
The Novikov Conjecture

Oberwolfach-Seminar January 2004

Matthias Kreck and Wolfgang Lück

November 17, 2004



2



Contents

Introduction 9

0 A Motivating Problem (K.) 15
0.1 Dimensions ≤ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
0.2 Dimension 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
0.3 Dimension 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction to the Novikov and the Borel Conjecture (L.) 19
1.1 The Original Formulation of the Novikov Conjecture . . . . . . . . 19
1.2 Invariance Properties of the L-Class . . . . . . . . . . . . . . . . . 20
1.3 The Borel Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Normal Bordism Groups (K.) 25
2.1 Normal Bordism Groups . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Rational Computation of Normal Bordism Groups . . . . . . . . . 26
2.3 Rational Computation of Oriented Bordism Groups . . . . . . . . . 28

3 The Signature (K.) 31
3.1 The Definition of the Signature . . . . . . . . . . . . . . . . . . . . 32
3.2 The Bordism Invariance of the Signature . . . . . . . . . . . . . . . 32
3.3 Multiplicativity and other Properties of the Signature . . . . . . . 34
3.4 Geometric Interpretation of Cohomology and the Intersection Form 35

4 The Signature Theorem and the Novikov Conjecture (K.) 39
4.1 The Signature Theorem . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Higher Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 The Novikov Conjecture . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 The Pontrjagin classes are not homeomorphism invariants . . . . . 43

5 The Projective Class Group and the Whitehead Group (L.) 47
5.1 The Projective Class Group . . . . . . . . . . . . . . . . . . . . . . 47
5.2 The First Algebraic K-Group . . . . . . . . . . . . . . . . . . . . . 49
5.3 The Whitehead Group . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



4 Contents

5.4 The Bass-Heller-Swan Decomposition . . . . . . . . . . . . . . . . . 54

6 Whitehead Torsion (L.) 57

6.1 Whitehead Torsion of a Chain Map . . . . . . . . . . . . . . . . . . 57
6.2 The Cellular Chain Complex of the Universal Covering . . . . . . . 61
6.3 The Whitehead Torsion of a Cellular Map . . . . . . . . . . . . . . 63
6.4 Simple Homotopy Equivalences . . . . . . . . . . . . . . . . . . . . 66

7 The Statement and Consequences of the s-Cobordism Theorem (L.) 69

8 Sketch of the Proof of the s-Cobordism Theorem (L.) 73

8.1 Handlebody Decompositions . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Handlebody Decompositions and CW -Structures . . . . . . . . . . 75
8.3 Reducing the Handlebody Decomposition . . . . . . . . . . . . . . 77
8.4 Handlebody Decompositions and Whitehead torsion . . . . . . . . 79

9 From the Novikov Conjecture to Surgery (K.) 83

9.1 The Structure Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 The Assembly Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10 Surgery Below the Middle Dimension I: An Example (K.) 91

10.1 Surgery and its Trace . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.2 The Effect on the Fundamental Group and Homology Groups . . . 92
10.3 Application to Knottings . . . . . . . . . . . . . . . . . . . . . . . 93

11 Surgery Below the Middle Dimension II: Systematically (K.) 95

11.1 The Effect of Surgery in Homology and Homotopy . . . . . . . . . 95
11.2 Surgery below the Middle Dimension . . . . . . . . . . . . . . . . . 97
11.3 Construction of Certain 6-Manifolds . . . . . . . . . . . . . . . . . 100

12 Surgery in the Middle Dimension I (K.) 103

12.1 Motivation for the Surgery Obstruction Groups . . . . . . . . . . . 103
12.2 Unimodular Hermitian Forms . . . . . . . . . . . . . . . . . . . . . 104
12.3 The L-Groups in Dimensions 4m . . . . . . . . . . . . . . . . . . . 105
12.4 The L-Groups in Other Dimensions . . . . . . . . . . . . . . . . . . 106

13 Surgery in the Middle Dimension II (K.) 109

13.1 Equivariant Intersection Numbers . . . . . . . . . . . . . . . . . . . 109
13.2 Stably Free Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13.3 The Quadratic Refinement . . . . . . . . . . . . . . . . . . . . . . . 111
13.4 The Surgery Obstruction . . . . . . . . . . . . . . . . . . . . . . . 113



Contents 5

14 Surgery in the Middle Dimension III (K.) 115
14.1 Stable Diffeomorphism Classification . . . . . . . . . . . . . . . . . 115
14.2 The Surgery Obstruction is a Bordism Invariant . . . . . . . . . . 117
14.3 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
14.4 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . 119
14.5 The Exact Surgery Sequence . . . . . . . . . . . . . . . . . . . . . 122
14.6 Stable Classification of Certain 6-Manifolds . . . . . . . . . . . . . 124

15 An Assembly Map (K.) 125
15.1 More on the Definition of the Assembly Map . . . . . . . . . . . . 125
15.2 The Surgery Version of the Novikov Conjecture . . . . . . . . . . . 128

16 The Novikov Conjecture for Zn (K.) 129
16.1 The Idea of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.2 Reduction to Mapping Tori . . . . . . . . . . . . . . . . . . . . . . 129
16.3 The Proof for Rank 1 . . . . . . . . . . . . . . . . . . . . . . . . . 131
16.4 The Generalization to Higher Rank . . . . . . . . . . . . . . . . . . 133
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Introduction

Manifolds are the central geometric objects in modern mathematics. An attempt
to understand the nature of manifolds leads to many interesting questions. One of
the most obvious questions is the following.

Let M and N be manifolds: how can we decide whether M and N are homo-
topy equivalent or homeomorphic or diffeomorphic (if the manifolds are smooth)?

The prototype of a beautiful answer is given by the Poincaré Conjecture. If
N is Sn, the n-dimensional sphere, and M is an arbitrary closed manifold, then
it is easy to decide whether M is homotopy equivalent to Sn. This is the case
if and only if M is simply connected (assuming n > 1, the case n = 1 is trivial
since every closed connected 1-dimensional manifold is diffeomorphic to S1) and
has the homology of Sn. The Poincaré Conjecture states that this is also sufficient
for the existence of a homeomorphism from M to Sn. For n = 2 this follows from
the well-known classification of surfaces. For n > 4 this was proved by Smale and
Newman in the sixties of the last century, Freedman solved the case in n = 4 in
1982 and recently Perelman announced a proof for n = 3, but this proof has still
to be checked thoroughly by the experts. In the smooth category it is not true that
manifolds homotopy equivalent to Sn are diffeomorphic. The first examples were
published by Milnor in 1956 and together with Kervaire he analyzed the situation
systematically in the sixties.

For spheres one only needs very little information to determine the homeo-
morphism type: the vanishing of the fundamental group and control of the homol-
ogy groups. Another natural class of manifolds is given by aspherical manifolds.
A CW -complex is called aspherical if the homotopy groups vanish in dimension
> 1, or, equivalently, if its universal covering is contractible. The Borel Conjecture,
which is closely related to the Novikov Conjecture, implies that the fundamental
group determines the homeomorphism type of an aspherical closed manifold.

For more general manifolds with prescribed fundamental group the classi-
fication is in general unknown even if the fundamental group is trivial. In this
situation it is natural to construct as many invariants as possible hoping that at
least for certain particularly important classes of manifolds one can classify them
in terms of theses invariants. The most important invariants after homotopy and
(co)homology groups are certainly characteristic classes which were defined and
systematically treated in the fifties. There are two types of characteristic classes
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for smooth manifolds: the Stiefel-Whitney classes wk(M) in Hk(M ; Z/2) and the
Pontrjagin classes pk(M) ∈ H4k(M ; Z). The nature of these classes is rather dif-
ferent. The Stiefel-Whitney classes of a closed manifold can be expressed in terms
of cohomology operations and so are homotopy invariants, the Pontrjagin classes
are diffeomorphism invariants (for smooth manifolds, and only for those they are
a priori defined), but not homeomorphism or even homotopy invariants in gen-
eral. Only very special linear combinations of the Pontrjagin classes are actually
homotopy invariants.

For example, the first Pontrjagin class of a closed oriented 4-manifold p1(M)
is a homotopy invariant. The reason is that 〈p1(M), [M ]〉 = 3 · sign(M), where
sign(M) is the signature of the intersection form on H2(M ; Q). The signature is
by construction a homotopy invariant. More generally, Hirzebruch has defined a
certain rational polynomial in the Pontrjagin classes (for a definition of Pontrjagin
classes see [171]) , the L-class

L(M) = L(p1(M), p2(M), . . .) ∈
⊕
i≥0

H4i(M ; Q).

Its i-th component is denoted by

Li(M) = Li(p1(M), p2(M), . . . , pi(M)) ∈ H4i(M ; Q).

The famous Signature Theorem of Hirzebruch says that the evaluation of Lk(M)
on the fundamental class [M] gives the signature of a 4k-dimensional manifold M :

sign(M) = 〈Lk(p1(M), . . . , pk(M)), [M ]〉.

One can show that a polynomial in the Pontrjagin classes gives a homotopy in-
variant if and only if it is a multiple of the k-th L-class.

This sheds light on the homotopy properties of the polynomial Lk(M) of a
4k-dimensional manifold M . But what can one say about the other polynomials
L1(M),L2(M),L3(M), . . .? Understanding Li(M) is — by Poincaré duality —
equivalent to understanding the numerical invariants

〈x ∪ Li(M), [M ]〉 ∈ Q (0.1)

for all x ∈ Hn−4i(M), where n = dim(M). One may ask whether these numerical
invariants are homotopy invariant in the following sense: If g : N → M is an
orientation preserving homotopy equivalence, then

〈x ∪ Li(M), [M ]〉 = 〈g∗(x) ∪ Li(N), [N ]〉. (0.2)

In general, these numerical invariants are not homotopy invariants. The Sig-
nature Theorem implies that the expression 0.1 is homotopy invariant for all
x ∈ H0(M ; Q). Novikov proved the remarkable result in the sixties that for
dim(M) = 4k + 1 and x ∈ H1(M) the expression 0.1 is homotopy invariant.
This motivated Novikov to state the following conjecture.
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LetG be a group. Denote by BG its classifying space which is up to homotopy
uniquely determined by the property that it is an aspherical CW -complex with G
as fundamental group. Novikov conjectured that the numerical expression

〈f∗(x) ∪ Li(M), [M ]〉 ∈ Q (0.3)

is homotopy invariant for every map f : M → BG from a closed oriented n-
dimensional manifold M to BG and every class x ∈ Hn−4i(M ; Q). More precisely,
the famous Novikov Conjecture says that if f ′ : M ′ → K is another map and
g : M →M ′ is an orientation preserving homotopy equivalence such that f ′ ◦ g is
homotopic to f , then

〈f∗(x) ∪ Li(M), [M ]〉 = 〈(f ′)∗(x) ∪ Li(M ′), [M ′])〉.

Notice that Novikov’s result that 0.2 holds in the case dim(M) = 4k + 1 and
x ∈ H1(M) is a special case of the Novikov Conjecture above since S1 is a model
for BZ and a cohomology class x ∈ H1(M) is the same as a homotopy class of
maps f : M → S1, the correspondence is given by associating to the homotopy
class of f : M → S1 the pullback f∗(x), where x is a generator of H1(S1).

Looking at this conjecture in a naive way one does not see a philosophical
reason why it should be true. Even in the case of the polynomial Lk, where 4k is
the dimension of a manifold, the proof cannot be understood without the signature
theorem translating the L-class to a cohomological invariant, the signature. In this
situation it is natural to ask for other homotopy invariants (instead of the signa-
ture) hoping that one can interpret the expressions 0.3 occurring in the Novikov
Conjecture in terms of these invariants. These expressions 0.3 are called higher
signatures. One can actually express them as signature of certain submanifolds.
But this point of view does not give homotopy invariants.

It is natural to collect all higher signatures and form from them a single
invariant. This can be done, namely, one considers

signG(M,f) := f∗(L(M) ∩ [M ]) ∈
⊕

i∈Z,i≥0

Hm−4i(BG; Q),

the image of the Poincaré dual of the L-class under the map induced from f . An
approach to proving the Novikov Conjecture could be to construct a homomor-
phism

AG :
⊕

i∈Z,i≥0

Hm−4i(BG; Q)→ L(G)

where L(G) is some Abelian group, such that AG(signG(M)) is a homotopy invari-
ant. Then the Novikov Conjecture would follow if the map AG is injective. Such
maps will be given by so called assembly maps.

The construction of such a map is rather complicated. A large part of these
lecture notes treats the background needed to construct such a map. In particular,
one needs the full machinery of surgery theory. We will give an introduction to
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this important theory. Roughly speaking, surgery deals with the following prob-
lem. Let W be a compact m-dimensional manifold whose boundary is either empty
or consists of two components M0 and M1 and f : W → X a map to a finite CW -
complex. If the boundary of W is not empty, we assume that f restricted to M0

and M1 is a homotopy equivalence. Then X is a so called Poincaré complex, some-
thing we also require if the boundary of W is empty. The question is whether we
can replace W and f by W ′ and f ′ (bordant to (W, f)) such that f ′ is a homo-
topy equivalence. If the boundary of W is not empty, then W ′ is an h-cobordism
between M0 and M1. In general it is not possible to replace (W, f) by (W ′, f ′)
with f ′ a homotopy equivalence. Wall has defined abelian groups Lhm(π1(X)) and
an obstruction θ(W, f) ∈ Lhm(π1(X)) whose vanishing is a necessary and suffi-
cient condition for replacing (W, f) by (W ′, f ′) with f ′ a homotopy equivalence, if
m > 4. One actually needs some more control, namely a so-called normal structure
on W . All this is explained in Chapters 2, 10 - 14 and Chapter 17.

Why is it so interesting to obtain an h-cobordism? If X is simply-connected,
and the dimension of W is greater than five, the celebrated h-cobordism theorem
of Smale says that an h-cobordism W is diffeomorphic to the cylinder over M0. In
particular, M0 and M1 are diffeomorphic. There is a corresponding result for topo-
logical manifolds. In the situation which is relevant for the Novikov Conjecture, X
is not simply-connected and then the h-cobordism theorem does not hold. There
is an obstruction, the Whitehead torsion, sitting in the Whitehead group which
is closely related to the algebraic K1-group. If the dimension of the h-cobordism
W is larger than five, then the vanishing of this obstruction is necessary and suf-
ficient for W to be diffeomorphic to the cylinder. This is called the s-cobordism
theorem. The Whitehead group, the obstruction and the idea of the proof of the
s-cobordism theorem are treated in Chapters 5 - 8.

In Chapters 15 - 16 we define the assembly map and apply it to prove the
Novikov Conjecture for finitely-generated free Abelian Groups.

What we have presented so far summarizes and explains information which
was known around 1970. To get a feeling for how useful the Novikov Conjecture
is, we apply it to some classification problems in low dimensions (see Chapter 0).

In the rest of the lecture notes we present some of the most important con-
cepts and results concerning the Novikov Conjecture and other closely related
conjectures dating from after 1970. This starts with an introduction to spectra
(see Chapter 18) and continues with classifying spaces of families, a generalization
of aspherical spaces (see Chapter 19). With this we have prepared a frame in which
not only the Novikov Conjecture but other similar and very important conjectures
can be formulated: the Farrell-Jones and the Baum-Connes Conjectures. After
introducing equivariant homology theories in Chapter 20, these conjectures and
their relation to the Novikov Conjecture are discussed in Chapters 21 - 23. Finally,
these lecture notes are finished by Chapter 24 called “Miscellaneous” in which the
status of the conjectures is summarized and methods and proofs are presented.

It is interesting to speculate whether the Novikov Conjecture holds for all
groups. No counterexamples are known to the authors. An interesting article ex-
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pressing doubts was published by Gromov [102].
We have added a collection of exercises and hints for their solutions.
From the amount of material presented in these Lecture Notes it is obvious,

that we cannot present all of the details. We have tried to explain those things
which are realistic for the very young participants of the seminar to master and we
have only said a few words (if anything at all) at other places. People who want to
understand the details of this fascinating theory will have to consult other books
and often the original literature. We hope that they will find our Lecture Notes
useful, since we explain some of the central ideas and give a guide for learning the
beautiful mathematics related to the Novikov Conjecture and other closely related
conjectures and results.

We would like to thank the participants of this seminar for their interest
and many stimulating discussions and Mathematisches Forschungsinstitut Ober-
wolfach for providing excellent conditions for such a seminar. We also would like to
thank Andrew Ranicki for carefully reading a draft of this notes and many useful
comments.
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Chapter 0

A Motivating Problem (K.)

The classification of manifolds is one of the central problems in mathematics.
Since a complete answer is (at least for manifolds of dimension ≥ 4) not possible,
one firstly has to fix certain invariants in such a way that the classification is in
principle possible. The reason, why the classification of manifolds is impossible
is reduced to the impossibility of classifying their fundamental groups. Thus as
a first invariant one has to fix the fundamental group. Then the optimal answer
would be to find invariants which determine the diffeomorphism (homeomorphism
or homotopy) type. In recent years, low dimensional manifolds (in dimension up to
7) occurred in various mathematical and non-mathematical contexts. We motivate
the Novikov Conjecture by considering the following problem:

Problem 0.1 (Classification of manifolds in low dimensions with π1(M) ∼= Z2 and
π2(M) = 0). Classify all connected closed orientable manifolds M in dimensions
≤ 6 with fundamental group π1(M) ∼= Z⊕Z and second homotopy group π2(M) = 0
up to

(1) homotopy equivalence;

(2) homeomorphism;

(3) diffeomorphism.

Here and in the following we always mean orientation preserving maps.

0.1 Dimensions ≤ 4

Since all closed connected 1-manifolds are diffeomorphic to S1, there is no example
in dimension 1.

In dimension 2 there is only one such manifold, the torus T 2 = S1×S1. Here
the classification up to the relations i) - iii) agree.

15
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In dimension 3 there is no manifold with fundamental group Z⊕Z. The reason
is that the classifying map of the universal covering of such a 3-manifold f : M →
T 2 is 3-connected. Hence it induces isomorphisms Hp(f) : Hp(M)

∼=−→ Hp(T 2) and
Hp(f) : Hp(T 2)

∼=−→ Hp(M) for p ≤ 2. Poincaré duality implies H1(M) ∼= H2(M).
This yields a contradiction since H2(T 2) = Z and H1(T 2) = Z2.

There is also no such manifold M in dimension 4 by the following argument.
As above for 3-manifolds we conclude that H2(M) ∼= Z. Poincaré duality implies
for the Euler characteristic χ(M) = 1. Now we note that all finite coverings of M
are again manifolds of the type we investigate. Namely the fundamental group is
a subgroup of finite index in Z ⊕ Z and so isomorphic to Z ⊕ Z. And the higher
homotopy groups of a covering do not change. Now consider a subgroup of index
k > 1 in π1(M) and let N be the corresponding covering. Then χ(N) = k · χ(M).
Since N is a manifold under consideration we have χ(N) = 1. This leads to a
contradiction.

0.2 Dimension 6

In dimension 6 one has an obvious example, namely T 2 ×S4. But there are many
more examples coming from the following construction.

Example 0.2 (Constructing manifolds by surgery). We start with a simply con-
nected smooth 4-manifold M with trivial second Stiefel-Whitney class w2(M) and
consider T 2 ×M . Then we choose disjoint embeddings (S2 × D4)i into T 2 ×M
representing a basis of π2(M) ∼= π2(T 2 ×M). For this we first choose maps from
S2 to T 2 ×M representing a basis. The Whitney Embedding Theorem implies
that we can choose these maps as disjoint smooth embeddings. Finally we note
that since w2(T 2 × M) = 0, the normal bundle of these embeddings is trivial
and we use a tubular neighbourhood to construct the desired embeddings. Now
we form a new manifold by deleting the interiors of these embeddings and glue-
ing in D3 × S3 to each deleted component. We denote the resulting manifold by
N(M). This cutting and pasting process is called surgery. Using standard consid-
erations in algebraic topology one shows that N(M) is an oriented manifold with
π1
∼= Z⊕ Z, π2 = 0 and w2 = 0 (see Exercise 0.1). We will study surgery in later

chapters systematically.

Example 0.3 (A higher signature). We introduce the following invariant for the
6-manifolds N under consideration. The second cohomology is isomorphic to Z,
and we choose a generator x ∈ H2(N). This generator is well defined up to sign.
Let [M ] be the fundamental class in H6(M). Taking the cup product with the
Pontrjagin class and evaluating on [M ] gives our invariant:

±〈x ∪ p1(N), [N ]〉 ∈ Z (0.4)

which is unique up to a sign ±. It is easy to see (see Exercise 0.2) that for the
manifold N(M) constructed above this invariant agrees with the first Pontrjagin
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class of M evaluated at [M ] up to sign:

± 〈x ∪ p1(N(M)), [N(M)]〉 = ±〈p1(M), [M ]〉. (0.5)

The values of 〈p1(M), [M ]〉 for the different simply connected smooth 4-manifolds
are known: Every integer divisible by 48 occurs [231].

We want to understand the relevance of this invariant. We firstly note that
it is unchanged if we take the connected sum with S3×S3. Thus it is an invariant
of the stable diffeomorphism type, where we call two closed manifolds M and N
of dimension 2k stably diffeomorphic, if there exist integers p and q, such that
M]p(Sk × Sk) is diffeomorphic to N]q(Sk × Sk), i.e. the manifolds M and N are
diffeomorphic after taking the connected sum with p resp. q copies of Sk × Sk.
The relevance of the invariant 〈x ∪ p1(N), [N ]〉 is demonstrated by the following
result

Theorem 0.6 (Stable Classification of Certain Six-Dimensional Manifolds). Two
smooth 6-dimensional closed orientable manifolds M and N with π1(M) ∼= π1(N) ∼=
Z⊕ Z and π2(M) = π2(N) = 0 are stably diffeomorphic if and only if

(1) In both cases w2 vanishes or does not vanish;

(2) ±〈x ∪ p1(M), [M ]〉 = ± 〈x ∪ p1(N), [N ]〉.

We will give the proof of this result in Chapter 14. In our context this result
leads to the following obvious questions: Is the second invariant also a stable home-
omorphism or stable homotopy invariant? Here we define stably homeomorphic and
stably homotopy equivalent in analogy to the definition of stably diffeomorphic by
replacing in this definition diffeomorphic by homeomorphic or homotopy equiva-
lent.

The answer is in both cases non-trivial. For homeomorphisms we pass from
the Pontrjagin class p1(M) ∈ H4(M) to the rational Pontrjagin class p1(M ; Q) ∈
H4(N ; Q). Since H4(N) is torsionfree we do not lose any information. Then we ap-
ply a deep result by Novikov (see Theorem 1.5) saying that the rational Pontrjagin
classes are homeomorphism invariants and so stable homeomorphism invariants.

The rational Pontrjagin classes are in general not homotopy invariants (see
Example 1.6). But Novikov conjectured that certain numerical invariants, the so
called higher signatures, built from the rational Pontrjagin classes and cohomology
classes of the fundamental group are homotopy invariants. The invariant occurring
in Theorem 0.6 is one of these invariants. (We will give a proof for free abelian
groups in Chapter 16).

It should be noted that in contrast to the Pontrjagin classes the Stiefel-
Whitney classes of a manifold are homotopy invariants. Thus the condition w2 = 0
or w2 6= 0 is invariant under (stable) homotopy equivalences. Thus we conclude

Corollary 0.7. For two smooth 6-dimensional closed orientable manifolds M and
N with π1(M) ∼= π1(N) ∼= Z ⊕ Z and π2(M) = π2(N) = 0 the classifications up
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to stable diffeomorphism, stable homeomorphism and stable homotopy equivalence
agree. In other words, the invariants from Theorem 0.6 determine also the stable
homeomorphism and stable homotopy type.

Remark 0.8 (Role of the Novikov Conjecture). The following formulation explains
the surprising role of the Novikov Conjecture. In general the homotopy classifi-
cation is a simpler question than the homeomorphism or diffeomorphism classi-
fication which one can attack by methods of classical homotopy theory. For the
6-manifolds under consideration the Novikov Conjecture implies that the stable
homotopy type determines the stable homeomorphism and even stable diffeomor-
phism type of these smooth manifolds.

0.3 Dimension 5

Now we study the manifolds in dimension 5. In dimension 5 there are at least
two such manifolds, namely T 2 × S3 and the sphere bundle of the non-trivial
oriented 4-dimensional vector bundle over T 2. These manifolds are not homotopy
equivalent (see Exercise 0.3). Moreover, using standard techniques from homotopy
theory one can show that there are precisely two homotopy types of manifolds
under consideration, which are given by these two bundles. The next obvious
question is the determination of the homeomorphism and diffeomorphism type
of these manifolds. One can show that the diffeomorphism type is determined
by the first Pontrjagin class, and since this is a homeomorphism invariant (by
Novikov’s result mentioned above), this also determines the homeomorphism type.
But which values can the Pontrjagin class take? Here again the Novikov Conjecture
comes into play. It implies in our situation that the first Pontrjagin class is a
homotopy invariant. Since we know all homotopy types and in the examples above
the Pontrjagin class is trivial, we conclude that the Pontrjagin class is zero for our
manifolds. Thus we have again a surprising result: The homotopy type of these
5-manifolds determines the homeomorphism (and actually diffeomorphism) type!
For detailed arguments and more results we refer to [136].

Remark 0.9 (Other fundamental groups). The Novikov Conjecture is also valid for
all fundamental groupsG of closed oriented surfaces. The proof of Theorem 0.6 also
holds for these fundamental groups so that Corollary 0.7 can also be generalized to
these fundamental groups. We will investigate these 6-manifolds further in [136].



Chapter 1

Introduction to the Novikov and
the Borel Conjecture (L.)

In this chapter we give a brief introduction to the Novikov and to the Borel
Conjecture.

1.1 The Original Formulation of the Novikov Conjec-

ture

Let G be a (discrete) group. We denote by BG its classifying space, which is
uniquely determined by the property that it is a connected CW -complex BG

together with an identification π1(BG)
∼=−→ G whose universal covering B̃G is

contractible. Let u : M → BG be a map from a closed oriented smooth manifold
M to BG. Let

L(M) ∈
⊕

k∈Z,k≥0

H4k(M ; Q)

be the L-class of M . Its k-th entry L(M)k ∈ H4k(M ; Q) is a certain homogeneous
polynomial of degree k in the rational Pontrjagin classes pi(M ; Q) ∈ H4i(M ; Q)
for i = 1, 2, . . . , k such that the coefficient sk of the monomial pk(M ; Q) is different
from zero. We will give its precise definition later and mention at least the first
values

L(M)1 =
1
3
· p1(M ; Q);

L(M)2 =
1
45
·
(
7 · p2(M ; Q)− p1(M ; Q)2

)
;

L(M)3 =
1

945
·
(
62 · p3(M ; Q)− 13 · p1(M ; Q) ∪ p2(M ; Q) + 2 · p1(M ; Q)3

)
.
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The L-class L(M) is determined by all the rational Pontrjagin classes and vice
versa. Recall that the k-th rational Pontrjagin class pk(M,Q) ∈ H4k(M ; Q) is
defined as the image of k-th Pontrjagin class pk(M) under the obvious change of
coefficients map H4k(M ; Z) → H4k(M ; Q). The L-class depends on the tangent
bundle and thus on the differentiable structure of M . For x ∈

∏
k≥0H

k(BG; Q)
define the higher signature of M associated to x and u to be

signx(M,u) := 〈L(M) ∪ u∗x, [M ]〉 ∈ Q. (1.1)

Here and in the sequel [M ] denotes the fundamental class of a closed oriented d-
dimensional manifold M in Hd(M ; Z) or its image under the change of coefficients
map Hd(M ; Z) → Hd(M ; Q) and 〈u, v〉 denotes the Kronecker product. Recall
that for dim(M) = 4n the signature sign(M) of M is the signature of the non-
degenerate bilinear symmetric pairing on the middle cohomology H2n(M ; R) given
by the intersection pairing (a, b) 7→ 〈a ∪ b, [M ]〉. Obviously sign(M) depends only
on the oriented homotopy type of M . We say that signx for x ∈ H∗(BG; Q) is
homotopy invariant if for two closed oriented smooth manifolds M and N with
reference maps u : M → BG and v : N → BG we have

signx(M,u) = signx(N, v),

whenever there is an orientation preserving homotopy equivalence f : M → N
such that v ◦ f and u are homotopic.

Conjecture 1.2 (Novikov Conjecture). Let G be a group. Then signx is homotopy
invariant for all x ∈

∏
k∈Z,k≥0H

k(BG; Q).

This conjecture appears for the first time in the paper by Novikov [183, §11].
A survey about its history can be found in [91].

1.2 Invariance Properties of the L-Class

One motivation for the Novikov Conjecture comes from the Signature Theorem
due to Hirzebruch (see [115], [116]).

Theorem 1.3 (Signature Theorem). Let M be an oriented closed manifold of di-
mension n. Then the higher signature sign1(M,u) = 〈L(M), [M ]〉 associated to
1 ∈ H0(M) and some map u : M → BG coincides with the signature sign(M) of
M , if dim(M) = 4n, and is zero, if dim(M) is not divisible by four.

The Signature Theorem 1.3 leads to the question, whether the Pontrjagin
classes or the L-classes are homotopy invariants. They are obviously invariants
of the diffeomorphism type. It is not true that the Pontrjagin classes pk(M) ∈
H4k(M ; Z) themselves are homeomorphism invariants.
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Remark 1.4 (The integral Pontrjagin classes are not homeomorphism invariants).
The first Pontrjagin class p1(M) ∈ H4(M ; Z) is a homeomorphism invariant,
whereas all higher Pontrjagin classes pk(M) ∈ H4k(M ; Z) for k ≥ 2 are not
homeomorphism invariants. This will be explained in Theorem 4.8.

On the other hand, there is the following deep result due to Novikov [180],
[181], [182].

Theorem 1.5 (Topological invariance of rational Pontrjagin classes). The rational
Pontrjagin classes pk(M,Q) ∈ H4k(M ; Q) are topological invariants, i.e. for a
homeomorphism f : M → N of closed smooth manifolds we have

H4k(f ; Q)(pk(M ; Q)) = pk(N ; Q)

for all k ≥ 0 and in particular H∗(f ; Q)(L(M)) = L(N).

Example 1.6 (The L-class is not a homotopy invariant). The rational Pontrjagin
classes and the L-class are not homotopy invariants as the following example shows.
There exists for k ≥ 1 and large enough j ≥ 0 a (j+1)-dimensional vector bundle
ξ : E → S4k with Riemannian metric whose k-th Pontrjagin class pk(ξ) is not zero
and which is trivial as a fibration. The total space SE of the associated sphere
bundle is a closed (4k+ j)-dimensional manifold which is homotopy equivalent to
S4k × Sj and satisfies

pk(SE) = −pk(ξ) 6= 0;
L(SE)k = sk · pk(SE) 6= 0,

where sk 6= 0 is the coefficient of pk in the polynomial defining the L-class. But
pk(S4k × Sj) and L(S4k × Sj)k vanish since the tangent bundle of S4k × Sj is
stably trivial. In particular SE and S4k × Sj are simply-connected homotopy
equivalent closed manifolds, which are not homeomorphic. This example is taken
from [202, Proposition 2.9] and attributed to Dold and Milnor there. See also [202,
Proposition 2.10] or [171, Section 20].

Remark 1.7 (The signature as a surgery obstruction). Browder (see [33], [34]) and
Novikov [179] showed in 1962 independently a kind of converse to the Signature
Theorem 1.3 in dimensions ≥ 5. Namely, ifX is a simply-connected 4k-dimensional
Poincaré complex for k ≥ 2 such that the signature of X is 〈L(ν), [X]〉 for L(ν) the
L-class of a vector bundle over X with spherical Thom class, then there is a closed
oriented 4k-dimensional manifold M and a homotopy equivalence f : M → X of
degree one such that the pullback f∗ν of ν with f and the stable normal bundle
νM of M are stably isomorphic.

Remark 1.8 (The homological version of the Novikov Conjecture). One may un-
derstand the Novikov Conjecture as an attempt to figure out how much of the
L-class is a homotopy invariant of M . If one considers the oriented homotopy type
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and the simply-connected case, it is just the expression 〈L(M), [M ]〉 or, equiv-
alently, the top component of L(M). In the Novikov Conjecture one asks the
same question but now taking the fundamental group into account by remember-
ing the classifying map uM : M → Bπ1(M), or, more generally, a reference map
u : M → BG. The Novikov Conjecture can also be rephrased by saying that for
a given group G each pair (M,u) consisting of an oriented closed manifold M
together with a reference map u : M → BG the term

u∗(L(M) ∩ [M ]) ∈ H∗(BG; Q)

depends only on the oriented homotopy type of the pair (M,u). This follows from
the elementary computation for x ∈ H∗(BG; Q)

〈L(M) ∪ u∗x, [M ]〉 = 〈u∗x,L(M) ∩ [M ]〉 = 〈x, u∗(L(M) ∩ [M ])〉.

and the fact that the Kronecker product 〈−,−〉 for rational coefficients is non-
degenerate. Notice that − ∩ [M ] : Hdim(M)−n(M ; Q) → Hn(M ; Q) is an isomor-
phism for all n ≥ 0 by Poincaré duality. Hence L(M) ∩ [M ] carries the same
information as L(M).

Remark 1.9 (The converse of the Novikov Conjecture). A kind of converse to
the Novikov Conjecture 1.2 is the following result. Let N be a closed connected
oriented smooth manifold of dimension n ≥ 5. Let u : N → BG be a map in-
ducing an isomorphism on the fundamental groups. Consider any element l ∈∏
i≥0H

4i(N ; Q) such that u∗(l ∩ [N ]) = 0 holds in H∗(BG; Q). Then there exists
a non-negative integer K such that for any multiple k of K there is a homotopy
equivalence f : M → N of closed oriented smooth manifolds satisfying

f∗(L(N) + k · l) = L(M).

A proof can be found for instance in [63, Theorem 6.5]. This shows that the
top dimension part of the L-class L(M) is essentially the only homotopy invariant
rational characteristic class for simply-connected closed 4k-dimensional manifolds.

1.3 The Borel Conjecture

In this chapter we will explain the

Conjecture 1.10 (Borel Conjecture). Let M and N be aspherical closed topological
manifolds. Then

(1) Each homotopy equivalence f : M → N is homotopic to a homeomorphism;

(2) The manifolds M and N are homeomorphic if and only if they have isomor-
phic fundamental groups.
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We say that the Borel Conjecture holds for a group G, if it is true for all
aspherical closed topological manifolds M and N , whose fundamental groups are
isomorphic to G.

A manifold M is closed if and only if it is compact and has no boundary. A
CW -complex is called aspherical if X is connected and πn(X,x) = 0 for n ≥ 2 and
one (and hence all) basepoints x ∈ X, or, equivalently, if X is connected and its
universal covering is contractible. If X and Y are aspherical CW -complexes, then
for each homomorphism ϕ : π1(X,x) → π1(Y, y) there is a map f : X → Y with
f(x) = y such that π1(f, x) = ϕ holds. If ϕ is bijective, then f is automatically a
homotopy equivalence. This explains why in the Borel Conjecture 1.10 assertion
(1) implies assertion (2).

Remark 1.11 (The Borel Conjecture versus Mostow rigidity). The Borel Conjec-
ture 1.10 is a topological version of the Mostow Rigidity Theorem. A special version
of it says that for two hyperbolic closed manifolds M and N each homotopy equiv-
alence from M to N is homotopic to an isometric diffeomorphism. In particular M
and N are isometrically diffeomorphic if and only if they have isomorphic funda-
mental groups. Recall that a Riemannian manifold is hyperbolic if and only if it is
complete and its sectional curvature is constant −1. This is equivalent to the con-
dition that the universal covering is isometrically diffeomorphic to the hyperbolic
space Hn for n = dim(M). Since Hn is contractible, each hyperbolic manifold is
aspherical. So also the Borel Conjecture 1.10 applies to hyperbolic closed mani-
folds, but the conclusion is weaker, we only get a homeomorphism instead of an
isometric diffeomorphism. On the other hand the assumptions appearing in the
Borel Conjecture 1.10 are much weaker.

Remark 1.12 (The Borel Conjecture fails in the smooth category). In general
the Borel Conjecture 1.10 becomes false if one considers aspherical closed smooth
manifolds and replaces homeomorphisms by diffeomorphisms. Counterexamples
have been constructed by Farrell-Jones [78, Theorem 1.1]. Given any δ > 0, they
consider an appropriate hyperbolic manifold M and an appropriate exotic sphere
Σ such that there is a homeomorphism f : M]Σ → M and the manifold M]Σ
does admit a Riemannian metric of negative sectional curvature which is pinched
between 1− δ and 1 + δ, but M]Σ and M are not diffeomorphic.

Remark 1.13 (The Borel Conjecture holds only for aspherical manifolds). The
condition aspherical is crucial in the Borel Conjecture 1.10, otherwise there are
counterexamples as we have seen already in Example 1.6. Older counterexamples
are given by so called lens spaces, some of which are homotopy equivalent but not
homeomorphic. A detailed discussion of lens spaces can be found for instance in
[53, Chapter V] and [155, Section 2.4].

Remark 1.14 (The Borel Conjecture and the Novikov Conjecture). The Borel
Conjecture 1.10 implies the Novikov Conjecture 1.2 in the case, where u : M → BG
is a homotopy equivalence, by the topological invariance of the rational Pontrjagin



24 Chapter 1. Introduction to the Novikov and the Borel Conjecture (L.)

classes (see Theorem 1.5). We will explain in Section 21.5 that the L-theoretic
version of the Borel Conjecture 1.10 for a given group G implies the Novikov
Conjecture 1.2 for this group G.

Remark 1.15 (The Borel Conjecture and the Poincaré Conjecture). The Borel
Conjecture 1.10 for T 3 does imply by an indirect argument (see [85, Remark on
page 233]) the Poincaré Conjecture in dimension 3, which says that a 3-manifold,
which is homotopy equivalent to S3, is already homeomorphic to S3. Gabai [96]
has a program to show that the Borel Conjecture 1.10 in dimension 3 is actually
equivalent to the Poincaré Conjecture in dimension 3.

Remark 1.16 (Status of the Borel Conjecture and the Novikov Conjecture). The
Borel Conjecture 1.10 has been proved by Farrell and Jones, if N is a closed
Riemannian manifold with non-negative sectional curvature [82, Proposition 0.10
and Lemma 0.12], or if π1(N) is a subgroup of a group G which is a discrete
cocompact subgroup of a Lie group with finitely many path components [80]. This
implies the Novikov Conjecture 1.2 for such groups G. The Novikov Conjecture 1.2
is even known for many other classes of groups such as for all linear groups, all
arithmetic groups and all word hyperbolic groups. Both the Borel Conjecture 1.10
and the Novikov Conjecture 1.2 are open in general. A more detailed discussion
of the status of these conjectures will be given in Section 24.1.
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Normal Bordism Groups (K.)

2.1 Normal Bordism Groups

If one wants to classify manifolds in terms of invariants one looks in particular
for invariants which are comparatively easy to compute or have properties which
make their analysis easy. Such a property is the bordism invariance of an invari-
ant. The higher signatures are invariants of this type, but there are many more.
Another feature of “good” invariants is that they should have a strong output
for classification. This is an additional advantage of bordism invariants. In this
chapter we want to introduce the relevant bordism groups systematically.

We want to define for each topological spaceX together with a stable oriented
vector bundle E over X its normal bordism group

Ωn(X;E).

This will play a central role in the surgery program.
The concept of a stable vector bundle is delicate. If X is a finite CW -complex

one can simply take an oriented vector bundle E of dimension greater than the
dimension of X. This bundle should be identified with E⊕Rk for arbitrary k. We
recommend that the reader takes this point of view to begin. The most important
example in our context comes from a smooth submanifold M of RN , where we
consider the tangent bundle T (M) or the normal bundle ν(M). Passing from RN
to RN+k corresponds to passing from ν(M) to ν(M) ⊕ Rk. Thus we speak of
the stable normal bundle. To avoid difficulties the reader should consider smooth
manifolds always as submanifolds of RN for some large N . Since all manifolds can
be embedded into an Euclidean space (and this embedding is unique up to isotopy
for N > 2n+ 1) this is no loss of generality.

Now we define the bordism group.
Elements in Ωn(X;E) are represented by triples (M,f, α), where M is a

closed n-dimensional smooth manifold, f : M → X a continuous map and α an

25
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isomorphism between f∗E and the stable normal bundle ν(M). Here we have
embedded M into RN for some large number N . If we stabilize E by passing to
E ⊕R we similarly pass from RN to RN+1 and replace α by α⊕ id. Such a triple
is called a normal map in (X,E).

Two such triples (M,f, α) and (M ′, f ′, α′) are called bordant if there is a
compact manifold W with ∂W = M + M ′, the map f + f ′ can be extended
to W by a map g : W → X, and α + α′ can be extended to an isomorphism
β : ν(W ) → g∗E. We note that we have to identify ν(W )|∂W with ν|∂W ⊕ R and
we do this with the help of a normal vector field on the boundary pointing to the
interior.

We summarize

Ωn(X;E) := {(M,f, α)}/bordism

As usual, we make Ωn(X;E) a group, where the addition is given by disjoint
union. The inverse is given by considering ν(M)⊕R and taking the composite of
α ⊕ id : ν(M) ⊕ R → f∗(E) ⊕ R with the reflection at ν(M) ⊕ {0}. We leave the
details of the proof that Ωn(X;E) a group to the reader (see Exercise 2.1).

2.2 Rational Computation of Normal Bordism Groups

To make effective use of bordism invariants one has to determine them, and a first
step is the computation of the bordism groups. This is even for the simplest case,
where X is a point (and so E is the trivial bundle) unknown. Namely then the
bordism group is the bordism group of framed manifolds

Ωfrn = Ωn({•}; R),

and by the Pontrjagin construction this is isomorphic to the stable homotopy
groups of spheres

πn+k(Sk)

for k large. Here and elsewhere {•} denotes the space consisting of one point.
For an elementary proof see [168]. The stable homotopy groups of spheres are
only known for small dimensions. But after taking the tensor product with Q
the situation simplifies completely and using this we can give a computation of
Ωn(X;E) ⊗ Q. We have a map Ωn(X;E) → Hn(X) by mapping [M,f, α] to
f∗([M ]).

Theorem 2.1 (Rational computation of normal bordism groups). For a CW -
complex X the map

Ωm(X;E)⊗Q
∼=−→ Hm(X; Q), [M,f, α] 7→ f∗([M ])

is an isomorphism.
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Proof. We will only treat the case, where X is a finite CW -complex, the general
case follows by a limit argument.

We will show the result inductively over the cells of X. If X is a point, then
Ωm({•};E) = Ωfrm , the bordism group of framed manifolds.

As mentioned above, Ωfrm is isomorphic to the stable homotopy group of
spheres

Ωfrm ∼= πm+k(Sk)

for k � m.
We abbreviate πm+k(Sk) = πsm for k � m.

Theorem 2.2 (Rational stable homotopy groups of spheres (Serre)).

πsm ⊗Q ∼=
{

Q for m = 0,
0 else.

The original proof of Serre [217] uses spectral sequences. Serre actually proves
a stronger statement, namely that in addition all these groups are finitely gener-
ated implying that they are finite in dimension > 0. A recent elementary proof of
the above statement using Gysin and Wang sequences instead of spectral sequences
was given in [131]

Since Ωfr0 ({•})→ H0({•}) is obviously bijective, Theorem 2.1 holds for X =
{•}.

For the induction step we suppose that X = Y ∪Dm and the result holds for
Ωm(Y,E|Y ). Standard considerations (see Exercise 2.2) for bordism groups give
an exact sequence:

→ . . .Ωm(Y ;E|Y )→ Ωm(X;E)→ Ωm(X,Y ;E)→ Ωm−1(Y ;E|Y )→ . . . ,

where the relative group Ωm(X,Y ;E) is as usual given by bordism classes of triples
(W, f, α), where W is a compact manifold with boundary, f : (W,∂W ) → (X,Y )
is a continuous map and α is an isomorphism α : ν(W )→ f∗E.

Another standard result is excision (see Exercise 2.3) implying an isomor-
phism

Ωk(Y ∪Dm, Y ;E)
∼=← Ωk(Dm, Sm−1;E|Dm).

Since Dm is contractible, E|Dm is the trivial bundle and so

Ωk(Dm, Sm−1;E|Dm) ∼= Ωfrk (Dm, Sm−1) ∼= Ω̃frk (Sm) ∼= Ωfrk−m({•}).

Thus
Ωk(X,Y ;E)⊗Q

∼=−→ Hk(X;Y ; Q)

is an isomorphism and Theorem 2.1 follows from the 5-Lemma. �
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2.3 Rational Computation of Oriented Bordism Groups

As an application we prove Thom’s famous result about the rational computation
of the oriented bordism group Ωm({•}) = Ωm. For a topological space X we
consider the bordism group

Ωm(X)

of bordism classes of pairs (M,f), where M is a closed m-dimensional oriented
manifold and f : M → X a continuous map. This is a generalized homology theory,
the proof is elementary [54].

If X is a point, we can give a different interpretation of Ωm which looks more
complicated at the first glance. If M is a closed manifold, we embed it into RN

for some large N . The normal Gauß map associates to each x ∈ M the oriented
normal vector space νx. The space of (N −m)-dimensional oriented subspaces of
RN is the Grassmann manifold G̃N,N−m. Let E be the tautological bundle over
G̃N,N−m. Then by construction

ν∗E = ν(M),

and so we consider the element

[M,ν, id] ∈ Ωm(G̃N,N−m;E)

leading to a homomorphism

Ωm → Ωm(G̃N,N−m;E).

On the other hand we have the forgetful map

Ωm(G̃N,N−m;E)→ Ωm

and it is easy to see that this is an inverse to the first map (see Exercise 2.4).
Moreover, if we consider a topological space X and replace Ωm by Ωm(X) and
Ωm(G̃N,N−m;E) by Ωm(G̃N,N−m × X; p∗1E) we obtain a corresponding isomor-
phism:

Proposition 2.3 (Translation of oriented bordism to a normal bordism group). We
obtain for large N an isomorphism

Ωm(X) ∼= Ωm(G̃N,N−m ×X; p∗1E).

From 2.1 we know that

Ωm(G̃N,N−m;E)⊗Q ∼= Hm(G̃N,N−m; Q).

If we stabilize N by passing from N to N +1, the limit of the spaces is called
BSO and so we have shown
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Theorem 2.4 (Relation of rational oriented bordism groups to the homology of
BSO). The map

Ωm(X)⊗Q
∼=−→ Hm(BSO ×X; Q), [M,f ] 7→ (ν × f)∗([M ])

is an isomorphism.

A standard inductive argument gives a computation of H∗(BSO; Q) :

H∗(BSO; Q) ∼= Q [p1, p2, p3, . . .] ,

where pi are given by the Pontrjagin classes of the tautological bundle E over
GN,k [171].

Since ν∗(pi) = pi(ν(M)), the i-th Pontrjagin class of the normal bundle of
M , we conclude that the Pontrjagin numbers of the normal bundle determine
the bordism class of a manifold M . Since the Pontrjagin classes of the normal
bundle determine those of the tangent bundle (and vice versa) we conclude Thom’s
theorem:

Theorem 2.5 (Rational computation of oriented bordism groups (Thom)). We
obtain an isomorphism

Ω4k ⊗Q
∼=−→ Qπ(k), [M ] 7→ (〈pI(M), [M ]〉)I

where π(k) is the number of partitions I of k and for such a partition I =
(i1, i2, . . . , is) we put pI(M) := pi1(TM) ∪ . . . ∪ pis(TM).

For m 6= 0 mod 4
Ωm ⊗Q = 0.

The numbers
〈pI(M), [M ]〉

are called Pontrjagin numbers.
One can give an explicit basis of Ω4k ⊗Q. One “only” has to find for each k

and each partition J of k manifolds MJ such that the matrix with entries

〈pI ,MJ〉

has non-trivial determinant. Experiments with small dimensions suggest thatMJ :=
CP2j1 ×CP2j2 × ...×CP2jr will have this property, where k = j1 + ...+ jr. This is
actually true but the proof needs a clever idea. We refer to [171] for the proof of:

Theorem 2.6 (Basis for rational oriented bordism groups). The products of com-
plex projective spaces CP2i1 ×CP2i2 × ...×CP2ir for i1 + ...+ ir = k yield a basis
of Ω4k ⊗Q.

The material in this chapter will be discussed from a different point of view
again in Chapter 18.
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Chapter 3

The Signature (K.)

The oldest topological invariant is the Euler characteristic, the alternating sum of
Betti numbers. The relevance of the Euler characteristic is obvious for the classifi-
cation of closed connected oriented surfaces: Two such surfaces are homeomorphic
if and only if the Euler characteristics agree.

The Euler characteristic of a closed 3-manifold is zero and, more generally,
the (co)homological picture of 3-manifolds is rather simple, in this case the most in-
teresting algebraic topological information is contained in the fundamental group.

Passing to dimension 4, we will encounter a new invariant, the signature. It
assigns to a closed oriented manifold M of dimension 4k an integer, σ(M) ∈ Z,
and its importance is visible from the following very deep result. A closed oriented
4-manifold M is called even if for all x ∈ H2(M ; Z/2), we have x∪ x = 0 mod 2,
otherwise it is called odd.

Theorem 3.1. Homeomorphism classification of closed 1-connected smooth 4-
manifolds (Donaldson, Freedman)). Two closed simply connected smooth oriented
4-manifolds M and N are homeomorphic if and only if

i) both are even or odd,

ii) they have equal Euler characteristic,

iii) the signatures agree.

The proof of this result uses Donaldson’s [69] theorem, that the intersection
form of a smooth closed 4-manifold is either up to sign the standard Euclidean form
or indefinite, and Freedman’s classification of 1-connected topological 4-manifolds
[94]. It has only a slight relation to the Novikov Conjecture. Namely, one of the
easy steps of Freedman’s proof is that if the intersection form on H2(M ; Q) is not
definite, then the conditions i) - iii) determine the homotopy type, a result obtained
by Milnor [165] using standard arguments in homotopy theory and some informa-
tion about unimodular integral quadratic forms (see Exercise 3.1). But homotopy
invariants derived from signatures are the theme of the Novikov Conjecture.

31
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3.1 The Definition of the Signature

We will now define the signature and prove its basic properties. Let M be a closed
oriented topological manifold. If the dimension of M is not divisible by 4 we define
the signature to be 0. If the dimension is 4k we consider the cup product form
on the middle dimension and evaluate the product on the fundamental class to
obtain the intersection form:

S(M) : H2k(M ; Q)×H2k(M ; Q)→ Q, (α, β) 7→ 〈α ∪ β, [M ]〉.

The signature, sign, of a symmetric bilinear form over a finite dimensional
Q-vector space is the difference of the number of positive and negative eigenvalues
after applying − ⊗Q R. Since M is compact, the rational homology groups are
finite dimensional vector spaces. Thus we can define the signature of M as

sign(M) := sign(S(M)).

If we replace M by −M then we only replace [M ] by −[M ]. Thus S changes its
sign implying

sign(−M) = − sign(M).

E.g. since H2k(S4k) = 0, it is zero on spheres. The cohomology ring of CP2k

is the truncated polynomial ring

H∗(CP2k) = Z[x]/(xk+1 = 0),

where X is a generator of H2, and that 〈x2k, [CP2k]〉 = 1. Thus we have:

sign(CP2k) = 1.

3.2 The Bordism Invariance of the Signature

An important property of the signature is demonstrated by the fact that it is
bordism invariant:

Theorem 3.2 (Bordism invariance of the signature). If a closed oriented smooth
manifold M is the boundary of a compact oriented smooth manifold, then its sig-
nature vanishes

sign(M) = 0.

The main ingredient of the proof is the following:

Lemma 3.3. Let W be a compact smooth oriented manifold of dimension 2k + 1.
Let j : ∂W →W be the inclusion. Then

ker (i∗ : Hk(∂W ; Q)→ Hk(W ; Q))) ∼= im
(
j∗ : Hk(W ; Q)→ Hk(∂W ; Q) = Hk(∂W ; Q)

)
.

Here the isomorphism is given by Poincaré duality.
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This Lemma is a consequence of the Lefschetz duality Theorem [68].
Combining this Lemma with the Kronecker isomorphism we conclude that

for j∗ : Hk(∂W ; Q)→ Hk(W ; Q):

dim(ker(j∗)) = dim(im((j∗)∗)).

From linear algebra we know that dim(im(j∗)) = dim(im((j∗)∗)) and we obtain:

dim(ker(j∗)) = dim(im(j∗))

and by the dimension formula:

dim(ker(j∗)) =
1
2
· dim(Hk(∂W )).

Applying the Lemma again we finally note:

dim(im(j∗)) =
1
2
· dim(Hk(∂W )).

As a last preparation for the proof of Theorem 3.2 we need the following ob-
servation from linear algebra. Let b : V ×V → Q be a symmetric non-degenerate bi-
linear form on a finite dimensional Q-vector space. Suppose that there is a subspace
U ⊆ V with dim(U) = 1

2 · dim(V ) such that, for all x, y ∈ U , we have b(x, y) = 0.
Then sign(b) = 0. The reason is the following. Let e1, . . . , en be a basis of U . Since
the form is non-degenerate, there are elements f1, . . . , fn in V such that b(fi, ej) =
δij and b(fi, fj) = 0. This implies that e1, . . . , en, f1, . . . , fn are linear independent
and thus form a basis of V . Now consider e1 + f1, . . . , en + fn, e1− f1, . . . , en− fn
and note that, with respect to this basis, b has the form

2
. . .

2
−2

. . .
−2


and so

sign(b) = 0.

Now we are ready to give the proof of Theorem 3.2.

Proof. We first note that for α ∈ im(j∗) and β ∈ im(j∗) the intersection form
S(∂W )(α, β) vanishes. For if, α = j∗(ᾱ) and β = j∗(β̄ then

S(∂W )(α, β) = 〈j∗(ᾱ) ∪ j∗(β̄), [∂W ]〉 = 〈ᾱ) ∪ j∗(β̄, j∗([∂W ])〉 = 0,
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since j∗([∂W ]) = 0.
Thus the intersection form vanishes on im(j∗). By Poincaré duality the in-

tersection form S(∂W ) ⊗ Q is non-degenerate. Since the dimension of im(j∗) is
1/2 · dim(Hk(∂W )), the proof is finished by the considerations above from linear
algebra. �

3.3 Multiplicativity and other Properties of the Signa-

ture

The signature of a disjoint union is the sum of the signatures and so we obtain a
homomorphism

sign: Ωm → Z.

Here we define the signature as zero if the dimension of the manifold is not divisible
by 4.

The direct sum of bordism groups

Ω∗ :=
⊕
m

Ωm

is a ring in which the multiplication is given by cartesian product. It is natural to
ask whether the signature is a ring homomorphism. The following result says that
this is the case:

Theorem 3.4 (Multiplicativity of the signature). Let M and N be closed oriented
manifolds, then

sign(M ×N) = sign(M) · sign(N).

Proof. This is a standard application of the Künneth Theorem and the algebraic
fact from above, that the signature of an unimodular symmetric bilinear form
over the rational numbers vanishes if there is a submodule of half rank on which
the form is identically zero. The Künneth theorem allows one to decompose the
middle cohomology of M × N as the tensor product of the middle cohomology
groups of M and N plus the orthogonal sum given by tensor products of the other
terms. And on this orthogonal summand one immediately sees a subspace of half
dimension on which the intersection form vanishes. Thus the result follows since
the signature of a tensor product of symmetric bilinear forms is the product of the
signatures of the two forms (see Exercise 3.2). �

The (co)homological definition of the signature shows some interesting as-
pects, which we summarize:

(i) If there is an orientation preserving homotopy equivalence then the signa-
tures are equal: the signature is a homotopy invariant (meaning in this book
always orientation preserving).
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(ii) The signature is a multiplicative bordism invariant.

There are some other properties which one cannot see directly from the definition.
For example the signature of a closed manifold M with stably trivial tangent
bundle is zero, if the dimension is positive. Actually it is enough to require that the
rational Pontrjagin numbers of the tangent bundle of M vanish, since this implies
by 2.5 that the bordism class of M in Ωm⊗Q vanishes and a homomorphism from
a Q-vector space V to Z vanishes if the element maps to zero in V ⊗Q.

Another property of the signature is that for a finite covering of closed ori-
ented manifolds p : N →M of degree k the signature is — as the Euler character-
istic — multiplicative:

sign(N) = k · sign(M).

This will be a consequence of the signature theorem which we prove in the next
section.

3.4 Geometric Interpretation of Cohomology and the

Intersection Form

We finish this section with a more geometric interpretation of the intersection form
of smooth manifolds in terms of homology classes represented by manifolds. This
information is not really needed for the rest of the Lecture Notes, but we find it
useful to add this information for those readers who prefer a more geometric view.
Other readers can skip this part.

For geometric considerations it is often better to apply Poincaré duality (or
Lefschetz duality if the manifold has a boundary) and consider homology instead
of cohomology. Then the cup-product has a geometric interpretation in terms of
transversal intersections, at least if the homology classes are represented by smooth
maps f : X → M , where X is a compact oriented smooth manifold of dimension
r. Then the corresponding homology class is

f∗([X]) ∈ Hr(M ; Z),

the image of the fundamental class. If dim(M) = m, then the corresponding
cohomology class sits is Hm−r(M,Z).

Not all homology classes of M can be obtained this way but an appropriate
multiple of a homology class can always be obtained so. This is a consequence of
Theorem 2.1. Namely, if X is a CW complex with finite skeleta we consider the
trivial bundle 0 over X. Then, if (M,f, α) is a normal map the isomorphism α is
just a trivialization of the normal bundle, and so (M,α) is a framed manifold and
we write instead of Ωm(X; 0) the standard notation Ωfrm (X). Then Theorem 2.1
implies:

Ωfrm (X)⊗Q→ Hm(X; Q), [M,f, α] 7→ f∗([M ])



36 Chapter 3. The Signature (K.)

is an isomorphism. Thus an appropriate multiple of each homology class can be
represented by a map from a closed oriented (in this case even framed) manifold
M to X. Since a compact manifold is homotopy equivalent to a finite CW -complex
[166], the statement follows.

As the signature is defined in terms of rational (co)homology groupsH∗(M ; Q)
resp. H∗(M ; Q), we can use that all rational homology classes can geometrically
be represented by a rational multiple of classes given by maps f : N →M , where
N is a framed manifold. Following Quillen, who worked this out for the cohomol-
ogy theory corresponding to singular bordism [189], we interpret the cohomology
groups corresponding to framed cobordism (Ωfr)k(M) as bordism classes of triples
(N, f, α), where (N,α) is a framed manifold of dimension m− k, which is in gen-
eral not compact, but f has to be a proper map, which in this context means that
the preimage of each compact set is compact. As for the homology theory framed
bordism one has a natural transformation from (Ωfr)n(M) to Hn(M) which after
taking the tensor product with Q becomes an isomorphism:

(Ωfr)n(M)⊗Q ∼= Hn(M ; Q).

Recently the author introduced a generalization of manifolds, called strati-
folds. These are manifolds with certain singularities. In this context one can define
integral homology and cohomology of manifolds as above for rational (co)homology
by using certain stratifolds S instead of framed manifolds. This is not relevant for
this book, but the reader might be interested to look at this geometric approach
to integral (co)homology [134].

We note that the interpretation of rational cohomology classes as rational
multiples of bordism classes of framed manifolds N together with a proper map
f : N →M makes Poincaré duality a tautology: if M is closed then, if f : N →M
is proper, N has to be closed and so

(Ωfr)n(M) = Ωfrm−n(M).

To obtain interesting information from this one has to combine it with the
universal coefficient theorem expressing cohomology in terms of homology groups.
In particular, if we pass to rational (co)bordism groups, we have isomorphisms

(Ωfr)n(M)⊗Q ∼= Hn(M,Q) ∼= hom(Hn(M),Q) ∼= hom(Ωfrn (M),Q),

where the map in the universal coefficient theorem is given by the Kronecker
isomorphism.

On cohomology one has a ring structure given by the cup product. If we
only consider rational cohomology groups interpreted as (Ωfr)n(M) (or pass to
stratifolds instead of manifolds if we want to have corresponding results for integral
(co)homology) we can interpret the cup product geometrically.

Let M be a smooth oriented manifolds and g1 : N1 → M and g2 : N2 → M
be maps, where Ni are compact framed manifolds (here and in the following we
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omit the framing from the notation). We note here that unless M is closed these
maps do not give cohomology classes, they give so called cohomology classes with
compact support. But if M is closed the maps gi are proper and so we obtain
cohomology classes. Now we approximate gi by smooth transversal maps and
call the resulting maps again gi. Then we define the cup product of [N1, g1] and
[N2, g2] with the help of transversal intersection of g1 and g2 which we denote by
g1 u g2 := {(x, y) ∈ N1 × N2 | g1(x) = g2(y)}. This is again a compact manifold
and we consider on it the map g1p1 : g1 u g2 → M . This is the definition of the
cup product of two cohomology classes with compact support:

[N1, g1] ∪ [N2, g2] := [g1 u g2, g1p1].

If dim(N1) = m− k and dim(M2) = m− r then dim(g1 u g2) = m− (k + r).
If M is closed, then [Ni, gi] give cohomology classes and we obtain the ordi-

nary cup product:

Hk(M ; Q)×Hr(M ; Q)→ Hk+r(M ; Q).

We note that if M is a closed manifold and Ni are only oriented instead
of framed we can use the same construction to interpret the cup product of the
Poincaré duals y1 of (g1)∗([N1]) and y2 of (g2)∗([N2]) as the Poincaré dual of the
transversal intersection:

[M ] ∩ (y1 ∪ y2) = (g1p1)∗([g1 u g2]).

If M is not necessarily compact and gi : Ni →M are transversal maps from
closed oriented (again it is not necessary to assume that Ni are framed) mani-
folds such that dim(N1) + dim(N2) = m = dim(M) then g1 u g2 is a compact
oriented 0-dimensional manifold and we consider the sum of the local orienta-
tions. This number is called the intersection number in homology of (g1)∗([N1])
and (g2)∗([N2]) and we abbreviate it by

(g1)∗([N1]) ◦ (g2)∗([N2]).

This is a bilinear form. Via Poincaré duality it corresponds to the intersection
number in cohomology defined above.
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Chapter 4

The Signature Theorem and the
Novikov Conjecture (K.)

4.1 The Signature Theorem

We have shown that the signature gives a homomorphism

sign: Ωn → Z.

Since the rational bordism groups Ωn ⊗ Q are 0 for n 6= 0 mod 4 and Qπ(K) for
n = 4k and π(k) the number of partitions of k and the Pontrjagin numbers give
an isomorphism

Ω4k ⊗Q
∼=→ Qπ(k),

it is clear that there is a unique rational linear combination of Pontrjagin numbers
which we denote by Lk(p1, p2, . . . , pk) =

∑
|I|=k aI · pI , where I is a partition of k

and aI is in Q, such that

sign(M) = 〈Lk(p1(TM), p2(TM), . . . , pk(TM)), [M ]〉

for each closed oriented 4k-dimensional manifold M .
We also consider the L(p) := 1+L1(p1)+L2(p1, p2)+ . . . ∈

∏
i≥0H

4i(M ; Q).
Here pi is the i-th Pontrjagin class. But what is this linear combination? In low
dimensions we can find the formula by computing both sides on generators. Namely
for closed 4-manifolds we know the rational bordism group Ω4 ⊗ Q ∼= Q and so
L1 is known once we compute the signature and Pontrjagin number p1 of CP2.
We have already seen that the signature of CP2 is 1. The stable tangent bundle of
CP2 is

⊕
3H, the Whitney sum of three copies of the Hopf bundle [171]. The first

Pontrjagin class of the Hopf bundle is x2, where x is our generator of H2(CP2).
Thus the Pontrjagin number 〈p1(T (CP2), [CP2]〉 is 3 and we conclude:

L1(p1) =
1
3
p1

39
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Already this special case has interesting applications, for example that CP2 equipped
with the opposite orientation has no complex structure (see Exercise 4.1).

A similar consideration computing the Pontrjagin numbers of CP2×CP2 and
of CP4 and comparing them with the signature, which in both cases is 1, leads to
(see Exercise 4.2).:

L2(p1, p2) =
1
45

(7p2 − p2
1).

In principle one can obtain Lk by computing the Pontrjagin numbers of
products of projective spaces, since they generate Ω4k ⊗ Q by 2.5, but this does
not lead to a closed formula.

The problem was solved by Hirzebruch using his theory of multiplicative
sequences. We motivate this concept by noting that

sign(M ×N) = sign(M) · sign(N),

and similarly the tangent bundle is multiplicative

T (M ×N) = TM × TN

implying that the total Pontrjagin class is multiplicative,

p(M ×N) = p(M)× p(N).

