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Introduction

THE points of a Stiefel manifold VnjH are ordered sets of m mutually
orthogonal unit vectors in euclidean n-space R*. T^, is topologized as
a subset of if*"*.

In this sequence of papers I calculate the homotopy groups njc+p{Vk+m$m)
for all k when 0 ̂  p ^ 6 (except for an ambiguity in the cases p = 5,
k = 6, m :> 5), for k = 1 and 2 whenp = 6, and for k = 1 when p = 7.
These results are collected in the following tables, wherein TT^m denotes
7rt+j>(Tjfc+»i>ji»)> %q a cyclic group of order q, and + direct summation.
Also a > O.f As each group is calculated in the text, I have specified
generators in terms of elements of the homotopy groups of spheres,
whose structure is assumed to be well known in the relevant cases.
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t Not all these results are new. For p = 0 see Stiefel (18); for p •= 1 see
J. H. C. Whitehead (22, 23). Using the erroneous announcement by Pontrjagin
that 171(5*) was trivial (14), the following cases had been calculated: p = 2 by
J. H. C. Whitehead, m = 2 and 0 < p < 2 by Eckmann (6), and k = 1 and
0 < p < 4 by Eckmann (7), and G. W. Whitehead (19), independently. The
groups for t = 1 are well known for p ^ 4, e.g. (17), and for 6 < p ^ 7 have
been obtained independently by Borel and Serre (5, 16).
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(h): p = 7 and k = 1

m = 1 m = 2 m ™ 3 w» = 4 m = 5 m =» 6 TO = 7 »n •=» 8 TO > 9
0 Z, Z,+Zt 0 Z u Zt+Z, Z,+Zt+Zt Zt+Z, Z,

Whenever possible in the calculations I have used the fact that
^i+i^n+i fibres over the n-sphere 5* with fibre VKim and that this fibring
admite an element of section which can be exhibited in a particularly
simple form (a generalization of those of Eckmann in (6) 15 d and
(7) 15 a). Thus the calculations of Tiyf^,) proceed by induction on m
for fixed 4 = n—m and r, using the exact homotopy sequence for a fibre
space. These calculations take place in §§ 4, 5 of this paper and in the
subsequent papers—the earlier sections, and the appendixes to all the
papers, being devoted to the assembly of the necessary machinery.

In conclusion I would like to take this opportunity of expressing my
gratitude to Prof. J. H. C. Whitehead for his guidance and encourage-
ment. I am also deeply indebted to Dr. M. G. Barratt, for his many
suggestions in general, and in particular for his collaboration in obtaining
the important result in 5.2 c.

1. Various theorems in fibre-space theory
The triple (X,p, B) is to be a fibre-space X, in the sense of Serre (15),

over the base-space B, with fibre-mapping p: X -*• onto B. For b e B,
p~x(b) is called the fibre standing over 6. If 60 is the base point in B,

and A = J?~1(6O)» then we write the fibring as X/A *• B. We thus have
the well-known exact homotopy sequences (base points omitted)

. _ / A \ **. _ / v \ ^ _ / Y A \ r*^ _
>• 7TT\Ji. J >• TTT\-A. J —*" TTT\A., A ) >• 7T p

• m d — • J) ,() r(
4

where i r+ aadjrm are the natural injection homomorphisms, Sr+ the boun-
iary homomorphism, p'^ the isomorphism induced by p, pTi$ =

p
We say that the fibring X/A -*• B admits a cross-section p if there is

i map p: B -*• X such that p\>: B -> B is the identity map. Then p
nduce8 natural homomorphisms p r+: nr(B) -*• nr(X) with p r + p r + the
dentity isomorp_ Jtsm. Since the homotopy groups are abelian for r > 1,
ve have, by the exactness of the second sequence,
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THEOREM 1.1. A necessary condition for X/A -*• B to admit a cross-
section is that (a) &(0) = Qfor r > 0, (6) nr(X) = iT^T(A)-\-Vr^nr(B)
forr>\.

