THE GROUPS m(Van) (I)
By G. F. PAECHTER (Ozford)

[Received 23 March 1956]

Introduction

THE points of a Stiefel manifold V,,, are ordered sets of m mutually
orthogonal unit vectors in euclidean n-space R*. V,,, is topologized as
a subset of R™»™,

In this sequence of papers I calculate the homotopy groups my ., (Ve rmm)
for all kK when 0 < p < 5 (exoept for an ambiguity in the cases p = 5,
k=86, m>6),fork=1and 2whenp = 6,and fork = 1 whenp = 7.
These results are collected in the following tablies, wherein »§ ,, denotes
Trip(Vesmm)» Zg & cyclic group of order ¢, and 4 direct summation.
Also 8 > 0.1 As each group is calculated in the text, I have specified
generators in terms of elements of the homotopy groups of spheres,
whose structure is assumed to be well known in the relevant cases.

TABLES FOR 7§,

(@):p=0
k=1 2 4—1 441 4s 4542
mwl Z, z, Zo Z, Zo 2,
m>2 2, z, z, z, z. zZ,
b):p=1
me=1 0 z, Z, z, z, z,
me=2 0 Z.+2Z, 2, Zy  ZytZe Zyt+Z,
m>3 0 Z 0 2, Z,+Z, £,
(e):p=2
m=1 0 z, z, z, z, z,
m =2 2o Zy+2, Z, Z, 2Z+2, %,+2,
m=3 Z,-}-Z‘ z, Z+2, Z|+Zo Z|+Zl Z.
m>4 2, 0 Z, Z, Z,+%Z, 0

t Not all these results are new. For p = 0 see Stiefel (18); for p = 1 see
J. H. C. Whitehead (22, 23). Using the erroneous announcement by Pontrjagin
that m,(S*) was trivial (14), the following cases had been calculated: p = 2 by
J. H. C. Whitehead, m = 2 and 0 < p 2 by Eckmann (6), and k¥ = 1 and
0 < p < 4 by Eckmann (7), and G. W. Whitehead (19), independently. The
groups for k = 1 are well known for p < 4, e.g. (17), and for § <\ p << 7 have
been obtained independently by Borel and Serre (5, 16).
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d):p=3

k mea= 1 me=2 m=3 m=d m>5

1 0 z, Z,+2, Z, 0
e z, Z,+2, z, z, 0

3 2, z, z, z, z,

4 Zo+ 2y Zo+Z3w+Zy, 2040yt 2y Zo+ 2yt 2t 26 203+ 2+2,
8s—1 Zye Z,+2, Zy+2, Z,+2, Z,
8s+3 Zy Z,+2Z, Zy+2, Z,+2, Z,+2Z,
bt Zy, Zo+Z,  ZtZ,+Z, Z,+2, Z,

8¢ Z,, Zo+2, ZotZ, Zut+Z+2. Zu+2,
Botd  Zy, 2o+ 2, 2,42, Zy+Z,+2. Z+2,
4212 Zy Zy+2, 2y,+2, Zy3+2Zs 24y

(e):p=14
E m=1 m=2 m=3 ™= 4 m= 5 m> 6

1 0 z, Z,+2, z, Z. 0

2 Zy  ZyutZy 0 0 0 0

s Zl Zo+Zl f zc+zd zl+zn z4+zu:+zo zl+zo

4 Zat+2Z, Zy+Zy+Zy 2,124+ Zy+ 24+ 2Z,+ Zyt+Z2+  Zy+Zy+Z,
+2Z,+2, +2Z,+2, +2,+2,

5 z, Zy+2, Z,+Z,+Z, Z,+Z, Z,+Z, Z,

2, z, Zq Z,+Z, z,

z, z, Z, Z,+ 2, Zse

Z, Z,+Z, Z, z, 0

Z,+ 2, Zy+Zy+2, z,+2, Z,

z, z, Zy z, 0

Zy Z, Z, 2z, Z,

Ho+1)
8s—2
8s4-2

ooocooo0
H

(f)ip=5
k moml mo=2 m=3 me= 4 m=3 m =6 ma» 7

0 Zy  ZatZy, 0 0 0 0
Z! zl+zl L] Zm zua zm+zw Zn
z, Z, 2,+2,, Zy+Z2,+2, Z,+Z,t+ Z,+Z,+2, Z,+Z,
+2Z,+2Z,
L4, Byt Zat BBt ZatBytZat ZatZok ZatZyt  ZykZat
+2Z, +2,+2, +2,+2Z, +Z,+2Z, +2Z,+Z, +Z,
z., Z, z z 0

W 10 -

'S

Z, 0 I s
LotZ, ZotZy+Zo Zot+Z,

6 Z, Z, Z,+2, 2,42, or or or

. Z‘+Zn z0+zo+za: zd+z¢:
4543 0 0 Zy, Z+Z, Z,+2,+2, Z,+2Z, zZ,
8s+1 0 0 Zy z, z, z, z,
8215 0 0 " Zs z, z, 0
4s4+1) O 0 z, Z,+2Z, Z, zZ, 0
8s-46 (U 0 z, z, Z, Z+ Z, zZ,
8542 (1} 0 Z, z, Z, Z+2, z,,