From this it follows that the L-class L(p1, . . . , pk) = L(p) fulfills

L(p(E ⊕ F )) = L(p(E)) ∪ L(p(F ))

for vector bundles E and F .
Now we apply the splitting principle for oriented vector bundles [171]. Let

p : E → X be an oriented vector bundle of dimension 2k, then there is a map
f : Y → X such that

i) f∗ : Hi(X)→ Hi(Y ) is injective

ii) f∗E ∼= E1 ⊕ . . .⊕ Ek, where Ei are 2-dimensional vector bundles.

Thus L is completely determined by L(E), where E is an oriented 2-dimensional
vector bundle. Since the higher Pontrjagin classes p2(E), p3(E), . . . vanish, L is a
formal power series in p1(E):

L(p(E)) =
∑
k

ak · p1(E)k

It turns out that the power series which determines the L-polynomials is
q(z) :=

√
z

tanh(
√
z)

:
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Theorem 4.1 (Hirzebruch signature theorem [115]). There are unique polynomials
Lk(p(E)) in the Pontrjagin classes of an oriented vector bundle such that for a
2-dimensional bundle

L(p(E)) =

√
p1(E)

tanh
√
p1(E)

and for each closed oriented 4k-dimensional manifold M

sign(M) = 〈Lk(p1(M), . . . , pk(M)), [M ]〉.

Proof. For details of the proof we either refer to Hirzebruch’s original proof [115]
or to the presentation of the same argument in [171]. The basic idea is the fol-
lowing. Firstly one shows that the L-polynomials, which in the statement of the
theorem are already characterized, really exist. This is a nice purely algebraic con-
sideration using elementary symmetric polynomials. The topological background
for this is that if T k = (S1)k is the maximal torus of SO(2k), then we consider
the induced map f : B(T k) → B(SO(2k)). The pullback of the universal bundle
E over B(SO(2k)) to B(T ) splits as a sum of line bundles and the rational co-
homology ring of B(SO(2k)) is mapped isomorphically to the subring of rational
cohomology classes invariant under the action of all permutations of the factors
of T k [54]. In other words B(T k) is a space occurring in the splitting principle for
E. If we now stabilize by enlarging k and pass to H∗(BSO) = Q[p1, p2, ....] we see
that we can study the existence of the L-polynomial completely in terms of the
polynomial ring Q[p1, p2, ....] and the subring of symmetric polynomials.

Once the existence of the L-polynomials is guaranteed, one has to check that
the formula holds. Since Ω4k⊗Q is generated by the product of complex projective
spaces one only has to check the formula for these manifolds. Their stable tangent
bundles are sums of line bundles: TCPn is stably isomorphic to

⊕
n+1H, where H

is the Hopf bundle. With this information one reduces the computation of the left
side of the signature theorem to a computation with the residue formula, which
shows that it agrees with the right side, which is 1, since the signature of even
dimensional projective spaces is 1 and the signature is multiplicative. �

Remark 4.2. The L-class is a rational polynomial in the Pontrjagin classes. This
description can be inverted: The rational Pontrjagin classes of a bundle can be ex-
pressed in terms of the L-class. Thus over the rationals the L-classes are equivalent
to the Pontrjagin classes [171].

As a consequence of the signature theorem we obtain the announced multi-
plicativity of the signature theorem for coverings (see Exercise 4.3).

4.2 Higher Signatures

Now we want to define the higher signatures. We motivate the definition of the
higher signatures by the following considerations. Let M be a closed smooth ori-
ented manifold and N ⊆ M a closed oriented submanifold of dimension 4k with
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stably trivial normal bundle ν. Actually, it is enough to require, that all rational
Pontrjagin classes of the normal bundle or equivalently the L-class vanish. Then
one can compute the signature of N in terms of the cohomology and L-class of
M . Namely by the signature Theorem we have

sign(N) = 〈L(N), [N ]〉.

From the Thom isomorphism we conclude:

〈L(N), [N ]〉 = 〈L(N) ∪ tν , [Dν, Sν]〉

where Dν is the disk bundle of the normal bundle, Sν is the sphere bundle, and
tν is the Thom class. But L(N) = L(TM ⊕ ν) = i∗(L(M), since the L-class of ν
vanishes by assumption, where i : N →M is the inclusion. Finally we consider the
Poincaré dual x ∈ Hm−4k(N) of i∗([N ]) and note that x∪L(M) = tν ∪ i∗(L(M)).
Combining these steps we have shown:

Proposition 4.3 (The signature of a submanifold). Let N ⊆ M be a submanifold
such that the L-class of the normal bundle is trivial. Then

sign(N) = 〈x ∪ L(M), [M ]〉,

where x ∈ Hm−4k(N) is the Poincaré dual of i∗([N ]).

The expression on the right side makes sense even if the Poincaré dual of x is
not representable by a smooth submanifold with vanishing L-class of the normal
bundle. We call it the higher signature of M associated to x:

〈x ∪ L(M), [M ]〉.

If x = 1 ∈ H0(M) then we obtain the ordinary signature.
In contrast to the ordinary signature it is not true that the higher signatures

associated to all cohomology classes are homotopy invariants. By this we mean that
if h : M ′ → M is a homotopy equivalence then the higher signature of M ′ with
respect to h∗(x) is in general different from the higher signature of M associated
to x (Example 1.6).

4.3 The Novikov Conjecture

The Novikov Conjecture states that for special cohomology classes the higher
signatures are homotopy invariants, namely for those cohomology classes which
are induced from classifying spaces BG, where G is some group. More precisely
Novikov conjectured the following:

Conjecture 4.4 (Novikov Conjecture). Let G be a group and h : M ′ → M be
an orientation preserving homotopy equivalence between closed oriented smooth
manifolds and f : M → BG be a map. Then for each class x ∈ Hk(BG; Q) the
higher signatures of M associated to f∗(x) and for N associated to (fh)∗(x) agree.
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We want to reformulate this by introducing the higher signatures in a different
way which gives equivalent information to the higher signatures of M associated
to f∗(x) for all x ∈ H∗(BG; Q). Since H∗(BG; Q) ∼= hom(H∗(BG; Q) we can
compute f∗(x) ∪ L(M) in terms of f∗([M ] ∩ f∗(x)). Then

〈f∗(x) ∪ L(M), [M ]〉 = 〈x, f∗([M ] ∩ L(M)〉.

Thus the collection of the higher signatures ofM associated to all cohomology
classes f∗(x) for x ∈ H∗(BG; Q) is determined by

signG(M,f) := f∗([M ] ∩ L(M)) ∈
⊕

i∈Z,i≥0Hi(BG; Q). (4.5)

We call signG(M,f) the higher signature of (M,f). With this we can reformulate
the Novikov Conjecture as:

Conjecture 4.6 (Reformulation of the Novikov Conjecture). Let G be a group.
Then for each map f : M → BG the higher signature is a homotopy invariant, i.e.
if h : M ′ →M is an orientation preserving homotopy equivalence, then

signG(M ′, fh) = signG(M,f).

4.4 The Pontrjagin classes are not homeomorphism in-

variants

As previously mentioned, Novikov has proved that the rational Pontrjagin classes
are homeomorphism invariants. It is natural to ask whether the integral Pontrjagin
classes are topological invariants. We were surprised that we could not find an
answer to this question in the literature. During the seminar Diarmuid Crowley
informed us that the answer is negative (as expected) and that this follows from a
recent classification of a certain class of 15-dimensional manifolds. More precisely
it follows that the second Pontrjagin class p2 is not a homeomorphism invariant.
Besides this classification the key information they use is a result of Brumfiel. A
further investigation of the role of Brumfiel’s result for Pontrjagin classes implies
that one obtains counterexamples by very elementary considerations (and for all
Pontrjagin classes pi for i > 1) which we describe here.

We begin with Brumfiel’s result. He studies the relation between the homo-
topy groups π4n(BO) and π4n(BTOP ), where BTOP is the classifying space of
topological vector bundles. More precisely, one considers the group TOP (n) of
homeomorphism on Rn fixing 0. Then TOP is the union of TOP (n) which we
identify via f × id with a subgroup of TOP (n+ 1), and B(TOP ) is its classifying
space. Actually Brumfiel considers B(PL) instead of B(TOP ), but for n > 1 the
groups π4n(BPL) and π4n(B TOP ) are isomorphic [130]. Brumfiel shows that
for n > 1 there is no map f : π4n(BTOP ) → π4n(BO) with fi∗ = id, where
i : BO → BTOP is induced from the inclusion BO → BTOP . This follows from
his main result in [37].
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Combined with the following elementary result we obtain the desired infor-
mation.

Proposition 4.7. If there is no homomorphism

f : π4n(BTOP )→ π4n(BO),

such that i∗f = id, where i : BO → BTOP is induced from the inclusion BO →
BTOP , then the n-th Pontrjagin class of smooth manifold is in general not a
homeomorphism invariant.

Proof. We note that by Bott periodicity π4n(BO) ∼= Z, and that i∗ : π4n(BO) →
π4n(BTOP ) is injective (this can for example be seen from the topological in-
variance of the rational Pontrjagin classes). Thus f as above exists if and only if
1 ∈ π4n(BO) is mapped to a primitive element in π4n(BTOP ).

Assuming that f does not exist, we see that f∗(1) = kα for some α ∈
π4n(BTOP ) and k > 1. Now we consider the so called Moore space

D4n ∪g S4n−1

where g : S4k−1 → S4k−1 is a map of degree k. s If we collapse S4n−1 to a point,
we obtain a map to S4n. Consider a 4n-dimensional vector bundle over S4n which
corresponds to a generator of π4n(BO) ∼= Z. We pull this back to a vector bundle
over D4n ∪g S4n−1 denoted by E. The n-th Pontrjagin class of E is

pn(E) = 1 ∈ Z/kZ ∼= H4n(D4n ∪g S4n−1).

If we consider E as a topological vector bundle, it is trivial, topologically isomor-
phic to (D4n ∪g S4n−1)× R4n. This follows from the Puppe sequence

[ΣS4n−1, BTOP ] ·k−→ [S4n, BTOP ]→ [D4n ∪g S4n−1, BTOP ]→ [S4n−1, BTOP ]

and the fact that 1 ∈ π4n(BO) is mapped to kα in π4n(BTOP ).
We actually want to replace this Moore space by a non-compact manifold

homotopy equivalent to it. For this we replace S4n−1 by S4n−1×D4n and approx-
imate g which we consider as map to S4n−1 × {•} for some {•} ∈ S4n−1 by an
embedding with trivial normal bundle:

g′ : S4n−1 ×D4n−1 ↪→ S4n−1 × S4n−1.

Now we replace the Moore space by

M(k) := S4n−1 ×D4n−1 ∪g′ D4n ×D4n−1,

where we identify (x, y) ∈ S4n−1 × D4n−1 with g′(x, y) ∈ S4n−1 × S4n−1. After
smoothing the corners, this is a smooth compact manifold with boundary of di-
mension 8n − 2, which is homotopy equivalent to the Moore space. If we choose
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g′ appropriately it is stably parallelizable, which we now assume. We denote its
interior by N(k), which is again homotopy equivalent to the Moore space.

Now we are finished by pulling the bundle E back to N(k) to obtain a vector
bundle over N(k) which as topological bundle is trivial. The total space of this
bundle is a smooth manifold of dimension 12n−2 with non-trivial Pontrjagin class
pn(N(k) = pn(E) which is homeomorphic to N(k)×R4n, a smooth manifold with
trivial Pontrjagin class pn.

We can also obtain compact examples by taking the restrictions of the bundle
to ∂(M(k)) and the sphere bundle of the Whitney sum of this bundle with a trivial
line bundle. �

As mentioned above Brumfiel has proved that such a map f does not exist
and so we conclude:

Theorem 4.8 (Pontrjagin classes are not homeomorphism invariants). The Pon-
trjagin classes pn(M) of closed smooth manifolds M are not homeomorphism in-
variants for n > 1.

Finally we note that p1 is a homeomorphism invariant. For a proof of this we
refer to [135].
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Chapter 5

The Projective Class Group and
the Whitehead Group (L.)

In this chapter we give a brief introduction to K0(R) and K1(R) of a ring and to
the Whitehead group Wh(G) of a group G.

5.1 The Projective Class Group

In the sequel ring means associative ring with unit. Modules are understood to be
left modules unless explicitly stated differently.

Definition 5.1 (Projective class group). The projective class group K0(R) of a
ring R is the abelian group, which has isomorphism classes [P] of finitely generated
projective R-modules P as generators and for which for each exact sequence 0 →
P0 → P1 → P2 → 0 of finitely generated projective R-modules the relation [P1] =
[P0] + [P2] holds.

Remark 5.2 (Universal rank function). An additive invariant (A, a) for the cate-
gory of finitely generated projective R-modules consists of an abelian group A and
an assignment, which assigns to each finitely generated projective R-module P an
element a(P ) ∈ A such that for each exact sequence 0 → P0 → P1 → P2 → 0 of
finitely generated projective R-modules we have a(P1) = a(P0) + a(P2). We call
an additive invariant (U, u) universal if for each additive invariant (A, a) there
exists precisely one homomorphism ϕ : U → A such that for each finitely gen-
erated projective R-module P we have ϕ(u(P )) = a(P ). The universal property
implies that the universal additive invariant is unique up to unique isomorphism
if it exists. One easily checks that K0(R) together with the assignment P 7→ [P ]
is the universal additive invariant.

One may summarize the statement above by saying that K0(R) together

47
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with the assignment P 7→ [P ] is the universal rank function for finitely generated
R-modules.

Remark 5.3 (Grothendieck construction). Let M be an abelian monoid, or equiv-
alently, an abelian semi-group. Then the Grothendieck construction of M consists
of the following abelian group Gr(M) together with a map ϕ : M → Gr(M) of
abelian monoids. As a set Gr(M) is the set of equivalence classes of the equiva-
lence relation ∼ on the set M ×M = {(m1,m2) | m1,m2 ∈M} given by

(m1,m2) ∼ (n1, n2) ⇔ m1 + n2 + r = n1 +m2 + r for some r ∈M.

Let [m1,m2] ∈ Gr(M) be the class of (m1,m2) ∈ M ×M . Addition on Gr(M) is
given on representatives by

[m1,m2] + [n1, n2] = [m1 + n1,m2 + n2].

The zero element is [0, 0]. The inverse of [m1,m2] is [m2,m1]. The map ϕ : M →
Gr(M) sends m to [m, 0].

The Grothendieck construction has the following universal property. For each
abelian group A and each map f : M → A of abelian monoids there is precisely
one homomorphism of abelian groups f : Gr(M)→ A satisfying f ◦ ϕ = f .

Let R-FPM be the abelian monoid of isomorphism classes of finitely gener-
ated projective R-modules with the addition given by the direct sum of R-modules.
Then the homomorphism f : R- FPM→ K0(R) sending [P ] to [P ] induces an iso-
morphism of abelian groups

f : Gr(R- FPM)
∼=−→ K0(R).

One easily checks that it is an isomorphism of abelian groups.

Example 5.4 (The projective class groups of principal ideal domains). Let R be
a principal ideal domain, e.g. R = Z or R a field. Then each finitely generated
R-module M is isomorphic to M ∼= Rn ⊕

⊕r
i=1R/(ri) for non-trivial elements

ri ∈ R. An R-module R/(r) is never projective for r ∈ R, r 6= 0. Hence any finitely
generated projective R-module P is isomorphic to Rn for some n. Let R(0) be the
quotient field. Denote by dimR(0)(V ) the dimension of a finite dimensional R(0)-
vector space V . Now one easily checks that the following maps are well defined
isomorphisms, which are inverse to one another

i : Z
∼=−→ K0(R), n 7→ n · [R];

d : K0(R) → Z, [P ] 7→ dimR(0)

(
R(0) ⊗R P

)
.

Definition 5.5. Let G be a group and let R be a ring. Define the group ring with
coefficients in R to be the following R-algebra. The underlying R-module is the
free R-module with the set G as basis. So elements are given by sums

∑
g∈G rg · g
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for elements rg ∈ R such that only finitely many coefficients rg are different from
zero. The ring structure is given by∑

g∈G
rg · g

 ·

(∑
h∈G

sh · h

)
:=

∑
g∈G

( ∑
g1,g2,g1g2=g

rg1sg2

)
· g.

The unit in RG is given by the element
∑
g∈G rg · g, for which rg = 1R if g is the

unit element in G, and rg = 0 otherwise.

Example 5.6 (Representation ring). The complex representation ring R(G) of a
finite group G is isomorphic as an abelian group to K0(CG). This follows from
the facts that CG is semisimple and hence each CG-module is projective and a
CG-module is finitely generated if and only if its underlying complex vector space
is finite-dimensional. The analogous statements are true, if on replaces C by any
field of characteristic prime to the order of G.

In most cases R will be commutative, but this is not necessary for the defi-
nition of RG. Notice that a (left) RG-module M is the same as a (left) R-module
together with a left G-action such that multiplication with g is an R-linear map
lg : M →M .

Let f : R→ S be a ring homomorphism. Given an R-module M , its induction
with f is the S-module f∗M := S⊗RM . If M is a finitely generated projective R-
module, then f∗M is a finitely generated projective S-module. Therefore we obtain
a homomorphism f∗ : K0(R) → K0(S) so that K0 is a functor from the category
of rings to abelian groups. Define the reduced projective class group K̃0(R) as
the cokernel of the map j∗ : K0(Z) → K0(R) for the unique ring homomorphism
j : Z→ R. This agrees with the quotient of K0(R) by the subgroup generated by
[R] ∈ K0(R).

Example 5.7 (Integral group rings of finite groups). Let G be a finite group. Then
it is known that K̃0(ZG) is finite [233, Proposition 9.1]. The explicit structure of
K̃0(Z[Z/p]) for a prime p is only known for a few primes p, one does not know the
answer in general [169, page 29,30]).

Conjecture 5.8 (Vanishing of K̃0(ZG) for torsionfree G). Let G be a torsionfree
group. Then the reduced projective class group K̃0(ZG) vanishes.

5.2 The First Algebraic K-Group

Definition 5.9 (K1-group). The first algebraic K-group K1(R) of a ring R is defined
as the abelian group whose generators [f ] are conjugacy classes of automorphisms
f : P → P of finitely generated projective R-modules P and which satisfies the
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following relations. For each commutative diagram of finitely generated projective
R-modules with exact rows and automorphisms as vertical arrows

0 −−−−→ P0
i−−−−→ P1

p−−−−→ P2 −−−−→ 0

f0

y∼= f1

y∼= f2

y∼=
0 −−−−→ P0

i−−−−→ P1
p−−−−→ P2 −−−−→ 0

we get the relation [f0]− [f1]+[f2] = 0. For every two automorphisms f, g : P → P
of the same finitely generated projective R-module we have the relation [f ◦ g] =
[f ] + [g].

Remark 5.10 (K1(R) in terms of finitely generated free modules). Let Kf
0 (R)

and Kf
1 (R) respectively be defined analogously to the group K0(R) of Defini-

tion 5.1 and K1(R) of Definition 5.9 respectively except that one everywhere
replaces “finitely generated projective” by “finitely generated free”. There are
obvious maps ψn(R) : Kf

n(R)→ Kn(R) for n = 0, 1. The map ψ0(R) is in general
not an isomorphism but the map ψ1(R) is always bijective. The inverse of ψ1(R)
is defined as follows. Let the automorphism f : P → P of the finitely generated
projective R-module P represent the element [f ] ∈ K0(R). Choose a finitely gen-
erated projective R-module Q and a finitely generated free R-module F together
with an isomorphism u : F → P ⊕Q. Then ψ−1 sends [f ] to

[
u−1 ◦ (f ⊕ idQ) ◦ u

]
.

Next we give a matrix description of K1(R). Denote by GLn(R) the group of
invertible (n, n)-matrices with entries in R. Define the group GL(R) by the colimit
of the system indexed by the natural numbers

GL(1, R) ⊆ GL(2, R) ⊆ . . . ⊆ GL(n,R) ⊆ GL(n+ 1, R) ⊆ . . . ,

where the inclusion GL(n,R) to GL(n+ 1, R) is given by stabilization

A 7→
(
A 0
0 1

)
.

Let GL(R)/[GL(R), GL(R)] be the abelianization of GL(R).
Denote by En(i, j) for n ≥ 1 and 1 ≤ i, j ≤ n the (n, n)-matrix whose

entry at (i, j) is one and is zero elsewhere. Denote by In the identity matrix of
size n. An elementary (n, n)-matrix is a matrix of the form In + r · En(i, j) for
n ≥ 1, 1 ≤ i, j ≤ n, i 6= j and r ∈ R. Let A be an (n, n)-matrix. The matrix
B = A · (In+ r ·En(i, j)) is obtained from A by adding the i-th column multiplied
with r from the right to the j-th column. The matrix C = (In + r · En(i, j)) · A
is obtained from A by adding the j-th row multiplied with r from the left to the
i-th row. Let E(R) ⊆ GL(R) be the subgroup generated by all elements in GL(R)
which are represented by elementary matrices.

Lemma 5.11. (1) We have E(R) = [GL(R), GL(R)]. In particular E(R) ⊆ GL(R)
is a normal subgroup and GL(R)/[GL(R), GL(R)] = GL(R)/E(R).
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(2) Given an invertible (m,m)-matrix A, an invertible (n, n)-matrix B and an
(n,m)-matrix C, we get in GL(R)/[GL(R), GL(R)] the relation[(

A C
0 B

)]
=
[(

A 0
0 B

)]
= [A] · [B].

Proof. For n ≥ 3, pairwise distinct numbers 1 ≤ i, j, k ≤ n and r ∈ R we can
write In + r · En(i, k) as a commutator in GL(n,R), namely

In + r · En(i, k) = (In + r · En(i, j)) · (In + En(j, k)) ·
(In + r · En(i, j))−1 · (In + En(j, k))−1.

This implies E(R) ⊆ [GL(R), GL(R)].
Let A and B be two elements in GL(n,R). Let [A] and [B] be the elements in

GL(R) represented by A and B. Given two elements x and y in GL(R), we write
x ∼ y if there are elements e1 and e2 in E(R) with x = e1ye2, in other words, if
the classes of x and y in E(R)\GL(R)/E(R) agree. One easily checks

[AB] ∼
[(

AB 0
0 In

)]
∼
[(

AB A
0 In

)]
∼
[(

0 A
−B In

)]
∼
[(

0 A
−B 0

)]
,

since each step is given by multiplication from the right or left with a block matrix

of the form
(
In 0
C In

)
or
(
In C
0 In

)
and such a block matrix is obviously

obtained from I2n by a sequence of column and row operations and hence its class
in GL(R) belongs to E(R). Analogously we get

[BA] ∼
[(

0 B
−A 0

)]
.

Since the element in GL(R) represented by
(

0 −In
In 0

)
belongs to E(R), we

conclude [(
0 A
−B 0

)]
∼
[(

A 0
0 B

)]
∼
[(

0 B
−A 0

)]
.

This shows

[AB] ∼
(
A 0
0 B

)
∼ [BA]. (5.12)

This implies for any element x ∈ GL(R) and e ∈ E(R) that xex−1 ∼ ex−1x =
e and hence xex−1 ∈ E(R). Therefore E(R) is normal. Given a commutator
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xyx−1y−1 for x, y ∈ GL(R), we conclude for appropriate elements e1, e2, e3 in
E(R)

xyx−1y−1 = e1yxe2x
−1y−1 = e1yxx

−1y−1(yx)e2(yx)−1 = e1e3 ∈ E(R).

This finishes the proof of Lemma 5.11. �

Define a map µn : GLn(R) → Kf
0 (R) by sending a matrix A to the class of

the associated automorphism Rn → Rn. It is a group homomorphism. The maps
µn+1 and µn are compatible with the stabilization maps. Hence the collection of
the maps µn defines a group homomorphism µ : GL(R)→ K1(R). Since K1(R) is
abelian, it induces a homomorphism of abelian groups

µ : GL(R)/[GL(R), GL(R)] → K1(R). (5.13)

Theorem 5.14. The map µ : GL(R)/[GL(R), GL(R)]
∼=−→ K1(R) is bijective.

Proof. Obviously µ yields a map µ : GL(R)/[GL(R), GL(R)] → Kf
1 (R) and it

suffices to construct an inverse ν : Kf
1 (R) → GL(R)/[GL(R), GL(R)] because of

Remark 5.10. We want to define ν by sending the class of [f : F → F ] to the
class of a matrix A given by f after a choice of a basis for F . We have to show
that ν is well-defined. Obviously the choice of the basis does not matter since a
choice of a different basis has the effect of conjugating A with an invertible matrix
which does not affect its class in GL(R)/[GL(R), GL(R)]. It remains to show for

a block matrix
(
A C
0 B

)
for square-matrices A and B such that A and B are

invertible that its class in GL(R)/[GL(R), GL(R)] agrees with the one represented
by [A] · [B]. This has been proved in Lemma 5.11 (2). �

Example 5.15 (K1(R) and determinants). Let R be a commutative ring. Then the
determinant induces a map

det : K1(R)→ Rinv

into the multiplicative group of units of R. Regarding a unit as an invertible
(1, 1)-matrix defines a homomorphism

j : Rinv → K1(R)

such that det ◦j = id. If the ring R possesses a Euclidian algorithm, each invert-
ible square matrix A can be transformed by a sequence of elementary row and
column operations to the identity matrix. Hence Lemma 5.11 implies that both
homomorphisms above are bijective. In particular we get K1(Z) ∼= Zinv = {±1}
and K1(F ) ∼= F inv for each field F .

However, there exist commutative rings such that det is not injective. An
example is R = R[x, y]/(x2 + y2 − 1) (see [223, page 114]). Let SLn(R) be
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{A ∈ GLn(R) | det(A) = 1}. The point is that one can define a non-trivial
homomorphism SLn(R) → π1(SLn(R)) as follows. Every element in R[x, y] is a
polynomial and hence defines a map R2 → R. If we restrict it to S1 ⊆ R2, we
get a function S1 → R. Obviously each element in the ideal (x2 + y2 − 1) de-
fines the zero-function on S1. Thus every element in SLn(R) defines a function
S1 ⊆ R2 → SLn(R). Finally notice that the map induced by the obvious inclusion
π1(Sln(R))→ π1(Sln+1(R)) is a bijection of cyclic groups of order 2 for n ≥ 3.

Define the reduced K1-group K̃1(R) as the cokernel of the map j∗ : K1(Z)→
K1(R) for the unique ring homomorphism j : Z → R. This is the same as the
quotient of K1(R) by the cyclic group of order two generated by the (1, 1)-matrix
(−1).

5.3 The Whitehead Group

Definition 5.16 (The Whitehead group). Let G be a group. Let {±g | g ∈ G} be the
subgroup of K1(ZG) given by the classes of (1, 1)-matrices of the shape (±g) for
g ∈ G. Define the Whitehead group of G as the quotient K1(ZG)/{±g | g ∈ G}.

For us the following result will be important.

Lemma 5.17. Let A and B be two invertible matrices over ZG. Then they define
the same classes in the Whitehead group Wh(G) if and only if we can pass from
A to B by a sequence of the following operations:

(1) B is obtained from A by adding the k-th row multiplied with x from the left
to the l-th row for x ∈ ZG and k 6= l;

(2) B is obtained by taking the direct sum of A and the (1, 1)-matrix I1 = (1),

i.e. B looks like the block matrix
(
A 0
0 1

)
;

(3) A is the direct sum of B and I1. This is the inverse operation to (2);

(4) B is obtained from A by multiplying the i-th row from the left with a trivial
unit , i.e. with an element of the shape ±γ for γ ∈ G;

(5) B is obtained from A by interchanging two rows or two columns.

Proof. This follows from Lemma 5.11 and the definition of Wh(G). �

Example 5.18 (Vanishing of the Whitehead group of the trivial group). We con-
clude from Example 5.15 that the Whitehead group Wh({1}) of the trivial group
is trivial.
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Remark 5.19 (The Whitehead group of finite groups). Let G be a finite group.
In contrast to K̃0(ZG) (see Remark 5.7) one has a very good understanding of
Wh(G) (see [184]). For instance one knows that Wh(G) is finitely generated, its
rank as an abelian group is the number of conjugacy classes of unordered pairs
{g, g−1} in G minus the number of conjugacy classes of cyclic subgroups. The
torsion subgroup of Wh(G) is isomorphic to the kernel SK1(G) of the change
of coefficient homomorphism K1(ZG) → K1(QG). For a finite cyclic group G
the Whitehead group Wh(G) is torsionfree. For instance the Whitehead group
Wh(Z/p) of a cyclic group of order p for an odd prime p is the free abelian group
of rank (p − 3)/2 and Wh(Z/2) = 0. The Whitehead group of each symmetric
group Sn is trivial.

Conjecture 5.20 (Vanishing of the Whitehead group of a torsionfree G). Let G be
a torsionfree group. Then its Whitehead group Wh(G) vanishes.

Remark 5.21 (K-groups under free amalgamated products). The functors sending
a group G to K0(Z[G]) and Wh(G) does not behave well under direct products of
groups but they behave nicely under free amalgamated products. Namely, for two
groups G and H the inclusions of G and H into G ∗H induce isomorphisms (see
[226]).

K̃0(G)⊕ K̃0(H)
∼=−→ K̃0(G ∗H),

Wh(G)⊕Wh(H)
∼=−→ Wh(G ∗H).

5.4 The Bass-Heller-Swan Decomposition

There is an important relation between K0 and K1 coming from the Bass-Heller-
Swan decomposition. It consists of an isomorphism

K1(R[Z]) ∼= K0(R)⊕K1(R)⊕NK1(R)⊕NK1(R). (5.22)

Here the group NK1(R) is defined as the cokernel of the split injection K1(R)→
K1(R[t]). It can be identified with the cokernel of the split injection K0(R) →
K0(Nil(R)), [P ] 7→ [0 : P → P ], where K0(Nil(R)) denotes the K0-group of
nilpotent endomorphisms of finitely generated projective R-modules. The groups
K0(Nil(R)) are known as Nil-groups and often also denoted by Nil0(R).

For a regular ring R one obtains isomorphisms

K0(i)⊕ j : K0(R)⊕K1(R) ∼= K1(R[Z]);
K0(i) : K0(R) ∼= K0(R[Z]),

where i : R → R[Z] is the obvious inclusion of rings and j sends the class of a
finitely generated projective R-module P to the class of the R[Z]-automorphism
lz⊗R idP : R[Z]⊗RP

∼=−→ R[Z]⊗RP for lz : R[Z]→ R[Z] given by left multiplication
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with the generator z ∈ Z. If R is regular, then R[t] and R[t, t−1] = R[Z] are regular.
Hence for a regular ring R we get

K1(R[Zn]) ∼= K1(R) ⊕
n⊕
i=1

K0(R);

K0(R[Zn]) ∼= K0(R).

We conclude in the special case R = Z that K̃0(Z[Zn]) = Wh(Zn) = 0 holds for
n ≥ 0.

More information about K0 and K1 can be found for instance in [169, page
29,30], [208], [223].
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Chapter 6

Whitehead Torsion (L.)

In this chapter we will assign to a homotopy equivalence f : X → Y of finite
CW -complexes its Whitehead torsion τ(f) in the Whitehead group Wh(π(Y ))
associated to Y and discuss its main properties.

6.1 Whitehead Torsion of a Chain Map

In this section we give the definition and prove the basic properties of the White-
head torsion for chain maps.

We begin with some input about chain complexes. We will always assume
for a chain complex C∗ that Cp = 0 for p < 0 holds. Let f∗ : C∗ → D∗ be a chain
map of R-chain complexes for some ring R. Define the mapping cylinder cyl∗(f∗)
to be the chain complex with p-th differential

Cp−1 ⊕ Cp ⊕Dp


−cp−1 0 0
− id cp 0
fp−1 0 dp


−−−−−−−−−−−−−−−−→ Cp−2 ⊕ Cp−1 ⊕Dp−1.

Define the mapping cone cone∗(f∗) to be the quotient of cyl∗(f∗) by the obvious
copy of C∗. Hence the p-th differential of cone∗(f∗) is

Cp−1 ⊕Dp

 −cp−1 0
fp−1 dp


−−−−−−−−−−−−−→ Cp−2 ⊕Dp−1.

Given a chain complex C∗, define its suspension ΣC∗ to be the quotient of cone∗(idC∗)
by the obvious copy of C∗, i.e. the chain complex with p-th differential

Cp−1
−cp−1−−−−→ Cp−2.

57
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Remark 6.1 (Geometric and algebraic mapping cylinders). These algebraic no-
tions of mapping cylinder, mapping cone and suspension are modelled on their
geometric counterparts. Namely, the cellular chain complex of a mapping cylin-
der of a cellular map of CW -complexes f : X → Y is the mapping cylinder of
the chain map induced by f . There are obvious exact sequences such as 0 →
C∗ → cyl(f∗) → cone(f∗) → 0 and 0 → D∗ → cone∗(f∗) → ΣC∗ → 0. They
correspond to the obvious geometric cofibrations for maps of spaces f : X → Y
given by X → cyl(f) → cone(f) and Y → cone(f) → ΣX. The associated long
exact homology sequences of the exact sequences above correspond to the Puppe
sequences associated to the cofibration sequences above.

We call an R-chain complex C∗ finite if there is a number N with Cp = 0 for
p > N and each R-chain module Cp is a finitely generated R-module. We call an
R-chain complex C∗ projective resp. free resp. based free if each R-chain module
Cp is projective resp. free resp. free with a preferred basis.

A chain contraction γ∗ for an R-chain complex C∗ is a collection of R-
homomorphisms γp : Cp → Cp+1 for p ∈ Z such that cp+1 ◦ γp + γp−1 ◦ cp = idCp

holds for all p ∈ Z. We call an R-chain complex contractible, if it possesses a chain
contraction.

The proof of the next result is left to the reader.

Lemma 6.2. (1) A projective chain complex is contractible if and only if Hp(C∗) =
0 for p ≥ 0;

(2) Let f : C∗ → D∗ be a chain map of projective chain complexes. Then the
following assertions are equivalent:

(a) The chain map f∗ is a chain homotopy equivalence;

(b) cone∗(f∗) is contractible;

(c) Hp(f∗) : Hp(C∗)→ Hp(D∗) is bijective for all p ≥ 0.

Suppose that C∗ is a finite based free R-chain complex which is contractible,
i.e. which possesses a chain contraction. Put Codd =

⊕
p∈Z C2p+1 and Cev =⊕

p∈Z C2p. Let γ∗ and δ∗ be two chain contractions. Define R-homomorphisms

(c∗ + γ∗)odd : Codd → Cev;
(c∗ + δ∗)ev : Cev → Codd.

Let A be the matrix of (c∗ + γ∗)odd with respect to the given bases. Let B be the
matrix of (c∗+ δ∗)ev with respect to the given bases. Put µn := (γn+1− δn+1) ◦ δn
and νn := (δn+1 − γn+1) ◦ γn. One easily checks by a direct computation

Lemma 6.3. Under the assumptions above the R-maps (id+µ∗)odd, (id+ν∗)ev and
both compositions (c∗+γ∗)odd◦(id+µ∗)odd◦(c∗+δ∗)ev and (c∗+δ∗)ev◦(id+ν∗)ev◦
(c∗ + γ∗)odd are given by upper triangular matrices, whose diagonal entries are
identity maps.
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Hence A and B are invertible and their classes [A], [B] ∈ K̃1(R) satisfy
[A] = −[B]. Since [B] is independent of the choice of γ∗, the same is true for [A].
Thus we can associate to a finite based free contractible R-chain complex C∗ an
element

τ(C∗) = [A] ∈ K̃1(R), (6.4)

which depends only on C∗ with the preferred R-basis but not on the choice of the
chain contraction.

Example 6.5 (One-dimensional chain complexes). Suppose that C∗ is 1-dimensional
and the ring R is a field F . Then there is only one non-trivial differential c1 : C1 →
C0. Let A be the matrix associated to it with respect to the given bases. The de-
terminant induces an isomorphism (see Example 5.15)

d : K̃1(F )→ F inv/{±1}

It sends τ(C∗) to the element given by det(A).

Let f∗ : C∗ → D∗ be a homotopy equivalence of finite based free R-chain
complexes. Its mapping cone cone(f∗) is a contractible finite based free R-chain
complex. Define the Whitehead torsion of f∗ by

τ(f∗) := τ(cone∗(f∗)) ∈ K̃1(R). (6.6)

We call a sequence of finite based free R-chain complexes 0→ C∗
i∗−→ D∗

q∗−→
E∗ → 0 based exact if for any p ∈ Z the basis B for Dp can be written as a disjoint
union B′

∐
B′′ such that the image of the basis of Cp under ip is B′ and the image

of B′′ under qp is the basis for Ep.

Lemma 6.7. (1) Consider a commutative diagram of finite based free R-chain
complexes whose rows are based exact.

0 −−−−→ C ′∗ −−−−→ D′
∗ −−−−→ E′∗ −−−−→ 0

f∗

y g∗

y h∗

y
0 −−−−→ C∗ −−−−→ D∗ −−−−→ E∗ −−−−→ 0

Suppose that two of the chain maps f∗, g∗ and h∗ are R-chain homotopy
equivalences. Then all three are R-chain homotopy equivalences and

τ(f∗)− τ(g∗) + τ(h∗) = 0;

(2) Let f∗ ' g∗ : C∗ → D∗ be homotopic R-chain homotopy equivalences of finite
based free R-chain complexes. Then

τ(f∗) = τ(g∗);
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(3) Let f∗ : C∗ → D∗ and g∗ : D∗ → E∗ be R-chain homotopy equivalences of
based free R-chain complexes. Then

τ(g∗ ◦ f∗) = τ(g∗) + τ(f∗).

Proof. (1) A chain map of projective chain complexes is a homotopy equivalence
if and only if it induces an isomorphism on homology (see Lemma 6.2 (1)). The
five-lemma and the long homology sequence of a short exact sequence of chain
complexes imply that all three chain maps f∗, h∗ and g∗ are chain homotopy
equivalences if two of them are.

To prove the sum formula, it suffices to show for a based free exact sequence
0 → C∗

i∗−→ D∗
q∗−→ E∗ → 0 of contractible finite based free R-chain complexes

that

τ(C∗)− τ(D∗) + τ(E∗) = 0. (6.8)

Let u∗ : F∗ → G∗ be an isomorphism of contractible finite based free R-chain
complexes. Since the choice of a chain contraction does not affect the values of
the Whitehead torsion, we can compute τ(F∗) and τ(G∗) with respect to chain
contractions which are compatible with u∗. Then one easily checks in K̃1(R)

τ(G∗)− τ(F∗) =
∑
p∈Z

(−1)p · [up], (6.9)

where [up] is the element represented by the matrix of up with respect to the given
bases.

Let ε∗ be a chain contraction for E∗. Choose for each p ∈ Z an R-homo-
morphism σp : Ep → Dp satisfying pq ◦ σq = id. Define sp : Ep → Dp by dp+1 ◦
σp+1 ◦ εp + σp ◦ εp−1 ◦ ep. One easily checks that the collection of the sp-s defines
a chain map s∗ : E∗ → D∗ with q∗ ◦ s∗ = id. Thus we obtain an isomorphism of
contractible based free R-chain complexes

i∗ ⊕ q∗ : C∗ ⊕ E∗ → D∗.

Since the matrix of ip⊕ sp with respect to the given basis is a block matrix of the

shape
(
Im ∗
0 In

)
we get [ip⊕sp] = 0 in K̃1(R). Now (6.9) implies τ(C∗⊕D∗) =

τ(E∗). Since obviously τ(C∗ ⊕D∗) = τ(C∗) + τ(D∗), (6.8) and thus assertion (1)
follows.

(2) If h∗ : f∗ ' g∗ is a chain homotopy, we obtain an isomorphism of based free
R-chain complexes(

id 0
h∗−1 id

)
: cone∗(f∗) = C∗−1 ⊕D∗ → cone∗(g∗) = C∗−1 ⊕D∗.
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We conclude from (6.9)

τ(g∗)− τ(f∗) =
∑
p∈Z

(−1)p ·
[(

id 0
h∗−1 id

)]
= 0.

(3) Define a chain map h∗ : Σ−1 cone∗(g∗)→ cone∗(f∗) by(
0 0
− id 0

)
: Dp ⊕ Ep+1 → Cp−1 ⊕Dp.

There is an obvious based exact sequence of contractible finite based free R-chain
complexes 0→ cone∗(f∗)→ cone(h∗)→ cone(g∗)→ 0. There is also a based exact
sequence of contractible finite based free R-chain complexes 0→ cone∗(g∗ ◦f∗)

i∗−→
cone∗(h∗)→ cone∗(id : D∗ → D∗)→ 0, where ip is given by

fp−1 0
0 id
id 0
0 0

 : Cp−1 ⊕ Ep → Dp−1 ⊕ Ep ⊕ Cp−1 ⊕Dp.

We conclude from assertion (1)

τ(h∗) = τ(f∗) + τ(g∗);
τ(h∗) = τ(g∗ ◦ f∗) + τ(id∗ : D∗ → D∗);

τ(id∗ : D∗ → D∗) = 0.

This finishes the proof of Lemma 6.7. �

6.2 The Cellular Chain Complex of the Universal Cov-

ering

In order to apply the constructions above for chain complexes to geometry, namely,
to cellular maps of CW -complexes, one needs to study the cellular chain complex.
Recall that a CW -complex X is a Hausdorff space together with a filtration by
skeleta

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e. a set
C ⊆ X is closed if and only if C ∩ Xn is closed in Xn for all n ≥ 0) and Xn is
obtained from Xn−1 for each n ≥ 0 by attaching n-dimensional cells, i.e. there
exists a pushout ∐

i∈In
Sn−1

∐
i∈In

qi

−−−−−−→ Xn−1y y∐
i∈In

Dn −−−−−−→∐
i∈In

Qi

Xn
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Notice that the pushouts are not part of the structure, only their existence is
required. Recall that the cellular chain complex C∗(X) of a CW -complex X is the
chain complex

. . .
cn+1−−−→ Cn(X) = Hn(Xn, Xn−1)

cn−→ Cn−1(X) = Hn−1(Xn−1, Xn−2)
cn−1−−−→ . . .

where H∗ denotes singular homology and cn is the boundary operator in the long
exact sequence of the triple (Xn, Xn−1, Xn−2). After a choice of pushouts above
one obtains a composition of isomorphisms⊕

i∈In

H0({•})
⊕

i∈In
Hn(ji)

−−−−−−−−−→
⊕
i∈In

H0(S0; {•})
⊕

i∈In
σi

−−−−−−→
⊕
i∈In

Hn(Sn, {•})

⊕
i∈In

Hn(pri)←−−−−−−−−−−
⊕
i∈In

Hn(Dn, Sn−1)
⊕

i∈In
Hn(Qi,qi)

−−−−−−−−−−−→ Hn(Xn, Xn−1) = Cn(X),

where ji denotes the inclusion, σi the suspension isomorphism and pri the projec-
tion. Using the obvious generator in H0({•}), we obtain a Z-basis for the Z-module
Cn(X). It depends on the choice of the pushout. We call two such Z-bases equiv-
alent, if they can be obtained from one another by permuting the elements and
possibly multiplying some of the elements with −1. One can show that the equiv-
alence class of this basis is independent of the choice of the pushout and hence
depends only on the CW -structure on X. Thus C∗(X) inherits a preferred equiv-
alence class of Z-bases, which we will call the cellular equivalence class of Z-bases.

Now consider a connected CW -complex X together with the choice of a
universal covering pX : X̃ → X and a base point x̃ ∈ X̃. Then π = π1(X, pX(x̃))
acts freely by cellular maps on X̃. The CW -structure on X given by the filtration
by skeleta ∅ = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ . . . induces a CW -structure on X̃ by
the filtration ∅ = X̃−1 ⊆ X̃0 ⊆ X̃1 ⊆ X̃2 ⊆ . . . if we put X̃n = p−1

X (Xn). Hence
the cellular Z-chain complex C∗(X̃) inherits the structure of a Zπ-chain complex.
One can choose a π-pushout∐

i∈In
π × Sn−1

∐
i∈In

q̃i

−−−−−−→ X̃n−1y y∐
i∈In

π ×Dn −−−−−−→∐
i∈In

Q̃i

X̃n

which induces an isomorphism of Zπ-modules⊕
i∈In

H0(π)
⊕

i∈In
Hn(ji)

−−−−−−−−−→
⊕
i∈In

H0(π× (S0; {•}))
⊕

i∈In
σi

−−−−−−→
⊕
i∈In

Hn(π× (Sn, {•}))

⊕
i∈In

Hn(pri)←−−−−−−−−−−
⊕
i∈In

Hn(π×(Dn, Sn−1))
⊕

i∈In
Hn(Q̃i,q̃i)

−−−−−−−−−−−→ Hn(Xn, Xn−1) = Cn(X).
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Using the obvious generator of the Zπ-module H0(π) ∼= Zπ, we obtain a Zπ-basis.
We call two such Zπ-bases equivalent, if they can be obtained from one another by
permuting the elements and possibly multiplying some of the elements with a unit
in Zπ of the shape ±w for some w ∈ π. One can show that the equivalence class
of this Zπ-basis is independent of the choice of the π-pushout and hence depends
only on the CW -structure on X. Thus C∗(X̃) inherits a preferred equivalence class
of Zπ-bases, which we will call the cellular equivalence class of Zπ-bases.

Example 6.10 (Cellular chain complex of S̃1). Consider S1 with the CW -complex
structure for which the zero-skeleton consists of one point and the one-skeleton is
S1. Then we can identify π = Z and S̃1 = R with the Z-action given by translation.
Let z ∈ Z be a fixed generator. Then the cellular Z[Z]-chain complex C∗(S̃1) can
be identified with the 1-dimensional Z[Z]-chain complex Z[Z] z−1−−→ Z[Z].

6.3 The Whitehead Torsion of a Cellular Map

Now we can pass to CW -complexes. Let f : X → Y be a homotopy equivalence
of connected finite CW -complexes. Let pX : X̃ → X and pY : Ỹ → Y be the
universal coverings. Fix base points x̃ ∈ X̃ and ỹ ∈ Ỹ such that f maps x = pX(x̃)
to y = pY (ỹ). Let f̃ : X̃ → Ỹ be the unique lift of f satisfying f̃(x̃) = ỹ. We
abbreviate π = π1(Y, y) and identify π1(X,x) in the sequel with π by π1(f, x).
After the choice of the base points x̃ and ỹ we get unique operations of π on X̃
and Ỹ . The lift f̃ is π-equivariant. It induces a Zπ-chain homotopy equivalence
C∗(f̃) : C∗(X̃) → C∗(Ỹ ). Equip C∗(X̃) and C∗(Ỹ ) with a Z[π]-basis representing
the cellular equivalence class of Z[π]-bases. We can apply (6.6) to it and thus
obtain an element

τ(f) ∈ Wh(π1(Y, y)). (6.11)

We have defined the Whitehead group as a quotient of K1(Z[π]) by the subgroup
generated by the units of the shape ±w for w ∈ π. This ensures that the choice of
Z[π]-basis within the cellular equivalence class of Z[π]-bases does not matter.

So far this definition depends on the various choices of base points. We
can get rid of these choices as follows. If y′ is a second base point, we can
choose a path w from y to y′ in Y . Conjugation with w yields a homomorphism
cw : π1(Y, y) → π1(Y, y′) which induces (cw)∗ : Wh(π1(Y, y)) → Wh(π1(Y, y′)). If
v is a different path from y to y′, then cw and cv differ by an inner automor-
phism of π1(Y, y). Since an inner automorphism of π1(Y, y) induces the identity
on Wh(π1(Y, y)), we conclude that (cw)∗ and (cv)∗ agree. Hence we get a unique
isomorphism t(y, y′) : Wh(π1(Y, y))→Wh(π1(Y, y′)) depending only on y and y′.
Moreover t(y, y) = id and t(y, y′′) = t(y′, y′′) ◦ t(y, y′). Therefore we can define
Wh(π(Y )) independently of a choice of a base point by

∐
y∈Y Wh(π1(Y, y))/ ∼,

where ∼ is the obvious equivalence relation generated by a ∼ b ⇔ t(y, y′)(a) = b
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for a ∈ Wh(π1(Y, y)) and b ∈ Wh(π1(Y, y′)). Define τ(f) ∈ Wh(π(Y )) by the
element represented by the element introduced in (6.11). Notice that Wh(π(Y ))
is isomorphic to Wh(π1(Y, y)) for any base point y ∈ Y . It is not hard to check
using Lemma 6.7 that τ(f) depends only on f : X → Y and not on the choice of
the universal coverings and base points. Finally we want to drop the assumption
that Y is connected. Notice that f induces a bijection π0(f) : π0(X)→ π0(Y ).

Definition 6.12. Let f : X → Y be a (cellular) map of finite CW -complexes which
is a homotopy equivalence. Define the Whitehead group Wh(π(Y )) of Y and the
Whitehead torsion τ(f) ∈Wh(π(Y )) by

Wh(π(Y )) =
⊕

C∈π0(Y ) Wh(π1(C));
τ(f) =

⊕
C∈π0(Y ) τ

(
f |π0(f)−1(C) : π0(f)−1(C)→ C

)
.

In the notation Wh(π(Y )) one should think of π(Y ) as the fundamental
groupoid of Y . A map f : X → Y induces a homomorphism f∗ : Wh(π(X)) →
Wh(π(Y )) such that id∗ = id, (g ◦ f)∗ = g∗ ◦ f∗ and f ' g ⇒ f∗ = g∗. We will
later see that two cellular homotopy equivalences of finite CW -complexes which
are homotopic as cellular maps have the same Whitehead torsion. Hence in the
sequel we can and will drop the assumption cellular by the Cellular Approximation
Theorem.

Suppose that the following diagram is a pushout

A
f−−−−→ B

i

y yj
X −−−−→

g
Y

the map i is an inclusion of CW -complexes and f is a cellular map of CW -
complexes, i.e. respects the filtration given by the CW -structures. Then Y inherits
a CW -structure by defining Yn as the union of j(Bn) and g(Xn). If we equip Y
with this CW -structure, we call the pushout above a cellular pushout .

Theorem 6.13. (1) Sum formula

Let the following two diagrams be cellular pushouts of finite CW -complexes

X0
i1−−−−→ X1

i2

y yj1
X2 −−−−→

j2
X

Y0
k1−−−−→ Y1

k2

y yl1
Y2 −−−−→

l2
Y

Put l0 = l1 ◦k1 = l2 ◦k2 : Y0 → Y . Let fi : Xi → Yi be homotopy equivalences
for i = 0, 1, 2 satisfying f1 ◦ i1 = k1 ◦ f0 and f2 ◦ i2 = k2 ◦ f0. Denote by
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f : X → Y the map induced by f0, f1 and f2 and the pushout property. Then
f is a homotopy equivalence and

τ(f) = (l1)∗τ(f1) + (l2)∗τ(f2)− (l0)∗τ(f0);

(2) Homotopy invariance

Let f ' g : X → Y be homotopic maps of finite CW -complexes. Then the
homomorphisms f∗, g∗ : Wh(π(X)) → Wh(π(Y )) agree. If additionally f
and g are homotopy equivalences, then

τ(g) = τ(f);

(3) Composition formula

Let f : X → Y and g : Y → Z be homotopy equivalences of finite CW -
complexes. Then

τ(g ◦ f) = g∗τ(f) + τ(g);

(4) Product formula

Let f : X ′ → X and g : Y ′ → Y be homotopy equivalences of connected finite
CW -complexes. Then

τ(f × g) = χ(X) · j∗τ(g) + χ(Y ) · i∗τ(f),

where χ(X), χ(Y ) ∈ Z denote the Euler characteristics, j∗ : Wh(π(Y )) →
Wh(π(X × Y )) is the homomorphism induced by j : Y → X × Y, y 7→ (y, x0)
for some base point x0 ∈ X and i∗ is defined analogously;

(5) Topological invariance

Let f : X → Y be a homeomorphism of finite CW -complexes. Then

τ(f) = 0.

Proof. (1), (2) and (3) follow from Lemma 6.7.

(4) Because of assertion (3) we have

τ(f × g) = τ(f × idY ) + (f × idY )∗τ(idX ×g).

Hence it suffices to treat the case g = idY . Now one proceeds by induction over
the cells of Y using assertions (1), (2) and (3).

(5) This (in comparison with the other assertions much deeper result) is due to
Chapman [50], [51]. This finishes the proof of Theorem 6.13. �
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6.4 Simple Homotopy Equivalences

In this section we introduce the concept of a simple homotopy equivalence f : X →
Y of finite CW -complexes geometrically.

We have the inclusion of spaces Sn−2 ⊆ Sn−1
+ ⊆ Sn−1 ⊆ Dn, where Sn−1

+ ⊆
Sn−1 is the upper hemisphere. The pair (Dn, Sn−1

+ ) carries an obvious relative
CW -structure. Namely, attach an (n − 1)-cell to Sn−1

+ by the attaching map
id: Sn−2 → Sn−2 to obtain Sn−1. Then we attach to Sn−1 an n-cell by the
attaching map id: Sn−1 → Sn−1 to obtain Dn. Let X be a CW -complex. Let
q : Sn−1

+ → X be a map satisfying q(Sn−2) ⊆ Xn−2 and q(Sn−1
+ ) ⊆ Xn−1. Let Y

be the space Dn ∪q X, i.e. the pushout

Sn−1
+

q−−−−→ X

i

y yj
Dn −−−−→

g
Y

where i is the inclusion. Then Y inherits a CW -structure by putting Yk = j(Xk)
for k ≤ n − 2, Yn−1 = j(Xn−1) ∪ g(Sn−1) and Yk = j(Xk) ∪ g(Dn) for k ≥ n.
Notice that Y is obtained from X by attaching one (n − 1)-cell and one n-cell.
Since the map i : Sn−1

+ → Dn is a homotopy equivalence and cofibration, the map
j : X → Y is a homotopy equivalence and cofibration. We call j an elementary
expansion and say that Y is obtained from X by an elementary expansion. There
is a map r : Y → X with r ◦ j = idX . This map is unique up to homotopy relative
j(X). We call any such map an elementary collapse and say that X is obtained
from Y by an elementary collapse.

Definition 6.14. Let f : X → Y be a map of finite CW -complexes. We call it a
simple homotopy equivalence if there is a sequence of maps

X = X[0]
f0−→ X[1]

f1−→ X[2] . . .
fn−1−−−→ X[n] = Y

such that each fi is an elementary expansion or elementary collapse and f is
homotopic to the composition of the maps fi.

Theorem 6.15. (1) Let f : X → Y be a homotopy equivalence of finite CW -
complexes. Then f is a simple homotopy equivalence if and only if its White-
head torsion τ(f) ∈Wh(π(Y )) vanishes;

(2) Let X be a finite CW -complex. Then for any element x ∈Wh(π(X)) there
is an inclusion i : X → Y of finite CW -complexes such that i is a homotopy
equivalence and i−1

∗ (τ(i)) = x.

Proof. We only show that for a simple homotopy equivalence f : X → Y of finite
CW -complexes we have τ(f) = 0. Because of Theorem 6.13 it suffices to prove for
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an elementary expansion j : X → Y that its Whitehead torsion τ(j) ∈Wh(π(Y ))
vanishes. We can assume without loss of generality that Y is connected. In the
sequel we write π = π1(Y ) and identify π = π1(X) by π1(f). The following diagram
of based free finite Zπ-chain complexes

0 −−−−→ C∗(X̃)
C∗(j̃)−−−−→ C∗(Ỹ )

pr∗−−−−→ C∗(Ỹ , X̃) −−−−→ 0

id∗

x C∗(j̃)

x 0∗

x
0 −−−−→ C∗(X̃) id∗−−−−→ C∗(X̃)

pr∗−−−−→ 0 −−−−→ 0

has based exact rows and Zπ-chain homotopy equivalences as vertical arrows. We
conclude from Lemma 6.7 (1)

τ
(
C∗(j̃)

)
= τ

(
id∗ : C∗(X̃)→ C∗(X̃)

)
+ τ

(
0∗ : 0→ C∗(Ỹ , X̃)

)
= τ

(
C∗(Ỹ , X̃)

)
.

The Zπ-chain complex C∗(Ỹ , X̃) is concentrated in two consecutive dimensions
and its only non-trivial differential is id : Zπ → Zπ if we identify the two non-trivial
Zπ-chain modules with Zπ using the cellular basis. This implies τ(C∗(Ỹ , X̃)) = 0
and hence τ(j) := τ(C∗(j̃)) = 0. �

The full proof of this result and more information about Whitehead torsion
and the following remark can be found for instance in [53], [153, Chapter 2].

Remark 6.16 (Reidemeister torsion). Another interesting torsion invariant is the
so called Reidemeister torsion. It is defined for a space whose fundamental group π
is finite and for which the homology with coefficients in a certain π-representation
vanishes. The Reidemeister torsion was the first invariant in algebraic topology
which can distinguish the homeomorphism type of spaces within a given homotopy
type. Namely, there exist two so called lens spaces L1 and L2 which are homotopy
equivalent but have different Reidemeister torsion. Given a homotopy equivalence
f : L1 → L2, its Whitehead torsion determines the difference of the Reidemeister
torsion of L1 and L2 and hence can never be zero. This implies that f cannot be
a homeomorphism.
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Chapter 7

The Statement and
Consequences of the
s-Cobordism Theorem (L.)

In this chapter we want to discuss the following result

Theorem 7.1 (s-Cobordism Theorem). Let M0 be a closed connected oriented man-
ifold of dimension n ≥ 5 with fundamental group π = π1(M0). Then

(1) Let (W ;M0, f0,M1, f1) be an h-cobordism over M0. Then W is trivial over
M0 if and only if its Whitehead torsion τ(W,M0) ∈Wh(π) vanishes;

(2) For any x ∈ Wh(π) there is an h-cobordism (W ;M0, f0,M1, f1) over M0

with τ(W,M0) = x ∈Wh(π);

(3) The function assigning to an h-cobordism (W ;M0, f0,M1, f1) over M0 its
Whitehead torsion yields a bijection from the diffeomorphism classes relative
M0 of h-cobordisms over M0 to the Whitehead group Wh(π).

Here are some explanations. An n-dimensional cobordism (sometimes also
called just bordism) (W ;M0, f0,M1, f1) consists of a compact oriented n-dimen-
sional manifold W , closed (n − 1)-dimensional manifolds M0 and M1, a disjoint
decomposition ∂W = ∂0W

∐
∂1W of the boundary ∂W of W and orientation

preserving diffeomorphisms f0 : M0 → ∂W0 and f1 : M−
1 → ∂W1. Here and in the

sequel we denote by M−
1 the manifold M1 with the reversed orientation and we

use on ∂W the orientation with respect to the decomposition TxW = Tx∂W ⊕ R
coming from an inward normal field for the boundary. If we equip D2 with the
standard orientation coming from the standard orientation on R2, the induced
orientation on S1 = ∂D2 corresponds to the anti-clockwise orientation on S1. If we
want to specify M0, we say that W is a cobordism over M0. If ∂0W = M0, ∂1W =
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M−
1 and f0 and f1 are given by the identity or if f0 and f1 are obvious from the

context, we briefly write (W ; ∂0W,∂1W ). Two cobordisms (W,M0, f0,M1, f1) and
(W ′,M0, f

′
0,M

′
1, f

′
1) overM0 are diffeomorphic relative M0 if there is an orientation

preserving diffeomorphism F : W →W ′ with F ◦ f0 = f ′0. We call an h-cobordism
over M0 trivial , if it is diffeomorphic relative M0 to the trivial h-cobordism (M0×
[0, 1];M0 × {0}, (M0 × {1})−). Notice that the choice of the diffeomorphisms fi
does play a role although they are often suppressed in the notation. We call a
cobordism (W ;M0, f0,M1, f1) an h-cobordism, if the inclusions ∂iW → W for
i = 0, 1 are homotopy equivalences. The Whitehead torsion of an h-cobordism
(W ;M0, f0,M1, f1) over M0

τ(W,M0) ∈ Wh(π1(M0)) (7.2)

is defined to be the preimage of the Whitehead torsion (see Definition 6.12)

τ
(
M0

f0−→ ∂0W
i0−→W

)
∈Wh(π1(W ))

under the isomorphism

(i0 ◦ f0)∗ : Wh(π1(M0))
∼=−→Wh(π1(W )),

where i0 : ∂0W → W is the inclusion. Here we use the fact that each closed
manifold has a CW -structure, which comes for instance from a triangulation, and
that the choice of CW -structure does not matter by the topological invariance of
the Whitehead torsion (see Theorem 6.13 (5)).

The s-Cobordism Theorem 7.1 is due to Barden, Mazur, Stallings. Its topo-
logical version was proved by Kirby and Siebenmann [130, Essay II]. More infor-
mation about the s-cobordism theorem can be found for instance in [128], [153,
Chapter 1], [167] [211, page 87-90]. The s-cobordism theorem is known to be false
(smoothly) for n = dim(M0) = 4 in general, by the work of Donaldson [70], but it
is true for n = dim(M0) = 4 for so called “good” fundamental groups in the topo-
logical category by results of Freedman [94], [95]. The trivial group is an example
of a “good” fundamental group. Counterexamples in the case n = dim(M0) = 3
are constructed by Cappell and Shaneson [45]. The Poincaré Conjecture (see The-
orem 7.4) is at the time of writing known in all dimensions except dimension
3.

We already know that the Whitehead group of the trivial group vanishes.
Thus the s-Cobordism Theorem 7.1 implies

Theorem 7.3 (h-Cobordism Theorem). Each h-cobordism (W ;M0, f0,M1, f1) over
a simply connected closed n-dimensional manifold M0 with dim(W ) ≥ 6 is trivial.

Theorem 7.4 (Poincaré Conjecture). The Poincaré Conjecture is true for a closed
n-dimensional manifold M with dim(M) ≥ 5, namely, if M is simply connected
and its homology Hp(M) is isomorphic to Hp(Sn) for all p ∈ Z, then M is home-
omorphic to Sn.
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Proof. We only give the proof for dim(M) ≥ 6. Since M is simply connected and
H∗(M) ∼= H∗(Sn), one can conclude from the Hurewicz Theorem and Whitehead
Theorem [255, Theorem IV.7.13 on page 181 and Theorem IV.7.17 on page 182]
that there is a homotopy equivalence f : M → Sn. Let Dn

i ⊆ M for i = 0, 1 be
two embedded disjoint disks. Put W = M − (int(Dn

0 )
∐

int(Dn
1 )). Then W turns

out to be a simply connected h-cobordism. Hence we can find a diffeomorphism
F : (∂Dn

0 × [0, 1], ∂Dn
0 ×{0}, ∂Dn

0 ×{1})→ (W,∂Dn
0 , ∂D

n
1 ) which is the identity on

∂Dn
0 = ∂Dn

0 ×{0} and induces some (unknown) diffeomorphism f1 : ∂Dn
0 ×{1} →

∂Dn
1 . By the Alexander trick one can extend f1 : ∂Dn

0 = ∂Dn
0 × {1} → ∂Dn

1 to a
homeomorphism f1 : Dn

0 → Dn
1 . Namely, any homeomorphism f : Sn−1 → Sn−1

extends to a homeomorphism f : Dn → Dn by sending t · x for t ∈ [0, 1] and
x ∈ Sn−1 to t ·f(x). Now define a homeomorphism h : Dn

0 ×{0}∪i0 ∂Dn
0 × [0, 1]∪i1

Dn
0 × {1} → M for the canonical inclusions ik : ∂Dn

0 × {k} → ∂Dn
0 × [0, 1] for

k = 0, 1 by h|Dn
0×{0} = id, h|∂Dn

0×[0,1] = F and h|Dn
0×{1} = f1. Since the source

of h is obviously homeomorphic to Sn, Theorem 7.4 follows.
In the case dim(M) = 5 one uses the fact that M is the boundary of a

contractible 6-dimensional manifold W and applies the s-cobordism theorem to
W with an embedded disc removed. �

Remark 7.5 (Exotic spheres). Notice that the proof of the Poincaré Conjecture in
Theorem 7.4 works only in the topological category but not in the smooth category.
In other words, we cannot conclude the existence of a diffeomorphism h : Sn →M .
The proof in the smooth case breaks down when we apply the Alexander trick.
The construction of f given by coning f yields only a homeomorphism f and
not a diffeomorphism even if we start with a diffeomorphism f . The map f is
smooth outside the origin of Dn but not necessarily at the origin. We will see that
not every diffeomorphism f : Sn−1 → Sn−1 can be extended to a diffeomorphism
Dn → Dn and that there exist so called exotic spheres, i.e. closed manifolds which
are homeomorphic to Sn but not diffeomorphic to Sn. The classification of these
exotic spheres is one of the early very important achievements of surgery theory
and one motivation for its further development. For more information about exotic
spheres we refer for instance to [129], [144], [149] and [153, Chapter 6].