Now let B be a sphere S*. Then we have
THEOREM ± .2. A necessary and sufficient condition that XjA -*• <S™ admit

a cross-section is the! t-2w(0) = 0.
For a proof see (6), Theorem 11.
An element of section (Schnittelement) is a map t': (E*, En) -*• (X,A)

such that T = pt': (E», £*) -+ (£*,«), where s = p(A), is topologioal
on E*—E*. Let the orientation be such that T is of degree 1. Let
t: S*-1 -*• A be the map denned by t'. \ En. Then, for each r, t induces
a homomorphism t+: irr_x(S

n~l) -*• itT_x(A). Then we have
THEOREM 1.3. t̂ 7rr_1(<Sf"-1) = ir-i+(0) when r < 2n—1 (r = 2n—1 if

n is odd).
The proof of this theorem follows from the fact that

(Ewr_1(/S
n-1) = irr(S

n) when r < In— 1
(r = 2n—1 if n is odd), where C denotes the Freudenthal suspension
homomorphism (9), and the following theorem:

THEOBEM 1.4. *# = A,* (E: w^S*- 1 ) -• n^A).
For the proof of this theorem see (6) 172 et seq. In consequence of

1.3 we hare
CoBOliABY 1.5. Ifr = n, then {i} generates »nii*(0)-t

2. Application to the Stiefel manifolds VHM

2.1. General properties of Vn;ni. The points z of T^, are ordered sets
of m mutually orthogonal unit vectors (z1,za,...,zm) in R* (Euclidean
n-space). Thus T^ = Sn-1, the unit sphere in R*. We topologize V,^
as a subset of i?*m. In (6) Eckmann showed that Vn<m is a fibre-space
over VnJe, with fibre homeomorphio to Ki-M»-fc> an<^ fibre mapping
Pny- K M H - * - ^ given by pnik(z1,zt,...tzj = (^.z,,...^*).

Let a point z of V^ be represented by the matrix ||»w||, having as its
rows the ordered unit vectors of z. As base point in YTA we take the
point P0 = llu^H, where v<j = — 8<i,_y+1. We define the identical map

P W = ltot. (i > k;j <: m—i) ,

U (» > fc; j > m—k).
t {t} denotes ihe homotopy class of a map h.
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Then we see that in-kjc(Vn-k,m-k) ** the fibre standing over the base point
vo °f Kgt- Further, for a < k, »„_,,, induces the fibre-preserving map

the induced maps being t^.^ on the base space Vn_ajc_s, and the identity
*n-t,o o n ^e fibre Vn_kjm_k. Similarly, for h < s, pn^ induces the fibre-
preserving map

the induced maps being pnJc on the base space VnJc, and £»«-*,*-* o n

fibre K-fĉ n-fc- It follows that the homomorphiflms of homotopy groups
induced by the injections tr^ and the projections pnJe commute with
each other and with the homotopy boundary homomoiphism whenever
the composition makes sense.

2.2. Construction of an element of section for V^^+JV^ -+ Sn. Let En

be given by the equations

gx} = 1, xn > 0,

in iJ"+1, 8*-1 = ^ " being its intersection with xn = 0. Then we define

m K.+l^.+l. w h e r e

It is easily seen that f n + l m + x has all the properties required of an element
of section, and we observe that 'H+I^+I: 8*-1 -*• V^^ is given by

*n+l,m+l(x0'a;l'"-i2;«-i) = Wfj

in Fn>B,, where

2.3. Properties of tn

(a) tn+liJn+1 is a symmetric map; i.e. tx = tx*, where x and x* are
diametrically opposite points of <Sn-1;

(6) (i)
Thus (ii)

which is of degree 2 if n is even, and of zero degree if n is odd. Geometri-
cally this is the map which assigns to every point a of 5*"1 the reflection
of (0,0,...,—1) in the n—1 flat through the centre of 5"" 1 which is
orthogonal to the line joining s to the centre. It maps the £"-• given
by £„_! = 0 onto the point (0,..., 0 , -1) .
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Note also that

where Sn~{ is the intersection of 5™"1 with

= 0.
(c) If u,.: 51" -*• PT is the identification map which identifies x and x*

in 8*, P* being the real r-dimensional projeotive space, then

is single-valued and so continuous (24), and of degree 1 (mod 2) and
therefore essential. Further, it maps the P»-« given by xn_x = 0 onto
the point a = (0,...,0, — 1), and is topologioal on (P*-1—P»-«). We
choose the orientation of the latter Buoh that this map, when restricted
to (P*-1—P»-»), is of degree 1.

