms as the ,z/2-module iso-

- - F* - -
morphism H*(D, D\L\(X» � H*(E, E*), and Gr is defined up to the same 
excision isomorphisms as the ,z/2-module isomorphism H*(D, D\L\(X» � 
H*(E, E*). By Lemma 7.1 there is a homotopy F from E � D c X x X 
to E � D c X x X relative to O'(X) c E, which also induces a homotopy 
from the restriction 

E\O'(X) � D\L\(X) c X x X\L\(X) 

to the restriction 

E\O'(X) � D\L\(X) c X x X\L\(X). 

Hence F� = Ft, so that G, = Gr • 
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7.4 Lemma : For any fJ E H*(X) and any T E H*(X x X, X x X\�(X) ) one 
has T u  ( /J x I )  = T u  ( I  x fJ) E H*(X x X, X x X\�(X) ) ;  hence 

j*T u UJ x I )  = j*T u ( I  x fJ) E H*(X x X) 
.fiJl· the illc/vsioll X x X � X x X, X x X\�(X). 
PROOF : Since the 1'/2-algebra H*(X x X, X x X\�(X) ) is commutative, 
it suffices to show that (fJ x 1 )  u T = ( I x fJ) u T. However, Lemma 7.3 
gives 

GI( (fJ x 1 )  u n = n*/J u GIT 
= n*fJ u GrT = Gr( ( l  x fJ) u T )  

for the common 1'/2-module isomorphism Gl = Gr • 
Lemmas 7.3 and 7.4 together imply that Gl and Gr are the same H*(X)

module isomorphism, which we henceforth denote 

H*(X x X, X x X\�(X) )�H*(E, E*). 
7.5 Definition : For any smooth closed Il-dimensional manifold X E o/i the 
diagonal 1'/2 Thom class Tx E Hn(x x X, X x X\�(X) ) is the inverse image 
G- 1 U,(X) of the 1'/2 Thorn class U,(X) E Hn(E, E*) of the tangent bundle ,(X); 
the 1'/2 Thom form of X E o/i is the image j* T x E H"(X x X) of T x under the 
inclusion-induced homomorphism Hn(x x X, X x X\�(X) )  � Hn(x x X). 

There are useful alternative characterizations of the diagonal 1'/2 Thorn 
class T x .  Recall from Lemma l . l  and Corollary 1 .5 that for each x E X the 
1'/2 homology module HiX, X\{x} )  is free on the single generator jx.*flx , 
where X 1:. X, X\{x} is an inclusion and flx E Hn(X) is the fundamental 1'/2 
homology class. (The boundary X of any X E 011 is empty, so that Hn(X, X) = 
H n(X).) Hence the 1'/2 cohomology module Hn(x, X\ {x} )  is also free on a 
single generator, which we denote Wx ' 

7.6 Proposition : For any smooth closed Il-dimensional manifold X E o/i and 
allY x E X, let 

X, X\{x] = {x}  x X, {x} x X\�(X) � X x X, X x X\�(X) 
and 

X, X\[x}  = X x {x} ,  X x {x}\�(X) � X x X, X x X\�(X) 
be left and right inclusions, respectively. Then the diagonal 1'/2 Thom class 
Tx E Hn(x x X, X x X\�(X) ) is uniquely characterized by the property that 
I�Tx = wx E Hn(x, X\{x} )  for each X E X ; similarly, Tx is also uniquely 
characterized by the property that r: T x = Wx E Hn(x, X\ {x} )  for each x E X. 
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PROOF : To prove the first assertion it suffices to reexamine the diagram 

H*(X x X, X x X\A(X) ) � H*(E, E*) 

.] ]-
of Lemma 7.2, where GTx = Ut(X) ,  and to recall from Definition IV. 1 .4 that 
the 7L/2 Thorn class Ut(X) E H"(E, E*) is the unique class such that j: Ut(X ) is 
the generator of H*(Ex , E:) for each x E X . The proof of the second assertion 
is similar. 

The following result is a partial rephrasing of Proposition 7.6. 

7.7 Lemma : Let J1.x E HiX) be the fundamental 7L/2 homology class of a 
smooth closed n-dimensional manifold X E UU, with 7L/2 Thorn form j*Tx E 
H"(X x X); then G*Tx ,  1 x J1.x) = 1 E 7L/2 and similarly <j*Tx , J1.x x 1 ) = 
1 E 7L/2. 

PROOF : One starts with an inclusion diagram 

X = {x}  x X _=ix---'I {x}  X X, {x}  x X\A(X) = X, X\{x}  

, . j j " 
X x X ----=------+1 X X X, X x X\A(X). 

By applying H*( ) and H *( ) and computing Kronecker products, it follows 
that 

<j*Tx , 1 x J1.x) = G*Tx , lx.*J1.x) = <1:j* Tx , J1.x) 
= <j:l:Tx , J1.x) = <1:Tx ,Ux!*J1.x) 
= <wx ,(jx)*J1.x) = 1 

for the unique generators Wx E H"(X, X\{x} and Ux!*J1.x E H"( X, X\{x} ). A 
similar proof yields the second assertion. 

Here is the main result of this section. 

7.8 Proposition : For any smooth closed n-dimensional manifold X E oll, let 
j*Tx E H"(X x X) be the 7L/2 Thorn form of D�finition 7.5, and let H*(X) � 
H *(X) be the Poincare duality isomorphism f'lJ1.x of Corollary 2.4. Then 
<j*Tx , a  x DpfJ) = (f3, a) E 7L/2 jor any a E H*(X) and any fJ E H*(X), and 
(j*Tx , DplY. x b) = <1Y., b) E 7L/2 for any IY. E H*(X) and b E H*(X). 
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PROOF : Observe that if a and 13 are homogeneous of different degrees then 
(j* Tx , a x DpP) and (p, a) both vanish ; hence one may as well assume 
that a and 13 are homogeneous of the same degree, in which case the cap 
product {1 n a is just (13, a) 1 E H  o(X). Since the coefficient ring is Z/2, cup 
products commute, and one also has the classical identity (0 x cp) n ({L x v) = 
(0 n {L) x (cp n v) relating cap and cross products (as in Spanier [4, p. 255], 
for example). Consequently 

( J* Tx , a  x DpP) 
= (J* Tx , (1 n a) x ({1 n {Lx) = (j* Tx , ( 1 x 13) n (a x {Lx) 
= (j* Tx u ( l  x 13), a x {Lx) = ( j* Tx u ({1 x 1 ), a x {Lx) 
= (J* Tx , (13 x 1 )  n (a x {Lx) = (j* Tx , (13 n a) x (l n {Lx) 
= ( J* Tx , ( p, a) l x {Lx) = ( p, a) ( J* Tx , 1 x {Lx) = ( p, a), 

as claimed, by Lemmas 7.4 and 7.7. Similarly, if a and b are homogeneous 
of the same degree one has 

( j* Tx , DprJ. x b) 
= (j* Tx , (a n {Lx) x ( 1 n b) = (j* Tx , (a x 1 ) n ({Lx x b) 
= < j* Tx u (a x l ), I1x x b) = < j* Tx u ( 1 x a), {Lx x b) 
= (j* Tx , ( 1 x a) n ({Lx x b) = < j* Tx , ( 1  n {Lx) x (a n b) 
= (j* T x ' {Lx X < a, b) 1) = < a, b> < J* T x '  {L x x l > = ( a, b > .  

Observe that the preceding proof does not use the property that the 
1'/2-module homomorphism H*(X) � H *(X) is actually an isomorphism. 

Recall that the 1'/2 Poincare form is a symmetric bilinear form 

H*( X) x H*(X) � Z/2 
defined by setting (a, {1 )p = <a, Dp(1) = <a u P, {Lx) for any (a, p) E H*(X) x 
H*(X), and observe that the 1'/2 Thorn form j* Tx E H*(X x X)  of Definition 
7.5 can be regarded as a bilinear form 

H*(X) x H*(X) � 1'/2 

by setting (a, hh = <J* Tx , a x b> for any (a, b) E H*(X) x H*(X). Since 
H*(X) is canonically isomorphic to Hom.J'/2(H *(X), 1'/2), the 1'/2 Thorn 
form induces a unique 1'/2-module homomorphism H *(X)�H*(X) 
such that <DTa, b) = (a, hh for any (a, b) E H  *(X)  x H *(X). 

7.9 Corollary : For any X E (JII, the compositions DpDT and DTDp are the 
identity isomorphisms on H *(X) and H*(X), respectively ; that is, DT = Dj; 1 , 
so that the 1'/2 Poincare form ( , )p and 1'/2 Thorn form ( , h are inverse non
degenerate bilinear forms. 
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PROOF : For any (/3, a) E H*(X) x H *(X) one has ( /3, DpDTa) = (/3, DTa)p = 
(DTa, /3)p = (DTa, Dp/3) = (a, Dp{3h = (j* Tx , a x Dp/3) = ( /3, a) by Propo
sition 7.8, so that DpDT is an isomorphism. Similarly, for any (IX, b) E H*(X) x 

H *(X), one has (DTDplX, b) = (DplX, bh = G* T x, DplX x b) = (IX, b) by Prop
osition 7.8, so that DTDp is an isomorphism. 

For later convenience we exhibit the duality between ( , )p and ( , h in 
terms of Dp and DT, as it occurs in the preceding proof: 

(DTa, Dp/3) = ( /3, a) E 7l.j2 for any ({3, a) E H*(X) x H*(X). 
Here is one of the most useful properties of 7l.j2 Thorn forms. 

7.10 Proposition : Let X E u7i be any smooth closed n-dimensional man!lold 
with 7l.j2 Thom form j* T x E H"(X x X), and let X ! X x X be the diagonal 
map. Then the 7l./2 Euler class of the tangent bundle ,(X) is given by e{,{X) ) = 
!l*(j*Tx) E H"(X). 

PROOF : Let E � X represent ,(X). Then the vertical arrows on the left-hand 
side of the clearly commutative diagram 

H"(X x X, X x X\!l(X» � H"(X x X) 

j , I .  � H"(D, D\!l(X) )  J I H"(D) I Hn(x) 

� 1Ft, � 1 1 1 
Hn(E, E\a(X»)  ---,---j*-�I H"(E) a* I H"(X) 

�1 1 / 
H"(E, E*) __ ,,--jO _-----+ Hn(E ) / UO 

are precisely the isomorphisms used to construct the isomorphism G1 ( = G) 
of Lemma 7.2 ; hence one has a commutative diagram 

Hn(x x X, X x X\!l(X»)  � Hn(x x X) � 
+ A�,X) 

H"(E, E*) j* I Hn(E) / 
Since the 7l.j2 Euler class of ,(X) is given in Definition IV.3' ! by setting 
e(r(X» = a*j* Ut(X) for the 7l.j2 Thorn class V t(X) E Hn(E, E*), it follows that 

j*!l* Tx = a*j*GTx = a*j* Ut(X) = e(r(X» , 
as claimed. 
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8. The Thom-Wu Theorem 

We shall show for any formal power series f(t) E 2/2 [et]] with leading 
term 1 E 2/2 that the multiplicative 2/2 class u j(r(X) ) E H*(X) ( c H**(X))  
of the tangent bundle r(X) of any smooth closed manifold X E I1lI depends 
only on the 2/2 homology and cohomology of X itself. Hence uAr(X))  is 
homotopy invariant (up to canonical isomorphisms) ; in particular, u j(r(X))  
is independent of the smooth structure assigned to X. The proof uses the 
Steenrod square Sq of Remark V.7. 1 4, which is not part of elementary alge
braic topology ; nevertheless, the result is too important to omit. 

8. 1 Lemma : For any smooth closed n-dimensional manifold X E (J7i let j*T x E 
W(X X X) be the 2/2 Thom form, and let W E  H*(X) be the total Stiejet
Whitney class w(r(X) )  of the tangent bundle r(X) ; then 

j*Tx u (w x 1 )  = j*Tx u ( l  x w) = Sqj* Tx E H*(X x X), 

for the Steenrod square Sq of Remark V.7. l 4. 

PROOF : Let E � X represent r(X) and let Ut(X) E Hn(E, E*) be the usual 
2/2 Thorn class. By Remark V.7. 1 8  one then has an identity n*w u Ut(X) = 
Sq U t(X) E H*(E, E*) to which one applies the 2/2-module isomorphism 

H*(E, E*) � H*(X x X, X x X\A(X) ) 

of Lemma 7.2 to obtain 
(w x 1 )  u Tx = Sq Tx E H*(X x X, X x X\A(X) ). 

Since Sq is natural, and since H*(X x X) is commutative with respect to 
cup product, one can then apply the inclusion-induced homomorphism 
H*(X x X, X x X\A(X) ) � H*(X x X) and Lemma 7.4 to complete the 
proof. 

For any X E 0ll the Steenrod square Sq induces a transpose 2/2-module 
homomorphism H *(X) � H *(X), defined by the requirement that 
<{J, Sqx a) = <Sq {J, a) for any a E H*(X) and any {J E H*(X). 

8.2 Lemma : For any X E °ll and any elements a E H*(X), b E  H*(X), and 
T E H*(X x X) one has 

<Sq T, a x b) = < T, Sqx a  x Sqx b) E 2/2. 

PROOF : Since T is a 2/2 linear combination of cross products IX x {J E 
H*(X x X), and since Sq(1X x {J) = Sq IX X Sq {J by Remark V.7. 1 6, it suffices 
to observe that 

<Sq(1X x {J), a x b) = <Sq lX x Sq {J, a x b) = <Sq lX, a) <Sq {J, b) 
= <rx, Sqx a) <{J, Sqx b) = (IX X {J, Sqx a  x Sqx b) . 
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In the following result H *(X) � H*(X) is the inverse of the 7L/2 
Poincare duality isomorphism H*(X) Dp= '-'P.x j H *(X), as in Corollary 7.9. 

8.3 Proposition (Thorn and Wu) : For any smooth closed manifold X E °11 
the total Stiefet-Whitney class w(r(X) ) of the tangent bundle r(X) satisfies 
the identity w(r(X) ) = Sq DT Sqx Ilx E H*(X) for the fundamental 7L/2 class 
Ilx E H *(X). 
PROOF : Set w(r(X) ) = W E  H*(X) as before. Then for any a E H *(X) one has 

(w, a) = (DTDpw, a) 
= (Dpw, ah = (j*Tx , Dpw x a) = (j*Tx ,  (w n Ilx) x ( 1  n a) 
= (j*Tx ,  (w x 1 )  n (Ilx x a) = (j* Tx u (w x l ), Ilx x a) 
= (Sqj*Tx , llx x a) = (j*Tx , Sqx llx x Sqx a) 
= (Sqx llx , Sqx ah = (DT Sqx llx , Sqx a) 
= (Sq DT Sqx llx , a) E 7L/2, 

by Lemmas 8. 1 and 8.2. 

Proposition 8.3 is a variant of the original result of Thorn [2] and Wu 
[3] . Another formulation is given in Corollary 8.5. 

8.4 Theorem (Thorn and Wu) : For any smooth closed manifold X E rlIi 
and any formal power series f(t) E 7L/2 [et]] with leading term 1 E 7L/2, the 
7L/2 multiplicative class u/(r(X) ) E H*(X) depends only on the algebraic 
structure of H*(X) and H*(X) ; in particular, u/(r(X)) is independent of the 
smooth structure assigned to X. 
PROOF : Since the fundamental 7L/2 class Ilx E HiX) and the operators 
Sqx , D, Sq depend only on algebraic properties of H *(X) and H*(X), the 
identity w(r(X) ) = Sq DT Sqx llx of Proposition 8.3 implies the result for the 
total Stiefel-Whitney class, which is the special case f(t) = 1 + t. However, 
Proposition V.2. l 0  provides polynomial computations for any multiplica
tive 7L/2 class uAr(X) ) in terms of w(r(X) ), which are also independent of 
r(X). 

Since H *(X) and H*(X) depend only on the homotopy type of X E rlIi, 
the preceding result can be rephrased as follows : For any X E rlIi the 7L/2 
multiplicative classes u/(r(X) ) depend only on the homotopy type of X. 