Remark 7.6 (The surgery program). In some sense the s-Cobordism Theorem 7.1
is one of the first theorems, where diffeomorphism classes of certain manifolds are
determined by an algebraic invariant, namely the Whitehead torsion. Moreover,
the Whitehead group Wh(π) depends only on the fundamental group π = π1(M0),
whereas the diffeomorphism classes of h-cobordisms overM0 a priori depend onM0

itself. The s-Cobordism Theorem 7.1 is one step in a program to decide whether
two closed manifolds M and N are diffeomorphic, which is in general a very hard
question. The idea is to construct an h-cobordism (W ;M,f,N, g) with vanishing
Whitehead torsion. Then W is diffeomorphic to the trivial h-cobordism over M
which implies that M and N are diffeomorphic. So the surgery program would be:

(1) Construct a homotopy equivalence f : M → N ;
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(2) Construct a cobordism (W ;M,N) and a map (F, f, id) : (W ;M,N)→ (N ×
[0, 1], N × {0}, N × {1});

(3) ModifyW and F relative boundary by so called surgery such that F becomes
a homotopy equivalence and thus W becomes an h-cobordism. During these
processes one should make certain that the Whitehead torsion of the result-
ing h-cobordism is trivial.

The advantage of this approach will be that it can be reduced to problems
in homotopy theory and algebra, which can sometimes be handled by well-known
techniques. In particular one will sometimes get computable obstructions for two
homotopy equivalent manifolds to be diffeomorphic. Often surgery theory has
proved to be very useful, when one wants to distinguish two closed manifolds,
which have very similar properties. The classification of homotopy spheres is one
example. Moreover, surgery techniques also can be applied to problems which are
of different nature than of diffeomorphism or homeomorphism classifications.



Chapter 8

Sketch of the Proof of the
s-Cobordism Theorem (L.)

In this chapter we want to sketch the proof of the s-Cobordism Theorem 7.1. We
will restrict ourselves to assertion (1). If a h-cobordism is trivial, one easily checks
using Theorem 6.13 that its Whitehead torsion vanishes. The hard part is to show
that the vanishing of the Whitehead torsion already implies that it is trivial. More
details of the proof can be found for instance in [128], [153, Chapter 1], [167] [211,
page 87-90].

8.1 Handlebody Decompositions

In this section we explain basic facts about handles and handlebody decomposi-
tions.

Definition 8.1. The n-dimensional handle of index q or briefly q-handle is Dq ×
Dn−q. Its core is Dq × {0}. The boundary of the core is Sq−1 × {0}. Its cocore
is {0} ×Dn−q and its transverse sphere is {0} × Sn−q−1.

Let (M,∂M) be an n-dimensional manifold with boundary ∂M . If ϕq : Sq−1×
Dn−q → ∂M is an embedding, then we say that the manifold M + (ϕq) defined by
M ∪ϕq Dq ×Dn−q is obtained from M by attaching a handle of index q by ϕq.

Obviously M + (ϕq) carries the structure of a topological manifold. To get a
smooth structure, one has to use the technique of straightening the angle to get
rid of the corners at the place, where the handle is glued to M .

Remark 8.2 (The surgery step). The boundary ∂(M + (ϕq)) can be described as
follows. Delete from ∂M the interior of the image of ϕq. We obtain a manifold with
boundary together with a diffeomorphism from Sq−1 × Sn−q−1 to its boundary
induced by ϕq|Sq−1×Sn−q−1 . If we use this diffeomorphism to glue Dq × Sn−q−1
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to it, we obtain a closed manifold, namely, ∂(M + (ϕq)). The step from ∂M to
∂(M + (ϕq)) described above is called a surgery step on the embedding ϕq.

Let W be a compact manifold whose boundary ∂W is the disjoint sum
∂0W

∐
∂1W . Then we want to construct W from ∂0W × [0, 1] by attaching han-

dles as follows. Notice that the following construction will not change ∂0W =
∂0W × {0}. If ϕq : Sq−1 × Dn−q → ∂1W is an embedding, we get by attach-
ing a handle the compact manifold W1 = ∂0W × [0, 1] + (ϕq) which is given by
W ∪ϕq Dq ×Dn−q. Its boundary is a disjoint sum ∂0W1

∐
∂1W1, where ∂0W1 is

the same as ∂0W . Now we can iterate this process, where we attach a handle to
∂1W1. Thus we obtain a compact manifold with boundary

W = ∂0W × [0, 1] + (ϕq11 ) + (ϕq22 ) + . . .+ (ϕqr
r ),

whose boundary is the disjoint union ∂0W
∐
∂1W , where ∂0W is just ∂0W ×{0}.

We call such a description of W as above a handlebody decomposition of W relative
∂0W . We get from Morse theory [114, Chapter 6], [166, part I].

Lemma 8.3. Let W be a compact manifold whose boundary ∂W is the disjoint sum
∂0W

∐
∂1W . Then W possesses a handlebody decomposition relative ∂0W , i.e. W

is up to diffeomorphism relative ∂0W = ∂0W × {0} of the form

W ∼= ∂0W × [0, 1] +
p0∑
i=1

(ϕ0
i ) +

p1∑
i=1

(ϕ1
i ) + . . .+

pn∑
i=1

(ϕni ).

If we want to show that W is diffeomorphic to ∂0W × [0, 1] relative ∂0W =
∂0W × {0}, we must get rid of the handles. For this purpose we have to find
possible modifications of the handlebody decomposition, which reduce the number
of handles without changing the diffeomorphism type of W relative ∂0W .

Example 8.4 (Cancelling Handles). Here is a standard situation, where attaching
first a q-handle and then a (q+1)-handle does not change the diffeomorphism type
of an n-dimensional compact manifold W with the disjoint union ∂0W

∐
∂1W as

boundary ∂W . Let 0 ≤ q ≤ n− 1. Consider an embedding

µ : Sq−1 ×Dn−q ∪Sq−1×Sn−1−q
+

Dq × Sn−1−q
+ → ∂1W,

where Sn−1−q
+ is the upper hemisphere in Sn−1−q = ∂Dn−q. Notice that the source

of µ is diffeomorphic to Dn−1. Let ϕq : Sq−1 ×Dn−q → ∂1W be its restriction to
Sq−1 ×Dn−q. Let ϕq+1

+ : Sq+ × S
n−q−1
+ → ∂1(W + (ϕq)) be the embedding which

is given by

Sq+ × S
n−q−1
+ = Dq × Sn−q−1

+ ⊆ Dq × Sn−q−1 = ∂(ϕq) ⊆ ∂1(W + (ϕq)).

It does not meet the interior of W . Let ϕq+1
− : Sq− × S

n−1−q
+ → ∂1(W ∪ (ϕq)) be

the embedding obtained from µ by restriction to Sq− × S
n−1−q
+ = Dq × Sn−1−q

+ .
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Then ϕq+1
− and ϕq+1

+ fit together to yield an embedding ψq+1 : Sq × Dn−q−1 =
Sq− × S

n−q−1
+ ∪Sq−1×Sn−q−1

+
Sq+ × S

n−q−1
+ → ∂1(W + (ϕq)). It is not difficult to

check that W + (ϕq) + (ψq+1) is diffeomorphic relative ∂0W to W since up to
diffeomorphism W + (ϕq) + (ψq+1) is obtained from W by taking the boundary
connected sum of W and Dn along the embedding µ of Dn−1 = Sn−1

+ = Sq−1 ×
Dn−q ∪Sq−1×Sn−1−q

+
Dq × Sn−1−q

+ into ∂1W .

This cancellation of two handles of consecutive index can be generalized as
follows.

Lemma 8.5 (Cancellation Lemma). Let W be an n-dimensional compact manifold
whose boundary ∂W is the disjoint sum ∂0W

∐
∂1W . Let ϕq : Sq−1×Dn−q → ∂1W

be an embedding. Let ψq+1 : Sq×Dn−1−q → ∂1(W+(ϕq)) be an embedding. Suppose
that ψq+1(Sq ×{0}) is transversal to the transverse sphere of the handle (ϕq) and
meets the transverse sphere in exactly one point. Then there is a diffeomorphism
relative ∂0W from W to W + (ϕq) + (ψq+1).

Proof. The idea is to use isotopies and the possibility of embedding isotopies into
diffeotopies to arrange that the situation looks exactly like in Example 8.4. �

The Cancellation Lemma 8.5 will be our only tool to reduce the number
of handles. Notice that one can never get rid of one handle alone, there must
always be involved at least two handles simultaneously. The reason is that the
Euler characteristic χ(W,∂0W ) is independent of the handle decomposition and
can be computed by

∑
q≥0(−1)q · pq, where pq is the number of q-handles (see

Section 8.2).

8.2 Handlebody Decompositions and CW -Structures

Next we explain that from a homotopy theoretic point of view a handlebody
decomposition is the same as a CW -structure.

Consider a compact n-dimensional manifold W whose boundary is the dis-
joint union ∂0W

∐
∂1W . In view of Lemma 8.3 we can write it as

W ∼= ∂0W × [0, 1] +
p0∑
i=1

(ϕ0
i ) +

p1∑
i=1

(ϕ1
i ) + . . .+

pn∑
i=1

(ϕni ), (8.6)

where ∼= means diffeomorphic relative ∂0W .
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Notation 8.7. Put for −1 ≤ q ≤ n

Wq := ∂0W × [0, 1] +
p0∑
i=1

(ϕ0
i ) +

p1∑
i=1

(ϕ1
i ) + . . .+

pq∑
i=1

(ϕqi );

∂1Wq := ∂Wq − ∂0W × {0};

∂◦1Wq := ∂1Wq −
pq+1∐
i=1

ϕq+1
i (Sq × int(Dn−1−q)).

Notice for the sequel that ∂◦1Wq ⊆ ∂1Wq+1.

Lemma 8.8. There is a relative CW -complex (X, ∂0W ) such that there is a bi-
jection between the q-handles of W and the q-cells of (X, ∂0W ) and a simple
homotopy equivalence f : W → X, which induces simple homotopy equivalences
fq : Wq → Xq for q ≥ −1 with f−1 = id∂0W , where Xq is the q-skeleton of X.

Proof. The point is that the projection pr : (Dq, Sq−1)×Dn−q → (Dq, Sq−1) is a
simple homotopy equivalence and one can successively collapse each handle to its
core. �

So, from the homotopic theoretic point of view, the core and the boundary
of the core of a handle are the basic contributions of a handle. In particular we see
that the inclusions Wq →W are q-connected, since the inclusion of the q-skeleton
Xq → X is always q-connected for a CW -complex X.

Denote by pW : W̃ →W the universal covering with π = π1(W ) as group of
deck transformations. Let W̃q be the preimage ofWq under p. Notice that this is the
universal covering for q ≥ 2, since each inclusion Wq →W induces an isomorphism
on the fundamental groups, but not necessarily for q ≤ 1. Let C∗(W̃ , ∂̃0W ) be
the Zπ-chain complex, whose q-th chain group is Hq(W̃q, W̃q−1) and whose q-th
differential is the boundary operator of the triple (W̃q, W̃q−1, W̃q−2). Each handle
(ϕqi ) determines an element

[ϕqi ] ∈ Cq(W̃ , ∂̃0W ) (8.9)

after choosing a lift (ϕ̃qi , ϕ̃
q
i ) : (Dq × Dn−q, Sq−1 × Dn−q) → (W̃q, W̃q−1) of its

characteristic map (ϕqi , ϕ
q
i ) : (Dq×Dn−q, Sq−1×Dn−q)→ (Wq,Wq−1), namely, the

image of the preferred generator in Hq(Dq ×Dn−q, Sq−1 ×Dn−q) ∼= H0({∗}) = Z
under the map Hq(ϕ̃

q
i , ϕ̃

q
i ). This element is only well-defined up to multiplication

with an element γ ∈ π. The elements {[ϕqi ] | i = 1, 2, . . . , pq} form a Zπ-basis for
Cq(W̃ , ∂̃0W ). The next result follows directly from the explicit construction of f .

Lemma 8.10. The map f : W → X induces an isomorphism of Zπ-chain complexes

C∗(f̃) : C∗(W̃ , ∂̃0W )
∼=−→ C∗(X̃, ∂̃0W ),
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which sends the equivalence class of the Zπ-bases {[ϕqi ] | i = 1, 2, . . . , pq} to the
cellular equivalence of Zπ-basis of C∗(X̃, ∂̃0W ).

8.3 Reducing the Handlebody Decomposition

In the next step we get rid of the handles of index zero and one in the handlebody
decomposition (8.6).

Lemma 8.11. Let W be an n-dimensional manifold for n ≥ 6 whose boundary is the
disjoint union ∂W = ∂0W

∐
∂1W . Then the following statements are equivalent

(1) The inclusion ∂0W →W is 1-connected;

(2) We can find a diffeomorphism relative ∂0W

W ∼= ∂0W × [0, 1] +
p2∑
i=1

(ϕ2
i ) +

p3∑
i=1

(ϕ3
i ) +

pn∑
i=1

(ϕni ).

Proof. The easy implication (2)⇒ (1) has already been proved in Section 8.2. �

Now consider an h-cobordism (W ; ∂0W,∂1W ). Because of Lemma 8.11 we
can write it as

W ∼= ∂0W × [0, 1] +
p2∑
i=1

(ϕ2
i ) +

p3∑
i=1

(ϕ3
i ) + . . . .

Lemma 8.12 (Homology Lemma). Suppose n ≥ 6. Fix 2 ≤ q ≤ n − 3 and i0 ∈
{1, 2, . . . , pq}. Let f : Sq → ∂1Wq be an embedding. Then the following statements
are equivalent

(1) f is isotopic to an embedding g : Sq → ∂1Wq such that g meets the transverse
sphere of (ϕqi0) transversally and in exactly one point and is disjoint from
transverse spheres of the handles (ϕqi ) for i 6= i0;

(2) Let f̃ : Sq → W̃q be a lift of f under p|
W̃q

: W̃q → Wq. Let [f̃ ] be the image

of the class represented by f̃ under the obvious composition

πq(W̃q)→ πq(W̃q, W̃q−1)→ Hq(W̃q, W̃q−1) = Cq(W̃ ).

Then there is γ ∈ π with
[f̃ ] = ±γ · [ϕqi0 ].
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Proof. (1) ⇒ (2) We can isotope f such that f |Sq
+

: Sq+ → ∂1Wq looks like the
canonical embedding Sq+ = Dq×{x} ⊆ Dq×Sn−1−q = ∂(ϕqi0) for some x ∈ Sn−1−q

and f(Sq−) does not meet any of the handles (ϕqi ) for i = 1, 2, . . . , pq. One easily
checks that then (2) is true.

(2) ⇒ (1) We can isotope f such that it is transversal to the transverse spheres of
the handles (ϕqi ) for i = 1, 2, . . . , pq. Since the sum of the dimension of the source
of f and of the dimension of the transverse spheres is the dimension of ∂1Wq,
the intersection of the image of f with the transverse sphere of the handle (ϕqi )
consists of finitely many points xi,1, xi,2, . . . , xi,ri

for i = 1, 2, . . . , pq. Fix a base
point y ∈ Sq. It yields a base point z = f(y) ∈ W . Fix for each handle (ϕqi ) a
path wi in W from a point in its transverse sphere to z. Let ui,j be a path in
Sq with the property that ui,j(0) = y and f(ui,j(1)) = xi,j for 1 ≤ j ≤ ri and
1 ≤ i ≤ pq. Let vi,j be any path in the transverse sphere of (ϕqi ) from xi,j to wi(0).
Then the composition f(ui,j) ∗ vi,j ∗wi is a loop in W with base point z and thus
represents an element denoted by γi,j in π = π1(W, z). It is independent of the
choice of ui,j and vi,j since Sq and the transverse sphere of each handle (ϕqi ) are
simply connected. The tangent space Txi,j

∂1Wq is the direct sum of Tf−1(xi,j)S
q

and the tangent space of the transverse sphere {0} × Sn−1−q of the handle (ϕqi )
at xi,j . All these three tangent spaces come with preferred orientations. We define
elements εi,j ∈ {±1} by requiring that it is 1 if these orientations fit together and
−1 otherwise. Now one easily checks that

[f̃ ] =
pq∑
i=1

ri∑
j=1

εi,j · γi,j · [ϕqi ],

where [ϕqi ] is the element associated to the handle (ϕqi ) after the choice of the
path wi We have by assumption [f̃ ] = ± · γ · [ϕqi0 ] for some γ ∈ π. We want to
isotope f such that f does not meet the transverse spheres of the handles (ϕqi ) for
i 6= i0 and does meet the transverse sphere of (ϕqi0) transversally and in exactly
one point. Therefore it suffices to show in the case that the number

∑pq

i=1 ri of
all intersection points of f with the transverse spheres of the handles (ϕqi ) for
i = 1, 2, . . . , pi is bigger than one that we can change f by an isotopy such that
this number becomes smaller. We have

±γ · [ϕqi0 ] =
pq∑
i=1

ri∑
j=1

εi,j · γi,j · [ϕqi ].

Recall that the elements [ϕqi ] for i = 1, 2, . . . , pq form a Zπ-basis. Hence we can find
an index i ∈ {1, 2, . . . , pq} and two different indices j1, j2 ∈ {1, 2, . . . , ri} such that
the composition of the paths f(ui,j1)∗vi,j1∗v−i,j2∗f(u−i,j2) is nullhomotopic inW and
hence in ∂1Wq and the signs εi,j1 and εi,j2 are different. Now by the Whitney trick
(see [167, Theorem 6.6 on page 71], [256]) we can change f by an isotopy such that
the two intersection points xi,j1 and xi,j2 disappear, the other intersection points
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of f with transverse spheres of the handles (ϕqi ) for i ∈ {1, 2, . . . , pq} remain and
no further intersection points are introduced. For the application of the Whitney
trick we need the assumption n− 1 ≥ 5. This finishes the proof of the Homology
Lemma 8.12. �

Lemma 8.13 (Modification Lemma). Let f : Sq → ∂◦1Wq be an embedding and let
xj ∈ Zπ be elements for j = 1, 2 . . . , pq+1. Then there is an embedding g : Sq →
∂◦1Wq with the following properties:

(1) f and g are isotopic in ∂1Wq+1;

(2) For a given lifting f̃ : Sq → W̃q of f one can find a lifting g̃ : Sq → W̃q of g
such that we get in Cq(W̃ )

[g̃] = [f̃ ] +
pq+1∑
j=1

xj · dq+1[ϕ
q+1
j ],

where dq+1 is the (q + 1)-th differential in C∗(W̃ , ∂̃0W ).

Lemma 8.14 (Normal Form Lemma). Let (W ; ∂0W,∂1W ) be an oriented compact
h-cobordism of dimension n ≥ 6. Let q be an integer with 2 ≤ q ≤ n − 3. Then
there is a handlebody decomposition which has only handles of index q and (q+1),
i.e. there is a diffeomorphism relative ∂0W

W ∼= ∂0W × [0, 1] +
pq∑
i=1

(ϕqi ) +
pq+1∑
i=1

(ϕq+1
i ).

8.4 Handlebody Decompositions and Whitehead tor-

sion

Let (W,∂0W,∂1W ) be an n-dimensional compact oriented h-cobordism for n ≥ 6.
By the Normal Form Lemma 8.14 we can fix a handlebody decomposition for some
fixed number 2 ≤ q ≤ n− 3

W ∼= ∂0W × [0, 1] +
pq∑
i=1

(ϕqi ) +
pq+1∑
i=1

(ϕq+1
i ).

Recall that the Zπ-chain complex C∗(W̃ , ∂̃0W ) is acyclic. Hence the only non-
trivial differential dq+1 : Hq+1(W̃q+1, W̃q) → Hq(W̃q, W̃q−1) is bijective. Recall
that {[ϕq+1

i ] | i = 1, 2 . . . , pq+1} is a Zπ-basis for Hq+1(W̃q+1, W̃q) and {[ϕqi ] | i =
1, 2 . . . , pq} is a Zπ-basis for Hq(W̃q, W̃q−1). In particular pq = pq+1. The matrix
A, which describes the differential dq+1 with respect to these basis, is an invertible
(pq, pq)-matrix over Zπ. Since we are working with left modules, dq+1 sends an
element x ∈ (ZG)n to x ·A ∈ ZGn, or equivalently, dq+1([ϕ

q+1
i ]) =

∑n
j=1 ai,j [ϕ

q
j ].
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Lemma 8.15. Let (W,∂0W,∂1W ) be an n-dimensional compact oriented h-cobordism
for n ≥ 6 and A be the matrix defined above. Suppose that A can be reduced to a
matrix of size (0, 0) by a sequence of the following operations:

(1) B is obtained from A by adding the k-th row multiplied with x from the left
to the l-th row for x ∈ Zπ and k 6= l;

(2) B is obtained by taking the direct sum of A and the (1, 1)-matrix I1 = (1),

i.e. B looks like the block matrix
(
A 0
0 1

)
;

(3) A is the direct sum of B and I1. This is the inverse operation to (2);

(4) B is obtained from A by multiplying the i-th row from the left with a trivial
unit , i.e. with an element of the shape ±γ for γ ∈ π;

(5) B is obtained from A by interchanging two rows or two columns.

Then the h-cobordism W is trivial relative ∂0W .

Proof. Let B be a matrix which is obtained from A by applying one of the oper-
ations (1), (2), (3), (4) and (5). It suffices to show that we can modify the given
handlebody decomposition in normal form of W with associated matrix A such
that we get a new handlebody decomposition in normal form, whose associated
matrix is B.

We begin with (1). Consider W ′ = ∂0W×[0, 1]+
∑pq

i=1(ϕ
q
i )+

∑pq+1
j=1,j 6=l(ϕ

q+1
j ).

Notice that we get from W ′ our h-cobordism W if we attach the handle (ϕq+1
l ).

By the Modification Lemma 8.13 we can find an embedding ϕq+1
l : Sq×Dn−1−q →

∂1W
′ such that ϕq+1

l is isotopic to ϕq+1
l and we get[

˜ϕq+1
l |Sq×{0}

]
=
[

˜ϕq+1
l |Sq×{0}

]
+ x · dq+1([ϕ

q+1
k ]).

If we attach toW ′ the handle (ϕq+1
l ), the result is diffeomorphic toW relative ∂0W

since ϕq+1
l and ϕq+1

l are isotopic. One easily checks that the associated invertible
matrix B is obtained from A by adding the k-th row multiplied with x from the
left to the l-th row.

The claim for the operations (2) and (3) follow from the Cancellation Lemma 8.5
and the Homology Lemma 8.12. The claim for the operation (4) follows from the
observation that we can replace the attaching map of a handle ϕq : Sq×Dn−1−q →
∂1Wq by its composition with f×id for some diffeomorphism f : Sq → Sq of degree
−1 and that the base element [ϕqi ] can also be changed to γ · [ϕqi ] by choosing a
different lift along W̃q → Wq. Operation (5) can be realized by interchanging the
numeration of the q-handles and (q + 1)-handles. �
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Finally we can explain how Theorem 7.1 (1) follows. One easily checks from
the definitions that τ(W,M0) ∈ Wh(π) is represented by (−1)q · [A]. Hence
τ(W,M0) = 0 is equivalent to [A] = 0 in Wh(π). Now apply Lemma 5.17. �

Remark 8.16 (Principle of extracting algebraic obstructions from geometry). Fol-
lowing the history we have defined first the Whitehead group and the Whitehead
torsion and then explained the proof of the s-Cobordism Theorem. But one can
also motivate the definition of the Whitehead group and Whitehead torsion by
the s-Cobordism Theorem using the following general strategy in topology.

Suppose we are given a geometric problem, for instance to check that a given
h-cobordism is trivial. In the first step one tries to figure out all possible geo-
metric constructions which may lead to a solution of the problem. In the case
of the s-Cobordism Theorem this comes down to the Cancellation Lemma 8.5.
Now try to apply these constructions to come as close to a solution as possible.
In the situation of the s-Cobordism Theorem this is Normal Form Lemma 8.14
together with Lemma 8.15. If one cannot achieve the solution in general, try to ex-
tract an algebraic condition which prevents one from achieving the solution. This
gives in the case of the s-Cobordism Theorem the following. Define on the disjoint
union

∐
n≥0GLn(Zπ) an equivalence relation by calling A and B equivalent if one

can transform A into B by a sequence of operations appearing in Lemma 8.15.
Obviously one can solve the problem if the matrix A given by a handlebody decom-
position in normal form is equivalent to the unique element in GL(0,Zπ) which
is by definition a set consisting of one element. Now one checks that the set of
equivalence classes is an abelian group, where the group structure comes from
taking the direct sum of two matrices. This is exactly Wh(π) and hence we obtain
an element in Wh(π) by the class of A. Finally one must show that the algebraic
invariant is independent of the geometric steps one may already have done to get
as close as possible to the solution. In the case of the s-Cobordism Theorem we
must show that the class of A depends only on the given h-cobordism but not on
the choice of the normal form. This is done in the case of the Whitehead torsion by
giving a definition which works for every CW -structure and hence in particular for
a every handlebody decomposition and already makes sense before any geometric
modifications have been made.

This principle can also be used to explain the definition of the Whitehead
torsion having the problem in mind whether a given homotopy equivalence of finite
CW -complexes is a simple homotopy equivalence. This principle can also be used
to explain the idea of the surgery obstruction which will be discussed later. Here
the problem is to modify a map f : M → X from a closed orientable manifold
M to a Poincaré complex X so that the resulting map g : N → X is a homotopy
equivalence with some closed manifold as source.
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Chapter 9

From the Novikov Conjecture to
Surgery (K.)

9.1 The Structure Set

As before all manifolds are oriented and homotopy equivalences or diffeomorphisms
are orientation preserving.

Given a smooth closed manifold M together with a map f : M → BG, the
Novikov Conjecture says that if g : N → M is a homotopy equivalence, then
the higher signatures of (M,f) and (N, fg) agree. This suggests introducing the
following set consisting of equivalence classes of pairs (N, g), where g : N →M is
a homotopy equivalence. Two such pairs (N, g) and (N ′, g′) are called equivalent
if there is an h-cobordism W between N and N ′ and an extension of g and g′ to
a map W → M . We call such an equivalence class a homotopy smoothing of M .
The terminology would be more plausible if g were a homeomorphism. Then we
would call it a smoothing since it can be used to define a new smooth structure on
M which is characterized by the property that with respect to this new smooth
structure g is a diffeomorphism. If g is a homotopy equivalence one can consider
(N, g) as a sort of smooth structure on M up to homotopy equivalence. The set
of homotopy smoothings is denoted by

Sh(M)

the set of homotopy smoothings or the homotopy structure set

Remark 9.1 (Simple homotopy smoothings). If we replace homotopy equivalences
by simple homotopy equivalences and h-cobordisms by s-cobordisms we obtain
the set

Ss(M)
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or the simple homotopy structure set If we apply the s-cobordism theorem, then,
for dimension of M > 4 the equivalence relation is the same as diffeomorphism
classes. This means that there is a diffeomorphism ϕ : N → N ′ such that g′ϕ
and g are homotopic. It is obvious that the set Ss(M) plays a central role in the
classification of manifolds of dimension > 4. We will relate this set to homotopy
theory and algebra via the surgery exact sequence introduced in chapter 14.

It is also useful to consider the structure sets for topological manifolds which
we call ShTOP(M) and SsTOP(M), the topological structure sets.

We put for a CW -complex X

hm(X) :=
⊕
i∈Z

Hm−4i(X; Q). (9.2)

Returning to the Novikov Conjecture, if f : M → BG is a map from a closed
oriented m-dimensional manifold M to the classifying space BG of the group G,
then we can consider the map

signG : Sh(M) → hm(BG; Q) (9.3)

mapping [g : N →M ] to the difference of higher signatures

signG(M,f)− signG(N, fg).

If this map signG is trivial for all manifolds M , the Novikov Conjecture for the
group G follows.

9.2 The Assembly Idea

The key ingredient for all approaches to the Novikov Conjecture is the construction
of a so called assembly map. There are many versions of assembly maps, some of
which will be discussed in later chapters. A few words about the history. In the
late 1960’s Sullivan applied the simply-connected surgery product formula and the
work of Conner and Floyd to describe the surgery obstructions of normal maps of
closed manifolds as the image of an assembly map on bordism (see [248, Theorem
13B.5] and [232]. One can regard the surgery obstruction map in [248, 13B.3],
θ : ΩPLm (K(π, 1) × G/PL,K(π, 1) × ∗) → Lm(π) as the original assembly map,
even though the domain is somewhat bigger than that of the assembly map defined
below.

One of the assembly maps is a map

AGm : hm(BG; Q)→ Lm(G)⊗Q, (9.4)

where Lm(G) is an abelian group associated to the group G. One of the most
fundamental properties of this map is that the composition of it with the map
signG of 9.3

Sh(M)
signG

−−−→ hm(BG; Q)
AG

m−−→ Lm(G)⊗Q
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is trivial for all closed oriented manifolds M with dimension m. Thus the Novikov
Conjecture is a consequence of the following conjecture

Conjecture 9.5 (Assembly map conjecture). The assembly map AGm is injective for
all groups G and every m ∈ Z.

We mention that the Farrell-Jones Conjecture implies for a torsionfree G that
the assembly map AGm : hm(BG; Q) → Lm(G) ⊗ Q is an isomorphism (compare
Remark 21.14 and Remark 23.8).

For finite groups G, this conjecture is trivial since H̃∗(BG; Q) is trivial. But
already for G = Z this is a non-trivial problem which we will discuss later.

The construction of the assembly map is non-trivial and will be explained
in the following sections. The construction of the assembly map is essentially
following the presentation in Wall’s book [248]). The main difference is that we
use the K3-surface instead — as in Wall’s book — an 8-dimensional manifold.
Here, we only indicate the main steps.

We obtain by h∗ as defined in 9.2 a homology theory satisfying

hm({•}) ∼=
{

Q, m = 0 mod 4,
0 else.

By construction hm(X) is 4-periodic, i.e. hm+4(X) = hm(X).
We give another geometric description of this group using oriented bordism

groups. For this recall that Ω∗ is a Z-graded algebra with multiplication given by
cartesian product. Since the signature is multiplicative, it defines a homomorphism
of Z-graded algebras

sign: Ω∗ → Q∗,

if Q∗ is the graded algebra whose entry in dimension i for i = 0 mod 4 is Z and
zero in all other dimensions and whose multiplicative structure is given as follows:
If q ∈ Q4n and r ∈ Q4m, qr is given by qr ∈ Q4(n+m), i.e. the multiplication
is induced from the multiplication of rational numbers. Thus Q∗ is a Z-graded
Ω∗-module. Also Ω∗(X) =

⊕
i≥0 Ωi(X) is a Z-graded Ω∗-module via

[M ] · [N, g] := [M ×N, gp2].

We can consider the graded tensor product

Ω∗(X)⊗Ω∗ Q∗.

which is a Z-graded rational vector space. It turns out to be a homology theory.
To see this we recall using Theorem 2.4 that Ω∗ ⊗Z Q ∼= H∗(BSO × X; Q) ∼=
H∗(X; Q)⊗H∗(BSO; Q) ∼= H∗(X; Q)⊗Ω∗ and so Ω∗(X)⊗Ω∗Q∗ ∼= H∗(X; Q)⊗Q∗,
a homology theory.

We want to express this homology theory in a different way which relates it
to the higher signatures. Consider the natural transformation of homology theories

T∗(X) : Ω∗(X)⊗Ω∗ Q∗ → h∗(X), [M,f ]⊗ q 7→ qḟ∗([M ] ∩ L(M)).
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This is well-defined, i.e. compatible with the tensor relation and the gradings by the
following calculation for [M,f ] ∈ Ωm(X) and [N ] ∈ Ω4r, where pM : M ×N → N
and pr: N → {•} are the projections

(f ◦ pM )∗([M ×N ] ∩ L(M ×N)) = (f ◦ pM )∗ (([M ]× [N ]) ∩ (L(M)× L(N)))
= (f ◦ pM )∗ (([M ] ∩ L(M))× ([N ] ∩ L(N)))
= f∗ ([M ] ∩ L(M))× pr∗([N ] ∩ L(N))
= f∗ ([M ] ∩ L(M)) · sign(N).

Here we have used the Signature Theorem 1.3 which implies

pr∗ ([N ] ∩ L(N))) = sign(N) · 1 ∈ H0({•}).

If X is the one-point-space {•}, then there are obvious identifications

Ω∗({•})⊗Ω∗ Q∗ = Ω∗ ⊗Ω∗ Q∗ ∼= Q∗

and
h∗({•}) = Q∗

under which T ({•}) becomes the identity. Thus — by induction over the skeleta,
the 5-Lemma and a colimit argument — T∗(X) is an isomorphism for all CW -
complexes X. We have shown:

Proposition 9.6 (A bordism description of hm(X)). The higher signature induce
an isomorphism for all CW -complexes X

T∗(X) : Ω∗(X)⊗Ω∗ Q∗
∼=−→ h∗(X) =

⊕
i∈Z

H∗−4i(X; Q).

For the description of the assembly map AG∗ , it suffices in view of Proposi-
tion 9.6 to describe a map of Z-graded vector spaces

A
G

∗ : Ω∗(BG)⊗Ω∗ Q∗ → L∗(G)⊗Z Q.

The assembly map AG∗ corresponds to this under the isomorphism T∗(BG). In
chapter 15 we will construct a map

A
G

m : Ωm(BG) → Lm(G). (9.7)

and explain that the map A
G

m induces the desired map A
G

∗ by putting

A
G

∗ ([M,f ]⊗ r) = A
G

dim(M)([M,f ])⊗ r.

This proof boils down to verify the necessary tensor relation over Ω∗, i.e. that

A
G

m+n([M1 ×N, f ◦ p1]) = sign(N) ·AGm([M,f ])
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holds for f : M → BG and N if m = dim(M) and n = dim(N) and p1 : M ×
N → M is the projection, and is based on the fact that the L-groups Lm(G)
are 4-periodic, i.e. Lm(G) = Lm+4(G) and the product formula for the surgery
obstruction.

Now we explain the idea behind the definition of the maps A
G

m. (More details
will be given in Section 15.1 after we have presented more details about surgery
theory.) It is rather indirect. Let K be the Kummer surface or K3-surface. This
is the quartic in CP3 consisting of the points

K := {[x0, x1, x2, x3] ∈ CP3 | x4
0 + x4

1 + x4
2 + x4

3 = 0}.

This is a simply connected closed oriented 4-manifold with vanishing second Stiefel-
Whitney class and so K−x, the complement of a point, is stably parallelizable (see
Exercise 9.1). The signature of K is −16 (see Exercise 9.2). Now we remove two
open disjoint discs from K and call the resulting compact parallelizable manifold
Q. The boundary ∂Q is S3 + S3, the sum of two 3-spheres.

Then, for a closed m-dimensional manifold M we consider

M ×Q,

a compact manifold of dimension m+ 4 with boundary M × S3 +M × S3. Thus
M ×Q is a bordism between M × S3 and M × S3.

We will try to replace this manifold up to cobordism rel. boundary by an
h-cobordism between M × S3 and M × S3. If this is possible, the assembly map
maps [M,f ] to zero for all f . In general, this is not possible and there is an
obstruction in an abelian group Lm+4(π1(M)). A map f : M → BG is the same
(up to homotopy) as a map from π1(M) to G and such a map induces a map

f∗ : Lm+4(π1(M))→ Lm+4(G).

The latter group is by construction 4-periodic and so we consider the image of the
construction under f∗ to obtain the desired element

A
G

m([M,f ]) ∈ Lm(G).

From the basic properties of the obstruction to replacing M × Q by an h-
cobordism, it is plausible that the composition

Sh(M)
signG

−−−→ hm(BG)
AG

m−−→ Lm(G)

is zero. This explains why the assembly map conjecture (see 9.5) implies the
Novikov Conjecture for the group G.

To finish this chapter, we return to the bordism M ×Q and the question of
when it is bordant to an h-cobordism. The method is surgery, a way to “improve”
a manifold, in this case M ×Q, by cutting out a certain submanifold and gluing
another manifold in, like a doctor does with the body of an ill person by replacing
a bad part by a healthy one.
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Remark 9.8 (The non-periodic assembly map). We have presented the 4-periodic
assembly map AGm : hm(BG; Q) → Lm(G) ⊗ Q in 9.4. Since the L-groups are 4-
periodic and we want to get an assembly map which is at least for torsionfree
groups an isomorphism, the source must be 4-periodic as well. But one can also
produce a connective version whose source is smaller and actually generated by
classes given by manifolds.

Namely, replace the 4-periodic Z-graded Ω∗-module Q∗ by the Z-graded Ω∗-
submodule Q̂∗ which is Q in dimensions i ≥ 0, i = 0 mod 4 and zero in all other
dimensions. Also replace the 4-periodic homology theory h∗(X) defined in 9.2 by
the homology theory ĥ∗ given by

ĥm(X) :=
⊕

i∈Z,i≥0

Hm−4i(X; Q), (9.9)

In contrast to h∗(X) the homology theory ĥm(X) is not 4-periodic. Then analo-
gously to Proposition 9.6 one obtains for every CW -complex an isomorphism for
all CW -complexes X

T̂∗(X) : Ω∗(X)⊗Ω∗ Q̂∗
∼=−→ ĥ∗(X) =

⊕
i∈Z,i≥0

H∗−4i(X; Q).

The following diagram commutes where the vertical maps are the obvious injective
maps induced by inclusions

Ω∗(X)⊗Ω∗ Q̂∗
T̂∗(X)−−−−→ ĥm(BG)y y

Ω∗(X)⊗Ω∗ Q∗ −−−−→
T∗(X)

hm(BG)

The map A
G

m of 9.7 defines analogously to AGm an assembly map

ÂGm : ĥm(BG)→ Lm(G)⊗Q, (9.10)

which is the composition of the 4-periodic assembly map AGm : hm(BG; Q) →
Lm(G)⊗Q of 9.4 with the obvious inclusion ĥm(X)→ hm(X).

The advantage of ĥm(BG) is that it is generated by classes given by mani-
folds. Since Ω∗ → Q̂∗ is surjective, the canonical map Ωm(X)→

(
Ω∗(X)⊗Ω∗ Q̂∗

)
m

is surjective and has the subvectorspace Um ⊆ Ωm(X) as kernel which is gener-
ated by the classes of the shape [M × N, fp1] for closed manifolds M and N
with dim(M) + dim(N) = m and sign(N) = 0 and maps f : M → BG and
p1 : M ×N →M the projection. So we can rewrite ÂGm as a map

ÂGm : Ωm(X)/Um → Lm(G). (9.11)
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We give a different interpretation in terms of symmetric signatures of the
assembly maps AGm of (9.4) and ÂGm of (9.11) when we deal with the Farrell-Jones
Conjecture and its relation to the Novikov Conjecture (see Remark 23.8).
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Chapter 10

Surgery Below the Middle
Dimension I: An Example (K.)

10.1 Surgery and its Trace

To introduce the idea of surgery, we consider the following situation, which will
lead to an attractive application. Let M be a closed smooth simply-connected
n-dimensional manifold and let k be an integer satisfying k > 1 and k < n − k.
Suppose that the homology of M is trivial except in dimension 0, k, n − k and
n, where it is Z. Examples of such manifolds are Sk × Sn−k, other examples will
be given later. By the Hurewicz theorem πk(M) is isomorphic to Hk(M) and so
πk(M) ∼= Z. Let α : Sk →M be a generator of πk(M). By the Whitney embedding
theorem we can represent [α] by an embedding (by assumption K is smaller than
half the dimension of M) which we again denote by α : Sk ↪→M . Now we make an
additional assumption, namely that the normal bundle of α(Sk) in M is trivial.
Then a tubular neighborhood gives an extension of α to an embedding

β : Sk ×Dn−k ↪→M.

Now we perform surgery using β to obtain a smooth manifold

Σ := M − β(Sk×
◦
D
n−k

) ∪β|
Sk×Sn−k−1 D

k+1 × Sn−k−1.

We say that Σ is obtained from M via surgery on β.
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10.2 The Effect on the Fundamental Group and Homol-

ogy Groups

We want to compute the fundamental group and the homology group of Σ. For
this we consider

T := M × [0, 1] ∪β Dk+1 ×Dn−k.

Here we consider β as a map from Sk × Dn−k to M × {1} and we note that
Sk × Dn−k is part of the boundary of Dk+1 × Dn−k. The boundary of T is the
disjoint union of M = M × {0} and Σ and we call T the trace of surgery.

By construction T is homotopy equivalent to M ∪β|
Sk×{0}

Dk+1. Thus the
Seifert van Kampen theorem implies that π1(T ) ∼= π1(M) ∼= {0}. The long exact
sequence of the pair (M ∪β|

Sk×{0}
Dk+1,M) is:

. . .→ Hi+1(M)→ Hi+1(M ∪β|
Sk×{0}

Dk+1)→ H̃i+1(Sk+1) ∂−→

Hi(M)→ Hi(M ∪β|
Sk×{0}

Dk+1)→ H̃i(Sk+1)→ . . . .

Here we have used excision to replace the relative homology group by H̃i(Sk).
By construction ∂ :

∼
Hk+1 (Sk+1)→ Hk(M) maps the generator to the generator

given by [α]. Thus we conclude that Hi(M) → Hi(T ) is an isomorphism for
i 6= k and Hk(T ) = 0. The reader should add details to the computation of
the fundamental group and the homology groups (see Exercise 10.1)

Next we make an important geometric observation. Let γ : Dk+1×Sn−k−1 ↪→
Σ = M − β(Sk ×Dn−k ∪Dk+1×Sn−k−1 the obvious embedding. Then obviously
M is obtained from Σ by surgery using the embedding γ. Moreover, the trace of
this surgery is again T . The reader should look at a picture of T until he “sees
this.

Thus the considerations above imply that for j ≤ n − k − 1 the inclusion
induces an isomorphisms

π1(Σ)
∼=→ π1(T ) = 0,

and
Hj(Σ)

∼=→ Hj(T ).

Combining this with the information above we conclude that for r ≤ n/2 we have

H̃r(Σ) = 0

and
π1(Σ) = 0.

By Poincaré duality this implies that H̃r(Σ) = 0 for r 6= n. Thus Σ is a
homotopy sphere. We summarize:

Theorem 10.1. Let M and the embedding β : SkDn−k ↪→ M be as above. Then
surgery with β replaces M by a homotopy sphere Σ.
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10.3 Application to Knottings

The following section is not related to the Novikov Conjecture (except that we use
Novikov’s result about the homeomorphism invariance of the rational Pontrjagin
classes). It gives a nice geometric application of the previous result to knottings.

A (generalized) knot is an r-dimensional submanifold K ⊆ Sn. Two knots
(Sn,K) and (Sn,K ′) are called equivalent if there is a homeomorphism f : Sn →
Sn mapping K to K ′, i.e. f(K) = K ′. Of particular interest is the situation where
K is itself homeomorphic to a sphere Sr. Such a knot is called a spherical knot.
The standard embedding Sr ⊆ Rr+1 ⊆ Rn+1 gives an embedding Sr ⊆ Sn which is
called the unknot. It is natural to ask for which r and n there are non-trivial knots.
One should exclude examples which are non-trivially knotted for obvious reasons.
Such a reason is, for example, if K has no trivial tubular neighborhood, i.e. an
embedding K ×Dn−r ↪→ Sn extending the inclusion of K to Sn. If r = n− 2 one
has many examples of knottings, in particular for n = 3, the classical knots. But
the methods used there to distinguish from the unknot do not apply to r > n− 2.

After this introduction we return to the manifolds M as considered in the
beginning of this chapter. Surgery on Sk × Dn−k ⊆ M leads to a homotopy
sphere Σ. As a consequence of the h-cobordism theorem we have shown that Σ
is homeomorphic to Sn if n > 4 (Theorem 7.4) (by a much a deeper result this
is also true for n = 4 [94]). Since Σ = (M − Sk × Dn−k) ∪ Dk+1 × Sn−k−1, we
have an embedding of {0} × Sn−k−1 to Σ and if we choose a homeomorphism to
Sn, we obtain a knotting of Sn−k−1 in Sn with trivial tubular neighborhood (here
r = n − k). If it is natural to ask whether by this construction one can obtain
knottings which are not equivalent to the unknot.

As an interesting example we consider the situation where n = 6 and k =
2. The situation is particularly simple, since for such a manifold M a 2-sphere
representing a generator of H2(M) has trivial normal bundle if and only if the
manifold is a spin manifold which is equivalent to w2(M) = 0. Furthermore the
normal bundle has then a canonical framing, since π2(SO(4)) = 0. Thus there
is a canonical knot associated to M , if M is spin, once we have distinguished a
generator of H2(M).

One next proves that, if x is a generator of H2(M) (dual to a fixed generator
of H2(M)), then the corresponding knot is the unknot if and only if the expres-
sion 〈x ∪ p1(M), [M ]〉 − 4 · 〈x3, [M ]〉 vanishes. This is shown by starting from the
unknot and computing this expression for all manifolds obtained by surgery on
the unknot (the different possibilities for this correspond to the different framings
of the normal bundle of the standard embedding of S3 to S6). Since we work with
topological manifolds we have to use Novikov’s result about the homeomorphism
invariance of the rational Pontrjagin classes.

Finally one needs to construct 6-manifoldsM of the type under consideration,
which are spin, such that 〈x ∪ p1(M), [M ]〉 − 4 · 〈x3, [M ]〉 6= 0. Unfortunately we
don’t know a simple construction of such manifolds. The closest one can come with
explicit examples is hyper-planes V (d) of odd degree d in CP4, which have all the



94 Chapter 10. Surgery Below the Middle Dimension I: An Example (K.)

desired properties except that H3(V (d)) is in general non-trivial. But by surgery
on 3-spheres one can pass from V (d) to V ′(d) with H3(V ′(d)) = 0 (the basic idea
behind this will be explained in Chapter 14). These manifolds are closely related:
V (d) = V ′(d)]l(S3 × S3). Thus

〈x∪p1(V ′(d)), [V ′(d)]〉−4·〈x3, [V ′(d)]〉 = 〈x∪p1(V (d)), [V (d)] > −4 < x3, [V (d)]〉.

It is a good exercise (see Exercise 10.2) to compute this expression. The answer
is:

〈x ∪ p1(V ′(d)), [V ′(d)]〉 − 4 · 〈x3, [V ′(d)]〉 = d(5− d2)− 4d,

which is non-zero if d > 1. Moreover the value is different for different d’s leading
to the result that the corresponding knottings are pairwise non-equivalent. The
existence of infinitely many knottings was originally proven by [106],



Chapter 11

Surgery Below the Middle
Dimension II: Systematically
(K.)

In the following chapters we give a brief introduction to surgery. This is a compli-
cated theory and we cannot treat all aspects in these Lecture Notes. We recom-
mend consulting other articles and books. For example [33], [129], [153], [203] and
[248].

11.1 The Effect of Surgery in Homology and Homotopy

We recall that for simplicity’s sake we assume that all manifolds are oriented.
Let W be a compact connected manifold of dimension n and

ϕ : Sk ×Dn−k ↪→
◦
W

an embedding. We say that

W ′ := W − ϕ(Sk×
◦
D
n−k

) ∪ϕ−1|Sk×Sn−k−1 Dk+1 × Sn−k−1

is obtained from W by surgery via ϕ .
As in the special case studied in the last chapter, we want to see how the

homology of W ′ relates to the homology of W . But since W is in general not
1-connected, we are more interested in the homology groups of the universal cov-
erings of W and W ′. The reason is that if ∂W = M0 + M1 with Mi and W
connected, then W is an h-cobordism if and only if for i = 0, 1:

i∗ : π1(Mi)
∼=→ π1(W )

95
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and if for all j:
i∗ : Hj(M̃i)

∼=→ Hj(W̃ ).

This follows again from the Whitehead and Hurewicz theorems (see Exercise 11.1).
In fact, using a similar argument as in our special case in the last chapter,

one sees that it is enough to require instead of this condition that HjM̃i → HjW̃

is bijective for j <
[
n
2

]
and that H[n

2 ]M̃i → H[n
2 ]W̃ is surjective.

Now we return to the situation above. Let W be a compact manifold of
dimension n and ϕ : Sk × Dn−k ↪→

◦
W an embedding. Besides W ′, the result of

surgery via ϕ, we look at the result of attaching a handle to W × I denoted by T .
We recall that Hj(W̃ ) is a module over Z [π1(W )], where elements of π1(W )

act on Hj(W̃ ) via deck transformation and similarly the fundamental groups
act on the homology groups of the other manifolds W̃ ′ and T̃ . It is a standard
notation to use for Hj(W̃ ) considered as module over Z [π1(W )] the notation:
Hj(W ; Z[π1(W )]), the homology of W twisted coefficients.

The homotopy groups depend on the choice of a base point. We always choose
the base point in W disjoint from the image of ϕ and use the “same” base point
for T . Of course, if we compare W ′ with T we have to choose a base point in W ′.
We take the same base point as for W . To compare the homotopy groups of T
with respect to the two base points coming from W and W ′ we have to give a path
between them. For this we take of course the path given by x0 × I, if x0 denotes
the base point in W .

Proposition 11.1 (effect of surgery). Let W be connected, ϕ : Sk ×Dn−k ↪→
◦
Was

above and 1 < k < n− 1. Then

i) T := W × I ∪ϕDk+1×Dn−k is a bordism relative boundary between W and
W ′.

ii) π1(W )→ π1(T ) and π1(W ′)→ π1(T ) are isomorphisms.

iii) If k < n−1
2 , then for i < k

Hi(W ; Z[π1])→ Hi(T ; Z[π1])

Hi(W ′; Z[π1])→ Hi(T ; Z[π1])

are isomorphisms and

Hk(W ′; Z[π1]) ∼= Hk(W ; Z[π1])/Z [π1]x,

where π1 = π1(W ) ∼= π1(T ) and x ∈ Hk(W̃ ) is the image of
[
ϕ|Sk×{0}

]
∈

πk(W ) ∼= πk(W̃ ) under the Hurewicz map πk(W ; Z[π1])→ Hk(W̃ ) = Hk(W ; Z[π1]).

iv) If k = 1 then π1(W ′) ∼= π1(T ) but π1(T ) ∼= π1(W )/N(x), where N(x) is the
normal subgroup generated by x.
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Proof. The proof is similar to the proof of the special case in the last chapter. The
statements i) and ii) are obvious and for the third statement we note that T̃ is a
bordism between W̃ and T̃ ′ and that

T̃ = W̃ × I ∪ϕ̃ (+(Dk+1 ×Dn−k)),

where +Dk+1 × Dk is the sum of as many copies of Dk+1 × Dn−k as the order
of π1(W ) is. In other words, it is the total space of the trivial π1(W )-covering
over Dk+1 ×Dn−k. Since k > 1, the restriction of the universal covering of W to
ϕ(Sk ×Dn−k) is trivial and ϕ̃ is the lift of ϕ to the universal covering.

Similarly, T̃ = W̃ ′×I∪ϕ̃(+(Dk+1×Dn−k)) and by a Mayer-Vietoris argument
as in the last chapter of the proof of iii) is achieved.

The last point iv) follows from the Seifert-van Kampen Theorem. �

11.2 Surgery below the Middle Dimension

If ∂W = M0 + M1 and π1(Mi)
∼=→π1(W ), it would be nice if we could use this

proposition to change the homology of W inductively until the maps

Hj(Mj ; Z[π1])→ Hj(W ; Z[π1])

are isomorphisms. But this is impossible for various reasons. We have to add more
information to have a chance. The additional data are given by normal maps as
defined in Chapter 2. We recall that for a connected CW -complexX, together with
a stable vector bundle E over X, a normal map in (X,E) is a triple (M,f, α),
where M is an n-dimensional smooth manifold, f : M → X a continuous map and
α an isomorphism between f∗E and the normal bundle ν(M).

A particularly interesting example is where W is a bordism between two
manifolds M0 and M1, and X be equal to M0, and E the normal bundle of M0, and
(f, α) a normal map from W to (M0, E), such that f |M0 and f |M1 are homotopy
equivalences. If in addition f : W → M0 is a homotopy equivalence, then both
inclusions M0 → W and M1 → W are homotopy equivalences and so W is an
h-cobordism. If f is not a homotopy equivalence, we will try to replace it by a
homotopy equivalence via surgeries.

This is “almost” possible. By this we mean that after surgeries we may assume
that π1(Mi) → π1(W ) is an isomorphism and Hj(W,Mi; Z[π1]) = 0 for j < [m2 ],
where m is the dimension of W . (Note that if also H[m

2 ](W,M1; Z[π1]) = 0, then W
is an h-cobordism.) If we use the map to M0 we can formulate a slightly stronger
condition. Namely the two conditions follow from the condition that

f∗ : π1(W )→ π1(M0)

is an isomorphism, and

f∗ : Hj(W ; Z[π1])→ Hj(M0; Z[π1])
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is an isomorphism for j < r = [m2 ] and surjective for j = r = [m2 ]. A map f with
this property is called a r-equivalence.

To formulate the corresponding result we have to define bordism rel. bound-
ary between two normal maps. If (W, f, α) is a normal map as above we say that
(W, f, α) is normally bordant rel. boundary to (W ′, f ′, α′) if

— ∂W = ∂W ′

— f |∂W = f ′|∂W ′

— α|∂W = α′|∂W

— there is a normal map (g : T → X,β) to (X,E) with ∂T = W ∪∂w=∂W ′

W ′, g|∂T = f ∪ f ′ and α|∂T = α ∪ α′.

Note that if (W, f, α) is normally bordant rel. boundary to (W ′, f ′, α′), then
these two triples are normally bordant, but the converse is not true, since the
boundary of W and W ′ are not necessarily kept unchanged by a normal bordism.

Proposition 11.2 (Surgery below the middle dimension). Let (W, f, α) be a normal
map from an m-dimensional compact manifold W to (X,E) where X is a CW -
complex with finite skeleta, then (W, f, α) is normally bordant rel. boundary to a
normal map (W ′, f ′, α′) such that

f ′∗ : π1(W ′)
∼=→ π1(X)

and
f ′∗ : Hj(W ′; Z[π1])→ Hj(X; Z[π1])

is an isomorphism for j < [m2 ] and surjective for j = [m2 ] in other words: f ′ : W ′ →
X is a [m2 ]-equivalence.

Proof. We proceed inductively and assume for the beginning that f∗ : π1(W )
∼=→

π1(X) and f∗ : Hj(W ; Z[π1]) → Hj(X̃; Z[π1]) is an isomorphism for j < k and
surjective for j = k, where 1 < k < [m2 ]. We replace W by W ′ which is normally
bordant rel. boundary to W such that W ′ has the same property for k + 1.

Replacing f : W → X by the mapping cylinder W × I ∪f X, we can assume
that f is an inclusion and consider the relative homology groups Hj(X,W ; Z[π1])
and πj(X̃, W̃ ) ∼= πj(X,W ) for j > 1. By assumption Hj(X,W ; Z[π1]) = {0} for
j ≤ k and the Hurewicz theorem implies that πj(X,W ) = {0} for j ≤ k and

πk+1(X,W ) ∼= Hk+1(X,W ; Z[π1]).

Combining this with the exact homology sequence of the pair

Hk+1(X,W ; Z[π1])→ Hk(W ; Z[π1])
f∗→ Hk(X; Z[π1])→ 0
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we conclude that the kernel of

f∗ : Hk(W ; Z[π1])→ Hk(X; Z[π1])

is equal to the image of

πk+1(X,W ) ∼= Hk+1(X,W ; Z[π1])
d→ Hk(W ; Z[π1]).

Thus, all elements in the image of d are representable by map g : Sk → W .
Since all skeleta of X are finite and also W is homotopy equivalent to a finite
CW -complex (W is compact), the Z [π1(X)]-module im(d) = ker(Hk(W ; Z[π1])→
Hk(X; Z[π1])) is finitely generated. We choose a map g : Sk → W representing
a generator and apply Whitney’s embedding theorem to approximate it by an
embedding (k < dim(W )/2)

g : Sk ↪→
◦
W .

Since fg is homotopic to zero and ν(W ) is isomorphic to f∗E the stable normal

bundle of g(Sk) in
◦
W is trivial. Since the dimension of the normal bundle is > k,

this implies that the normal bundle is trivial (see Exercise 11.2). Thus we can
extend g to an embedding

ϕ : Sk ×Dm−k ↪→
◦
W .

This extension depends on the choice of a trivialization of the normal bundle.
We attach a handle to

◦
W via g to obtain a bordism rel. boundary

T := W × I ∪ϕ Dk+1 ×Dm−k

between W and

W ′ = (W − ϕ(Sk×
◦
D
m−k

)) ∪Dk+1 × Sm−k−1.

By 11.1 the fundamental group of W and the homology groups of W̃ agree with
that of W̃ ′ for degree < k and

Hk(W ′; Z[π1]) ∼= Hk(W ; Z[π1])/Z [π1] g∗(
[
Sk × {0}

]
).

We further note that, since f∗g∗([Sk]) is zero in πk(X), the map f : W → X
can be extended to a map F : T → X whose restriction to W ′ we denote by
f ′. Again using f∗g∗([Sk]) = 0, we conclude that the pullback of E to Sk is
trivial. We would like to extend this trivialization to T . Since the normal bundle
of Dk+1×Dn−k is trivial, we have a canonical (up to isotopy) trivialization on the
handle. The two trivializations on Sk×Dn−k must not agree. But — as mentioned
above — we have freedom in choosing the trivialization of the normal bundle of
Sk and using this freedom we can achieve that we can extend the isomorphism
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α between f∗(E) and ν(T ) to an isomorphism between F ∗(E) and ν(T ) whose
restriction to W ′ we denote by α′.

We summarize these considerations:
For each element z ∈ ker (Hk(W ; Z[π1])→ Hk(X; Z[π1])) we can construct a

normal cobordism T from (W, f, α) to (W ′, f ′, α′) such that

i) π1(W ′)
∼=→ π1(X)

ii) Hj(W ′; Z[π1])
∼=→ Hj(W ; Z[π1]) for j < k

iii) Hk(W ′; Z[π1]) ∼= Hk((W ; Z[π1])/Z [π1(W )]z.

Since the kernel of Hk(W̃ ) → Hk(X̃) is finitely generated, we can — after
finitely many such constructions — replace the third condition by

(iii) Hk(W̃ ′)
∼=→ Hk(X̃)

To finish the inductive step, we must achieve that:
(iv) Hk+1(W ′; Z[π1])→ Hk+1(X; Z[π1]) is surjective.
Using the assumption (i) - (iii), the exact homology and homotopy sequence

of the pair (X̃, W̃ ′) and the Hurewicz isomorphism, we see that the condition (4)
is equivalent to

πk+1(W )→ πk+1(X)

is surjective. Since X is a finite CW -complex, πk+1(X) is a finitely generated
Z [π1(X)]-module. Let y1, . . . , yr be generators. We replace W ′ by

W ′]r(Sk+1 × Sm−k−1)

and “extend” f ′ by a map which maps the p’th summand Sk+1×Sm−k−1 to Sk+1

and then to the p’th generator yp, we can achieve condition (4).
It is easy to construct a normal map on W ′

]r
(Sk+1 × Sm−k−1) to X which is

normally bordant rel. boundary to W ′. This finishes the inductive step.
Finally we have to get the induction started by achieving that W is connected

and the map to X is an isomorphism on π1. We make W connected by forming the
connected sum of the components. There is an obvious normal bordism between
these manifolds. Since π1(X) is finitely presented we can make the map a surjection
on π1 by forming the connected sum with S1 × Sm−1, and then we can kill the
kernel by surgeries using iv) of 11.1. �

11.3 Construction of Certain 6-Manifolds

We now return to the situation in chapter 0, where we indicated the construction of
certain 6-manifolds. The starting point was a closed 4-dimensional spin-manifold
M . Then we considered T 2×M and wanted to replace this by a bordant 6-manifold
N(M) with π1(N(M)) ∼= π1(T 2 ×M) ∼= Z⊕ Z, and π2(N(M)) = 0. Now we can
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add details to this construction. For this we consider X := T 2 × BSpin, where
BSpin is the classifying space of the stable Spin group, the universal covering of
SO. We equip X with the stable vector bundle obtained from pulling the stable
vector bundle over BSO back under the map T 2×BSpin→ BSpin→ BSO. Now
we note that, since M is a spin manifold, the normal Gauss map factors through
BSpin, and the identity on T 2 together with this map gives a map f : T 2×M → X,
under which the stable vector bundle over X pulls back to the normal bundle of
T 2 ×M .

Now we apply Proposition 11.2 and conclude that (T 2 ×M,f) is normally
bordant to (N(M), f ′), where f ′ is a 3-equivalence. Since π2(X) = 0 this implies
that π1(N(M)) ∼= π1(T 2 ×BSpin) ∼= Z⊕Z and π2(N(M)) = 0, as was desired in
Chapter 0. It is not clear from the construction that N(M) is well defined and we
don’t claim this.
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Chapter 12

Surgery in the Middle
Dimension I (K.)

12.1 Motivation for the Surgery Obstruction Groups

In this chapter we define (following Wall [248]) the L-groups Lhm(π1(X)). In the
next chapter we associate under certain conditions to each normal bordism class
(W, f, α) an element

Θ(W, f, α) ∈ Lhm(π1(X)).

We are mainly interested in the case where X is a closed manifold and W is a
bordism between manifolds M0 and M1 and f |Mi

is a homotopy equivalence. Then
the geometric meaning of Θ is demonstrated by the result that Θ(W, f, α) = 0 if
and only if (W, f, α) is normally bordant rel. boundary to an h-cobordism (assum-
ing that the dimension of W is larger than 4). If in addition we can control the
Whitehead torsion in such a way that it vanishes, then we obtain an s-cobordism
and, if m > 5, the s-cobordism theorem implies that M0 is diffeomorphic to M1.
This is gives the fundamental tool for classifying manifolds in dimension > 5.

To give a first feeling for the groups Lhm(π1(X)) and the invariant Θ(W, f, α),
we note that if π1(X) = 0 and m = 0 mod 4, then Lhm(0) ∼= Z and Θ(W, f, α)
corresponds to the signature of W under this isomorphism. This looks like a good
starting point for the Novikov Conjecture in the sense that the higher signatures
are a generalization of the signature and sit in hm(Bπ1) =

⊕
kHm−4k(Bπ1)⊗Q, an

abelian group attached to a group π1. Although — as we will see — the definition
of the L-groups attached to a group π1, Lhm(π1), is very different from the definition
of the homology groups of Bπ1, the fact that these groups agree (after taking the
tensor product with Q) for π1 trivial and that then Θ(W, f, α) is given by the
signature, leaves room for speculations concerning the relation of these groups for
non-trivial π1. These speculations will be supported even more when we see that
for m = 0 mod 4 the invariant Θ is a natural generalization of the signature.
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12.2 Unimodular Hermitian Forms

We will begin with the groups Lh4m(π1). The groups Lh4m+2(π1) are defined in a
similar way, as we will indicate. The odd-dimensional L-groups are defined in a
different way, which we will explain. We abbreviate the group ring Z [π1] by R. As
we have seen earlier, R is equipped with an anti-involution — mapping g ∈ π1 to
g−1. For a ring R with anti-involution we define an unimodular hermitian form.
It is a finitely generated free R-module A (i.e. A is isomorphic to Rk for some k)
together with a map

λ : A×A→ R

such that

i) for each λ ∈ A fixed the map

A→ R, x 7→ λ(x, y)

is linear,

ii) λ(x, y) = λ(y, x)

iii) the associated map

A→ A∗, y 7→ (x 7→ λ(x, y))

is an isomorphism, where A∗ = HomR(A,R).

We also need the concept of a quadratic refinement of a hermitian unimodular
form λ. This is a map

q : A→ R/{a− a|a ∈ R}
such that

iv) λ(x, x) = q(x) + q(x) ∈ R

v) q(x+ y) = q(x) + q(y) + [λ(x, y)] ∈ R/{a− a}

vi) q(ax) = aq(x)a ∈ R/{a− a}

Here we note that iv) has to be interpreted as follows. Choose a representative
b ∈ R for q(x) and consider b + b. If we change b by adding some element a − a,
then b+ b is replaced by b+ a− a+ b+ a− a = b+ b. Thus, although b is not well
defined if only [b] ∈ R{a−a} is given, the sum b + b is well defined in R, so that
the equation iv) makes sense in R. For equation vi) we have to convince ourselves
that, if b ∈ R represents q(x), then [aba] ∈ R/{a− a} is independent of the choice
of the representative b, which the reader can easily check.

Here is a simple and important example, the hyperbolic form H, in which
A = R ⊕ R with basis e and f and λ is given by λ(e, e) = λ(f, f) = 0 and
λ(e, f) = 1. The quadratic refinement is given by q(e) = q(f) = 0.