LKMMA 2.3 (d). The image of /S"-1 under tn+1^+1 in T^, is the homeo-
morphic image of a P\l\, where k = n-~tn,i[ and P j l i is the projectivt
space P*-1 with a svbspace P*-1 shrunk to a point.

Proof. Let

Then we see that <f>n+xm+1 maps the Pk~l which is the intersection of
P*-1 with xn_i = xn_, = ... = xk = 0 onto a point, while it is one-to-one
on P»-i—P*-1. If wTy. Pp -• PJ is the identification map which shrinks
the subspaoe P* to a point p (PJ being given the identification topology),

is single-valued and so continuous, and one-to-one. But it is a map of a
compact spaoe into a Hausdorff space: that is, it is a homeomorphism
'into'. Note that

so that t and <p do map onto the same space. Hereafter I shall refer to
this image as 'the P%z \ imbedded in V^'. We also see that § 2.3 (6) (iii)
implies a similar relation for <pn+1 m+11 Pjl*-

Further note that, if E* is the hemisphere of 8a given by xn ^ 0, then

Since restricting tn+%m+i to if* has no effect on (f>n+t^m+t> w e s 6

image of C+i,m+i i8 * n e -Pj-i imbedded in ^,+1>m+1. Let us consider P *
f This was proved originally explicitly in (22) 260.
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and Pt-i as CW complexes. (I shall drop subscripts of maps whenever
ambiguity cannot arise.) Then we have from 2.3 (c) that

is topological and of degree one when restricted to (P"—P*-1). Since
the same is true of

we have that pif> = p^w~x: (Pj_i, P j l i ) -*• (<SB,«)

is topological and of degree one when restricted to PJ_!—PjErJ.

But pW-V = *>»+u C+i.»+i: (^". *") -> (-8*.«),
which is topological and of degree one when restricted to (E*—i&"). Thus

g = 0-V: (J5», ifr») -• (Pg_lf PJZJ)

is a characteristic map for the n-cell of Pjf_i. Let

be the boundary homomorphism. Then P. J. Hilton showed [(10), proof
Df Theorem 1.1] that

•e. p'^^g^S1^1 = (£.

But (i) ̂  and S^1 are always isomorphisms 'onto',

(ii) gT+ is 'onto' if 1 < r < n-f jfc— 1, by (25) Theorem 1, sinoe
'r(-Pj^i) = 0 for r < i .

Hence we have the following lemmas:

LEMMA 2.3 (e). 7/ 7rr(<S») = (Ewr_1(

a 'onto'.

T/KMMA 2.3 (/). Ifl<r< n+k—1, and (£: n^S*-1) « nr(S
n), then

By use of induction on m and the 'five' lemma these lemmas lead to
proof of

THEOREM 2.3 (g). If r < 2k (k = n—TO > 0),

s 'cmto'.

I omit this proof. A different proof can be found in (22), Theorem 3.
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3.1. Notation and properties of homotopy groups. The following con-
ventions will be used throughout.

Trjf m denotes the group Trp+k(Vk+mtm), <£ the suspension functor. If
/ : (E*, &,%) -> (X,A,a0), where A may equal a,,, then {/} denotes the
homotopy class of/in nr(X, A,a0). As a rule base points will be omitted.
[a, b] in 7rp+a_1(X) denotes the Whitehead product of a in np(X) and
b in TTa(X) (21). I t will sometimes be used also with a and 6 as maps
instead of classes. A similar notation will be used for generalized
Whitehead products.

If 77r(5
n) is a cyclic group, then hny. 8r -> Sn will be such that {hn^.}

generates 7rr(*Sn); hT;r will be of degree one, h^ of Hopf invariant one,
and {h^e} will be the Blakers-Massey element. Also p will denote the
Hopf fibre map : S7 -*• 8*, of invariant one. Thus, for instance, we
write generators of ir7(S

l), = Z00+Z12, as {pk,>7} and (E{A,,e}. I t will be
assumed that the reader is familiar with the properties of 7rn+fe(5

n) for
k < 5: that is, with their structure, their behaviour under (£, and the
values of compositions {A^A^.} and Whitehead products.