Here are some more corollaries of Proposition 8.3. 

8.5 Corollary (Wu) : For any smooth closed manifold X E o/i the Wu class 
Wu(r(X) ) of the tangent bundle r(X) is the unique class v E H*(X) such that 
(v u rx, llx) = (Sq rx, llx) for every rx E H*(X). 
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PROOF : Since <v u r:x, J.i.x) = (v, r:x)p for the nondegenerate 7l.j2 Poincare 
form ( , Jp ,  uniqueness is clear. It remains to observe that 

<Wu(r(X) ) u r:x, J.i.x) = <Sq - l w(r (X) )  u r:x, J.i.x) 
= (DT Sqx J.i.x , r:x)p = <DT Sqx J.i.x , Dpr:x) 
= <r:x, Sqx J.i.x) = <Sq r:x, J.i.x) 

by Remark V.7.20 and the reformulation of Corollary 7.9. 

8.6 Corollary : �( X E 011 is of dimension n, then Wu(r(X) ) E H*(X) vanishes 
in all dimensions p such that 2p > n. 
PROOF : If a E Hp(X), then DTa E Hn - P(X) and 

<Wu(r(X) ), a) = <DT Sqx J.i.x , a) = <DTa, Sqx J.i.x) = <Sq DTa, J.i.x) . 

By the dimension axiom for Steenrod squares (Remark V.7. 1 4) Sqq DT a = 
o E Hn -p + q(X) for q > n - p. Hence, if p >  n - p one has SqP DTa = 
o E Hn(x), so that <Wu(r(X) ), a) = 0, for every a E Hp(X). 

8.7 Corollary : For any X E 071 q{dimension n > 0 one has <Wu(r(X) ), J.i.x) = 
o E 7l.j2. 

PROOF : Since 2n > n, this is a consequence of Corollary 8.6. 

9. Remarks and Exercises 

9.1 Remark : The 7l.j2 fundamental class J.i.x E Hn(X, X ;  7l.j2) of Definition 
1 .4 was defined only for smooth n-dimensional compact manifolds X with 
boundary X because the given proof of its existence required results (Propo
sitions 1.8.4 and 1.9.7) which were established only in the triangulable case. 
However, with additional effort one can extend Definition 1 .4 to n-dimen
sional compact topological manifolds. 

If an n-dimensional compact topological manifold X with boundary X 
is oriented in the sense described in the next volume, then for any commuta
tive ring A with unit there is a unique fundamental class J.i.x E Hn(X, X ;  i\) ;  
the case A = 7l. suffices. We shall obtain this result for the smooth case in 
Volume 2 as an oriented analog of Proposition 1 .3. As before, smoothness 
is not really required ; proofs of the topological case can be found in Dold 
[8, pp. 259-267], Massey [6, pp. 200-205], Milnor and Stasheff [ 1 ,  pp. 273-
274], Spanier [4, pp. 299-306], and (for closed topological manifolds) in 
Samelson [ 1 ]. 
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9.2 Remark : An alternative proof of the identity Ollx = Ilk of Proposition 
1 .9 is given in Spanier [4, p. 304] ' 

9.3 Remark : Here is an alternative proof that the 7l./2 Poincare duality 
map H*(X) Dp = "ILx � H *(X) of Corollary 2.4 is an isomorphism. The fact 
that Dp is an isomorphism is not used in the proof of Proposition 7.8 ; further
more, the Thorn form j*T x E H*(X x X) and induced homomorphism 
H*(X) � H*(X) were constructed independently of Dp . However, accord
ing to Corollary 7.9 the compositions DTDp and DpDT are identity isomor
phisms on H*(X) and H*(X), respectively ; hence Dp is an isomorphism with 
inverse DT • 

9.4 Remark : If X is an oriented compact smooth manifold with boundary 
K, then one can replace the coefficient ring 7l./2 of Theorem 2.3 by any 
commutative ring I\. with unit to obtain an oriented Poincare-Lefschetz 
duality theorem. We shall do so in the next volume, using the obvious 
analog of Lemma 2.2 ; a different algebraic format for the proof is given on 
pages 1 - 1 7  of Browder [ 1 ] .  

Poincare--Lefschetz duality i s  also valid for topological manifolds, using 
the coefficient ring 7l.j2 except in the oriented case. One of the standard 
proofs is similar to the proof of Theorem 2.3 ; it can be found in Dold 
[8, pp. 29 1 -298], Greenberg [ 1 ,  pp. 1 62- 1 89], Milnor and Stasheff [ 1 ,  
pp. 276-280], and Spanier [4, pp. 296-297'] ' There are also proofs of  the 
same nature in Borel [3] and in Griffiths [ 1] , using Alexander-Spanier and 
Cech cohomology, respectively, rather than singular cohomology. 

Given a smooth closed oriented manifold X, one can establish Poincare 
duality for arbitrary coefficients by a procedure analogous to that of Remark 
9.3 ; the details appear in Milnor [3, pp. 5 1-52] and Milnor and Stasheff 
[ 1 ,  pp. 1 27- 128] . A similar technique applies to closed topological mani
folds ; the details appear in Spanier [3] and in Samelson [ 1 ] .  

Finally, there are older proofs of  the Poincare-Lefschetz duality theorem 
for triangulable manifolds (a fortiori for smooth manifolds) in Mayer [2], 
Lefschetz [ 1 ,  pp. 1 88-204], and Maunder [ 1 ,  pp. 1 70-199] ' A survey of 
Poincare-Lefschetz duality and related topics appears in Dold [7], and a 
1965 bibliography of proofs of Poincare duality appears in Samelson [ 1 ] . 

9.5 Remark : Stiefel-Whitney (71./2 cohomology) classes of tangent bundles 
of smooth manifolds were first constructed in Stiefel [ 1 ]  and in Whitney [2] 
in 1 935, using obstruction theory, as noted in Remark V.7. l .  Whitney pre
sented the details of his original construction in Whitney [3, 4, 6], and some 
related work appeared in Rohlin [3], also using obstruction theory. In 
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Pontrjagin [ 1 ]  classifying space techniques were applied exclusively to 
tangent bundles to extend the results of Stiefel [ 1 ] ;  the same techniques 
were applied in the detailed exposition of Pontrjagin [5]. 

Chern [ I ]  and Pontrjagin [2] used integral formulas to express Stiefel
Whitney classes of tangent bundles. Classifying space techniques like those 
of Pontrjagin were then developed in Chern [2] for tangent bundles ; they 
were extended to vector bundles in general in Chern [3] and in Wu [2, 5]. 

9.6 Remark : The general computation of Stiefel-Whitney classes via 
Steenrod squares (Exercise V.7. 1 7) appeared in Thorn [1] ,  which concerns 
arbitrary real vector bundles. However, the method was instantly applied 
to tangent bundles in Thorn [2], Wu [3}, and Thorn [4] . 

There are other methods for computing Stiefel-Whitney classes of tan
gent bundles of smooth manifolds. For example, Bucur and Lascu [ 1 ]  
compute Stiefel-Whitney classes o f  smooth closed manifolds by  a method 
originally applied in B. Segre [ 1 ]  to algebraic varieties. The alternate com
putations of Nash [ 1 ]  and of Teleman [ 1 -3] form part of the next remark. 

9.7 Remark : We already know from Remark 111 . 1 3.34 that Thorn [4] 
shows that the fiber homotopy type of the tangent bundle !(X) of a smooth 
closed manifold X is independent of the smooth structure assigned to X ;  a 
fortiori the same conclusion applies to the l-equivalence class of !(X). 
(These results were subsequently strengthened in Atiyah [ 1 ]  and in Benlian 
and Wagoner [ 1].) We also know from Remark V.7. 10  that Thorn [4] shows 
that Stiefel-Whitney classes of vector bundles depend only on the l-equiva
lence classes of the bundles. Consequently for any smooth (closed) manifold 
X the Stiefel-Whitney class w(!(X) ) is independent of the smooth structure 
assigned to X. (The same result was established in Theorem 8.4 by methods 
of Thorn [2] and Wu [3].) 

This is perhaps the best place to recall from the remainder of Remark 
V.7. 1 O  that one can most easily explain the preceding result by assigning 
Stiefel-Whitney classes directly to topological manifolds X in a way which 
produces w(!(X) ) whenever X happens to be smooth. The first such con
struction is that of Nash [ 1 ] .  A later construction begins with the micro
bundles of Milnor [ 1 1 ,  1 4], reinterpreted as tangent topological !Rn bundles 
in Kister [ 1 , 2], to which one assigns total Stiefel-Whitney classes as in 
Teleman [ 1 , 2, 3], for example; the latter Stiefel-Whitney classes agree with 
those of Nash. 

9.S Remark : The combinatorial construction on page 342 ofStiefel [ 1 ]  and 
a later sketch in Whitney [5] assign 7Lj2 homology classes (rather than 7Lj2 
cohomology classes) to smooth manifolds, using barycentric subdivisions of 
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given triangulations. These constructions were revitalized by Cheeger [ 1], 
Sullivan [ 1], Halperin and Toledo [ 1], and Latour [1] ,  with the observation 
that the "'£/2 homology classes so assigned to a smooth closed manifold X 
are the "'£/2 Poincare duals of the Stiefel-Whitney classes wj(r(X) ) of the 
tangent bundle r(X). Halperin and Toledo [ 1 ]  provided the first complete 
proof of the duality assertion ; later proofs were given by L. R. Taylor [ I ]  
and Blanton and McCrory [ 1] .  Goldstein and Turner [ 1 ]  give a variant of 
Whitney's construction which is explicitly independent of barycentric sub
division, Banchoff [ 1 ]  gives a visually appealing interpretation of the con
struction, and McCrory [ 1 ]  and Porter [ 1 ]  give an intepretation which is 
based upon singularities of mappings of the manifold X into euclidean spaces. 
Related constructions can be found in Akin [ 1 ]  and in Goldstein and Turner 
[2]. 

9.9 Remark : The preceding remark suggests that Stiefel-Whitney coho
mology classes of tangent bundles also lead a life of their own, without the 
machinery of vector bundles in general. In  fact, an axiomatic characterization 
of Stiefel-Whitney classes of tangent bundles is given in Blanton and 
Schweitzer [ I ], and another axiomatic characterization of such classes is 
given in Stong [7]. The value of the Blanton-Schweitzer axioms is demon
strated in L. R. Taylor [ 1 ]  and in Blanton and McCrory [ 1 ], where they are 
used to prove the duality theorem mentioned in the preceding remark. The 
key to Blanton and Schweitzer [ I ]  lies in Remark Ill .  I 3.44. 

9.10 Remark : For any smooth manifold X the classical Whitney duality 
theorem in H*(X ;  "'£/2) is merely the Whitney product formula for the Whitney 
sum r(X) EB v f of the tangent bundle r(X) and the normal bundle v f of any 
immersion X .!.. [R2n -k ; the result was first announced without proof in 
Whitney [6], as already noted in Remark V.7.8. An analogous duality theo
rem in H*(X ; "'£/2) was established in Halperin and Toledo [2], helping to 
verify that the "'£/2 homology classes of Remark 9.8 are Poincare duals of the 
corresponding Stiefel-Whitney (cohomology) classes ; the homology duality 
is visually interpreted in Banchoff and McCrory [ 1 ]. Finally, the suggestion 
formulated in Remark 9.9 is further dramatized by a direct combinatorial 
construction in Banchoff and McCrory [2] of the dual Stiefel-Whitney 
(cohomology) classes wj(r(X)) of any triangulated manifold X. 

9.1 1 Exercise : Use the formula 

r(Gm([Rm + n) ) EB (y� ® y:') = (m + n)y� 
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of Exercise 11I . 1 3.27 to compute the total Stiefel-Whitney class w(r( Gn(lRm + n» 
E H*(Gm(lRm + n ) )  of the tangent bundle r(Gm(lRm + n ) )  of the real Grassmann 
manifold Gm(lRm + n). [Hint : Do Exercise V.7.9 first.] 

9.12 Exercise : For any smooth closed manifold X the tangent bundle 
r(X x X) of the product X x X is trivially the sum r(X) + r (X). For any 
riemannian metric < , ) on r(X) one can therefore define a riemannian metric 
on r(X x X) by setting <e + e', f  + I') = <e, f) + <e', f') for elements 
e, e', I, I' in the total space of r(X) such that ree = reI and ree' = reI', where 
re is the projection onto X. Hence one can define the normal bundle Vd of the 
diagonal map X � X x X by requiring r(X) EE> Vd = d1r(X x X) as in 
Definition 4. 1 .  Show that Vd is r(X) itself. 

9.13 Remark : Some general immersion theorems were briefly described in 
Remark 1 . 1  0. 1 3, and a classical nonimmersion theorem was proved in Prop
osition 4.5. Here is a very general necessary and sufficient immersion 
criterion. 

If X !.. 1R2n - p is any immersion of a smooth n-dimensional manifold X, 
then the normal bundle V I is of rank n - p and r(X) EE> V I = 62n - P over X, 
as in Definition 4. 1 .  Conversely, according to M. W. Hirsch [ 1 ], if there is 
any real vector bundle � of rank n - p over X such that r(X) EE> � = 62n - P, 
then there is an immersion X !.. IR 2n - P whenever X is corn pact. 

The "easy" Whitney immersion theorem of Remark 1. 10. 1 3  trivially pro
vides an immersion X � 1R2n + 1 for any smooth n-dimensional manifold X, 
and according to another result of M. W. H irsch [1] there is a smooth homo
topy X x [0, 1] --+ 1R2n + 1 relating any two such immersions, ho and h i ' such 
that each X x { t }  --+ 1R2n + 1 is also an immersion. I t  follows that the classifying 
maps X --+ G" + 1 (lRoc,) for the normal bundles Vhu and Vh , are homotopic, hence 
that Vho = Vh , ; that is, the normal bundle Vh is uniquely defined by X itself. 
(According to Kervaire [2] this result was already known for embeddings 
X � 1R2n + I . In fact, for n > 1 Wu [8] had proved an even stronger result :  
any two smooth embeddings X � 1R2n+ 1 and X � 1R2n +  I of a smooth n
dimensional manifold X are isotopic in the sense that there is a smooth map 
X x [0, I ]  � 1R2r" I such that each X � 1R2n + 1 is itselfa smooth embedding.) 

One can always weaken any two immersions X !.. 1R2n - p  and X � 1R211 -q 
with normal bundles VI and Vg , using inclusion maps 1R2n - p --+ 1R2n + 1 and 
1R2n - q --+ 1R2n + 1 to obtain immersions X !.. 1R2n - P --+ 1R2n + 1 and X � 1R2n - q --+ 
1R2n + 1 with normal bundles V I EE> FP + I and Vg EE> eq + I , respectively. According 
to the preceding paragraph one then has v I EE> eP + 1 = Vg EE> eq + 1 ; that is, in 
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the terminology of Remark 1 1 1. 1 3 .36, any two normal bundles of X determine 
the same stable equivalence class, the stable normal bundle of X. 

By combining the preceding results it follows that the question of a 
"best-possible" immersion X .!. 1R2n-P of a given smooth n-dimensional 
manifold X is equivalent to the determination of the geometric dimension of 
the stable normal bundle of X, as in Remark 1 1 1 . 1 3.40. Specifically, if the 
geometric dimension of the stable normal bundle of X is n - p or less then 
X immerses in 1R2n - P, at least when X is compact. 

9.14 Remark : The "best-possible" immersion conjecture of Remark 1 . 1 0. 1 3  
was proved by Cohen [ 1 ], using results of R .  L .  W. Brown [2, 3] and Brown 
and Peterson [4, 5] : any smooth n-dimensional compact manifold X admits 
a smooth immersion X -t 1R2n- a(n), where Q( n) is the number of 1 's in the 
dyadic expansion of the dimension n. According to Proposition 4.5 one 
can do no better. 