We abbreviate “unimodular hermitian bilinear forms together with a quadratic
refinement” to “unimodular hermitian quadratic form”.
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12.3 The L-Groups in Dimensions 4m

We say that two unimodular hermitian quadratic forms (A, λ, q) and (A′, λ′, q′)
are isomorphic, if there is an isomorphism ϕ : A→ A′ such that λ′(ϕ(x), ϕ(y)) =
λ(x, y) for all x, y ∈ A and q′(ϕ(x)) = q(x). We say that (A, λ) and (A′, λ′, q′) are
stably isomorphic if there are k and l such that

(A, λ)⊥Hk ∼= (A′, λ′)⊥H l.

Here, ⊥ is the orthogonal sum and Hk stands for the orthogonal sum of k copies
of H.

Definition 12.1. The abelian group of stable isomorphic classes of unimodular her-
mitian quadratic forms over the group ring R = Z[G], where G is a group, is
called

Lh4m(G).

We have to explain how we define the structure of an abelian group. The
sum is given by the orthogonal sum

[(A, λ, q)] + [A′, λ′, q′] := [A⊕A′, λ⊥λ′, q⊥q′] .

The neutral element is given by the hyperbolic form H. One has to prove
that one has an inverse for [(A, λ, q)].

Lemma 12.2. If (A, λ, q) is an unimodular hermitian quadratic form, then

(A, λ, q)⊥(A,−λ,−q)

is isomorphic to Hk, where k is the rank of the free module A.

The proof is a consequence of the following useful algebraic result, which is
a generalization of the argument for R = Z (G trivial):

Lemma 12.3. Let (A, λ, q) be an unimodular hermitian quadratic form of rank 2k.
If there is a direct free summand B ⊆ A of rank k such that

λ|B×B = 0

q|B = 0,

then (A, λ, q) is isomorphic to Hk.

Proof. We choose a basis x1, . . . , xk of B. Since λ|B×B=0 and λ is unimodular,
there exist y1, . . . , yk ∈ A such that

λ(xi, yj) = δij .

If λ(yi, yj) = 0 and q(yi) = 0 for all i and j, the Lemma follows since then we find
an isomorphism mapping ei, fi in the i-th summand of Hk to xi, yi.
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If λ(yi, yj) = 0 and q(yi) = 0 is not fulfilled, we proceed inductively. We
first consider the case k = 1, so that we have a basis x, y of A with λ(x, x) = 0
and q(x) = 0 and λ(x, y) = 1. Now, we replace y by y′ := y − ax where a is a
representative of q(y). Then again λ(x, y′) = 1 and λ(y′, y′) = λ(y− ax, y− ax) =
λ(y, y)− (a+a) = 0, since a+a = λ(y, y). And q(y′) = q(y−ax) = q(y)− q(ax)−
λ(y, ax) = q(y)− a = [a− a] = 0.

Now the proof follows inductively by considering A′ := 〈x, y′〉⊥ and noting
that x2, . . . , xk is contained in A′. Thus, by induction hypothesis, we can find in A′,
which has rank 2k−2 elements y2, . . . , yk such that our conditions are fulfilled. �

Now we are ready to give the proof of Lemma 12.2.

Proof. We apply the last lemma by choosing an arbitrary basis a1, . . . , ak of A
and considering in A⊕A the diagonal elements

xi := (ai, ai).

Since λ(xi, xj) = 0 and q(xi) = 0, the proof follows. �

Thus Lh4m(G) is an abelian group.
The computation of these groups is very hard and unknown in general. Al-

ready the case where G is trivial is very interesting and has many geometric
applications. Since the signature of a hyperbolic form is zero, the signature gives
a homomorphism

sign: Lh4m(1)→ Z.

This is an injective homomorphism and non-trivial (see Exercise 12.1). It is not
surjective since one can rather easily show that the elements in the image are
divisible by 2 (see Exercise 12.2). With more effort one can determine the image
and show that it consists of all numbers divisible by 8 [170]. Thus we obtain the
computation of Lh4m(1):

Theorem 12.4. The signature gives an isomorphism

sign: Lh4m(1)→ 8Z

.

12.4 The L-Groups in Other Dimensions

The groups Lh4m+2(G) are very similar to Lh4m(G). The only difference is that
instead of hermitian forms, we use skew-hermitian forms. This means that in the
definition of unimodular hermitian bilinear forms we replace condition ii) by

λ(y, x) = −λ, (x, y)
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and for the quadratic refinement we consider

q : A→ R{a+a}

and replace condition iv) by

λ(x, x) = q(x) = q(x)− q(x).

The hyperbolic form is now given by R ⊕ R, λ(e, f) = 1, λ(f, e) = −1,
λ(e, e) = λ(f, f) = 0, and q(e) = q(f) = 0. With this we define Lh4m+2(G) as the
set of stable isomorphism classes of skew-hermitian unimodular quadratic forms
over Z [G]. Again this becomes a group via orthogonal sum.

Also here the computation is hard. For the trivial group one can rather easily
show that the L-group Lh4m+2(1) s non-trivial (see Exercise 12.3). More generally
one has an invariant which is closely related to the signature, the Arf invariant
[170]. This is a homomorphism

Arf : Lh4m+2(1)→ Z/2.

One can show

Theorem 12.5. The Arf invariant gives an isomorphism

Arf : Lh4m+2(1)
∼=−→ Z/2.

The definition of the odd L-groups Lh2m+1(G) is more complicated but we
have already seen similar groups. Namely we have previously defined the K-groups
K0(R) and K1(R). One can consider Lh4m and Lh4m+2 as analogous to K0 in the
sense that instead of equivalence classes of modules, we consider equivalence classes
of modules with quadratic forms.

In analogy to K1(R) which by definition is the abelianization of GL(R), i.e.
GL(R)/ [GL(R), GL(R)] we consider the isometries of the hyperbolic form Hk

(with the hermitian form for defining Lh4m+1, and the skew hermitian forms for
defining Lh4m+3). We denote the group of isometries by U(Hk), where R = Z[G].
As for GL(R) we pass to the limit under the inclusions U(Hk) ⊆ U(Hk+1) ⊆ . . .
and denote this limit by U(R). The abelianization of U(R) is almost Lh4m+1(G),
we have to divide by an element of order 2, namely the isometry σ on H which
interchanges e and f . Thus we define

Lh4m+1(G) := U(Z [G])/〈[U(Z [G]), U(Z [G])] , σ〉.

Similarly, if we start with the skew-hermitian hyperbolic form H and replace
σ by the map which maps e to −f and f to e, we obtain the groups

Lh4m+3(G).

For a trivial group the odd dimensional L-groups are zero:
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Theorem 12.6. The groups Lh2k+1(0) are trivial.

Indirectly this follows from the algebraic input in the geometric arguments
in [129], for a purely algebraic proof see [248].

Although the following remark is completely obvious from the definition
of the L-groups, it is important in the geometric context: The L-groups are 4-
periodic, i.e.

Lhm+4(G) = Lhm(G).



Chapter 13

Surgery in the Middle
Dimension II (K.)

13.1 Equivariant Intersection Numbers

We recall that if (W, f, α) is a normal map to (X,E), where X is a connected
CW -complex with finite skeleta and E is a stable vector bundle, this normal map
is normally bordant to (W ′, f ′, α′) such that

i) f ′∗ : π1(W ′)
∼=→ π1(x)

ii) f ′∗ : Hj(W ′; Z[π1])→ Hj(X; Z[π1])

is an isomorphism for j <
[
m
2

]
and surjective for j =

[
m
2

]
, in other words, f ′ is a

[m/2]-equivalence. Here m = dim(W ), and we assume that m > 4.
We are mainly interested in the special case where W is a bordism between

two closed manifolds M0 and M1 and f : Mi → X are homotopy equivalences.
Then one can define an invariant

Θ(W, f, α) ∈ Lhm(π1(W ))

such that
Θ(W, f, α) = 0

if and only if (W, f, α) is bordant to (W ′, f ′, α′) such that W ′ is an h-cobordism
between M0 and M1. We explain the meaning of the letter h in the notation of
Lhm(π1(W )), it stresses that we investigate homotopy equivalences and h-cobordisms.
If we study simple homotopy equivalences and s-cobordisms there are correspond-
ing groups Lsm(π1(W )).

We firstly define (following Wall [248]) the invariant if m = 2k = 0 mod 4
(under some additional conditions) and indicate the definition in the other cases
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at the end of this chapter. We begin with a definition of intersection numbers
between elements in H2k(W ; Z[π1]). We actually do this only for elements which
are represented by a map

g : M → W̃ ,

where M is a closed oriented smooth manifold and g is a smooth map and W̃ is
the universal covering of W . Then if g′ : M ′ → W̃ is another such data, we can
consider the integral intersection number g∗([M ]) ◦ g′∗([M ′]) ∈ Z.

Now we enrich this information by using the operation of π1(W ) on W̃ by
deck transformations. Passing to the induced operation of π1(W ) on Hk(W̃ ), we
can consider for homology classes α and β the expression

λ(α, β) := Σg∈π1(W )(α ◦ g∗(β))β ∈ Z [π1(W )] ,

the equivariant intersection number.
More or less by construction of the intersection numbers it is clear that they

give a hermitian, if k is even, (skew-hermitian, if k is odd) bilinear form on the
Z[π1]-module Hk(W ; Z[π1]).

In general, Hk(W ; Z[π1]) is not a free Z [π1]-module, but the kernel

Kk(W, f)

of Hk(W ; Z[π1]) → Hk(X; Z[π1]) is stably free, if W fulfills the assumption that
∂W = M0 + M1 and f |Mi

is a homotopy equivalence, and f : W → X is a 2k-
equivalence (see Exercise 13.2).

13.2 Stably Free Modules

Here, stably free means that Kk(W, f) ⊕ Z [π1(W )]n is free for some n. The
argument uses Poincaré-Lefschetz duality for W̃ and the universal coefficient
theorem relating cohomology (with compact support) to homology. Namely, if
∂W = M0 +M1, then there is an isomorphism

Hi
c(W̃ , M̃1)

∼=→ H2k−i(W̃ , M̃0),

where Hi
c is cohomology with compact support. The universal coefficient theorem

relates Hi
c(W̃ , M̃1) to Hi(W̃ , M̃1) and Hi−1(W̃ , M̃1). We don’t want to go into

details. For us it is enough to note that if both homology groups are trivial, then
Hi
c(W̃ , M̃1) is zero.

Next we note that in our situation

Hj(W̃ , M̃i) = 0

for 0 ≤ j < k. The reason is that both Hj(W̃ ) and Hj(M̃1) are mapped isomor-
phically to Hj(X̃) by assumption and so

Hj(M̃i)
∼=→ Hj(W̃ )



13.3. The Quadratic Refinement 111

implying the statement by the long exact sequence of a pair.
Combining this with Lefschetz duality and the universal coefficient theorem,

we conclude that the only potentially non-trivial homology group of (W̃ , M̃1)
is Hk(W̃ , M̃1). But if all homology groups, except perhaps one, are trivial, this
homology group is a stably free Z [π1(W )]-module. This is an exercise, where one
plays with exact sequences and the definitions, and which we recommended to the
reader (see Exercise 13.1).

Finally, we note that the inclusion Hk(W̃ )→ Hk(W̃ , M̃1) induces an isomor-
phism

Kk(W, f)
∼=→ Hk(W̃ , M̃1).

The argument is given by diagram chasing in the diagram given by the exact
sequences of (X̃, W̃ ) and W̃ , M̃1), and, since this diagram has the shape of a
butterfly, it is called the butterfly Lemma.

To have Kk(W, f) stably free is not enough, we want it to be free. This
can easily be achieved by taking the connected sum of W with enough copies of
Sk × Sk and extending f to this connected sum by a map which is constant on

(Sk × Sk−
◦
D

2k

). There is an obvious bordism between W and W] Sk × Sk and
so we can assume that Kk(W, f) is a free Z [π1(W )]-module.

13.3 The Quadratic Refinement

To finish the construction of the even-dimensional surgery obstruction, we have to
define a quadratic refinement of

λ : Kk(W, f)×Kk(W, f)→ Z [π1(W )] ,

a map
q : Kk(W, f)→ Z [π1(W )] /∼,

a certain quotient of Z [π1(W )].
To simplify the presentation, we make further restrictions and assume that

dim(W ) = 0 mod 4 and π1(W ) has no element of order 2. These assumptions
simplify the definition of the quadratic refinement. The first assumption implies
that λ is a hermitian form. Using the second we will see that the quadratic refine-
ment is completely determined by λ. The reason is that, if R = Z [π1(W )], then
R/{a − a} = Σg2=1Zg ⊕ Σ{g,g−1}g2 6=1

Z, a torsion free abelian group (see Exer-
cise 13.2). But since q(2x) = 2q(x)2 = 4q(x) and q(x+ x) = q(x) + q(x) + λ(x, x),
we conclude that

2q(x) = λ(x, x) ∈ R/{a− a}
and so q is determined by λ. Moreover, we will show that the elements represented
by λ(x, x) in R/{a − a} for x in Kk(W, f) are all divisible by 2, and so we can
define

q(x) :=
1
2
λ(x, x).
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To see that the elements represented by λ(x, x) in R/{a−a} for x inKk(W, f)
are all divisible by 2 we first consider those components of λ(x, x) sitting in one of
the summands Zg⊕Z−1/g−g−1. They are represented by (x◦gx)g+(x◦g−1(x))g−1.
Since g is orientation preserving on W̃ , we have x ◦ g−1x = gx ◦ g(g−1x) =
gx ◦ x = x ◦ gx, since the form is hermitian, and so: (x ◦ gx)g+ (x ◦ g−1(x))g−1 =
(x ◦ (x))(g + g−1). But in Zg + Zg−1/g − g−1 we have

[
g − g−1

]
= 0 and so[

g + g−1
]

=
[
g + g−1

]
+
[
g − g−1

]
= 2 [g] .

Finally we have to show that the component of the summand in R/{a− a}
corresponding to 1, the neutral element in π1, is even. But this summand is just
given by the integral self intersection number

x ◦ x = 0 mod 2.

for x ∈ Kk(W, f) To see this we note that Hk+1(X̃, W̃ )→ Kk(W, f) is surjective
and, since f is a k-equivalence, the Hurewicz map πk+1(X̃, W̃ ) → Hk+1(X̃, W̃ )
is an isomorphism. Thus, all elements in Kk(W, f) are representable by maps
g : Sk → W̃ , which go to zero in πk(X).

We approximate g by an embedding and so we assume that g is an embedding
to W̃ . The self intersection number is equal to the Euler class of the normal bundle
of this embedding and so mod 2 it is given by the k-th Stiefel-Whitney class wk.
But since g∗(

[
Sk
]
) is zero in πk(X) and the normal bundle of W is the pullback

of a bundle on X, the restriction of the normal bundle of W̃ to the image of the
embedding is a trivial bundle. Since the tangent bundle of Sk is stably trivial, we
conclude that the stable normal bundle of the embedding in W̃ is trivial and so
wk = 0 implying that

x ◦ x = 0 mod 2.

Thus we define our quadratic refinement as

q(X) :=
[
λ(x, x)

2

]
∈ R/{a− a}.

To obtain an element in Lh2k(π1(W )), we have to show that the form λ on
Kk(W ) is unimodular. This follows from Lefschetz duality. Namely, one has a
pairing given by intersection numbers of relative homology classes

λ : Hk(W,M0; Z[π1])×Hk(W,M1; Z[π1]) → Z [π1]

defined completely analogously as the pairing on Kk(W̃ ). The Lefschetz duality
says that this pairing is unimodular. But we have shown already that the inclusions
Kk(W )→ Hk(W ; Z[π1]) and Hk(W ; Z[π1])→ Hk(W,Mi; Z[π1]) give isomorphism

ji : Kk(W )
∼=→ Hk(W,Mi; Z[π1])

and by definition of the intersection numbers we have

λ(x, y) = λ(j0(x), j1(y)).
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Thus
λ : Kk(W )×Kk(W )→ Z [π1(W )]

is unimodular.

13.4 The Surgery Obstruction

Now we have all the information needed to define the surgery obstructions if
dim(W ) = 0 mod 4 and if π1(W ) has no element of order 2. We summarize:

Suppose that f : W → X is as in the beginning of this chapter and ∂W =
M0 + M1 and f |Mi

: Mi → X is a homotopy equivalence. Then the surgery ob-
struction is represented by

(Kk(W ), λ, q),

where Kk(W ) = ker (Hk(W ; Z[π1])→ Hk(X; Z[π1])) and λ is the restriction of the
equivariant intersection form to Kk(W ). Here we assume that Kk(W ) is free. The
quadratic refinement is

q(x) =
λ(x, x)

2
∈ Z [π1(W )] /{a− a}.

In the following chapter we will show that if we change (W, f, α) in its bordism
class, the element represented by (Kk(W ), λ, q) in Lhm(π1(W )) will not be changed.
We call it

Θ(W, f, α) ∈ Lhm(π1(W )),

the surgery obstruction.
A few words about the definition of the surgery obstruction in the other

cases. If the dimension of W is 4k + 2, we proceed as above, but even under the
assumptions above the quadratic refinement is not determined by λ. This is also
the case for dimension W = 4k, if the assumptions above are not fulfilled. In
both cases one defines the quadratic refinement geometrically in terms of the self
intersection points of an immersed sphere with trivial normal bundle. This will be
indicated later (see Chapter 14), for details we refer to [248].

In the remaining cases, where the dimension of W is 2k + 1 one chooses a
set of generators of Kk(W, f) and represents them by disjoint embeddings ϕi :
Sk ×Dk+1 → W . We remove the interiors of these embeddings to obtain T . The
boundary of T consists of M0 + M1 and the disjoint union S of ϕi(Sk × Sk).
Now we pass to the universal covering of T and note that the homology of S̃, the
restriction of the universal covering to S, with its intersection form is a hyperbolic
form. Now we consider the kernel of the map

Hk(S̃)→ Hk(T̃ , M̃0 + M̃1).

Poincaré-Lefschetz duality implies that this is a free direct summand of half rank,
on which the intersection form and quadratic refinement of the hyperbolic form
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vanish (see Exercise 13.3). Choose a basis x1, ...., xr of this kernel. The consid-
erations above in the proof of Lemma 12.3 imply that we can extend this by
elements y1, ..., yk to a basis of the hyperbolic forms, such that again the inter-
section form and the quadratic refinement vanish for all elements yi. Furthermore
λ(xi, yj) = δi,j . Let A be the isometry of the hyperbolic form mapping the stan-
dard base elements ei to xi and fj to yj . This gives an element of Lh2k+1(π1). One
shows that this is well defined and that this is the surgery obstruction.
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Surgery in the Middle
Dimension III (K.)

14.1 Stable Diffeomorphism Classification

As announced at the end of the last section, we have to show that the surgery
obstruction is a bordism invariant. Our proof of this result is different from the
standard approach. It is a consequence of an improvement of the following theorem
which is very useful in itself.

Theorem 14.1. (Stable classification of manifolds). Suppose that (W, f, α) and
(W ′, f ′, α′) are 2k-dimensional normal maps with equal boundaries such that f
and f ′ are k-equivalences (the maps are then called normal (k − 1)-smoothings
[133]). If k ≥ 2 and (W, f, α) and (W ′, f ′, α′) are bordant, then they are stably
diffeomorphic.

Here we call two 2k-dimensional manifolds W and W ′ with same boundary
∂W = ∂W ′ stably diffeomorphic if there are integers n and m such that

W]n(Sk × Sk) ∼= N ∼= W ′]m(Sk × Sk),

where the restriction of the diffeomorphism to the boundary is the identity.

Proof. Applying surgery below the middle dimension to a bordism (T, g, β) be-
tweenW andW ′ (rel. boundary), we can assume that g : T → X is a k-equivalence.
This implies that there is a bordism T between W and W ′ (rel. boundary) such
that the inclusions W → T and W ′ → T are isomorphisms on π1 and the relative
homotopy group πi(T,W ) and πi(T,W ′) are trivial for i < k. Then the proof of
the s-cobordism theorem implies that T has a handle decomposition starting from
W ×

[
0, 1

2

]
by attaching to W × { 1

2} only handles of index k firstly and then of
index k+ 1. If we stop after adding the handles of index k to W ×{ 1

2} we call the
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resulting new boundary component by N . The attaching maps of the k-handles
define homotopy classes in W ×{ 1

2} and this implies that the handles are trivially
attached and so

N ∼= W]n(Sk × Sk),

where n is the number of k-handles.
Now we look at the other half of the bordism T obtained from N ×

[
1
2

]
by

attaching handles of index k + 1 only. Turning this bordism from the top to the
bottom, we notice that it is obtained from W ′ ×

[
0, 1

2

]
by attaching handles of

index k to W ′ ×{ 1
2}. The new boundary component is N again, and so — by the

same considerations as before — diffeomorphic to W ′]m(Sk×Sk), where m is the
number of (k + 1)- handles (or k-handles seen from W ′). Thus

W]n(Sk × Sk) ∼= N ∼= W ′]m(Sk × Sk).

�

To see how useful this result is, we apply it to closed smooth 4-manifolds
M with w2(M̃) 6= 0. Let M and M ′ be such closed 4-manifolds with isomorphic
fundamental group π1. Let K be Bπ1. An isomorphism between π1(M) and π1

and π1(M ′) and π1 gives maps

f : M → K

and
f ′ : M ′ → K.

inducing an isomorphism on π1.
We also consider the normal Gauss map ν : M → BSO and ν′ : M ′ → BSO

and call X := K ×BSO. Over X we consider the bundle E given by the pullback
of the universal bundle over BSO. Then (f × ν)∗E = ν(M) and (f ′ × ν)∗E =
ν(M ′). Thus we can consider the normal smoothings (M,f, id) and (M ′, f ′, id). By
construction these are normal 1-smoothings. Here we use that since w2(M̃) 6= 0 the
map ν is surjective on π2. Our results say that M and M ′ are stably diffeomorphic
if these triples are normally bordant. By standard considerations one shows that
this is the case if and only if the signatures and the images of the fundamental
classes in H4(K) are equal:

f∗([M ]) = f ′∗([M
′]) ∈ H4(K) = H4(π).

Thus we have proved

Theorem 14.2 (Stable classification of 4-manifolds). Let M and M ′ be closed ori-
ented 4-manifolds with w2(M̃) 6= 0 and w2(M̃ ′) 6= 0. Then M and M ′ are stably
diffeomorphic if and only if their signatures and fundamental classes in H4(π)
agree:

sign(M) = sign(M ′)
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and
f∗([M ]) = f∗([M ′]) ∈ H4(Bπ1).

We note that this is a simple version of the very hard Theorem 3.1 by Don-
aldson and Freedman mentioned in section 3.

Returning to the stable classification, we note that there is an obvious bor-
dism between W and W]n(Sk×Sk), namely W × [0, 1] \ n(Dk+1×Sk), where \ is
the connected sum along the boundary, which in W × [0, 1] we take with respect
to the component M×{1}. We can extend the normal structure on W to this bor-
dism in an obvious way by firstly projecting W × [0, 1] to W ×{0} and composing
with f and extending to Dk+1 × Sk by the constant map. This gives the map f̂
to X. Secondly, since the normal bundle of Dk+1 × Sk is trivial, we can extend α
to α̂ on this bordism.

14.2 The Surgery Obstruction is a Bordism Invariant

From the proof of Theorem 14.1, which gives the existence of a diffeomorphism
between W]n(Sk×Sk) and W ′]m(Sk×Sk), it is not clear that this preserves the
normal structures. But one can improve Theorem 14.1 so that the diffeomorphism
preserves the normal structures [133] and using this information, it is obvious
that the surgery obstruction is a bordism invariant. For, by construction of the
normal structure on W]m(Sk × Sk) it is clear that the surgery construction on
W]m(Sk × Sk) is

Θ((W]m(Sk × Sk), f̂ , α̂) = Θ(W, f, α) +Hm,

the orthogonal sum of Θ(W, f, α) and the hyperbolic form.
Thus we obtain:

Theorem 14.3 (Bordism invariance of the surgery obstruction). The surgery ob-
struction in Lh2k(π1) is a bordism invariant.

The proof of the corresponding result for the obstructions in Lh2k+1 is com-
pletely different and we refer to [248].

14.3 The Main Result

Now we come to the main result of this chapter: if the surgery obstruction vanishes,
then W is bordant rel. boundary to an h-cobordism (if dim(W ) > 5). As before,
we will show this only if dim(W ) is 2k = 0 mod 4 (the proof in the case W = 2
mod 4 is almost the same but for odd dimensions the proof is different).

We begin with the proof and suppose that (W, f, α) is a normal map to
X equipped with a stable vector bundle E, where ∂W = M0 + M1 and f |Mi

is a homotopy equivalence. We further assume that f is a k-equivalence, where
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dim(W ) = 2k and k is even. Then Hj(W,Mi; Z[π1]) = 0 for j 6= k and we want to
replace W by W ′ such that these groups vanish, too, if Θ(W, f, α) = 0.

If Θ(W, f, α) = 0 then there exists an n such that Θ(W, f, α)+Hn is isomor-
phic to Hm. As discussed before, we replace (W, f, α) by (W] n(Sk × Sk), f̂ , α̂) in
such a way that Θ(W] n(Sk ×Sk)) = Θ(W ) +Hn. Using this we can assume that

Θ(W, f, α) ∼= Hm.

Now we consider the canonical basis e1, f1, e2, f2, . . . , em, fm of Hm with
λ(ei, ej) = λ(fi, fj) = 0, λ(ej , fj) = δi,j and q(ei) = q(fi) = 0.

We give the same name to the images under the map from Kk(W ) to Hk(W ).
The following Lemma is a fundamental result in topology.

Lemma 14.4. Let W be a 2k-dimensional manifold and k > 2 and α ∈ πk(W ) an
element such that α∗ν(W ) is trivial. Then α can be represented by an embedding
Sk ↪→ W with trivial normal bundle if and only if λ(α, α) ∈ Z [π1(W )] vanishes.
Here, we assume that k is even and π1(W ) has no elements of order 2.

Remark 14.5. If π1(W ) contains 2-torsion or if dim(W ) = 2 mod 4 the vanishing
of the quadratic refinement q(x) in the definition of the surgery obstruction is an
additional necessary and sufficient condition. The following indication of the proof
of Lemma 14.4 will indirectly give a definition of the quadratic refinement in these
cases.

Proof. Since even the 1-connected case is not completely obvious and the key idea
is visible in this case, we firstly assume π1(W ) = {1}. If dim(W ) > 4, the Whitney
embedding theorem implies that we can represent α by an embedding

f : Sk →W.

If dim(W ) = 4 this is not true, since the Whitney trick will not work. The reader
should be warned that the failure of the Whitney trick in dimension 4 is a highly
non-trivial result. For certain fundamental groups one can repair the Whitney
trick for topological embeddings by work of Freedman [94]. Approximately at the
same time Donaldson [69] proved that even for simply connected 4-manifolds the
Whitney trick does not work in the smooth category. Both results are very deep.

Returning to the situation above, in general the normal bundle of the em-
bedding f will be non-trivial even if the stable normal bundle is trivial (consider
for example the diagonal ∆Sk ⊆ Sk × Sk, whose normal bundle is isomorphic to
the tangent bundle of Sk and this is only trivial if k = 0, 1, 3, 7 [8]).

If k is even, a stably trivial bundle over Sk is trivial if and only if its Euler
class vanishes (see Exercise 14.1). But the Euler class is equal to the self intersec-
tion number of the 0-section [171], which by definition is λ(α, α), where α is the
homology class represented by Sk. This finishes the argument in the 1-connected
case.
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If W is not simply connected, the considerations above in the simply con-
nected case imply, that we can represent α by an embedding f : Sk ↪→ W̃ into the
universal covering W̃ with trivial normal bundle if λ(α, α) = 0 (actually, we only
need to know that the coefficient of 1 in λ(α, α) =

∑
g∈π1

α ◦ g∗(α) is zero). If

p : W̃ →W is the projection, then pf is an immersion. By general position (Sard’s
theorem), we can assume that pf has only double points in which two branches
intersect transversally. These double points are in some sense equivalent to the
other coefficients of λ(α, α). Namely, we fix a base point x0 on pf(Sk). Then we
choose two paths which join x0 with a double point y which reach the double
point on the two different branches of the immersed sphere and avoid all other
double points. If we compose these two paths starting with the first from x0 to p
using the second to return from p to x0, we obtain a closed path. We denote the
corresponding element in π1(W ) by gp. It is not difficult to show that

λ(α, α) =
∑
p

gp,

where the sum is taken over all double points p.
Thus, we see at least that if α can be represented by an embedded sphere

with trivial normal bundle in W , the self intersection number λ(α, α) vanishes.
We indicate the argument why the converse is true by considering the case of

a single double point p. Then, if λ(α, α) = 0, we have gp = 0 in π1(W ). Thus, the
curve gp is the boundary of a map D2 →W . Since dim(W ) > 4 (this is a harmless
looking condition but the only reason why surgery does not work in dimension
4, as we know from the results by Donaldson [69]), we can choose an embedding
D2 ↪→W whose boundary is homotopic to gp. Now, the Whitney trick comes into
play and gives an isotopy between the immersion and an embedding. �

14.4 Proof of the Main Theorem

Returning to the situation, where we have a normal map (W, f, α) with Θ(W, f, α) =
0, we have found a basis e1, f1, e2, f2, . . . , em, fm of Kk(W ) with λ(ei, ej) =
λ(fi, fj) = 0, λ(ei, fj) = δi,j and q(ei) = q(fi) = 0. According to Lemma 14.4
there is an embedding

g : Sk →W

representing e1 with trivial normal bundle. Thus we can extend g to an embedding

g : Sk ×Dk →W,

and we use this to do surgery on W :

W ′ := (W − g(Sk×
0

Dk)) ∪Dk+1 × Sk−1
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What is the effect on the homology groups of W̃? For this we consider

the following diagram of exact sequences of the pairs (W,W − g(Sk×
◦
Dk)) and

(W ′,W ′ − g(Sk×
0

Dk)). We abbreviate W − g(Sk×
0

D
k

)) by T :

Hj+1(W ′, T ; Z[π1])
↓

→ Hj+1(W,T ; Z[π1])→ Hj(T ; Z[π1])→ Hj(W ; Z[π1])→
↓

Hj(W ′; Z[π1])
↓

By excision

Hj(WT ; Z[π1]) ∼= Hj(Sk ×Dk, ∂; Z[π1]) =
{

0, if j 6= k
Z [π1(W )] , if j = k

and similarly

Hj(W,T ; Z[π1]) ∼=
{

0, for j 6= k + 1
Z [π1(W )] , for j = k + 1

Thus for j < k the homology groups of W̃ and W̃ ′ are isomorphic and for
j = k the diagram looks as follows:

Hk+1(W ′, T ; Z[π1])
↓

0→ Hk(T ; Z[π1])→ Hk(W ; Z[π1])→ Hk(W,T ; Z[π1])→
↓

Hk(W ′; Z[π1])
↓
0

The map
Hk(W ; Z[π1])→ Hk(W,T ; Z[π1]) ∼= Z [π1(x)]

has a geometric interpretation, it maps α ∈ Hk(W ; Z[π1]) to λ(α, e1) (see Ex-
ercise 14.2, this is a nice exercise which helps one to understand the geometric
meaning of intersection numbers). Since λ(f1, e1) = 1 and λ(ei, e1) = λ(fi, e1) = 0
for i > 1, the consequence is that the kernel of

Hk(W ; Z[π1])→ Hk(W,T ; Z[π1])

contains the submodule generated by e1 and ei and fi for i > 1. Moreover — more
of less by definition of the maps in the diagram — the generator of Hk(W,T ; Z[π1])
is given by a fibre

[
{x0} ×Dk+1, ∂

]
maps to e1 in Hk(W ; Z[π1]).
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If one compares the diagram with the homology groups of X̃, one concludes
that

Kk(W ′) ∼= Hm−1,

where Hm−1 geometrically corresponds to the elements e2, f2, e3, f3, . . . , em, fm in
Kk(W ).

Proceeding inductively, after a sequence of m surgeries we can replace W by
W ′ by where

Kk(W ′) = {0}.
From this it is easy to show that Hk(W ′,M0; Z[π1]) and Hk(W ′,M1; Z[π1]) are
zero and so W ′ is an h-cobordism.

Conversely, if W is an h-cobordism, then the group KK(W ) is trivial and
hence Θ(W, f, α) = 0. Thus, we have shown the main theorem of surgery in the
case dim(W ) = 0 mod 4 and π1(W ) without 2-torsion.

A similar argument works once we have defined Θ(W, f, α) in the general
case and this leads to an important theorem of surgery due to Wall [248]

Theorem 14.6 (The surgery obstruction). Let (W, f, α) be a normal map to a
CW -complex X with finite skeleta equipped with a stable vector bundle E. We
furthermore suppose that ∂W = M0 + M1 and f |Mi is a homotopy equivalence.
Then W is normally bordant rel. boundary to an h-cobordism W ′ if and only if
the surgery obstruction

Θ(W, f, α) ∈ Lhm(π1(W ))

vanishes. Here m = dim(W ) is assumed to be larger than 4.
If f is a simple homotopy equivalence, then we obtain an obstruction

Θ(W, f, α) ∈ Lsm(π1(W ))

which vanishes if and only if W is normally bordant to an s-cobordism.

This is a central result in Wall’s surgery theory. It raises the obvious question,
which elements in the L-groups can be realized as surgery obstructions. The answer
is: all of them , and there is a comparatively simple construction giving a proof.
The proof actually leads to a stronger result:

Theorem 14.7 (The surgery obstruction). Let M0 be a closed m-dimensional man-
ifold with fundamental group π1 and m ≥ 4. Then there is a map r, the realization
map from Lhm+1(π1) to the set of normal bordisms (W, f, α), which has the follow-
ing properties. If x ∈ Lhm+1(π1) and r(x) = (W, f, α), then:

i) The boundary of W is M0 +M1 for some closed manifold M1.
ii) The normal map goes to (M0, ν(M0)).
iii) f |M0 = id, and f |M1 is a homotopy equivalence.
iv) Θr(x) = x, i.e. the surgery obstruction of the normal bordism associated

to the image under r is the element itself.
There is a similar result for the groups Ls, where we replace in iii) a homotopy

equivalence by a simple homotopy equivalence.
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For the — as mentioned above — not so hard proof of this result we refer to
[248].

14.5 The Exact Surgery Sequence

We want to discuss some consequences of this theorem. We recall that in Chapter 9
we defined the set of homotopy smoothings Sh(M) of a closed manifold M . The
realization map r gives a map

Lhm+1(π1)→ Sh(M)

given by restricting f : W →M to M1. On the other hand we have a map

Sh(M)→
⊕
E

Ωm(M,E)/Aut(E)

where E is the isomorphism class of a stable vector bundle over M and Aut(E)
is the group of self isomorphism on E, which act on Ωm(M,E) in the obvi-
ous way. This map is given by firstly associating to a homotopy equivalence
f : N → M the bundle E := g∗(ν(N)), where g is a homotopy inverse of f
and the element (N, f, α) ∈ Ωm(M,E), where α : ν(N) → f∗(E) is an isomor-
phism given by identifying the two bundles via a homotopy between gf and id.
Since this isomorphism is not unique we have to divide by Aut(E). Then the map
Sh(M) →

⊕
E Ωm(M,E)/Aut(E) is given by the difference of this element and

(M, id, id).
The composition of the two maps

Lhm+1(π1)→ Sh(M)→
⊕
E

Ωm(M,E)/Aut(E)

is zero, since if x ∈ Lhm+1(π1) maps to r(x) = (W, f, α), then (W, f, α) is a zero
bordism of the element associated to x by the composition map.

In turn, if (N, f) ∈ Sh(M) maps to zero in
⊕

E Ωm(M,E)/Aut(E) one
can consider the surgery obstruction of a zero bordism to obtain an element x ∈
Lhm+1(π1) and it turns out that r(x) = (N, f). Thus the fibre over 0 of the map
Sh(M) →

⊕
E Ωm(M,E)/Aut(E) is the image of r. If this is the case one says

that the sequence

Lhm+1(π1)→ Sh(M)→
⊕
E

Ωm(M,E)/Aut(E)

is an exact sequence of sets. One can actually say more: The group Lhm+1(π1) acts
on Sh(M) and the orbit space injects into Ωm(M,E)/Aut(E).

The next obvious question is, what the image of the map

Sh(M)→
⊕
E

Ωm(M,E)/Aut(E)
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is. There is a simple restriction for elements in this image: if (N, f, α) is in the
image, the degree of f is 1. Thus we consider the subset⊕

E

Ω1
m(M,E) := {(N, f, α) ∈

⊕
E

Ωm(M,E) | degree(f) = 1}.

The group Aut(E) acts on Ω1
m(M,E) and we denote the orbit set by

N (M) :=
⊕
E

(Ω1
m(M,E)/Aut(E).

If (N, f, α) is in Ω1
m(M,E)/Aut(E), we can ask whether it is bordant to

a homotopy equivalence. By surgery below the middle dimension we can almost
achieve this and by a similar argument as in the situation where N = W has two
boundary components and the restriction of f to these boundary components are
homotopy equivalences, one associates an element Θ(N, f, α) to (N, f, α) ∈ Lhm(π1)
with the property that this element is zero if and only if (N, f) is bordant to a
homotopy equivalence. This leads to the exact surgery sequence [248]:

Theorem 14.8 (The Sullivan-Wall surgery exact sequence). Let M be a closed
connected manifold of dimension m > 4 with fundamental group π1. Then there is
an exact sequence of sets:

Lhm+1(π1)→ Sh(M)→ N (M)→ Lhm(π1).

Similarly, if we replace homotopy equivalences by simple homotopy equiva-
lences and Sh by Ss and Lh by Ls we obtain a corresponding exact sequence of
sets:

Lsm+1(π1)→ Ss(M)→ N (M)→ Lsm(π1).

As noted before the left part of the sequence can be replaced by a stronger the
statement, the group acts on the structure set and the orbit space injects into the
normal bordism classes N (M).

We note that one has the same result for the topological structure sets
ShTOP(M) and SsTOP(M). The only difference is that one has to replace the bor-
dism set N (M) by the corresponding set NTOP(M) of topological manifolds and
the stable vector bundle E by a stable topological vector bundle. We note that
one can equip the topological structure set with a group structure that the whole
sequence becomes an exact sequence of abelian groups. This is not known in the
smooth case. Moreover one can identify the topological structure set of a mani-
fold with the homotopy fiber of the surgery assembly map interpreted as maps of
spectra (see [200, Chapter 18]).
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14.6 Stable Classification of Certain 6-Manifolds

In this section we give the proof of Theorem 0.6 from Chapter 0. The proof is not
relevant for the Novikov Conjecture. But on the one hand it is a nice application
of surgery, a central tool in the study of the Novikov Conjecture, and on the other
hand Theorem 0.6 leads to an interesting application of the Novikov Conjecture
(Corollary 0.7).

Proof. We firstly determine the normal 2-type of N . The normal 2-type of a
smooth oriented manifold is a fibration π : B → BSO with the property that
the homotopy groups of the fibre vanish in dimension > 2 and that the normal
Gauss map ν : N → BSO admits a lift ν̄ : N → B, which is a 3-equivalence.

The normal 2-type depends on the behavior of the second Stiefel-Whitney
class. We begin with the case w2(N) = 0. Then we define B := T ×BSpin, where
T is the 2-torus. and BSpin is the classifying space of the spino group Spin, the
universal cover of SO. The fibration over BSO is simply the composition π0 := pp2,
where p : BSpin→ BSO is the fibration induced from the homomorphism Spin→
SO. If w2(N) = 0, then the normal Gauss map admits a lift ν̂ : N → BSpin and
we obtain our 3-equivalence ν̄ := f × ν̂ : N → B = T ×BSpin. Here f : N → T is
the classifying map of the universal covering, a map inducing an isomorphism on
the fundamental group.

If w2(N) 6= 0 we make a small modification. We choose an oriented vector
bundle E over T such that f∗w2(E) = w2(N). Then we define B = T × BSpin
as before but we obtain the fibration in a different way. Namely we consider the
classifying map g : T → BSO of E. Then we take the composition ⊕(g × ps) :
B → BSO ×BSO → BSO, where ⊕ : BSO ×BSO → BSO is the map given by
the Whitney sum. Finally we replace this map by a fibration [255] to obtain our
normal 2-type π : B → BSO. Once we have defined the fibration this way it is not
difficult to show that we can find a 3-equivalence ν̄ : N → B such that ν = πν̄.

Now we apply Theorem 14.1 and conclude that the stable diffeomorphism
type is determined by the bordism class of (N, ν̄). If w2(N) = 0 the corresponding
bordism group is ΩSpin6 (T ). Since the spin bordism groups are Z in dimension
4 detected by p1 and 0 in dimension 5 and 6, a simple computation with the
Mayer-Vietoris sequence implies that our bordism group is isomorphic to Z and
is detected by our invariant 〈x ∪ p1(N), [N ]〉 (see Exercise 14.3). With a little bit
more input one shows that the same result holds for the other bordism group,
where w2(N) 6= 0. �



Chapter 15

An Assembly Map (K.)

15.1 More on the Definition of the Assembly Map

In Chapter 9 we explained the relation between the Novikov Conjecture and
surgery and indicated (following [248], 17H) assembly maps (see 9.4)

AGm : hm(BG) → Lhm(G)⊗Z Q,

and (see 9.10)
ÂGm : ĥm(BG) → Lm(G)⊗Q

where hm(X) =
⊕

i∈Z Hm+4i(Xi; Q) and ĥm(X) =
⊕

i∈Z,i≥0Hm−4i(Xi; Q). We
give now more details of the construction of the map

A
G

m : Ωm(BG) → Lm(G)

introduced in 9.7 which was one of the key ingredient in the construction of AGm
and ÂGm.

Let M be a closed oriented manifold with fundamental group H. We further
want to suppose that M is connected. Later we want to generalize to the situation
where M is not connected, which is relevant if we want to compare the assembly
map of a disjoint union with the assembly maps of the individual manifolds. The
solution is very simple, if M is not connected we take the connected sum of the
components. We note that the disjoint union is bordant to the connected sum,
and that the assembly map will be a bordism invariant. This justifies considering
only connected manifolds.

Let K = {[x0, x1, x2, x3] ∈ CP3 | x4
0 + x4

1 + x4
2 + x4

3 = 0} be the Kummer

surface. Let Q be K with two disjoint open disks
◦
D4 deleted, so that ∂Q =

S3+S3 = N0+N1. The manifold Q stably parallelizable. We choose a trivialization
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of the stable normal bundle of Q. The identity maps Ni → S3 extend to a map
g : Q→ S3 (see Exercise 15.1). Now we consider

W := M ×Q

and
f : W →M × S3

which is the product of id : M →M with g. The trivialization of ν(Q) induces an
isomorphism

α : f∗ν(M × S3)
∼=→ ν(W ).

Thus
(W, f, α)

is a normal map to X := M × S3 equipped with the stable vector bundle E :=
ν(M × S3). Thus we can consider the surgery obstruction

Θ(W, f, α) ∈ Lhm+4(π1(M × S3)) = Lhm(H)

where H is the fundamental group of M .
A map h : M → BG is up to homotopy the same as a map

h : H → G,

and we define
A
G

m([M,h]) := h∗Θ(W, f, α).

Here h∗ is the map from Lhm(H)→ Lhm(G) obtained by taking the tensor product
with Z [G] considered as Z [H]-module via h.

The following result contains the basic properties of the invariant A
G

m([M,h]):

Theorem 15.1. i) The assembly map induces a homomorphism from Ωm(K(G, 1))
to Lhm(G).

ii) If f : N →M is a homotopy equivalence, then A
G

m([N,hf ]) = A
G

m([M,f ]).
iii) If we replace M by the product of M with a closed simply connected

manifold V , the invariant is zero unless the dimension of V is 4k, in which case
the invariant changes by multiplying with the signature of V .

Idea of proof: The detailed proof of these results is too long for the purpose
of the seminar.

The proof of i) is more or less standard and in spirit similar to the proof of
the bordism invariance of the ordinary signature.

Wall derives ii) from the following formula. Let f : M → N with normal
structure α in a bundle E over N be a normal map between closed oriented
manifolds. Then ([248], page 263)

16 · θ(M,f, α) = θ(WM , fM , αM )− θ(WN , fN , αN ), (15.2)
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where (WM , fM , αM ) and (WN , fN , αN ) are the normal maps for M and N con-
structed above. Now, if f : M → N is a homotopy equivalence we can find a
bundle E over N pulling back to the normal bundle of M and so we can add to f
normal data. Since the left side vanishes if f is a homotopy equivalence, we con-
clude the statement. Wall’s proof of this formula (15.2) is based on two lemmas:
a product formula for the surgery obstruction for a product with a closed mani-
fold (Lemma 1) and a composition formula for the surgery obstruction (Lemma
2) [248, page 264]. This composition formula is not correct. A counterexample is
given by a normal map f : T 2 → S2 realizing the non-trivial Arf invariant and a
normal map g : T 2 → T 2 whose underlying map is the identity and whose nor-
mal structure is chosen in such a way that the Arf invariant of the composition
f ◦ g : T 2 → S2 is zero. Wall’s formula would imply that the surgery obstruction
of f ◦ g is non-trivial since the surgery obstruction of g is zero because g is a
homotopy equivalence. For a proof of (15.2) we refer to Ranicki [197, Proposition
6.6], where he defines algebraic bordism groups to give a different approach to the
surgery obstructions.

The proof of iii) is again more or less standard and in spirit similar to the
proof of the multiplicativity of the ordinary signature. Again the best approach
is via Ranicki’s theory. We note that for the proof of the Novikov conjecture for
finitely generated free abelian groups in the next chapter we only use properties
i) and ii).

The properties i) and iii) imply that A
G

m induces homomorphisms

AGm : hm(BG) → Lhm(G)⊗Z Q,

and (see 9.10)

ÂGm : ĥm(BG) → Lm(G)⊗Q.

We summarize:

Theorem 15.3. The invariant A
G

m induces homomorphisms

AGm : hm(BG) → Lhm(G)⊗Z Q,

and (see 9.10)

ÂGm : ĥm(BG) → Lm(G)⊗Q

and if f : N →M is a homotopy equivalence, then

AGm(N,hf) = AGm(M,h)

and
ÂGm(N,hf) = ÂGm(M,h)
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15.2 The Surgery Version of the Novikov Conjecture

We have already mentioned in Section 9.2 the following result whose proof we
want to sketch (see also Lemma 23.2 and Remark 23.8

Proposition 15.4. (1) The Novikov Conjecture 1.2 for the group G is equivalent
to the rational injectivity of the assembly map

ÂGm : ĥm(BG) → Lm(G)⊗Q

introduced in 9.10.

(2) The Novikov Conjecture 1.2 for the group G follows from the rational injec-
tivity of the assembly map

AGm : hm(BG) → Lm(G)⊗Q

introduced in 9.4.

Proof. (1) We have already explained that the Novikov Conjecture 1.2 for the
group G is equivalent to the triviality of the map

signG : Sh(M) → ĥm(BG; Q)

defined in 9.3 for all closed manifolds M with G = π1(M). Let m be the dimension
of M . The composition of the map above with the map

ÂGm : ĥm(BG) → Lm(G)⊗Q.

can be identified with the composition

Sh(M)→ N (M)→ Lhm(π1(M))→ Lhm(π1(M))⊗Z Q

where the first two maps appear in the exact surgery sequence (see Theorem 14.8)
which implies that this composition is trivial. Hence ÂGm ◦ signG = 0. Thus the
injectivity of ÂGm implies the triviality of signG.

Using the exact surgery sequence and a further analysis of N (M) one can
show that the kernel of ÂGm is the image of signG. Hence the triviality of signG

implies the injectivity of ÂGm.

(2) follows from assertion (1) since AGm composed with the inclusion ĥm(BG) →
hm(BG) is ÂGm. �
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The Novikov Conjecture for Zn

(K.)

16.1 The Idea of the Proof

In this section we want to prove

Theorem 16.1. The Novikov Conjecture holds for Zn.

Because of Proposition 15.4 this result is equivalent to the next theorem

Theorem 16.2. The assembly

ÂGm : ĥm(BG)→ Lhm(G)⊗Z Q

defined in 9.10 is injective for G = Zn and every m ∈ Z.

The strategy of the proof is the following. We consider the composition of
the homomorphism given by the higher signature signG : Ωm(BG) → ĥm(BG)
and the assembly map ÂGm. Since, after taking the tensor product with Q, the
map signG is surjective, we are finished if we can show: for all [M, g] ∈ Ωm(BG)
with ÂGm ◦ signG([M,f ]) = 0 in Lhm(Zn) ⊗ Q we have signG(M,f) = 0. This
statement is open for general groups.

A different proof of Theorem 16.1 and Theorem 16.2 based on the Shaneson
splitting is outlined in Remark 21.7

16.2 Reduction to Mapping Tori

To give a first feeling for the geometric input of the assembly map, we prove a
reformulation of the Novikov Conjecture in terms of mapping tori. Let ϕ : N → N
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be an orientation preserving diffeomorphism. The mapping torus is the manifold
Nϕ := N × [0, 1]/∼ϕ, where ∼ϕ is the relation obtained by identifying (x, 1) with
(ϕ(x), 0). This is a smooth fibre bundle over S1 with fibre N . A fibre homotopy
equivalence to N × S1 is a homotopy equivalence h : Nϕ → N × S1 which com-
mutes with the projection to S1. In particular this is a homotopy equivalence and,
if f : N → BG is a map, the Novikov conjecture would imply that the higher sig-
natures of (Nϕ, fp1h) are those of (N × S1, fp1), which are 0 since (N ×D2, fp1)
is a zero bordism. Thus the Novikov Conjecture would imply:

signG(Nϕ, fp1h) = 0.

The Novikov Conjecture follows from this special case:

Theorem 16.3 (Reduction to mapping tori). If for all diffeomorphisms ϕ : N → N ,
fibre homotopy equivalences h : Nϕ → N × S1 and maps f : N → BG the higher
signatures signG(Nϕ, fp1h) vanishes, then the Novikov Conjecture holds for G.

Moreover it is enough to find for each generator of ĥm(BG) an element
[M,f ] ∈ Ωm(BG) in the preimage of this generator under the map Ωm(BG) →
ĥm(BG) induced by signG such that for any diffeomorphism ϕ : M×S3 →M×S3

and fibre homotopy equivalence h : (M×S3)ϕ →M×S3×S1 the higher signatures
signG((M × S3)ϕ, fp1h) vanishes.

Proof. To prove the Novikov Conjecture if the assumptions hold, we consider
(M,f) and suppose ÂGm◦signG([M,f ]) = 0. Since the Novikov Conjecture is trivial
for manifolds of dimension < 4 we assume that M := dim(M) ≥ 4. Then by a
sequence of surgeries we can assume that f is an isomorphism on the fundamental
groups. For this we consider the normal bordism class in BG × BSO given by f
and the normal Gauss map and apply Proposition 11.2 to make this normal map
a 2-equivalence. Since π1(BSO) is trivial, the statement follows.

Next we note that our definition of the assembly map in Lhm(G) actually gives
an element in the Wall group Lsm(G) (it is the surgery obstruction of a normal
map with boundary whose restriction to the boundary components is a simple
homotopy equivalence, even a homeomorphism). Since the map from Lsm(G) to
Lhm(G) is an isomorphism after taking the tensor product with Q (this follows
from the Rothenberg sequence of (21.3)), we can work with Ls instead of Lh.

By definition

ÂGm ◦ signG([M,f ]) = f∗(Θ(M ×Q, id×g, id×α)) ∈ Lsm+4(G)⊗Q.

After passing from (M,f) to a multiple we can assume that

f∗(Θ(M ×Q, id×g, id×α)) = 0 in Lsm(G)

or, since f induces an isomorphism on π1:

Θ(M ×Q, id×g, id×α) = 0 in Lsm(G).



16.3. The Proof for Rank 1 131

We conclude from Theorem 14.6 that (M × Q, id×g, id×α) is normally bordant
rel. boundary to an s-cobordism W between the two boundary components which
are both M × S3. The normal structure of this bordism rel. boundary between
M × Q and W is irrelevant and we only keep the map to M × S3. By the s-
cobordism theorem W is diffeomorphic to M × S3 × I, where we can choose the
diffeomorphism to be the identity on one end. The diffeomorphism on the other
end is denoted by ϕ. The map on the bordism gives a map from W to M × S3,
which is on both end the identity, or if we use the diffeomorphism to identify W
with M × S3 × I, a homotopy between id and ϕ.

Now we consider a useful bordism relation between cutting and pasting of
manifolds and the mapping torus. Let V1 and V2 be smooth manifolds with same
boundary P (with opposite orientations induced from V1 and V2 and ϕ and ψ
be orientation preserving diffeomorphisms on the boundary P . Then we obtain a
bordism between (V1∪ϕV2)+(V1∪ψV2) and the mapping torus of the composition
Pϕψ by considering V1 × [0, 1] + V2 × [0, 1] and identifying for x ∈ ∂V1 the points
(ϕ(x), t) for 0 ≤ t ≤ 1/3 with (x, t) and for 1/3 ≤ t ≤ 1 with (ψ(x), t). Applying
this to M ×Q ∪W = M ×Q ∪id +ϕM × S3 × [0, 1] we obtain a bordism between
M ×Q∪id +ϕM ×S3× [0, 1] +M ×Q∪id + idM ×S3× [0, 1] and (M ×S3)ϕ. The
homotopy between ϕ and id gives a fibre homotopy equivalence from (M × S3)ϕ
to M × S3 × S1 and composing this map with the projection to M and further
with the map from M to BG we obtain a map from the mapping torus (M ×S3)ϕ
to BG. By construction of the bordism between M ×Q∪id +ϕM ×S3× [0, 1] and
M × Q ∪id + id M × S3 × [0, 1] + (M × S3)ϕ the map extends to this bordism in
such a way that the restriction to M×Q∪id + idM×S3× [0, 1] is the projection to
M composed with the map to BG and similarly the map on the other boundary
component is the composition of our normal map with the map to BG. It is easy
to see (see Exercise 16.1) that the higher signatures of M×Q∪id + idM×S3× [0, 1]
equipped with the map above vanish if and only if the higher signatures of (M,f)
vanish (construct a bordism between this manifold and M ×K3 over BG). Since
M×Q∪W = M×Q∪id +ϕM×S3×[0, 1] is zero bordant (overBG) we conclude that
if the higher signatures of our mapping torus vanish, then the higher signatures
of M ×Q ∪id + id M × S3 × [0, 1] vanish, finishing the argument. �

16.3 The Proof for Rank 1

Now, we apply this result to prove the Novikov Conjecture for Z and give the
proof of Theorem 16.2 in the case n = 1.

Proof. The homology groups ĥm(S1) are zero except for m = 0, 1 mod 4 where
they are Z. The case m = 0 is trivial, since then the higher signature is equivalent
to the ordinary signature. If m = 1 mod 4 the higher signature is equivalent to
the signature of a regular value of the map M → S1 representing the cohomology
class for which we compute the higher signature.
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Now we apply Theorem 16.3 and consider a diffeomorphism on ϕ on S1 × P
for some simply connected manifold P together with a homotopy between ϕ and id.
After perhaps taking the product with CP4 (or any other manifold with signature
non-trivial) we can assume that dim(P ) > 4. The homotopy gives a fibre homotopy
equivalence from the mapping torus to S1 × S1 × P . We compose this map with
the projection to the second S1 factor (the factor of the fibre S1×P ). The higher
signature associated to a generator of H1(S1) is the signature of the preimage of a
regular value of this map. This map to S1 corresponds to a cohomology class in the
mapping torus, whose restriction to the fibre S1×P is a generator. If we consider
another class in H1 of the mapping torus which also restricts to a generator of
the fibre then the signature of the preimage of a regular value of a smooth map
representing this class is unchanged (see Exercise 16.2 and Exercise 16.3). Thus it
is enough to show that the signature of the fibre of some map from the mapping
torus to S1, whose restriction to the fibre is a generator of H1, is trivial.

After passing to a finite covering we will show that the diffeomorphism is
isotopic to one which preserves {x} × P , for some point x in S1. Then the fibre
of the map from the corresponding mapping torus to S1 is the mapping torus of
the restriction of this diffeomorphism to P . The signature of the total space of a
bundle over S1 is trivial, as one can see for example from the Novikov additivity
of the signature [10]. Since the higher signatures are multiplicative under finite
coverings we conclude that the higher signature of our original mapping torus
vanishes. This finishes the argument.

To prove the existence of the desired isotopy we note that up to isotopy we
can assume that ϕ fixes a base point x0. Now we pass from S1×P to the universal
covering R × P and consider the lifted diffeomorphism ϕ̂. Here we construct the
universal covering as usual as the space of homotopy classes rel. boundary of paths
α starting from the base point x0. Then the lifted diffeomorphism maps [α] to [ϕα].

We note that R×P is the union of (−∞, 0]×P and [0,∞)×P , two manifolds
with boundary 0×P and each of them has a connected end, in the first case−∞×P
and in the second case∞×P . Here we say that a manifold W has end L, where L
is a manifold, if there is an a closed subset E homeomorphic to [0, 1)×L. Now we
apply ϕ̂ to this situation and obtain a decomposition of R×P into ϕ̂((−∞, 0]×P )
and ϕ̂([0,∞)× P ). Since ϕ̂ is orientation preserving both ends are preserved (we
say that a homeomorphism f : W →W ′ preserves the ends L and L′, if there are
closed subsets E and E′ as in the definition of an end, which are mapped to each
other), implying that ϕ̂((−∞, 0]×P ) has end −∞×P and ϕ̂([0,∞)×P ) has end
∞× P .

Since 0×P is compact, there is an integer k such that ϕ̂(0×P ) is contained
in [−k, k]× P and ϕ̂(0× P ) decomposes [−k, k]× P into two compact manifolds
A− and A+ intersecting in ϕ̂(0×P ). The boundary of A− is −k×A+ϕ̂(0×P ) and
the boundary of A+ is k× P + ϕ̂(0× P ). The inclusion of A+ to ϕ̂([0,∞)× P ) is
a homotopy equivalence and A+ is an h-cobordism (see Exercise 16.4). (Similarly,
A− is also an h-cobordism.)

Using the h-cobordism theorem we choose a diffeomorphism ρ from ϕ̂(0×P )×
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[0, 1] to A1 whose restriction to ϕ̂(0×P ) is the identity. Then (x, t) 7→ ρ(ϕ̂(x), t) is
an isotopy between ϕ̂|0×P and a diffeomorphism to k× P . Now we pass to R× P
divided by 2kZ, i.e. we identify (t, x) with (t+ 2k, x). The resulting space is again
S1 × P , the 2k-fold covering over S1 × P . The isotopy above induces an isotopy
between the restriction to a fibre 0 × P of the diffeomorphism induced by ϕ̂ on
R/2kZ× P and an embedding preserving the fibre. We embed this isotopy into a
diffeotopy and compose it with our diffeomorphism induced by ϕ̂ on R/2kZ×P to
obtain the desired isotopy between the diffeomorphism induced by ϕ̂ on R/2kZ×P
and a diffeomorphism preserving a fibre.

This finishes our proof of the surgery version of the Novikov Conjecture for
Z, i.e. the proof of Theorem 16.2 in the case n = 1. �

This idea of reducing a problem about manifolds with fundamental group Z
to the simply connected case is well known in the literature and was applied by
Browder and Levine [35] to determine those manifolds with fundamental group
Z which are total spaces of fibre bundles over S1. This idea was generalized and
exploited many times. In particular one can try to do inductive arguments for
surgery problems, where the fundamental group G has a normal subgroup H with
G/H isomorphic to Z, assuming that one can solve problems over H. Shaneson
exploited this idea in his analysis of certain L-groups [221]. For a systematic early
treatment of these ideas see Wall’s book [248, chapter 12B]. In the following we
extend our proof for Z to Zn using inductive an argument.

16.4 The Generalization to Higher Rank

Finally we indicate the proof of Theorem 16.2 for arbitrary n. The idea is to work
inductively. If f is a diffeomorphism on Tn×P with P a 1-connected manifold, one
can isotope it so that it preserves Tn−1×P . The argument is more or less the same
as for n = 1. One considers the induced diffeomorphism on R × Tn−1 × P . The
image of {0}×Tn−1×P is contained in [−k, k]×Tn−1×P and decomposes it into
two parts W1 and W2. Then both Wi are again h-cobordisms (see Exercise 16.4)
and so, since the Whitehead group vanishes, they are products. As in the case
n = 1 this leads to the desired isotopy. The rest of the argument is as in the case
n = 1.

Acknowledgment: During the seminar I gave a proof of the Novikov Conjec-
ture for finitely generated free abelian groups, which I myself found too simple.
Some of the participants found a gap in my argument. What can be saved is
explained in this chapter. I would like to thank the participants, in particular
Diarmuid Crowley, for discussing my argument so carefully and explaining the
gap.
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Chapter 17

Poincaré Duality and Algebraic
L-Groups (L. and Varisco)

In this chapter we explain the notion of Poincaré duality geometrically and alge-
braically, and we discuss how a chain complex version of bordism yields a definition
of symmetric and quadratic algebraic L-groups for rings with involutions.

17.1 Poincaré duality

In this section we introduce the fundamental definitions of Poincaré spaces and
Poincaré duality.

First we need to recall some algebraic facts. A ring with involution is an
associative ring with unit R together with an involution : R→ R, r 7→ r, i.e., a
map satisfying r = r, r + s = r + s, rs = s r, and 1 = 1 for all r, s ∈ R. For us
the main example will be the group ring AG for a commutative associative ring
with unit A and a group G equipped with a homomorphism w : G → {±1}. The
so-called w-twisted involution takes

∑
g∈G ag ·g to

∑
g∈G w(g) ·ag ·g−1. Now let M

be a left R-module. Then M∗ := homR(M,R) carries a canonical right R-module
structure given by (fr)(m) = f(m) · r for a homomorphism of left R-modules
f : M → R and m ∈M . The involution allows us to turn every right module into
a left module and viceversa; in particular we can view M∗ = homR(M,R) as a
left R-module, namely define rf for r ∈ R and f ∈ M∗ by (rf)(m) := f(m) · r
for all m ∈ M . There is a natural homomorphism of left R-modules M → M∗∗,
which sends m ∈ M to the homomorphism M∗ → R, f 7→ f(m). If M is finitely
generated projective, then so is M∗, and M → M∗∗ is an isomorphism. Given a
chain complex of left R-modules C∗ and an integer n ∈ Z, we define its n-th dual
chain complex Cn−∗ to be the chain complex of left R-modules whose p-th chain

135
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module is homR(Cn−p, R) and whose p-th differential is given by

(−1)n−p(dn−p+1)∗ : (Cn−∗)p = (Cn−p)∗ → (Cn−∗)p−1 = (Cn−p+1)∗.

Then Cn−∗ = ΣnC−∗, where C−∗ stands for C0−∗, and the n-suspension Σn of
a chain complex B∗ is defined as the chain complex (ΣnB∗)p = Bp−n, dΣB =
(−1)ndB . Recall also that for two R-chain complexes C∗ and D∗ one can define a
chain complex of abelian groups homR(C∗, D∗) whose p-th chain group is

homR(C∗, D∗)p :=
∏
k∈Z

homR(Ck−p, Dk)

and whose p-th differential sends f ∈ homR(Ck−p, Dk) to dDf − (−1)pfdC ∈
homR(C∗, D∗)p−1, where dC and dD denote the differentials of C and D respec-
tively. Observe that the group of 0-cycles of homR(C∗, D∗) is precisely the group
of R-chain maps from C to D and that the 0-boundaries correspond to chain ho-
motopies, and in general Hn(homR(C∗, D∗)) is the group [ΣnC∗, D∗]R of R-chain
homotopy classes of R-chain maps from ΣnC to D.

Now consider a connected finite CW -complex X with fundamental group π
and a group homomorphism w : π → {±1}. Equip the integral group ring Zπ
with the w-twisted involution. Denote by C∗(X̃) the cellular Zπ-chain complex
of the universal covering of X. Recall that this is a free Zπ-chain complex, and
that the cellular structure on X determines a cellular Zπ-basis on it such that
each basis element corresponds to a cell in X. This basis is not unique but its
equivalence class depends only on the CW -structure of X (see Section 8.2). The
product X̃ × X̃ equipped with the diagonal π-action is again a π-CW -complex.
The diagonal map D : X̃ → X̃ × X̃ sending x̃ to (x̃, x̃) is π-equivariant but not
cellular. By the equivariant cellular approximation Theorem (see for instance [152,
Theorem 2.1 on page 32]) there is up to cellular π-homotopy precisely one cellular
π-map D : X̃ → X̃ × X̃ which is π-homotopic to D. It induces a Zπ-chain map
unique up to Zπ-chain homotopy

C∗(D) : C∗(X̃)→ C∗(X̃ × X̃). (17.1)

There is a natural isomorphism of based free Zπ-chain complexes

i∗ : C∗(X̃)⊗Z C∗(X̃)
∼=−→ C∗(X̃ × X̃). (17.2)

Denote by Zw the Zπ-module whose underlying abelian group is Z and on which
g ∈ G acts by w(g) · id. Given two chain complexes C∗ and D∗ of projective
Zπ-modules we obtain a natural Z-chain map unique up to Z-chain homotopy

s : Zw ⊗Zπ (C∗ ⊗Z D∗)→ homZπ(C−∗, D∗) (17.3)

by sending 1⊗ x⊗ y ∈ Z⊗ Cp ⊗Dq to

s(1⊗ x⊗ y) : homZπ(Cp,Zπ)→ Dq, (ϕ : Cp → Zπ) 7→ ϕ(x) · y.