Let {h} e dn^S*-1); {h'} = S*1^}, where

Then, if A is arcwise connected, we have

LEMMA 3.1 (a), {h} and {h'} induce Jiomomorphisms h*: Tn(A) -*• irT(A)
and h'*: 7rn+1(X,A) -> irr+1(X,A);

(b) these Jiomomorphisms commute with (E, o fibre mapping, a cross-
section, and the homomorphisms of the exact homotopy sequences of § 1.

The proof is straightforward and therefore omitted. When an h*
appears in the sequel, it will always be a homomorphism, and this in
virtue of the above lemma unless otherwise stated. Note also that

h*{k} = {kh} = *„{*}.

3.2. A theorem on suspension. Let X be a CW complex, Xp its
p-section. Let X be (Jc—l)-connected, where k > 1. Then we have the
following theorems:

THEOREM 3.2 (A).

(a) <E: n^X) •+ *r(<EX)

is an isomorphism for r < 2k.
(b) When r = 2k, (E is 'onto' and (E-x(0) is generated by the products

[a,j3], where a and /3 are any elements in nk{X).
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THEOREM 3.2 (B).

G: 7rr_1(Z»'+1
> XP) -+ Trr(<£X*>+\ O ? )

•8 an isomorphism when 2 < r < p+k+l,and 'onto' when r = p+k+1.

Proof of Theorem 3.2 (A). Let Xx and X% be two cones on X inter-
tecting in X, so that Xl U Xt = (EX, and X t n X, = X. Then oonsider
;he diagram

1; Xt) J i > 7rr(X1; X) - X nr(dX, Xt) JU nr{<ZX; Xv X.) ->

By Theorem 1 of (13) the sequence is exact. Since Xt and X, are oon-
xactible, S1# and »* are isomorphisms. Also, by an argument similar
xj that on p. 375 of (13), the diagram is commutative. Henoe t* and CE
ire equivalent. Since (X1? X) and (X,, X) are both t-connected,

7rr((EX; Xx, Xt) = 0 for r < 2i

jy Theorem 1 of (3) (II). This proves (a) and the first part of (b).
Now by Theorem 1 of (3) (HI), 7rtt+1((EX; X1( X,) is generated by the

products [a', /?'] for any elements <x e irk+1(Xt,X) and /5* £ TT^^X^X).

Further, if 8,*: *rr(X,,X) « Tjy^X), then

8*[<x',fl'] = -[8t<*',n by 4.3 of (4),

ind Sj^fS^a',^'] = (—I)fc[8s+a',81#i3'], by 3.5 of (4).

Putting a = 8,^ a' and p = &i*P', we obtain the last part of (6).
Proof of Theorem 3.2 (B). This is omitted. I t followB directly from

;he special case of (A) when X is a bunch of ^-spheres having a single
jornmon point, and Theorem 1 of (25).

Now let r j + 1 be the spaoe consisting of an /S* to which one Jb+1 cell
las been attached by a map <f> Buch that <f> | 22k+1 -*• Sk is of degree 2.
Let B\+t be the spaoe consisting of 7J + 1 to which one fc+2 cell has been
attached by a map <j> such that <f> | £lk+i -*• 8k c Yj[+l and is essential on
S*. Then Theorem 3.2 (A) yields

COBOLLABY 3.2 (C). (o) (E: nk+t(T
k+1) W nk+t(T

k+t) (k > 3);

When i = 3, all products in n-6(rj) and ne(B\) must be injections of
jroducts in fl-8((S*), which are all zero.)

MM.l.T g
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3.3. An algebraic theorem
Definition. A subgroup U c G is partially division-closed if and only if

for every ge O such that mg eU, there is a u e U such that mu = mg.

THEOREM 3.3 (A). Let G be a finitely generated abelian group, U a sub-
group. Then a necessary and sufficient condition for U to be a direct
summand of O is that U be partiaUy division-closed.

Proof, (a) Let G = U+V and let mgeU, where
g = u+v (u e U, v e V).

Then mv = mg—mu e U, whence mv = 0. Thus mg = mu, and U
is partially divimon-cloBed.

