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Abstract

We show that free genus of knots is additive under connected sum. � 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Let K be a knot in the 3-sphere S�. A Seifert surface F for K in S� is said to be free if the
fundamental group �

�
(S�!F) is a free group. We note that all knots bound free Seifert surfaces,

e.g. canonical Seifert surfaces constructed by Seifert's algorithm. We de"ne the free genus g
�
(K) of

K as the minimal genus over all free Seifert surfaces for K [6].
Schubert [10, 2.10 Proposition] proved that the usual genus of knots is additive under connected

sum. In general, the genus of a knot is not equal to its free genus. In fact, free genus may have
arbitrarily high gaps with genus [8,7].
In this paper, we show the following theorem.

Theorem 1. For two knots K
�
, K

�
in S�, g

�
(K

�
)#g

�
(K

�
)"g

�
(K

�
�K

�
).
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2. Preliminaries

We can deform a Seifert surface F by an isotopy so that F�N(K)"N(�F;F). We denote the
exterior cl(S�!N(K)) by E(K), and the exterior cl(S�!N(F)) or cl(E(K)!N(F)) by E(F). We have
the following proposition.

Proposition 2 (Hempel [4, 5.2]; Jaco [5, IV.15]; Ozawa [9, Lemma 2.2]). A Seifert surface F is free
if and only if E(F) is a handlebody.

We have the following inequality.

Proposition 3. g
�
(K

�
)#g

�
(K

�
)*g

�
(K

�
�K

�
).

Proof. Let F
�
(i"1,2) be a free Seifert surface of minimal genus for K

�
. We construct a natural

Seifert surface F for K
�
�K

�
as the boundary connected sum of F

�
and F

�
. Then E(F) is obtained

by a boundary connected sum of E(F
�
) and E(F

�
). Therefore the exterior of F is a handlebody, and

F is free. Hence we have the desired inequality. �

We can specify the #-side and !-side of a Seifert surface F for a knot K by an orientation of F.
We say that a compressing disk D for F is a #-compressing disk (resp. !-compressing disk) if the
collar of its boundary lies on the #-side (resp. !-side) of F, and F is called #-compressible (resp.
!-compressible) if F has a #-compressing disk (resp. !-compressing disk). A Seifert surface is said
to be weakly reducible if there exist a #-compressing disk D� and a !-compressing disk D� for
F such that �D���D�"�. Otherwise F is strongly irreducible. The Seifert surface F is reducible if
�D�"�D�. Otherwise F is irreducible. If F is reducible, then by sliding �D� on F slightly, we see
that F is also weakly reducible.

Proposition 4. A free Seifert surface of minimal genus is irreducible.

Proof. Suppose that F is reducible. Then there exist a #-compressing disk D� and a !-com-
pressing disk D� for F such that �D�"�D�. By a compression of F along D� (this is the same as
a compression along D�), we have a new Seifert surface F�. Since E(F�) is homeomorphic to
a component of the manifold which is obtained by cutting E(F) along D��D�, it is a handlebody.
Hence F� is free, but it has a lower genus than F. This contradicts the minimality of F. �

To prove Theorem 1, we require a version of Haken's lemma [2] by Casson and Gordon [1].
A compression body = is a cobordism rel � between surfaces �

�
= and �

�
= such that

=��
�
=�I�2-handles � 3-handles and �

�
= has no 2-sphere components. A complete disk

system D for a connected compression body = is a disjoint union of disks (D, �D)L(=, �
�
=)

such that= cut along D is homeomorphic to �
�
=�I if �

�
=O� or B� if �

�
="�. In general,

a complete disk system for = is a union of complete disk systems for the components of =.
A 3-manifold triad (M;B,B�) is a cobordism M rel � between surfaces B and B�. A Heegaard splitting
of (M;B,B�) is a pair (=,=�) where =, =� are compression bodies such that =�=�"M,
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=�=�"�
�
="�

�
=�, and �

�
="B, �

�
=�"B�. Let H be a surface and � a closed 1-manifold

in H. We denote by �(H; �) the surface obtained from H by doing 1-surgeries along the components
of �. Let H be a surface in a 3-manifold M, and let D be a disjoint union of disks in M such that
D�H"�D. We may then do ambient 1-surgery on H along D to obtain a surface in M homeomor-
phism to �(H; �D).