@):p=28
E meml m=? m=3 mm4é m=f me=6 m=7 mp»8
1 0 z, zZ,+2Z, Ze Z Zy Zot+Zo Z,

2 Z, Z.4Z 0 2y ZytZy, D 24T, Z4Z, 2,
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B:p=Tandk=1

m=1m=2 mm3 m=4 m=5 m=26 m=17 me=8 mx9
0 Zy Z,+ Z, 0 Zy Zy+2y, 2Zy+2,+2, 2Z,4+2Z, 2,

Whenever possible in the calculations I have used the fact that
Vi +1,m+1 fibres over the n-sphere S* with fibre ¥, ,, and that this fibring
admits an element of section which can be exhibited in a particularly
simple form (a generalization of those of Eckmann in (6) 15d and
(7) 15a). Thus the calculations of =.(V,,,) proceed by induction on m
for fixed ¥ = n—m and r, using the exact homotopy sequence for a fibre
space. These calculations take place in §§ 4, 5 of this paper and in the
subsequent papers—the earlier sections, and the appendixes to all the
papers, being devoted to the assembly of the necessary machinery.

In conclusion I would like to take this opportunity of expressing my
gratitude to Prof. J. H. C. Whitehead for his guidance and encourage-
ment. I am also deeply indebted to Dr. M. G. Barratt, for his many
suggestions in general, and in particular for his collaboration in obtaining
the important result in 5.2 c.

1. Various theorems in fibre-space theory

The triple (X, p, B) is to be a fibre-space X, in the sense of Serre (15),
over the base-space B, with fibre-mapping p: X - onto B. For b € B,
p~1(b) is called the fibre standing over b. If b, is the base point in B,

and 4 = p-1(b,), then we write the fibring as X /A4 -2, B. Wethushave
the well-known exact homotopy sequences (base points omitted)

v (A) P (X)) (X A) 2w (4) —

Pre
m(B)
irs Pre Bre
and —s>m(4) — 7(X) —> 7, (B) — 7,_,(4) —>,
‘.

where 1,, and j,, are the natural injection homomorphisms, 8, the boun-
lary homomorphism, p;, the isomorphism induced by p, P,y = D jru
wnd Ay = 8, pra

We say that the fibring X/4 > B admits a cross-section p if there is
3 map p: B> X such that pp: B— B is the identity map. Then p
nduces natural homomorphisms p,,: =, (B) > n(X) with p,p,, the
dentity isomorp_.ism. Since the homotopy groups are abelian forr > 1,
ve have, by the exactness of the second sequence,
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THEOREM 1.1. 4 necessary condition for XA — B to admit a cross-
88“‘.‘0" 8 M (a) i,;l(O) = 0f07‘ r> O’ (b) "r(X) = irt "r(A)+prt '”r(B)
Jorr > 1.

Now let B be a sphere S*. Then we have

THEOREM 1.2. A necessary and sufficient condition that X |A - S™ admit
a cross-section 18 thet 171,,(0) = 0.

For a proof see (6), Theorem 11.

An element of section (Schnittelement) is a map ¢': (E*, E*) > (X, 4)
such that T = pt': (E*, E™) - (S*,8), where s = p(4), is topological
on En— E™ Let the orientation be such that 7' is of degree 1. Let
t: S*-1 > A be the map defined by ¢’ ) £*. Then, for each r, ¢ induces
a homomorphism t,: m,_,(8*') - n,_,(4). Then we have

THEOREM 1.3. t,m,_,(S* 1) = 71,,(0) when r < 2n—1 (r = 2n—1 ¢f
n s odd).

The proof of this theorem follows from the fact that

Crn,_,(8* ) = 7,(S") whenr < 2n—1
(r = 2n—1 if n is odd), where G denotes the Freudenthal suspension
homomorphism (9), and the following theorem:

THEOREM 1.4. ¢, = A, €: 7, (8% 1) > =,_,(4).

For the proof of this theorem see (6) 172 et seq. In consequence of
1.3 we have

COROLLARY 1.5. If r = n, then {t} generates 172,4(0).1
2. Application to the Stiefel manifolds ¥,

2.1. General properties of ¥, ... The points z of ¥, ,, are ordered sets
of m mutually orthogonal unit vectors (z,,z,,...,2,) in R™ (Euclidean
n-space). Thus ¥, ;, = 8*-1, the unit sphere in B*. We topologize ¥,
as a subset of R*™. In (6) Eckmann showed that ¥, ,, is a fibre-space
over ¥,,, with fibre homeomorphic to ¥,_,, i and fibre mapping
Doy Kv.m - Vﬂ) given by pu.k(zlr 23,0009 zu) = (zlv 5 T zk)-

Let a point z of ¥, ,, be represented by the matrix |lv |, having as its
rows the ordered unit vectors of z. As base point in ¥, we take the
point vy = |lv 4|, where v;; = —3,, ;,;,. We define the identical map
bnkk Vackm-k = Vo 88

taka(llogl) = (o) (hogll € Vompmeis lIogsll € Vo),
—8‘,1;-1:1 (i < k)’
D5 = (. >k j<m—k),
0 (s> k; 5 > m—k).
t {k} demotes the homotopy class of & map k.
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Then we see that §,_; ;(V,_i.m-) i8 the fibre standing over the base point
vy of ¥, . Further, for s < &, ¢,_,, induces the fibre-preserving map

bngs (Ku-c,m—npn—s,k-v Kx-a,k—a) g (Vn,m’ Pns Vn,k))
the induced maps being 1, _,, on the base space V,_, ,_,, and the identity
n_ko OD the fibre ¥,_; . ,. Similarly, for k < s, p,, induces the fibre-
preserving map

ﬁn,o: (Vn,mv Pn,k’ Vn,k) g (Vn,mpn,b Vn,k)r

the induced maps being p, ; on the base space V,, ;, and p,,_;,_; on the
fibre ¥, _; m-x- It follows that the homomorphisms of homotopy groups
induced by the injections t,, and the projections p, , commute with
each other and with the homotopy boundary homomorphism whenever
the composition makes sense.

