

Topology 40 (2001) 659-665

TOPOLOGY

www.elsevier.com/locate/top

Additivity of free genus of knots

M. Ozawa*

Department of Mathematics, School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan

Received 23 February 1999; received in revised form 5 March 1999; accepted 19 March 1999

Abstract

We show that free genus of knots is additive under connected sum. \odot 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Free genus; Connected sum

1. Introduction

Let K be a knot in the 3-sphere S^3 . A Seifert surface F for K in S^3 is said to be *free* if the fundamental group $\pi_1(S^3 - F)$ is a free group. We note that all knots bound free Seifert surfaces, e.g. canonical Seifert surfaces constructed by Seifert's algorithm. We define the *free genus* $g_f(K)$ of K as the minimal genus over all free Seifert surfaces for K [6].

Schubert [10, 2.10 Proposition] proved that the usual genus of knots is additive under connected sum. In general, the genus of a knot is not equal to its free genus. In fact, free genus may have arbitrarily high gaps with genus [8,7].

In this paper, we show the following theorem.

Theorem 1. For two knots K_1 , K_2 in S^3 , $g_f(K_1) + g_f(K_2) = g_f(K_1 \# K_2)$.

^{*} Tel.: + 81-3-3208-8443; fax: + 81-35286-1308.

E-mail address: ozawa@mm.waseda.ac.jp (M. Ozawa).

2. Preliminaries

We can deform a Seifert surface F by an isotopy so that $F \cap N(K) = N(\partial F; F)$. We denote the exterior $cl(S^3 - N(K))$ by E(K), and the exterior $cl(S^3 - N(F))$ or cl(E(K) - N(F)) by E(F). We have the following proposition.

Proposition 2 (Hempel [4, 5.2]; Jaco [5, IV.15]; Ozawa [9, Lemma 2.2]). A Seifert surface F is free if and only if E(F) is a handlebody.

We have the following inequality.

Proposition 3. $g_f(K_1) + g_f(K_2) \ge g_f(K_1 \# K_2)$.

Proof. Let F_i (i = 1,2) be a free Seifert surface of minimal genus for K_i . We construct a natural Seifert surface F for $K_1 \# K_2$ as the boundary connected sum of F_1 and F_2 . Then E(F) is obtained by a boundary connected sum of $E(F_1)$ and $E(F_2)$. Therefore the exterior of F is a handlebody, and F is free. Hence we have the desired inequality. \Box

We can specify the +-side and --side of a Seifert surface F for a knot K by an orientation of F. We say that a compressing disk D for F is a +-compressing disk (resp. --compressing disk) if the collar of its boundary lies on the +-side (resp. --side) of F, and F is called +-compressible (resp. --compressible) if F has a +-compressing disk (resp. --compressing disk). A Seifert surface is said to be weakly reducible if there exist a +-compressing disk D^+ and a --compressing disk D^- for F such that $\partial D^+ \cap \partial D^- = \emptyset$. Otherwise F is strongly irreducible. The Seifert surface F is reducible if $\partial D^+ = \partial D^-$. Otherwise F is reducible. If F is reducible, then by sliding ∂D^- on F slightly, we see that F is also weakly reducible.

Proposition 4. A free Seifert surface of minimal genus is irreducible.

Proof. Suppose that *F* is reducible. Then there exist a + -compressing disk D^+ and a - -compressing disk D^- for *F* such that $\partial D^+ = \partial D^-$. By a compression of *F* along D^+ (this is the same as a compression along D^-), we have a new Seifert surface *F'*. Since E(F') is homeomorphic to a component of the manifold which is obtained by cutting E(F) along $D^+ \cup D^-$, it is a handlebody. Hence *F'* is free, but it has a lower genus than *F*. This contradicts the minimality of *F*. \Box

To prove Theorem 1, we require a version of Haken's lemma [2] by Casson and Gordon [1]. A compression body W is a cobordism rel ∂ between surfaces $\partial_+ W$ and $\partial_- W$ such that $W \cong \partial_+ W \times I \cup 2$ -handles \cup 3-handles and $\partial_- W$ has no 2-sphere components. A complete disk system \mathcal{D} for a connected compression body W is a disjoint union of disks $(\mathcal{D}, \partial \mathcal{D}) \subset (W, \partial_+ W)$ such that W cut along \mathcal{D} is homeomorphic to $\partial_- W \times I$ if $\partial_- W \neq \emptyset$ or B^3 if $\partial_- W = \emptyset$. In general, a complete disk system for W is a union of complete disk systems for the components of W. A 3-manifold triad (M; B, B') is a cobordism M rel ∂ between surfaces B and B'. A Heegaard splitting of (M; B, B') is a pair (W, W') where W, W' are compression bodies such that $W \cup W' = M$,