17.1. Poincaré duality 137

The composite of the chain map (17.3) for C∗ = D∗ = C∗(X̃), the inverse of the
chain map (17.2) and the chain map (17.1) yields a Z-chain map

Zw ⊗Zπ C∗(X̃)→ homZπ(C−∗(X̃), C∗(X̃)).

Recall that the n-th homology of homZπ(C−∗(X̃), C∗(X̃)) is the abelian group
[Cn−∗(X̃), C∗(X̃)]Zπ of Zπ-chain homotopy classes of Zπ-chain maps from Cn−∗(X̃)
to C∗(X̃). Define Hn(X; Zw) := Hn(Zw ⊗Zπ C∗(X̃)). Taking the n-th homology
group yields an homomorphism of abelian groups

∩ : Hn(X; Zw)→ [Cn−∗(X̃), C∗(X̃)]Zπ (17.4)

which sends a class x ∈ Hn(X; Zw) = Hn(Zw ⊗Zπ C∗(X̃)) to the Zπ-chain homo-
topy class of a Zπ-chain map denoted by ? ∩ x : Cn−∗(X̃)→ C∗(X̃).

Definition 17.5 (Poincaré complex). A connected finite n-dimensional Poincaré
complex is a connected finite CW -complex X of dimension n together with a group
homomorphism w = w1(X) : π1(X) → {±1} called orientation homomorphism
and an element [X] ∈ Hn(X; Zw) called fundamental class such that the Zπ-chain
map ? ∩ [X] : Cn−∗(X̃) → C∗(X̃) is a Zπ-chain homotopy equivalence. We will
call it the Poincaré Zπ-chain homotopy equivalence.

Obviously there are two possible choices for [X], since it has to be a generator
of the infinite cyclic group Hn(X,Zw) ∼= H0(X; Z) ∼= Z. A choice of [X] will be
part of the structure of a Poincaré complex.

Remark 17.6 (Uniqueness of the orientation homomorphism). The orientation
homomorphism w : π1(X)→ {±1} is uniquely determined by the homotopy type
of X, as can be seen using the following argument. Denote by Cn−∗(X̃)untw the
n-dual Zπ-chain complex of C∗(X̃) defined using the untwisted involution on Zπ.
The Zπ-module given by its n-th homology Hn(Cn−∗(X̃)untw) depends only on
the homotopy type of X. If X carries the structure of a Poincaré complex with
respect to w : π1(X) → {±1}, then the Poincaré Zπ-chain homotopy equivalence
induces a Zπ-isomorphism Hn(Cn−∗(X̃)untw) ∼= Zw. Thus we rediscover w from
Hn(Cn−∗(X̃)untw) since the Zπ-isomorphism type of Zw determines w.

Remark 17.7 (Poincaré duality on (co)homology with coefficients). Suppose that
X is a Poincaré complex with respect to the trivial orientation homomorphism.
Definition 17.5 implies that Poincaré duality holds for any G-covering X → X
and for all possible coefficient systems. In particular we get a Z-chain homotopy
equivalence

Z⊗Zπ (? ∩ [X]) : Z⊗Zπ C
n−∗(X̃) = Cn−∗(X) → Z⊗Zπ C∗(X̃) = C∗(X),

which induces for any commutative ring R an R-isomorphism on (co)homology
with R-coefficients

? ∩ [X] : Hn−∗(X;R)
∼=−→ H∗(X;R). (17.8)
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Definition 17.9 (Simple Poincaré complex). A connected finite n-dimensional Poin-
caré complex X is called simple if the Whitehead torsion (see (6.6)) of the Zπ-
chain homotopy equivalence of finite based free Zπ-chain complexes

? ∩ [X] : Cn−∗(X̃)→ C∗(X̃)

vanishes.

Theorem 17.10 (Simple Poincaré structures on closed manifolds). Let M be a con-
nected closed n-dimensional manifold. Then M carries the structure of a connected
finite simple n-dimensional Poincaré complex.

Proof. For a proof we refer for instance to [248, Theorem 2.1 on page 23]. �

Remark 17.11 (Poincaré duality as obstruction). Theorem 17.10 yields the first
obstruction for a topological space X to be homotopy equivalent to a connected
closed n-dimensional manifold. Namely, X must be homotopy equivalent to a
connected finite simple n-dimensional Poincaré complex.

Remark 17.12 (Dual cell decomposition). Here is an explanation of the proof of
Theorem 17.10 in terms of dual cell decompositions.

Any closed manifold admits a smooth triangulation h : K →M , i.e., a finite
simplicial complexK together with a homeomorphism h : K →M which restricted
to any simplex is a smooth C∞-embedding. In particular M is homeomorphic
to a finite CW -complex. Any two such smooth triangulations admit a common
subdivision. Fix such a triangulation K. Denote by K ′ its barycentric subdivision.
The vertices of K ′ are the barycenters σ̂r of simplices σr in K. A p-simplex in K ′ is
given by a sequence σ̂i0 σ̂i1 . . . σ̂ip , where σij is a proper face of σij+1 . Now we define
the dual CW -complex K∗ as follows. It is not a simplicial complex but shares the
property of a simplicial complex that all attaching maps are embeddings. Each
p-simplex σ in K determines an (n − p)-dimensional cell σ∗ of K∗, which is the
union of all simplices in K ′ which begin with σ̂p. So K has as many p-simplices
as K∗ has (n− p)-cells. One calls K∗ the dual cell decomposition.

The cap product with the fundamental cycle, which is given by the sum
of the n-dimensional simplices, yields an isomorphism of Zπ-chain complexes
Cn−∗(K̃∗) → C∗(K̃). It preserves the cellular Zπ-bases and so in particular its
Whitehead torsion is trivial. Since K ′ is a common subdivision of K and K∗, there
are canonical Zπ-chain homotopy equivalences C∗(K̃ ′) → C∗(K̃) and C∗(K̃ ′) →
C∗(K̃∗) which have trivial Whitehead torsion. Thus we can write the Zπ-chain
map ? ∩ [M ] : Cn−∗(K̃ ′) → C∗(K̃ ′) as a composite of three simple Zπ-chain ho-
motopy equivalences. Hence it is a simple Zπ-chain homotopy equivalence.

Remark 17.13 (Dual handlebody decomposition). From a Morse theoretic point
of view Poincaré duality corresponds to the dual handlebody decomposition, which
we explain next.
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Suppose that the smooth compact manifold W is obtained from ∂0W × [0, 1]
by attaching one q-handle (ϕq), i.e., W = ∂0W × [0, 1] + (ϕq). Then we can
interchange the role of ∂0W and ∂1W and try to built W from ∂1W by handles.
It turns out that W can be written as

W = ∂1W × [0, 1] + (ψn−q); (17.14)

this can be seen as follows.
Let M be the manifold with boundary Sq−1 × Sn−1−q obtained from ∂0W

by removing the interior of ϕq(Sq−1 ×Dn−q). We get

W ∼= ∂0W × [0, 1] ∪Sq−1×Dn−q Dq ×Dn−q

= M × [0, 1]∪Sq−1×Sn−2−q×[0,1](
Sq−1 ×Dn−1−q × [0, 1] ∪Sq−1×Dn−q×{1} D

q ×Dn−q) .
Inside Sq−1 ×Dn−1−q × [0, 1] ∪Sq−1×Dn−q×{1} D

q ×Dn−q we have the following
submanifolds

X := Sq−1 × 1/2 ·Dn−1−q × [0, 1] ∪Sq−1×1/2·Dn−q×{1} D
q × 1/2 ·Dn−q,

Y := Sq−1 × 1/2 · Sn−1−q × [0, 1] ∪Sq−1×1/2·Sn−q×{1} D
q × 1/2 · Sn−q.

The pair (X,Y ) is diffeomorphic to (Dq ×Dn−q, Dq ×Sn−1−q), i.e., it is a handle
of index (n− q). Let N be obtained from W by removing the interior of X. Then
W is obtained from N by adding an (n−q)-handle, the so-called dual handle. One
easily checks that N is diffeomorphic to ∂1W × [0, 1] relative ∂1W × {1}. Thus
(17.14) follows.

Remark 17.15 (The Hodge-de Rham Theorem). From an analytic point of view
Poincaré duality can be explained as follows. Let M be a connected closed oriented
Riemannian manifold. Let (Ω∗(M), d∗) be the de Rham complex of smooth p-forms
on M . The p-th Laplacian is defined by ∆p = (dp)∗dp + dp−1(dp−1)∗ : Ωp(M) →
Ωp(M), where (dp)∗ is the adjoint of the p-th differential dp. The kernel of the p-
th Laplacian is the space Hp(M) of harmonic p-forms o M . The Hodge-de Rham
Theorem yields an isomorphism

Ap : Hp(M)
∼=−→ Hp(M ; R) (17.16)

from the space of harmonic p-forms to the singular cohomology of M with coef-
ficients in R. Let [M ]R ∈ Hn(M ; R) be the fundamental cohomology class with
R-coefficients, which is characterized by the property 〈[M ]R, i∗([M ])〉 = 1, where
〈 , 〉 is the Kronecker product and i∗ : Hn(M ; Z)→ Hn(M ; R) the change of rings
homomorphism. Then An sends the volume form dvol to the class 1

vol(M) · [M ]R.
The Hodge-star operator ∗ : Ωn−p(M)→ Ωp(M) induces an isomorphism

∗ : Hn−p(M)
∼=−→ Hp(M). (17.17)
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We obtain from (17.16) and (17.17) an isomorphism

Hn−p(M ; R)
∼=−→ Hp(M ; R).

This is the analytic version of Poincaré duality. It is equivalent to the claim that
the bilinear pairing

P p : Hp(M)⊗R Hn−p(M)→ R, (ω, η) 7→
∫
M

ω ∧ η (17.18)

is non-degenerate. Recall that for any commutative ring R with unit we have the
intersection pairing

Ip : Hp(M ;R)⊗R Hn−p(M ;R)→ R, (x, y) 7→ 〈x ∪ y, i∗[M ]〉, (17.19)

where i∗ is the change of coefficients map associated to Z→ R. The fact that the
intersection pairing is non-degenerate is for a field R equivalent to the bijectivity
of the homomorphism ? ∩ [X] : Hn−∗(X;R) → H∗(X;R) of (17.8). If we take
R = R, then the pairings (17.18) and (17.19) agree under the Hodge-de Rham
isomorphism (17.16).

We close this section by discussing without proofs the extension of the ma-
terial above to pairs. Consider a pair of finite CW -complexes (Y,X) with a group
homomorphism w(Y ) : π1(Y ) → {±1}. Let Ỹ be the universal covering of Y and
X̃ the induced π1(Y )-covering of X. The construction of (17.4) can be generalized
in order to get a group homomorphism

∩ : Hn+1

(
Y,X; Zw(Y )

)
→ [Cn+1−∗(Ỹ , X̃), C∗(Ỹ )]Z[π1(Y )]

Definition 17.20 (Poincaré pair). A finite (n + 1)-dimensional Poincaré pair is a
pair (Y,X) of finite CW -complexes, such that X is a finite n-dimensional Poincaré
complex, together with a group homomorphism w(Y ) : π1(Y ) → {±1} such that

w(X) factors as π1(X) −→ π1(Y )
w(Y )−−−→ {±1}, and with an element [Y,X] ∈

Hn+1

(
Y,X; Zw(Y )

)
such that

? ∩ [Y,X] : Cn+1−∗(Ỹ , X̃)→ C∗(Ỹ )

is a Z[π1(Y )]-chain homotopy equivalence and such that

∂[Y,X] = [X] ∈ Hn

(
X,Zw(X)

)
.

Theorem 17.21 (Poincaré pair structures on manifolds with boundary). Let W be
an (n+ 1)-dimensional manifold with boundary M . Then the pair (W,M) carries
the structure of a finite (n+ 1)-dimensional Poincaré pair.
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17.2 Algebraic L-groups

Now we want to illustrate how to define an algebraic version of Poincaré complexes
in the world of chain complexes of modules over a ring with involution. The idea,
due to Mishchenko [173] and especially to Ranicki [196], [197], is to mimic the
geometric topological phenomena discussed in the preceding Section 17.1. We have
seen that a connected closed n-dimensional manifold with fundamental group π
yields a Zπ-chain homotopy equivalence

ϕ0 =? ∩ [M ] : Cn−∗(M̃)→ C∗(M̃).

This should be the prototype of a non-degenerate symmetric bilinear form on
the chain complex C∗(M̃). So far we have not discussed the symmetry proper-
ties of this map, but for example we already know that if n = 4k the induced
map H2k(M ; R) ⊗R H2k(M ; R) → R of (17.19) is a non-degenerate symmet-
ric bilinear form. In general the Zπ-chain map ϕ0 =? ∩ [M ] itself is not sym-
metric, i.e., it is not equal to ϕ∗0, but it turns out that ϕ is coherently homo-
topic to ϕ∗, see (17.25) below. Morally, ϕ0 is not a fixed point for the involution
on homZπ(Cn−∗(M̃), C∗(M̃)), but only a homotopy fixed point. In order to make
these ideas precise we need to develop some algebraic language.

Let us first revisit the notions of symmetric and quadratic forms over mod-
ules. Assume for the rest of this chapter that R is a ring with involution. LetM be a
finitely generated free R-module. We can use the identificationM ∼= M∗∗ to regard
the abelian group homR(M∗,M) as a Z[Z/2]-module. Here Z/2 = 〈 T | T 2 = 1 〉
denotes the cyclic group of order 2, and for an R-homomorphism f : M →M∗ we
set Tf := f∗ : M∗∗ ∼= M →M∗. Then a symmetric bilinear form on M is nothing
but an element of

Q0(M) := homR(M∗,M)Z/2 = homZ[Z/2](Z,homR(M∗,M)),

the fixed points (algebraically known as invariants) of homR(M∗,M). A symmetric
bilinear form is non-degenerate if it is an isomorphism. Similarly, a quadratic form
on M is an element of

Q0(M) := homR(M∗,M)Z/2 = Z⊗Z[Z/2] homR(M∗,M),

the orbits (algebraically known as coinvariants) of homR(M∗,M). There is a sym-
metrization (or norm) homomorphism 1 + T : Q0(M)→ Q0(M), and a quadratic
form is non-degenerate if its symmetrization is an isomorphism. Notice that the
groups Q0 and Q0 are covariantly functorial and satisfy the following sum formulas

Q0(M ⊕N) ∼= Q0(M)⊕Q0(N)⊕ homR(M∗, N),
Q0(M ⊕N) ∼= Q0(M)⊕Q0(N)⊕ homR(M∗, N).

Now we want to generalize these definitions to chain complexes of finitely generated
free R-modules, in such a way that the yet-to-be-defined “Q-groups” of symmet-
ric and quadratic forms on a chain complex satisfy homotopy invariance and sum
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formulas similar to the ones above. In order to achieve homotopy invariance when
we pass from modules to chain complexes, a natural idea is to consider homo-
topy fixed points (algebraically known as hypercohomology) and homotopy orbits
(hyperhomology) instead of ordinary fixed points (invariants) and orbits (coinvari-
ants). Recall that if X is a Z/2-space, then its homotopy fixed points are defined

as XhZ/2 := mapZ/2(EZ/2, X), where EZ/2 = B̃Z/2 is the free contractible Z/2-
space—whereas the fixed points XZ/2 can be identified with mapZ/2({•}, X), and
the Z/2-equivariant maps Z/2 → EZ/2 → {•} yield maps XZ/2 → XhZ/2 → X.
Similarly the homotopy orbits (also known as the Borel construction) of X are
defined as XhZ/2 := EZ/2 ×Z/2 X, and there are maps X → XhZ/2 → Z/2\X.
This discussion should motivate the following definitions.

Let W∗ be the standard free Z[Z/2]-resolution of the trivial Z[Z/2]-module Z.

W∗ : . . . // Z[Z/2]
1−T // Z[Z/2]

1+T // Z[Z/2]
1−T // Z[Z/2]

��
Z

Now let C∗ be a chain complex of finitely generated free R-modules. There is
a natural homomorphism of a R-chain complexes C∗ → (C−∗)−∗, which sends
m ∈ Cp to the homomorphism (Cp)∗ → R, f 7→ (−1)pf(m). Using this iden-
tification (C−∗)−∗ ∼= C∗ we can regard homR(C−∗, C∗) as a chain complex of
Z[Z/2]-modules. For any integer n ∈ Z define the so-called Q-groups as

Qn(C∗) := Hn(homZ[Z/2](W∗,homR(C−∗, C∗))),

Qn(C∗) := Hn(W∗ ⊗Z[Z/2] homR(C−∗, C∗)).

These groups should be seen as the groups of symmetric respectively quadratic
forms on the chain complex C∗. They are covariantly functorial in C∗.

Remark 17.22 (Homotopy invariance of the Q-groups). The fundamental property
of the Q-groups defined above is their homotopy invariance: If f : C∗ → C ′∗ is an
R-chain homotopy equivalence, then Qn(f) and Qn(f) are isomorphisms. For a
proof we refer to [196, Proposition 1.1.(i)].

Note that there are natural group homomorphisms

Qn(C∗)
1+T−−−→ Qn(C∗)

ev−→ [Cn−∗, C∗]R,

where ev is induced by the inclusion into W∗ of the Z[Z/2]-chain complex concen-
trated in degree zero defined by the module Z[Z/2] itself. Also note that if 2 is
invertible in R, i.e., if R is a Z

[
1
2

]
-algebra, then the so-called symmetrization ho-

momorphism 1 +T induces an isomorphism Qn(C∗) ∼= Qn(C∗), see Exercises 17.2
and 17.3.
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More explicitly, any element ϕ ∈ Qn(C∗) is represented by an n-chain in
homZ[Z/2](W∗,homR(Cn−∗, C∗)) (unique modulo boundaries), and such an n-chain
is given by a sequence of chains(

ϕs ∈ homR(Cn−∗, C∗)s =
∏
r∈Z

homR((Cn+s−r)∗, Cr)
)
s≥0

such that for all s ≥ 0 and all r ∈ Z

dCϕs − (−1)n+sϕsdC−∗ = (−1)n(ϕs−1 + (−1)sTϕs−1) : Cn+s−r−1 → Cr

(where ϕ−1 = 0). In particular this means that ϕ0 is a chain map (whose chain
homotopy class is nothing but ev(ϕ)), ϕ1 is a chain homotopy between ϕ0 and ϕ∗0,
and so on. . . . An analogous formula for Qn(C∗) is available, too.

Remark 17.23 (Sum formula for the Q-groups). There are direct sum decomposi-
tions of abelian groups

Qn(C ⊕D) ∼= Qn(C)⊕Qn(D)⊕ [Cn−∗, D∗]R,

Qn(C ⊕D) ∼= Qn(C)⊕Qn(D)⊕ [Cn−∗, D∗]R,

which are compatible with the natural symmetrization homomorphism 1 + T .
The homomorphism 1 + T : [Cn−∗, D∗]R → [Cn−∗, D∗]R is an isomorphism. Com-
pare [196, Proposition 1.4.(i)].

Definition 17.24 (Algebraic Poincaré complexes). Let R be a ring with involution
and n ∈ Z be any integer.

An n-dimensional symmetric algebraic Poincaré complex over R is a bounded
chain complex C∗ of finitely generated free R-modules together with an element
ϕ ∈ Qn(C∗) such that ev(ϕ) ∈ [Cn−∗, C∗]R is (the R-chain homotopy class of) an
R-chain homotopy equivalence.

An n-dimensional quadratic algebraic Poincaré complex over R is a bounded
chain complex C∗ of finitely generated free R-modules together with an element
ϕ ∈ Qn(C∗) such that ev((1+T )ϕ) ∈ [Cn−∗, C∗]R is (the R-chain homotopy class
of) an R-chain homotopy equivalence.

Notice that in this definition we do not require that the chain complex C∗
is n-dimensional, but only that it is bounded. This agrees with [200] but not
with [196], [197].

One could develop an analogous theory in the category of finitely gener-
ated projective R-modules, as well as a theory of simple algebraic Poincaré com-
plexes in the category of finitely generated free and based R-modules—see also
Remark 17.32 below.

Using the sum formula of Remark 17.23 above one can define the sum of two
n-dimensional symmetric algebraic Poincaré complexes (C,ϕ ∈ Qn(C)), (C ′, ϕ′ ∈
Qn(C ′)) as the n-dimensional symmetric algebraic Poincaré complex(

C ⊕ C ′, ϕ⊕ ϕ′ ∈ Qn(C)⊕Qn(C ′) ⊂ Qn(C ⊕ C ′)
)
.
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The inverse of (C,ϕ) is defined as (C,−ϕ). Analogously for quadratic algebraic
Poincaré complexes.

This definition is motivated by the following facts, that we state without
proofs. Using the theory of acyclic models it is possible to factorize the map (17.4)
as

Hn(X; Zw) −→ Qn(C∗(X̃)) ev−→ [Cn−∗(X̃), C∗(X̃)]Zπ, (17.25)

see [197, Section 1]. Then one has the following result:

Proposition 17.26. Let X be a connected finite n-dimensional Poincaré complex.
Then C∗(X̃) is an n-dimensional symmetric algebraic Poincaré complex over the
ring Z[π1(Y )], with the involution twisted by the orientation homomorphism of X.

Proof. For a proof we refer to [197, Proposition 2.1]. �

Now we want to sketch how to define pairs and cobordisms of algebraic
Poincaré complexes. Let f : C∗ → D∗ be an R-chain map of chain complexes of
finitely generated free R-modules. Consider the induced Z[Z/2]-chain map

homR(f−∗, f) : homR(C−∗, C∗)→ homR(D−∗, D∗)

and take its mapping cone C(homR(f−∗, f)). Define the relative Q-groups

Qn(f) := Hn(homZ[Z/2](W,C(homR(f−∗, f∗))),

Qn(f) := Hn(W ⊗Z[Z/2] C(homR(f−∗, f∗))).

One then gets a ladder of long exact sequences

. . . // Qn+1(f) ∂ // Qn(C∗) // Qn(D∗) // Qn(f) // . . .

. . . // Qn+1(f) ∂ //

1+T

OO

Qn(C∗) //

1+T

OO

Qn(D∗) //

1+T

OO

Qn(f) //

1+T

OO

. . .

see [196, Proposition 3.1]. Note that there is a natural group homomorphism

Qn+1(f) ev−→ [C(f)n+1−∗, D∗]R,

see Exercise 17.3.

Definition 17.27 (Algebraic Poincaré pair). An (n + 1)-dimensional symmetric
(quadratic) algebraic Poincaré pair over a ring with involution R is an R-chain
map f : C∗ → D∗ of bounded chain complex C∗, D∗ of finitely generated free
R-modules together with an element ψ ∈ Qn+1(f) (respectively, ψ ∈ Qn+1(f))
such that ev(ψ) ∈ [C(f)n+1−∗, D∗]R (respectively, ev((1 + T )ψ)) is (the R-chain
homotopy class of) an R-chain homotopy equivalence.
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Note that in this case C∗ together with ∂(ψ) is an n-dimensional algebraic
Poincaré complex, which is called the boundary of the pair.

Proposition 17.28. Let (Y,X) be a finite (n+ 1)-dimensional Poincaré pair. Then
C∗(X̃)→ C∗(Ỹ ) is an (n+1)-dimensional symmetric algebraic Poincaré pair over
the ring Z[π1(Y )], with the involution twisted by the orientation homomorphism
of Y .

Proof. For a proof we refer to [197, Proposition 6.2]. �

Definition 17.29 (Cobordism of algebraic Poincaré complexes). Two n-dimensional
symmetric algebraic Poincaré complexes (C,ϕ ∈ Qn(C)), (C ′, ϕ′ ∈ Qn(C ′)) over a
ring with involution R are cobordant if there exists an (n+1)-dimensional symmet-
ric algebraic Poincaré pair ((f, f ′) : C ⊕ C ′ → D,ψ ∈ Qn+1(f, f ′)) called cobor-
dism such that ∂(ψ) = ϕ⊕−ϕ′⊕0 ∈ Qn(C⊕C ′) ∼= Qn(C)⊕Qn(C ′)⊕[Cn−∗, C ′∗]R.

Cobordism of quadratic algebraic Poincaré complexes is defined completely
analogously.

Theorem 17.30 (Algebraic cobordism). Let R be a ring with involution and n ∈ Z
be any integer.

(1) Let (C,ϕ ∈ Qn(C)) and (C ′, ϕ′ ∈ Qn(C ′)) be n-dimensional symmetric
algebraic Poincaré complexes over a ring with involution R, and let f : C →
C ′ be an R-chain homotopy equivalence such that Qn(f)(ϕ) = ϕ′. Then
(C,ϕ) and (C ′, ϕ′) are cobordant.

(2) Cobordism is an equivalence relation on the class of n-dimensional symmetric
algebraic Poincaré complexes.

Analogous statements hold for quadratic algebraic Poincaré complexes.

Proof. See [196, Proposition 3.2]. �

Definition 17.31 (Algebraic L-groups). Let R be a ring with involution and n ∈ Z
be any integer.

The n-th symmetric algebraic L-group Lnh(R) of R is defined as the set of
cobordism classes of n-dimensional symmetric algebraic Poincaré complexes, with
addition and inverses given by the corresponding operations for symmetric alge-
braic Poincaré complexes.

The n-th quadratic algebraic L-group Lhn(R) of R is defined analogously
using n-dimensional quadratic algebraic Poincaré complexes.

Notice that the natural transformation 1 + T : Qn → Qn defines a group
homomorphism s : Lhn(R)→ Lnh(R), called symmetrization.

Remark 17.32 (Decorations in L-theory—Rothenberg sequences). The decora-
tion h in the notation Lnh(R), Lhn(R) stands for free, and refers to the fact that
we are working in the category of finitely generated free R-modules. Completely
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analogously one can define groups Lnp (R), Lpn(R) by working in the category of
finitely generated projective R-modules. Working with finitely generated free and
based R-modules and simple algebraic Poincaré complexes one can define groups
Lns (R), Lsn(R). All these groups are related by the long exact Rothenberg sequences
(see [196, Proposition 9.1])

. . .→ Lnh(R)→ Lnp (R)→ Ĥn(Z/2; K̂0(R))→ Ln−1
h (R)→ . . . ,

. . .→ Lns (R)→ Lnh(R)→ Ĥn(Z/2; K̂1(R))→ Ln−1
s (R)→ . . . ,

and analogously for quadratic algebraic L-theory—just replace the symmetric
groups with the quadratic ones in the sequences above. Here Ĥn(Z/2; K̂i(R)) de-
notes the Tate cohomology of Z/2 with coefficients in the Z[Z/2]-module K̂i(R).
Notice that the Tate cohomology groups are 2-periodic and that they are 2-torsion.
In particular one sees that after tensoring with Z

[
1
2

]
the algebraic L-groups cor-

responding to different decorations are all isomorphic.

Theorem 17.33 (Properties of the algebraic L-groups). Let R be a ring with in-
volution.

(1) The algebraic L-groups are 4-periodic:

Ln+4
h (R) ∼= Lnh(R) and Lhn+4(R) ∼= Lhn(R).

(2) If 2 is invertible in R, i.e., if R is a Z
[
1
2

]
-algebra, then the symmetrization

homomorphism is an isomorphism Lhn(R) ∼= Lnh(R).

(3) For any R the symmetrization homomorphism induces an isomorphism

Lhn(R)⊗Z Z
[
1
2

] ∼= Lnh(R)⊗Z Z
[
1
2

]
.

(4) For any n ≥ 0 the groups Lhn(ZG) of Definition 17.31 above are isomorphic
to the L-groups Lm(G) introduced in Sections 12.3 and 12.4.

Proof. The claims (4) and (3) are proved in [196, Propositions 5.1 and 5.2, and
Proposition 8.2 respectively], but using the “old” definition of L-theory, the one
that requires the underlying chain complex of an n-dimensional algebraic Poincaré
complex to be itself n-dimensional. See also [200, Examples 1.11 and 3.18], where
the definitions are the ones adopted here. With the latter definitions the 4-periodicity
of L-theory (1) is a very easy exercise, compare [200, Proposition 1.10] and Exer-
cise 17.4. Finally, (2) follows easily from Exercise 17.2. �

We conclude this chapter by putting together most of the things we have
seen in order to describe the very important construction known as symmetric
signature. Let X be a connected topological space with fundamental group π, and
let M be an oriented closed n-dimensional manifold equipped with a so-called
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reference map u : M → X. Then from Theorems 17.10 and 17.26 we get that
Zπ ⊗Zπ1(M) C∗(M̃) is an n-dimensional symmetric algebraic Poincaré complex
over Zπ. We call the class it represents in symmetric L-theory the symmetric
signature and denote it by

σ(M,u) ∈ Ln(ZG). (17.34)

Combining Theorems 17.21, 17.28 and 17.30(1) we obtain the following result.

Theorem 17.35 (Symmetric signature). Let X be a connected topological space
with fundamental group π. Then the symmetric signature defines for any n ≥ 0 a
group homomorphism

σ(X) : Ωn(X)→ Lnh(Zπ), [M,u] 7→ σ(M,u)

which is homotopy invariant in the following sense: Let [M,u], [M ′, u′] ∈ Ωn(X)
and suppose that there exists an oriented homotopy equivalence f : M →M ′ such
that u′f is homotopic to u; then σ(M,u) = σ(M ′, u′) ∈ Lnh(Zπ).

Remark 17.36 (The surgery obstruction and symmetric signatures). Consider a
normal map of closed oriented m-dimensional manifolds given by a map f : M →
N of degree one and a stable bundle isomorphism α : f∗E → νM . Let

Θ(f, α) ∈ Lhm(π1(N))

be its surgery obstruction. There is a canonical map

Lhm(π1(N))→ Lmh (π1(N))

which is an isomorphism after inverting 2. It sends the surgery obstruction to the
difference

σ(N, idN )− σ(M,f)

as proven in [197]. Notice that this difference is independent of the bundle map α,
whereas Θ(f, α) ∈ Lhm(π1(N)) does depend on α in general.
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Chapter 18

Spectra (L.)

In this section we give a brief and elementary introduction to spectra mentioning
examples such as K- and L-theory spectra. We will also introduce as illustration
for spectra the Thom spectrum of a stable vector bundle. The best motivation
for them is to consider in detail the bordism groups associated to stable vector
bundles. Therefore we give some extended version of the material which has already
appeared in Chapter 2.

To understand the remaining chapters is suffices to go through the basics of
Sections 18.1, 18.4, 18.5 and 18.6.

18.1 Basic Notions about Spectra

We will work in the category of compactly generated spaces (see [229], [255, I.4]).
So space means compactly generated space and all constructions like mapping
spaces and products are to be understood in this category. We will always assume
that the inclusion of the base point into a pointed space is a cofibration and that
maps between pointed spaces preserve the base point.

Working in the category of compactly generated spaces has several technical
advantages, for instance the exponential map

exp: map(X × Y,Z)
∼=−→ map(X,map(Y,Z)) (18.1)

is a natural homeomorphism for all spaces and the product of two CW -complexes
is always a CW -complex again, no additional assumptions like locally compact
are needed. A reader who is not familiar with this category may simply ignore this
technicality.

We define the category of spectra SPECTRA as follows. A spectrum E =
{(E(n), σ(n)) | n ∈ Z} is a sequence of pointed spaces {E(n) | n ∈ Z} together
with pointed maps (called structure maps) σ(n) : E(n)∧S1 → E(n+1). A map of
spectra (sometimes also called function in the literature) f : E→ E′ is a sequence

149
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of maps of pointed spaces f(n) : E(n) → E′(n) that are compatible with the
structure maps σ(n), i.e. we have f(n + 1) ◦ σ(n) = σ′(n) ◦ (f(n) ∧ idS1) for
all n. This should not be confused with the notion of map of spectra in the stable
homotopy category (see [3, III.2]). The homotopy groups of a spectrum are defined
as

πn(E) := colimk→∞ πn+k(E(k)),

where the maps in this system are given by the composition

πp+k(E(k))→ πp+k+1(E(k) ∧ S1)
σ(k)∗−−−→ πp+k+1(E(k + 1))

of the suspension homomorphism and the homomorphism induced by the structure
map. Notice that the homotopy groups πn(E) are abelian for n ∈ Z and can be
non-trivial also for negative n ∈ Z. If πn(E) = 0 for n ≤ −1, we call E connective,
otherwise it is called non-connective.

A weak equivalence of spectra is a map f : E → F inducing an isomorphism
on all homotopy groups.

If X = (X,x) and Y = (Y, y) are pointed spaces, define their wedge, or
sometimes also called one-point-union, to be the pointed space

X ∨ Y := X × {y} ∪ {x} × Y ⊆ X × Y

with the subspace topology and their smash product to be the pointed space

X ∧ Y := X × Y/X ∨ Y,

where in both cases we choose the obvious base point. The exponential map yields
in the category of pointed spaces a natural homeomorphism

map(X ∧ Y, Z)
∼=−→ map(X,map(Y, Z)). (18.2)

For a pointed space X let ΩX := map(S1, X) be its associated loop space. We get
from the exponential map above in the special case X = S1 a natural homeomor-
phism

map(S1 ∧X,Y )
∼=−→ map(X; ΩY ).

We call the image of a map S1∧X → Y under this bijection its adjointX → ΩY . A
spectrum E is called Ω-spectrum if the adjoint of each structure map σ(n) : E(n)→
ΩE(n+ 1) is a weak homotopy equivalence of spaces. We denote by Ω-SPECTRA

the corresponding full subcategory of SPECTRA.
Given a family of spectra {Ei | i ∈ I}, we define its product to be the

spectrum
∏
i∈I E whose n-th underlying space is

∏
i∈I E(n)i. The structure maps

are given by the product of the adjoints of individual structure maps taking into
account that Ω commutes with products.
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Lemma 18.3. Let {Ei | i ∈ I} be a family of Ω-spectra, where I is an arbitrary index
set. Then the canonical map induced by the various projections pri :

∏
i∈I Ei → Ei

πn

(∏
i∈I

Ei

)
∼=−→
∏
i∈I

πn(Ei)

is bijective for all n ∈ Z.

Lemma 18.3 does not hold without the assumption that each Ei is an Ω-
spectrum.

Example 18.4 (Suspension spectrum). LetX be a pointed space. Define its suspen-
sion spectrum Σ∞X to be the spectrum whose n-th space is the one-point-space
for n ≤ −1 and is the n-fold suspension Sn∧X = S1∧S1∧ . . .∧S1∧X for n ≥ 0.
The structure maps are given by the identity. The suspension spectrum is not an
Ω-spectrum.

The n-th homotopy group πn(Σ∞X) of the suspension spectrum is also called
the n-th stable homotopy group πsn(X) of the pointed space X.

As a special case we get the sphere spectrum S = Σ∞S0 whose n-th space is
Sn for n ≥ 0 and the one-point space for n ≤ 1.

Example 18.5 (Eilenberg-MacLane spectrum). Let G be an abelian group. There
is an in G natural construction of the so called associated Eilenberg-MacLane
spectrum HG. Its n-th space is a point for n ≤ 0 and an Eilenberg-MacLane space
of type (G,n) for n ≥ 1, i.e. a pointed space K(G,n) whose homotopy groups are
all trivial except in dimension n where it is isomorphic to G.

Example 18.6 (Topological K-theory spectrum). Let BU be the classifying space
of the unitary group U . Fix a base point in BU . Bott periodicity yields a pointed
homotopy equivalence

β : Z×BU → Ω2(Z×BU).

Define an Ω-spectrum Ktop by the sequence of spaces which is Z × BU in even
dimensions and Ω(Z×BU) in odd dimensions. The adjoints of the structure maps
are given by the identity on Ω(Z × BU) and by the homotopy equivalence β
above. It is called the topological K-theory spectrum. It satisfies π2n+1(Ktop) = 0
and π2n(Ktop) = Z for n ∈ Z.

18.2 Homotopy Pushouts and Homotopy Pullbacks for

spaces

In this section we give some basic properties of homotopy pushouts and homotopy
pullbacks of spaces. Given maps i1 : X0 → X1 and i2 : X0 → X2, the homotopy
pushout is the quotient space of X1 q X0 × [0, 1] q X2 obtained by identifying
(x0, 0) = i1(x0) and (x0, 1) = i2(x0) for all x0 ∈ X0. There are natural inclusions
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jk : Xk → hopushout for k = 1, 2 which are induced from the obvious inclusions
Xk → X1 qX0 × [0, 1]qX2. The diagram

X0
i1−−−−→ X1

i2

y yj1
X2 −−−−→

j2
hopushout

is not commutative, but there is an explicit homotopy h : X0× [0, 1]→ hopushout
from j1 ◦ i1 to j2 ◦ i2 which is the restriction of the canonical projection map
X1qX0×[0, 1]qX2 → hopushout toX0×[0, 1]. The maps j1 and j2 are cofibrations.
The diagram above together with the homotopy h has the following universal
property. For every space Z, every pair of maps f1 : X1 → Z, f2 : X2 → Z and
every homotopy g : X0 × [0, 1] → Z from f1 ◦ i1 to f2 ◦ j2 there is precisely one
map F : hopushout→ Z such that g = F ◦h and F ◦ jk = fk for k = 1, 2. There is
an obvious map from the homotopy pushout to the pushout of X1

i1←− X0
i2−→ X2

ϕ : hopushout→ pushout .

It is a homotopy equivalence if one of the maps i1 and i2 is a cofibration.

Remark 18.7 (Homotopy invariance of the homotopy pushout). The main ad-
vantage of the homotopy pushout in comparison with the pushout is the following
property called homotopy invariance. Consider the following commutative diagram

X1 ←−−−−
i1

X0 −−−−→
i2

X2

f2

y f0

y f2

y
Y1 ←−−−−

k1
Y0 −−−−→

k2
Y2

Let hopushout(fi) : hopushoutX → hopushoutY be the map induced between the
homotopy pushouts of the two rows. Let pushout(fi) : pushoutX → pushoutY
be the map induced between the pushouts of the two rows. Suppose that f1, f0
and f2 are homotopy equivalences or weak homotopy equivalences respectively.
Then hopushout(fi) is a homotopy equivalence or weak homotopy equivalence
respectively. The corresponding statement is false for pushout(fi).

Dually one can define homotopy pullbacks, namely, invert all arrows, replace
coproducts by products, replace subspaces by quotient spaces and replace −×[0, 1]
by map([0, 1],−). More precisely, given maps i1 : X1 → X0 and i2 : X2 → X0, the
homotopy pullback is the subspace of X1×map([0, 1], X0)×X2 consisting of triples
(x1, w, x2) satisfying i1(x1) = w(0) and i2(x2) = w(1). There are natural maps
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jk : hopullback→ Xk for k = 1, 2. The diagram

hopullback
j1−−−−→ X1

j2

y yi1
X2 −−−−→

i2
X0

is not commutative, but there is an explicit homotopy h : hopullback×[0, 1]→ X0

from i1 ◦ j1 to i2 ◦ j2. The maps j1 and j2 are fibrations. The diagram above
together with the homotopy h has the following universal property. For each space
Z, maps f1 : Z → X1, f2 : Z → X2 and homotopy g : Z × [0, 1]→ X0 from i1 ◦ f1
to i2◦f2 there is precisely one map F : Z → hopullback such that g = h◦F× id[0,1]

and jk ◦ F = fk for k = 1, 2. There is an obvious map from the pullback to the
homotopy pullback of X1

i1←− X0
i2−→ X2

ψ : pullback→ hopullback

It is a homotopy equivalence if one of the maps i1 and i2 is a fibration.

Remark 18.8 (Homotopy invariance of the homotopy pullbacks). Consider the
following commutative diagram

X1 −−−−→
i1

X0 ←−−−−
i2

X2

f1

y f0

y f2

y
Y1 −−−−→

k1
Y0 ←−−−−

k2
Y2

Let hopullback(fi) : hopullbackX → hopullbackY be the map induced between the
homotopy pullbacks of the two rows. Let pullback(fi) : pullbackX → pullbackY
be the map induced between the pullbacks of the two rows. Suppose that f1, f0
and f2 are homotopy equivalences or weak homotopy equivalences respectively.
Then hopullback(fi) is a homotopy equivalence or weak homotopy equivalence
respectively. The corresponding statement is false for pullback(fi).

Consider a commutative diagram of spaces

X0
i1−−−−→ X1

i2

y yj1
X2 −−−−→

j2
X

There are canonical maps

a : X0 → hopullback(X1
j1−→ X

j2←− X2);

b : hopushout(X1
i1←− X0

i2−→ X2) → X.
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We call the square homotopy cartesian if a is a weak equivalence and homotopy
cocartesian if b is a weak equivalence.

Theorem 18.9 (Excision Theorem of Blakers-Massey). Assume that the square

X0
i1−−−−→ X1

i2

y yj1
X2 −−−−→

2
X

is homotopy cocartesian and that i1 is k1-connected and i2 is k2-connected. Then
the map a : X0 → hopullback(X1

j1−→ X
j2←− X2) is at least (k1 +k2−1)-connected.

Proof. See for example [99, Section 2, in particular Theorem 2.3], [238, Satz 14.1
on page 178]. �

18.3 Homotopy Pushouts and Homotopy Pullbacks for

Spectra

Next we deal with spectra. Consider a commutative square DE of spectra

E0
i1−−−−→ E1

i2

y yj1

E2 −−−−→
j2

E

We denote by hopullback(E1
j1−→ E

j2←− E2) the levelwise homotopy pullback
spectrum and by hopushout(E1

i1←− E0
i2−→ E2) the levelwise homotopy pushout

spectrum, i.e. the k-th spaces are given by the homotopy pullback respectively
the homotopy pushout of the corresponding diagrams of pointed spaces. For the
structure maps use the fact that homotopy pullbacks commute with Ω and homo-
topy pushouts commute with S1 ∧ − up to natural homeomorphisms. There are
canonical maps of spectra

a : E0 → hopullback(E1
j1−→ E

j2←− E2),

b : hopushout(E1
i1←− E0

i1−→ E2) → E.

We call the square DE homotopy cartesian if a is a weak equivalence of spectra
and homotopy cocartesian if b is a weak equivalence.

Theorem 18.10 (Homotopy cartesian and homotopy cocartesian is the same for
spectra). A commutative square DE of spectra is homotopy cocartesian if and only
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if it is homotopy cartesian. In this case there is a long exact natural Mayer-Vietoris
sequence

. . .
∂n+1−−−→ πn(E0)

πn(i1)⊕πn(i2)−−−−−−−−−→ πn(E1)⊕ πn(E2)
πn(j1)−πn(j2)−−−−−−−−−→ πn(E) ∂n−→ πn−1(E0)

πn−1(i1)⊕πn−1(i2)−−−−−−−−−−−−→ . . .

Proof. This is a consequence of the Excision Theorem of Blakers-Massey 18.9.
The point is that taking the k-fold suspension raises the connectivity of i1 and
i2 appearing in the Excision Theorem of Blakers-Massey 18.9 by k, whence the
connectivity of the map a in the Excision Theorem of Blakers-Massey 18.9 is
raised by 2k.

We give the definition of the boundary map. There is a canonical map
cm : ΩE(m) → hopullback(E1

j1−→ E
j2←− E2)(m) for each m ∈ Z. They induce

maps

πn+1(cm) : πn+1(E(m))
∼=−→ πn(ΩE(m))→ πn

(
hopullback(E1

j1−→ E
j2←− E2)(m)

)
and thus homomorphisms

dn : πn+1(E)→ πn

(
hopullback(E1

j1−→ E
j2←− E2)

)
.

The map ∂n+1 is its composition with the inverse of the isomorphism

πn(a) : πn(E0)
∼=−→ πn

(
hopullback(E1

j1−→ E
j2←− E2)

)
.

More details can be found for instance in [161, Lemma 2.5]. �

18.4 (Co-)Homology Theories Associated to Spectra

Let E be a spectrum with structure maps σ(n) : S1∧E(n)→ E(n+1). It defines a
(generalized) homology theory H∗(−;E) for the category of CW -pairs as follows.

Given a pointed space X, define the smash product of X and E to be the
spectrum X ∧E whose n-th space is X ∧ E(n). The structure maps are given by

S1 ∧X ∧ E(n)
∼=−→ X ∧ S1 ∧ E(n)

idX ∧σ(n)−−−−−−→ X ∧ E(n+ 1).

Define the reduced mapping cone of a pointed space X = (X,x) by X× [0, 1]/X×
{0} ∪ {x}× [0, 1]. Given a space X, let X+ be the pointed space obtained from X
by adding a disjoint base point. Define for a pair (X,A) of CW -complexes

Hn(X,A;E) = πn
(
(X+ ∪A+ cone(A+)) ∧E

)
. (18.11)
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Lemma 18.12. We obtain a generalized homology theory H∗(−;E) indexed by Z on
the category of pairs of CW -complexes which satisfies the disjoint union axiom,
i.e. for each family of pairs of CW -complexes (Xi, Ai) for i ∈ I the map induced
by the various canonical inclusions

⊕
i∈I

Hn(Xi, Ai;E)
∼=−→ Hn

(∐
i∈I

(Xi, Ai);E

)

is bijective for all n ∈ Z.

Proof. We explain why we can associate a natural long exact Mayer-Vietoris se-
quence to a pushout

X0
i1−−−−→ X1

i2

y yj1
X2 −−−−→

j2
X

such that i0 is an inclusion of CW -complexes, i1 is cellular and X carries the
induced CW -structure. If we take the smash product with E, we obtain a com-
mutative square of spectra

X0 ∧E i1∧idE−−−−→ X1 ∧E

i2∧idE

y yj1∧idE

X2 ∧E −−−−→
j2∧idE

X ∧E

such that in each dimension n the underlying commutative of spaces is a pushout
with the top arrow a cofibration and hence a homotopy pushout of spaces. Hence
the commutative diagram of spectra above is a homotopy pushout and now we
can apply Lemma 18.10. �

Given a pointed space X, the mapping space spectrum map(X;E) has as
n-th space map(X;E(n)). The definition of the n-th structure map involves the
canonical map of pointed spaces (which is not a homeomorphism in general)

map(X,E(n)) ∧ S1 → map(X,E(n) ∧ S1),

which assigns to ϕ∧ z the map from X to E(n)∧S1 sending x ∈ X to ϕ(x)∧ z ∈
E(n) ∧ S1.

Define for a pair (X,A) of CW -complexes and an Ω-spectrum E

Hn(X,A;E) = πn
(
map

(
X+ ∪A+ cone(A+),E

))
. (18.13)
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Lemma 18.14. Given an Ω-spectrum, we obtain a generalized cohomology theory
H∗(−;E) indexed by Z on the category of pairs of CW -complexes which satisfies
the disjoint union axiom, i.e. for each family of pairs of CW -complexes (Xi, Ai)
for i ∈ I the map induced by the various canonical inclusions

Hn

(∐
i∈I

(Xi, Ai);E

)
∼=−→
∏
i∈I

Hn(Xi, Ai;E)

is bijective for all n ∈ Z.

Proof. The disjoint union axiom is satisfied because of Lemma 18.3. Here we need
the assumption that E is an Ω-spectrum what is not required in Lemma 18.12. �

Example 18.15 (Singular (co-)homology). If we apply the construction above to
the Eilenberg-MacLane spectrum HG associated to an abelian group G of Exam-
ple 18.5, then H∗(X,A;HG) and H∗(X,A;HG) agree with the singular homology
and cohomology with coefficients in G.

Example 18.16 (Topological K-theory). If we apply the construction above to
the topological K-theory spectrum Ktop of Example 18.6 and a finite pair of
CW -complexes (X,A), then H∗(X,A;Ktop) agrees with topological K-theory
K∗(X,A) defined in terms of vector bundles (see for instance [8]).

Example 18.17 (Stable homotopy theory). If we apply the construction above to
the sphere spectrum Σ∞S0, the associated (co-)-homology theory is denoted by
πsn(X+, A+) := Hn(X,A; Σ∞S0) and πns (X+, A+) := Hn(X,A; Σ∞S0) and called
the stable (co-)homotopy of the pair (X,A).

18.5 K-Theory and L-Theory Spectra

Let RINGS be the category of associative rings with unit. An involution on R is a
map R→ R, r 7→ r satisfying 1 = 1, x+ y = x+y and x · y = y ·x for all x, y ∈ R.
Let RINGSinv be the category of rings with involution. Let C∗-ALGEBRAS be the
category of C∗-algebras. There are classical functors for j ∈ −∞q{j ∈ Z | j ≤ 2}

K : RINGS → SPECTRA; (18.18)
L〈j〉 : RINGSinv → SPECTRA; (18.19)

Ktop : C∗-ALGEBRAS → SPECTRA. (18.20)

The construction of such a non-connective algebraic K-theory functor (18.18) goes
back to Gersten [97] and Wagoner [243]. The spectrum for quadratic algebraic L-
theory (18.19) is constructed by Ranicki in [200]. In a more geometric formulation
it goes back to Quinn [193]. In the topologicalK-theory case (18.20) a construction
using Bott periodicity for C∗-algebras can easily be derived from the Kuiper-
Mingo Theorem (see [216, Section 2.2]). The homotopy groups of these spectra give
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the algebraic K-groups of Quillen (in high dimensions) and of Bass (in negative
dimensions), the decorated quadratic L-groups and the topological K-groups of
C∗-algebras.

In all three cases we need the non-connective versions of the spectra, i.e. the
homotopy groups in negative dimensions are non-trivial in general.

Now let us fix a coefficient ring R. Then sending a group G to the group
ring RG yields a functor GROUPS → RINGS, where GROUPS denotes the cat-
egory of groups. If R comes with an involution R → R, r 7→ r, we get a functor
GROUPS → RINGSinv, if we equip RG with the involution sending

∑
g∈G rg · g

to
∑
g∈G rg · g−1. Let GROUPSinj be the category of groups with injective group

homomorphisms as morphisms. Taking the reduced group C∗-algebra defines a
functor C∗r : GROUPSinj → C∗-ALGEBRAS. The composition of these functors
with the functors (18.18), (18.19) and (18.20) above yields functors

KR(−) : GROUPS → SPECTRA; (18.21)
L〈j〉R(−) : GROUPS → SPECTRA; (18.22)

KtopC∗r (−) : GROUPSinj → SPECTRA. (18.23)

They satisfy

πn(KR(G)) = Kn(RG);
πn(L〈j〉R(G)) = L〈j〉n (RG);

πn(KtopC∗r (G)) = Kn(C∗r (G)),

for all groups G and n ∈ Z.
A category is called small if the morphisms form a set. A groupoid is a small

category, all of whose morphisms are isomorphisms. Let GROUPOIDS be the cat-
egory of groupoids with functors of groupoids as morphisms. Let GROUPOIDSinj

be the subcategory of GROUPOIDS which has the same objects and whose mor-
phisms consist of those functors F : G0 → G1 which are faithful, i.e. for any two
objects x, y in G0 the induced map morG0(x, y)→ morG1(F (x), F (y)) is injective.
The next result essentially says that these functors above can be extended from
groups to groupoids.

Theorem 18.24 (K- and L-Theory Spectra over Groupoids). Let R be a ring (with
involution). There exist covariant functors

KR : GROUPOIDS → SPECTRA; (18.25)

L〈j〉R : GROUPOIDS → SPECTRA; (18.26)

Ktop : GROUPOIDSinj → SPECTRA, (18.27)

with the following properties:

(1) If F : G0 → G1 is an equivalence of groupoids, then the induced maps KR(F ),
L〈j〉R (F ) and Ktop(F ) are weak equivalences of spectra;
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(2) Let I : GROUPS → GROUPOIDS be the functor sending a group G to the
groupoid which has precisely one object and G as set of morphisms. This
functor induces a functor GROUPSinj → GROUPOIDSinv.

There are natural transformations from KR(−) to KR ◦I, from L〈j〉R(−) to
L〈j〉R ◦ I inv and from KC∗r (−) to Ktop ◦ I such that the evaluation of each of
these natural transformations at a given group is an equivalence of spectra;

(3) For every group G and all n ∈ Z we have

πn(KR ◦ I(G)) = Kn(RG);

πn(L
〈j〉
R ◦ I

inv(G)) = L〈j〉n (RG);
πn(Ktop ◦ I(G)) = Kn(C∗r (G)).

Proof. We only sketch the strategy of the proof. More details can be found in [64,
Section 2].

Let G be a groupoid. Similar to the group ring RG one can define an R-linear
category RG by taking the free R-modules over the morphism sets of G. Compo-
sition of morphisms is extended R-linearly. By formally adding finite direct sums
one obtains an additive category RG⊕. Pedersen-Weibel [186] (compare also [46])
define a non-connective algebraic K-theory functor which digests additive cate-
gories and can hence be applied to RG⊕. For the comparison result one uses that
for every ring R (in particular for RG) the Pedersen-Weibel functor applied to R⊕
(a small model for the category of finitely generated free R-modules) yields the
non-connective K-theory of the ring R and that it sends equivalences of additive
categories to equivalences of spectra. In the L-theory case RG⊕ inherits an involu-
tion and one applies the construction of [200, Example 13.6 on page 139] to obtain
the L〈1〉 = Lh-version. Analogously one can construct the L〈2〉 = Ls-version. The
versions for j ≤ 1 can be obtained by a construction which is analogous to the
Pedersen-Weibel construction forK-theory, compare [47, Section 4]. In the C∗-case
one obtains from G a C∗-category C∗r (G) and assigns to a C∗-category its topo-
logical K-theory Ω-spectrum. There is a construction of the topological K-theory
spectrum of a C∗-category in [64, Section 2]. However the construction given there
depends on two statements, which appeared in [93, Proposition 1 and Proposition
3], and those statements are incorrect, as already pointed out by Thomason in
[236]. The construction in [64, Section 2] can easily be fixed but instead we rec-
ommend the reader to look at the more recent construction of Joachim [118]. �

18.6 The Chern Character for Homology Theories

The following construction is due to Dold [67].
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Theorem 18.28 (Chern character for homology theory). Consider a (non-equivariant)
homology theory H∗ with values in R-modules for Q ⊂ R which satisfies the disjoint
union axiom. Then there is a natural (non-equivariant) equivalence of homology
theories called Chern character

chn(X) :
⊕
p+q=n

Hp(X;Hq(∗))
∼=−→ Hn(X).

Proof. For a CW -complex X the Chern character chn(X) is given by the following
composite

chn :
⊕
p+q=n

Hp(X;Hq(∗))
⊕

p+q=n α
−1
p,q−−−−−−−−→

⊕
p+q=n

Hp(X;R)⊗R Hq(∗)

⊕
p+q=n hur−1⊗ id

−−−−−−−−−−−−→
⊕
p+q=n

πsp(X+, ∗)⊗Z R⊗R Hq(∗)
⊕

p+q=n Dp,q

−−−−−−−−−→ Hn(X).

Here the canonical maps αp,q are bijective, since any R-module is flat over Z be-
cause of the assumption Q ⊆ R. The second bijective map comes from the various
Hurewicz homomorphisms (see (18.43)). The map Dp,q is defined as follows. For
an element a⊗b ∈ πsp(X+, ∗)⊗ZHq(∗) choose a representative f : Sp+k → Sk∧X+

of a. Define Dp,q(a⊗ b) to be the image of b under the composite

Hq(∗)
σ−→ Hp+q+k(Sp+k, ∗)

Hp+q+k(f)−−−−−−−→ Hp+q+k(Sk ∧X+, ∗)
σ−1

−−→ Hp+q(X),

where σ denotes the suspension isomorphism. This map turns out to be a trans-
formation of homology theories and induces an isomorphism for X = {•}. Hence
it is a natural equivalence of homology theories. �

An equivariant Chern character for equivariant homology theories is con-
structed in [154].

18.7 The Bordism Group Associated to a Vector Bun-

dle

In this section we define the bordism group associated to a stable vector bundle
over a space.

Let (M, i) be an embedding i : Mn → Rn+k of a closed n-dimensional mani-
fold M into Rn+k. Notice that TRn+k comes with an explicit trivialization Rn+k×
Rn+k

∼=−→ TRn+k and the standard Euclidean inner product induces a Riemannian
metric on TRn+k. Denote by ν(M) = ν(i) the normal bundle of i which is the
orthogonal complement of TM in i∗TRn+k.

Fix a space X together with an oriented k-dimensional vector bundle ξ : E →
X. Next we define the (pointed) oriented bordism set Ωn(ξ) . An element in it
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is represented by a quadruple (M, i, f, f) which consists of a closed oriented n-
dimensional manifold M , an embedding i : M → Rn+k, a map f : M → X and
an orientation preserving bundle map f : ν(M) → ξ covering f . Notice that an
orientation on M is the same as an orientation on ν(M). The base point is given
by the class of M = ∅.

We briefly explain what a bordism (W, I, F, F ) from one such quadruple
(M0, i0, f0, f0) to another quadruple (M1, i1, f1, f1) is ignoring the orientations. We
need a compact (n+1)-dimensional manifoldW together with a map F : W → X×
[0, 1]. Its boundary ∂W is written as a disjoint sum ∂0W

∐
∂1W such that F maps

∂0W to X×{0} and ∂1W to X×{1}. There is an embedding I : W → Rn+k×[0, 1]
such that I−1(Rn+k × {j}) = ∂jW holds for j = 0, 1 and W meets Rn+k × {j}
for j = 0, 1 transversally. We require a bundle map (F , F ) : ν(W ) → ξ × [0, 1].
Moreover for j = 0, 1 there is a diffeomorphism Uj : Rn+k → Rn+k × {j} which
maps Mj to ∂jW . It satisfies F ◦Uj |Mj×{j} = fj . Notice that Uj induces a bundle
map ν(Uj) : ν(Mj) → ν(W ) covering Uj |Mj

. The composition of F with ν(Uj) is
required to be fj .

18.8 The Thom Space of a Vector Bundle

For a vector bundle ξ : E → X with Riemannian metric define its disk bundle
pDE : DE → X by DE = {v ∈ E | ||v|| ≤ 1} and its sphere bundle pSE : SE → X
by SE = {v ∈ E | ||v|| = 1}, where pDE and pSE are the restrictions of p. Its Thom
space Th(ξ) is defined by DE/SE. It has a preferred base point ∞ = SE/SE.
The Thom space can be defined without choice of a Riemannian metric as follows.
Put Th(ξ) = E ∪ {∞} for some extra point ∞. Equip Th(ξ) with the topology
for which E ⊆ Th(E) is an open subset and a basis of open neighborhoods for
∞ is given by the complements of closed subsets A ⊆ E for which A ∩ Ex is
compact for each fiber Ex. If X is compact, E is locally compact and Th(ξ) is
the one-point-compactification of E. The advantage of this definition is that any
bundle map (f, f) : ξ0 → ξ1 of vector bundles ξ0 : E0 → X0 and ξ1 : E1 → X1

induces canonically a map Th(f) : Th(ξ0)→ Th(ξ1). Notice that we require that
f induces a bijective map on each fiber. Denote by Rk the trivial vector bundle
with fiber Rk. We mention that there are homeomorphisms

Th(ξ × η) ∼= Th(ξ) ∧ Th(η); (18.29)
Th(ξ ⊕ Rk) ∼= Sk ∧ Th(ξ), (18.30)

18.9 The Pontrjagin Thom Construction

Let (N(M), ∂N(M)) be a tubular neighborhood of M . Recall that there is a
diffeomorphism

u : (Dν(M), Sν(M))→ (N(M), ∂N(M))
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which is up to isotopy relative M uniquely determined by the property that its
restriction to M is i and its differential at M is ε · id for small ε > 0 under the
canonical identification T (Dν(M))|M = TM ⊕ ν(M) = i∗TRn+k. The collapse
map

c : Sn+k = Rn+k
∐
{∞} → Th(ν(M)) (18.31)

is the pointed map which is given by the diffeomorphism u−1 on the interior
of N(M) and sends the complement of the interior of N(M) to the preferred
base point ∞. The homology group Hn+k(Th(TM)) ∼= Hn+k(N(M), ∂N(M))
is infinite cyclic, since N(M) is a compact orientable (n+k)-dimensional mani-
fold with boundary ∂N(M). The Hurewicz homomorphism h : πn+k(Th(TM))→
Hn+k(Th(TM)) sends the class [c] of c to a generator. This follows from the fact
that any point in the interior of N(M) is a regular value of c and has precisely
one point in his preimage.

Theorem 18.32 (Pontrjagin-Thom Construction). Let ξ : E → X be an oriented
k-dimensional vector bundle over a CW -complex X. Then the map

Pn(ξ) : Ωn(ξ)
∼=−→ πn+k(Th(ξ)),

which sends the class of (M, i, f, f) to the class of the composite

Sn+k c−→ Th(ν(M))
Th(f)−−−−→ Th(ξ)

is a well-defined bijection and natural in ξ.

Proof. The details can be found in [32, Satz 3.1 on page 28, Satz 4.9 on page
35,]. The basic idea becomes clear after we have explained the construction of
the inverse for a finite CW -complex X. Consider a pointed map (Sn+k,∞) →
(Th(ξ),∞). We can change f up to homotopy relative {∞} such that f becomes
transverse to X. Notice that transversality makes sense although X is not a man-
ifold, one needs only the fact that X is the zero-section in a vector bundle. Put
M = f−1(X). The transversality construction yields a bundle map f : ν(M)→ ξ
covering f |M . Let i : M → Rn+k = Sn+k−{∞} be the inclusion. Then the inverse
of Pn(ξ) sends the class of f to the class of (M, i, f |M , f). �

18.10 The Stable Version of the Pontrjagin Thom Con-

struction

In the sequel we will denote for a finite-dimensional vector space V by V the
trivial bundle with fiber V . Suppose we are given a sequence of inclusions of CW -
complexes

X0
j0−→ X1

j1−→ X2
j2−→ . . .
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together with bundle maps

jk : ξk ⊕ R→ ξk+1

covering the map jk : Xk → Xk+1, where each vector bundle ξk has dimension k.
Such a system ξ∗ is called a stable vector bundle. If each bundle ξk is oriented and
each bundle map jk respects the orientations we call it an oriented stable vector
bundle. We obtain a system of maps of pointed sets

Ωn(ξ0)
Ωn(j0)−−−−→ Ωn(ξ1)

Ωn(j1)−−−−→ Ωn(ξ2)
Ωn(j2)−−−−→ . . .

Let colimk→∞Ωk(ξk) be the colimit of this system of pointed sets which is a priori
a pointed set. But it inherits the structure of an abelian group by taking the
disjoint union and possibly composing the given embedding M → Rn+k with the
canonical inclusion Rn+k → Rn+k+l. The construction of an inverse is based on
composing with the isomorphism

idγk
⊕− idR : γk ⊕ R −→ γk ⊕ R.

We call

Ωn(ξ∗) := colimk→∞Ωn(ξk). (18.33)

the (n-th oriented) bordism group of the oriented stable vector bundle ξ∗. We also
see a sequence of spaces Th(γk) together with maps

Th(ik) : S1 ∧ Th(γk) = Th(γk ⊕ R)→ Th(γk+1).

They induce homomorphisms

sk : πn+k(Th(γk))→ πn+k+1(S1 ∧ Th(γk))
πn+k(Th(ik))−−−−−−−−−→ πn+k+1(Th(γk+1)),

where the first map is the suspension homomorphism. Let

πsn(Th(ξ∗)) = colimk→∞ πn+k(Th(γk)) (18.34)

be the colimit of the directed system

. . .
sk−1−−−→ πn+k(Th(γk))

sk−→ πn+k+1(Th(γk+1))
sk+1−−−→ . . . .

We get from Theorem 18.32 a bijection

Pk : colimk→∞Ωn(γk)
∼=−→ colimk→∞ πn+k(Th(γk)).