Proposition 5 (Casson and Gordon [1, Lemma 1.1]). Let (=,=�) be a Heegaard splitting of
(M;B,B�). Let (S, �S)L(M,BPB�) be a disjoint union of essential 2-spheres and disks. Then there
exists a disjoint union of essential 2-spheres and disks SH in M such that

(i) SH is obtained from S by ambient 1-surgery and isotopy;
(ii) each component of SH meets F in a single circle;
(iii) there exist complete disk systemsD, D� for=, =�, respectively, such thatD�SH"D��SH"�.

Note that if M is irreducible (in which case S must consist of disks) then it follows that SH is
isotopic to S.
For a free Seifert surface F of minimal genus for K

�
�K

�
and a decomposing sphere S for the

connected sum of K
�
and K

�
, we will show ultimately that S can be deformed by an isotopy so that

S intersects F in a single arc, and we have the equality in Theorem 1.
If a free Seifert surface F of minimal genus for K

�
�K

�
is incompressible, then an innermost loop

argument shows that a decomposing sphere S for K
�
�K

�
can be deformed by an isotopy so that

S intersects F in a single arc, and by Proposition 3, we have the equality in Theorem 1.
So, hereafter we suppose that F is compressible, and divide the proof of Theorem 1 into two

cases; (1) F is strongly irreducible, (2) F is weakly reducible. Case (1) is treated in the next section
and we consider case (2) in Section 4. Fig. 1

3. Proof of Theorem 1 (strongly irreducible case)

In this section, we suppose that F is strongly irreducible. Without loss of generality, we may
assume that there is a #-compressing disk for F. Let D� be a #-compressing disk system for F,
and let F� be a surface obtained by compressing F along D�. Since E(F) is a handlebody, we can
choose D� so that F� is connected. Take D� to be maximal with respect to the above conditions.
We deform F� by an isotopy so that F��F"K. Put A"�N(K

�
�K

�
)!IntN(F), and let H be

a closed surface which is obtained by pushing F�A�F� into the interior of E(F�). Let A
�
be

a vertical annulus connecting a core of A and a core of the copy of A in H. Then H bounds
a handlebody < in E(F�) since < is obtained from E(F) by cutting along D�. The remainder
="E(F�)!Int< is a compression body since it is obtained from N(�E(F�);E(F�)) by adding
1-handles N(D�).

Lemma 6. F� is incompressible in S�.

Proof. We consider that F� inherits $-sides from F. Suppose that F� is #-compressible, and let
E� be a #-compressible disk for F�. Then we can regard E� as a �-reducing disk for E(F�). By
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Fig. 1. Construction of a Heegaard splitting of E(F�).

applying our situation to Proposition 5, we may assume that E��D�"�. If �E� separates F�,
then E� cuts o! a handlebody from E(F�), and there is a non-separating disk in it. So, we may
assume that �E� is non-separating in F�. ThenD��E� is a #-compressing disk system satisfying
the previous conditions. This contradicts the maximality of D�.
Next, suppose that F� is !-compressible, and let E� be a !-compressing disk for F�. Then we

can regard E� as a �-reducing disk for E(F�). By applying our situation to Proposition 5, we may
assume that E��H"E��F is a single loop, and by exchangingD� if necessary, that E� does not
intersect D�. But this contradicts the strongly irreducibility of F. �

By Lemma 6, we can deform the decomposing sphere S by an isotopy so that S intersects F� in
a single arc. Put E(S)"S�E(F�). Then E(S) is a �-reducing disk for E(F�). Otherwise, at least one of
K

�
or K

�
is trivial, and Theorem 1 clearly holds. By applying our situation to Proposition 5, we

may assume that E(S) intersects H in a single loop, E(S) intersects A
�
in two vertical arc, and

(by exchanging D� if necessary, preserving the previous conditions) E(S) does not intersect D�.
Then S intersects F in a single arc, hence we obtain the inequality g

�
(K

�
)#g

�
(K

�
))g

�
(K

�
�K

�
).

This and Proposition 3 complete the Proof of Theorem 1 in the strongly irreducible case.
Fig. 2
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Fig. 2. Construction of a Heegaard splitting of E(F�).