2.2. Construction of an element of section forV, .1 o 11/Vy m = S™. Let E®
be given by the equations

ﬁ B=1 z,>0,
=0 .
in Rn+1, §»-1 = En being its intersection with 2, = 0. Then we defin
t;u+1.m+1: (E™, E") g (Kl+1,m+l’ Vn,m)
by ot 1m+1(T0s Tpsees Tp) = Vg
in ¥, ,3.m+1, Where
v{J = 2.’6,‘_‘_1_‘2?,_1—8,,_,_1_{,,»__1 (i = l,...,m+1;j = l,..., n+1).
It is easily seen that ¢, , ; ,, ., has all the properties required of an element
of section, and we observe that ¢,,, ,.1: S** >V, , is given by
tn+l,m+1(zor Zyyeees zn—l) = Ugy
in ¥, ,,, where
Uy =22, %, —8, 44, (=1.,mj=1..,n)

2.3. Properties of 8,1 i1

(@) tyi1m+1 18 & symmetric map; i.e. tr = ¢z*, where z and z* are
diametrically opposite points of S*-1;

®) (1) Paxtnirmer = bnsrpsr: S > Vg
Thus ({) Paytniris = bniper SV 8L,
which is of degree 2 if n is even, and of zero degree if n is odd. Geometri-
cally this is the map which assigns to every point ¢ of S*-! the reflection
of (0,0,...,—1) in the n—1 flat through the centre of S*-! which is

orthogonal to the line joining s to the centre. It maps the S"»-* given
by z,_, = 0 onto the point (0,...,0,—1).
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Note also that

(111) tn+1,m+1 I S"_t
= tp a1 batram—teal ST in—¢+Lt—1(K¢—4+Lm-(+x)v
where S*-* is the intersection of S*-! with
Tp] T Tpg = 0. = Ty = 0.

(¢) If w,: 8 > Pr is the identification map which identifies z and z*

in 87, P being the real r-dimensional projective space, then
Pratnirmer thaly: P> 81

is single-valued and so continuous (24), and of degree 1 (mod 2) and

therefore essential. Further, it maps the P*-% given by z,_, = 0 onto

the point s = (0,...,0, —1), and is topological on (P*-1—P»-%), We

choose the orientation of the latter such that this map, when restricted

to (P»-1— P*-%), is of degree 1.

Lemma 2.3 (d). The image of 8™~ under t, ) oy 0 V, , 18 the homeo-
morphic image of a P}=1, where k = n—m,t and P31 s the projective
space P»-1 with a subspace P*-1 shrunk to a point.

Proof. Let

Prsrmir = bnsrmsrtiniy: PPV,
Then we see that ¢, m; mape the P2 which is the intersection of
Prlwithz, , = z, 3 = ... = z; = 0 onto a point, while it is one-to-one
on P*-1—Pk-1, Ifw,,: PT—» Pjis the identification map which shrinks
the subspace P? to a point p (P} being given the identification topology),

then _ -
'lbu+l.m+1 = ¢n+1,..+1w -11,1'—13 Pg-ll —> Va.n

is gingle-valued and so continuous, and one-to-one. But it is a map of a
compact space into a Hausdorff space: that is, it is 8 homeomorphism
‘into’. Note that
tosimil = Ynstmi1 Vn-r1x-1%n-1: S > Vo,
so that ¢ and ¢ do map onto the same space. Hereafter I shall refer to
this image as ‘the P-} imbedded in ¥, ,,’. We also see that §2.3 (b) (iii)
implies a similar relation for ¢, .1 w41 | PE=E
Further note that, if E* is the hemisphere of 8 given by z, = 0, then
tu+a,m+a | B* = ‘;+1.m+1: (E™, Eﬂ) > (Ku+l,m+1»Vn,u)'
Since restricting ¢, ,4,,+s to ™ has no effect on ¢,y ,..1, We see that the
image of f;, .1 41 18 the P}_, imbedded in ¥, ,, ;. Let us consider P*
1 This was proved originally explicitly in (22) 250.
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and P?_, as CW complexes. (I shall drop subscripts of maps whenever
ambiguity cannot arise.) Then we have from 2.3 (c) that

pn+1,1 ¢n+l,n+2 = pn+l,1 tu+l,1u+l 1‘;1: (P‘n’ P'_l) -> (Sﬂr 8)
is topological and of degree one when restricted to (P*— P*-1). Since
the same is true of
wu.k—1: (P‘n’ Pk—l) - (P:—lrp);

we have that = ppwt: (Py_,, P2=1) - (8%, 9)
is topological and of degree one when restricted to P}_,— P3-1.