This implies

Theorem 18.35 (The Stable Pontrjagin Thom Construction). There is an isomor-
phism of abelian groups natural in ξ∗

P : Ωn(ξ∗)
∼=−→ πsn(Th(γ∗)).
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18.11 The Oriented Bordism Ring

Let Ωn(X) be the bordism group of pairs (M,f) of oriented closed n-dimensional
manifolds M together with reference maps g : M → X. Let ξk : Ek → BSO(k)
be the universal oriented k-dimensional vector bundle. Let jk : ξk ⊕ R → ξk+1 be
a bundle map covering a map jk : BSO(k) → BSO(k + 1). Up to homotopy of
bundle maps this map is unique. The map jk can be arranged to be an inclusion
of CW -complexes. Denote by γk the bundle X × Ek → X × BSO(k) and by
(ik, ik) : γk ⊕ R → γk+1 the bundle map idX ×(jk, jk). The bundle map (ik, ik)
is unique up to homotopy of bundle maps and hence induces a well-defined map
Ωn(ik) : Ωn(γk) → Ωn(γk+1), which sends the class of (M, i, f, f) to the class of
the quadruple which comes from the embedding j : M i−→ Rn+k ⊆ Rn+k+1 and the
canonical isomorphism ν(i)⊕ R = ν(j). Consider the homomorphism

Vk : Ωn(γk)→ Ωn(X)

which sends the class of (M, i, f, f) to (M,prX ◦f), where we equip M with the
orientation determined by f . The system of the maps Vk induce a homomorphism

V : Ωn(γ∗)
∼=−→ Ωn(X). (18.36)

This map is bijective because of the classifying property of γk and the facts that
for k > n+ 1 any closed manifold M of dimension n can be embedded into Rn+k

and two such embeddings are isotopic. This implies

Theorem 18.37 (Pontrjagin Thom Construction and Oriented Bordism). There is
an isomorphism of abelian groups natural in X

P : Ωn(X)
∼=−→ πsn(Th(γ∗)).

Remark 18.38 (The Thom spectrum of a stable vector space). Notice that this is
the beginning of the theory of spectra and stable homotopy theory. Obviously the
spaces Th(ξk) together with the identification (18.30) and the maps Th(ik) form
a spectrum Th(ξ∗), the Thom spectrum associated to the stable vector bundle ξ∗.

Remark 18.39 (Stable homotopy theory and bordism). Theorem 18.37 is a kind
of mile stone in homotopy theory since it is the prototype of a result, where the
computation of geometrically defined objects are translated into a computation of
(stable) homotopy groups. It applies to all other kind of bordism groups, where
one puts additional structures on the manifolds, for instance a Spin-structure or
a framing. The bijection is always of the same type, but the sequence of bundles
ξk depends on the additional structure. If we want to deal with the unoriented
bordism ring we have to replace the bundle ξk → BSO(k) by the universal k-
dimensional vector bundle over BO(k).



18.12. Stable Homotopy 165

18.12 Stable Homotopy

Given a space X, the trivial stable vector bundle R∗ over X is given by the trivial
k-dimensional bundle Rk as k-th bundle and the identity maps as structure maps.
The stable homotopy groups πsn(X) are the abelian groups πsn(R∗). This is the
same as the colimit of the system of suspension homomorphisms

πn(X+)→ πn+1(S1 ∧X+)→ πn+2(S2 ∧X+)

They can also be defined for pairs and one obtains a generalized homology theory
πs∗ on the category of pairs of CW -complexes which satisfies the disjoint union
axiom. The Hurewicz homomorphism induces natural maps

hn(X,A) : πsn(X,A) → Hn(X,A). (18.40)

It turns out that one obtains a transformation of homology theories

h∗ : πs∗ → H∗. (18.41)

The next result is due to Serre [217] (see also [131]).

Theorem 18.42 (Higher stable stems are finite). The groups πsn({•}) are finite for
n ≥ 1.

It is a basic and still unsolved problem in algebraic topology to compute the
groups πsn({•}). The first stable stems are given by

n 0 1 2 3 4 5 6 7 8 9
πsn Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/2⊕ Z/2 Z/2⊕ Z/2⊕ Z/2

Since Q is flat as Z-module and − ⊗Z Q is compatible with direct sums over
arbitrary index sets, πs∗⊗Q defines a homology theory satisfying the disjoint union
axiom and we obtain a natural transformation of homology theories satisfying the
disjoint union axiom

h∗ ⊗Z Q : πs∗ ⊗Z Q → H∗(−; Q). (18.43)

By Serre’s Theorem 18.42 the map hn({•}) ⊗Z Q : πs∗({•}) ⊗Z Q → H∗({•}; Q)
is bijective for all n ∈ Z. Any transformation of homology theories satisfying the
disjoint union axiom is an equivalence of homology theories if and only if it induces
isomorphisms for {•} for all n ∈ Z (see for instance [235, 7.55 on page 123]). We
conclude

Theorem 18.44 (Rationalized stable homotopy agrees with rational homology).
For every CW -pair (X,A) and n ∈ Z the homomorphism

hn(X,A)⊗Z Q : πs∗(X,A)⊗Z Q
∼=−→ H∗(X,A; Q)

is bijective.
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18.13 The Thom Isomorphism

We recall the Thom isomorphism (see for instance [171, Chapter 10], [235, 15.51
on page 367]).

Theorem 18.45 (Thom Isomorphism). Let ξ given by p : E → X be an oriented
k-dimensional vector bundle over a connected CW -complex X. Then there exists
a so called Thom class tξ ∈ Hk(DE,E) such that the composites

Hq(DE,SE)
tξ∩?−−−→ Hq−k(DE)

Hq−k(p)−−−−−→ Hq−k(X); (18.46)

Hq(DE,SE)
tξ∩?−−−→ Hq−k(DE)

Hq−k(p)−−−−−→ Hq−k(X); (18.47)

Hq(X)
Hp(q)−−−−→ Hq(DE)

?∪tξ−−−→ Hq+k(DE,SE); (18.48)

Hq(X)
Hq(p)−−−−→ Hq(DE)

?∪tξ−−−→ Hq+k(DE,SE), (18.49)

are bijective. These maps are called Thom isomorphisms.

Notice thatHq(DE,SE) ∼= Hq(Th(ξ),∞) andHq(DE,SE) ∼= Hq(Th(ξ),∞)
holds by excision.

18.14 The Rationalized Oriented Bordism Ring

Given an oriented closed oriented manifold M , we can choose k ≥ 0 and an
embedding ik : M → Rn+k. Let ck : ν(ik) → γk be a bundle map covering a map
ck : M → BSO(k) for γk the universal k-dimensional bundle over BSO(k). Define
the space

BSO = colimk→∞BSO(k) (18.50)

with respect to the system of the maps jk : BSO(k)→ BSO(k + 1) which can be
arranged to be inclusions of CW -complexes. Let cM : M → BSO be the composite
of ck with the canonical map BSO(k)→ BO. The homotopy class of cM is depends
only on M and is independent of all other choices.

If we combine Theorem 18.37, Theorem 18.44 and Theorem 18.45, we obtain

Theorem 18.51 (The rationalized oriented bordism ring). There is for every CW -
complex X and n ∈ Z a natural isomorphism

νn(X) : Ωn(X)
∼=−→ Hn(X ×BSO); [f : M → X] 7→ Hn(f × cM )([M ]).

In particular the n-th oriented bordism groups Ωn = Ωn({•}) is isomorphic to
Hn(BSO) by the map which sends the class of an oriented n-dimensional manifold
M to the image of its fundamental class [M ] under the map Hn(cM ) : Hn(M)→
Hn(BSO) induced by the classifying map cM : M → BSO.
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A standard inductive argument gives a computation of H∗(BSO; Q) :

H∗(BSO; Q) ∼= Q [p1, p2, p3, . . .] , (18.52)

where pi are given by the Pontrjagin classes of the universal classifying bundles γk
for large k. Since (cM )∗(pi) = pi(ν(M)) is the i-th Pontrjagin class of the normal
bundle of M , we conclude that the Pontrjagin numbers of the normal bundle
determine the rational bordism class of a manifold M . Since the Pontrjagin classes
of the normal bundle determine those of the tangent bundle (and vice versa) we
conclude the following result due to Thom.

Recall that a partition I of an integer k ≥ 0 is an unordered sequence i1, i2,
. . . , ir of positive integers with

∑r
l=1 il = k. Let p(k) be the number of partitions

of k. The first values are

k 0 1 2 3 4 5 6 7 8 9 10
p(k) 1 1 2 3 5 7 11 15 22 30 42

(18.53)

The I-th Pontrjagin number is defined by

pI [M ] := 〈pi1(TM) ∪ . . . ∪ pis(TM), [M ]〉 (18.54)

Theorem 18.55 (The rationalized oriented bordism ring and Pontrjagin classes).
We obtain for k ∈ Z natural isomorphisms

Ω4k ⊗Q
∼=−→ Qp(k), [M ] 7→ (pI(M))I ,

For m 6= 0 mod 4
Ωm ⊗Q = 0.

One can give an explicit basis of Ω4k ⊗Q. One ”only” has to find for each k
and each partition J of k manifolds MJ such that the matrix with entries

(pI [MJ ])I,J

has non-trivial determinant. We refer to for the proof of the next result for instance
to [171, Chapter 17]

Theorem 18.56 (Generators for the rational bordism ring). The products of com-
plex projective spaces

CP2i1 × CP2i2 × ...× CP2ir ,

where I = (i1, i2, . . . , ir) runs through all partitions of k are a Q-basis of Ω4k⊗Q.

18.15 The Integral Oriented Bordism Ring

The first oriented bordism groups are given by

n 0 1 2 3 4 5 6 7 8 9
Ωn Z 0 0 0 Z Z/2 0 0 Z⊕ Z Z/2⊕ Z/2 (18.57)
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The infinite cyclic group Ω4 is generated by CP2 and an explicit isomorphism
Ω4

∼=−→ Z is given by the signature which we will introduce in Chapter 3.
A complete computation of the oriented bordism ring has been carried out

by Wall [245].



Chapter 19

Classifying Spaces of Families
(L.)

In this section we introduce the classifying space of a family of subgroups.
To read the remaining chapters is suffices to understand Definition 19.1 and

Section 19.2.

19.1 Basics about G-CW -Complexes

Definition 19.1 (G-CW -complex). A G-CW -complex X is a G-space together with
a G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e. a set
C ⊆ X is closed if and only if C ∩Xn is closed in Xn for all n ≥ 0) and Xn is
obtained from Xn−1 for each n ≥ 0 by attaching equivariant n-dimensional cells,
i.e. there exists a G-pushout

∐
i∈In

G/Hi × Sn−1

∐
i∈In

qn
i−−−−−−→ Xn−1y y∐

i∈In
G/Hi ×Dn −−−−−−→∐

i∈In
Qn

i

Xn

The space Xn is called the n-skeleton of X. Notice that only the filtration
by skeletons belongs to the G-CW -structure but not the G-pushouts, only their
existence is required. An equivariant open n-dimensional cell is a G-component

169
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of Xn − Xn−1, i.e. the preimage of a path component of G\(Xn − Xn−1). The
closure of an equivariant open n-dimensional cell is called an equivariant closed
n-dimensional cell . If one has chosen the G-pushouts in Definition 19.1, then the
equivariant open n-dimensional cells are the G-subspaces Qi(G/Hi×(Dn−Sn−1))
and the equivariant closed n-dimensional cells are the G-subspacesQi(G/Hi×Dn).

Remark 19.2 (Proper G-CW -Complexes). A G-space X is called proper if for
each pair of points x and y in X there are open neighborhoods Vx of x and Wy of
y in X such that the closure of the subset {g ∈ G | gVx ∩Wy 6= ∅} of G is finite.
A G-CW -complex X is proper if and only if all its isotropy groups are finite [152,
Theorem 1.23]. In particular a free G-CW -complex is always proper. However, not
every free G-space is proper.

Remark 19.3 (Cell-preserving G-actions). Let X be a G-space with G-invariant
filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X.

Then the following assertions are equivalent. i.) The filtration above yields a
G-CW -structure on X. ii.) The filtration above yields a (non-equivariant) CW -
structure on X such that each open cell e ⊆ X and each g ∈ G with ge ∩ e 6= ∅
we have gx = x for all x ∈ e.

Notice that Definition 19.1 of a G-CW -complexes makes sense also for ar-
bitrary topological groups, but then the characterization above is not valid in
general.

Example 19.4 (Lie groups acting properly and smoothly on manifolds). Let M be
a (smooth) proper G-manifold, then an equivariant smooth triangulation induces
a G-CW -structure on M . For the proof and for equivariant smooth triangulations
we refer to [117].

Example 19.5 (Simplicial Actions). Let X be a simplicial complex on which the
group G acts by simplicial automorphisms. Then G acts also on the barycentric
subdivision X ′ by simplicial automorphisms. The filtration of the barycentric sub-
division X ′ by the simplicial n-skeleton yields the structure of a G-CW -complex
which is not necessarily true for X.

A G-space is called cocompact if G\X is compact. A G-CW -complex X is
finite if X has only finitely many equivariant cells. A G-CW -complex is finite if
and only if it is cocompact. A G-CW -complex X is of finite type if each n-skeleton
is finite. It is called of dimension ≤ n if X = Xn and finite dimensional if it is
of dimension ≤ n for some integer n. A free G-CW -complex X is the same as a
G-principal bundle X → Y over a CW -complex Y .

Theorem 19.6 (Whitehead Theorem for Families). Let f : Y → Z be a G-map
of G-spaces. Let F be a set of (closed) subgroups of G which is closed under
conjugation. Then the following assertions are equivalent:
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(1) For any G-CW -complex X, whose isotropy groups belong to F , the map
induced by f

f∗ : [X,Y ]G → [X,Z]G, [g] 7→ [g ◦ f ]

between the set of G-homotopy classes of G-maps is bijective;

(2) For any H ∈ F the map fH : Y H → ZH is a weak homotopy equivalence i.e.
for any base point y ∈ Y H and n ∈ Z, n ≥ 0 the map πn(fH , y) : πn(Y H , y)→
πn(ZH , fH(y)) is bijective.

Proof. (1) ⇒ (2) Evaluation at 1H induces for any CW -complex A (equipped
with the trivial G-action) a bijection [G/H × A, Y ]G

∼=−→ [A, Y H ]. Hence for any
CW -complex A the map fH induces a bijection

(fH)∗ : [A, Y H ]→ [A,ZH ], [g]→ [g ◦ fH ].

This is equivalent to fH being a weak homotopy equivalence by the classical non-
equivariant Whitehead Theorem [255, Theorem 7.17 in Chapter IV.7 on page 182].

(2) ⇒ (1) We only give the proof in the case, where Z is G/G since this is the
most important case for us and the basic idea becomes already clear. The general
case is treated for instance in [237, Proposition II.2.6 on page 107]. We have to
show for any G-CW -complex X that two G-maps f0, f1 : X → Y are G-homotopic
provided that for any isotropy group H of X the H-fixed point set Y H is weakly
contractible, i.e. πn(Y H , y) consists of one element for all base points y ∈ Y H .
Since X is colimn→∞Xn it suffices to construct inductively over n G-homotopies
h[n] : Xn × [0, 1]→ Z such that h[n]i = fi holds for i = 0, 1 and h[n]|Xn−1×[0,1] =
h[n − 1]. The induction beginning n = −1 is trivial because of X−1 = ∅, the
induction step from n− 1 to n ≥ 0 is done as follows. Fix a G-pushout∐

i∈In
G/Hi × Sn−1

∐
i∈In

qn
i−−−−−−→ Xn−1y y∐

i∈In
G/Hi ×Dn −−−−−−→∐

i∈In
Qn

i

Xn

One easily checks that the desired G-homotopy h[n] exists if and only if for each
i ∈ I we can find an extension of the G-map

f0 ◦Qni ∪ f1 ◦Qni ∪ h[n− 1] ◦ (qni × id[0,1]) :

G/Hi ×Dn × {0} ∪G/Hi ×Dn × {1} ∪G/Hi × Sn−1 × [0, 1] → Y

to a G-map G/Hi ×Dn × [0, 1]→ Y . This is the same problem as extending the
(non-equivariant) mapDn×{0}∪Dn×{1}∪Sn−1×[0, 1] → Y Hi , which is given by
restricting the G-map above to 1Hi, to a (non-equivariant) map Dn×[0, 1]→ Y Hi .
Such an extension exists since Y Hi is weakly contractible. This finishes the proof
of Theorem 19.6. �
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A G-map f : X → Y of G-CW -complexes is a G-homotopy equivalence if
and only if for any subgroup H ⊆ G which occurs as isotropy group of X or Y the
induced map fH : XH → Y H is a weak homotopy equivalence. This follows from
the Whitehead Theorem for families 19.6 above.

A G-map of G-CW -complexes f : X → Y is cellular if f(Xn) ⊆ Yn holds for
all n ≥ 0. There is an equivariant version of the Cellular Approximation Theorem,
namely, eachG-map ofG-CW -complexes isG-homotopic to a cellular one and each
G-homotopy between cellular G-maps can be replaced by a cellular G-homotopy
[237, Theorem II.2.1 on page 104].

19.2 The Classifying Space for a Family

Definition 19.7 (Family of subgroups). A family F of subgroups of G is a set of
(closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for F are
TR = {trivial subgroup};
FIN = {finite subgroups};
CYC = {cyclic subgroups};
FCYC = {finite cyclic subgroups};
VCYC = {virtually cyclic subgroups};
ALL = {all subgroups}.

Definition 19.8 (Classifying G-CW -complex for a family of subgroups). Let F be
a family of subgroups of G. A model EF (G) for the classifying G-CW -complex
for the family F of subgroups is a G-CW -complex EF (G) which has the following
properties: i.) All isotropy groups of EF (G) belong to F . ii.) For any G-CW -
complex Y , whose isotropy groups belong to F , there is up to G-homotopy precisely
one G-map Y → EF (G).

We abbreviate EG := EFIN (G) and call it the universal G-CW -complex for
proper G-actions.

Remark 19.9 (Change of Families). In other words, EF (G) is a terminal object
in the G-homotopy category of G-CW -complexes, whose isotropy groups belong
to F . In particular two models for EF (G) are G-homotopy equivalent and for
two families F0 ⊆ F1 there is up to G-homotopy precisely one G-map EF0(G)→
EF1(G).

Theorem 19.10 (Homotopy Characterization of EF (G)). Let F be a family of
subgroups.

(1) There exists a model for EF (G) for any family F ;

(2) A G-CW -complex X is a model for EF (G) if and only if all its isotropy
groups belong to F and for each H ∈ F the H-fixed point set XH is weakly
contractible.
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Proof. (1) A model can be obtained by attaching equivariant cells G/H ×Dn for
all H ∈ F to make the H-fixed point sets weakly contractible. See for instance
[152, Proposition 2.3 on page 35]. A functorial construction can be found in [64,
page 230 and Lemma 7.6].

(2) This follows from the Whitehead Theorem for families 19.6 applied to f : X →
G/G. �

19.3 Special Models

In this section we present some interesting geometric models for the space EF (G)
focusing on EFIN (G) = EG.

19.3.1 The Family of All Subgroups and the Trivial Family

One extreme case is, when we take F to be the family ALL of all subgroups. Then
a model for EALL(G) is G/G. The other extreme case is the family TR consisting
of the trivial subgroup. Then ETR(G) is the same as EG which is the total space
of the universal G-principal bundle G→ EG→ BG.

19.3.2 Operator Theoretic Model

Let G be discrete. A model for EG is the space

XG = {f : G→ [0, 1] | f has finite support,
∑
g∈G

f(g) = 1}

with the topology coming from the supremum norm [22, page 248].
Let P∞(G) be the geometric realization of the simplicial set whose k-simplices

consist of (k + 1)-tuples (g0, g1, . . . , gk) of elements gi in G. This also a model for
EG [1, Example 2.6]. The spacesXG and P∞(G) have the same underlying sets but
in general they have different topologies. The identity map induces a (continuous)
G-map P∞(G) → XG which is a G-homotopy equivalence, but in general not a
G-homeomorphism (see also [240, A.2]).

19.3.3 Discrete Subgroups of Almost Connected Lie Groups

The next result is a special case of a result due to Abels [1, Corollary 4.14].

Theorem 19.11 (Discrete Subgroups of Almost Connected Lie Groups). Let L be
an almost connected Lie group, i.e. a Lie group with finitely many path components.
Let K ⊆ L be a maximal compact subgroup. Let G ⊆ L be a discrete subgroup of
L.

Then L/K with the obvious left G-action is a finite-dimensional G-CW -
model for EG.
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19.3.4 Simply Connected Non-Positively Curved Manifolds

The next theorem is due to Abels [1, Theorem 4.15].

Theorem 19.12 (Actions on Simply Connected Non-Positively Curved Manifolds).
Suppose that G acts properly and isometrically on the simply-connected complete
Riemannian manifold M with non-positive sectional curvature. Then M is a model
for EG.

19.3.5 CAT(0)-Spaces

Theorem 19.13 (Actions on CAT(0)-spaces). Let G be a (locally compact Haus-
dorff) topological group. Let X be a proper G-CW -complex. Suppose that X has
the structure of a complete CAT(0)-space for which G acts by isometries. Then X
is a model for EG.

Proof. By [30, Corollary II.2.8 on page 179] the K-fixed point set of X is non-
empty convex subset of X and hence contractible for any compact subgroup K ⊆
G. �

19.3.6 Trees with Finite Isotropy Groups

A tree is a 1-dimensional CW -complex which is contractible.

Theorem 19.14 (Actions on Trees). Suppose that G acts continuously on a tree T
such that for each element g ∈ G and each open cell e with g · e ∩ e 6= ∅ we have
gx = x for any x ∈ e. Assume that the isotropy group of each x ∈ T is finite.
Then T is a 1-dimensional model for EG.

Proof. Let H ⊆ G be finite. If e0 is a zero-cell in T , then H · e0 is finite. Let
T ′ be the union of all geodesics with extremities in H · e. This is a H-invariant
subtree of T of finite diameter. One shows now inductively over the diameter of T ′

that T ′ has a vertex which is fixed under the H-action (see [220, page 20] or [66,
Proposition 4.7 on page 17]). Hence TH is non-empty. If e and f are vertices in
TH , the geodesic in T from e to f must be H-invariant. Hence TH is a connected
CW -subcomplex of the tree T and hence is itself a tree. This shows that TH is
contractible. �

19.3.7 Amalgamated Products and HNN-Extensions

Consider groups H, K−1 and K1 together with injective group homomorphisms
ϕi : H → Ki for i ∈ {−1, 1}. Let G be the amalgamated product K1 ∗H K1 with
respect to ϕ−1 and ϕ1, i.e. the pushout of groups

H
ϕ−1−−−−→ K−1

ϕ1

y y
K1 −−−−→ G



19.3. Special Models 175

Choose ϕi-equivariant maps fi : EH → EKi. They induce G-maps

Fi : G×H EH → G×Ki EKi, (g, x) 7→ (g, fi(x)).

We get a model for EG as the G-pushout

G×H EH × {−1, 1} F−1
∐
F1−−−−−−→ G×K−1 EK−1

∐
G×K1 EK1y y

G×H EH × [−1, 1] −−−−→ EG

Consider two groups H and K and two injective group homomorphisms
ϕi : H → K for i ∈ {−1, 1}. Let G be the HNN-extension associated to the data
ϕi : H → K for i ∈ {−1, 1}, i.e. the group generated by the elements of K and a
letter t whose relations are those of K and the relations t−1ϕ−1(h)t = ϕ1(h) for all
h ∈ H. The natural map K → G is injective and we will identify K with its image
inG. Choose ϕi-equivariant maps fi : EH → EK. Let Fi : G×ϕ−1EH → G×KEK
be the G-map which sends (g, x) to gf−1(x) for i = −1 and to gtf1(x) for i = 1.
Then a model for EG is given by the G-pushout

G×ϕ−1 EH × {−1, 1} F−1
∐
F1−−−−−−→ G×K EKy y

G×ϕ−1 EH × [−1, 1] −−−−→ EG

Consider the special case, where H = K, ϕ−1 = id and ϕ1 is an automor-
phism. Then G is the semidirect product K oϕ1 Z. Choose a ϕ1-equivariant map
f1 : EK → EK. Then a model for EG is given by the to both side infinite mapping
telescope of f1 with the K oϕ1 Z action, for which Z acts by shifting to the right
and k ∈ K acts on the part belonging to n ∈ Z by multiplication with ϕn1 (k). If
we additionally assume that ϕ1 = id, then G = K × Z and we get EK × R as
model for EG.

All these constructions also yield models for EG = ETR(G) if one replaces
everywhere the spaces EH and EK by the spaces EH and EK.

19.3.8 Arithmetic Groups

Arithmetic groups in a semisimple connected linear Q-algebraic group possess fi-
nite models for EG. Namely, let G(R) be the R-points of a semisimple Q-group
G(Q) and let K ⊆ G(R) a maximal compact subgroup. If A ⊆ G(Q) is an arith-
metic group, thenG(R)/K with the leftA-action is a model for EFIN (A) as already
explained in Theorem 19.11. The A-space G(R)/K is not necessarily cocompact.
The Borel-Serre completion of G(R)/K (see [29], [219]) is a finite A-CW -model
for EFIN (A) as pointed out in [4, Remark 5.8], where a private communication
with Borel and Prasad is mentioned.
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19.3.9 Outer Automorphism Groups of Free groups

Let Fn be the free group of rank n. Denote by Out(Fn) the group of outer au-
tomorphisms of Fn, i.e. the quotient of the group of all automorphisms of Fn by
the normal subgroup of inner automorphisms. Culler and Vogtmann [61], [242]
have constructed a space Xn called outer space on which Out(Fn) acts with fi-
nite isotropy groups. It is analogous to the Teichmüller space of a surface with
the action of the mapping class group of the surface. Fix a graph Rn with one
vertex v and n edges and identify Fn with π1(Rn, v). A marked metric graph
(g,Γ) consists of a graph Γ with all vertices of valence at least three, a homotopy
equivalence g : Rn → Γ called marking and to each edge of Γ there is assigned a
positive length which makes Γ into a metric space by the path metric. We call
two marked metric graphs (g,Γ) and (g′,Γ′) equivalent of there is a homothety
h : Γ→ Γ′ such that g ◦h and h′ are homotopic. Homothety means that there is a
constant λ > 0 with d(h(x), h(y)) = λ · d(x, y) for all x, y. Elements in outer space
Xn are equivalence classes of marked graphs. The main result in [61] is that X
is contractible. Actually, for each finite subgroup H ⊆ Out(Fn) the H-fixed point
set XH

n is contractible [137, Propostion 3.3 and Theorem 8.1], [254, Theorem 5.1].
The space Xn contains a spine Kn which is an Out(Fn)-equivariant defor-

mation retraction. This space Kn is a simplicial complex of dimension (2n− 3) on
which the Out(Fn)-action is by simplicial automorphisms and cocompact. Actually
the group of simplicial automorphisms of Kn is Out(Fn) [31]. Hence the second
barycentric subdivision K ′′

n is a finite (2n− 3)-dimensional model of EOut(Fn).

19.3.10 Mapping Class groups

Let Γsg,r be the mapping class group of an orientable compact surface F of genus
g with s punctures and r boundary components. This is the group of isotopy
classes of orientation preserving selfdiffeomorphisms Fg → Fg, which preserve the
punctures individually and restrict to the identity on the boundary. We require
that the isotopies leave the boundary pointwise fixed. We will always assume that
2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured
surface F is negative. It is well-known that the associated Teichmüller space T sg,r
is a contractible space on which Γsg,r acts properly. Actually T sg,r is a model for
EFIN (Γsg,r) by the results of Kerckhoff [127].

19.3.11 One-Relator Groups

Let G be a one-relator group. Let G = 〈(qi)i∈I | r〉 be a presentation with one
relation. There is up to conjugacy one maximal finite subgroup C which is cyclic.
There exists a 2-dimensional G-CW -model for EG such that EG is obtained
from G/C for a maximal finite cyclic subgroup C ⊆ G by attaching free cells
of dimensions ≤ 2 and the CW -complex structure on the quotient G\EG has
precisely one 0-cell, precisely one 2-cell and as many 1-cells as there are elements
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in I. All these claims follow from [36, Exercise 2 (c) II. 5 on page 44].
If G is torsionfree, the 2-dimensional complex associated to a presentation

with one relation is a model for BG (see also [164, Chapter III §§9 -11]).

19.3.12 Special Linear Groups of (2,2)-Matrices

In order to illustrate some of the general statements above we consider the special
example SL2(R) and SL2(Z).

Let H2 be the 2-dimensional hyperbolic space. We will use either the upper
half-plane model or the Poincaré disk model. The group SL2(R) acts by isometric
diffeomorphisms on the upper half-plane by Moebius transformations, i.e. a matrix(
a b
c d

)
acts by sending a complex number z with positive imaginary part to

az+b
cz+d . This action is proper and transitive. The isotropy group of z = i is SO(2).
Since H2 is a simply-connected Riemannian manifold, whose sectional curvature
is constant −1, the SL2(R)-space H2 is a model for ESL2(R) by Theorem 19.12.

One easily checks that SL2(R) is a connected Lie group and SO(2) ⊆ SL2(R)
is a maximal compact subgroup. Hence SL2(R)/SO(2) is a model for ESL2(R)
by Theorem 19.11. Since the SL2(R)-action on H2 is transitive and SO(2) is the
isotropy group at i ∈ H2, we see that the SL2(R)-manifolds SL2(R)/SO(2) and
H2 are SL2(R)-diffeomorphic.

Since SL2(Z) is a discrete subgroup of SL2(R), the space H2 with the SL2(Z)-
action is a model for ESL2(Z) (see Theorem 19.11).

The group SL2(Z) is isomorphic to the amalgamated product Z/4 ∗Z/2 Z/6.
From Section 19.3.7 we conclude that a model for ESL2(Z) is given by the fol-
lowing SL2(Z)-pushout

SL2(Z)/(Z/2)× {−1, 1} F−1
∐
F1−−−−−−→ SL2(Z)/(Z/4)

∐
SL2(Z)/(Z/6)y y

SL2(Z)/(Z/2)× [−1, 1] −−−−→ ESL2(Z)

where F−1 and F1 are the obvious projections. This model for ESL2(Z) is a tree,
which has alternately two and three edges emanating from each vertex. The other
model H2 is a manifold. These two models must be SL2(Z)-homotopy equivalent.
They can explicitly be related by the following construction.

Divide the Poincaré disk into fundamental domains for the SL2(Z)-action.
Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e. a
vertex on the boundary sphere, and two vertices in the interior. Then the union of
the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with
SL2(Z)-action. This is the tree model above. The tree is a SL2(Z)-equivariant
deformation retraction of the Poincaré disk. A retraction is given by moving a
point p in the Poincaré disk along a geodesic starting at the vertex at infinity,
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which belongs to the triangle containing p, through p to the first intersection
point of this geodesic with T .

More information about classifying spaces for families of subgroups can be
found for instance in [158].



Chapter 20

Equivariant Homology Theories
and the Meta-Conjecture (L.)

In this section we formulate a Meta-Conjecture for a group G which depends
on a choice of an equivariant homology theory and a family of subgroups. If we
insert for them certain values, we obtain the Farrell-Jones and the Baum-Connes
Conjectures. We will explain the notion of an equivariant homology theory and
how it can be constructed from covariant functors GROUPOIDS→ SPECTRA.

20.1 The Meta-Conjecture

Suppose we are given

• A discrete group G;

• A family F of subgroups of G;

• A G-homology theory HG∗ (−).

Then one can formulate the following Meta-Conjecture.

Conjecture 20.1 (Meta-Conjecture). The assembly map

AF : HGn (EF (G))→ HGn ({•})

which is the map induced by the projection EF (G) → {•} is an isomorphism for
n ∈ Z.

Remark 20.2 (Discussion of the Meta-Conjecture). Of course the conjecture above
is not true for arbitrary G, F and HG∗ (−), but the Farrell-Jones and Baum-Connes
Conjectures state that for specific G-homology theories there is a natural choice
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of a family F = F(G) of subgroups for every group G such that AF(G) becomes
an isomorphism for all groups G. The point of this Meta-Conjecture 20.1 is that
one wants to compute the target HGn ({•}) and that the source HGn (EF (G)) is
easier to understand since it only involves the subgroups appearing in F . Given
a G-homology theory HG∗ (−), the point will be to choose F as small as possible.
If one takes F to be the family ALL of all subgroups, then EF (G) = {•} and the
Meta-Conjecture 20.1 is obviously true but gives no information.

20.2 Formulation of the Farrell-Jones and the Baum-

Connes Conjecture

Let R be a ring (with involution). We will describe in Example 20.15 the construc-
tion of G-homology theories which will be denoted

HG
n (−;KR), HG

n (−;L〈−∞〉R ) and HG
n (−;Ktop).

The main feature of these homology theories is that evaluated on the one point
space {•} (considered as a trivial G-space) we obtain the K- and L-theory of the
group ring RG, respectively the topological K-theory of the reduced C∗-algebra

Kn(RG) ∼= HG
n ({•};KR),

L〈−∞〉n (RG) ∼= HG
n ({•};L〈−∞〉R ) and

Kn(C∗r (G)) ∼= HG
n ({•};Ktop).

Let FIN be the family of finite subgroups and let VCYC be the family of
virtually cyclic subgroups.

Conjecture 20.3 (Farrell-Jones Conjecture for K- and L-theory). Let R be a ring
(with involution) and let G be a group. Then for all n ∈ Z the maps

AVCYC : HG
n (EVCYC(G);KR) → HG

n ({•};KR) ∼= Kn(RG);

AVCYC : HG
n (EVCYC(G);L〈−∞〉R ) → HG

n ({•};L〈−∞〉R ) ∼= L〈−∞〉n (RG),

which are induced by the projection EVCYC(G)→ {•}, are isomorphisms.

Conjecture 20.4 (Baum-Connes Conjecture). Let G be a group. Then for all n ∈ Z
the map

AFIN : HG
n (EFIN (G);Ktop)→ HG

n ({•};Ktop) ∼= Kn(C∗r (G))

induced by the projection EFIN (G)→ {•} is an isomorphism.

Roughly speaking, these conjectures yield a way to compute the various K−
and L-groups Kn(RG), L〈−∞〉n (RG) and Kn(C∗r (G)) from the knowledge of their
values Kn(RH), L〈−∞〉n (RH) and Kn(C∗r (H)), where H runs through all virtually
cyclic or finite subgroups of G.
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20.3 Equivariant Homology Theories

In order to understand the Meta-Conjecture 20.1 we have to explain the notion of
a G-homology theory. It will be the obvious extension of the notion of a homology
theory for CW -complexes to G-CW -complexes.

Fix a group G and an associative commutative ring Λ with unit. A G-
homology theory HG∗ with values in Λ-modules is a collection of covariant functors
HGn from the category of G-CW -pairs to the category of Λ-modules indexed by
n ∈ Z together with natural transformations

∂Gn (X,A) : HGn (X,A)→ HGn−1(A) := HGn−1(A, ∅)

for n ∈ Z such that the following axioms are satisfied:

(1) G-homotopy invariance
If f0 and f1 are G-homotopic maps (X,A) → (Y,B) of G-CW -pairs, then
HGn (f0) = HGn (f1) for n ∈ Z;

(2) Long exact sequence of a pair
Given a pair (X,A) of G-CW -complexes, there is a long exact sequence

. . .
HG

n+1(j)−−−−−→ HGn+1(X,A)
∂G

n+1−−−→ HGn (A)
HG

n (i)−−−−→ HGn (X)

HG
n (j)−−−−→ HGn (X,A)

∂G
n−−→ HGn−1(A)

HG
n−1(i)−−−−−→ . . . ,

where i : A→ X and j : X → (X,A) are the inclusions;

(3) Excision
Let (X,A) be a G-CW -pair and let f : A→ B be a cellular G-map of G-CW -
complexes. Equip (X ∪f B,B) with the induced structure of a G-CW -pair.
Then the canonical map (F, f) : (X,A)→ (X∪fB,B) induces for each n ∈ Z
an isomorphism

HGn (F, f) : HGn (X,A)
∼=−→ HGn (X ∪f B,B);

(4) Disjoint union axiom
Let {Xi | i ∈ I} be a family of G-CW -complexes. Denote by ji : Xi →∐
i∈I Xi the canonical inclusion. Then the map

⊕
i∈I
HGn (ji) :

⊕
i∈I
HGn (Xi)

∼=−→ HGn

(∐
i∈I

Xi

)

is bijective for each n ∈ Z.
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Of course a G-homology theory for the trivial group G = {1} is a homology
theory (satisfying the disjoint union axiom) in the classical non-equivariant sense.

If HG∗ is defined or considered only for proper G-CW -pairs (X,A), we call it
a proper G-homology theory HG∗ with values in Λ-modules.

The disjoint union axiom ensures that we can pass from finiteG-CW-complexes
to arbitrary ones using the following lemma.

Lemma 20.5. Let HG∗ be a G-homology theory. Let X be a G-CW -complex and
{Xi | i ∈ I} be a directed system of G-CW -subcomplexes directed by inclusion
such that X = ∪i∈IXi. Then for all n ∈ Z the natural map

colimi∈I HGn (Xi)
∼=−→ HGn (X)

is bijective.

Proof. Compare for example with [235, Proposition 7.53 on page 121], where the
non-equivariant case for I = N is treated. �

In all cases it will turn out and be important that we get actually for each
group G a homology theory HG∗ and that the various HG∗ are linked by a so called
induction structure. Let us axiomatize the situation.

Let α : H → G be a group homomorphism. Given an H-space X, define the
induction of X with α to be the G-space indαX which is the quotient of G ×X
by the right H-action (g, x) · h := (gα(h), h−1x) for h ∈ H and (g, x) ∈ G×X. If
α : H → G is an inclusion, we also write indGH X instead of indαX.

Definition 20.6 (Equivariant homology theory). A (proper) equivariant homology
theory H?

∗ with values in Λ-modules consists of a (proper) G-homology theory HG∗
with values in Λ-modules for each group G together with the following so called
induction structure: given a group homomorphism α : H → G and a H-CW -
pair (X,A) such that ker(α) acts freely on X, there are for each n ∈ Z natural
isomorphisms

indα : HHn (X,A)
∼=−→ HGn (indα(X,A)) (20.7)

satisfying

(1) Compatibility with the boundary homomorphisms
∂Gn ◦ indα = indα ◦∂Hn ;

(2) Functoriality
Let β : G → K be another group homomorphism such that ker(β ◦ α) acts
freely on X. Then we have for n ∈ Z

indβ◦α = HKn (f1) ◦ indβ ◦ indα : HHn (X,A)→ HKn (indβ◦α(X,A)),

where f1 : indβ indα(X,A)
∼=−→ indβ◦α(X,A), (k, g, x) 7→ (kβ(g), x) is the

natural K-homeomorphism;
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(3) Compatibility with conjugation
For n ∈ Z, g ∈ G and a (proper) G-CW -pair (X,A) the homomorphism
indc(g) : G→G : HGn (X,A)→ HGn (indc(g) : G→G(X,A)) agrees with HGn (f2) for
the G-homeomorphism f2 : (X,A) → indc(g) : G→G(X,A) which sends x to
(1, g−1x) in G×c(g) (X,A).

If H?
∗ is defined or considered only for proper G-CW -pairs (X,A), we call it

a proper equivariant homology theory H?
∗ with values in Λ-modules.

Example 20.8 (The Borel construction). Let K∗ be a homology theory for (non-
equivariant) CW -pairs with values in Λ-modules. Examples are singular homology,
oriented bordism theory or topological K-homology. Then we obtain two equiv-
ariant homology theories with values in Λ-modules by the following constructions

HGn (X,A) = Kn(G\X,G\A);
HGn (X,A) = Kn(EG×G (X,A)).

The second one is called the equivariant Borel homology associated to K. In both
cases HG∗ inherits the structure of a G-homology theory from the homology struc-
ture on K∗. Let a : H\X

∼=−→ G\(G×α X) be the homeomorphism sending Hx to
G(1, x). Define b : EH ×H X → EG×G G×α X by sending (e, x) to (Eα(e), 1, x)
for e ∈ EH, x ∈ X and Eα : EH → EG the α-equivariant map induced by α.
Induction for a group homomorphism α : H → G is induced by these maps a and
b. If the kernel ker(α) acts freely on X, the map b is a homotopy equivalence and
hence in both cases indα is bijective.

Example 20.9 (Equivariant bordism). Given a proper G-CW -pair (X,A), one can
define the G-bordism group ΩGn (X,A) as the abelian group of G-bordism classes
of G-maps f : (M,∂M) → (X,A) whose sources are oriented smooth manifolds
with orientation preserving cocompact proper smooth G-actions. The definition is
analogous to the one in the non-equivariant case. This is also true for the proof that
this defines a proper G-homology theory. There is an obvious induction structure
coming from induction of equivariant spaces. It is well-defined because of the
following fact. Let α : H → G be a group homomorphism. Let M be an oriented
smooth H-manifold with orientation preserving proper smooth H-action such that
H\M is compact and ker(α) acts freely. Then indαM is an oriented smooth G-
manifold with orientation preserving proper smooth G-action such that G\M is
compact. The boundary of indαM is indα ∂M .

In case of equivariant bordism one can see geometrically what the role of the
classifying spaces for families and the idea of the Meta Conjecture 20.1 is.

Namely, let F ⊆ FIN be a family. Then ΩGn (EF (G)) is given by the G-
bordism classes of n-dimensional oriented smooth G-manifolds with proper co-
compact orientation preserving smooth G-action whose isotropy groups belong to
F . In the case FIN = TR, one can identify ETR(G) = EG and taking the quotient
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space yields an isomorphism

ΩGn (ETR(G))
∼=−→ Ωn(BG)

to the non-equivariant bordism groups of BG. Now suppose that G is finite. Then
for a family F the assembly map

ΩGn (EF (G))→ ΩGn ({•})

is given by forgetting the condition that all isotropy groups of M belong to F .
It follows from the equivariant Chern character constructed in [154] that for the
family of cyclic subgroups CYC of the finite group G the assembly map yields
rationally an isomorphism

Q⊗Z ΩGn (ECYC(G))
∼=−→ Q⊗Z ΩGn ({•}).

20.4 The Construction of Equivariant Homology Theo-

ries from Spectra

Recall from Lemma 18.14 that a (non-equivariant) spectrum yields an associated
(non-equivariant) homology theory. In this section we explain how a covariant
functor GROUPOIDS→ SPECTRA defines an equivariant homology theory.

In the sequel C is a small category. Our main example is the orbit category
Or(G) of a group G whose objects are homogeneous G-spaces G/H and whose
morphisms are G-maps.

Definition 20.10. A covariant (contravariant) C-spaceX is a covariant (contravari-
ant) functor

X : C → SPACES.

A map between C-spaces is a natural transformation of such functors. Analogously
a pointed C-space is a functor from C to SPACES+ and a C-spectrum a functor
to SPECTRA.

Example 20.11. Let Y be a left G-space. Define the associated contravariant
Or(G)-space mapG(−, Y ) by

mapG(−, Y ) : Or(G)→ SPACES, G/H 7→ mapG(G/H, Y ) = Y H .

If Y is pointed then mapG(−, Y ) takes values in pointed spaces.

Let X be a contravariant and Y be a covariant C-space. Define their balanced
product to be the space

X ×C Y :=
∐

c∈ob(C)

X(c)× Y (c)/ ∼
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where ∼ is the equivalence relation generated by (xϕ, y) ∼ (x, ϕy) for all mor-
phisms ϕ : c → d in C and points x ∈ X(d) and y ∈ Y (c). Here xϕ stands for
X(ϕ)(x) and ϕy for Y (ϕ)(y). If X and Y are pointed, then one defines analo-
gously their balanced smash product to be the pointed space

X ∧C Y =
∨

c∈ob(C)

X(c) ∧ Y (c)/ ∼ .

In [64] the notation X ⊗C Y was used for this space. Doing the same construction
level-wise one defines the balanced smash product X∧CE of a contravariant pointed
C-space and a covariant C-spectrum E.

The proof of the next result is analogous to the non-equivariant case. Details
can be found in [64, Lemma 4.4], where also cohomology theories are treated.

Lemma 20.12 (Constructing G-Homology Theories). Let E be a covariant Or(G)-
spectrum. It defines a G-homology theory HG

∗ (−;E) by

HG
n (X,A;E) = πn

(
mapG

(
−, (X+ ∪A+ cone(A+))

)
∧Or(G) E

)
.

In particular we have

HG
n (G/H;E) = πn(E(G/H)).

Recall that we seek an equivariant homology theory and not only a G-
homology theory. If the Or(G)-spectrum in Lemma 20.12 is obtained from a
GROUPOIDS-spectrum in a way we will now describe, then automatically we
obtain the desired induction structure.

For a G-set S we denote by GG(S) its associated transport groupoid. Its
objects are the elements of S. The set of morphisms from s0 to s1 consists of those
elements g ∈ G which satisfy gs0 = s1. Composition in GG(S) comes from the
multiplication in G. Thus we obtain for a group G a covariant functor

GG : Or(G)→ GROUPOIDSinj, G/H 7→ GG(G/H). (20.13)

A functor of small categories F : C → D is called an equivalence if there exists
a functor G : D → C such that both F ◦ G and G ◦ F are naturally equivalent to
the identity functor. This is equivalent to the condition that F induces a bijection
on the set of isomorphisms classes of objects and for any objects x, y ∈ C the map
morC(x, y)→ morD(F (x), F (y)) induced by F is bijective.

Lemma 20.14 (Constructing Equivariant Homology Theories). Consider a covari-
ant GROUPOIDSinj-spectrum

E : GROUPOIDSinj → SPECTRA.

Suppose that E respects equivalences, i.e. it sends an equivalence of groupoids to
a weak equivalence of spectra. Then E defines an equivariant homology theory
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H?
∗(−;E), whose underlying G-homology theory for a group G is the G-homology

theory associated to the covariant Or(G)-spectrum E◦GG : Or(G)→ SPECTRA in
the previous Lemma 20.12, i.e.

HG
∗ (X,A;E) = HG

∗ (X,A;E ◦ GG).

In particular we have

HG
n (G/H;E) ∼= HH

n ({•};E) ∼= πn(E(I(H))),

where I(H) denotes H considered as a groupoid with one object. The whole con-
struction is natural in E.

Proof. We have to specify the induction structure for a homomorphism α : H → G.
We only sketch the construction in the special case where α is injective and A = ∅.
The details of the full proof can be found in [212, Theorem 2.10 on page 21].

The functor induced by α on the orbit categories is denoted in the same way

α : Or(H)→ Or(G), H/L 7→ indα(H/L) = G/α(L).

There is an obvious natural equivalence of functors Or(H)→ GROUPOIDSinj

T : GH → GG ◦ α.

Its evaluation at H/L is the equivalence of groupoids GH(H/L) → GG(G/α(L))
which sends an object hL to the object α(h)α(L) and a morphism given by h ∈ H
to the morphism α(h) ∈ G. The desired isomorphism

indα : HH
n (X;E ◦ GH)→ HG

n (indαX;E ◦ GG)

is induced by the following map of spectra

mapH(−, X+) ∧Or(H) E ◦ GH id∧E(T )−−−−−→ mapH(−, X+) ∧Or(H) E ◦ GG ◦ α
'←− (α∗mapH(−, X+)) ∧Or(G) E ◦ GG '←− mapG(−, indαX+) ∧Or(G) E ◦ GG.

Here α∗mapH(−, X+) is the pointed Or(G)-space which is obtained from the
pointed Or(H)-space mapH(−, X+) by induction, i.e. by taking the balanced prod-
uct over Or(H) with the Or(H)-Or(G) bimodule morOr(G)(??, α(?)) [64, Defini-
tion 1.8]. Notice that E ◦ GG ◦ α is the same as the restriction of the Or(G)-
spectrum E ◦ GG along α which is often denoted by α∗(E ◦ GG) in the literature
[64, Definition 1.8]. The second map is given by the adjunction homeomorphism of
induction α∗ and restriction α∗ (see [64, Lemma 1.9]). The third map is the home-
omorphism of Or(G)-spaces which is the adjoint of the obvious map of Or(H)-
spaces mapH(−, X+) → α∗mapG(−, indαX+) whose evaluation at H/L is given
by indα. �
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Example 20.15 (The equivariant homology theories associated toK- and L-theory).

We have constructed in Theorem 18.24 spectra KR, L〈j〉R and Ktop. Because of
Lemma 20.14 they define equivariant homology theories H?

∗(−;KR), H?
∗(−;L〈j〉R )

and H?
∗(−;Ktop). These are the ones which we have promised in Subsection 20.2

and appear in the formulations of the Farrell-Jones Conjecture 20.3 and the Baum-
Connes Conjecture 20.4.
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Chapter 21

The Farrell-Jones Conjecture
(L.)

We have already stated the Farrell-Jones Conjecture 20.3 which says that the
assembly maps

AVCYC : HG
n (EVCYC(G);KR) → HG

n ({•};KR) ∼= Kn(RG);

AVCYC : HG
n (EVCYC(G);L〈−∞〉R ) → HG

n ({•};L〈−∞〉R ) ∼= L〈−∞〉n (RG),

are isomorphisms for n ∈ Z. In this section we discuss its meaning, give some
motivation and evidence for it and discuss some special cases like torsionfree groups
and R = Z when the statement becomes much simpler. We also explain why it
implies the Borel Conjecture 1.10. Its connection to the Novikov Conjecture 1.2
will be explained in Section 23.1.

21.1 The Bass-Heller Swan Decomposition in Arbitrary

Dimensions

We have already discussed the case n = 1 of the following result in Section 5.4.

Theorem 21.1 (Bass-Heller-Swan Decomposition). The so called Bass-Heller-Swan-
decomposition, also known as the Fundamental Theorem of algebraic K-theory,
computes the algebraic K-groups of R[Z] in terms of the algebraic K-groups and
Nil-groups of R for all n ∈ Z:

Kn(R[Z]) ∼= Kn−1(R)⊕Kn(R)⊕NKn(R)⊕NKn(R).

The group NKn(R) is defined as the cokernel of the split injection Kn(R)→
Kn(R[t]). It can be identified with the cokernel of the split injection Kn−1(R)→
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Kn−1(Nil(R)). Here Kn(Nil(R)) denotes the K-theory of the exact category of
nilpotent endomorphisms of finitely generated projective R-modules. For negative
n it is defined with the help of Bass’ contracting functor [19] (see also [48]). The
groups are known as Nil-groups and often denoted Niln−1(R).

For proofs of these facts and more information the reader should consult [19,
Chapter XII], [20], [100, Theorem on page 236], [192, Corollary in §6 on page 38],
[208, Theorems 3.3.3 and 5.3.30], [225, Theorem 9.8] and [234, Theorem 10.1].

The Nil-terms NKn(R) seem to be hard to compute. For instance NK1(R)
either vanishes or is infinitely generated as an abelian group [74]. For more infor-
mation about Nil-groups see for instance [57], [56], [109], [251] and [252].

Remark 21.2 (Negative K-groups must appear in the Farrell-Jones Conjecture).
The Bass-Heller-Swan decomposition (see Theorem 21.1) shows that it is necessary
to formulate the Farrell-Jones Conjecture 20.3 with the non-connective K-theory
spectrum. Namely, Kn(RG) can be affected by Km-groups for arbitrary m ≤ n.

21.2 Decorations in L-Theory and the Shaneson Split-

ting

L-groups are designed as obstruction groups for surgery problems. They come with
so called decorations which reflect what kind of surgery problem one is interested
in, up to simple homotopy equivalence, up homotopy equivalence or a non-compact
version. We will deal with the quadratic algebraic L-groups and denote them by
L
〈j〉
n (R). Here n ∈ Z and we call j ∈ {−∞} q {j ∈ Z | j ≤ 2} the decoration. The

decorations j = 0, 1 correspond to the decorations p, h appearing in the literature
(see also Section 17.2). The decoration j = 2 corresponds to the decoration s
provided R = Z and one uses the subgroup given by the trivial units {±g |
g ∈ G} ⊆ K1(ZG) in the definition of the corresponding L-group. The L-groups
L
〈j〉
n (R) are 4-periodic, i.e. L〈j〉n (R) ∼= L

〈j〉
n+4(R) for n ∈ Z.

There are forgetful maps L〈j+1〉
n (R) → L

〈j〉
n (R). The group L

〈−∞〉
n (R) is de-

fined as the colimit over these maps. For details the reader should consult [195],
[201].

For j ≤ 1 there is the so called Rothenberg sequence [198, Proposition 1.10.1
on page 104], [201, 17.2].

. . .→ L〈j+1〉
n (R)→ L〈j〉n (R)→ Ĥn(Z/2; K̃j(R))

→ L
〈j+1〉
n−1 (R)→ L

〈j〉
n−1(R)→ . . . . (21.3)

Here Ĥn(Z/2; K̃j(R)) is the Tate cohomology of the group Z/2 with coefficients
in the Z[Z/2]-module K̃j(R). The involution on K̃j(R) comes from the involution
on R. Note that Tate-cohomology groups of the group Z/2 are always annihilated
by multiplication with 2. In particular L〈j〉n (R)[ 12 ] = L

〈j〉
n (R) ⊗Z Z[ 12 ] is always
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independent of j. To get the passage from s to h in the special case R = Z one
must use for the Tate-cohomology term Ĥn(Z/2;Wh(G)).

The Bass-Heller-Swan decomposition (see Theorem 21.1) has the following
analogue for the algebraic L-groups.

Theorem 21.4 (Shaneson splitting). There is an explicit isomorphism, called Shane-
son splitting [221]

L〈j〉n (R[Z]) ∼= L
〈j−1〉
n−1 (R)⊕ L〈j〉n (R).

Here for the decoration j = −∞ one has to interpret j − 1 as −∞.

Remark 21.5 (The decoration 〈−∞〉must appear in the Farrell-Jones Conjecture).
The Shaneson splitting explains why in the formulation of the L-theoretic Farrell-
Jones Conjecture 20.3 we use the decoration j = −∞. Namely, the Shaneson-
splitting does not mix two different decorations only in the case j = −∞. In fact,
for the decorations p, h and s there are counterexamples even for R = Z (see [88]).

Remark 21.6 (UNil-Terms). Even though in the above Shaneson splitting (see
Theorem 21.4) there are no terms analogous to the Nil-terms in the Bass-Heller-
Swan decomposition (see Theorem 21.1), Nil-phenomena do also occur in L-theory,
as soon as one considers amalgamated free products. The corresponding groups
are the UNil-groups. They vanish if one inverts 2 [43]. For more information about
the UNil-groups we refer to [13] [40], [41], [57], [60], [75], [202].

Remark 21.7. (The Shaneson splitting and the Novikov Conjecture for G = Zn).
Rationally all the decorations of the L-groups do not matter because of the Rothen-
berg sequence (21.3). Thus rationally the Shaneson splitting gives an isomorphism

Lm(G× Z) ∼= Lm(G)⊕ Lm−1(G)

if we write Z[G×Z] as RG for R = Z[G] and use the notation Lm(G) = Lhm(Z[G]).
Since h∗(X) introduced in (9.2) is a homology theory, there is for all m ∈ Z

a splitting
hm(X × S1) ∼= hm(X)⊕ hm−1(X).

These two splittings are compatible with the assembly maps defined in (9.4), i.e.
we get for all m ∈ Z

AG×Z
m = AGm ⊕AGm−1.

This implies that AG×Z
m is bijective for all m ∈ Z if and only if AGm is bijective

for all m ∈ Z. It is well-known that AGm is bijective for all m ∈ Z if G is the
trivial group. We conclude that AGm is bijective for all m ∈ Z if G = Zn for some
n ≥ 0. This implies the Novikov Conjecture 1.2 for G = Zn for all n ≥ 0 by
Proposition 15.4.
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21.3 Changing the Family

We next try to explain the role of the family of subgroups.

Theorem 21.8 (Transitivity Principle). Let H?
∗(−) be an equivariant homology the-

ory in the sense of Definition 20.6. Suppose F ⊆ F ′ are two families of subgroups
of G. Suppose that K ∩H ∈ F for each K ∈ F and H ∈ F ′ (this is automatic if
F is closed under taking subgroups). Let N be an integer. If for every H ∈ F ′ and
every n ≤ N the assembly map

AF∩H→ALL : HHn (EF∩H(H)) → HHn ({•})

is an isomorphism, then for every n ≤ N the relative assembly map

AF→F ′ : HGn (EF (G)) → HGn (EF ′(G))

is an isomorphism.

Proof. If we equip EF (G)×EF ′(G) with the diagonal G-action, it is a model for
EF (G). Now the claim follows from the more general Lemma 21.9 below applied
to the special case Z = EF ′(G). �

Lemma 21.9. Let H?
∗ be an equivariant homology theory with values in Λ-modules.

Let G be a group and let F a family of subgroups of G. Let Z be a G-CW -complex.
Consider N ∈ Z ∪ {∞}. For H ⊆ G let F ∩ H be the family of subgroups of H
given by {K ∩ H | K ∈ F}. Suppose for each H ⊆ G, which occurs as isotropy
group in Z, that the map induced by the projection pr: EF∩H(H)→ {•}

HHn (pr) : HHn (EF∩H(H))→ HHn ({•})

is bijective for all n ∈ Z, n ≤ N .
Then the map induced by the projection pr2 : EF (G)× Z → Z

HGn (pr2) : HGn (EF (G)× Z) → HGn (Z)

is bijective for n ∈ Z, n ≤ N .

Proof. We first prove the claim for finite-dimensional G-CW -complexes by induc-
tion over d = dim(Z). The induction beginning dim(Z) = −1, i.e. Z = ∅, is trivial.
In the induction step from (d− 1) to d we choose a G-pushout∐

i∈Id
G/Hi × Sd−1 −−−−→ Zd−1y y∐

i∈Id
G/Hi ×Dd −−−−→ Zd

If we cross it with EF (G), we obtain another G-pushout of G-CW -complexes.
The various projections induce a map from the Mayer-Vietoris sequence of the
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latter G-pushout to the Mayer-Vietoris sequence of the first G-pushout. By the
Five-Lemma it suffices to prove that the following maps

HGn (pr2) : HGn

(
EF (G)×

∐
i∈Id

G/Hi × Sd−1

)
→ HGn

(∐
i∈Id

G/Hi × Sd−1

)
;

HGn (pr2) : HGn (EF (G)× Zd−1) → HGn (Zd−1);

HGn (pr2) : HGn

(
EF (G)×

∐
i∈Id

G/Hi ×Dd

)
→ HGn

(∐
i∈Id

G/Hi ×Dd

)
are bijective for n ∈ Z, n ≤ N . This follows from the induction hypothesis for the
first two maps. Because of the disjoint union axiom and G-homotopy invariance
of H?

∗ the claim follows for the third map if we can show for any H ⊆ G which
occurs as isotropy group in Z that the map

HGn (pr2) : HGn (EF (G)×G/H) → HG(G/H) (21.10)

is bijective for n ∈ Z, n ≤ N . The G-map

G×H resHG EF (G)→ G/H × EF (G) (g, x) 7→ (gH, gx)

is a G-homeomorphism where resHG denotes the restriction of the G-action to an
H-action. Obviously resHG EF (G) is a model for EF∩H(H). We conclude from the
induction structure that the map (21.10) can be identified with the map

HGn (pr) : HHn (EF∩H(H)) → HH({•})

which is bijective for all n ∈ Z, n ≤ N by assumption. This finishes the proof in the
case that Z is finite-dimensional. The general case follows by a colimit argument
using Lemma 20.5. �

21.4 The Farrell-Jones Conjecture for Torsionfree Groups

Recall that R is Noetherian if any submodule of a finitely generated R-module is
again finitely generated. It is called regular if it is Noetherian and any R-module
has a finite-dimensional projective resolution. Any principal ideal domain such as
Z or a field is regular.

The Farrell-Jones Conjecture for algebraic K-theory reduces for a torsionfree
group to the following conjecture provided that R is regular.

Conjecture 21.11 (Farrell-Jones Conjecture for Torsionfree Groups). Let G be a
torsionfree group.

(1) Let R be a regular ring. Then the assembly map for the trivial family TR

Hn(BG;K(R)) = HG
n (ETR(G);KR) ATR−−−→ Kn(RG)

is an isomorphism for n ∈ Z. In particular Kn(RG) = 0 for n ≤ −1;
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(2) The assembly map for the trivial family TR

Hn(BG;L〈−∞〉(R)) = HG
n (ETR(G);L〈−∞〉R (R)) ATR−−−→ L〈−∞〉n (RG)

is an isomorphism for n ∈ Z.

This follows from the Transitivity Principle 21.8, the Bass-Heller-Swan de-
composition (see Theorem 21.1), the Shaneson splitting 21.4 and the facts that
for a regular ring R we have

Kn(R) = 0 for n ≤ −1;
Nil(R) = 0 for all n ∈ Z;

and we get natural isomorphisms

HG
n (BZ;K(R)) ∼= Kn(R)⊕Kn−1(R);

HG
n (BZ;L〈−∞〉(R)) ∼= L〈−∞〉n (R)⊕ L〈−∞〉n−1 (R).

Remark 21.12 (Kn(ZG)⊗Z Q for torsionfree groups). Note that the Farrell-Jones
Conjecture for Torsionfree Groups Conjecture 21.11 can only help us to explicitly
compute the K-groups of RG in cases where we know enough about the K-groups
of R. We obtain no new information about the K-theory of R itself. However,
already for very simple rings the computation of their algebraic K-groups is an
extremely hard problem.

It is known that the groups Kn(Z) are finitely generated abelian groups [191].
Due to Borel [28] we know that

Kn(Z)⊗Z Q ∼=

 Q if n = 0;
Q if n = 4k + 1 with k ≥ 1;
0 otherwise.

Since Z is regular we know that Kn(Z) vanishes for n ≤ −1. Moreover, K0(Z) ∼=
Z and K1(Z) ∼= {±1}, where the isomorphisms are given by the rank and the
determinant. One also knows that K2(Z) ∼= Z/2, K3(Z) ∼= Z/48 [147] and K4(Z) ∼=
0 [204]. Finite fields belong to the few rings where one has a complete and explicit
knowledge of all K-groups [190]. We refer the reader for example to [132], [177],
[205], and Soulé’s article in [150] for more information about the algebraic K-
theory of the integers or more generally of rings of integers in number fields.

Because of Borel’s calculation and Theorem 18.28 the rationalization of the
left hand side described in the Farrell-Jones Conjecture for Torsionfree Groups
and K-theory 21.11 (1) specializes for R = Z to

Hn(BG;K(Z))⊗Z Q ∼= Hn(BG; Q)⊕
∞⊕
k=1

Hn−(4k+1)(BG; Q), (21.13)

and it is predicted that this Q-module is isomorphic to Kn(ZG) ⊗Z Q for a tor-
sionfree group G.
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Remark 21.14 (Ln(ZG) ⊗Z Q for torsionfree groups). The corresponding calcu-
lation in L-theory is much simpler. If we rationalize, the decoration j does not
matter and one knows that L〈j〉n (Z)⊗Z Q is Q for n ≡ 0 mod 4 and vanishes oth-
erwise. By Theorem 18.28 the rationalization of the left hand side described in the
Farrell-Jones Conjecture for Torsionfree Groups and L-theory 21.11 (2) specializes
for R = Z to

Hn(BG;L〈−∞〉(Z))⊗Z Q ∼=
⊕
k∈Z

Hn−4k(BG; Q), (21.15)

and it is predicted that this Q-module is isomorphic to L
〈−∞〉
n (ZG) ⊗Z Q for a

torsionfree group G.

An easy spectral sequence argument shows that for R = Z the Farrell-Jones
Conjecture for Torsionfree Groups and K-Theory 21.11 (1) reduces for n ≤ 1 to

Conjecture 21.16 (Vanishing of low dimensional K-theory for torsionfree groups
and integral coefficients). For every torsionfree group G we have

Kn(ZG) = 0 for n ≤ −1

K̃0(ZG) = 0;
Wh(G) = 0.

Remark 21.17 (Finiteness Obstructions). Let X be a CW -complex. It is called
finite if it consists of finitely many cells. It is called finitely dominated if there is a
finite CW -complex Y together with maps i : X → Y and r : Y → X such that r◦ i
is homotopic to the identity on X. The fundamental group of a finitely dominated
CW -complex is always finitely presented.

Wall’s finiteness obstruction of a connected finitely dominated CW -complex
X is a certain element õ(X) ∈ K̃0(Zπ1(X)). A connected finitely dominated
CW -complex X is homotopy equivalent to a finite CW -complex if and only if
õ(X) = 0 ∈ K̃0(Zπ1(X)). Every element in K̃0(ZG) can be realized as the finite-
ness obstruction õ(X) of a connected finitely dominated CW -complex X with
G = π1(X), provided that G is finitely presented. This implies that for a finitely
presented group G the vanishing of K̃0(ZG) (as predicted in Conjecture 21.16 for
torsionfree groups) is equivalent to the statement that every connected finitely
dominated CW -complex X with G ∼= π1(X) is homotopy equivalent to a finite
CW -complex. For more information about the finiteness obstruction we refer for
instance to [89], [90], [151], [175], [199], [206], [241], [246] and [247].