Here is an outline of the proof. Let BO(m) denote the classifying space 
Gm( lRc£ ) for real m-plane bundles, as in Remark I I I . l 3.4, and let BO denote 
the classifying space limm BO(m) for stable real vector bundles, as in Remark 
1 1 1 . 1 3.36. Since the 71/2 cohomology rings H*(BO(m) ) are polynomial rings 
with one generator wl(ym), . . .  , w

m
(ym) in each degree 1 ,  . . . , rn, the identities 

w/ym EB E l ) = w;(ym) and the naturality of Stiefel-Whitney classes imply that 
the 71/2 cohomology ring H*(BO) is a polynomial ring with one generator 
W; in each degree i > O. 

Now let X be any smooth n-dimensional compact manifold, and let Vx 
be its stable normal bundle ; as in Remark IIl . 1 3.36, there is a stable homo-
topy classifying map X -A BO for Vx ' According to Remark 9. 1 3, one 
must show that the geometric dimension of Vx is at most n - Q( n) ; that is, 
one must factor .f� in the form X -t BO(n - Q( n) )  -t BO, up to homotopy. 

(According to the result ofWu [8] and M .  W. Hirsch [ 1 ]  cited in Remark 
9.1 3, one can regard Vx more concretely as an (n + I )-plane bundle "h 
whose classifying map X -t BO(n + 1 )  is to be facto red in the form X -t 
BO(n - Q( n)) -t BO(n + 1 ), up to homotopy. However, the stable classifying 
space BO is more convenient than BO(n + 1 ). 

Let In C H*(BO) be the ideal of all polynomials in Wl o W2 , . • •  lying in 
the kernel of all the homomorphisms H*(BO) � H*(X) induced by the 
stable homotopy classifying maps .f� , for all smooth n-dimensional mani
folds X. According to Brown and Peterson [4, 5J there is a topological space 
BO/In and a universal map BO/In J...,. BO with th� following two properties : 
(i) each fx can be factored in the form X -+ BO/In � BO, and (ii) the inclusion 
In C H*(BO) induces a short exact sequence 

o � In ----+ H*(BO) � H*(BO/In) � O. 
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Briefly, BD/Ill is itself a classifying space for stable normal bundles of smooth 
n-dimensional manifolds, and its 2/2 cohomology ring is as small as possible. 
Brown and Peterson also obtain a weakened form MO/I" -+ MO(n - oc(n) ) -+ 
MO of a possible factorization BD/I" -+ BO(n - oc(n) )  -+ BD of .ill '  

Recall from Remark Ll0. 1 3  that R .  L .  W .  Brown [2, 3] showed that 
every smooth closed n-dimensional manifold is cobordant to a manifold 
that immerses in �2" - at"). Cohen [ 1 ]  uses this result to construct a space X" 
and maps '/;, and g" for which .the compositions XII � BO(n - oc(n) ) -+ BD 
and XII � BD/Ill � BD are homotopic maps from X" to BD; the corre
sponding weakened compositions TX" TJnj MO(n - oc(n) ) -+ MO and 
TX" T9n j MO/I" � MO are then homotopic maps from TX" to MO. 
Cohen also constructs a map u "  such that MO/I" � TX" � MO/I" is 
homotopic to the identity and 

TXII � MO/III � TXII � MO(n - oc(n ) )  
1'O,, 0 0'n is homotopic to T/� . Consequently the composition MO/I" ----+ 

MO(n - OC(II) ) -+ MO is a new weak version of a possible factorization of 
.ill ' homotopic to the version of the preceding paragraph ; moreover, Cohen 
strengthens the new version to an actual factorization BO/I" -+ BO(n- oc(n) )-+  
BD ofj" . I t  follows that the stable homotopy classifying map Ix of the stable 
normal bundle Vx of any smooth compact n-dimensional manifold X E vi{ 
can be facto red in the form X -+ BO/I" -+ BO(n - oc(n) ) -+ BD, and hence 
that Vx is of geometric dimension at most n - oc(n) ; consequently X immerses 
in �211 - '(11) as desired, by Remark 9. 1 3. 

9.15 Remark : Theorem 4.8 first appeared in its present form in Chern and 
and Spanier [2], following unpublished work of Hopf. The result can also be 
found in Milnor [3, pp. 43-44], Husemoller [ 1 ,  pp. 261 -262], and Milnor 
and Stasheff [ 1 ,  p. 1 20]. 

There is an important partial converse in Haefliger and Hirsch [ 1], as 
follows. Let X be a smooth closed k-connected n-dimensional manifold with 
o � 2k < 11 - 4; then X embeds in �2"-k - l if and only if W"- k - l (r(X) ) = 
o E H" - k - I (X). (A manifold is k-connected whenever it is connected and the 
homotopy groups 7r 1 (X), . . .  , 7rk(X) vanish.) Thus, in this special case, the 
embedding criterion of Theorem 4.8 is both necessary and sufficient. 

The case k = 0 of the Haefliger-Hirsch theorem will be used in the next 
remark. Let X be any smooth closed manifold of dimension n > 4; then X 
embeds in �2"- 1 if and only if wn_ l (r(X) )  = 0 E H"- I (X). Observe that the 
connectedness condition is entirely deleted ; one simply applies the k = 0 
version of the Haefliger-Hirsch theorem separately to each connected com
ponent of X. 
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9.16 Remark : Some general embedding theorems were briefly suggested 
in Remark 1 . 10. 1 1 ,  and a classical nonembedding theorem was proved in 
Proposition 4. 10. This is an appropriate place for more details about the 
strongest known general embedding theorem. 

According to M. W. Hirsch [2], any smooth open n-dimensional manifold 
whatsoever embeds in [R2n - '. Accordingly we henceforth consider only 
smooth closed n-dimensional manifolds, for n = 1 ,  2, 3, . . . . 

The "hard" Whitney embedding X --+ [R2n is itself best-possible for smooth 
closed manifolds of dimensions n = 1 and n = 2 ;  for according to Proposition 
4.9 the real projective spaces RP' and Rp2 do not embed in [R '  and [R3, 
respectively. On the other hand, every orientable closed manifold of dimen
sion n = 2 is one of the familiar orientable surfaces of some genus p, which 
visibly embed in [R3. 

According to Wall [ 1 ]  every smooth 3-dimensional manifold X embeds 
in [R5. 

The "hard" Whitney embedding X --+ [R2n is best-possible for smooth 
closed manifolds X of dimension n = 4; for according to Proposition 4.9 
the projective space Rp4 does not embed in [R7. However, there is a con
jecture that every smooth closed orientable 4-dimensional manifold does 
embed in [R7, and many special cases of this conjecture have been verified 
in M. W. Hirsch [3], Watabe [ 1 ,  2], and Boechat and Haefliger [ 1 , 2], for 
example. 

At the end of the preceding remark we learned that a smooth closed 
manifold X of dimension n > 4 embeds in [R2n - , if and only if the dual 
Stiefel-Whitney class wn- ldX) ) E Hn- ' (x) vanishes. However, according 
to Massey [ 1 , 3] and Massey and Peterson [ 1 ]  one has wn_ ,(r(X) )  = 0 for 
all orientable manifolds of any dimension n > 1 and for all nonorientable 
manifolds whose dimension n is not of the form 2r. It follows that every 
smooth closed orientable manifold of dimension n > 4 embeds in [R2n- l ; the 
same result is true for smooth closed nonorientable manifolds of dimension 
n ¥- 2r. Incidentally, the proviso n ¥- 2r is necessary in the nonorientable 
case ; for according to Proposition 4.9 the projective space Rpn does not 
embed in [R2n- ' for n = 2r. 

The preceding results justify the conclusion of Remark 1 . 10. 1 1 that, except 
for easily identifiable exceptions, every smooth n-dimensional manifold can 
be embedded in [R2n - ' .  The case of orientable 4-dimensional manifolds is 
probably not an exception to the general rule ; however, at the moment it is 
not known whether every smooth closed orientable 4-dimensional manifold 
embeds in [R7. 

Portions of the preceding results were obtained independently by other 
authors. S. P. Novikov [ 1 ]  showed that every simply connected smooth 
manifold of odd dimension n > 6 can be embedded in [R2n - 1

. Wu [9] showed 
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that every smooth closed orient able manifold of dimension n > 4 can be 
embedded in [R2n - I

. Rohlin [6] showed that every smooth nonorientable 3-
dimensional manifold embeds in [R5 .  

9.17 Remark : In view of the preceding abundance of smooth embeddings 
X !.. [R2n - 1 of smooth n-dimensional manifolds X, it is of interest to examine 
the normal bundles vf of such embeddings. According to Massey [2], v J has 
a nonvanishing section if and only if W2(VJ) U wn- 2(vJ) = 0 E H"(X;  1:/2) ; 
since w(vf) = w(r(X) ), as in Lemma 4.2, the latter condition is just w2(r(X) ) U 
wll _ 2 (r(X) ) = O E H"(X ; 1:/2). 

9.18 Remark : The "best-possible" embedding conjecture of Remark 1 . 10. 1 1 
states that every smooth n-dimensional manifold X embeds in [R2n - a(,,) + I .  
One justification for the conjecture is the following result of R .  L. W. Brown 
[2, 3] : If X is closed, then it is cobordant to a smooth closed n-dimensional 
manifold which does embed in [R211 - a(n) + I . There is a related result in 
R. L. W. Brown [4] : a necessary and sufficient condition for X to be 
cobordant to a smooth closed n-dimensional manifold which embeds in 
S"+ k is that all Stiefel-Whitney numbers involving w;(r(X) ) for i � k vanish. 

According to M. W. Hirsch [ 1 ], if a smooth closed n-dimensional man
ifold X admits a smooth embedding X !.. [R2,, - k + 1 for which the normal 
bundle v J has a nowhere-vanishing section, then there is an immersion 
X ---> [R2n - k. The condition on v J is necessary since Mahowald and Peters on 
[ 1 ]  construct a smooth closed n-dimensional manifold X with a smooth 
embedding X !.. [R2n - k + I , for which there is no immersion X ---> [R2,, - k 
whatsoever ; since k >  cx(n) in this example, there is no contradiction with 
the "best-possible" embedding conjecture. 

9.19 Remark : Immersions and embeddings of real projective spaces RP" 
are of special interest, partly because the nonimmersion and nonembedding 
techniques of Propositions 4.3 and 4.9 can easily be extended to other 
dimensions. However, the following Exercise does not in general represent 
best-possible results. 

9.20 Exercise : Show that if n = 2' + q for q � 0, then RP" does not immerse 
in [R2" 1 - 2 and does not embed in [R2' + 1 - I . 

9.21 Remark : Many best-possible immersions and embeddings are known 
for real projective spaces RP", and there is now a large literature on the 
subject. Most of the results known through 1 979 are catalogued in Berrick 
[ 1 ] ;  there are also earlier catalogs and large bibliographies in Gitler [ 1 ]  and 
in lames [ 1 ,  2] . 
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The problem of enumerating immersions and embeddings (up to isotopy) 
of real projective spaces is considered in Larmore and Rigdon [ 1 , 2] and in 
Yasui [2, 3], for example. 

9.22 Remark : Best-possible immersions and embeddings of complex pro
jective spaces cpn are also of interest, although most of the known results 
involve techniques which will be introduced only in later chapters of this 
work. For example, for any n > 0 Atiyah and Hirzebruch [ 1 ]  show that the 
complex projective space cpn, of real dimension 2n, does not embed in 
1R4n - 2�(n). Sanderson and Schwarzenberger [ 1 ]  use this nonembedding theo
rem to show for certain values of n that cpn does not immerse in 1R4n - 2a(n) - 1 , 
and Sigrist and Suter [ 1 ]  find necessary conditions for which C pn does 
immerse in 1R4n - 2�(n) - 1 . As of 1977 all known nonimmersion results for C pn 
were consequences of a general technique of Davis and Mahowald [2] ; 
these results depend on the geometric dimensions of Whitney sums my� of 
the canonical complex line bundle y� over cpn, and on the Atiyah-Todd 
number i(m, n), briefly mentioned in Remark I I I . l 3.42. (According to Re
mark III . 1 3.29 the corresponding immersion problem for real projective 
spaces Rpn is equivalent to finding the geometric dimensions of Whitney 
sums my� of the canonical real line bundle y� over Rpn, for all m > 0 and 
n > 0.) 

Yasui [ 1 ]  enumerates certain embeddings of complex projective spaces 
cpn (up to isotopy). Oproiu [2] generalizes some of the nonembedding 
results for real projective spaces Rpn ( = G1(lRn + 1 ) )  to the particular Grass
mann manifolds G2(lRn+ 2) and G3(lRn + 3), and Opriou [3] contains further 
such generalizations ; immersions of Grassmann manifolds are considered 
in Hiller and Stong [ 1 ] .  Kobayashi [ 1 ]  considers certain immersions and 
embeddings of lens spaces. 

9.23 Remark : Following some initial work of Rohlin [ 1 , 2, 4], the un
oriented cobordism ring 9l was completely computed in Thorn [3, 6-8] '  
Specifically, 9l is a graded polynomial algebra 1'/2 [X2 , X4 , XS ' X6 , xS ' . . .  ] 
with one generator Xn in each degree n not of the form 2q - 1 .  Furthermore, 
each generator Xn can be represented by any smooth closed n-dimensional 
manifold X n such that the basic Stiefel-Whitney number of Definition S .20 
satisfies siXn) = 1 E 1'/2. Specific manifolds representing the generators Xs 
and x 2m for all m > 0 were constructed in Thorn [8], and manifolds repre
senting the remaining generators of 9l were constructed in Dold [3]. Alter
native sets of manifolds X n representing the generators Xn of 9l are given 
in Milnor [ 1 7], in Stong [6], and in Royster [ 1 ], for example. 

Complete expositions of Thom's computation of the unoriented cobord
ism ring 9l are given in Liulevicius [ 1 ,  3] and Stong [2]. There are also 
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surveys containing some of the computation in Milnor [ toJ, Rohlin [5J, 
Poenaru [ I J, and Gray [ 1] .  

Quillen [ 1 ,  2J applied formal groups to compute the unoriented cobord
ism ring 91 via Steenrod squares, and Brown and Peterson [3J used Steenrod 
squares in an entirely different way to compute 91. Quillen's approach is 
given in detail in Brocker and tom Dieck [ 1  J , and surveys of formal groups 
and their applications to the computation of 91 appear in Schochet [1 J ,  
Buhstaber e t  al. [ l J, and Karoubi [ 1 ]. 

9.24 Remark : Unoriented cobordism is a relatively weak equivalence re
lation, so that one expects each class in 91 to be represented by at least one 
manifold with special properties. For example, it has already been noted 
that according to R. L. W. Brown [2, 3J each class in 91 contains at least 
one representative satisfying the "best-possible" immersion conjecture and 
at least one representative satisfying the "best-possible" embedding conjec
ture. According to Stong [4J, each class of positive degree in 91 can also be 
represented by a fibration over the real projective plane RP2 . 

9.25 Remark : Certain classes in 91 contain representatives with further 
special properties, especially those classes in the kernel of the 71/2 Euler 
characteristic 91 � 71/2 of Definition 6.3. According to Conner and Floyd 
[1 J, an unoriented cobordism class lies in the kernel of X2 if and only if it 
can be represented by the total space of a fiber bundle over SI with structure 
group 71/2. According to Stong and Winkelnkemper [1 J, such classes are 
characterized by the property that there is a representative which admits a 
locally free action by the product group Si x S i .  According to Iberkleid [ 1  J ,  
such classes are also characterized by the property that they can be repre
sented by at least one smooth closed manifold X whose tangent bundle 
!(X) splits into a Whitney sum of real line bundles. This implies that every 
smooth closed manifold is cobordant to a smooth closed manifold X such 
that the Whitney sum !(X) ffi e1 splits into a Whitney sum of real line bundles ; 
furthermore, according to Stong [5J, if 2 � 2k < n, then every smooth closed 
n-dimensional manifold is cobordant to a smooth closed manifold X such 
that !(X) = � ffi '1 for a 2k-plane bundle � and an (n - 2k)-plane bundle '1 .  
Finally, according to R. L. W. Brown [ 1  J, every even degree cobordism class 
in the kernel of 91 � 71/2 can be represented by a fibration over the 2-
sphere S2 , 

9.26 Remark : One can obtain results similar to those of the preceding 
remark by imposing restrictions on other Stiefel-Whitney numbers than the 
one <wi!(X) ), /lx) which defines the 71/2 Euler characteristic. For example, 
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the result of R. L. W. Brown [ 1 ]  continues as follows : If X is a smooth closed 
manifold of odd dimension n, then X is cobordant to a fibration over S2 
,whenever <wir(X))  U wn- 2(r(X)), llx) = o. 