660

 $W \cap W' = \partial_+ W = \partial_+ W'$, and $\partial_- W = B$, $\partial_- W' = B'$. Let *H* be a surface and α a closed 1-manifold in *H*. We denote by $\rho(H; \alpha)$ the surface obtained from *H* by doing 1-surgeries along the components of α . Let *H* be a surface in a 3-manifold *M*, and let *D* be a disjoint union of disks in *M* such that $D \cap H = \partial D$. We may then do *ambient 1-surgery on H along D* to obtain a surface in *M* homeomorphism to $\rho(H; \partial D)$.

Proposition 5 (Casson and Gordon [1, Lemma 1.1]). Let (W, W') be a Heegaard splitting of (M; B, B'). Let $(S, \partial S) \subset (M, B \amalg B')$ be a disjoint union of essential 2-spheres and disks. Then there exists a disjoint union of essential 2-spheres and disks S^* in M such that

(i) *S** *is obtained from S by ambient 1-surgery and isotopy*;

(ii) each component of S* meets F in a single circle;

(iii) there exist complete disk systems \mathcal{D} , \mathcal{D}' for W, W', respectively, such that $\mathcal{D} \cap S^* = \mathcal{D}' \cap S^* = \emptyset$.

Note that if M is irreducible (in which case S must consist of disks) then it follows that S^* is isotopic to S.

For a free Seifert surface F of minimal genus for $K_1 \# K_2$ and a decomposing sphere S for the connected sum of K_1 and K_2 , we will show ultimately that S can be deformed by an isotopy so that S intersects F in a single arc, and we have the equality in Theorem 1.

If a free Seifert surface F of minimal genus for $K_1 \# K_2$ is incompressible, then an innermost loop argument shows that a decomposing sphere S for $K_1 \# K_2$ can be deformed by an isotopy so that S intersects F in a single arc, and by Proposition 3, we have the equality in Theorem 1.

So, hereafter we suppose that F is compressible, and divide the proof of Theorem 1 into two cases; (1) F is strongly irreducible, (2) F is weakly reducible. Case (1) is treated in the next section and we consider case (2) in Section 4. Fig. 1

3. Proof of Theorem 1 (strongly irreducible case)

In this section, we suppose that F is strongly irreducible. Without loss of generality, we may assume that there is a + -compressing disk for F. Let \mathscr{D}^+ be a + -compressing disk system for F, and let F' be a surface obtained by compressing F along \mathscr{D}^+ . Since E(F) is a handlebody, we can choose \mathscr{D}^+ so that F' is connected. Take \mathscr{D}^+ to be maximal with respect to the above conditions. We deform F' by an isotopy so that $F' \cap F = K$. Put $A = \partial N(K_1 \# K_2) - Int N(F)$, and let H be a closed surface which is obtained by pushing $F \cup A \cup F'$ into the interior of E(F'). Let A_0 be a vertical annulus connecting a core of A and a core of the copy of A in H. Then H bounds a handlebody V in E(F') since V is obtained from E(F) by cutting along \mathscr{D}^+ . The remainder W = E(F') - Int V is a compression body since it is obtained from $N(\partial E(F'); E(F'))$ by adding 1-handles $N(\mathscr{D}^+)$.

Lemma 6. F' is incompressible in S^3 .

Proof. We consider that F' inherits \pm -sides from F. Suppose that F' is +-compressible, and let E^+ be a +-compressible disk for F'. Then we can regard E^+ as a ∂ -reducing disk for E(F'). By

Fig. 1. Construction of a Heegaard splitting of E(F').

applying our situation to Proposition 5, we may assume that $E^+ \cap \mathscr{D}^+ = \emptyset$. If ∂E^+ separates F', then E^+ cuts off a handlebody from E(F'), and there is a non-separating disk in it. So, we may assume that ∂E^+ is non-separating in F'. Then $\mathscr{D}^+ \cup E^+$ is a +-compressing disk system satisfying the previous conditions. This contradicts the maximality of \mathscr{D}^+ .