(6) Let U be partially division-closed, V = G—U, and / : G->- V the
natural homomorphism. Since O w a finitely generated abelian group,
so is F. Therefore V = Ti+...+FB, where each V{ is cyclic. Let vt, of
order m{, be a generator of Vt and let g{ ef'hj^ Then migi e U since
mtvt = 0. Therefore mig{ = mtu{ for some ut e U. Let g\ = gt—«<.
Then fg\ = v{ and mig'i = 0. Therefore a homomorphiflm h: V-*• O,
such that fh = 1, is defined by hvt = (̂  for each » = 1 to n. Hence,
since O is abelian, 0 = ?7+AF, and the theorem is proved.

Let O be a finitely generated abelian group, Uc O finite, and, for
every prime p, let N(O,p) be the maximal order of elements in the
p-oomponent of O.

LEMMA 3.3 (B). Jj'U = f71+...+ C7r, toAere Ut is cyclic of order

N(O,pt) > 1,

for some prime p{, then U is partiaUy division-closed in O.

Proofs If
G=G'+G', U=U'+U', U'cG', U'cG",

and if V and U' are partially division-closed in G' and G", then so
obviously is U in G. Therefore we may consider the jj-componente of

, G separately. Let X be the p-component of G for some prime p, V that
of U, and suppose that N(G,p) = p1. Suppose that V = V1+...+Vr,
where Vt is cyclic of order p*, and let v{ be a generator of V^ Suppose
that g e X is such that

mg = *!«>!+.. .+krvT,
where TO = Tip*, h being prime to p and s ^ t. Then there exists an h'
such that hh' = 1 (modp*). Also pt-*mg = 0, whence every *< = ^p*.
111118 wi{/ = p*t* = p*AA'-u = m(A'u),

f I am indobted to the referee for this simplified version of the original proof.
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where u = ^1^+...-\-lfV,.. By the above observation, this proves the
lemma.

3.3 (C). Under the conditions of Lemma 3.3 (B), U is a
direct aummand of O.

4. Calculation of ir£m: preliminaries
The calculations are based on the examination of the exact sequences

associated with the fibrings

When these are insufficient, we turn in the first place to those associated
with the fibrings v iok

Constant use will be made of Theorem 1.3; because of this frequency
it will not be referred to every time it is applied.

I first prove two theorems:

THEOREM 4.1. (a) v^ « ^j,+tfor m ^ P+%-

(6) 7 ^ = 0 forp < 0 and ail k and m.

Proof, (a) Consider the sequence associated with the fibring

when r = h+p;

i.e. -

Hence, since irr(8
lc+m) = 0 when r < k+m, iT%m+i « "{,» when

p ^ m—2; and (a) follows.
(6) By (a), ir^m « w{j if p < 0, i.e. « vk+p{8k) = 0 sinoe p < 0.

THBOBKM 4.2. (a) «f̂ m « « t iVi (l» > !)•

(6) vt,m » ^J+1,m_1 (t ̂  7).
Proof, (a) Consider the sequence associated with the fibring

i.e.
Hence, since w /̂S1) = 0 for r > 1, (o) follows.
(ft) Consider the sequence associated with the fibring

* -+ Vk+mjx_lt when r = k+5,

But 77i+5(5
fc) = 0 = wt+4(5

fc) when i ^ 7; whence (6) follows.
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5. Calculation of w£,
We consider the fibring Vk+tAJ8k ->• Sk+1, and examine the sequence

(A) - irk+t>+1(8*+i) -^U Wjfc4j,(S*) - ^ < 8 - ^ ± ^ W ^ 1 ) - .

5.1. Jfc = 0(mod2). In this case there is a one-field on 8k+1 [see (8), (19)]
and so the fibring admits a cross-section p. Hence Theorem 1.1 gives

The values of w£, for even k are then as shown in the tables.
Note that, by Theorem 1.2 and Corollary 1.5, we have

{**+!*} = 0 /or i = 0 (mod 2).
5.2. k = 1 (mod 2) and k ^ 3. We have from 2.3 (6) that

is of degree 2. Hence {<*+ij} = 2{AĴ fc}. Then
(a) When p = 0, (A) gives

i.e. - • Z , ->- Z,, -> TT2(1 -* 0,

where t'wi'tO) is generated by ftfc-nt}: that is, by {2hkJc}.

Hence TT^, = Zt, generated by {t4+1#1 h^}.

Note that A^1(0) ^ 0, and hence that pk+i+ is trivial.