According to Milnor [ 1 7] the un oriented cobordism class of a given 
manifold X contains a complex manifold if and only if all Stiefel-Whitney 
numbers constructed from at least one odd-dimensional Stiefel-Whitney 
class wir(X) ) vanish ; this happens if and only if the unoriented cobordism 
class of X also contains the square Y x Y of a smooth closed manifold Y. 

Finally, Yoshida [3] shows that if X is a smooth closed n-dimensional 
manifold such that all Stiefel-Whitney numbers other than those constructed 
from w1(r(X) ), . . .  , wn- k(r(X) ) vanish, for some k � 6, then X is cobordant 
to a smooth closed manifold with at least k linearly independent vector 
fields. (The special case k = 1 is an instant corollary of the result of Conner 
and Floyd [ 1 ]  described in Remark 9.25.) 

9.27 Remark : In some cases the vanishing of certain Stiefel-Whitney 
numbers of a smooth closed manifold X implies that X is cobordant to a 
manifold for which related Stiefel-Whitney classes vanish. Here are three 
such results. 

(i) Recall from Remark V.7.28 that a (smooth closed) spin manifold X 
is characterized by the conditions wt(r(X) ) = 0 and w2(r(X) ) = o. Suppose 
that one knows only that X is a smooth closed manifold such that every 
Stiefel-Whitney number containing one of the factors wt (r(X) ) or w2(r(X)) 
vanishes. Then, according to Anderson, Brown, and Peters on [ 1 , 2], X is 
cobordant to a spin manifold. 

(ii) Milnor [ 1 7], already cited in Remark 9.26, has the following further 
consequence. If X is a smooth closed manifold such that every Stiefel
Whitney number containing any odd factor w2p+ l(r(X) ) vanishes, then X 
is cobordant to a smooth closed manifold X' such that w2p+ t (r(X') ) = 0 
for every p � o. 

(iii) Let X be a smooth closed n-dimensional manifold, let i 1 , . . .  , is 
satisfy 2i l � n + 1 ,  . . .  , 2is � n + 1 ,  and suppose that every Stiefel-Whitney 
number containing one of the factors wj,(r(X) ), . . .  , wj.(r(X)) vanishes. Then 
X is cobordant to a smooth closed manifold X' such that wj ,(r(X' ) )  = 0, . . .  , 
wj,(r(X') ) = o. This result was established under the more stringent condi
tions 2i I > n + 1 ,  . . .  , 2is > n + 1 by Reed [ 1], and the same version is in 
Wall [3, p. 1 7] ;  the present version is due to Papastavridis [ 1 ,  3]' 

9.28 Exercise : Show for any n > 0 that the complex projective space cpn 
has the same Stiefel-Whitney numbers as the square Rpn x Rpn of the real 
projective space Rpn, hence that cpn is cobordant to Rpn x Rpn. Given this 
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result, construct a specific cobordism from CP" to RP" x Rp·. (The second 
part of this problem is non trivial ; it is solved in Stong [3].) 

9.29 Exercise : According to Corollary 5.6, for each n > 0 the real projec
tive space Rp2• - 1 is the boundary of a smooth compact 2n-dimensional 
manifold X 2. ; find such manifolds X 2 . '  (See Husemoller [ 1 ,  pp. 262-263] 
for example.) 

9.30 Remark : The definition of surgical equivalence and the proof of 
Theorem 5. 1 7, that surgical equivalence is cobordism, appeared indepen
dently in Milnor [9] and in Wallace [ 1 -4] .  Wall ace uses the terminology 
"spherical modification" in place of "surgery." 

9.31 Remark : The existence of the admissible Morse functions required 
to complete the proof of Theorem 5. 1 7 is easily established in M ilnor [ 1 3, 1 8] 
and in M. W. Hirsch [4], as already indicated in Lemma 5. 1 6. Other general 
accounts of Morse theory are given in Pitcher [ 1 ]  and Morse and Cairns [ 1 ], 
for example. 

Admissible Morse functions are also easily constructed for any smooth 
manifold X by means of the following technique, in Morse [ 1 ] .  Given any 
embedding X -+ IRm, there is a dense set of linear functionals IRm -+ IR whose 
restrictions to X are smooth functions all of whose critical points are non
degenerate. It remains only to separate critical values, as in Smale [ 1 ,  2]. 

9.32 Remark : Given a smooth manifold X, it is of interest to construct 
an admissible Morse function X 1.. IR with as few critical points as possible. 
According to M. W. Hirsch [2], if X is not closed, then there is a nonconstant 
smooth function X 1.. IR with no critical points whatsoever ; hence the 
question centers on closed manifolds. 

According to Reeb [ 1 ]  and Milnor [ 1], any smooth closed n-dimensional 
manifold X with only two critical points is homeomorphic (but not necessarily 
diffeomorphic) to the sphere S". A related set of conditions, involving an 
entire family of Morse functions, is used in Rayner [ 1 ]  to characterize those 
manifolds X which are diffeomorphic to S·. 

One easily constructs an admissible Morse function Rp2 1.. IR with 
only three critical points. Eells and Kuiper [ 1 ,  2] and Banchoff and Takens 
[1 J study other manifolds with the same property. 

Specific admissible Morse functions are constructed for Grassmann mani
folds in Hangan [ 1 ]  and in Alexander [ lJ, for lens spaces in Vnlnceanu [ l J ,  
and for other special cases in  Vnlnceanu [2J and Masuda [ 1 ], for example. 
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Aside from the intrinsic interest of constructing admissible Morse func
tions with a minimal number of critical points on a given smooth manifold 
X, one is interested in relating the latter number to the Ljusternik-Schnirel
mann category of X (Remark 1 . 1  0.2), a relation which is studied in Threlfall 
[ 1 ]  and Takens [ 1 ], for example. A similar question for cobordism classes 
of smooth closed manifolds is studied in Mielke [ 1-4]. 

9.33 Remark : Since any 1'/2-algebra homomorphism m � 1'/2 whatso
ever can only assume one of the values 0 E 1'/2 or 1 E 1'/2 on each of the 
generators X2 E m and X4 E m, for example, it follows that the element 
(X2)3X4 + X2(X4)2 E m of degree 10 lies in the kernel of every such cp. Con
sequently any manifold X E all representing the element (X2)3X4 + X2(X4)2 E 

m lies in the kernel of every Stiefel-Whitney genus all � 1'/2. Thus one 
cannot compute all Stiefel-Whitney numbers in terms of Stiefel-Whitney 
genera : there are smooth closed manifolds that are not boundaries all of 
whose Stiefel-Whitney genera vanish. 

It is probably not difficult to compute the ideal nJ ker G(f) c m of 
those un oriented cobordism classes lying in the kernel of every Stiefel-
Whitney genus m � 1'/2, or to compute the quotient �n/nJ ker G(.f). 
However, the geometric significance of such computations is not clear to 
the author. 

9.34 Exercise : Observe that the structure theorem m = 1'/2[X2 , X4 , XS , X6 ,  
XS , . . .  ] of Remark 9.23 implies that every smooth closed 3-dimensional 
manifold is the boundary of a smooth compact 4-dimensional manifold, a 
result first announced in Rohlin [ 1] .  It follows from Proposition 5.2 that all 
the Stiefel-Whitney numbers of any smooth closed 3-dimensional manifold 
vanish. Prove the latter statement directly, without using Remark 9.23. 

9.35 Exercise : Show that the 1'/2 Thorn form j*TRpn E H"(Rpn x RP") of 
any real projective space RP" is the sum Lp+q= " e(y� )P x e(y,� )q, for the 
generator e(y� ) E H1 (Rp·). 

9.36 Exercise : Show that the 1'/2 Thorn form j*Tsn E H"(S" x SO) of any 
sphere S" is the sum 1 x w(S·) + w(S·) x 1 ,  for the generator w(S") E H"(S·). 

9.37 Remark : The conclusion of Theorem 8.4 can be reformulated as 
follows : For any smooth closed n-dimensional manijold X the Stiejet-Whitney 
classes w l (r(X» , . . .  , w.(r(X» are independent of the smooth structure 
assigned to X. This result was also formulated in Remark V.7. 10, with in
dications of the alternative proof given in Thorn [4]. 
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9.38 Remark : According to Remark V.7.27 there are no "universal" poly
nomial relations P(w t (r(X) ), . . .  , w.(r(X) ) )  = 0 E HP(X) of weighted degree 
p which are valid for every smooth closed manifold X of dimension n � 2p ; 
this was proved independently in E. H. Brown [2] and in Stong [ 1 ]. However, 
the total Wu class Wu(r(X) )  = 1 + Wudr(X) )  + . . .  + Wun(r(X) ) of the 
tangent bundle r(X) of an n-dimensional manifold X is of the form 
2:;= 0  Pp(wdr(X) ), . . .  , wp(r(X) ), Lp� o  Pp(U t , . . .  , up) being the multiplica
tive sequence associated to the "Wu series" of Exercises V.7.2 1 and V.7.22, 
where each Pp(u t > . . .  , up) is a nontrivial polynomial of weighted degree p. 
Since Wup(r(X) ) = 0 whenever 2p > n, by Corollary 8.6, the Wu polynomials 
PiU t , . . . , up) do provide nontrivial relations Pp(wt (r(X) ), . . .  , wir(X) ) )  = 
o E HP(X) which are valid for every smooth closed manifold X of given 
dimension n < 2p. It follows that the ideal generated by the Wu polynomials 
P p(Ut ,  . . .  , up) such that 2p > n is contained in the ideal of all polynomials P 
such that P(w t (r(X)), . . .  , wn(r(X ) ) )  = 0 for every smooth closed manifold 
X of dimension n. The latter ideal was completely determined in Brown 
and Peterson [ 1 ,  2], as indicated in Remark V.7.27. 

9.39 Remark : For any given n > 0 let P(U t , . . . , un) be a polynomial over 
71./2 of weighted degree n such that P(w t (-r(X)), . . .  , w.(r(X) ) )  = 0 E H"(X) 
for every smooth closed manifold X of dimension n. According to Dold [2], 
in this special case the polynomial P(U t , . . .  , un ) then lies in the ideal gen
erated by the Wu polynomials P p(u t , . . .  , up) for 2p > n. This result does not 
generalize to polynomials of weighted degree less than n. 

9.40 Remark : Let X L Y be any map of smooth closed manifolds X, Y 
of dimensions m and n, respectively, and let H *(X) -S H *( Y )  be the induced 
71./2 homology homomorphism. Since X and Y are closed, one also has 
Poincare duality isomorphisms H*(X) � H*(X) and H*(Y )  � H*( Y ), 
as in Corollary 2.4 and Remark 9.3, with specific inverses H *(X) � H*(X) 
and H*(y )  � H*( Y ), as in Corollary 7.9. The composition 

H*(X) � H*(X) A H*( Y) DT= Dp ' ,  H*(Y )  

is the Gysin homomorphism H*(X) --.!!:!... H*( Y). Since fH proceeds i n  the 
reverse direction ( = Umkehr) of the usual cohomology homomorphism 
H*( Y )  L H*(X), the Gysin homomorphism is an example of an Umkehr 
homomorphism; more general Umkehr homomorphisms will be constructed 
in the third volume of this work, along with an explanation of the notation 
.f� and a proof of a general result which includes the following special case. 
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Recall from Remark V.7. l 4  that the Steenrod square Sq is natural in 
the sense that 

H*( n Sq • H*( n 

1'] ]1' 

H*(X) Sq . H*(X) 

commutes for any map X 1. Y, and that Sq is multiplicative in the sense 
that it satisfies the Cartan formula Sq(1X U 13) = Sq IX U Sq p. It is reasonable 
to ask whether Sq is in some sense natural with respect to the Gysin homo-
morphism H*(X) � H*( n induced by any map X !. Y. 

The answer is affirmative only if one introduces a correction consisting 
of cup products by the Wu classes Wu(r(X» E H*(X) and Wu(r (Y »  E H*( n 
of the tangent bundles r(X) and r( Y ). Specifically, the 7L/2 Riemann-Roch 
theorem asserts that 

H*(X) Sq • H*(X) fK ] 
H*( n Sq • H*( n 

uWultl X l 1  H*(X) • j fK 
uWult(Yi I. H*( Y) 

commutes. This result underscores the importance of Wu classes. 
The preceding 7L/2 Riemann-Roch theorem is a slightly specialized 

version of the main result of Atiyah and Hirzebruch [2]. later generalized 
by Spanier [2]. However, it is also a special case of a much broader gen
eralized Riemann-Roch theorem, which will be proved in Volume 3. In the 
most useful special case the Steenrod square H*(X ; 7L/2) � H*(X;  7L/2) 

• EEl ch(X) WIll be replaced by the Chern character K (X) -----4 H*(X ; 0) and the 
correction factor Wu(r(X» E H*(X; 7L/2) will be replaced by the Todd class 
td(r(X» E H*(X ; 0), along with corresponding changes for Y. 

9.41 Exercise : Let X be a smooth compact n-dimensional manifold with 
boundary X and 7L/2 fundamental class f.lx E Hn(X, X). Use covariant Mayer
Vietoris functors on .!2(X) to show for each q E 7L that the cap product 
Hn-q(x, X) nl'x . HiX) is a 7L/2-module isomorphism. (This is also a 7L/2 
Poincare-Lefschetz duality theorem.) 
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Glossary of Notation 

Roman alphabet 

A E GL(n, C) 

A" E GL(n, C)  IA I  E GL(n, C l  
,r$f,ffl 

BG 

cpn 

CP' 

C( V )  c 1R2n - p 
CW complex 
CW space 
CW structure 
CW structure of projective spaces 
C' 

CO(X)-modules .F 
CO(X)-modules .F" 

any element of the complex general 
linear grou p 

the adjoint of A E GL(n, Cl 

the modulus of A E GL(n, C)  
the category of  Z-graded abelian 

groups 
classifying space for a topological 

group G 

barycenter of a simplex I 
category of base spaces 
complex field, in its usual topology 
standard II-dimensional complex 

vector space, in its usual topology 
complex projective space 

( = G I (C" + I ) )  

complex projective space 
( = GI(C"' ) )  

cocoon o f  V c X 

the complex vector space limn C" 

in the weak topology 
the ring of continuous functions 

X -+ IR  

87 

87 
89 
45 

10 1  

9 
2, 5ff, 7 

34 

23, 34 

23, 34 

262 
20 
19ff, 20 
20 
22, 23 
34 

1 1 6 

1 1 7, 1 1 8, 1 19 
1 1 9 

35 1 
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C (X) 

C (X)-module .t(X)  of smooth 
differentials on X 

C1 (X)-module S*(X) of smooth 
vector fields on X 

C1(X)-module .fF of smooth sec-
tions X ---+ E 

C (X)-module ff* 
C" (X)-module .fF** 
ct(G, F) 

Dp 
DT 
Dn c IRn 
dY E SiX) 

E 

EG 

eA E GL(n, C) 
S(X) 

S*(X) 