Next, suppose that F' is --compressible, and let E^- be a --compressing disk for F'. Then we can regard E^- as a ∂ -reducing disk for E(F'). By applying our situation to Proposition 5, we may assume that $E^- \cap H = E^- \cap F$ is a single loop, and by exchanging \mathcal{D}^+ if necessary, that E^- does not intersect \mathcal{D}^+ . But this contradicts the strongly irreducibility of F. \Box

By Lemma 6, we can deform the decomposing sphere S by an isotopy so that S intersects F' in a single arc. Put $E(S) = S \cap E(F')$. Then E(S) is a ∂ -reducing disk for E(F'). Otherwise, at least one of K_1 or K_2 is trivial, and Theorem 1 clearly holds. By applying our situation to Proposition 5, we may assume that E(S) intersects H in a single loop, E(S) intersects A_0 in two vertical arc, and (by exchanging \mathcal{D}^+ if necessary, preserving the previous conditions) E(S) does not intersect \mathcal{D}^+ . Then S intersects F in a single arc, hence we obtain the inequality $g_f(K_1) + g_f(K_2) \leq g_f(K_1 \# K_2)$. This and Proposition 3 complete the Proof of Theorem 1 in the strongly irreducible case. Fig. 2

Fig. 2. Construction of a Heegaard splitting of E(F').

4. Proof of Theorem 1 (weakly reducible case)

In this section, we consider the case that F is weakly reducible.

We use the *Hayashi–Shimokawa (HS-) complexity* [3]. Here we review it. Let *H* be a closed (possibly disconnected) 2-manifold. Put $w(H) = \{genus(T)|T \text{ is a component of } H\}$, where this "multi-set" may contain the same ordered pairs redundantly. We order finite multi-sets as follows: arrange the elements of each multi-set in monotonically non-increasing order, then compare the elements lexicographically. We define the HS-complexity c(H) as a multi-set obtained from w(H) by deleting all the 0 elements. We order c(H) in the same way as w.

Since F is weakly reducible, there exist a +-compressing disk D^+ and a --compressing disk D^- for F such that $\partial D^+ \cap \partial D^- = \emptyset$. If $c(\rho(F; \partial D^+ \cup \partial D^-)) = c(\rho(F; \partial D^+))$, say, then ∂D^- bounds a +-compressing disk for F. Hence F is reducible, and by Proposition 4, a contradiction.

Therefore, there exist a non-empty +-compressing disk system \mathcal{D}^+ and a non-empty --compressing disk system \mathcal{D}^- for F such that

1. $\partial \mathscr{D}^+ \cap \partial \mathscr{D}^- = \emptyset$, 2. $c(\rho(F; \partial \mathscr{D}^+ \cup \partial \mathscr{D}^-)) < c(\rho(F; \partial \mathscr{D}^+)), c(\rho(F; \partial \mathscr{D}^-)),$ and with $c(\rho(F; \partial \mathscr{D}^+ \cup \partial \mathscr{D}^-))$ minimal subject to these conditions. Moreover, we take \mathscr{D}^{\pm} so that $|\mathscr{D}^{\pm}|$ is minimal.

Let F^{\pm} be a 2-manifold obtained by compressing F along \mathscr{D}^{\pm} , and F' be a 2-manifold obtained by compressing F along $\mathscr{D}^+ \cup \mathscr{D}^-$. We deform F^+ and F^- by an isotopy so that $F^+ \cap F' \cap F^- = K$ and $F^{\pm} \cap N(K) = N(\partial F^{\pm}; F^{\pm})$. Put $A = \partial N(K_1 \# K_2) - Int N(F)$, and let H be a closed 2-manifold which is obtained by pushing $F^+ \cup A \cup F^-$ into the interior of E(F'). Let A_0 be a vertical annulus connecting a core of A and a core of the copy of A in H. Then H bounds the union of handlebodies V in E(F') since V is obtained from E(F) by cutting along \mathscr{D}^{\pm} . The remainder W = E(F') - Int V is a union of compression bodies since it is obtained from $N(\partial E(F'); E(F'))$ by adding 1-handles $N(\mathscr{D}^{\pm})$.

Lemma 7. There is no 2-sphere component of H.

Proof. Suppose that there is a 2-sphere component H_i of H. We may assume that H does not contain A, and there is a copy of some component of \mathscr{D}^+ in H. Let \mathscr{D}_s^+ be a subsystem of \mathscr{D}^+ the union of whose boundaries separates F. If there is no copy of \mathscr{D}^- in H_i , then we delete any one of \mathscr{D}_s^+ . Then \mathscr{D}^\pm holds the previous conditions, but this contradicts the minimality of $|\mathscr{D}^+|$. If there is a copy of \mathscr{D}^- in H_i , then there is a simple closed curve in H_i which separates $N(\mathscr{D}^+) \cap H_i$ from $N(\mathscr{D}^-) \cap H_i$, and bounds a +-compressing disk and a --compressing disk for F. Hence F is reducible, but this contradicts Proposition 4. \Box

Lemma 8. Each component of F' is incompressible in S^3 .