But P = puiatairmir: (B, E») > (8%, 3),
which is topological and of degree one when restricted to (E*— E™). Thus

g = ¢~ (B E*) > (Pp_y, PR2D)
is a characteristic map for the n-cell of P}_,. Let
8ry: m(E*, E*) > m,_,(8*1)
be the boundary homomorphism. Then P. J. Hilton showed [(10), proof
of Theorem 1.1] that
(P‘)l')rlt grt 81,';1 = &: 77r—1(S"-—1) -> "r(S")’

. Pratbrabrada’ =
But (i) p,« and 85! are always isomorphisms ‘onto’,

(i) g,o 18 ‘onto’ if 1 <r <n-+k—1, by (25) Theorem 1, sinoe
{(P3=}) =0 forr < k.

Hence we have the following lemmas:

Lemma 2.3 (¢). If 7 4S*) = Cn,_,(S* 1), then

Sl‘u+:,m+n: (P31, P221) > ”r(zt+l,n+1’ VM)

8 ‘onto’.

Lemma 2.3 (f). If 1 <r < n+k—1, and €: 7,_,(S*1) =2 =, (S™), then

Pnszmran: To(Pho1, P22]) = 1 (Varymi1s Vasm):

By use of induction on m and the ‘five’ lemma these lemmas lead to
» proof of

THEOREM 2.3 (g). Ifr < 2k (k =n—m > 0),

hen Ynsrmers T(PE2]) = T (Vam)s
nd Pnirmirnt Ta(PRI]) = mu(Vo )
3 ‘onto’.

I omit this proof. A different proof can be found in (22), Theorem 3.
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3.1. Notation and properties of homotopy groups. The following con-
ventions will be used throughout.

n{,m denotes the group m,.;(Viimm), € the suspension functor. If
f: (B, B e)) > (X, A,a,), where A may equal a,, then {f} denotes the
homotopy class of fin 7,(X, 4,a,). As a rule base points will be omitted.
[a,b] in =, 4(X) denotes the Whitehead product of a in =,(X) and
b in 7, (X) (21). It will sometimes be used also with @ and b as maps
instead of classes. A similar notation will be used for generalized
Whitehead products.

If 7,(8") is a cyclic group, then A&, ,: 8" - S* will be such that {&,,}
generates 7, (8"); h,, will be of degree one, &, of Hopf invariant one,
and {hy¢} will be the Blakers—Massey element. Also § will denote the
Hopf fibre map : §7 - 84, of invariant one. Thus, for instance, we
write generators of #,(8%), = Z,+ Z,,, as {fh,,} and G{h,ye}. It will be
assumed that the reader is familiar with the properties of =, ,(S™) for
k < 5: that is, with their structure, their behaviour under €, and the
values of compositions {4, ,4,,} and Whitehead products.

Let {h} € Gnm,_,(S*1); {h'} = 85 {h}, where

8y: My (ERHY, En+1) oo o (S%),
Then, if 4 is arcwise connected, we have

Lrmua 3.1 (a). {h} and {h'} snduce homomorphiems h*: = (4) > = (4)
and B'*: 7, (X, A) > 7, ,(X, A);

(b) these homomorphisms commute with €, a fibre mapping, a cross-
section, and the homomorphisms of the exact homotopy sequences of § 1.

The proof is straightforward and therefore omitted. When an A*
appears in the sequel, it will always be a homomorphism, and this in
virtue of the above lemma unless otherwise stated. Note also that

B = (Kb} = Eo{B).

3.2, A theorem on suspension. Let X be a CW complex, X7 its
p-section. Let X be (k—1)-connected, where £ > 1. Then we have the
following theorems:

THEOREM 3.2 (A).

(@) €: m,_(X)—> 7 (EX)
18 an tsomorphism for r < 2k.

(b) When r = 2k, € i3 ‘onto’ and €~(0) 18 generated by the products

[«, B], where « and B are any elements in m,(X).
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THEOREM 3.2 (B).

G: 7,_ (XP+, XP) > 7, (EXP+, EX?)
$ an 1somorphism when 2 < r < p+k+1, and ‘onto’ whenr = p+k+1.

Proof of Theorem 3.2 (A). Let X, and X, be two cones on X inter-
secting in X, so that X, U X, = €X, and X, n X, = X, Then consider
;he diagram

8‘ “ .t
> 70 (€X; Xy, Xy) —2> (X, X) —> 7 (€X, X,y) 22 7 (€X; X, X,y) >

lal. Te;
7y (X) —> 7 (EX).

By Theorem 1 of (13) the sequence is exact. Since X, and X, are con-
ractible, 8,, and s, are isomorphisms. Also, by an argument similar
0 that on p. 375 of (13), the diagram is commutative. Henoe ¢, and €
wre equivalent. Sinoe (X,, X) and (X,, X) are both k-connected,

m(€X; X, X,) =0 forr <2k

>y Theorem 1 of (3) (II). This proves (a) and the first part of (b).

Now by Theorem 1 of (3) (IIT), g, ,(EX; X,, X,) is generated by the
sroducts [a, 8'] for any elements o' € m,,(X,, X) and B’ € mp (X, X).
Further, if 8,,: m(X,, X) =~ =,._,(X), then

84[',B] = —[354a',8], by 4.3 of (4),
md 8],.[8,.6!', .B’] = (_l)k[sg¢ (!', 81‘3’], by 3.5 Of (4).
Putting a = 8,,«’ and B = §,,8’, we obtain the last part of (b).

Proof of Theorem 3.2 (B). This is omitted. It follows directly from
;he special case of (A) when X is & bunch of p-spheres having a single
sommon point, and Theorem 1 of (25).