F 

ff* 
ff** 

fgenus 

f'� 
G 
G x F ---+ F 

Glossary of Notation 

the ring of smooth functions 1 1 9 
X -+ IR  

category of families of fibers, with 
respect to a group action G x 
F ---+ F 

Poincare duality map n i1x 
inverse Poincare duality map Dp I 
the closed unit n-disk 
the differential of y E  C"'(X) 
the total space of a family E � X 

of fibers (especially a coordinate 
bundle E .: X)  

the  total space of  a universal G
bundle Ya 

the fi ber 7t - I ( {x} )  over x E X 
of a fiber bundle represented by 

E � X 
the exponential of A E End en 
the C (X)-module of smooth dif

ferentials on X 
the C" (X)-module of smooth vec

tor fields on X 
the 7L/2 Euler class of a real m-plane 

bundle � over X E iJI 
the fiber of any family of fibers 

(especially a coordinate bundle), 
also applied to fibre bundles (and 
especially to fiber bundles) 

a CO(X)-module of (continuous) 
sections X ---+ E 

a C"'(X)-module of smooth sections 
X ---+ E 

the first conjugate of ff 
the second conjugate of ff 
a homo morph ism !l/I Gtn I 7L/2 or 

91 � 7L/2 assigned to a for
mal power series fit) E 7L/2 [et]] 

pull back of � along X 1. X' 
structure group 
action of a transformation group G 

(structure group) on a fiber F 

1 34, 1 35. I S3 

1 27, 1 29, 1 30, 1 3 1  

1 22 

1 23 

1 33 

6 1  

250, 258, 276 
277. 283 
1 9  
1 34, 1 83, 1 84 

57, 6 1 , 67 

102 

67 

87 
1 34, 1 35, 1 83 

1 27, 1 29, 1 30, 1 3 1  

1 96 

3, 57, 60 

1 1 7, 1 1 8, 1 1 9 

1 22 

1 1 8, 1 1 9, 1 23 
1 33 

274ff, 275, 276 

3, 63 
3, 58, 60 

2, 60, 65 



Glossary of Notation 

C-related isomorphisms 
C-related set of homomorphisms 
C(f )  
CIK 
CL(n, C) 
CL(m, IR) 
CL + (m, IR) 

c",((" + m) 
C"'(C X )  
C"'(lRm + " )  
C"'(lR f )  
G"'(lRm) 
C l ((" + ! ) 
G l (C ) 
G l(lR" + ! ) 
G l ( IR L )  
!J!� 
H*(Gm(IR"' + ") :  7L12) 
H*(C"'(lRa ) :  7L/2) 
H*(IRP" :  7L12) 
H*(IRP' : E12) 
I 

I ! , . . .  , I. and I 

i(m, n) 
J 

j*Tx 
K 
K' 

Ko 
K 
Ko 
IKI c Ko 
IK'l c K 
IKlm( = IKI ) 
IKlw( = IKI ) 
IKI* 
K-theory 
Jf' 

lim" X" ( in the weak topology) 
In A E GL(n, C)  

Stiefel- Whitney Fgenus 
homogeneous space 
complex general linear group 
real general linear group 
the component of the identity in 

CL(m, IR) 
complex Grassmann manifold 
complex Grassmann manifold 
real Grassmann manifold 
real Grassmann manifold 
the total space o(ym) of o(ym) 
complex projective space CP" 
complex projective space Cpx 
real projective space RP" 
real projective space Rpx 
pull back of � along X .!'. X' 

a two-sided ideal In ® V with 
® VjI = !\ V 

simplexes in a simplicial complex 
K, which also constitute the ver
t ices of the barycentric subdivi
sion K' 

Atiyah-Todd number 
a complex structure in a real vector 

bundle 
a Thorn form ( , h 
an abstract simplicial complex 
the first barycentric subdivision of 

K 
the vertex set of K 
a family of functions K -+ [0, I ]  
a family o f  functions Ko -+ [0, I ]  
the simplicial space of K 
the simplicial space of K' 
metric simplicial space of K 
weak simplicial space of K 
the metric telescope of IK I  

Steenrod's convenient category of 
compactly generated spaces 

the logarithm of a positive element 
A E CL(n, C) 

left inclusion 

60 
60 

353 

274tf, 275, 276 
83 
59, 87 
1 , 58 
59, 90 

34 
34 
34 
34 
1 66 
34 
34 
34 
34 

63 
227tf, 230 
227tf, 229 
1 99tf, 201 
1 99tf, 200 
35 

9 

1 89, 296 
1 73 

277, 28 1 , 282, 283 
8 
9 

8 
9 
8 
8 
9 
1 7, 1 8  
1 7, 1 8  
1 2  
1 70 
48 

1 9, 20 
87 

278, 281  



354 

m-plane bundle 

J( 

911 

N 
/I-cell (for /I = O. I ,  2, . . . ) 
/I-disk D" (for /I = I ,  2, 3, . . .  ) 
/I-plane bundle 

(n - I )-sphere S" - I 
(for 11 = I ,  2, 3, " . ) 

nth type of topological space (for 
11 = 0, 1 , 2, . . .  ) 

/I-skeleton (for /I = 0, 1 , 2, . . .  ) 
Il-sphere S" (for 11 = 0, 1 ,  2, . . .  ) 
9/ 
9/' 

O(m) e GL(m, IR) 

0( 1 )  e GL( 1 , IR) 
O(�) 

o(�) 

� ( V )  

p-simplex (for p = 0 ,  1 , 2, . . . ) 
q-dimensional abstract simplicial 

complex K (for q = 0, 1 , 2, . . .  ) 
q-dimensional simplicial space I K I  

(for q = 0, J ,  2, . . .  ) 
!!l,( V )  c (" ( V) 

Glossary of Notation 

any real or complex vector bundle 
of rank m 

the category of smooth manifolds 
and smooth maps 

a category of modules over a fixed 
commutative ring 

the category of I-graded modules 
over the commutative ring R 

the natural numbers {O. J ,  2, . . .  ) 

any real or complex vector bundle 
of rank n 

the un oriented cobordism ring 
the unoriented surgical equivalence 

ring 
the orthogonal group, usually act

ing on IRm or on sm- I  
the rotation group, usually acting 

on IRm or on sm- I 
the orthogonal group (acting on So) 
the total space of the unique coordi

nate bundle representing an ori
entation bundle o(�) [in partic
ular, O(y::') is denoted cm(lRm+")  
and o(ym) is denoted Cm(IROC )] 

the orientation bundle of a real 
vector bundle � over X E 9fJ 

the category of open sets in V e X  
for X E 9fJ 

the category of open sets in X E 9fJ 
Poincare form 
the projective bundle of a real vec

tor bundle �, or the total space of 
the projective bundle 

a specific family of open sets in 
V e X  

a category of open sets in the inte
rior X of a manifold X 

real field, in its usual topology 

I, \ 06, 1 70 

2, 23ft', 25 

4 1  

45 

1 9  
19  
1 06. 1 70 

19  

6 

20 
19  
250. 268, 273 
268, 273 

3, 59, 8 J, 86, 90 

59, 8 1 , 86, 90 

1 60 
1 62, 1 63 

1 60, 1 6 1 ,  1 62, 1 63 

43 

41 
276, 277, 283, 284 
3, 202 

8 
9 

43 

46, 252ft'. 256ft' 



Glossary of Notation 

RP" 
RP" 
lW" 

'x 
Sq 
S,, - I 
S" 
So 

Tx E Hm(x x X, X x X\t1(X) ) 

( ' h  

U(n) c GL(Il, C) 

U, E H"(E, E* ;  7L/2) 

v 

w(�) 

w(�) 

standard Il-dimensional real vector 
space, in its usual topology 

real projective space ( = G I ([R" + I ) )  
real projective space ( = GI ([R X ) )  
the real vector space lim" [R

" i n  the 
weak topology 

righ t incl usion 
the Steenrod square 
the (n - I )-sphere (for 11 = 1 , 2, 3, . . .  ) 
the n-sphere (for n = 0, 1 , 2, . . .  ) 
the O-sphere (consisting of two 

points) 
the diagonal Thorn class of X E .,If 
Thorn form j*Tx 

the unitary group (usually acting on 
I[" or on S2" - I ) 

7L/2 Thorn class of a real n-plane 
bundle � 

multiplicative 7L/2 class of a real 
vector bundle � with respect 
to a formal power series f(l} E 
7L/2 [et]] 

dual of a 7L/2 multiplicative class 

uf(�} 
the semi-ring of smooth closed un

oriented manifolds 
the category of spaces homotopy 

equivalent to spaces in Steenrod's 
category Jf' 

any of the real or complex vector 
spaces [Rm + ", [R � ,  cm +", I[x (used 
to generate the tensor algebra 
@ V  and the exterior algebra 
!\ V  = @ V/l 

7L/2 Thorn class of a real n-plane 
bundle � 

7L/2 Thorn class of a real n-plane 
bundle � 

the qth Stiefel-Whitney class of a 
real vector bundle � 

the total Stiefel-Whitney class of a 
real vector bundle � 

the dual Stiefel-Whitney class of a 
real vector bundle � 

the category of spaces homotopy 
equivalent to metric simplicial 
spaces 

the category of spaces homotopy 
equivalent to countable metric' 
simplicial spaces 

34 

22. 23. 34 
22. 23. 34 
22 

280, 281 
243ff, 285ff 
19 
1 9  
1 9, 1 62, 1 67 

28 1 ff  

355 

276ff, 277, 283, 
284 

59, 8 1 , 86, 89 

3, 1 9 1 , I 92ff, 
194ff, 2 1 1 

2, 3, 2 1 5ff, 2 1 6  

237, 238 

274 

49 

34 

209ff, 2 1 1 

2 1 1 

4. 2 1 6  

2, 4, 2 1 5, 2 1 6  

2. 237 

2, 1 3, 2 1  

14  
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x 
x 
y 
y 
Z 
Zj2 

Greek alphabet 

o:(n) 

( r, <l» , (r', <l>'), (rffi, <l>ffi), 
(rffi, <l>ffi)" , , 

:;;m I n  
� 
�(X) 

1'/, 1'/'" " (and also �, �'" , , ) 
e-' 

11, 11', ' , , 

Ilx E H.(X, X ;  Zj2) 

� 
�, C "  , (and also 1'/, 1'/'" , , ) 
�p 

Glossary of Notation 

the boundary of a manifold X 
the interior of a manifold X 
the boundary of a manifold Y 
the interior of a manifold Y 
the ring of integers 
the field of integers modulo 2 

number of I 's in the dyadic expan
sion of n 

real line bundle group over X E !J4 

morphisms of transformation 
groups 

universal complex m-plane bundle 
ufliversal real m-plane bundle 
universal oriented m-plane bundle n(ymh,m 
canonical complex m-plane bundle 
canonical real m-plane bundle 
canonical oriented m-plane bundle n(y�)I1.' 
diagonal map X -+ X x X 
image of a diagonal map � 
trivial real or complex vector bun

dles of ranks m, n, , , , 
complex vector bundles (usually) 
realification of a complex vector 

bundle ' 
real vector bundles 
the linear map 1\ m V ...... V induced 

by a linear functional e on I\m - t  V 
real or complex line bundles 
splitting bundle (over P�) of a real 

vector bundle � 
real or complex line bundles (such 

as A, X" , , ) 
Zj2 fundamental class of a compact 

manifold X with boundary X 
cap product by Ilx 
normal bundle of an immersion 

X 1. �2. - p  
arbitrary fiber bundle 
real vector bundles 
principal G-bundle 

24 
25 
24 
25 

2 

2, 50, 52, 246, 
261 .  292 

206ft', 207, 208, 
2 1 3, 2 1 4  

70, 7 1 .  72, 8 1 , 1 09 
1 10, 1 1 1 , 1 1 5,  
1 6 1 , 1 62, 1 72, 
1 73. 1 76, 1 77. 
1 78 

1 70 
3, 1 49 
1 64 

1 70 
1 44 
1 66 

1 1 0 
277 
1 1 2 

1 70 
1 72, 173 

1 06, 1 07 
35 

106, 202, 204, 206 
3, 202 

241), 253 

256, 258, 302 
260 

3, 63, 64 
I ,  1 06, 1 07 
99 



Glossary of Notation 

(J 

!(RP") 
!(X) 

restriction of � to a subspace V, 63 
given as the pull back ;'� along 
the inclusion i of V 

357 

the projection E ---> X of a family of 1 , 57, 6 1 , 64, 67 
fibers (especially the projection 
of a coordinate bundle) 

the universal oriented m-plane bun
dle ym 

a canonical oriented m-plane bun
dle y� 

section X ---> E of a coordinate bun

dle E � X 

image of the zero section X � E 
the characteristic polynomial of a 

real vector bundle � 
zero-section X ---> P <® I for a real 

vector bundle ( 
tangent bundle of RP" 
tangent bundle of any smooth 

manifold X E .It 
lL/2 Thorn isomorphism of a real 

vector bundle � 
the 7L/2 Euler characteristic 11 ---> 

7L/2 
local trivialization E l  Vi ---> Vi X F 
transition function Vi n Vj ---> G 

1 64  

1 66 

3, 82 

3, 277 
220, 222 

2 1 0  

1 38 
2, 4, 1 30 

1 1)1) 

276, 21)7 

57, 67 
58, 67 
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Index 

A 

Absolute Leray-Hirsch theorem, 94 
Abstract simplicial complex, 8 
Abstract star of a vertex, 1 0  
Additive functors (7)(X) -W!, 41  
Adem relations, 243, 245 
Adjoint of a matrix, 87, 90 
Adjunction space, 1 9  
Admissible Morse function, 273, 299, 300 
Admissible topology of a structure group, 60 
Affine connection, 278 
Algebraic coordinate bundles, 1 80, 1 86, 1 88 
Algebraic vector bundles, 1 80, 1 86, 1 88 
Arcwise connected ness, 252 
Associated bundle, 83 
Associated principal G-bundle, l OO 
Associative H-space, 1 02 
Associative laws for vector bundles, I I I  
Atiyah-Todd number, 1 89, 296 
Atlas, 23, 1 30 
Attaching maps, 1 9  
Axioms for characteristic classes 

Stiefel-Whitney classes, base spaces in f!l, 
233 

Stiefel-Whitney classes, base spaces in !VI, 
235 

lL/2 Euler classes, base spaces in f!l, 205 
Axioms for Steenrod squares, 243 

B 

Barycenter B1, 9 
Barycentric coordinate functions, 1 6  
Barycentric coordinates, 8 
Barycentric subdivisions, 9 
Base space 

of a bundle, 1 , 2, 5, 57, 60, 6 1 , 64 
the category f!l, 2, 5-7, 1 3, 1 4, 1 9, 2 1 , 29, 

37, 38, 47, 59, 64 
of a family of fibers, 6 1  

Basic Stiefel-Whitney numbers, 274, 296 
Basis theorem of Schubert, for Gm(cm + ") and 

Gm(ll;lm + n), 239, 240 
Best-possible embedding conjecture, 50, 295, 

297 
Best-possible immersion theorem (Cohen), 52, 

262, 292, 293, 297 
Bohnenblust, H. F.,  1 80 
Boundary X of a compact manifold X, 24 
Bouq uet of circles, 2 \ 3  
Brown, E .  H. ,  47, 1 04 
Bundle 

associated bundles, 83 
associated principal G-bundles, l OO 
over contractible spaces, 59, 73- 75 
coordinate bundles, 1 , 66-68, 97 
complex vector bundles, 1 69ff 
fiber bundles, 3, 57ff, 64 

359 



360 

fibre bundles, 63 
homomorphisms, 108 
induced bundles, 72 
line bundles, 3, 1 06, 1 70 
micro bundles, 1 80 
m-plane bundles, I ,  106, 1 70 
numerable bundles, 2, 98, 102 
n-plane bundles, I, 1 06, 1 70 
principal coordinate bundles, 1 00 
principal G-bundles, 99, l OO, 1 02 
projective bundles, 3, 202 
real vector bundles, I ,  105ff, 1 06 
smooth vector bundles, 1 19ff, 1 58ff 
sphere bundles, 1 62, 1 79 
splitting bundles. 202 
tangent bundles, 2, 4. 1 05. I 26ff, 1 30, 1 34, 