4. Proof of Theorem 1 (weakly reducible case)

In this section, we consider the case that F is weakly reducible.
We use the Hayashi}Shimokawa (HS-) complexity [3]. Here we review it. Let H be a closed

(possibly disconnected) 2-manifold. Put w(H)"�genus(¹)	¹ is a component of H
, where this
`multi-setamay contain the same ordered pairs redundantly. We order "nite multi-sets as follows:
arrange the elements of each multi-set in monotonically non-increasing order, then compare the
elements lexicographically.We de"ne the HS-complexity c(H) as a multi-set obtained from w(H) by
deleting all the 0 elements. We order c(H) in the same way as w.
Since F is weakly reducible, there exist a #-compressing disk D� and a !-compressing disk

D� for F such that �D���D�"�. If c(�(F;�D���D�))"c(�(F; �D�)), say, then �D� bounds
a #-compressing disk for F. Hence F is reducible, and by Proposition 4, a contradiction.
Therefore, there exist a non-empty #-compressing disk system D� and a non-empty !-

compressing disk system D� for F such that

1. �D���D�"�,
2. c(�(F; �D���D�))(c(�(F;�D�)), c(�(F; �D�)),
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and with c(�(F; �D���D�)) minimal subject to these conditions. Moreover, we take D� so that
	D�	 is minimal.
Let F� be a 2-manifold obtained by compressing F along D�, and F� be a 2-manifold obtained

by compressing F along D��D�. We deform F� and F� by an isotopy so that F��F��F�"K
and F��N(K)"N(�F�;F�). Put A"�N(K

�
�K

�
)!IntN(F), and let H be a closed 2-manifold

which is obtained by pushing F��A�F� into the interior of E(F�). Let A
�
be a vertical annulus

connecting a core of A and a core of the copy of A in H. Then H bounds the union of handlebodies
< in E(F�) since< is obtained from E(F) by cutting alongD�. The remainder="E(F�)!Int< is
a union of compression bodies since it is obtained from N(�E(F�);E(F�)) by adding 1-handles
N(D�).

Lemma 7. There is no 2-sphere component of H.

Proof. Suppose that there is a 2-sphere component H
�
of H. We may assume that H does not

contain A, and there is a copy of some component of D� in H. Let D�
�
be a subsystem of D� the

union of whose boundaries separates F. If there is no copy of D� in H
�
, then we delete any one of

D�
�
. ThenD� holds the previous conditions, but this contradicts the minimality of 	D�	. If there is

a copy of D� in H
�
, then there is a simple closed curve in H

�
which separates N(D�)�H

�
from

N(D�)�H
�
, and bounds a #-compressing disk and a !-compressing disk for F. Hence F is

reducible, but this contradicts Proposition 4. �

Lemma 8. Each component of F� is incompressible in S�.

Proof. We consider that F� and F� inherit $-sides from F. Suppose, without loss of generality,
that F� is #-compressible, and let E� be a #-compressing disk for F�. Then we can regard E� as
a �-reducing disk for E(F�). By applying our situation to Proposition 5, we may assume that
E� intersects H in a single loop which does not intersect A

�
. We deform E� by an isotopy so that

E��D�"� in S�. We take a complete meridian disk system C of= which includesD� and does
not intersect E�. Put C�"C!D�. Then we have c(�(F; �E���D���C�))
( c(�(F;�D���C�)) since �E� is essential in F�. Suppose that c(�(F;�E���D���C�))"
c(�(F; �E���D�)). Then each component of �D� bounds both a #-compressing disk and a
!-compressing disk for F. Hence F is reducible, but this contradicts Proposition 2.3. Similarly, if
c(�(F; �E���D���C�)) " c(�(F;�C�)), then we are done. Hence we obtain a $-compressing
disk system E��D�, C� for F which satis"es conditions (1), (2) and has smaller complexity than
D��D�. This contradicts the property of D��D�. �

By Lemma 8, we can deform the decomposing sphere S by an isotopy so that S intersects F� in
a single arc. Put E(S)"S�E(F�). Then E(S) is a �-reducing disk for E(F�). Otherwise, at least one of
K

�
and K

�
is trivial, and Theorem 1 clearly holds. Let <

�
and=

�
be components of < and=,

respectively, where <
�
contains A and=

�
is the next handlebody to <

�
. Put H

�
"<

�
�=

�
. Then

H
�
gives a Heegaard splitting of <

�
�=

�
. By Lemma 8, we can deform E(S) by an isotopy so that
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E(S) is contained in <
�
�=

�
. By applying this situation to Proposition 5, we may assume that E(S)

intersectsH
�
in a single loop without moving �E(S). Moreover, there exist a complete meridian disk

system E
�
of <

�
such that E

�
�E(S)"� and E

�
�A

�
"�. Thus S intersects F in a single arc, hence

we have the conclusion. �
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