Now let Y5+ be the space consisting of an S* to which one k-1 cell
1a8 been attached by a map ¢ such that ¢ | £¥+! » §* is of degree 2.
Let BX+2 be the space consisting of Y5+ to which one k-2 cell has been

wttached by & map ¢ such that ¢ | £%+2 » 8% c Y%+! and is essential on
S, Then Theorem 3.2 (A) yields

CoroLLARY 3.2 (C). (8) G:mpyy(F5+Y) = mean(Y5H) (kB = 3);
(0) G mg(BYtT) = m(BitY) (k2 3).
When k = 3, all products in 74(Y$) and n,(B}) must be injections of
sroducts in my(S?), which are all zero.)

3695.2.7 8
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3.3. An algebraic theorem

Definition. A subgroup U c G is partially division-closed if and only if
for every g € @ such that mg € U, there is a u € U such that mu = mg.

THEOREM 3.3 (A). Let G be a finitely generated abelian group, U a sub-
group. Then a necessary and sufficient condition for U to be a direct
summand of G is that U be partially division-closed.

Proof. (a) Let G = U+V and let mge U, where

g=utv (uclU,veVl)

Then mv = mg—mu € U, whence mv = 0. Thus mg = mu, and U
is partially division-closed.

(b) Let U be partially division-closed, ¥V = G—U, and f: G - V the
natural homomorphism. Since @ is a finitely generated abelian group,
so is8 V. Therefore V = ¥;+...+V,, where each ¥, is oyclic. Let v;, of
order m,, be & generator of ¥, and let g, € f v, Then m,;g; € U sgince
m,v; = 0. Therefore m,g; = m,u, for some u, € U. Let g; = g,—u,.
Then fg; = v; and m,g; = 0. Therefore a homomorphism A: ¥V - G,
such that fA = 1, is defined by hv; = g for each ¢t = 1 to n. Henoe,
since @ is abelian, @ = U+AV, and the theorem is proved.

Let @ be a finitely generated abelian group, U-c @ finite, and, for
every prime p, let N(G,p) be the maximal order of elements in the
p-oomponent of G.

Lrmwma 3.3 (B). If U = U,+...4 U, where U is cyclic of order

N(G»P() > 1:
Jor some prime p,, then U 13 partially division-closed in Q.
Proof.1t If
Gd=0+4+&, U=U0+U", Ucq@, U'c@,
and if U’ and U” are partially division-closed in @' and G*, then so
obviously is U in G. Therefore we may consider the p-components of
. @ separately. Let X be the p-component of @ for some prime p, ¥ that
of U, and suppose that N(G,p)= p'. Suppose that V = V+...4F,
where ¥, is cyclic of order 2, and let v, be a generator of ¥;. Suppose
that g € X is such that
mg = k,v;+...+ kv,
where m = Ahp*, h being prime to p and & < t. Then there exists an A’
such that A4’ = 1 (mod p?). Also p'—*mg = 0, whenoe every k; = I, p*.
Thus mg = p'u = p*hh'u = m(h'u),
+ I am indobted to the referee for this simplified version of the original proof.
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where 4 = L, v,+...+1,v,. By the above observation, this proves the
lemma.

CoBOLLARY 3.3 (C). Under the conditions of Lemma 3.3 (B), U ts a
direct summand of G.
4. Calculation of nf,, : preliminaries
The calculations are based on the examination of the exact sequences
associated with the fibrings
Vermsrom et/ Veimm = S5
When these are insufficient, we turn in the first place to those associated

with the fibrings Vesmirms1/ S5 > Vismirm:

Constant use will be made of Theorem 1.3; because of this frequency
it will not be referred to every time it is applied.
I first prove two theorems:
THEOREM 4.1. (a) 70, = 7fpisfor m = p4-2.
) =0 forp <Oandall kandm.
Proof. (a) Consider the sequence associated with the fibring
v;-Hn+1,-+1ka+ﬂl.u - §%+®  when r = k+p;
A, . .
ie. = Tpypsa (8™ —> nf =, Th 1 L, Tpap(SET™) >
Hence, since =, (8*+™)=0 when r < k+m, =f,,, <, when
p < m—2; and (a) follows.
(4) By (@), nf, = g, if p < 0,i0. = m,,,(S*) = 0 sinoe p < 0.
THROREM 4.2. (a) mfm = 7fLL. (P 2> 1).
(b) '”z,u ~ '"'t-f—l,m—l (k= 17).
Proof. (a) Consider the sequence associated with the fibring
Vnt2m+1/ S = Vg ms

. b 4
l.e. ng "p+2(Sl) -> "f,:&l-l —HRR, Thm > "p+1(Sl) —>.