1 37, 146, 1 78 , 1 80, 1 85, 259 
topological IIilm bundles, 1 8 1 , 242, 289 
trivial bundles, 57, 63, 73, 74, 75, 1 1 2 
universal bundles, 3, 1 0  I ,  1 05, 149, 1 53, 1 70 
vector bundles, I ,  I 05ff, 1 78ff 

c 

Cairns-Whitehead triangulation theorem, 28, 
52, 1 59 

Canonical complex line bundle y! , 1 70 
Canonical complex m-plane bundle 1.', 1 70 
Canonical involution of a double covering, 

1 65 
Canonical orientation of 1t(�)I�, 1 63 
Canonical oriented m-plane bundle Ji:;', 166 
Canonical real line bundle y!, 1 44 
Canonical real m-plane bundle 1.', 1 40- 1 44, 

1 55- 1 59 
Canonical vector bundles, 1 40ff 
Cap products. 256, 257 
Cartan formula, 243, 244, 302 
Category, Ljusternik-Schirelmann category, 

47, 48, 1 04, 300 
Steenrod's convenient category .Jf", 48 
Vogl's convenient categories, 48 

Category .916$ of 2-graded abelian groups, 45 
Category � of base spaces, 2, 5-7, 1 3, 1 4, 1 9, 

2 1 , 29, 37, 47, 59, 64 
Category <ff(G,F) of families of fibers, 6 1  
Category g ,  Steenrod's convenient category 

of compactly generated hausdorff spaces, 
48 

Category ..I( of smooth manifolds, 25, 29, 50, 
235 

Index 

Category !Ill of modules over a fixed commuta-
tive ring, 41 

Category !Ill r of 2-graded R-modules, 45 
Category (T)(X) of all open sets in XEaJ, 41 
Category ,q(X) of some open sets in X c X, 46 
Category 'fI ofhomotopy types of spaces in g, 

49 
Category 111 of spaces homotopy equivalent 

to simplicial spaces, 1 3, 2 1 , 48 
Category 'fl/ 0 of spaces homotopy equivalent 

to countable simplicial spaces, 14, 47 
Cayley-Hamilton theorem, 220 
Cell, n-cell, O-cell, 19  
Cell complex, 19  
Characteristic classes, 2 ,  4 ,  see also Dual 

Stiefel-Whitney classes ; Multiplicative 
2/2 classes ; Stiefel-Whitney classes ; Wu 
classes ; 2/2  Euler classes 

Characteristic polynomial of a real vector 
bundle, 220, 222 

Ch ern character, 302 
Chevalley, C.,  1 03, 1 80 
Classification offiber homotopy types, 103 
Classification of manifolds, 52, 53 
Classification theorems 

ersatz homotopy classification 
of complex bundles, 1 7 1  
of oriented bundles, 166 
of real bundles, 1 55, 1 57- 1 59 

fiber homotopy types, 103 
homotopy classification 

of complex bundles, 1 70, 1 7 1  
of oriented bundles, 1 64 
of principal bundles, 10 1  
of real bundles, 1 53 ,  1 55- 1 57 

Classifying extensions, 1 57, 1 7 1  
Classifying maps, 3 ,  4, 1 56 

for complex bundles, 1 70, 1 7 1  
for oriented bundles, 1 64, 1 66 
for principal bundles, 1 0 1 ,  1 02 
for real bundles, 1 53, 1 56- 1 59 
for the real bundle 1'1 + . . .  + }' 1, 204, 228, 

231 
Classifying spaces, 3 

for complex bundles, 1 70, 1 7 1  
for oriented bundles, 1 64 
for principal bundles, 1 0 1 ,  1 02 
for real bundles, 3 , 1 53 

Closed manifolds, 23, 24, 249ff, 250, 254, 258, 
267, 268, 273ff 

Closed star, 1 0  
Closure finite cell complex, 1 9  



Index 

Coarse topology, 1 6, 1 7  
Cobordism (unoriented), 50, 52, 267, 268 
Cobordism ring \11 , 250, 268, 296, 297 
Cocoon C( V) c u;l2. - P of V e X, 262 
Coefficient ring A, 59 
Coefficient ring 71./2, 1 9 1 ,  192, 2 16, 25 1 
Cohen immersion theorem, 52, 292, 293 
Combinztorial construction of Stiefel-

Whitney classes, 289, 290 
Commutative laws for vector bundles, I 1 1  
Compact Lie groups, 3, 8 1 , 86, 9 1  
Compact manifolds, 24, 258, 302 
Compact manifolds with boundary, 24 
Compactly generated hausdorff spaces, 48 
Comparison theorem, Mayer-Vietoris, 46, 47 
Complex 

abstract simplicial complex, 8 
cell complex, 1 9  
closure finite cell complex, 19  
CW complex, 20 

Complex conjugate bundle, 1 76ff 
Complex dimension of a complex manifold, 29 
Complex ersatz homotopy uniqueness theo-

rem, 1 7 1  
Complex line bundle, 1 70 

canonical complex line bundle, 1 70 
universal complex line bundle, 1 70 

Complex manifold, 29 
Complex n-plane bundle, 1 70 
Complex projective space CP", 23, 296 
Complex projective space C poo,  23 
Complex structures J in real vector bundles, 

1 73ff 
Complex vector bundles, 1 69ff 

canonical complex vector bundles, 1 70 
universal complex vector bundles, 1 70 

Complexifications �c of real vector bundles �, 
1 69, 1 72, 1 76ff 

Conjugate complex vector bundles, 1 76 
Conjugates 90*, 90**, . . .  of modules ,F, 1 1 8, 

1 1 9, 1 23, 1 33, 1 34 
Connectedness 

arcwise connectedness, 252, 255 
k-connectedness, 293 
pathwise connectedness, 56, 208, 2 1 3 

Connections in tangent bundles, 278 
affiine connections, 278 
Levi-Civita connections, 278 

Connectivity in �, 56 
Continuous functors, 1 82 
Continuous sections, 82, 1 24 

nowhere-vanishing continuous sections, 1 26 

Continuous vector fields, 1 37 
Contractibility of EG, \ 02 
Contractible spaces, 6, 59 
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bundles over contractible spaces, 59, 73-75 
Convenient category Jf' of Steenrod, 48 
Convenient categories of Vogt, 48 
Convex set, 1 0  
Coordinates 

barycentric coordinates, 8 
Plucker coordinates, 36 
projective coordinates, 24, 37 

Coordinate bundles, 1 , 66-68, 97, 100, 1 2 1 , 1 59 
algebraic coordinate bundles, 1 80, 1 86, 1 88 
holomorphic coordinate bundles, 1 86 
principal coordinate bundles, 100 
smooth coordinate bundles, 1 2 1 ,  1 58-1 59, 

1 72, 1 86 
Coordinate covering of a manifold, 23 
Coordinate neighborhood, 23 
Countable simplicial spaces, 14  
Covering, double covering associated to a real 

vector bundle, 1 62 
Covering homotopy property, 98 
Covering homotopy theorem, 98, 99 
Coverings by open sets, 6, 23, 25, 30, 39, 40 
Critical point 

of a map X -- u;l, 269 
non degenerate, 271 

Critical value, 271 
Cross product and cup product, 244 
Cross product relation between homology and 

cohomology, 275 
Cup product and cross product, 244 
CW complexes, 20 
CW spaces, 1 9-20, 49, 50 
CW structures, 20 

D 

Decompositions 
polar decompositions, 86ff 
polar decompositions of GL(n, q, 

GL(m, u;l), and GL + (m, u;l), 89, 90 
Decomposition theorem of Iwasawa and 

Mal'cev, 8 1 ,  86, 103, 104 

Diagonal map X � X x X, 1 10, 277 
Diagonal 71./2 Thorn class 

Tx E H"(X x X, X x X\&(X» , 28 1 
Diffeomorphisms, 24, 12U 
Differential, modules of differentials, 1 34, 1 35, 

1 83, 1 84 
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Differential forms, 1 34, 1 35, 183,  1 84, 269 
Differential of a real-valued smooth function, 

269 
Differential topology, I ,  1 05 
Dimension 

of a CW complex, 20 
of a CW space, 20 
geometric dimension of a vector bundle, 1 89 
of a manifold, 23, 25 
of a simplex, I I  
of a simplicial complex, 9 
of a simplicial space, 9 

Dimension axiom 
for Stiefel-Whitney classes, 233 
for Steenrod squares, 243 

Direct sum, 8, 41  
Disk, 1 9  
Distributive law for vector bundles, I I I  
Dold-Lashof construction, 1 02 
Double covering associated to a real vector 

bundle, 1 62, 1 67 
Double coverings, the canonical involution, 

165 
Dowker homotopy equivalence, 18 ,  53, 54, 1 58 
Dual classes, 237ff 

dual Stiefel-Whitney classes, 2, 237 
of Rp·, 258, 260 

Dual $'* ofa locally free module $', 1 1 8, 1 19. 
1 23, 1 33, 1 34 

Duality isomorphism over 1./2 (Poincare and 
Poincare-Lefschetz duality), 249, 250, 
256-258, 302 

Duality theorem of Whitney, 241 ,  290 
Dyadic expansions, 2, 50, 52, 246, 26 1 ,  292 

E 

Easy Whitney embedding theorem, 50 
Easy Whitney immersion theorem, 5 1 ,  29 1 
Effective action of a transformation group, 60, • 

l OO 
Ehresmann-Feldbau fibrations, 97, 100 
Embedding 

of complex projective spaces, 296 
conJecture for smooth manifolds, 50, 295, 

297 
of real projective spaces, 295, 296 
of smooth manifolds, 2, 27, 28, 50, 5 1 ,  260-

262, 264, 265, 294-297 

Embedding theorems 
easy Whitney embedding theorem, 50 
embeddings in [Roo, 27 

Index 

embeddings of separable metric spaces, 5 1  
embeddings of simplicial spaces, 5 1  
embeddings of smooth compact manifolds, 

28 
embeddings of smooth manifolds into [Roo,  

27 
hard Whitney embedding theorems, 28, 50, 

260, 294 
isotopies of embeddings, 5 1 ,  29 1 
strongest known general embedding theo

rems, 294ff 
Enumeration of immersions and embeddings, 

296 
Enumerative calculus of Schubert, 239, 240 
Ersatz homotopy uniqueness theorem 

complex version, 1 7 1  
real version, 1 47,  1 57,  1 79, 236 

Euclidean norm, 1 9, 1 24 
Euler characteristic xiX) E 1./2, 276, 297 
Euler classes 

1. /2 Euler classes, 3, 4, 1 91 ff, 1 96- 1 98, 205ff 
alternative construction of e(t(X)) E 

H"'(X; 1./2), 284 
axioms for 1./2 Euler classes, 205 
naturality of 1./2 Euler classes, 197, 205 
normalization of 1./2 Euler classes, 20 I ,  205 
of products of real line bundles, 206-208, 

2 1 3, 2 1 4  
the relation e(�) = Wm(�)E H"'(X; 71. /2), 4, 

224 
W hitney product formula for 1./2 Euler 

classes, 197, 205 
Exotic free involutions of manifolds, 54, 55 
Exotic spheres, 55 
Exponential map of an affine connection, 278 
Exponential of a matrix, 87, 90 
Extensions, finite classifying extensions, 1 5 7, 

1 7 1  
Exterior algebra, 35 
Exterior power AP� of a vector bundle �, 1 6 1  
Exterior products, 3 5 ,  55 

F 

Families of fibers, 60, 6 1 , 62 
I-genus G(/), 275 
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Fiber, I, 3, 57, 67 
over a point, 67 

Fiber bundles, 3, 57ff, 60ff, 63, 64, 97 
Fiber homotopy equivalence, 1 03, 1 86, 1 87 

stable fiber homotopy equivalence (I-equiv-
alence), 1 89 

Fiber homotopy type, 1 03, 186, 1 87, 289 
Fiber spaces, 97ff 
Fibrations, 97ff 

Ehresmann-Feldbau fibrations, 97, l OO 
Hurewicz fibrations, 99 
Serre fi brations, 99 

Fibre bundles, 60ff, 63, 64, 68, 97, 98 
Fine topology, 1 9  
Finite classifying extensions, 1 57, 1 7 1  
Finite classifying maps, 1 55- 1 59, 1 7 1 ,  1 72, 

230, 233 
Finite homotopy classification theorems, 1 55-

1 59, 1 7 1 , 1 72, 23 1 , 233 
Finite simplicial complex, 9 
Finite simplicial space, 9 
Finite type (spaces of finite type), 6, 10, 1 3, 47, 

59 
Finite-dimensional CW complex, 20 
Finite-dimensional CW space, 20 
Finite-dimensional simplicial complex, 9 
Finite-dimensional simplicial space, 9 
Finitely presented groups, 52 
First barycentric subdivision, 9 
Five-lemma, 43 
Formal groups, 297 
Formula of Hirsch, 24 1 
Free involutions of spheres, 54, 55 
Fundamental homology classes 

Ilx E H.(X,X; lL /2) and Ilx E H.(X; lL/2), 249, 
25 1 -254, 275 

Ilv E H.(V,U ;  lL/2), 254 

G 

G-bundle 
principal, 99- 102 
universal, 1 0 1 ,  1 02 

G-related isomorphism, 60 
G-related set of homeomorphisms, 60 
Genera G(/), 274-275, 300 
Generalized Riemann-Roch theorem, 302 
General linear group G L(m,IR), I ,  58, 59, 8 1 ,  

85ff, 90, 9 1 ,  93, 1 05, 1 06 
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General linear group GL(n,C), 59, 8 1 ,  85, 86ff, 
89, 9 1 , 93, 1 70 

General linear subgroup GL+ (m,lR) c 
GL(m,IR), 59, 8 1 , 85, 86ff, 90, 9 1 ,  93, 1 68 

Geometric dimension of a vector bundle, 1 89, 
292 

Geometric simplex, 8 
Gram-Schmidt process, 1 1 5, 1 83 
Grassmann, H., 55, 56 
Grassmann manifolds Gm( V), Gm(lRm + .), 

Gm(IR"' ), Gm(cm + n), Gm(coo), 3, 34-38, 
55, 56 

Grassmann manifolds 
and canonical vector bundles, 1 40ff 
as objects in fJI, 37, 38 
as objects in .,1(, 36 
and universal vector bundles, 3, 1 47ff 

Groups 
compact Lie groups, 3, 8 1 ,  86, 9 1  
general linear groups G L(m,IR), I ,  58, 59, 

8 1 ,  85, 86ff, 90, 9 1 ,  93, 1 05, \ 06 
general linear groups GL(n,C), 59, 8 1 ,  85,  

86ff, 89, 91 ,  93,  1 70 
general linear subgroups GL+ (m,lR) c 

GL(m,IR), 59, 8 1 ,  85, 86ff, 90, 9 1 ,  93, 1 68 
Lie groups, 3, 8 1 ,  85, 86, 9 1 , 1 20, 1 84, 1 87 
linear Lie groups, 59, 8 1 ,  85, 86, 9 1  
nonlinear Lie groups, 9 1  
orthogonal groups O(m) c GL(m,IR), 3 ,  59, 

8 1 ,  86ff, 90-92 
rotation groups O + (m) c GL+(m), 59, 8 1 ,  

86ff, 90-92, 1 68 
structure groups, 3, 58, 60, 6 1 ,  85, 9 I ,  97 
transformation groups (used as structure 

groups), 60, 70-72 
unitary groups U(n) c GL(n,C), 59, 8 1 ,  86ff, 

89, 9 1 , 92 
Gysin homomorphism, 30 1 
Gysin map, 1 99 
Gysin sequence, 1 99 - 20 1 , 2 12, 230 

H 

Haefliger-Hirsch theorem, 293 
Hard Whitney embedding theorem, 28, 50, 

260, 294 
Hard Whitney immersion theorem, 29, 5 1 , 52, 

260 
Hausdorff spaces, 6, 7 

paracompact hausdorff spaces, 25 
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Hennitian inner product, 87 
Hennitian metric, 1 70, 1 83 
Hirsch's fonnula, 241 
Holomorphic coordinate bundle, 1 86 
Homogeneous space, 83 
Homomorphisms of vector bundles, 1 08 
Homotopic maps, 5, 6 

pullbacks along homotopic maps, 75-79 
Homotopy, relative, 3 1  
Homotopy classification theorems, 147ft' 

complex bundles, 1 70, 1 7 1  
fiber homotopy types, 103 
oriented bundles, 1 64, 1 66 
principal G·bundles, 1 0 1 ,  1 02 
real bundles, 1 53, 1 55- 1 57 