Remark 21.18 (The Farrell-Jones Conjecture and the s-Cobordism Theorem).
The s-Cobordism Theorem 7.1 tells us that the vanishing of the Whitehead group
(as predicted in Conjecture 21.16 for torsionfree groups) has the following geomet-
ric interpretation. For a finitely presented group G the vanishing of the White-
head group Wh(G) is equivalent to the statement that each h-cobordism over a
closed connected manifold M of dimension dim(M) ≥ 5 with fundamental group
π1(M) ∼= G is trivial.
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21.5 The Farrell-Jones Conjecture and the Borel Con-

jecture

The Borel Conjecture 1.10 can be reformulated in the language of surgery theory
to the statement that the topological structure set Stop(M) of an aspherical closed
topological manifold M consists of a single point. This set is the set of equivalence
classes of homotopy equivalences f : M ′ → M with a topological closed manifold
as source and M as target under the equivalence relation, for which f0 : M0 →M
and f1 : M1 → M are equivalent if there is a homeomorphism g : M0 → M1 such
that f1 ◦ g and f0 are homotopic.

The exact surgery sequence of a closed orientable topological manifold M of
dimension n ≥ 5 is the exact sequence

. . .→ Nn+1(M × [0, 1],M × {0, 1}) σ−→ Lsn+1(Zπ1(M)) ∂−→ Stop(M)
η−→ Nn(M) σ−→ Lsn(Zπ1(M)),

which extends infinitely to the left. It is the basic tool for the classification of topo-
logical manifolds. (There is also a smooth version of it.) The map σ appearing in
the sequence sends a normal map of degree one to its surgery obstruction. This
map can be identified with the version of the L-theory assembly map where one
works with the 1-connected cover Ls(Z)〈1〉 of Ls(Z). The mapHk(M ;Ls(Z)〈1〉)→
Hk(M ;Ls(Z)) is injective for k = n and an isomorphism for k > n. Because of
the K-theoretic assumptions and the Rothenberg sequence (21.3) we can replace
the s-decoration with the 〈−∞〉-decoration. Therefore the Farrell-Jones Conjec-
ture 21.11 implies that the maps σ : Nn(M) → Lsn(Zπ1(M)) and Nn+1(M ×
[0, 1],M × {0, 1}) σ−→ Lsn+1(Zπ1(M)) are injective respectively bijective and thus
by the surgery sequence that Stop(M) is a point and hence the Borel Conjecture
1.10 holds for M . More details can be found e.g. in [91, pages 17,18,28], [200,
Chapter 18]. For more information about surgery theory we refer for instance to
[33], [38], [39], [86], [87], [121], [133], [153], [194], [228], [227], and [249].

21.6 The Passage from FIN to VCYC
The following information about virtually cyclic groups is useful. Its elementary
proof can be found in [81].

Lemma 21.19. If G is an infinite virtually cyclic group then we have the following
dichotomy.

(I) Either G admits a surjection with finite kernel onto the infinite cyclic group
Z, or

(II) G admits a surjection with finite kernel onto the infinite dihedral group Z/2∗
Z/2.
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The next result is due to Bartels [14].

Theorem 21.20 (Passage from FIN to VCYC). (1) For every group G, every ring
R and every n ∈ Z the relative assembly map

AFIN→VCYC : HG
n (EFIN (G);KR)→ HG

n (EVCYC(G);KR)

is split-injective.

(2) Suppose R is such that K−i(RV ) = 0 for all virtually cyclic subgroups V of
G and for sufficiently large i (for example R = Z will do). Then the relative
assembly map

AFIN→VCYC : HG
n (EFIN (G);L〈−∞〉R )→ HG

n (EVCYC(G);L〈−∞〉R )

is split-injective.

Combined with the Farrell-Jones Conjectures we obtain that the homology
groupHG

n (EFIN (G);KR) is a direct summand inKn(RG). It is much better under-
stood than the remaining summand HG

n (EVCYC(G), EFIN (G);KR). This remaining
summand is the one which plays the role of the Nil-terms for a general group. It
is known that for R = Z the negative dimensional Nil-groups which occur for
virtually cyclic groups vanish [81]. For R = Z they vanish rationally, in dimension
0 by [59] and in higher dimensions by [139]. For more information see also [58].
This implies

Lemma 21.21. We have

HG
n (EVCYC(G), EFIN (G);KZ) = 0 for n < 0;

HG
n (EVCYC(G), EFIN (G);KZ)⊗Z Q = 0 for all n ∈ Z.

Lemma 21.22. For every group G, every ring R with involution, every decoration
j and all n ∈ Z the relative assembly map

AFIN→VCYC : HG
n (EFIN (G);L〈j〉R )[

1
2
]→ HG

n (EVCYC(G);L〈j〉R )[
1
2
]

is an isomorphism.

Proof. According to the Transitivity Principle it suffices to prove the claim for
a virtually cyclic group. Now proceed as in the proof of Lemma 21.24 using the
exact sequences in [42] and the fact that the UNil-terms appearing there vanish
after inverting two [42]. �

Remark 21.23 (Rationally FIN suffices for the Farrell-Jones Conjecture). Hence
the Farrell-Jones Conjecture 20.3 predicts that the map

AFIN ⊗Z idQ : HG
n (EFIN (G);KZ)⊗Z Q→ Kn(ZG)⊗Z Q
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is always an isomorphism and that for every decoration j the assembly map

AFIN [
1
2
] : HG

n (EFIN (G);L〈j〉R )[
1
2
]→ L〈j〉n (RG)[

1
2
]

is an isomorphism.

Lemma 21.24. Let R be a regular ring with Q ⊆ R, for instance a field of charac-
teristic zero.

(1) Then for each group G the relative assembly map

AFIN⊆VCYC : HG
n (EFIN (G);KR) → HG

n (EVCYC(G);KR)

is bijective for all n ∈ Z.

(2) If the Farrell-Jones Conjecture 20.3 is true for G and R, then the assembly
map

AFIN : HG
n (EFIN (G);KR) → Kn(RG)

is bijective for all n ∈ Z.

Proof. (1) We first show that RH is regular for a finite group H. Since R is
Noetherian and H is finite, RH is Noetherian. It remains to show that every
RH-module M has a finite dimensional projective resolution. By assumption M
considered as an R-module has a finite dimensional projective resolution. If one
applies RH ⊗R − this yields a finite dimensional RH-resolution of RH ⊗R resM .
Since |H| is invertible, the RH-module M is a direct summand of RH ⊗R resM
and hence has a finite dimensional projective resolution.

Because of the Transitivity Principle 21.8, it suffices to prove for any virtually
finite cyclic group V that

AFIN : HV
n (EFIN (V );KR) → Kn(RV )

is bijective. Because of Lemma 21.19 we can assume that either V ∼= K1 ∗H K2 or
V ∼= H o Z with finite groups H, K1 and K2. From [244] we obtain in both cases
long exact sequences involving the algebraic K-theory of the group rings of H,
K1, K2 and V and also additional Nil-terms. However, in both cases the Nil-terms
vanish if RH is a regular ring (compare Theorem 4 on page 138 and the Remark
on page 216 in [244]). Thus we get long exact sequences

. . .→ Kn(RH)→ Kn(RH)→ Kn(RV )→ Kn−1(RH)→ Kn−1(RH)→ . . .

and

. . .→ Kn(RH)→ Kn(RK1)⊕Kn(RK2)→ Kn(RV )
→ Kn−1(RH)→ Kn−1(RK1)⊕Kn−1(RK2)→ . . .
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One obtains analogous exact sequences for the sources of the various assembly
maps from the fact that the sources are equivariant homology theories and one
can find specific models for EFIN (V ). For instance in the case V ∼= K1 ∗H K2 a
specific model is given by the V -pushout

V/H × {0, 1} −−−−→ V/K1 q V/K2y y
V/H × [0, 1] −−−−→ EFIN (V )

and in the case V ∼= H o Z a model for EFIN (V ) is given by EZ considered as V
space by the obvious epimorphism V → Z. These sequences are compatible with
the assembly maps. The assembly maps for the finite groups H, K1 and K2 are
bijective. Now a Five-Lemma argument shows that also the one for V is bijective.
(2) This follows from (1). �

We obtain a covariant functor Kq(R?) from the orbit category Or(G) to the
category of abelian groups as follows. It sends an object G/H to Kq(RH). A
morphisms G/H → G/K can be written as gH → gg0K for some g0 ∈ G with
g−1
0 Hg0 ⊆ K. Let K0(RH) → K0(RK) be the homomorphisms induced by the

group homomorphism H → K,h 7→ g−1
0 hg0. This is independent of the choice of g0

since inner automorphisms of K induce the identity on Kq(RK). Let Or(G;FIN )
be the full subcategory of Or(G) consisting of objects G/H with finite H.

Lemma 21.25. (1) Let R be a regular ring with Q ⊆ R. Suppose that the Farrell-
Jones Conjecture 20.3 for algebraic K-theory holds for the group G and the
coefficient ring R. Then the canonical map

a : colimG/H∈Or(G;FIN ) K0(RH) → K0(RG)

is bijective.

(2) Suppose that the Farrell-Jones Conjecture 20.3 holds for algebraic K-theory
for the group G and the coefficient ring R = Z. Then

K−n(ZG) = 0 for n ≥ 2,

and the map

a : colimG/H∈Or(G;FIN )K−1(ZH) → K−1(ZG)

is an isomorphism.

Proof. (1) By Lemma 21.24 the assembly map

AFIN : HG
0 (EFIN (G);KR) → K0(RG)
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is bijective. There is an equivariant version of the Atiyah-Hirzebruch spectral se-
quence converging to HG

p+q(EFIN (G);KR) whose E2
p,q-term is given by the p-th

Bredon homology H
Or(G)
p (EFIN (G);Kq(R?)) with coefficients in the covariant

functor Kq(R?). Since for a finite group RH is regular, Kq(RH) = 0 for q ≤ −1.
Hence the edge homomorphism in the equivariant Atiyah-Hirzebruch spectral se-
quence yields an isomorphism

H
Or(G)
0 (EFIN (G);K0(R?))

∼=−→ HG
0 (EFIN (G);KR).

Its composition with the assembly map HG
0 (EFIN (G);KR) → K0(RG) can be

identified with the map a : colimG/H∈Or(G;FIN ) K0(RH) → K0(RG).
(2) This is proven analogous to assertion (1) using Lemma 21.21 and the fact that
Kn(Z) = 0 for n ≤ −1 holds since Z is regular. �

A systematically study how small one can choose the family appearing in
the assembly maps of the Farrell-Jones Conjecture 20.3 and the Baum-Connes
Conjecture 20.4 is presented in [16].
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The Baum-Connes Conjecture
(L.)

We have already stated the Baum-Connes Conjecture 20.4. In this section we
discuss its meaning, give some motivation and evidence for it.

22.1 Index Theoretic Interpretation of the Baum-Connes

Assembly Map

We have already explained in Section 21.5 that the Farrell-Jones assembly map for
L-theory has a surgery theoretic interpretation which allows to deduce the Borel
Conjecture 1.10 from the Farrell-Jones Conjecture 20.3. We want to explain briefly
that the Baum-Connes assembly map

AFIN : HG
n (EF (G);Ktop) → Kn(C∗r (G)) (22.1)

has an index theoretic interpretation. Recall that the Baum-Connes Conjecture 20.4
predicts that it is bijective for all n ∈ Z.

We begin with a discussion of the target of the Baum-Connes assembly map.
Let B(l2(G)) denote the bounded linear operators on the Hilbert space l2(G) whose
orthonormal basis is G. The reduced complex group C∗-algebra C∗r (G) is the closure
in the norm topology of the image of the regular representation CG → B(l2(G)),
which sends an element u ∈ CG to the (left) G-equivariant bounded operator
l2(G)→ l2(G) given by right multiplication with u. In particular one has natural
inclusions

CG ⊆ C∗r (G) ⊆ B(l2(G))G ⊆ B(l2(G)).

It is essential to use the reduced group C∗-algebra in the Baum-Connes Conjecture,
there are counterexamples for the version with the maximal group C∗-algebra. The
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topological K-groups Kn(A) of a C∗-algebra A are 2-periodic. Whereas K0(A)
coincides with the algebraically defined K0-group, the other groups Kn(A) take
the topology of the C∗-algebra A into account, for instanceKn(A) = πn−1(GL(A))
for n ≥ 1. For information about C∗-algebras and their topological K-theory we
refer for instance to [26], [55], [62], [113], [143], [178], [215] and [250].

The target of the Baum-Connes assembly map HG
n (EF (G);Ktop) can be

identified with the equivariant K-homology KG
n (EFIN (G)) which is defined in

terms of equivariant Kasparov KK-theory (see [124]). An element in dimension
n = 0 can be interpreted as a pair [M,P ∗] which consists of a proper smooth
G-manifold M with G-invariant Riemannian metric together with an elliptic G-
complex P ∗ of bounded linear G-equivariant differential operators of order 1 [23].
To such a pair (M,P ∗) one can assign an index indC∗r (G)(M,P ∗) in K0(C∗r (G))
[174]. This is the image of the element in KG

0 (EFIN (G)) represented by (M,P ∗)
under the original Baum-Connes assembly map. The original Baum-Connes as-
sembly map has been identified with the one defined in these notes in [107] using
the universal characterization of the assembly map of [64].

22.2 The Baum-Connes Conjecture for Torsionfree Groups

We denote by K∗(Y ) the complex K-homology of a topological space Y and by
K∗(C∗r (G)) the (topological) K-theory of the reduced group C∗-algebra. More ex-
planations will follow below. If G is torsionfree, the families TR and FIN coincide.
Hence the Baum-Connes Conjecture 20.4 reduces for a torsionfree group to the
following statement.

Conjecture 22.2 (Baum-Connes Conjecture for Torsionfree Groups). Let G be a
torsionfree group. Then the Baum-Connes assembly map for the trivial family TR

Kn(BG) = Hn(BG;Ktop(C)) = HG
n (ETR(G);Ktop)→ Kn(C∗r (G))

is bijective for all n ∈ Z.

Complex K-homology K∗(Y ) is the homology theory associated to the topo-
logical (complex) K-theory spectrum Ktop, which is often denoted BU and has
been introduced in Example 18.16 and can also be written asK∗(Y ) = H∗(Y ;Ktop).

Remark 22.3 (Kn(C∗r (G))⊗ZQ for torsionfree groups). One knows thatKn(C∗r (G))⊗Z
Q is Q for even n and vanishes for n odd. By Theorem 18.28 the rationalization
of the left hand side described in the Baum-Connes Conjecture for Torsionfree
Groups 22.2 is

Hn(BG;Ltop(C))⊗Z Q ∼=
⊕
k∈Z

Hn−2k(BG; Q), (22.4)

and it is predicted that this Q-module is isomorphic toKn(C∗r (G)) for a torsionfree
group G.
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22.3 The Trace Conjecture in the Torsionfree Case

The standard trace

trC∗r (G) : C∗r (G) → C (22.5)

sends an element f ∈ C∗r (G) ⊆ B(l2(G)) to 〈f(1), 1〉l2(G). Applying the trace to
idempotent matrices yields a homomorphism

trC∗r (G) : K0(C∗r (G))→ R.

The following conjecture is taken from [21, page 21].

Conjecture 22.6 (Trace Conjecture for Torsionfree Groups). For a torsionfree
group G the image of

trC∗r (G) : K0(C∗r (G))→ R

consists of the integers.

Lemma 22.7. Let G be a torsionfree group. The surjectivity of the Baum-Connes
assembly map

K0(BG) ∼= HG
n (ETR(G),Ktop) = HG

n (EFIN (G),Ktop) → K0(C∗r (G))

implies the Trace Conjecture for Torsionfree Groups 22.6.

Proof. Let pr : BG → {•} be the projection. For a every group G the following
diagram commutes

K0(BG)

K0(pr)

��

ATR // K0(C∗r (G))
trC∗r (G)// R

K0({•})
∼= // K0(C)

trC

∼= // Z.

i

OO (22.8)

Here i : Z→ R is the inclusion and ATR is the assembly map associated to the fam-
ily TR. The commutativity follows from Atiyah’s L2-index theorem [9]. Atiyah’s
theorem says that the L2-index trC∗r (G) ◦A(η) of an element η ∈ K0(BG) which
is represented by a pair (M,P ∗) agrees with the ordinary index of (G\M ;G\P ∗),
which is trC ◦K0(pr)(η) ∈ Z. �

For a discussion of the Trace Conjecture for arbitrary groups see [156].

22.4 The Kadison Conjecture

Conjecture 22.9 (Kadison Conjecture). If G is a torsionfree group, then the only
idempotent elements in C∗r (G) are 0 and 1.
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Lemma 22.10. The Trace Conjecture for Torsionfree Groups 22.6 implies the Kadi-
son Conjecture 22.9.

Proof. Assume that p ∈ C∗r (G) is an idempotent different from 0 or 1. From p one
can construct a non-trivial projection q ∈ C∗r (G), i.e. q2 = q, q∗ = q, with im(p) =
im(q) and hence with 0 < q < 1. Since the standard trace trC∗r (G) is faithful, we
conclude trC∗r (G)(q) ∈ R with 0 < trC∗r (G)(q) < 1. Since trC∗r (G)(q) is by definition
the image of the element [im(q)] ∈ K0(C∗r (G)) under trC∗r (G) : K0(C∗r (G)) → R,
we get a contradiction to the assumption im(trC∗r (G)) ⊆ Z. �

Recall that a ring R is called an integral domain if it has no non-trivial zero-
divisors, i.e. if r, s ∈ R satisfy rs = 0, then r or s is 0. Obviously the Kadison
Conjecture 22.9 implies for R ⊆ C the following.

Conjecture 22.11 (Idempotent Conjecture). Let R be an integral domain and let
G be a torsionfree group. Then the only idempotents in RG are 0 and 1.

The statement in the conjecture above is a purely algebraic statement. If
R ⊆ C, it is by the arguments above related to questions about operator algebras,
and thus methods from operator algebras can be used to attack it.

22.5 The Stable Gromov-Lawson-Rosenberg Conjecture

The Stable Gromov-Lawson-Rosenberg Conjecture is a typical conjecture relating
Riemannian geometry to topology. It is concerned with the question when a given
closed manifold admits a metric of positive scalar curvature. To discuss its relation
with the Baum-Connes Conjecture we will need the real version of the Baum-
Connes Conjecture.

Let ΩSpin
n (BG) be the bordism group of closed Spin-manifolds M of dimen-

sion n with a reference map to BG. Let C∗r (G; R) be the real reduced group C∗-
algebra and let KOn(C∗r (G; R)) = Kn(C∗r (G; R)) be its topological K-theory. We
use KO instead of K as a reminder that we here use the real reduced group
C∗-algebra. Given an element [u : M → BG] ∈ ΩSpin

n (BG), we can take the
C∗r (G; R)-valued index of the equivariant Dirac operator associated to the G-
covering M →M determined by u. Thus we get a homomorphism

indC∗r (G;R) : ΩSpin
n (BG) → KOn(C∗r (G; R)). (22.12)

A Bott manifold is any simply connected closed Spin-manifold B of dimension 8
whose Â-genus Â(B) is 8. We fix such a choice, the particular choice does not
matter for the sequel. Notice that indC∗r ({1};R)(B) ∈ KO8(R) ∼= Z is a generator
and the product with this element induces the Bott periodicity isomorphisms
KOn(C∗r (G; R))

∼=−→ KOn+8(C∗r (G; R)). In particular

indC∗r (G;R)(M) = indC∗r (G;R)(M ×B), (22.13)

if we identify KOn(C∗r (G; R)) = KOn+8(C∗r (G; R)) via Bott periodicity.
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Conjecture 22.14 (Stable Gromov-Lawson-Rosenberg Conjecture). Let M be a
closed connected Spin-manifold of dimension n ≥ 5. Let uM : M → Bπ1(M) be
the classifying map of its universal covering. Then M×Bk carries for some integer
k ≥ 0 a Riemannian metric with positive scalar curvature if and only if

indC∗r (π1(M);R)([M,uM ]) = 0 ∈ KOn(C∗r (π1(M); R)).

If M carries a Riemannian metric with positive scalar curvature, then the
index of the Dirac operator must vanish by the Bochner-Lichnerowicz formula
[207]. The converse statement that the vanishing of the index implies the existence
of a Riemannian metric with positive scalar curvature is the hard part of the
conjecture. The following result is due to Stolz. A sketch of the proof can be found
in [230, Section 3], details are announced to appear in a different paper.

Theorem 22.15 (The Baum-Connes Conjecture implies the stable Gromov-Lawson
Rosenberg Conjecture). If the assembly map for the real version of the Baum-
Connes Conjecture

KOn(EFIN (G))→ KOn(C∗r (G; R))

is injective for the group G, then the Stable Gromov-Lawson-Rosenberg Conjecture
22.14 is true for all closed Spin-manifolds of dimension ≥ 5 with π1(M) ∼= G.

The following result appears in [24].

Lemma 22.16. The Baum-Connes Conjecture 20.4 implies the real version of the
Baum-Connes Conjecture.

The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-
Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-
Witten invariants, occur. The unstable version of this conjecture says that M
carries a Riemannian metric with positive scalar curvature if and only if we have
indC∗r (π1(M);R)([M,uM ]) = 0. Schick [214] constructs counterexamples to the un-
stable version using minimal hypersurface methods due to Schoen and Yau (see
also [72]). It is not known at the time of writing whether the unstable version is
true for finite fundamental groups. Since the Baum-Connes Conjecture 20.4 is true
for finite groups (for the trivial reason that EFIN (G) = {•} for finite groups G),
Theorem 22.15 implies that the Stable Gromov-Lawson Conjecture 22.14 holds for
finite fundamental groups (see also [210]).

22.6 The Choice of the Family FIN in the Baum-Connes

Conjecture

In contrast to the Farrell-Jones Conjecture 20.3 one does not have to use the
family of virtually cyclic subgroups in the Baum-Connes Conjecture 20.4, the
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family FIN of finite groups suffices. This is an important simplification and can
be interpreted as the fact that there are no Nil-phenomenons for the topologicalK-
theory of group C∗-algebras. Recall that the occurrence of Nil-groups complicates
the computations of algebraic K and L-groups of integral group rings considerably.
It is not hard to prove analogously to Lemma 21.24 using the so called Pimsner-
Voiculescu sequences [187] that for any virtually cyclic group V the assembly map

AFIN : HV
n (EFIN (V );Ktop)→ Kn(C∗r (V ))

is bijective for all n ∈ Z. Now the Transitivity Principle 21.8 implies that the
relative assembly map

AFIN→VCYC : HG
n (EFIN (G);Ktop) → HG

n (EVCYC(G);Ktop)

is bijective for all groups G. Hence it does not matter whether one uses the family
FIN or VCYC in the Baum-Connes Conjecture 20.4.

Remark 22.17 (Pimsner-Voiculescu splitting). There is an analogue of the Bass-
Heller-Swan decomposition in algebraic K-theory (see Theorem 21.1) or of the
Shaneson splitting in L-theory (see Theorem 21.4) for topologicalK-theory. Namely
we have

Kn(C∗r (G× Z)) ∼= Kn(C∗r (G))⊕Kn−1(C∗r (G)),

see [187, Theorem 3.1 on page 151] or more generally [188, Theorem 18 on page
632]. This is consistent with the Baum-Connes Conjecture 20.4 since EFIN (G)×
EZ is a model for EFIN (G× Z) and we have obvious isomorphisms

HG×Z
n (EFIN (G× Z);Ktop) ∼= HG×Z

n (EFIN (G)× EZ;Ktop)
∼= HG

n (EFIN (G)× Z\EZ;Ktop) ∼= HG
n (EFIN (G)× S1;Ktop)

∼= HG
n (EFIN (G);Ktop)⊕HG

n−1(EFIN (G);Ktop).



Chapter 23

Relating the Novikov, the
Farrell-Jones and the
Baum-Connes Conjectures (L.)

In this chapter we explain why the Novikov Conjecture 1.2 follows from the Farrell-
Jones Conjecture 20.3 or from the Baum-Connes Conjecture 20.4.

23.1 The Farrell-Jones Conjecture and the Novikov Con-

jecture

Lemma 23.1. (1) The relative assembly map

Hn(BG;L(R)) = HG
n (ETR(G);LR) ATR→FIN−−−−−−−→ HG

n (EFIN (G),LR)

is rationally injective;

(2) If G satisfies the Farrell-Jones Conjecture for L-theory 20.3, then the as-
sembly map for the trivial family TR

Hn(BG;L(Z)) = HG
n (ETR(G);LR) ATR−−−→ L〈−∞〉n (ZG)

is rationally injective.

Proof. (1) The induction structure of an equivariant homology theory (see Defini-
tion 20.6) yields for any group homomorphism α : H → G a map indα : HHn (X)→
HGn (G×αX), the condition that ker(α) acts freely on X is only needed to ensure
that this map is bijective. In particular we get a map

HG
n (EFIN (G);LR)→ Hn(G\EFIN (G);L(R)).

207
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Its composition with the relative assembly map ATR→FIN is the same as the map

Hn(G\f ;L(R)) : Hn(BG;L(R))→ Hn(G\EFIN (G);L(R)),

where f : EG = ETR(G)→ EFIN (G) is the (up to G-homotopy unique) G-map. It
is not hard to check that for any non-equivariant homology theory H∗ (satisfying
the disjoint union axiom) the map Hn(G\f) is rationally bijective for any group
G.
(2) This follows from Lemma 21.22 and assertion (1). �

Lemma 23.2. Let G be a group. Then:

(1) The Novikov Conjecture 1.2 follows from the rational injectivity of the as-
sembly map for the family TR

Hn(BG;L〈−∞〉(Z)) = HG
n (ETR(G);L〈−∞〉Z ) ATR−−−→ L〈−∞〉n (ZG);

(2) If G satisfies the Farrell-Jones Conjecture for L-theory 20.3, or more gen-
erally, if the assembly map appearing in the Farrell-Jones Conjecture for
L-theory 20.3 is rationally injective, then G satisfies the Novikov Conjec-
ture 1.2.

Proof. (1) In the sequel we will suppress any decorations since we will finally
invert 2 and hence they do not matter. The default is the decoration h. For any
n-dimensional closed manifold M together with a reference map u : M → BG we
have introduced in (17.34) its symmetric signature taking values in the symmetric
L-groups

σ(M,u) ∈ Ln(ZG).

It has the two important features that it is a homotopy invariant i.e. for two
closed oriented smooth manifolds M and N with reference maps u : M → BG and
v : N → BG we have

σ(M,u) = σ(N, v),

if there is an orientation preserving homotopy equivalence f : M → N such that
v ◦ f and u are homotopic and that it is a bordism invariant. Hence it defines for
each connected CW -complex X a map (see Theorem 17.35)

σ(X) : Ωn(X) → Ln(Zπ1(X)), [M,u] 7→ σ(M,u). (23.3)

The assembly map for the trivial family has a universal property. Roughly speaking
it says that the source of the assembly map is the best approximation of a given
homotopy invariant functor from the left by a generalized homology theory (see
[64], [253]). This implies that the map (23.3) above factorizes as a composition

Ωn(X)
σ′(X)−−−−→ Hn(X;Lsym(Z)) uX−−→ Hn(Bπ1(X);Lsym(Z)) ATR−−−→ Ln(Zπ1(X)),
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where Lsym(Z) denotes the symmetric version of the L-theory spectrum of Z and
uX : X → Bπ1(X) is the classifying map of X. The symmetric L-theory spectrum
is four-periodic, the periodicity isomorphism is geometrically given by crossing
with CP2. Hence we can think of it in the sequel as graded by Z/4. Let Q∗ be
the Z-graded vector space, which is Q in dimensions divisible by four and zero
otherwise. Let Ω∗({•}) → Q∗ be the map of Z-graded vector spaces which sends
the bordism class of an oriented closed 4k-dimensional manifold to its signature.
Then we can form for each CW -complex X the Z/4-graded rational vector space
Ω∗(X) ⊗Ω∗({•}) Q∗. This is in degree n ∈ Z/4 given by

⊕
p∈Z,p=n Ωp(X)/ ∼,

where ∼ is given by [M ×N,u ◦ prM ] ∼ sign(N) · [M,u] for [M,u] ∈ Ωp(X) and
[N ] ∈ Ω4k({•}).

We obtain for every CW -complexX from σ′(X) a map of Z/4-graded rational
vector spaces

σ(X) : Ω∗(X)⊗Ω∗({•}) Q∗ → H∗(X;Lsym(Z))⊗Z Q. (23.4)

It is a transformation of homology theories satisfying the disjoint union axiom
and induces an isomorphism for X = {•} (see [145, Example 3.4]). Hence σ(X) is
bijective for all CW -complexes X (see for instance [235, 7.55 on page 123]). For
each connected CW -complex X the following square commutes

Ω∗(X)⊗Z Q σ(X)⊗ZidQ−−−−−−−→ L∗(Zπ1(X))⊗Z Q

pr

y (ATR◦Hn(uX ;Lsym(Z)))⊗ZidQ

x
Ω∗(X)⊗Ω∗({•}) Q∗

σ(X)−−−−→∼= H∗(X;Lsym(Z))⊗Z Q

(23.5)

There is a Chern character (see Theorem 18.28), which is an isomorphism of Z/4-
graded rational vector spaces

ch∗ : H∗(X;Lsym(Z))⊗Z Q
∼=−→
⊕
n∈Z

H∗+4n(X; Q). (23.6)

It turns out that the composition

Ω∗(BG)
pr−→ Ω∗(BG)⊗Ω∗({•}) Q∗

σ(BG)⊗ZidQ−−−−−−−−→ H∗(BG;Lsym(Z))⊗Z Q
ch−→
⊕
n∈Z

H∗+4n(BG; Q) (23.7)

sends the class of [u : M → BG] to u∗(L(M) ∩ [M ]). We conclude from the com-
mutative diagram (23.6) that the composition⊕

n∈Z
H∗+4n(BG; Q) ch−1

−−−→ H∗(BG;Lsym(Z))⊗Z Q ATR⊗ZidQ−−−−−−−→ Ln(ZG)⊗Z Q
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sends u∗(L(M) ∩ [M ]) to σ(M,u) ⊗Z 1. Since σ(M,u) is a homotopy invariant,
u∗(L(M) ∩ [M ]) is a homotopy invariant and hence the Novikov Conjecture 1.2
follows for G (see Remark 1.8) if we can show that

ATR : H∗(BG;Lsym(Z))→ Ln(ZG)⊗Z Q

is injective. There is a symmetrization map

s : Ln(ZG)→ Ln(ZG)

which is an isomorphism after inverting 2 and can also be defined on spectrum
level. It yields a commutative diagram

Ln(ZG)⊗Z Q sn⊗ZQ−−−−→∼= Ln(ZG)⊗Z Q

ATR⊗ZidQ

x ATR⊗ZidQ

x
Hn(BG;L(Z))⊗Z Q Hn(idBG;s)⊗ZQ−−−−−−−−−−→∼=

Hn(BG;Lsym(Z))⊗Z Q

whose horizontal arrows are bijective. Hence the left vertical arrow is injective if
and only if the right vertical arrow is. Hence the Novikov Conjecture 1.2 is true
for G if the assembly map

Hn(BG;L(Z)) = HG
n (ETR(G);LZ) ATR−−−→ L〈−∞〉n (ZG)

is rationally injective.
(2) This follows from assertion (1) and Lemma 23.1 (2). �

Remark 23.8. (Identifying various assembly maps). We mention that the assembly
map of (9.4)

AGm : hm(BG; Q)→ Lm(G)⊗Q

agrees with the composition

hm(BG; Q) =
⊕
n∈Z

H∗+4n(BG; Q) ch−1

−−−→ H∗(BG;Lsym(Z))⊗Z Q

ATR−−−→ L〈−∞〉m (ZG) ∼= Lm(G)⊗Q.

up to a non-zero factor in Q. The same is true for the map ÂGm in its form presented
in (9.11) and the composition given in (23.7).

Also Lemma 23.2 and Proposition 15.4 are closely related.
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23.2 Relating Topological K-Theory and L-Theory

Theorem 23.9 (Relating L-theory and K-theory for C∗-algebras). For every C∗-
algebra A and n ∈ Z there is an isomorphism

sign(2)
n : Lpn(A)

∼=−→ Kn(A).

For every real C∗-algebra A and n ∈ Z there is an isomorphism

sign(2)
n : Lpn(A)[1/2]

∼=−→ Kn(A)[1/2].

Proof. The details of the proof can be found in [209, Theorem 1.8 and Theo-
rem 1.11]. At least we explain the map in dimension n = 0 in the complex case
which is essentially given by a C∗-signature. Since 1/2 is contained in A, the
symmetrization map Lpn(A)

∼=−→ Lnp (A) is an isomorphism. There are maps

sign(2) : L0
p(A) → K0(A); (23.10)

ι : K0(A) → L0
p(A), (23.11)

which turn out to be inverse to one another. The map ι of (23.11) above sends
the class [P ] ∈ K0(A) of a finitely generated projective A-module P to the class
of µ : P → P ∗ coming from some inner product µ on P . Such an inner product
exists and the class of µ : P → P ∗ in L0

p(A) is independent of the choice of the
inner product.

Next we define sign(2)([a]) for the class [a] ∈ L0(A) represented by a non-
singular symmetric form a : P → P ∗. Choose a finitely generated projective A-
module Q together with an isomorphism u : Am → P ⊕Q. Let i : (Am)∗ → Am be
the standard isomorphism. Let a : Am → Am be the endomorphism i◦u∗◦(a+0)◦u.
This is a selfadjoint element in the C∗-algebra Mm(A).We get by spectral theory
projections χ(0,∞)(a) : Am → Am and χ(−∞,0)(a) : Am → Am. Define P+ and P−

to be image of χ(0,∞)(a) and χ(−∞,0)(a). Put sign(2)([a]) = [P+]− [P−]. We omit
the proof that this yields a well defined homomorphism sign(2). The non-singular
symmetric form a : P → P ∗ is isomorphic to the orthogonal sum of a+ : P+ → P ∗+
and a− : P− → P ∗−, where a+ and −a− come from inner products. This implies
that sign(2) and ι are inverse to one another. �

Remark 23.12 (Relevance of C∗-algebras for the Novikov Conjecture). Theo-
rem 23.9 explains why C∗-algebras enter when dealing with the Novikov Con-
jecture 1.2. If G is a finite group, one can define an isomorphism

sign(2) : Lp0(RG)→ K0(RG)

by sending a symmetric non-degenerate G-equivariant form α : P → P ∗, which
can be viewed as a symmetric non-degenerate bilinear pairing α : P ×P → R com-
patible with the G-action, to the difference of the class of the subspace P+ given
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by the direct sum of the eigenspaces of positive eigenvalues minus the class of the
subspace P− given by the direct sum of the eigenspaces of negative eigenvalues.
These spaces P+ and P− are G-invariant direct summands in P and therefore
define elements in K0(RG). This construction does not work for RG if G is infi-
nite. The idea is to complete RG to the reduced C∗-algebra C∗r (G) so that the
constructions above do work because we now have functional calculus available.

Lemma 23.13. Let F ⊆ FIN be a family of finite subgroups of G. If the assembly
map for F and topological K-theory

AF : HG
n (EF (G);Ktop)[

1
2
]→ Kn(C∗r (G))[

1
2
]

is injective, then for an arbitrary decoration j also the map

AF : HG
n (EF (G);L〈j〉Z )[

1
2
]→ L〈j〉n (ZG)[

1
2
]

is injective.

Proof. Recall that after inverting 2 there is no difference between the different
decorations and we can hence work with the p-decoration. One can construct for
any subfamily F ⊆ FIN the following commutative diagram [153, Section 7.5]

HG
n (EF (G);LpZ[1/2])

A1
F−−−−→ Lpn(ZG)[1/2]

i1

y∼= j1

y∼=
HG
n (EF (G);LpQ[1/2])

A2
F−−−−→ Lpn(QG)[1/2]

i2

y∼= j2

y
HG
n (EF (G);LpR[1/2])

A3
F−−−−→ Lpn(RG)[1/2]

i3

y∼= j3

y
HG
n (EF (G);LpC∗r (?;R)[1/2])

A4
F−−−−→ Lpn(C

∗
r (G; R))[1/2]

i4

y∼= j4

y∼=
HG
n (EF (G);Ktop

R [1/2])
A5
F−−−−→ Kn(C∗r (G; R))[1/2]

i5

y j5

y
HG
n (EF (G);Ktop

C [1/2])
A6
F−−−−→ Kn(C∗r (G))[1/2]

Here

LpZ[1/2], LpQ[1/2], LpR[1/2], LC∗r (?;R)[1/2],

Ktop
R [1/2] and Ktop

C [1/2]
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are covariant GROUPOIDSinj-spectra and yield by Lemma 20.14 equivariant ho-
mology theories such that the n-th homotopy group of their evaluations at G/H
are given by

Lpn(ZH)[1/2], Lpn(QH)[1/2], Lpn(RH)[1/2], Lpn(C
∗
r (H; R))[1/2],

Kn(C∗r (H; R))[1/2] respectively Kn(C∗r (H)[1/2].

All horizontal maps are assembly maps induced by the projection pr: EF (G) →
{•}. The maps ik and jk for k = 1, 2, 3 are induced from a change of rings. The
isomorphisms i4 and j4 come from the general isomorphism for any real C∗-algebra
A

Lpn(A)[1/2]
∼=−→ Kn(A)[1/2]

of Theorem 23.9 and its spectrum version. The maps i1, j1, i2 are isomorphisms by
[198, page 376] and [200, Proposition 22.34 on page 252]. The map i3 is bijective
since for a finite group H we have RH = C∗r (H; R). The maps i5 and j5 are given
by extending the scalars from R to C by induction. For every real C∗-algebra A
the composition

Kn(A)[1/2]→ Kn(A⊗R C)[1/2]→ Kn(M2(A))[1/2]

is an isomorphism and hence j5 is split injective. An Or(G)-spectrum version of
this argument yields that also i5 is split injective. �

Remark 23.14 (Relation between the L-theoretic Farrell-Jones Conjecture and
the Baum-Connes Conjecture over R after inverting 2). One may conjecture that
the right vertical maps j2 and j3 are isomorphisms and try to prove this directly.
Then if we invert 2 everywhere the Baum-Connes Conjecture 20.4 for the real
reduced group C∗-algebra, would be equivalent to the Farrell-Jones Isomorphism
Conjecture for L∗(ZG)[1/2].

23.3 The Baum-Connes Conjecture and the Novikov

Conjecture

If we combine Lemma 23.2 and Lemma 23.13, we conclude

Corollary 23.15. The Baum-Connes Conjecture 20.4, or more generally, the ratio-
nal injectivity of the assembly map appearing in the Baum-Connes Conjecture 20.4,
implies the Novikov Conjecture 1.2.

It is worthwhile to sketch the C∗-theoretic analogue of the proof of Lemma 23.2.
The key ingredient is the following commutative diagram of Z/4-graded rational



214Chapter 23. Relating the Novikov, the Farrell-Jones and the Baum-Connes Conjectures (L.)

vector spaces(
Ω∗(BG)⊗Ω∗(∗) Q

)
n

D−−−−→∼= KOn(BG)⊗Z Q j1−−−−→ Kn(BG)⊗Z Q

σ

y AR
TR⊗ZidQ

y ATR⊗ZidQ

y
Ln(C∗r (G; R))⊗Z Q sign−−−−→∼= KOn(C∗r (G; R))⊗Z Q j2−−−−→ Kn(C∗r (G))⊗Z Q

Here are some explanations (see also [148]). The map D is induced by the Z-graded
homomorphism

D : Ωn(BG)→ KOn(BG),

which sends [r : M → BG] to the K-homology class of the signature operator
of the covering M → M associated to r. The homological Chern character is an
isomorphism of Z/4-graded rational vector spaces

ch: KOn(BG)⊗Z Q
∼=−→

⊕
k∈Z

H4k+n(BG; Q). (23.16)

By the Atiyah-Hirzebruch index theorem the image ch ◦D([M, id : M → M ])
of the K-homology class of the signature operator of M in Kdim(M)(M) un-
der the homological Chern character ch is L(M) ∩ [M ]. Hence the composition
ch ◦D :

(
Ω∗(BG)⊗Ω∗(∗) Q

)
n
→
⊕

k∈Z H4k+n(BG; Q) sends [r : M → BG] ⊗ 1 to
the image under H∗(r) : H∗(M ; Q) → H∗(BG; Q) of the Poincaré dual L(M) ∩
[M ] ∈

⊕
i≥0H4i−dim(M)(M ; Q) of the L-class L(M).

The map D is an isomorphism since it is a transformation of homology theo-
ries satisfying the disjoint union axiom [145, Example 3.4] and induces an isomor-
phism for the space consisting of one point. The map σ assigns to [M, r] the class of
the associated symmetric Poincaré C∗r (G; R)-chain complex C∗(M)⊗ZGC

∗
r (G; R).

The map AR
TR resp. ATR are assembly maps for the trivial family TR for the real

and the complex case. The map sign(2) is in dimension n = 0 mod 4 given by
taking the signature of a non-degenerate symmetric bilinear form and has been
explained in Theorem 23.9. The maps j1 and j2 are given by induction with the
inclusion R→ C and are injective. Obviously the right square commutes. In order
to show that the diagram commutes it suffices to prove this for the outer square.
Here the claim follows from the commutative diagram in [122, page 81].

The Novikov Conjecture is equivalent to the statement that L(M) ∩ [M ] ∈⊕
i≥0H4i−dim(M)(M ; Q) is homotopy invariant (see Remark 1.8). Since the Chern

character ch of (23.16) is bijective, this is equivalent to the homotopy invariance of
D([M, r]). Since σ([M, r]) is homotopy invariant, the commutative square above
shows that the image of D([M, r]) under the assembly map

AR
TR ⊗Z idQ : KOn(BG)⊗Z Q→ Kn(C∗r (G))⊗Z Q

is homotopy invariant. Hence the Novikov Conjecture 1.2 holds for G, if AR
TR⊗ZidQ

is injective. But this is true if ATR ⊗Z idQ is injective.
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The connection between the Novikov Conjecture and operator theory was
initialized by Lusztig [163].
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Chapter 24

Miscellaneous (L.)

In this chapter we give a survey about the status of the Novikov Conjecture 1.2,
Baum-Connes Conjecture 20.4 and the Farrell-Jones Conjecture 20.3, very briefly
discuss methods of proof and explain how these conjectures can be used to give
rational or integral computations of Kn(RG), L〈j〉n (RG) and Kn(C∗r (G)).

24.1 Status of the Conjectures

In the following table we list prominent classes of groups and state whether they
are known to satisfy the Baum-Connes Conjecture 20.4 or the Farrell-Jones Con-
jecture 20.3. Some of the classes are redundant. A question mark means that the
authors do not know about a corresponding result. The reader should keep in mind
that there may exist results of which the authors are not aware. More information
and explanations about the status of this conjectures and generalizations of them
can be found in [159], where the tables below are taken from.

Remark 24.1 (Groups satisfying the Novikov Conjecture). All groups appearing
in the list below satisfy the Novikov Conjecture 1.2 by Lemma 23.2 (2) and Corol-
lary 23.15.

217
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type of group Baum-Connes
Conjecture 20.4

Farrell-Jones
Conjecture 20.3
for K-theory for
R = Z

Farrell-Jones
Conjecture 20.3
for L-theory for
R = Z

a-T-menable groups true [111, Theo-
rem 1.1]

? injectivity is
true after in-
verting 2 (see
Lemma 23.13)

amenable groups true ? injectivity
is true after
inverting 2

elementary amenable
groups

true ? true after in-
verting 2 [83,
Theorem 5.2]

virtually poly-cyclic true true rationally true
torsionfree virtually
solvable subgroups of
GL(n,C)

true true in the range
≤ 1 [83, Theo-
rem 1.1]

true after in-
verting 2 [83,
Corollary 5.3]

discrete subgroups
of Lie groups with
finitely many path
components

injectivity true
[224, Theo-
rem 6.1] and
[112, Section 4]

? injectivity is
true after in-
verting 2 (see
Lemma 23.13)

subgroups of groups
which are discrete
cocompact subgroups
of Lie groups with
finitely many path
components

injectivity true true in the range
n ≤ 1 and true
rationally [80,
Theorem 2.1 on
page 263], [159,
Proposition
4.14]

(probably) true
[80, Remark
2.1.3 on page
263] Injectivity
is true after
inverting 2 (see
Lemma 23.13)

countable groups
admitting a uni-
form embedding into
Hilbert space

injectivity
is true [224,
Theorem 6.1]

Injectivity is
true after in-
verting 2 (see
Lemma 23.13)

G admits an
amenable action
on some compact
space

injectivity
is true [110,
Theorem 1.1]

Injectivity is
true after in-
verting 2 (see
Lemma 23.13)

linear groups injectivity is
true [105])

? injectivity is
true after in-
verting 2 (see
Lemma 23.13)

torsionfree dis-
crete subgroups of
GL(n,R)

injectivity is
true

true in the range
n ≤ 1 [82]

true [82]
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type of group Baum-Connes
Conjecture 20.4

Farrell-Jones
Conjecture 20.3
for K-theory for
R = Z

Farrell-Jones
Conjecture 20.3
for L-theory for
R = Z

Groups with finite
BG and finite asymp-
totic dimension [257]

injectivity is
true [15]

injectivity
is true for
arbitrary co-
efficients R
[15]

injectivity is
true for regular
R as coefficients
[15]

G acts properly and
isometrically on a
complete Rieman-
nian manifold M
with non-positive
sectional curvature

rational injec-
tivity is true
[125]

? rational in-
jectivity is
true (see
Lemma 23.13)

π1(M) for a complete
Riemannian manifold
M with non-positive
sectional curvature

rational injec-
tivity is true
[125]

? injectivity true
[92, Corollary
2.3]

π1(M) for a complete
Riemannian manifold
M with non-positive
sectional curvature
which is A-regular

rational injec-
tivity is true

true in the range
n ≤ 1, ratio-
nally surjective
[82], [120]

true [82]

π1(M) for a complete
Riemannian manifold
M with pinched neg-
ative sectional curva-
ture

rational injec-
tivity is true

true in the range
n ≤ 1, ratio-
nally surjective

true

π1(M) for a closed
Riemannian manifold
M with non-positive
sectional curvature

rational injec-
tivity is true

true in the range
n ≤ 1, true ra-
tionally [79]

true

π1(M) for a closed
Riemannian manifold
M with negative sec-
tional curvature

true for all
subgroups [172,
Theorem 20]

true for all coef-
ficients R [18]

true
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type of group Baum-Connes
Conjecture 20.4

Farrell-Jones
Conjecture 20.3
for K-theory
and R = Z

Farrell-Jones
Conjecture 20.3
for L-theory for
R = Z

word hyperbolic
groups

true for all
subgroups [172,
Theorem 20]

? injectivity is
true after in-
verting 2 (see
Lemma 23.13)

one-relator groups true [176, Theo-
rem 5.18]

injectivity is
true rationally
[17]

true after in-
verting 2 [17]

torsionfree one-
relator groups

true true for R
regular [244,
Theorem 19.4
on page 249 and
Theorem 19.5
on page 250]

true after in-
verting 2 [41,
Corollary 8]

Haken 3-manifold
groups (in particular
knot groups)

true [176, Theo-
rem 5.18]

true in the
range n ≤ 1 for
R regular [244,
Theorem 19.4
on page 249 and
Theorem 19.5
on page 250]

true after in-
verting 2 [41,
Corollary 8],
[44]

SL(n,Z), n ≥ 3 injectivity is
true

? injectivity is
true after in-
verting 2 (see
Lemma 23.13)

Artin’s braid group
Bn

true [176, Theo-
rem 5.25], [213]

true in the range
n ≤ 1, true ra-
tionally [84]

injectivity is
true after in-
verting 2 (see
Lemma 23.13)

pure braid group Cn true true in the range
n ≤ 1 [7]

injectivity is
true after in-
verting 2 (see
Lemma 23.13)

Thompson’s group F true [73] ? injectivity is
true after in-
verting 2 (see
Lemma 23.13)

Here are some explanations about the classes of groups appearing in the list
above.
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A group G is a-T-menable, or, equivalently, has the Haagerup property if G
admits a metrically proper isometric action on some affine Hilbert space. Metrically
proper means that for any bounded subset B the set {g ∈ G | gB ∩ B 6= ∅}
is finite. An extensive treatment of such groups is presented in [52]. Any a-T-
menable group is countable. The class of a-T-menable groups is closed under taking
subgroups, under extensions with finite quotients and under finite products. It
is not closed under semi-direct products. Examples of a-T-menable groups are
countable amenable groups, countable free groups, discrete subgroups of SO(n, 1)
and SU(n, 1), Coxeter groups, countable groups acting properly on trees, products
of trees, or simply connected CAT(0) cubical complexes. A group G has Kazhdan’s
property (T) if, whenever it acts isometrically on some affine Hilbert space, it has
a fixed point. An infinite a-T-menable group does not have property (T). Since
SL(n,Z) for n ≥ 3 has property (T), it cannot be a-T-menable.

The asymptotic dimension of a proper metric space X is the infimum over all
integers n such that for any R > 0 there exists a cover U of X with the property
that the diameter of the members of U is uniformly bounded and every ball of
radius R intersects at most (n+ 1) elements of U (see [101, page 28]).

A complete Riemannian manifold M is called A-regular if there exists a se-
quence of positive real numbers A0, A1, A2, . . . such that ||∇nK|| ≤ An, where
||∇nK|| is the supremum-norm of the n-th covariant derivative of the curvature
tensor K. Every locally symmetric space is A-regular since ∇K is identically zero.
Obviously every closed Riemannian manifold is A-regular. If M is a pinched neg-
atively curved complete Riemannian manifold, then there is another Riemannian
metric for which M is negatively curved complete and A-regular. This fact is
mentioned in [82, page 216] and attributed there to Abresch [2] and Shi [222].

A metric space (X, d) admits a uniform embedding into Hilbert space if there
exist a separable Hilbert space H, a map f : X → H and non-decreasing functions
ρ1 and ρ2 from [0,∞) → R such that ρ1(d(x, y)) ≤ ||f(x) − f(y)|| ≤ ρ2(d(x, y))
for x, y ∈ X and limr→∞ ρi(r) = ∞ for i = 1, 2. A metric is proper if for each
r > 0 and x ∈ X the closed ball of radius r centered at x is compact. The question
whether a discrete group G equipped with a proper left G-invariant metric d
admits a uniform embedding into Hilbert space is independent of the choice of d,
since the induced coarse structure does not depend on d [224, page 808]. For more
information about groups admitting a uniform embedding into Hilbert space we
refer to [71], [105].

The class of finitely generated groups, which for some proper left G-invariant
metric embed uniformly into Hilbert space, contains a subclass A, which contains
all word hyperbolic groups, finitely generated discrete subgroups of connected Lie
groups and finitely generated amenable groups and is closed under semi-direct
products [258, Definition 2.1, Theorem 2.2 and Proposition 2.6]. Gromov [103],
[104] has announced examples of finitely generated groups which do not admit a
uniform embedding into Hilbert space. Details of the construction are described
in Ghys [98].
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A continuous action of a discrete group G on a compact space X is called
amenable if there exists a sequence

pn : X →M1(G) = {f : G→ [0, 1] |
∑
g∈G

f(g) = 1}

of weak-∗-continuous maps such that for each g ∈ G one has

lim
n→∞

sup
x∈X
||g ∗ (pn(x)− pn(g · x))||1 = 0.

Note that a group G is amenable if and only if its action on the one-point-space
is amenable. More information about this notion can be found for instance in [5],
[6].

Remark 24.2. The authors have found no information about the status of these
conjectures for mapping class groups of higher genus or the group of outer auto-
morphisms of free groups in the literature.

24.2 Methods of Proof

A survey on the methods of proofs of these conjectures can be found in [159,
Chapter 7], where also more references are given. We briefly mention that for the
Baum-Connes Conjecture 20.4 the key tool is the Dirac-Dual Dirac method [123],
[126], [239] and bivariant equivariant KK-theory [124] and that a further break
through is based on studying Banach-KK-theory [140], [141], [142]. For the Farrell-
Jones Conjecture 20.3 the interpretation of the assembly map as a forget control
map allows to use methods from controlled topology [18], [47], [76], [77], [85],
[119]. One can also compare K-theory using cyclotomic traces with topological
cyclic homology and prove injectivity results for K-theory [27], [160].

24.3 Computations for Finite Groups

In this section we briefly state the computations of Kn(ZG), L〈−∞〉n (ZG), and
Kn(Cr∗(G)) for finite groups which will be basic for the computations for arbitrary
groups.

24.3.1 Topological K-Theory for Finite Groups

Let G be a finite group. By rF (G), we denote the number of isomorphism classes
of irreducible representations of G over the field F . By rR(G; R), rR(G; C), respec-
tively rR(G; H) we denote the number of isomorphism classes of irreducible real
G-representations V , which are of real, of complex respectively of quaternionic
type, i.e. AutRG(V ) is isomorphic to the field of real numbers R, complex numbers
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C or quaternions H. We mention that rC(G) is the number of conjugacy classes
of elements in G, rR(G) is the number of R-conjugacy classes of elements in G,
where g1 and g2 are called R-conjugate if g1 and g2 or g−1

1 and g2 are conjugate,
and rQ(G) is the number of conjugacy classes of cyclic subgroups of G, Let RO(G)
respectively R(G) be the real respectively the complex representation ring.

Theorem 24.3 (Topological K-theory of C∗r (G) for finite groups). Let G be a finite
group.

(1) We have

Kn(C∗r (G)) ∼=
{
R(G) ∼= ZrC(G) for n even;
0 for n odd.

(2) There is an isomorphism of topological K-groups

Kn(C∗r (G; R)) ∼= Kn(R)rR(G;R) ×Kn(C)rR(G;C) ×Kn(H)rR(G;H).

Moreover Kn(C) is 2-periodic with values Z, 0 for n = 0, 1, Kn(R) is 8-
periodic with values Z, Z/2, Z/2, 0, Z, 0, 0, 0 for n = 0, 1, . . . , 7 and
Kn(H) = Kn+4(R) for n ∈ Z.

Proof. One gets isomorphisms of C∗-algebras

C∗r (G) ∼=
rC(G)∏
j=1

Mni
(C)

and

C∗r (G; R) ∼=
rR(G;R)∏
i=1

Mmi(R)×
rR(G;C)∏
i=1

Mni(C)×
rR(G;H)∏
i=1

Mpi(H)

from [218, Theorem 7 on page 19, Corollary 2 on page 96, page 102, page 106]. Now
the claim follows from Morita invariance and the well-known values for Kn(R),
Kn(C) and Kn(H) (see for instance [235, page 216]). �

24.3.2 Algebraic K-Theory for Finite Groups

Theorem 24.4 (Algebraic K-theory of ZG for finite groups G). Let G be a finite
group.

(1) Kn(ZG) = 0 for n ≤ −2;

(2) We have
K−1(ZG) ∼= Zr ⊕ (Z/2)s,

where
r = 1− rQ(G) +

∑
p | |G|

rQp
(G)− rFp

(G)
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and the sum runs over all primes dividing the order of G;

There is an explicit description of the integer s in terms of global and local
Schur indices [49]. If G contains a normal abelian subgroup of odd index,
then s = 0;

(3) The group K̃0(ZG) is finite;

(4) The group Wh(G) is a finitely generated abelian group and its rank is rR(G)−
rQ(G). If G is cyclic, Wh(G) is torsionfree;

(5) The groups Kn(ZG) are finitely generated for all n ∈ Z.

Proof. 1 and 2 are proved in [49].
3 is proved in [233, Proposition 9.1 on page 573].
4 This is proved for instance in [184].
5 See [138], [191]. �

24.3.3 Algebraic L-Theory for Finite Groups

Theorem 24.5 (Algebraic L-theory of ZG for finite groups). Let G be a finite
group. Then

(1) For each j ≤ 1 the groups L〈j〉n (ZG) are finitely generated as abelian groups
and contain no p-torsion for odd primes p. Moreover, they are finite for odd
n.

(2) For every decoration 〈j〉 we have

L〈j〉n (ZG)[1/2] ∼= L〈j〉n (RG)[1/2] ∼=

 Z[1/2]rR(G) n ≡ 0 (4);
Z[1/2]rC(G) n ≡ 2 (4);
0 n ≡ 1, 3 (4);

(3) If G has odd order and n is odd, then Lεn(ZG) = 0 for ε = p, h, s.

Proof. (1) See for instance [108].
(2) See [200, Proposition 22.34 on page 253].
(3) See [11] or [108]. �

24.4 Rational Computations

In Remarks 21.12, 21.14 and 22.3 we have given explicit formulas forKn(ZG)⊗ZQ,
L
〈−∞〉
n (ZG) ⊗Z Q, and Kn(Cr∗(G)) ⊗Z Q for a torsionfree group G provided that

the Farrell-Jones Conjecture for torsionfree groups 21.11 and the Baum-Connes
Conjecture for torsionfree groups 22.2 are true. They were based on the existence of
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a Chern character for (non-equivariant) homology theories (see Theorem 18.28).
Next we want to state what one gets in the general case provided the Farrell-
Jones Conjecture 20.3 and the Baum-Connes Conjecture 20.4 are true. The key
ingredient is the equivariant Chern character [154].

In the sequel let (FCYC) be the set of conjugacy classes (C) for finite cyclic
subgroups C ⊆ G. ForH ⊆ G let NGH = {g ∈ G | gHg−1 = H} be its normalizer,
let ZGH = {g ∈ G | ghg−1 = h for h ∈ H} be its centralizer, and put

WGH := NGH/(H · ZGH),

where H ·ZGH is the normal subgroup of NGH consisting of elements of the form
hu for h ∈ H and u ∈ ZGH. Notice that WGH is finite if H is finite.

Recall that the Burnside ring A(G) of a finite group is the Grothendieck
group associated to the abelian monoid of isomorphism classes of finite G-sets
with respect to the disjoint union. The ring multiplication comes from the cartesian
product. The zero element is represented by the empty set, the unit is represented
by G/G = {•}. For a finite group G the abelian groups Kq(C∗r (G)), Kq(RG)
and L〈−∞〉(RG) become modules over A(G) because these functors come with a
Mackey structure and [G/H] acts by indGH ◦ resHG .

We obtain a ring homomorphism

χG : A(G)→
∏

(H)∈FIN

Z, [S] 7→ (|SH |)(H)∈FIN

which sends the class of a finite G-set S to the element given by the cardinalities
of the H-fixed point sets. This is an injection with finite cokernel. We obtain an
isomorphism of Q-algebras

χGQ := χG ⊗Z idQ : A(G)⊗Z Q
∼=−→

∏
(H)∈(FIN )

Q. (24.6)

For a finite cyclic group C let

θC ∈ A(C)⊗Z Z[1/|C|] (24.7)

be the element which is sent under the isomorphism χCQ : A(C)⊗ZQ
∼=−→
∏

(H)∈FIN Q
of (24.6) to the element, whose entry is one if (H) = (C) and is zero if (H) 6=
(C). Notice that θC is an idempotent. In particular we get a direct summand
θC ·Kq(C∗r (C))⊗Z Q in Kq(C∗r (C))⊗Z Q and analogously for Kq(RC)⊗Z Q and
L〈−∞〉(RG)⊗Z Q.

24.4.1 Rationalized Topological K-Theory for Infinite Groups

The next result is taken from [156, Theorem 0.4 and page 127]. Let ΛG be the
ring Z ⊆ ΛG ⊆ Q which is obtained from Z by inverting the orders of the finite
subgroups of G.
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Theorem 24.8 (Rational Computation of TopologicalK-Theory for Infinite Groups).
Suppose that the group G satisfies the Baum-Connes Conjecture 20.4. Then there
is an isomorphism

⊕
p+q=n

⊕
(C)∈(FCYC)

Kp(BZGC)⊗Z[WGC] θC ·Kq(C∗r (C))⊗Z ΛG

∼=−→ Kn(C∗r (G))⊗Z ΛG.

If we tensor with Q, we get an isomorphism

⊕
p+q=n

⊕
(C)∈(FCYC)

Hp(BZGC; Q)⊗Q[WGC] θC ·Kq(C∗r (C))⊗Z Q.

∼=−→ Kn(C∗r (G))⊗Z Q.

24.4.2 Rationalized Algebraic K-Theory for Infinite Groups

Recall that for the rational computation of the algebraic K-theory of the integral
group ring we have already explained in Remark 21.23 that in the Farrell-Jones
Conjecture we can reduce to the family of finite subgroups. A reduction to the
family of finite subgroups also works if the coefficient ring is a regular Q-algebra
(see Lemma 21.24 (2)). The next result is a variation of [154, Theorem 0.4].

Theorem 24.9 (Rational Computation of Algebraic K-Theory). Suppose that the
group G satisfies the Farrell-Jones Conjecture 20.3 for the algebraic K-theory of
RG, where either R = Z or R is a regular ring with Q ⊆ R. Then we get an
isomorphism

⊕
p+q=n

⊕
(C)∈(FCYC)

Hp(BZGC; Q)⊗Q[WGC] θC ·Kq(RC)⊗Z Q

∼=−→ Kn(RG)⊗Z Q.

Example 24.10 (The Comparison Map from Algebraic to Topological K-theory).
If we consider R = C as coefficient ring and apply − ⊗Z C instead of − ⊗Z Q ,
the formulas simplify. Suppose that G satisfies the Baum-Connes Conjecture 20.4
and the Farrell-Jones Conjecture 20.3 for algebraic K-theory with C as coefficient
ring. Let con(G)f be the set of conjugacy classes (g) of elements g ∈ G of finite
order. We denote for g ∈ G by 〈g〉 the cyclic subgroup generated by g. Then we get
the following commutative square, whose horizontal maps are isomorphisms and
whose vertical maps are induced by the obvious change of theory homomorphisms
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(see [154, Theorem 0.5])⊕
p+q=n

⊕
(g)∈con(G)f

Hp(ZG〈g〉; C)⊗Z Kq(C)
∼=−−−−→ Kn(CG)⊗Z Cy y⊕

p+q=n

⊕
(g)∈con(G)f

Hp(ZG〈g〉; C)⊗Z K
top
q (C) −−−−→∼= Kn(C∗r (G))⊗Z C

Example 24.11 (A Formula for K0(ZG) ⊗Z Q). Suppose that the Farrell-Jones
Conjecture is true rationally for K0(ZG), i.e. the assembly map

AVCYC : HG
0 (EVCYC(G);KZ)⊗Z Q→ K0(ZG)⊗Z Q

is an isomorphism. Then we obtain

K̃0(ZG)⊗Z Q ∼=
⊕

(C)∈(FCYC)

H1(BZGC; Q)⊗Q[WGC] θC ·K−1(RC)⊗Z Q.

Notice that K̃0(ZG) ⊗Z Q contains only contributions from K−1(ZC) ⊗Z Q for
finite cyclic subgroups C ⊆ G.

24.4.3 Rationalized Algebraic L-Theory for Infinite Groups

Here is the L-theory analogue of the results above. Compare [154, Theorem 0.4].

Theorem 24.12 (Rational Computation of Algebraic L-Theory for Infinite Groups).
Suppose that the group G satisfies the Farrell-Jones Conjecture 20.3 for L-theory.
Then we get for all j ∈ Z, j ≤ 1 an isomorphism⊕

p+q=n

⊕
(C)∈(FCYC)

Hp(BZGC; Q)⊗Q[WGC] θC · L〈j〉q (RC)⊗Z Q

∼=−→ L〈j〉n (RG)⊗Z Q.

Remark 24.13 (Separation of Variables). Theorem 24.8, 24.9 and 24.12 support
the following general principle separation of variables for the computation of K
and L-groups of the group ring RG or reduced C∗-algebra C∗r (G) of a group G.
Namely, there is a group homology part which is independent of the coefficient
ring R and the K- or L-theory under consideration and a part depending only on
the values of the theory under consideration on RC or C∗r (C) for all finite cyclic
subgroups C ⊆ G.

24.5 Integral Computations

In contrast to the rational case no general pattern for integral calculations is
known or expected. In algebraic K and L-theory the Nil-terms and UNil-terms



228 Chapter 24. Miscellaneous (L.)

are extremely hard to determine and the algebraic K-theory of the ring of integers
is not yet fully understood.

Concrete calculation are usually based on a good understanding of the space
EFIN (G) usually coming from some geometric input. Notice however, that these
spaces can be as complicated as possible in general. Namely, for any CW -complex
X there exists a group G such that G\EFIN (G) and X are homotopy equivalent
[146].

We mention at least one situation where a certain class of groups can be
treated simultaneously.

Let MFIN be the subfamily of FIN consisting of elements in FIN which
are maximal in FIN . Consider the following assertions on the group G.