Hence, gince =,(8') = 0 for r > 1, (a) follows.
(b) Consider the sequence associated with the fibring
Viimm/S* > Ve imm—y, When r = k45,

. Primm—
i.e. > Tpag(8%) > mh o s ) me1 > T (SF) >

But 7, 5(S*) = 0 = m,,((S*) when k > 7; whence (b) follows.
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5. Calculation of =§,
We consider the fibring ¥, ,,,/S* > S*+1, and examine the sequence

(A) > Ty a(884) 5 my o (99) 220 g P20 ey
5.1. k = 0(mod 2). Inthis case thereis a one-field on S*+![see (8), (19)]
and so the fibring admits a cross-section p. Hence Theorem 1.1 gives
e = i,,frkﬂ,(S*)—l-p‘wkﬂ,(Sh'l).
The values of nf, for even k are then as shown in the tables.
Note that, by Theorem 1.2 and Corollary 1.5, we have

{tessa} = 0 for k = 0 (mod 2).
5.2. k=1 (mod2)and k > 3. We have from 2.3 (b) that
biag: S > S
is of degree 2. Henoe {t;,,5} = 2{h;;}. Then
(a) When p = 0, (A) gives

Prnre (81 % gk g (SR

ie. > 2o >2y>1hs—>0,
where 15,'(0) is generated by {f;.s4}: that is, by {2A, ;}.
Hence 70y = Z,, generated by {311 Ay}

Note that A;1(0) = 0, and hence that p; ., is trivial.
(b) When p = 1, (A) gives

Prize A, LTI Priin
—_— ""k+a(Sk+l) —— "k+1(Sk) _— '”]k,a - 77'k+1(‘s'k+]).

i.e. > 2y > Zy>7iy >0
8ince py .,y is trivial by (). Also
’.k_-'!u(o) = ttﬂ.,u ”k+1(Sk),
which is generated by
Rt xsilthsng} = A ks 2Pis) = 2hLpia{Bes} = 2{hpins} = 0.

Hence 15 },4(0) = 0, and =} 3 = Z,, generated by {i;,1, hrrs1}-

Note that thus A, is trivial, and hence p, 4, i8 ‘onto’.

(c) When p = 2, (A) gives

A .
T, a(8541) e (85) sy T (SR,
i..e. —)Z’—)Z'—-)”L’»Z’_>O,

since p; .4, 18 onto by (b). Also

Yirea(0) = g 24 Te1a(S¥),
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which is generated by
h:,k+a{tk+u} = h:.u: 2{hu} = 2":,&“{7‘1:,1:} = 2{hk+u} = 0.
Hence 1;!44(0) = 0; whence =}, has four elements.

Note that thus A, is trivial, and henoce 2,3, i8 ‘onto’.

We now need to determine the structure of n},. For this we look at
the space P¥*1 [see 2.3 (d)], which is of the same homotopy type as the
Y%+ defined in 3.2 [see Appendix to part (II)]. M. G. Barratt showed
in (1) that the homotopy classes of maps of P}*}into itself can be turned
into a group (P}*})°(Pi+l) when k > 3, and that this group is Z,
[(1) 10.81]; and more particularly that, if « is the identical map of P+l
onto itself, +' the identical map

Yitsatesry: SE > PEX,
and p’ the shrinking map
DPri21 Yrins Pt} > Sk,
then o generates (PEr1)%(Pttl) and 2a = {'hy .y 2’}
Next consider the sequence

.’

> i g(S%) —> mg a(PEED) 2> g (854) >
By virtue of the isomorphisms of Theorems £.3 (f) and (g), this is exact
and reduces 0 (g , 7, > my,a(PEHD) ~ Z, > (0).
Let B: 8¥+* » Pt+1 be such that p'*{8} = {hy,;x+s}- Then since
{B} € Gmy o(PEt]) fork =56
by Corollary 3.2 (C) (k is odd), it induces a homomorphism
B*: (PEEDYUPEED) - mas(PEED.

Thus, for k > 5

2B*x = B* 20 = B*i'hyp i1 P’} = {(VhixaD'B}

= {hepnbesrpsa} = {i'hu“} #0

from (c) above.. Thus, when & >> 5, we have found an element, 8*x, in
e +a(PEE}) twice which is non-zero. Hence my 4(PE]) = Z fork > 8.

For k = 3, the result follows from this and Corollary 3.2 (C). By
Theorem 2.3 (g) we therefore have that

s =2, foroddk >3
and is generated by any a such that p,,s,48 = {Bri1x+a)-
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(d) When p = 3, (A) gives, when k > 5,

B S5 Dy (90) Ry P (5E4)
i.e. > 2y > Loy > ha > Zy >0
since p; ., i8 ‘onto’ by (¢). Also
".';-:3#(0) = tk+ut ”k+z(sk):
which is generated by
hxssltesast = Brers2{Pen} = 2{bera}-

Hence 15 154(0) = 2Z,,; i.e. n} 4 has four elements.

Note that exactness implies that A, 7, (8**) = 27, 4(S*), whenoce
AZY(0), and so the image of py. .4, i8 Z, generated by 12{h;; 3.4}

To determine the structure of n},, we operate with Af,; ;. on the
section of the sequence given in 5.2 (c) and obtain the commutative

diagram [cf. (3.2)]
> i pa(F) s g TS oy (8541) > 0
L
> g (85) 22> rfy TES 5 (859) > 0,
Now let a be a generator of 7}, such that