Homotopy equivalence, 6 
fiber homotopy equivalence, 1 03, 1 86, 1 87 
J·equivalence (stable fiber homotopy equiv· 

alence), 1 89, 241 ,  242, 289 
proper homotopy equivalence, 54 
stable fiber homotopy equivalence (J·equiv· 

alence), 1 89, 241 , 242, 289 
weak homotopy equivalence, 2 1 ,  49 

Homotopy groups, 293 
Homotopy lifting property, 98, 99 
Homotopy type, 6 

fiber homotopy type, 1 03, 1 86, 1 87, 289 
stable fiber homotopy type, 1 89, 241 , 242, 

289 
Homotopy uniqueness theorem (homotopy 

classification theorem), ersatz versions, 
1 47, 1 57, 1 71 , 1 79, 236 

H·spaces, 1 02, 187 
Hurewicz fibrations, 99 
Hurewicz map, 2 1 3  

Immersion conjecture (Cohen immersion the· 
orem), 52, 292, 293 

Immersion criterion of Hirsch, 29 1 
Immersion theorem of Cohen, 52, 292, 293 
Immersion theorems of Whitney 

easy, 5 1 ,  29 1 
hard, 29, 5 1 ,  52, 260 

Immersions in IRa>, 27 
Immersions of complex projective spaces, 296 
Immersions of real projective spaces, 1 85, 261 ,  

295, 296 

Index 

Immersions of smooth manifolds, 27, 29, 5 1 ,  
52, 260ft', 29 1 ,  292, 293, 297 

Induced bundles, 72 
Inner products, hermitian, 87 
Interior X of a compact manifold X, 25 
Intersection theory, 240 
Inverse bundle (stable inverse of a vector 

bundle), 1 89 
Involutions 

canonical involution of a double covering, 
165 

smooth free involutions of manifolds, 54, 5 5  
I rreducible vector bundles, 188 
Isomorphism problem for finitely presented 

groups, 52  
Isomorphisms 

in a category <6(G,F) of families of fibers, 
62, 63 

of coordinate bundles, 68 
G·related, 60 
of smooth coordinate bundles, 1 2 1  

Isotopy 
of simplicial embeddings, 5 1  
o f  smooth embeddings, 291 

Iwasawa, K., 1 03, 1 04 
Iwasawa-Mal'cev decomposition theorem, 

8 \ ,  86, 1 03, 1 04 

J 

J·equivalence (stable fiber homotopy equiva· 
lence), 1 89, 241 ,  242, 289 

lacobian matrices, 2, 1 30ft' 

K 

Kiih ler derivations, 1 80 
k·connected manifolds, 293 

L 

Left inclusions lx , 278, 28 1 
Lens spaces, 5 5, 1 85, 296 
Leray-Hirsch theorem, 3, 4 1 ,  93ft', 97, 1 04, 1 94 

absolute case, 93ft', 1 04 
relative cases, 97, 1 94 

Levi-Civita connection, 278 
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Lie groups, 3, 8 1 ,  85, 86, 9 1 ,  1 20, 1 84, 1 87 
compact, 3, 8 1 ,  86, 9 1  
linear, 59, 8 1 ,  85 ,  86 ,  91  
nonlinear, 9 1  

Lifting property (homotopy lifting property), 
98, 99 

Line bundle group [(X) over X E �, 206�208, 
2 1 3, 2 14  

Line bundles (real and complex), 3 ,  1 06, 1 70 
canonical, line bundles y�, 1 44, 1 70 
products of, 206-208, 2 1 3, 2 1 4  
universal line bundles y l ,  1 49, 1 55, 1 70 

Linear Lie groups, 59, 8 1 ,  85, 86, 9 1  
Linear reduction theorem, 9 1 ,  1 1 6, 1 78, 1 79, 

1 82 
Ljustemik-Schnirelmann category, 47, 48, 

1 04, 300 
Local trivializations, 67, 1 21 
Locally trivial projections, 57, 99 
Locally finite open coverings, 1 6  
Locally finite simplicial spaces, 53 
Locally free CO(X)-modules, 1 1 8, 1 1 9, 1 79 
Locally free C�(X)-modules, 1 22, 1 23,  1 29, 

1 34 
Logarithm of a positive matrix, 87, 90 
Long line, 1 80 

Mal'cev, A. ,  103, 1 04 
Manifolds, 23ff 

M 

category .j( of smooth manifolds, 25 
classification problem for manifolds, 52, 53 

closed smooth manifolds, 23, 24, 249ff, 254, 
258, 267, 268, 273ff 

complex manifolds, 29 
Grassman manifolds, 3, 34ff, 36, 37, 38, 1 47, 

1 53, 1 54, 1 57, 1 64, 1 66, 1 70, 1 7 1  
nonorientable manifolds, 5 1 ,  1 60, 1 69, 259, 

295 
open manifolds, 25, 294 
orientable and oriented manifolds, 50, 52, 

259, 287, 288, 294 
smooth manifolds, 23ff, 25 
smooth unoriented manifolds, 249ff, 267, 

268, 273ff 
topological manifolds, 29, 53, 54, 1 80, 242, 

288 
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unoriented smooth manifolds, 249ff, 267, 
268, 273ff 

triangulable manifolds, 54 
Map, 5 

proper, 27, 54, 262 
smooth, 24, 25, 33 

Matrix 
jacobian, 2, 1 30ff 
orthogonal, 90 
rotation, 90 
self-adjoin!, 87, 90 
unitary, 89 

Maximal compact subgroup of a Lie group, 3, 
8 1 , 86, 9 1  

Mayer�Vietoris cohomology sequence, 46, 56 
Mayer-Vietoris comparison theorem, 46, 253, 

258 
Mayer-Vietoris functor, 42, 95 

natural transformations of, 42�46, 96, 1 93, 
252 

on (1)(X), 42, 44, 45, 95, 96, 193 
on 21(X), 46, 47, 252, 254, 256-258 

Mayer�Vietoris sequences, 42, 56 
Mayer-Vietoris technique, 5, 4 1ff, 44-47, 96, 

253, 258 
Metric, 6 

metric of type (p,q), 1 86 
metric simplicial space, 8� 1 9, 2 1 , 49 
riemannian metric, 1 1 2� 1 I4, 1 1 6, 1 82, 1 8 3  
smooth riemannian metric, 1 23 

Metric topology, 6, 9, 1 5 - 1 9  
metric topology o f  a simplicial space, 8ff 

Metrizable spaces, 6 
m-fold exterior product, 35,  55 
Microbundles, 1 80 
Milgram, R. J., 243 
Milgram�Steenrod construction, 1 02 
Miyazaki's theorem, 50 
Module of differentials, 1 34, 1 35, 1 83, 1 84 
Module, locally free, 1 1 8, 1 19, 1 79 

of smooth sections, 1 22,  1 23, 1 29, 1 34 
M odule of sections of a vector bundle, 1 1 8, 1 22 

module of smooth sections of a smooth 
vector bundle, 1 22 

Module of vector fields, I 26ff, 1 29ff 
Modulus I A I  E GL(n,q of A E GL(n,C), 89 
Miibius band, 58, 59, 1 60, 1 69 
Morphism (f,elI) of transformation groups, 

70-72, 8 1 ,  \ 09, 1 \ 0, I l l , 1 6 1 ,  1 62, 1 72, 
1 73, 1 76, 1 77 
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Morphism of families of fibers, 60, 6 1  
Morse functions, 273, 299 
Morse theory, 269 
Multiplicative refinements, 48 
M ultiplicative sequence of fit) E 71./2 [[t]). 4, 

225, 242, 243 
Multiplicative 71./2 classes 

naturality, 2 1 8, 2 1 9  
of RP", 258-260 
uj«() E H**(X; 71./2), 2 1 6ff, 2 1 9, 225 
Whitney product formula, 2 1 9-222, 226 

N 

Natural orientation of certain real vector 
bundles 

realification (R of a complex bundle C 1 75 
the other orientation of (R'  1 75, 1 76 
the sum � ® (, for a real bundle ( , 1 68, 1 76 
realification �R of a complex conjugate 

bundle �, 1 77 
Naturality of characteristic classes 

multiplicative 71./2 classes uj«(), 2 1 8, 2 1 9  
StiefeI-Whitney classes, 2 1 8 ,  234, 235 
71./2 Euler classes, 1 97, 205 

Naturality of Steenrod squares, 243, 302 
Natural transformations of Mayer-Vietoris 

functors, 42-46, 96, 193, 252 
n-cell, 19 
n-dimensional CW complex, 20 
n-dimensional CW space, 20 
n-dimensional manifold, 25 
n-dimensional simplex, 8 
n-dimensional simplicial complex, 9 
n-dimensional simplicial space, 9 
n-disk, 1 9  
Neighborhoods (coordinate neighborhoods), 

23 
n-fold reduced suspension of a pointed space, 

246 
(n- I )-sphere, 1 9  
Nondegenerate critical points, 27 1  
Nonembeddings, 260ff, 264, 265, 294, 296 
Nonembeddings of RP" in [J;l2.- 1, 264 
Nonimmersions, 260-262, 295, 296 
Nonimmersions of RP" in [J;l2.-2,  26 1 ,  295 
Nonlinear Lie groups, 9 1  
Nonlinear sphere bundles, 1 79 
Nonorientability of the Mobius band, 1 60, 1 69 

Index 

Nonorientable manifolds, 5 1 ,  1 60, 1 69, 259, 
295 

N on spherical fibrations, 2 1 2  
Normal bundle of an immersion, 260 

stable normal bundles, 292, 293 
Normal spaces, 7 
Normalization of characteristic classes 

Stiefel-Whitney classes, 2 1 7, 234, 235 
71./2 Euler classes, 20 I, 205 

Normalization of Steenrod squares, 243 
Nowhere-vanishing sections, 1 1 9, 1 26, 1 98 
n-plane bundle, I ,  1 06, 1 70 

canonical, 1 44, 1 70 
universal, 3, 105, 149, 153 ,  1 70 

n-skeleton of a CW complex, 20 
n-skeleton of a CW space, 20 
Numerable bundles, 2, 98, \02 

o 

Obstruction classes, 238, 239, 242 
Obstruction theory, 288 
Open convex sets, 10 
Open manifolds, 25, 294 
Open star of a vertex, 1 0  
Opposite orientation, 1 65, 1 75 
Orientability of real vector bundles, 1 60- 164, 

1 68, 1 69, 209, 2 1 6, 226ff 
Orientability of RP", 259 
Orientable and oriented manifolds, 50, 52, 

259, 288, 294 
Orientable vector bundles, 1 60ff, see also 

Orientability 
Orientation bundle o«() of a real vector bundle 

(, 1 60- 1 63 
Orientations of some real vector bundles 

canonical orientation of the pullback n(OI(, 
163 

canonical orientation of canonical oriented 
bundles y:;', 166 

canonical orientation of universal oriented 
bundles ym, 1 64 

natural orientation of a realification (R ' 1 75 
natural orientation of a sum � ® � of two 

copies of (, 1 68, 1 76 
opposite orientations, 1 65, 1 75 
the other natural orientation of a realifica

tion (R ' 1 75, 1 76 
Oriented classifying map, 1 64 
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Oriented Poincare duality theorem, 288 
Oriented Poincan:-Lefschetz duality theorem, 

288 
Oriented 2-plane bundles, 1 75 
Oriented vector bundles, 1 63, 1 64, 1 66 

canonical oriented m-plane bundles ji;, 1 66 
homotopy classification theorem for ori-

ented bundles, 1 64 
realifications (R of complex bundles " 1 75 
sums � E!j � of two copies of �, 1 68, 1 76 
universal oriented m-plane bundle ji"', 1 64 

Orthogonal group O(m) c GL(m,IR), 3, 59, 8 1 ,  
86ff, 90-92 

other natural orientation of a realification (R ' 
1 75, 1 76 

p 

Paracompact hausdorff space, 25 
Parallelizable manifolds, 1 84, 1 85, 1 87, 247 
Parallelizable spheres, 247 
Partial derivatives, 1 27 
Partitions of unity, 1 6, 25 
Pathwise connectedness in ill, 56, 208, 2 13  
Picard group, 2 14  
Pliicker coordinates, 36  
Pliicker relations, 36. 5 5 .  142 
Poincare duality over ?L12. 250, 258, 276, 277, 

282, 288 
Poincare form ( , )p over ?L12, 276ff. 283 
Poincare -Lefschetz duality over 71./2, 4 1 , 249, 

250. 256-258, 288 
Poincare Lefschetz duality for oriented mani

folds. 288 
Polar decompositions of GL(n,C), GL(m,IR), 

and GL+(m.IR). 86-90 
Polyhedra I KI. 1 1  
Polynomial relations 

for Stiefel-Whitney classes, 246, 30 I 
of Wu. 287. 301 

Positive element A E G L(n. C), 87 
Principal coordinate bundles. 1 00 
Principal G-bundles. 99. 1 00, 1 02 
Product family of fibers. 6 1 .  62 
Products 

of complex line bundles, 2 14  
of  real line bundles. 206-208, 2 1 3, 2 14  
of  vector bundles, 1 09, 1 1 0, I l l , 1 70, 1 8 1 ,  

1 82. 241 
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� x r of bundles over products X x X', 
1 09, 1 8 1  

Projection 
of a coordinate bundle, I ,  57, 64, 67 
of a family of fibers, 6 1  
of a fi bre bundle, 64 

Proj ective bundle P � of a real vector bundle �,  
3, 202 

Projective group PGL(m,IR). 3, 202 
Projective modules, 1 79 
Projective spaces RP", RP"", CP", CP''' , 22, 23, 

24, 29, 34 
Proper embeddings, 27, 262 
Proper homotopy equivalences, 54 
Proper maps, 27, 54, 262 
p-simplex, 8 
Pullbacks, 3, 4, 59, 6 1 , 63, 64, 66, 1 1 3, 1 2 1 ,  

1 53, 1 55, 1 56, 1 58, 1 59, 1 62- 1 64, 1 66, 
1 70- 1 72 

along homotopic maps, 3, 4, 75-80 

Q 
Quadratic modules, 248 
Quatemionic bundles, 247 
q-dimensional simplicial complex, 9 
Quotient topology, 1 9  

R 

Rank of a vector bundle, I ,  1 06, 1 70 
Real ersatz homotopy uniqueness theorem, 

147, 1 57, 1 79, 236 
Real 1ine bundle, 3, 1 06 

canonical, 3, 1 44 
universal, 1 49, 1 55 

Real line bundle group r(X}, 206-208, 2 1 3, 
2 1 4  

Real line bundle products, 206-208, 2 1 3, 2 1 4  
Real m-plane bundles, I ,  1 06 

canonical, 1 40ff, 144, 1 55- 1 59 
trivial, 1 1 2  
universal, 3 ,  1 05, 149, 1 53  

Real projective space RP", 22, 23, 34, 264, 266, 
267, 295, 296 

Real projective space RP"", 22, 23, 34 
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Real vector bundles, I ,  105ff 
canonical, 1 40ff, 144, 1 55- 1 59  
orientable, 1 6Off, 1 63, 226ff 
smooth, 1 1 9- 1 2 1 ,  1 58ff 
tirvial, 1 1 2 
universal, 1 49, 1 53 

Realification (R of a complex vector bundle (, 
1 73-1 75, 1 77 

Reduced suspensions, 1 89, 246 
Reducing maps, 84 
Reduction of structure groups, 3, 59, 80ff, 85, 