Proof. We consider that F^{\pm} and F' inherit \pm -sides from F. Suppose, without loss of generality, that F' is +-compressible, and let E^+ be a +-compressing disk for F'. Then we can regard E^+ as a ∂ -reducing disk for E(F'). By applying our situation to Proposition 5, we may assume that E^+ intersects H in a single loop which does not intersect A_0 . We deform E^+ by an isotopy so that $E^+ \cap \mathscr{D}^+ = \emptyset$ in S³. We take a complete meridian disk system \mathscr{C} of W which includes \mathscr{D}^+ and does not intersect E^+ . Put $\mathscr{C}^- = \mathscr{C} - \mathscr{D}^+$. Then we have $c(\rho(F;\partial E^+\cup\partial \mathscr{D}^+\cup\partial \mathscr{C}^-))$ $< c(\rho(F;\partial \mathscr{D}^+ \cup \partial \mathscr{C}^-))$ since ∂E^+ is essential in F'. Suppose that $c(\rho(F;\partial E^+ \cup \partial \mathscr{D}^+ \cup \partial \mathscr{C}^-)) =$ $c(\rho(F; \partial E^+ \cup \partial \mathscr{D}^+))$. Then each component of $\partial \mathscr{D}^-$ bounds both a +-compressing disk and a --compressing disk for F. Hence F is reducible, but this contradicts Proposition 2.3. Similarly, if $c(\rho(F; \partial E^+ \cup \partial \mathscr{D}^+ \cup \partial \mathscr{C}^-)) = c(\rho(F; \partial \mathscr{C}^-))$, then we are done. Hence we obtain a \pm -compressing disk system $E^+ \cup \mathscr{D}^+$, \mathscr{C}^- for F which satisfies conditions (1), (2) and has smaller complexity than $\mathscr{D}^+ \cup \mathscr{D}^-$. This contradicts the property of $\mathscr{D}^+ \cup \mathscr{D}^-$. \Box

By Lemma 8, we can deform the decomposing sphere S by an isotopy so that S intersects F' in a single arc. Put $E(S) = S \cap E(F')$. Then E(S) is a ∂ -reducing disk for E(F'). Otherwise, at least one of K_1 and K_2 is trivial, and Theorem 1 clearly holds. Let V_0 and W_0 be components of V and W, respectively, where V_0 contains A and W_0 is the next handlebody to V_0 . Put $H_0 = V_0 \cap W_0$. Then H_0 gives a Heegaard splitting of $V_0 \cup W_0$. By Lemma 8, we can deform E(S) by an isotopy so that E(S) is contained in $V_0 \cup W_0$. By applying this situation to Proposition 5, we may assume that E(S) intersects H_0 in a single loop without moving $\partial E(S)$. Moreover, there exist a complete meridian disk system \mathscr{E}_0 of V_0 such that $\mathscr{E}_0 \cap E(S) = \emptyset$ and $\mathscr{E}_0 \cap A_0 = \emptyset$. Thus S intersects F in a single arc, hence we have the conclusion. \Box

References

- [1] A.J. Casson, C.McA. Gordon, Reducing Heegaard splittings, Topology and its Applications 27 (1987) 275-283.
- [2] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Mathematics Association of America, distributed by: Prentice-Hall, Englewood Cliffs, NJ, 1968, pp. 34–98.
- [3] C. Hayashi, K. Shimokawa, Thin position for 1-submanifold in 3-manifold, preprint.
- [4] J.P. Hempel, 3-Manifolds, Annals of Mathematical Studies vol. 86, Princeton Univ. Press, Princeton, NJ, 1976.
- [5] W.H. Jaco, Lectures on Three-manifold Topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, RI, 1980.
- [6] R. Kirby, Problems in low-dimensional topology, Part 2 of Geometric Topology, in W.H. Kazez (Ed.), Studies in Advances in Mathematics, American Mathematics society, Inter. Press, 1997.
- [7] M. Kobayashi, T. Kobayashi, On canonical genus and free genus of knot, J. Knot Theory and its Ramifications 5 (1996) 77-85.
- [8] Y. Moriah, The free genus of knots, Proceedings of American Mathematical Society 99 (1987) 373–379.
- [9] M. Ozawa, Synchronism of an incompressible non-free Seifert surface for a knot and an algebraically split closed incompressible surface in the knot complement, Proceedings of American Mathematical Society to appear.
- [10] H. Schubert, Knoten und Vollringe, Acta Mathematica 90 (1953) 131-286.