Pri21e8 = {ri1pish
and a’ a generator of n},. Then

h*Pkﬂ,n e = h*{hk+l,k+l} = {hk+1,k+l hk+u:+x} = {hk+1.k+a}

Hence Priraah*a’ = {hk+1,x+a}-

Thus h*a’ = a+1%;,34b,

where b € 7, 4(8%); and 2(h*a’) = 22+ 21, ,,.
But 205 436D = 15,3420 = 0,

from above; and further,
2(h%a’) = 20;{"&+u+a} = Gy 2Py insia} = 0.
Hence 2a = 0,
ie. nhe = Zy+Z, for odd k > 5,
and is generated by {s;.,, Ax x+3} andany asuch that Dy 5,4 & = (s rsa)
(¢) When p = 3, and k = 3, (A) gives
. A * ¥ L ] L]
2T (84) 215 g (8) 20 w3y 200 (%) >

i.e. > Zot2Zyy > Zyy > 7":.1 +>2Zy>0
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gince pe, i8 ‘onto’ by (¢). Unfortunately in this case we cannot make .
use of Theorem 1.3 since ,(S*) # Eme(S?), but at any rate we have
from Theorem 1.4 that

A7£ (E‘”e(Sa) = ts,u "e(Sa):
which is generated by
hieltent = hae2{hss}t = 2ha e}
gince h3 4 is & homomorphism by Theorem IV of (7). Hence
Aoy Cmry( %) = 2m,(S?).

I have not been able to find a direct method of calculating A,y Py{h 1}
There is however another way of evaluating 73, Consider the sequence
associated with the fibring ¥, ,/8* > V;,:
ie. ~> 73 > 73y > mg( %) > m) 5 > 73y > m (ST >
I shall show in § 8.5 (c) and (d) respectively that n} 3 = Z, and n§ 5y = 0.
Hence the sequence is of the form

>0}y > 2y > 2y > 2> Zy >
gince n§y = Z, by (c). Thus, by exactness, we have
"g,l = Z,,
generated by any a such that py,,a = {A,}. Note that 1,, is trivial
and that this implies that A,, 5,{A;;} = A{hye}, Where A is 0dd. Exact-
ness then gives that the image of p,, is the subgroup Z,+ Z, which is

generated by (254{A;;}—AC{R,¢}) and 6G{h,4}.
(f) When p = 4, and k > 7, (A) gives

> Tp4g(SEH) > 7y ((S%) > nf, Prus Tisa(SFH) =
But =, (8*) = 0, and by (d) the image of p,, s i8 Z;. Hence
s =2, foroddk>71,

and i8 generated by pils 1 12{hsi1 444}
(9) When p = 4 and k = 3, (A) gives

2 (84 25 (%) Tty 2 (54 >
ie. > 2yt Zy > Zy > hy > Zot+2Zy, >0
gince the image of p,, is Z,+ Z, by (¢). Again we cannot make use of
Theorem 1.3. But consider
Vralbas} = t1u{has hoz} = 74 her{has) = horvgaibast = 0
since t4, is trivial by (e¢). Hence 1,,,(S?) = 0; and we have the result

77%,’ = Z0+Z’)
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and is generated by
Prin(2P4{hs 7} —AC{hye}) (Aodd) and pgiy 6€{Ay}.
Note that, by Theorem 1.4,
AB# €, (S?) = ta.u‘”1(8’),
which is generated by
b2 2basl = 2hia{baal,
A3, being a homomorphism since [(7) Theorem IV] there is a multi-
plication on 8% = 2{A, ;} = 0. Thus A, Emy(S?) = 0. But i, m,(8?) =0,

whence, by exactness,
Bas Pafhz g} = {ha2}.
So we have that the image of py, is the Z, subgroup Ew,(S83?).
(A) When p = 4 and k = 5, (A) gives
= 19(8%) > my(8%) > mh o Los, (8% —,

i.e. >0>2Zy >4y > ZyC 2Ly >0

gince by (d) the image of p,, i8 Z,. Thus nf, has four elements. To
determine its structure we operate with AT, on that section of the
sequence given in (¢) to obtain the diagram

> mg(8%) 2> mhy 215 y(89) >

T
Prae m,(8%) >

Let a be a generator of =}, such that p,,,a = 12{h,,}, and let a’ be a
generator of n§ 4 (= Z,). Then

h*priea’ = 7"'{7’0.7} = {hqz h,,} = 12{"5.9}-

e
— m,(8%) —> 5.3

Hence Prash*a’ = 12{(h, o).

Thus A*a’ = a-+ig,b, Where b € m(8%); and 2h*a’ = 2a-+4215,b.
But 20000 = $5,2b = 0;

and further 2h*a’ = 2a,{h} = a,2{h,;} = 0.
Hence 2a =0,

ie. wsa = Zy+2Z,,

and is generated by {, hys} and any a such that p;;,a = 12{heg}.
() When p = 5 and k > 7, (A) gives

> T o(S¥H) > Tiqas(SF) > 7"15:,2 > Tpys(SEHL) -
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But mp5(S¥+) = 0 = 7, ,4(S*) when k > 7. Hence
gy =0 foroddk >1.
(j) When p = 5 and k = 3, (A) gives

2o (8 22 () s b, P (84 S,

ie. > 2+ 2y > Zy >y > ZyC Zy+Zy > 0

since by (g) the image of pg, i8 Z,. Again we cannot make use of Theorem
1.3; but as in (g) we consider

toa{has} = taalPaehest = tex he.s{has} = hosisalPast = 0
since 44, i8 trivial by (e). Hence 1y, 74(S®) = 0, and we have the result
"Tg,l = Z,,
and is generated by pgz iy €{hs,;}. Note that, by Theorem 1.4,
Agy Crrg(82) = £y 54 (),
which is generated by
e 2hagl = 283 a{has} = 2{hae}l = O,
h3s being a homomorphism since there is a multiplication on §°.
Thus Ay, Emy(S®) = 0. But 15, m4(8?) = 0, whenoe, by exactness,

Agy Pafa} = {hu}
So the image of p,, is the Z, subgroup generated by Gf{A;g}.
(k) When p = 5 and k = 5, (A) gives

> 2 (89) > myo(88) . mhy > mo(84) >,
ie. »>Zy—> 2y mye—> 0.
Since ,,(8°) 7% €my(S®), we cannot use Theorem 1.3 to determine the
kernel of 1,,,, but have to use a special method. Note, however, that
5,3 18 at most Z,.