86, 9 1 , 1 16, 1 78, 1 79, 1 82, 183 
Reduction theorem, 80, 81 ,  85,  86, 9 1  

linear cases, 86, 87, 9 1 ,  1 1 6, 1 78, 1 79, 1 82, 
183 

Refinement of an open covering, 25, 48 
multiplicative, 48 

Regular interval lemma, 269 
Relative homotopy, 3 1  
Relative Leray-Hirsch theorem, 97, 1 94 
Relative topology, 9, 1 1  
Restrictions of families of fibers, 63 
Riemann-Roch theorem over 71./2, 302 
Riemannian metric, 1 1 2- 1 14, 1 16, 1 23, 1 82, 

183 
Right inclusion r x '  280, 281 
Rotation group O + (m) c GL+ (m,IR), 59, 8 1 ,  

86ff, 90-92, 1 68 

s 

Schubert, H. C. H., 56, 239 
Schubert basis theorem, 239, 240 
Schubert calculus, 239, 240 
Schubert cycles, 239, 240 
Schubert varieties, 239, 240 
Second conjugate :7** of a module :7, 1 33 
Second countability of manifolds, 25, 1 80 
Sections of coordinate bundles, 82 

continuous sections, 1 24- 1 26 
modulus of sections, 1 1 7- 1 1 9, 1 22, 1 23, 

I 29ff, 1 34ff 
nowhere-vanishing sections, 1 1 9, 1 26, 1 98 
sections of cotangent bundles (differentials), 

1 34, 1 35 
sections of tangent bundles (vector fields), 

I 26ff, 1 29ff 
sections of vector bundles, 1 16- 1 19, 1 98 
smooth sections, 1 22, 1 24- 1 26 
zero sections, 3, 1 1 7, 2 10, 277 
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Segre map, 1 8 1  
Self-adjoint matrices, 87, 90 
Semiring of vector bundles, I l l , 1 1 2 
Semiring 011 of smooth closed unoriented 

manifolds, 274, 275 
Serre fibrations, 99 
Shrinking lemma, 30 
Simple elements in 1\ m V, 35 
Simplex, 8 
Simplicial complex K, 8, 49 
Simplicial embedding theorem, 5 1  
Simplicial space IKI, 8 ,  49 

countable simplicial space, 14 
finite simplicial space, 9 
finite-dimensional simplicial space, 9, 1 0  
locally finite simplicial space, 53, 54 
metric simplicial space I KI = I KI m '  8- 19, 49 
polyhedron IKI ,  I I  
weak simplicial space IKI = I Klw , 1 5ff, 1 7-

2 1  
Singular cohomology, 2 ,  4 ,  42, 250ff, 256ff, 

258, 302 
Singular homology, 249, 250ff, 256ff, 258, 302 
Skeleton of a CW complex or CW space, 20 
Smooth closed manifolds, 23, 249ff 
Smooth compact manifolds, 24, 258, 302 
Smooth coordinate bundles, 1 2 1 ,  I 58ff, 1 72, 

1 86 
Smooth involutions, 54, 55 
Smooth manifolds, 23ff, 33, 50ff 

category .If of smooth manifolds, 25 
classification of smooth manifolds, 52, 53 

Smooth maps, 25,  33 
Smooth maps into lRoo, 27 
Smooth nowhere-vanishing sections, 1 26 
Smooth partitions of unity, 25, 26 
Smooth riemannian metrics, 1 23 
Smooth sections, 1 24- 1 26 
Smooth structure 

of Grassmann manifolds, 36, 37 
of projective spaces, 24, 29 
of a smooth manifold, 24 

Smooth triangulations, 28 
Smooth vector bundles, 1 1 9- 1 2 1 ,  1 22, I 58ff, 

1 72. 1 86 
Smooth vector fields, 1 26ff, 1 29, 1 30, 1 37 
Smoothness of a manifold, 24 
Spaces of finite type, 6, 1 0, 1 3 , 47, 59 

finite-dimensional metric simplicial spaces, 
1 0  
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metric simplicial spaces, 1 1 - 1 3  
telescopes of metric simplicial spaces, 1 2, 1 3  

Sphere bundles, 1 62, 1 79 
nonlinear, 1 79 

Spheres S"- I , 19  
O-sphere So ,  19, 1 62, 167 
I -sphere S I  (circle), 1 67, 205, 234, see also 

Rpl 
Spherical modification, 299 
Spin manifolds, 247, 298 
Splitting bundle A< of a real vector bundle �, 

3 , 202 
Splitting class e(A,) of a real vector bundle �, 3, 

202 
Splitting map 

for real vector bundles, 204 
for universal real n-plane bundle y", 204 

Splitting principal for real vector bundles, 
201 -203, 2 1 3  

Square root of a positive matrix, 89 
Stable equivalence of vector bundles, 187 
Stable fiber homotopy equivalence (J-equiva-

lence), 1 89, 241 , 242, 289 
Stable inverse of a vector bundle, 1 89 
Stable normal bundle, 292, 293 
Stability of the cap product, 257 
Star of a vertex (abstract, closed open), 1 0  
Steenrod's convenient category J(, 48 
Steenrod squares, 243, 245, 285-287, 289 
Stiefel- Whitney classes, 2, 4, 2 1 5ff, 224, 225, 

227, 229, 230, 238-248, 288-290, 298 
axioms 

for base spaces in []I, 233, 234, 241 
for base spaces in viI, 235, 241 

combinatorial construction, 289, 290 
history, 238-240 
naturality, 2 1 8, 234, 235 
normalization, 2 1 7, 234, 235 
of quadratic modules, 248 
of representations of a finite group, 248 
of RP", 259 
of tangent bundles, 242, 289 
of topological manifolds, 242, 289 
Whitney product formula, 222, 234, 235 

Stiefel - Whitney genera GU'l, 250, 274ff, 300 
Stiefel-Whitney homology classes, 289, 290 
Stiefel-Whitney numbers, 250, 265-268, 273, 

274, 296 
basic Stiefel-Whitney numbers, 274, 296 

Stone's lemma, 39, 79, 1 1 4 
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Stone- Weierstrass theorem, 30, 3 1 ,  1 24 
Strongest known embedding theorems, 294, 

295 
Structure groups (transformation groups), 3, 

58, 60, 6 1 , 85, 9 1 , 97 
admissible topology, 60 
effective action, 60 
reduction of structure groups, 3, 59, 80ff, 

8 1 ,  85, 86, 9 1 , 1 1 6, 1 78, 1 79, 1 82, 183 
Subbundles of vector bundles, 1 1 4, 1 1 5, 1 70, 

1 86 
Subdivision of simplicial complexes, 9 

first barycentric subdivision, 9 
Subgroups 

maximal compact, 3, 8 1 ,  86, 9 1  
orthogonal, 3, 59, 8 1 ,  861f, 90-92 
rotation, 59, 8 1 ,  86ff, 90-92, 1 68 
unitary, 59, 8 1 ,  86ff, 89, 9 1 ,  92 

Sums of vector bundles, 1 08- 1 1 0, 1 70, 1 8 1 ,  
1 82 

Sums ( + �' of bundles over products X x X', 
1 09, 1 8 1  

Surgical equivalence, 268, 273, 299, see also 
Cobordism (unoriented) 

Surgical eq uivalence ring, 268, 273, see also 
. Cobordism ring 

Suspensions, reduced suspensions of pointed 
spaces, 1 89, 246 

Tangent bundles t(X), 2, 4, 1 05, I 26ff, 1 30, 
1 34, 1 37, 146, 1 78, 1 80, 1 85, 259 

t(Gm([Rm+ "» for the real Grassmann mani
fold Gm([Rm + "), 1 85 

t(RP") for the real projective space RP", 1 46 
t(X) for topological manifolds X, 1 80 ,  1 8 1  

Tangent spaces, 1 80 
Telescope IKI* of a metric simplicial space 

IKI , 1 2, 1 3, 49 
Telescope function, 1 1  
Tensor algebra ® V generated by a vector 

space V, 35 
Thorn classes, 3, 4 1 , 1 9 1 ,  I 92ff, 2 1 1 

for real n-plane bundles � ,  1./2 coefficients 
U, E H"(E,E*), 3, 1 92ff 
V< E H"(P,(JJ I , P,), 2091f 
W, E H"(P,(JJ I ' Pt(JJ I )' 2 1 1  

for real tangent bundles t(X), the diagonal 
Thorn class Tx E Hm(x x X, X x :x 
�(X) ; 1./2), 28 1 ff  

Thorn complexes, 2 1 2  
Thorn forms ( , h = j* Tx ,  276ff, 28 1 -284 
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Thorn isomorphisms <I>�, 199, 2 1 1 , 2 1 2  
Thorn spaces, 2 12  
Thom-Wu theorems, 285ff 
Todd classes, 302 
Top Stiefel-Whitney class, 4, 224 
Topological intersection theory, 240 
Topological manifolds, 29, 53, 54, 1 80, 242, 

288 
Poincare duality, 288 
Poincare-Lefschetz duality, 288 
Stiefel-Whitney classes, 242, 289 
tangent bundles, 1 80 
triangulation, 53 

Topological lfi!m bundles, 1 8 1 , 242, 289 
Topologies 

of simplicial spaces, 8, 10, 1 6- 1 8  
weak, I �  1 8, 2� 22 

Total space E 
of a coordinate bundle, I ,  57, 64, 67 
of a family of fibers, 61 
of a fiber bundle, 57, 64, 67 
of a fibre bundle, 64, 67 

Total Stiefel-Whitney class of a representa
tion of a finite group, 248 

Total Stiefel-Whitney class w(�) E H*(X; 71./2) 
of a real vector bundle � over X E �, 2, 4, 
2 1 5ff 

Total Wu classes, 245 
Transformation groups (structure groups), 58, 

60, 6 1 , 70 
morphisms (r,<I» of transformation groups, 

70 
Transition functions I{I' 

of coordinate bundles, 58, 67, 1 20, 1 2 1  
o f  vector bundles, 1 1 6, 1 1 8, 1 20, 1 2 1  

Triangulable manifolds, 53 
Triangulation theorem of Cairns and White-

head, 28, 52, 1 59 
Trivial fibre bundles, 57, 63, 73-75, 1 1 2 
Trivial vector bundles cm, c", . . .  , 1 1 2 
Trivializations of a coordinate bundle, 67, 1 2 1  

U 

Umkehr homomorphisms, 301 
Uniqueness theorems (ersatz homotopy 

uniqueness theorems), 1 47, 1 57, 1 7 1 ,  1 79, 
236 

Index 

Unitary group U(n) c GL(n,C), 59, 8 1 ,  86-89, 
9 1 , 92 

Universal complex line bundle y l , 1 70 
Universal complex n-plane bundle t, 1 70 
Universal oriented m-plane bundle ym, 1 64 
Universal polynomial relations 

for normal bundles, 246, 292 
for tangent bundles, 246, 30 1 

Universal principal G-bundles, 1 0 1 ,  102 
Universal real line bundle y l , 149, 155 
Universal real m-plane bundle ym, 3, 105, 1 49, 

1 53 
Unoriented cobordism, 50, 52, 267, 268 
Unoriented cobordism ring m, 250, 268, 296, 

297 
Unoriented smooth manifolds, 23ff, 50ff, 

249ff, 258, 273ff 

v 

Vector bundles, I ,  1 05ff, 1 78ff 
algebraic vector bundles, 1 80, 1 86, 188 
canonical complex bundles y:, 1 70 
canonical oriented bundles y:, 1 66 
canonical real bundles y:, 140ff, 144, 1 55-

1 59 
complex bundles, 1 69ff 
holomorphic bundles, 1 86 
introductory accounts, 1 78 
irreducible bundles, 1 88 
normal bundles v f of immersions j: 260 
nowhere-vanishing sections, 1 1 9, 1 26, 1 98 
orient able and oriented bundles, 1 60ff, 1 63 
real bundles, I ,  1 05ff 
sections of vector bundles, 1 1 6- 1 19, 198 
smooth bundles, 1 1 9- 1 22, 1 58ff, 1 72, 1 86 
stable normal bundles, 292, 293 
tangent bundles ,(X), 2, 4, 1 05, 1 26ff, 1 30, 

1 34, 1 37, 146, 1 78, 1 80, 1 85, 259 
trivial bundles 600, c", . . .  , 1 1 2 
universal complex bundles y", 1 70 
universal oriented bundles ym, 164 
universal real bundles ym, 3, 1 05, 149, 1 53 

Vector fields, 1 26ff, 1 29, 1 37, 1 79 
smooth and continuous, 1 37 
nowhere-vanishing, 1 37 

Vertex, 8 
Vogl's convenient categories, 48 
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Weak homotopy equivalence, 2 1 ,  49 
Weak simplicial spaces, 15-21  
Weak topology 

of a cell complex lim. X. , 20 
of �"', 22 
of a simplicial space I KI, 1 7, 1 8  

Whitney duality theorem. 24 1 ,  290 
Whitney embedding theorems, 28, 50, 260, 294 

analogs of, 51  
Whitney homology classes, 289, 290 
Whitney immersion theorems, 29, 5 1 ,  52. 260, 

291 
Whitney products of bundles, 1 08- 1 1 1 , 1 70 

of complex vector bundles, 1 70 
of real vector bundles, 108- 1 1 1  

Whitney product formulas 
for multiplicative 7L/2 classes of real 

bundles, 2 1 9-222, 226 
applied to sums � I + �2 ' 226 
applied to Whitney sums � EEl I}, 222 

for Stiefe1-Whitney classes of real bundles, 
219-222, 234, 235 

for 7L /2 Euler classes of real bundles, I 97ff, 
205 

applied to sums � I + �2 ' 197 
applied to Whitney sums � EEl I}, 198, 205 

Whitney sums, 108- 1 1 1 , 1 68- 1 70 
of complex bundles, 1 70 
of orientable bundles, 1 68, 1 69 
of real bundles. 1 08- 1 1 1  

Word problem for finitely presented groups, 
52 

Wu classes. 245 
Wu polynomial relations for tangent bundles, 

287, 301 
Wu relations for Steenrod squares, 245 
Wu series, 245, 301 
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z 

7L/2 characteristic classes, 2, 4, see also Dual 
Stiefe1-Whitney classes; Stiefe1-Whitney 
classes; Wu classes ; 7L /2 multiplicative 
classes; 7L/2 Euler classes 

1/2 diagonal Thorn classes Tx E 
H"(X x X, X x X\�(X)), 28 1 ff  

7L/2 Euler characteristic, 276, 297 
7L/2 Euler classes, 3, 4, 1 9 1ff, 1 96ff, 205ff 

axioms for, 205 
naturality of, 197, 205 
normalization of. 201 , 205 
of product line bundles, 206ff, 2 1 3, 2 14  
Whitney product formula for, I 97ff, 205 

7L/2 Euler classes e(r(X)) of tangent bundles 
r(X), 284 

7L/2 fundamental homology classes, 249, 25 1 -
254, 275 

7L/2 multiplicative classes, 2 16-219, 225 
naturality, 2 18, 2 1 9 
Whitney product formula, 2 19ff, 226 

7L/2 Poincare duality, 250, 258, 276, 277, 282, 
288 

7L/2 Poincan\ forms ( , )p , 276ff, 283 
7L/2 Poincare-Lefschetz duality, 4 1 ,  249, 250, 

256ff, 288 
7L/2 Riemann-Roch theorem, 302 
7L/2 Thorn classes U, E H"(E,E*), 3, 4 1 ,  1 9 1 ft'  
7L/2 Thorn classes � E H"(P,6J I '  P,), 209ff 
7L/2 Thorn classes � E H·(P'6J I ' P!6J ! )' 21 1 
7L/2 Thorn diagonal classes Tx E 

H"(X x X, X x X\�(X)), 28 1ff 
7L/2 Thorn forms ( , h = j* Tx E H·(X x X), 

276ff, 281 -284 
7L/2 Thorn isomorphisms 11>�, 1 99, 2 1 1 
Zero section X � E, 3, 1 1 7, 277 
Zero section X -+ P,6J ! ' 2 1 0  
Zero sphere So, 1 9, 1 62, 1 67 
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