(M) M1,M1 ∈MFIN ,M1 ∩M2 6= 1 ⇒ M1 = M2;

(NM) M ∈MFIN ⇒ NGM = M ;

(VCLI) If V is an infinite virtually cyclic subgroup of G, then V is of type I (see
Lemma 21.19);

(FJKN ) The Isomorphism Conjecture of Farrell-Jones for algebraic K-theory 20.3 is
true for ZG in the range n ≤ N for a fixed element N ∈ Z q {∞}, i.e. the
assembly map A : HGn (EVCYC(G);KR)

∼=−→ Kn(RG) is bijective for n ∈ Z
with n ≤ N .

Let K̃n(C∗r (H)) be the cokernel of the map Kn(C∗r ({1})) → Kn(C∗r (H))
and L

〈j〉
n (RG) be the cokernel of the map L

〈j〉
n (R) → L

〈j〉
n (RG). This coincides

with L̃
〈j〉
n (R), which is the cokernel of the map L

〈j〉
n (Z) → L

〈j〉
n (R) if R = Z

but not in general. Denote by WhRn (G) the n-th Whitehead group of RG which
is the (n − 1)-th homotopy group of the homotopy fiber of the assembly map
BG+ ∧ K(R) → K(RG). It agrees with the previous defined Whitehead group
Wh(G) if R = Z and n = 1. The next result is taken from [65, Theorem 4.1].

Theorem 24.14. Let Z ⊆ Λ ⊆ Q be a ring such that the order of any finite subgroup
of G is invertible in Λ. Let (MFIN ) be the set of conjugacy classes (H) of subgroups
of G such that H belongs to MFIN . Then:

(1) If G satisfies (M), (NM) and the Baum-Connes Conjecture 20.4, then for
n ∈ Z there is an exact sequence of topological K-groups

0→
⊕

(H)∈(MFIN )

K̃n(C∗r (H))→ Kn(C∗r (G))→ Kn(G\EFIN (G))→ 0,

which splits after applying −⊗Z Λ;
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(2) If G satisfies (M), (NM), (VCLI) and the L-theory part of the Farrell-Jones
Conjecture 20.3, then for all n ∈ Z there is an exact sequence

. . .→ Hn+1(G\EFIN (G);L〈−∞〉(R))→
⊕

(H)∈(MFIN )

L
〈−∞〉
n (RH)

→ L〈−∞〉n (RG)→ Hn(G\EFIN (G);L〈−∞〉(R))→ . . .

It splits after applying −⊗Z Λ, more precisely

L〈−∞〉n (RG)⊗Z Λ→ Hn(G\EFIN (G);L〈−∞〉(R))⊗Z Λ

is a split-surjective map of Λ-modules;

(3) If G satisfies (M), (NM), and the Farrell-Jones Conjecture 20.3 for Ln(RG)[1/2],
then the conclusion of assertion 2 still holds if we invert 2 everywhere. More-
over, in the case R = Z the sequence reduces to a short exact sequence

0→
⊕

(H)∈(MFIN )

L̃〈j〉n (ZH)[
1
2
]→ L〈j〉n (ZG)[

1
2
]

→ Hn(G\EFIN (G);L(Z)[
1
2
]→ 0,

which splits after applying −⊗Z[ 12 ] Λ[ 12 ];

(4) If G satisfies (M), (NM), and (FJKN ), then there is for n ∈ Z, n ≤ N an
isomorphism

Hn(EVCYC(G), EFIN (G);KR)⊕
⊕

(H)∈(MFIN )

WhRn (H)
∼=−→WhRn (G),

where WhRn (H)→WhRn (G) is induced by the inclusion H → G.

Remark 24.15. In [65] it is explained that the following classes of groups do satisfy
the assumption appearing in Theorem 24.14 and what the conclusions are in the
case R = Z. Some of these cases have been treated earlier in [25], [162].

• Extensions 1 → Zn → G → F → 1 for finite F such that the conjugation
action of F on Zn is free outside 0 ∈ Zn;

• Fuchsian groups F ;

• One-relator groups G.

Theorem 24.14 is generalized in [157] in order to treat for instance the semi-
direct product of the discrete three-dimensional Heisenberg group by Z/4. For this
group G\EFIN (G) is S3.

A calculation for 2-dimensional crystallographic groups and more general
cocompact NEC-groups is presented in [162] (see also [185]). For these groups the
orbit spaces G\EFIN (G) are compact surfaces possibly with boundary.
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Example 24.16. Let F be a cocompact Fuchsian group with presentation

F = 〈a1, b1, . . . , ag, bg, c1, . . . , ct |
cγ11 = . . . = cγt

t = c−1
1 · · · c

−1
t [a1, b1] · · · [ag, bg] = 1〉

for integers g, t ≥ 0 and γi > 1. Then G\EFIN (G) is a closed orientable surface
of genus g. The following is a consequence of Theorem 24.14 (see [162] for more
details).

• There are isomorphisms

Kn(C∗r (F )) ∼=

{ (
2 +

∑t
i=1(γi − 1)

)
· Z n = 0;

(2g) · Z n = 1.

• The inclusions of the maximal subgroups Z/γi = 〈ci〉 induce an isomorphism

t⊕
i=1

Whn(Z/γi)
∼=−→Whn(F )

for n ≤ 1.

• There are isomorphisms

Ln(ZF )[1/2] ∼=



(
1 +

∑t
i=1

[
γi

2

])
· Z[1/2] n ≡ 0 (4);

(2g) · Z[1/2] n ≡ 1 (4);(
1 +

∑t
i=1

[
γi−1

2

])
· Z[1/2] n ≡ 2 (4);

0 n ≡ 3 (4),

where [r] for r ∈ R denotes the largest integer less than or equal to r.

From now on suppose that each γi is odd. Then the number m above is odd
and we get for ε = p and s

Lεn(ZF ) ∼=


Z/2

⊕(
1 +

∑t
i=1

γi−1
2

)
· Z n ≡ 0 (4);

(2g) · Z n ≡ 1 (4);
Z/2

⊕(
1 +

∑t
i=1

γi−1
2

)
· Z q ≡ 2 (4);

(2g) · Z/2 n ≡ 3 (4).

For ε = h we do not know an explicit formula. The problem is that no
general formula is known for the 2-torsion contained in L̃h2q(Z[Z/m]), for m
odd, since it is given by the term Ĥ2(Z/2; K̃0(Z[Z/m])), see [12, Theorem 2].
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Exercises

0.1. Show that the manifold N(M) appearing in Example 0.2 satisfies π1
∼= Z⊕Z,

π2 = 0 and w2 = 0.

0.2. Prove (0.5).

0.3. Show that the total spaces of the two S3-bundles over T 2 are not homotopy
equivalent.

1.1. Let M be a closed orientable 8-dimensional smooth manifold. Suppose that
H4(M ; Q) = 0. Show that then all rational Pontrjagin classes vanish.

1.2. Let M and N be closed aspherical manifolds. Suppose that the Borel
Conjecture 1.10 holds for π1(M). Show that the following assertions are equivalent
for a map f : M → N and positive integer n:

(1) f is homotopic to a n-sheeted finite covering;

(2) The group homomorphism π1(f) is injective and its image has index n in
π1(N).

1.3. Let M be a closed oriented (4k + l)-dimensional manifold and let B be
a aspherical closed oriented l-dimensional manifold. Let u : M → B be a map.
Choose a base point y ∈ B. Choose a map f : M → B which is transversal to y
and homotopic to u. Then N = f−1(y) is a closed 4k-dimensional manifold, which
inherits an orientation from M and N .

Show that the higher signature sign[B](M,u) associated to the cohomological
fundamental class [B] ∈ Hl(B) of B agrees with the signature sign(N) of N .

2.1. Prove that Ωn(X;E) a group

231
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2.2. Construct the exact sequence:

. . .Ωm(Y ;E|Y )→ Ωm(X;E)→ Ωm(X,Y ;E)→ Ωm−1(Y ;E|Y )→ . . . ,

2.3. Prove excision: for A ⊆ Y such that Ā is contained in the interior of Y the
inclusion induces an isomorphism

Ωm(X −A, Y −A;E|Y−A) ∼= Ωm(X,Y ;E).

2.4. Give the details of the proof of Proposition 2.3

3.1. Show that the homotopy type of a simply connected closed 4-manifold M is
determined by the intersection form on H2(M).

3.2. Show that the signature of the tensor product of two symmetric bilinear
forms over Q is the product of the signatures

4.1. Prove that CP2 equipped with the opposite orientation has no complex
structure.

4.2. Prove the signature theorem in dimension 8.

4.3. Prove that the signature of finite coverings p : N →M of degree k of closed
oriented smooth manifolds is multiplicative:

σ(N) = kσ(M).

5.1. Let F be a field and let V be the F -vector spaces
⊕

n∈Z F . Let R be the
ring of F -endomorphisms of V . Show that the R-modules R ⊕ R and R are R-
isomorphic. Prove that K0(R) = 0.

5.2. Construct a ring R and a finitely generated projective R-module P such that
for no natural numbers m and n there is an R-isomorphism P ⊕Rm ∼= Rn.

5.3. Let R0 and R1 be rings and pri : R0×R1 → Ri be the projection for i = 0, 1.
Show for n = 0, 1 that

(pr0)∗ × (pr2)∗ : Kn(R0 ×R1)
∼=−→ K0(R0)×Kn(R1)

is bijective.
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5.4. Show that 1− t− t−1 is a unit in Z[Z/5]. Conclude that Wh(Z/5) contains
an element of infinite order.

6.1. Let P∗ be a finite projective R-chain complex. Define its finiteness obstruction
o(P∗) ∈ K0(R) by

∑
n≥0[Pn]. Its reduced finiteness obstruction õ(P∗) ∈ K̃0(R) is

the image of o(P∗) under the canonical projection. Prove

(1) o(P∗) depends only on the R-chain homotopy class of P∗;

(2) Let 0 → P∗ → P ′∗ → P ′′∗ → 0 be an exact sequence of finite projective
R-chain complexes. Then

o(P∗)− o(P ′∗) + o(P ′′∗ ) = 0;

(3) The R-chain complex P∗ is R-chain homotopy equivalent to a finite free
R-chain complex if and only if õ(P∗) = 0.

6.2. Let f : X → Y be a homotopy equivalence of finite CW -complexes. Show
that f × idS1 : X × S1 → Y × S1 is a simple homotopy equivalence.

6.3. Let f : X → Y be a homotopy equivalence of finite CW -complexes. Let
i : X → cyl(f) and j : Y → cyl(f) be the canonical inclusions and p : cyl(f)→ Y
be the canonical projection. Show that τ(j) = 0 and p∗(τ(i)) = τ(f).

7.1. Show that there exists a h-cobordism, which becomes trivial after crossing
with Sn for odd n, but is not trivial after crossing with Sn for even n.

7.2. Let (W ;M0, f0,M1, f1) and (V ;M1, g1,M2, g2) be two h-cobordism. Let Z
be obtained from W and V by glueing along the diffeomorphism g1◦f−1

1 : ∂1W
∼=−→

∂0V . Show that (Z,M0, f0,M2, g2) is a h-cobordism and that we get in Wh(M0)

τ(Z;M0, f0,M2, g2) = τ(W ;M0, f0,M1, f1) + u(τ(V ;M1, g1,M2, g2)),

where u : Wh(π1(M1)) →Wh(π1(M0)) is the map induced by the various homo-
topy equivalences f1, ∂1W →W , ∂0W →W and f0 in the obvious way.

7.3. Put N :=
(
S1 × Sn−1]S1 × Sn−1

)
×CP2 for some n ≥ 3. Let M be a closed

manifold which is h-cobordant to N . Show that M and N are diffeomorphic.

8.1. LetM be a closed manifold which is obtained from the empty set by attaching
two handles. Show that M is homeomorphic to a sphere.

8.2. Let ∂0W be a closed smooth manifold of dimension (n − 1). Suppose that
the compact smooth n-dimensional manifold W is obtained from ∂W0 × [0, 1] by
attaching one q-handle (ϕq), i.e. W = ∂0W × [0, 1]+(ϕq). Let ∂1W be ∂W −∂0W .
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Show that W can be obtained from ∂1W×[0, 1] by attaching a (n−q)-handle,
i.e. W = ∂1W × [0, 1] + (ψn−q).

9.1. Compute w2 of the Kummer surface. Show that the complement of a point
in the Kummer surface is stably parallelizable.

9.2. Compute the signature of the Kummer surface.

10.1. Add details to the computation of the fundamental group and the homology
groups of the trace of surgery T .

10.2. Show (notations as in section 10):

〈x ∪ p1(V ′(d)), [V ′(d)]〉 − 4 · 〈x3, [V ′(d)]〉 = d(5− d2)− 4d,

11.1. Prove that W is an h-cobordism if and only if for i = 0, 1:

i∗ : π1(Mi)
∼=→ π1(W )

and if for all j:

i∗ : Hj(M̃i)
∼=→ Hj(W̃ ).

11.2. Prove that if r > k, a stably trivial r-dimensional vector bundle over Sk is
trivial.

12.1. Show that
sign : Lh4m(1)→ Z

is injective and non-trivial.

12.2. Show that each element in the image of

sign : Lh4m(1)→ Z

is divisible by 2.

12.3. Prove that Lh4m+2(1) is non-trivial.

13.1. Prove that if all homology groups of the universal covering of a finite CW -
complex X, except perhaps one, are trivial, this homology group is a stably free
Z [π1(W )]-module.
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13.2. Prove that if R = Z [π1(W )], then R/{a− a} = Σg2=1Zg ⊕ Σ{g,g−1}g2 6=1
Z,

a torsionfree abelian group.

13.3. Consider the kernel of the map

Hk(S̃)→ Hk(T̃ , M̃0 + M̃1)

(notation as in chapter 13, the definition of the surgery obstruction). Show that
this is a free direct summand of half rank, on which the intersection form and
quadratic refinement of the hyperbolic form vanish

14.1. Show that a stably trivial 2k-dimensional real vector bundle over S2k is
trivial if and only if the Euler class vanishes.

14.2. (Notation as in chapter 14, the proof of the main theorem) Show that the
map

Hk(W ; Z[π1])→ Hk+1(W,T ; Z[π1]) ∼= Z [π1(x)]

agrees with the map which maps α ∈ Hk(W ; Z[π1]) to λ(α, e1).

14.3. Compute ΩSpin6 (T ), where T is the 2-torus.

15.1. Let Q obtained from a closed n-manifold by removing two open disks. Show
that there is a map f : Q→ Sn−1 whose restriction to both boundary components
is the identity.

16.1. Show that the higher signatures of M ×Q∪id + id M × S3 × [0, 1] equipped
with the obvious map to BG (as explained in chapter 16) vanish if and only if the
higher signatures of (M,f) vanish.

16.2. Let V be the total space of a mapping torus and f and g be maps from
V to S1, which agree on some fibre F . Show that (V, f) − (V, g) is bordant to
(S1 × F, h) in Ω∗(S1) for some map h : S1 × F → S1.

16.3. Let P be a simply connected manifold. Show that the signature of a fibre
over a regular point of any smooth map from S1 × S1 × P to S1 vanishes.

16.4. (Notation as in the proof of Theorem 16.1 for n = 1) Show that the inclusion
of A+ to ϕ̂([0,∞)× P ) is a homotopy equivalence and A+ is an h-cobordism.

17.1. Let M be a connected oriented closed 3-manifold whose fundamental group
has order two. Compute the homology and cohomology of M with integral coeffi-
cients.

17.2. Let B∗ be a chain complex of R[Z/2]-modules. Check that there is a natural
R-chain map 1 + T : W∗ ⊗R[Z/2] B∗ → homR[Z/2](W∗, B∗). Now let R be a ring
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with involution and C∗ a chain complex of finitely generated projective R-modules.
Show that the map 1+T above for B∗ = homR(C−∗, C∗) induces an isomorphism
in homology if 2 is invertible in R, i.e., if R is a Z

[
1
2

]
-algebra.

17.3. Let R be a ring with involution and f : C∗ → D∗ an R-chain map of
chain complexes of finitely generated free R-modules. Show that the inclusion
into W∗ of the Z[Z/2]-chain complex concentrated in degree zero defined by the
module Z[Z/2] itself induces natural homomorphisms

ev : Qn(C∗)→ [Cn−∗, C∗]R and ev : Qn+1(f)→ [C(f)n+1−∗, D∗]R.

17.4. Prove Theorem 17.33 (1), i.e., that the symmetric and quadratic algebraic
L-groups are 4-periodic.

18.1. Give an example which shows that Lemma 18.3 does not hold without the
assumption that each Ei is an Ω-spectrum.

18.2. Give examples showing that the pushout and the pullback do not satisfy
homotopy invariance in contrast to the homotopy pushout and homotopy pullback
(see Remarks 18.7 and 18.8

18.3. Serre has shown that πsn({•}+) ⊗Z Q is trivial for n ≥ 1. Prove using this
fact that there is a natural isomorphism

hn(X,A) : πsn(X+, A+)⊗Z Q
∼=−→ Hn(X,A; Q)

for all pairs of CW -complexes (X,A), where Hn(X,A; Q) is singular homology
with rational coefficients.

19.1. Suppose that there is a model for EG, which is n-dimensional or which
is of finite type respectively . Show that then the group homology Hp(G; Q) and
group cohomology Hp(G; Q) of G vanishes for p ≥ n + 1 or is finitely generated
as Q-module for all p ≥ 0 respectively.

19.2. Let G and H be groups. Is EG×EH a model for E(G×H)? Is EVCYC(G)×
EVCYC(H) a model for EVCYC(G×H)?

19.3. Consider G = H0 ∗ H1 for two finite groups H0 and H1. Construct a
1-dimensional model for EG and describe G\EG.

20.1. Let D∞ = 〈t, s | s2 = 1, sts = t−1〉 be the infinite dihedral group which
is the free amalgamated product Z/2 ∗ Z/2 or, equivalently, the non-trivial semi-
direct product Z o Z/2. Show that R with the obvious Z/2 ∗Z/2 coming from the
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translation action of Z and the Z/2 action given by − id is a model for EFIN (D∞).
Then compute HD∞

n (EFIN (D∞);Ktop) using the fact that Kn(Cr∗(H)) is isomor-
phic to the complex representation ring R(H) of H for n even and Kn(Cr∗(H))
vanishes for n odd, if H is a finite group.

20.2. Let X and X ′ be contravariant pointed C-spaces, let Y be a covariant
pointed C-space and let Z be a pointed space. Let map(Y, Z) be the contravariant
pointed C-space which sends an object c in C to map(Y (c), Z). Let homC(X,X ′)
be the topological space of a natural transformations X → X ′ with the subspace
topology for the obvious embedding i : homC(X,X ′)→

∏
c∈ob(C) map(X(c), X ′(c)).

Construct a homeomorphism, natural in X, Y and Z

map(X ∧C Y, Z)
∼=−→ homC(X,map(Y, Z)).

20.3. Let F be a spectrum and H∗(−;F) be the associated homology the-
ory (see Lemma 18.12). We have constructed in Example 20.8 equivariant ho-
mology theories associated to H∗(−;F) using the quotient space and the Borel
construction, namely we have considered for a G-CW -complex X the groups
H∗(G\X;F) and H∗(EG×X;F). Construct for each of them a covariant functor
E : GROUPOIDS→ SPECTRA such that the equivariant homology theory is given
by H?

∗(−;E) in the sense of Lemma 20.14.

21.1. Let H∗ be a (non-equivariant) homology theory (satisfying the disjoint
union axiom). Let G be a group and f : EG → EG be a G-map. Show that the
induced map

Hn(G\f)⊗Z idQ : Hn(BG)⊗Z Q→ Hn(G\EG)⊗Z Q

is bijective for all n ∈ Z.

21.2. Let l be an odd natural number. Show that the assembly map for the trivial
family

ATR : H1(BZ/l;L〈−∞〉)→ L
〈−∞〉
1 (Z[Z/l])

is not injective using the facts that Lsn(Z[G]) = 0 holds for any finite odd order
group G and any odd integer n and the even dimensional Ls-groups of the ring Z
are given by Ls0(Z) ∼= Z and Ls2(Z) = Z/2.

21.3. Let G be the fundamental group of a compact orientable surface. Compute
Wh(G), K̃n(Z[G]) for n ≤ 0 and L

〈j〉
n (Z[G]) for all n ∈ Z and decorations j ∈

{−∞} q {j ∈ Z | j ≤ 2} using the fact that the Farrell-Jones Conjecture 20.3 is
true for G and Lh4n(Z) ∼= Z, Lh4n+2(Z) = Z/2 and Lh2n+1(Z) = 0 holds for n ∈ Z.
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22.1. Let G be a group which is not torsionfree. Show that the rings QG,
CG and C∗r (G) contain idempotents different from 0 and 1 and the image of
trC∗r (G) : K0(C∗r (G))→ R is not contained in Z.

22.2. Let G be the fundamental group of a compact orientable surface M . Com-
pute Kn(C∗r (G × Zk) for each k ≥ 0 using the fact that the Baum-Connes Con-
jecture20.4 holds for G

22.3. Let G be a discrete subgroup of a connected Lie group L such that G\L is
compact. Suppose that G satisfies the Baum-Connes Conjecture 20.4. Prove that
Kn(C∗r (G)) is finitely generated for n ∈ Z.

23.1. Let G be a finite group. Let r(G) be the number of R-conjugacy classes of
G, where two elements of g1 and g2 are called R-conjugate if g1 and g2 or g−1

1 and
g2 are conjugate. Show that

Ls0(ZG)[1/2] ∼= Z[1/2]r(g)

using the fact that r(g) is the number of isomorphism classes of irreducible real
G-representations is r(G).

23.2. Let T∗ : H∗ → K∗ be a transformation of (non-equivariant) homology theo-
ries satisfying the disjoint union axiom. Suppose that Tn({•}) is an isomorphism
for all n ∈ Z. Show that then T (X) is bijective for all CW -complexes X.

24.1. Let Z/3 act on Z3 by permuting the coordinates. Let A be the quotient of
Z3 by the Z/3-fixed point set. Show that A is isomorphic to Z2 and the induced
Z/3-action is free outside 0 ∈ A. Let G be the semi-direct product A o Z/3.
Compute Kn(C∗r (G)) for n ∈ Z.

24.2. Let G be a group which satisfies the Farrell-Jones Conjecture 20.3 for
Kn(CG) and the Baum-Connes Conjecture 20.4. Let K̃n(CG) and K̃n(C∗r (G)) be
the cokernels of the maps Kn(C) → Kn(CG) and Kn(C∗r ({1})) → Kn(C∗r (G))
induced by the inclusion of the trivial group into G. Show that the following
statements for a group G are equivalent:

(1) K̃n(CG)⊗Z Q = 0 for all n ∈ Z;

(2) K̃n(C∗r (G))⊗Z Q = 0 for all n ∈ Z;

(3) G is torsionfree and Hp(BG; Q) = 0 for p ≥ 1.

24.3. Show for a Fuchsian group

F = 〈a1, b1, . . . , ag, bg, c1, . . . , ct |
cγ11 = . . . = cγt

t = c−1
1 · · · c

−1
t [a1, b1] · · · [ag, bg] = 1〉
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that Wh(F ) = 0 if and only if t = 0 or if t ≥ 1 and γi ∈ {2, 3, 4, 6} for i = 1, 2, . . . t.
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Chapter 26

Hints to the Solutions of the
Exercises

0.1. Apply the Seifert-van Kampen theorem and the Mayer-Vietoris sequence.

0.2. Show that 〈x ∪ p1, [...]〉 is a bordism invariant.

0.3. Compute the second Stiefel-Whitney class and express this via the Wu
formulas in terms of the Steenrod squares.

1.1. Since H4(N ; Q) = 0, we get for the first rational Pontrjagin class p1(M ; Q) =
0 and for the signature sign(M) = 0. Now the Signature Theorem 1.3 implies
p2(M ; Q) = 0.

1.2. The implication (1)⇒ (2) follows from elementary covering theory. Suppose
(2) holds. By elementary covering theory there is a covering p : N → N and a map
f : M → N such that the image of π1(p) and π1(f) agree and p ◦ f = f . The
map π1(f) is bijective. Hence f is homotopic to a homeomorphism by the Borel
Conjecture 1.10.

1.3. Let t(νN⊆M ) ∈ H l(DνN⊆M , SνN⊆M ) be the Thom class of the normal
bundle νN⊆M with the orientation induced by the ones on M and N . Let ϕ be
the composition of the maps induced by the obvious inclusions

ϕ : H l(DνN⊆M , SνN⊆M )
∼=←− H l(M,M − (DνN⊆M )◦)→ H l(M).

Then one gets for i : N →M the inclusion

i∗([N ]) = ϕ(t(νN⊆M )) ∩ [M ].

Now we consider the situation appearing in the exercise. Notice that f is
covered by a bundle map νN⊆M → ν{y}⊆B . This implies f∗(ϕ(t(ν{y}⊆B))) =
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ϕ(t(νN⊆M )). We get

sign[B](M,u) = 〈L(M) ∪ f∗([B]), [M ]〉 = 〈L(M), f∗([B]) ∩ [M ]〉
= 〈L(M), f∗(ϕ(t(ν{y}⊆B)))∩[M ]〉 = 〈L(M), ϕ(t(νN⊆M ))∩[M ]〉 = 〈L(M), i∗([N ])〉

= 〈i∗(L(M)), [N ]〉 = 〈L(N), [N ]〉 = sign(N).

2.1. Extend the proof for Ωn.

2.2. The boundary operator associates to (W, f, α) the restriction to the bound-
ary.

2.3. If (W, f, α) represents an element in Ωm(X,Y ;E) use partition of unity to
decompose W as W1 ∪ W2 with ∂W2 = ∂W + ∂W1, such that f(W1) ⊆ X −
A. Then consider (W1, f |W1 , α|W1) and show that this gives an inverse to the
homomorphism induced by inclusion.

2.4. Extend the proof for framed bordism of a point.

3.1. Choose a map f from M to a product K of infinite dimensional complex
projective spaces inducing an isomorphism on H2. Show that the intersection form
onM is equivalent to the image of the fundamental class inH4(K). IfM ′ is another
manifold an g is an isometry from the intersection form of M to that of M ′, choose
f ′ as for M such that it commutes with the maps to K up to homotopy. The proof
is finished by showing that the gf can be lifted to a map from M to M ′ which is
automatically a homotopy equivalence.

3.2. Standard linear algebra.

4.1. Apply the signature theorem in dimension 4. Use that the p1 = c21−2c2, where
ci are the Chern classes, and that c2 of a 4-manifold is the Euler characteristic.

4.2. Use that Ω8 ⊗ Q has dimension 2 and find a basis. Check the signature
theorem on the base elements.

4.3. Apply the signature theorem.

5.1. In the sequel we consider for any F -vector space W the abelian group
homF (W,V ) as a left R-module by composition.

Choose an R-isomorphism u :
⊕n

i=1 V → V . It induces a bijection

ψ :
n⊕
i=1

homF (V, V )
∼=−→ homF

(
n⊕
i=1

V, V

)
homF (u,idV )−−−−−−−−→ homF (V, V )
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This is an isomorphism ψ : Rn → R of R-modules.
Let P be a finitely generated projectiveR-module. We can find an element p ∈

R with p2 = p such that the R-map rp : R→ R given by right multiplication with
p is R-isomorphic to P . Let Q be im(r1−p). There is a canonical R-isomorphism
P ⊕ Q

∼=−→ R. The inclusions im(p) → V and P → P ⊕ Q
∼=−→ R induce a R-map

ϕP : P → homF (im(p), V ) and analogously we get ϕQ : Q→ homF (im(1− p), V ).
One easily checks that ϕP ⊕ϕQ is bijective and hence ϕP and ϕQ are bijective. At
least one of the F -vector spaces im(p) or im(1− p) possesses a countable infinite
F -basis. Suppose that this is true for im(1 − p). Then there is a F -isomorphism
im(1− p)

∼=−→ V , which induces an R-isomorphism Q
∼=−→ R. This implies in K0(R)

[P ] = [P ] + [Q]− [Q] = [R]− [Q] = [R]− [R] = 0.

In the other case we conclude P ∼= R and this implies [P ] = [R]. But obviously
2 · [R] = [R⊕R] = [R] and hence [P ] = 0 in K0(R).

5.2. Take R = Z/2× Z/2 and M = Z/2× {0}.

5.3. Let Pi be a finitely generated projective Ri-module for i = 0, 1. Then P0 ×
P1 with the obvious R0 × R1-module structure is a finitely generated projective
R0 ×R1-module. Use this construction to define a map

Kn(R0)×K0(R1)→ Kn(R0 ×R1).

This map is the inverse of (pr0)∗×(pr1)∗ because there is a natural Ri-isomorphism

(pri)∗(P0 × P1)
∼=−→ Pi

for i = 0, 1 and for each finitely generated projective R0 ×R1-module M there is
a R0 ×R1-isomorphism

M
∼=−→ (pr0)∗M × (pr1)∗M.

5.4. The inverse is 1− t2− t3. The map Z[Z/5]→ C sending t to exp(2πi/5), the
determinant over C and the map Cinv → (0,∞), z 7→ |z| together induce a map
Wh(Z/5) → (0,∞) of abelian groups, where we equip the target with the group
structure given by multiplying positive real numbers. It sends the element given
by the unit above to |1− cos(2π/5|, which is different from 1.

6.1. (1) If f : P∗ → Q∗ is a R chain homotopy equivalence, then cone(f∗) is con-
tractible. This implies cone(f)odd

∼= cone(f)ev and hence o(P∗) = o(Q∗).
(2) is obvious.
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(3) Suppose that õ(P∗) = 0. By adding elementary finite projective R-chain com-
plexes . . . 0 → 0 → Q

id−→ Q → 0 → 0 → . . . to P∗ one can change P∗ within its
R-chain homotopy class such that all R-chain modules are finitely generated free
except the top-dimensional one. But this top dimensional one must be stably free
because of õ(P∗) = 0. Now add another appropriate elementary finite free R-chain
complex to turn also this top-dimensional module into a finitely generated free
one.

If P∗ is up to homotopy finite free, õ(P∗) = 0 follows from assertion (1).

6.2. Use the product formula for Whitehead torsion

6.3. We have p ◦ i = f and p ◦ j = idY . We use the homotopy equivalences i and
p to identify π = π1(X) = π1(cyl(f)) = π1(Y ). We have the commutative diagram
of based exact Zπ- chain complexes whose rows are based exact

0 −−−−→ C∗(Ỹ ) −−−−→ C∗(Ỹ ) −−−−→ 0∗ −−−−→ 0

id

y C∗(j̃

y 0∗

y
0 −−−−→ C∗(Ỹ ) −−−−→ C∗(c̃yl(f)) −−−−→ cone∗(C∗(X̃)) −−−−→ 0

It is easy to check that the left and the right vertical arrow have trivial Whitehead
torsion. Hence the same is true for the middle vertical arrow. This shows τ(j) = 0.
Finally apply the composition formula for Whitehead torsion.

7.1. Use the s-Cobordism theorem, the fact that Wh(Z/5) contains an element
of infinite order and the product formula for Whitehead torsion.

7.2. Use the sum and the composition formula for Whitehead torsion.

7.3. Show that π1(N) = Z∗Z. Conclude using the formulas for free amalgamated
products and the Bass-Heller Swan-decomposition that Wh(π1(N)) = 0. Finally
apply the s-Cobordism Theorem.

8.1. One can attach to the empty set only a 0-handle D0×Dn since for a q-handle
Dq×Dn−q there exists an embedding Sq−1×Dn−q → ∅ only for q = 0. Since ∂M
is empty by assumption, the attaching embedding Sq−1 ×Dn−q → Sn−1 = ∂Dn

for the second handle must be surjective. Hence we must have q = n and M looks
like Dn ∪f Dn for some diffeomorphism f : Sn−1 → Sn−1. This implies using the
Alexander trick that M is homeomorphic to Sn.

8.2. Let M be the manifold with boundary Sq−1 × Sn−1−q obtained from ∂0W
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by removing the interior of ϕq(Sq−1 ×Dn−q). We get

W ∼= ∂0W × [0, 1] ∪Sq−1×Dn−q Dq ×Dn−q

= M × [0, 1] ∪Sq−1×Sn−2−q×[0,1](
Sq−1 ×Dn−1−q × [0, 1] ∪Sq−1×Dn−q×{1} D

q ×Dn−q) .
Inside Sq−1 ×Dn−1−q × [0, 1] ∪Sq−1×Dn−q×{1} D

q ×Dn−q we have the following
submanifolds

X := Sq−1 × 1/2 ·Dn−1−q × [0, 1] ∪Sq−1×1/2·Dn−q×{1} D
q × 1/2 ·Dn−q;

Y := Sq−1 × 1/2 · Sn−1−q × [0, 1] ∪Sq−1×1/2·Sn−q×{1} D
q × 1/2 · Sn−q.

The pair (X,Y ) is diffeomorphic to (Dq ×Dn−q, Dq × Sn−1−q), i.e. it is a handle
of index (n− q). Let N be obtained from W by removing the interior of X. Then
W is obtained from N by adding a (n− q)-handle, the so called dual handle. One
easily checks that N is diffeomorphic to ∂1W × [0, 1] relative ∂1W × {1}.

9.1. i) Show that the Whitney sum of the stable tangent bundle of a hypersur-
face V of degree d in CPn+1 with the restriction of Hd to V is the restriction of⊕

n+2H to V , where Hd is the d-fold tensor product of the Hopf bundle H.
ii) Show that on a 3-dimensional CW -complex all oriented vector bundles with
trivial second Stiefel-Whitney class are stably parallelizable.
iii) Use that a compact n-dimensional manifold with non-empty boundary is ho-
motopy equivalent to a n− 1-dimensional CW -complex.

9.2. Apply the hint i) to exercise 9.1 and use the signature Theorem.

10.1. Apply the Seifert-van Kampen theorem and the Mayer-Vietoris sequence.

10.2. Apply the hint i) to exercise 9.1.

11.1. Apply the Hurewicz Theorem

11.2. This can be reduced to Sard’s Theorem.

12.1. We have seen already that if the signature of a unimodular bilinear form
vanishes, then there is a half rank summand on which the form vanishes. Use
this to produce a half rank direct summand with the same properties. This leads
to injectivity. To show that the signature is non-trivial one has to find an even
unimodular form with non-trivial signature. This is surprisingly not so easy, look
at a book about Lie groups (Dynkin diagrams) to see a candidate.

12.2. Consider the reduction of an unimodular even form mod 2.

12.3. List all elements with rank ≤ 2 (don’t forget the quadratic refinement).
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13.1. Relate the statement to the cellular chain complex of the universal covering.

13.2. Elementary linear algebra.

13.3. Apply the Lefschetz duality theorem.

14.1. Show that n-dimensional vector bundles over Sn are classified by πn−1(O(n)).
Apply the exact homotopy sequence of the fibre bundle O(n+ 1)→ Sn with fibre
O(n) and relate the boundary map d : πn(Sn) → πn−1(O(n)) to the Euler class
of the vector bundle given by d(1).

14.2. Apply excision.

14.3. Apply the Mayer-Vietoris sequence and use that the 4-dimensional spin
bordism group is isomorphic to Z (the isomorphism is given by the signature
divided by 16, and that the spin bordism groups are 0 in dimension 5 and 6 ([231].

15.1. Show that the identity on one of the two boundary components can be
extended to Q. Since the maps of an n − 1-dimensional manifold to Sn are clas-
sified by the degree, one has to show that the restriction to the other boundary
component has degree one.

16.1. Prove that the manifold is bordant to M × K, where K is the Kummer
surface, in such a way that the maps to BG can be extended.

16.2. After a homotopy achieve that the maps agree on a tubular neighborhood
of F . Then construct a bordism between V +(−V ) and S1×F such that the maps
f on V and g on −V can be extended to this bordism.

16.3. Since P is simply connected a map from S1×S1×P to S1 factors through
S1 × S1. Then the fibre is a product of a 1-dimensional manifold and P .

16.4. Construct a homotopy inverse as the identity on A+ and the projection to
k × P on the rest.

17.1. Since M is connected, H0(M) and H0(M) are Z. By Poincaré duality
H3(M) and H3(M) are Z. Since π1(M) is abelian, it is isomorphic to H1(M).
Hence H1(M) is Z/2. By the universal coefficient theorem H1(M) = 0. By
Poincaré duality H2(M) = 0 and H2(M) = Z/2. Since M is 3-dimensional Hp(M)
and Hp(M) vanish for p ≥ 4.

17.2. Equip R with the trivial Z/2-action. Denote by R also the R[Z/2]-chain
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complex which is concentrated in dimension zero and given there by R. Let
e∗ : W∗ → R be the obvious chain map inducing an isomorphism on H0. Let
u∗ : R ⊗R[Z/2] B∗ → (B∗)Z/2 be the R-chain map sending r ⊗ b to r · 1+T

2 · b for
T ∈ Z/2 the generator.

The map 1 + T is given by the composition

W∗ ⊗R[Z/2] B∗
e∗⊗R[Z/2]idB∗−−−−−−−−−→ R⊗R[Z/2] B∗

u∗−→ (B∗)Z/2 = homR[Z/2](R,B∗)
homR(e∗,idB∗ )−−−−−−−−−−→ homR[Z/2](W∗, B∗).

If R contains 1/2, the R[Z/2]-module R with the trivial Z/2-action is projective.
Hence e∗ : W∗ → R is a R[Z/2]-chain equivalence. If R contains 1/2, the R-chain
map u∗ : R⊗R[Z/2] B∗ → (B∗)Z/2 is an isomorphism.

17.3. One has a natural identification of [Cn−∗, C∗] with Hn (homR(Cn−∗, C∗)).

17.4. The periodicity isomorphism is given by the double suspension. Since we
make no restrictions on the dimensions and only require boundedness for the chain
complexes underlying a symmetric or quadratic Poincaré chain complex, this is
already an isomorphism on the level of categories of chain complexes. See [200,
Proposition 1.10].

18.1. Let E be an Ω-spectrum such that A = π0(E) ∼= πk(E(k)) is a nontrivial
abelian group. Denote by E(i,∞) the spectrum obtained from E by replacing the
spaces E(0), E(1), . . ., E(i) by {•}. We have

πk(E(i,∞)(k)) =
{

0 if k ≤ i
A if k > i

and the maps πk(E(i,∞)(k)) → πk+1(E(i,∞)(k + 1)) are isomorphisms for k > i.
We see that for all i we have π0(E(i,∞)) = A and

π0(
∏
i∈N

E(i,∞)) = colimk πk(
∏
i∈N

E(i,∞)(k)) = colimk

k⊕
i=1

A =
∞⊕
i=1

A.

The natural map

π0(
∏
i∈N

E(i,∞))→
∏
i∈N

π0(E(i,∞))

can be identified with the natural inclusion
⊕

i∈N A →
∏
i∈N A and is not an

isomorphism.
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18.2. For the pushout consider the following commutative diagram

Sn−
i−←−−−− Sn−1 i+−−−−→ Sn+y idSn−1

y y
{•} ←−−−−

k1
Sn−1 −−−−→

k2
{•}

where Sn+ and Sn− are the upper and lower hemisphere in Sn and Sn−1 is their
intersection and the maps i− and i+ are inclusions. Notice that the pushout of the
upper row is Sn and of the lower row is {•}.

For the pullback consider for a pointed space X = (X,x) the commutative
diagram

map([0, 1/2], X) i1−−−−→ X
i2←−−−− map([1/2, 1], X)y id

y y
{•} −−−−→

k1
X ←−−−−

k2
{•}

where the mapping spaces are pointed mapping spaces with 0 ∈ [0, 1/2] and 1 ∈
[1/2, 1] as base points and the maps i1 and i2 are given by evaluation at 1/2.
Notice that the pullback of the upper row is ΩX and of the lower row is {•}.

18.3. Tensoring over Z with Q is an exact functor and respects direct sums over
arbitrary index sets. Hence we get a homology theory on the category of CW -pairs
with values in Q-modules satisfying the disjoint union axiom and the dimension
axiom by πs∗ ⊗Z Q. The same is true for singular homology with coefficients in
Q. Now apply the general result that any such homology theory is the same as
cellular homology with coefficients in Q.

19.1. The cellular Q-chain complex of C∗(EG) with the obvious G-action is a pro-
jective QG-chain complex, since its n-th chain module looks like

⊕
i∈In

Q[G/Hi]
if the equivariant n-cells are given by {G/Hi ×Dn | i ∈ I}.

19.2. The answer is yes for the family FIN by the following argument. First of all
one must show that the product of a G-CW -complex with a H-CW -complex is a
G×H-CW -complex. This is true in general since we are working in the category
of compactly generated spaces. Obviously all isotropy groups of EG × EH are
finite. Let K ⊆ G×H be a subgroup. Let KG and KH respectively be the image
of K under the projection G×H to G and H respectively. Then

(EG× EH)K = EGKG × EGKH .

and K is finite if and only if both KG and KH are finite. Now the claim follows.
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The answer is no for the family VCYC as the example G = H = Z shows.
Obviously EVCYC(Z) can be chosen to be a point, but EVCYC(Z × Z) cannot be
Z× Z-homotopy equivalent to a point since Z× Z is not virtually cyclic.

19.3. This is a special case of the result of Section 19.3.7.

20.1. A concrete D∞-CW -structure for EFIN (D∞) is given by

D∞ × S0 −−−−→ D∞/{1} ∗ Z/2qD∞/Z/2 ∗ {1}y y
D∞ ×D1 −−−−→ R

The associated Mayer-Vietoris sequence together with G-homotopy invariance and
the induction structure yields a long exact sequence

. . .→ Ktop
n (C∗r ({1}))⊕Ktop

n (C∗r ({1})
→ Ktop

n (C∗r ({1}))⊕Kn(C∗r (Z/2))⊕Kn(C∗r (Z/2))→ HD∞
n (EFIN (D∞);Ktop)

→ Ktop
n (C∗r ({1}))⊕Ktop

n (C∗r ({1}))→ . . .

This yields HD∞
n (EFIN (D∞);Ktop) = 0 for n odd and the short exact sequence

0→ R({1})→ R(Z/2)⊕R(Z/2)→ HD∞
n (EFIN (D∞);Ktop)→ 0

and hence HD∞
n (EFIN (D∞);Ktop) ∼= Z3 for n even.

20.2. Let p :
∨
c∈ob(C)X(c) ∧ Y (c) → X ∧C Y be the canonical identification.

There is a canonical homeomorphism

h : map

 ∨
c∈ob(C)

X(c) ∧ Y (c), Z

 ∼=−→
∏

c∈ob(C)

map(X(c) ∧ Y (c), Z)

Define α as the map which makes the following diagram commutative

map(X ∧C Y,Z) α−−−−→ homC(X,map(Y, Z))

j

y yi
map(X(c) ∧ Y (c), Z) −−−−−−−−→∏

c∈ob(C) βc

∏
c∈ob(C) map(X(c),map(Y (c), Z))

where j is the embedding of topological spaces coming from the composition
h : map(p, idZ), i is the embedding of topological spaces used to define a topology
on homC(X,map(Y,Z)) and each map βc is the canonical homeomorphism (18.2).
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20.3. The solution is given by the covariant functors

E1 : GROUPOIDS→ SPECTRA, G 7→ F;
E1 : GROUPOIDS→ SPECTRA, G 7→ BG+ ∧ F,

where BG is the classifying space of the groupoid G, i.e. the geometric realization
of the simplicial set given by the nerve of G. (If G is a group and we consider G as
a groupoid with one object, this is the same as BG = G\EG.) One has to check
for a G-CW -complex X, that we get for the associated Or(G)-space mapG(−, X)
a homotopy equivalence

mapG(−, X)+ ∧Or(G) E1(GG(−)) → (G\X)+ ∧ F;

mapG(−, X)+ ∧Or(G) E2(GG(−)) → (EG×G X)+ ∧ F.

For this purpose one constructs for a G-CW -complex Z a homeomorphism of
(unpointed) spaces

mapG(−, X) ∧Or(G) −×G Z → X ×G Z,

where −×G Z is the covariant Or(G)-space sending G/H to G/H ×G Z = H\Z,
and applies this to the case Z = {•} and Z = EG.

21.1. For any CW -complex X the Atiyah-Hirzebruch spectral sequence con-
verges to Hp+q(X) in the strong sense, since we are dealing with a homology
theory satisfying the disjoint union axiom. It has as E2-term the cellular homol-
ogyHp(X;Hq({•})) with coefficients inHq({•}). Recall that Q is flat as Z-module.
By a spectral sequence comparison argument it suffices to prove the claim in the
special case, where H∗ is cellular homology with rational coefficients H∗(−; Q).
The cellular Q-chain complexes C∗(EG; Q) and C∗(EG; Q) inherit the structure
of QG-chain complexes. They both are projective QG-resolution of the trivial
QG-module Q since EG and EG are contractible. By the fundamental lemma
of homological algebra the chain map C∗(f ;MQ) : C∗(EG; Q) → C∗(EG; Q) is a
QG-chain equivalence since it induces an isomorphism on the zero-th homology.
Hence also the Q-chain map

idQ⊗QGC∗(f ;MQ) : Q⊗QG C∗(EG; Q)→ Q⊗QG C∗(EG)

is a Q-chain equivalence and hence induces an isomorphism on homology. It can
be identified with the chain map C∗(G\f ; Q) : C∗(BG; Q)→ C∗(G\EG; Q).

21.2. It suffices to prove that H1(BZ/l;L〈−∞〉)[1/2] is different from zero. Invert-
ing 2 has the advantage that we can ignore the decorations. One easily computes
Hn(BZ/l; Z) = Z/l for odd n and Hn(BZ/l; Z) = 0 for even n ≥ 2. Now the
claim follows from the Atiyah Hirzebruch spectral sequence since its E2-term has
a checkerboard pattern which forces all differentials to be zero.
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21.3. The group G is torsionfree. Hence we can use the version of the Farrell-
Jones Conjecture for torsionfree groups 21.11 and 21.16. This implies Wh(G) = 0
and K̃n(ZG) = 0 for n ≤ 0. We conclude from the Rothenberg sequences that
L
〈j〉
n (ZG) is independent of j so that we can pick j = −∞. Notice that G is a

finitely generated free group if the surface has boundary and the surface itself is a
model for BG if the surface is closed of genus ≥ 1. Now an easy calculation with
the Atiyah-Hirzebruch spectral sequence finishes the computation. The result is

L〈j〉n (ZG) ∼=


L0(Z)⊕H2(BG;L2(Z)) n ≡ 0 mod 4;
H1(Fg;L0(Z)) n ≡ 1 mod 4;
L2(Z)⊕H2(BG;L0(Z)) n ≡ 2 mod 4;
H1(Fg;L2(Z)) n ≡ 3 mod 4.

22.1. Let g be an element in G with gn = 1 and g 6= 1 for some natural number
n ≥ 2. Put p = n−1 ·

∑n
k=1 g

k. This is an element in QG with p2 = p which is
different from 0 and 1. It satisfies trC∗r (G)(p) = 1

n .

22.2. We get from the Pimsner-Voiculescu splitting for k ≥ 1 an isomorphism

Kr
n(C

∗
r (G× Zk)) ∼= K0(C∗r (G))k−1 ⊕K1(C∗r (G))k−1

for all n ∈ Z. Hence it suffices to treat the case k = 0. If M is S2,then G = {1}
and Kn(C∗r ({1}) = Kn({•}) is Z for n = 0 and vanishes for n = 1. Suppose that
M is different from S2. Then π1(M) is torsionfree and M is a model for BG.
The Baum-Connes Conjecture for torsion free groups 22.2 implies Kn(C∗r (G)) =
Kn(BG) = Kn(M) for n ∈ Z. The Atiyah-Hirzebruch spectral sequence implies

K0(BG) = H0(BG)⊕H2(BG);
K1(BG) = H1(BG).

So we get

K0(C∗r (G)) = H0(BG)⊕H2(BG);
K1(C∗r (G)) = H1(BG).

and for k ≥ 1

Kn(C∗r (G× Zk)) = (H0(BG)⊕H1(BG)⊕H2(BG))k−1
.

22.3. Let K ⊆ L be a maximal compact subgroup. Then L/K with the obvious
G-action is a model for EFIN (G) by Theorem 19.11. Since G\L/K is compact,
there is a finite G-CW -complex model for EFIN (G). Now one proves for every
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finite G-CW -complex X by induction over the number of equivariant cells, that
HG
n (X;Ktop) is finitely generated. Use the facts that Kn(C∗r (H)) is the complex

representation ring of H for n = 0 and vanishes for n = 1 and hence is finitely
generated for all n ∈ Z.

23.1. There are isomorphisms

Ls0(ZG)[1/2] ∼= Lp0(ZG)[1/2] ∼= Lp0(RG)[1/2] ∼= K0(RG)[1/2].

The group K0(RG) is isomorphic to the real representation ring of G which is
isomorphic to the free abelian group generated by the isomorphism classes of
irreducible real G-representations.

23.2. Because of the non-equivariant version of Lemma 20.5 it suffices to prove the
claim for a finite-dimensional CW -complex. Now use induction over the dimension.
The induction begin n = 0 follows from the disjoint union axiom because a zero-
dimensional CW -complex is a disjoint union of points. In the induction step apply
the Mayer-Vietoris sequence to a pushout∐

i∈In
Sn−1 −−−−→ Xn−1y y∐

i∈In
Dn −−−−→ Xn

The claim is true for all corners except for Xn by induction hypothesis and homo-
topy invariance. Now apply the File-Lemma.

24.1. Obviously the Z/3-fixed point set is {(n, n, n) | n ∈ Z} ⊆ Z3. The compo-
sition of the inclusion Z2 = Z2 × {0} → Z3 with the projection Z3 → A induces
an isomorphism. If {e1, e2} is the standard basis of Z2, the generator of t ∈ Z3

acts by e1 7→ e2 and e2 7→ e−1
1 e−1

2 and t2 acts by e1 7→ e−1
1 e−1

2 and e2 7→ e1. This
action is obviously free outside the origin. We want to apply Theorem 24.14 which
is possible by Remark 24.15.

Each finite subgroup of G must have order 1 or 3 since we can write G as an
extension 1 → Z2 → G → Z/3 → 1. An element of order 3 must be of the shape
tea1e

b
2 or t2ea1e

b
2. One easily checks that each element of this shape has indeed order

3

(tea1e
b
2)

3 = tea1e
b
2t
−1t2ea1e

b
2t
−2ea1e

b
2 = ea2e

−b
1 e−b2 e−a1 e−a2 eb1e

a
1e
b
2 = 1;

(t2ea1e
b
2)

3 = t2ea1e
b
2t
−2tea1e

b
2t
−1ea1e

b
2 = e−a1 e−a2 eb1e

a
2e
−b
1 e−b2 ea1e

b
2 = 1;

Next we determine how many conjugacy classes of elements of order 3 of the shape
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te1e
b
2 exists in G. One easily checks

t(tea1e
b
2)t

−1 = tea2e
−b
1 e−b2 = te−b1 ea−b2 ;

t2(tea1e
b
2)t

−2 = te−a1 e−a2 eb1 = te−a+b1 e−a2 ;
em1 e

n
2 (tea1e

b
2)(e

m
1 e

n
2 )−1 = tt2em1 e

n
2 t
−2ea1e

b
2e
−m
1 e−n2 = te−m1 e−m2 en1 e

a
1e
b
2e
−m
1 e−n2

= tea−2m+n
1 eb−m−n2 .

This implies that the elements of order 3 of the shape tea1e
b
2 fall into three conjugacy

classes, namely the conjugacy classes of t, te1 and te21. We conclude that we have
the following conjugacy classes of subgroups of order three: 〈t〉, 〈te1〉 and 〈te21〉.

Next we have to figure out the homotopy type of G\EFIN (G). There is an
obvious action of G on R2 which combines the Z2-action on R2 by translation
and the R-linear Z/3-action coming from the Z-linear Z/3-action on Z2 described
above by extending from Z2 to R2. One easily checks that all isotropy groups are
finite and the fixed point set for any finite group is a affine subspace of R2 and
hence contractible. Hence R2 with this G-action is a model for EFIN (G). Identify
Z2\R2 with the 2-torus T 2 = S1 × S1. Define a Z/3-action on T 2 by letting the
generator t ∈ Z/3 act by (z1, z2) 7→ (z2, z−1

1 z−1
2 ), where we consider S1 as a subset

of C. One easily checks G\EFIN (G) = (Z/3)\T 2. One easily checks that

Hn((Z/3)\T 2; Q) ∼= Q⊗Q[Z/3] Hn(T 2; Q) = H2(S2; Q).

Although the Z/3-action is not free, the quotient space (Z/3)\T 2 is a manifold,
since T 2 is two-dimensional. Hence

G\EFIN (G) = (Z/3)\T 2 = S2.

We have

K̃n(C∗r (Z/3)) =
{

Z2 n even;
{0} n odd;

Kn(S2) =
{

Z2 n even;
{0} n odd.

Theorem 24.14 implies

K̃n(C∗r (G)) =
{

Z8 n even;
{0} n odd;

24.2. Let A be an abelian group. Then A ⊗Z Q vanishes if and only if A ⊗Z C
vanishes. Hence it suffices to prove the claim in the situation, where we replace
−⊗ZQ everywhere by −⊗ZC. We conclude from Example 24.10 that K̃n(CG)⊗ZC
vanishes for all n ∈ Z if and only if Hp(ZG〈g〉; C)⊗Z Kq(C) vanishes for all g ∈ G
of finite order and p ≥ 0 and q ∈ Z unless g = 1 and p = 0. Since K0(C) ∼= Z and
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H0(ZG〈g〉; C) = Z, this is equivalent to the condition that each g ∈ G of finite
order satisfies g = 1 and Hp(ZG〈1〉; C) = Hp(G; C) = 0 for p ≥ 1. The proof for
K∗(C∗r (G)) is analogous.

24.3. Because of Example 24.16 it suffices to prove Wh(Z/n) = 0 if and only
if n ∈ {2, 3, 4, 6}. This follows from Theorem 24.4 (4), provided we can show
rR(Z/n) − rQ(Z/n) ⇔ n ∈ {1, 2, 3, 4, 6}. This follows easily from the fact that
rR(Z/n) is the number of R-conjugacy classes of elements in Z/n and rQ(Z/n) is
the number of conjugacy classes of cyclic subgroups of Z/n.
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Norm. Sup. (4), 7:235–272 (1975), 1974.

[29] A. Borel and J.-P. Serre. Corners and arithmetic groups. Comment. Math.
Helv., 48:436–491, 1973. Avec un appendice: Arrondissement des variétés à
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[87] T. Farrell, L. Göttsche, and W. Lück, editors. High dimensional manifold
theory. Number 9 in ICTP Lecture Notes. Abdus Salam International Centre
for Theoretical Physics, Trieste, 2002. Proceedings of the summer school
“High dimensional manifold theory” in Trieste May/June 2001, Number 2.
http://www.ictp.trieste.it/˜pub off/lectures/vol9.html.

[88] T. Farrell, L. Jones, and W. Lück. A caveat on the isomorphism conjecture
in L-theory. Forum Math., 14(3):413–418, 2002.

[89] S. Ferry. A simple-homotopy approach to the finiteness obstruction. In Shape
theory and geometric topology (Dubrovnik, 1981), pages 73–81. Springer-
Verlag, Berlin, 1981.

[90] S. Ferry and A. Ranicki. A survey of Wall’s finiteness obstruction. In Surveys
on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 63–79.
Princeton Univ. Press, Princeton, NJ, 2001.

[91] S. C. Ferry, A. A. Ranicki, and J. Rosenberg. A history and survey of the
Novikov conjecture. In Novikov conjectures, index theorems and rigidity,
Vol. 1 (Oberwolfach, 1993), pages 7–66. Cambridge Univ. Press, Cambridge,
1995.

[92] S. C. Ferry and S. Weinberger. Curvature, tangentiality, and controlled
topology. Invent. Math., 105(2):401–414, 1991.

[93] Z. Fiedorowicz. The Quillen-Grothendieck construction and extension of
pairings. In Geometric applications of homotopy theory (Proc. Conf.,
Evanston, Ill., 1977), I, pages 163–169. Springer, Berlin, 1978.

[94] M. H. Freedman. The topology of four-dimensional manifolds. J. Differential
Geom., 17(3):357–453, 1982.

[95] M. H. Freedman. The disk theorem for four-dimensional manifolds. In Pro-
ceedings of the International Congress of Mathematicians, Vol. 1, 2 (War-
saw, 1983), pages 647–663, Warsaw, 1984. PWN.

[96] D. Gabai. On the geometric and topological rigidity of hyperbolic 3-
manifolds. J. Amer. Math. Soc., 10(1):37–74, 1997.

[97] S. M. Gersten. On the spectrum of algebraic K-theory. Bull. Amer. Math.
Soc., 78:216–219, 1972.
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[140] V. Lafforgue. Une démonstration de la conjecture de Baum-Connes pour
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and W. Lück, editors, High dimensional manifold theory, number 9 in
ICTP Lecture Notes, pages 491–514. Abdus Salam International Centre
for Theoretical Physics, Trieste, 2002. Proceedings of the summer school
“High dimensional manifold theory” in Trieste May/June 2001, Number 2.
http://www.ictp.trieste.it/˜pub off/lectures/vol9.html.



Bibliography 269

[195] A. A. Ranicki. Algebraic L-theory. II. Laurent extensions. Proc. London
Math. Soc. (3), 27:126–158, 1973.

[196] A. A. Ranicki. The algebraic theory of surgery. I. Foundations. Proc. London
Math. Soc. (3), 40(1):87–192, 1980.

[197] A. A. Ranicki. The algebraic theory of surgery. II. Applications to topology.
Proc. London Math. Soc. (3), 40(2):193–283, 1980.

[198] A. A. Ranicki. Exact sequences in the algebraic theory of surgery. Princeton
University Press, Princeton, N.J., 1981.

[199] A. A. Ranicki. The algebraic theory of finiteness obstruction. Math. Scand.,
57(1):105–126, 1985.

[200] A. A. Ranicki. Algebraic L-theory and topological manifolds. Cambridge
University Press, Cambridge, 1992.

[201] A. A. Ranicki. Lower K- and L-theory. Cambridge University Press, Cam-
bridge, 1992.

[202] A. A. Ranicki. On the Novikov conjecture. In Novikov conjectures, index
theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 272–337. Cambridge
Univ. Press, Cambridge, 1995.

[203] A. A. Ranicki. Algebraic and geometric surgery. Oxford Mathematical Mono-
graphs. Clarendon Press, Oxford, 2002.

[204] J. Rognes. K4(Z) is the trivial group. Topology, 39(2):267–281, 2000.

[205] J. Rognes and C. Weibel. Two-primary algebraic K-theory of rings of inte-
gers in number fields. J. Amer. Math. Soc., 13(1):1–54, 2000. Appendix A
by Manfred Kolster.

[206] J. Rosenberg. K-theory and geometric topology. In this Handbook.

[207] J. Rosenberg. C∗-algebras, positive scalar curvature and the Novikov con-
jecture. III. Topology, 25:319–336, 1986.

[208] J. Rosenberg. Algebraic K-theory and its applications. Springer-Verlag, New
York, 1994.

[209] J. Rosenberg. Analytic Novikov for topologists. In Novikov conjectures, index
theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 338–372. Cambridge
Univ. Press, Cambridge, 1995.

[210] J. Rosenberg and S. Stolz. A “stable” version of the Gromov-Lawson con-
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Niln−1(R), 190
NKn(R), 189
õ(X), 195
Or(G), 184
Or(G;FIN ), 199
pk(M), 20
pk(M ; Q), 20
p(k), 167
Qn(C∗), 142
Qn(C∗), 142
SE, 161
σ(M,u), 147
sign(M), 20
signG(M,f), 43
signx(M,u), 20
SPECTRA, 149
tξ, 166
Th(ξ), 161
Th(ξ∗), 164
trC∗r (G), 203
V , 162
Wh(π(Y )), 64
X ∧E, 155
X ∧C E, 185
X ∧C Y , 185
X ×C Y , 184
X+, 155
Θ(W, f, α), 109
πn(E), 150
πsn(X), 151
πsn(X+, A+), 157
πns (X+, A+), 157
ΣC∗, 57
Σ∞X, 151
SLn(R), 52
ΩX, 150
Ωn(X), 164
ΩGn (X,A), 183
Ωn(ξ), 160
Ω-SPECTRA, 150
θ(W, f), 12
τ(f), 64
τ(f∗), 59
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χ(X), 65
L(M), 19
ALL, 172
CYC, 172
FCYC, 172
FIN , 172
GG(S), 185
HG∗ , 181
H?
∗, 182
N (M), 123
Sh(M), 83
Ss(M), 83
VCYC, 172
TR, 172
〈u, v〉, 20∏
i∈I E, 150
{•}, 26
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Schedule for Sunday 25.1.04

20:00 - 20:20 Welcome

20:20 - 21:00 Kreck, M.

“A motivating problem ”
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Schedule for Monday 26.1.04

9:00 - 9.40 Lück, W.

“Introduction to the Novikov Conjecture

and the Borel Conjecture”

9:55 - 10:35 Kreck, M.

“Normal Bordism Groups”

10:50 - 11:30 Kreck, M.

“The Signature”

11:45 - 12:25 Kreck, M.

“The Signature Theorem, Higher Signa-

tures and the Novikov Conjecture”

16:00 - 16:40 Lück, W.

“The Projective Class Group and the

Whitehead Group”

17:00 - 18:30 Kreck, M. und Lück, W.

“Discussion”
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Schedule for Tuesday 27.1.04

8:45 - 9.25 Lück, W.

“Whitehead Torsion”

9:40 - 10:20 Lück, W.

“The Statement and Consequences of the

s-Cobordism Theorem”

10:50 - 11:30 Lück, W.

“Sketch of the Proof of the s-Cobordism

Theorem”

11:45 - 12:25 Kreck, M.

From the Novikov Conjecture to Surgery

12:28 Photo

16:00 - 16:40 Kreck, M.

“Surgery Below the Middle Dimension I: An

Example”

17:00 - 18:30 Kreck, M. und Lück, W.

“Discussion”
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Schedule for Wednesday 28.1.04

8:45 - 9.25 Kreck, M.

“Surgery Below the Middle Dimension II:

Systematically”

9:40 - 10:20 Kreck, M.

“Surgery in the Middle Dimension I: The

Surgery Obstruction Groups Lh
m”

10:50 - 11:30 Kreck, M.

“Surgery in the Middle Dimension II: The

Surgery Obstructions”

11:45 - 12:25 Kreck, M. and Lück, W.

“Discussion”

20:00 Party & Discussion
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Schedule for Thursday 29.1.04

8:45 - 9.25 Kreck, M.

“Surgery in the Middle Dimension III: Re-

sults”

9:40 - 10:20 Kreck, M.

“The Assembly Map and the Surgery Ver-

sion of the Novikov Conjecture”

10:50 - 11:30 Kreck, M.

“The Novikov Conjecture for Finitely Gen-

erated Free Abelian Groups and Some

Other Groups”

11:45 - 12:25 Varisco, M.

“Poincaré Duality and Algebraic L-

Groups”

16:00 - 16:40 Lück, W.

“Spectra”

17:00 - 18:30 Kreck, M. und Lück, W.

“Discussion”
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Schedule for Friday 30.1.04

8:45 - 9.25 Lück, W.

“Classifying Spaces of Families”

9:40 - 10:20 Lück, W.

“The Assembly Principle”

10:50 - 11:30 Lück, W.

“The Farrell-Jones Conjecture”

11:45 - 12:25 Lück, W.

“The Baum-Connes Conjecture”

16:00 - 16:40 Lück, W.

“Relating the Novikov, the Farrell-Jones

and the Baum-Connes Conjectures”

16:55 - 17:35 Lück, W.

“Miscellaneous”

17:50 - 18:30 Kreck, M. and Lück, W.

“Final Discussion”

20:00 - 22:00 Table soccer tournament
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List of participants

Name place
Becker, Christian CMAT Palaiseau
Boccellari, Tommaso Mailand
Brookman, Jeremy Edinburgh
Crowley, Diarmuid Penn State. Univ.
Eppelmann, Thorsten Heidelberg
Friedl, Stefan München
Fulea, Daniel Heidelberg
Grunewald, Joachim Münster
Ji,Lizhen Ann Arbor
Khan, Qayum Bloomington
Korzeniewski, Andrew Edinburgh
Krylov, Nikolai Bremen
Kuhr, Hohannes Bochum
Küssner, Thilo München
Macko, Tibor Bonn
Minatta, Augusto Heidelberg
Mozgova, Alexandra Avignon
Müger, Michael Amsterdam
Müllner, Daniel Heidelberg
Schmidt, Marco Müinster
Schröder, Ingo Göttingen
Schütz, Dirk Münster
Sheiham, Des Bremen
Sixt, Jörg Edinburgh
Strohm, Clara Münster
Su, Yang Heidelberg
Varisco, Marco Münster
Waldmüller, Robert Göttingen
Weber, Julia Münster
Yudin, Ivan Göttingen