Consider first the P} imbedded in ¥, [2.3 (d)], which is of the same
homotopy type a8 Y§ which consists of an S® to which a 6-cell has been
attached by a map of degree two on its boundary. Then (Y$, S%) is a pair
of the type considered in § 2 of (12), and so we have the exact sequence

- m1;(8°) “E." g(S®) _Q> (Y5, 8%) > myo(S8) —,

where H, is defined as «, €*H by

m11(8%) —> 3 (S1) < 7 (8) 2 (S5,
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H being the Hopf invariant and « the attaching map, of degree 2. Since
there exist maps : S » 8¢ of Hopf invariant 2 (11), but not of Hopf
invariant 1 (20), and, since « is of degree 2, the image of @ is Z,. But
m,0(8%) = 0. Hence
mo(PS, 8%) = mo(¥Ye, 8% = Z,.

Now ¥,,, being a fibre space over S® with fibre 85, is an eleven-
dimensional spaoce, and the cellular decomposition of (22) shows that,
besides P§, ¥, , contains just one other cell, an EM. Thus

‘"u(Vu, P:) = Ze» ‘”10(77,2. P{) =0,
and the homotopy sequence of the triple (¥, ,, P, §°):

> ma(PG %) 2 g, 89) > ma (P P~ (P 59)
= myo(Vrs S%) >
becomes -7, (P8, 8% > Zpy > 2y > Z, > 0 >.
Hence Yasem(PE 8% =0,
and 33: 7y, (V; 4, PY) is ‘onto’.
Next consider the commutative diagram

0
3
A, 3
> 73 (9%) —> 110(85) —> myq(F 0) > myo(6°) >
TP’.”ua T'hn T*u,u TP;-'h,u
- ""11(P:y S°) ‘3:"’ m10(S%) '_"—’ ‘”10(P:) ‘_J‘—' ﬂlo(P:n 85) -
I A
‘"’u(V:,z: P:)’
}

in which both the horizontal and vertical sequences are exact. Since
8, is ‘onto’, 8o is 5. Sinoe i, ,, is trivial and i, ,, is an isomorphism,
8’#7711(?:’ SB) =0.
Hence 1,73(0) = 0, and thus =,,(P%) is an extension of Z; by Z,. Ishow
below that t4{A; ;o} can be halved in m;( P§), whenoe mo(P§) = Z;. But
Ju 84 = 8, which is ‘onto’. Hence 8, is ‘onto’, and
"’10(“1,:) = 0.

To prove that i,{h; o} can be halved in m,(P§), consider ¥§ and let

(Y$§ and Y§) be two cones with different vertices based on Y§, so that
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¥3nY$ = Yland (YSU ¥Y§) = €Y$ ~ Y1.t Then consider the diagram

8
> m (Y3 (V8 TH) —> m, (¥, T3

e

10(8®) s mo(¥3),
where &, 3,,, and s, are the triad-boundary, homotopy-boundary, and
injection homomorphisms. Since (Y§is contractible, 8, is an isomorph-
ism. Let 8,, be the corresponding isomorphism on =, (¥$), ¥Y3), and let
hy,s and A ¢ be generators of my(Y'$), Y'§) and 7,((¥Y$,Y3). Then
81484 [hy s hs el = —814[824 Bss Bsel. by 4.3 of (4),
= — (834 A5 5, 814 hsel, by 3.5 of (4).

But LI h:u = i't{hh,b}’ Slth’s,o = ‘;{hn.e}
Hence 108, [R5 hsel = su{Ps 10}

If we now shrink Y§ to a point in (¥Y3; (¥$,Y$)), we obtain a triad
(X; A, B), where A and B are two different copies of Y} having only a
single point in common. By §§ 5, 6, and especially p. 403 of (2), we have
that ma(FL (TS YD) = my(X; 4, B) = Z
and further that, if « is a generator, [R5, A5 ] = 2«. Henoe

'.;-{huo} = 281# 8+a,
and so can be halved in mo(Y§).

5.3. k= 1. As in § 5.2, we have from § 2.3 (b) that {t;5} = 2{h,}.
Then .

(a) when p = 0, (A) gives

P (80 25 1 (81) 205 2, > (SY),

i.e. > 2> Zyy > 14> 0,
where $3,1(0) is generated by {t,,}, i.e. by 2{4, ,}.
Thus #} = Z,, generated by {1, h, ,}.
Note that A;}(0) = 0, and thus p,, is trivial.
(b) When p > 1, (A) gives

oy () 2 e Prrie gy e o)
But 7,,,(8') = 0 when p > 1; and we also have from (a) that p,, is
trivial.
Thus #}4 = 0; and nfy = m,,,(8?) for p > 2. The values of =}, for
p = 2 are then as shown in the tables.
t I am much indebted to Dr. M. G. Barratt for the following argument.
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