(6) When p = 1, (A) gives

i.e. -»• Z, -> Z, ->• n-J t ->- 0

since i>k+1^ is trivial by (a). Also

which is generated by

At*+i{«*+M} = * £ * + i 2 { M = 2 * ^ + ! ^ } = 2{At+1>i} = 0.
Hence tV+i*(O) = 0, and TTJ, = Zt, generated by {ik+ltlAtri+1}.

Note that thus A^ is trivial, and hence pk+l* is 'onto'.
(c) When i? = 2, (A) gives

L e . -*• Zt -*• Zt -*• TT^, -> Zx -*• 0 ,

since pk+i+ is onto by (6). Also

) — tk+%i*7rk+t(
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which is generated by

Hence tjt+»»(O) = 0; whence v\ t has four dements.
Note that thus A* is trivial, and hence pk+s+ is 'onto'.
We now need to determine the structure of TTJ^. For this we look at

the space Pit\ [see 2.3 (d)], which is of the same homotopy type as the
7 | + 1 defined in 3.2 [see Appendix to part (II)]. M. G. BarTatt showed
in (1) that the homotopy classes of maps of P j i J into itself can be turned
into a group (,Pi±\)0(Pk±i) when k > 3, and that this group is Z4

[(1) 10.61]; and more particularly that, if a is the identical map of PJj±l
onto itself, i' the identical map

and p' the nhrinlring map

then a. generates (Pi±\)°(Pi±{) and 2a
Next consider the sequence

By virtue of the isomorphisms of Theorems 2.3 (/) and (g), this is exact
and reduces to /rtX & , nt+u v tn\

(0) -+ Zg-> nk+t(P%±{) -+Zt->- (0).
Let fi: Sk+* -> Pl±{ be such that p'*{p} = {At+1#k+1}. Then since

W e <fcrt+t(PJE±D f o r i ^ 5

by Corollary 3.2 (C) (i is odd), it induces a homomorphism

p
Thus, for k ^ 6,

from (c) above. Thus, when k ^ 5, we have found an element, /3*a, in
nk+t(Pk-l) twice, whioh is non-zero. Hence Trk+i(Pk-i) = %t ^or k ^ 5.
For k = 3, the result follows from this and Corollary 3.2 (C). By
Theorem 2.3 (g) we therefore have that

vl* = z*> for odd k^ 3,

and is generated by any a such that pk+x^+ a =
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(d) When p = 3, (A) gives, when k ^ 5,

i.e. -»- ZM -»- ZM ->- -n\ t -*• Zt ->• 0

since 2?k+8* ia 'onto' by (c). Also

»*+x«*(0) = t
which is generated by

Hence tjk+»(O) = 2ZM; i.e. TT ,̂ has/our elements.
Note that exactness implies that A*7rt+4(5

rt+1) = 27rk+s(S
fc), whence

Ai"1(0), and so the image of pk+4+, is Zt generated by l^Ai+yt+^J.
To determine the structure of 7rJ4, we operate with h*+twk+i on the

section of the sequence given in 5.2 (c) and obtain the commutative
diagram [cf. (3.2)]

i + 1 ( ) -v 0.

Now let a be a generator of TT̂ J suoh that

and a' a generator of irj^. Then

Hence

Thus A*o' = a+tk+>%6,

where 6 e nk+9(8
k); and 2(A*o') = 2o+2»4+8.

But 2i t + 8 +6 = t t+8+26 = 0,

from above; and further,

2(h*a') = 2a;{A t+M+a} = <±2{hk+tJk+s} = 0.

Hence 2o = 0,

i.e. 7rJ>t = 2 , + Z , for odd k > 5,

and is generated by {»i+1A V*+») an(^ a n v a 8UC^1 t n a t Pt+s.1* a

(c) When j> = 3, and k = 3, (A) gives

i.e. -*• Zx+Zu -»- Z,, -> TT|3 -^ Z, -> 0
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since p,^ is 'onto' by (c). Unfortunately in this case we cannot make .
use of Theorem 1.3 since TT7(S*) ^ (£«•,(£*), but at any rate we have
from Theorem 1.4 that

which is generated by

since AJS is a homomorphism by Theorem IV of (7). Hence

I have not been able to find a direct method of calculating A7

There iB however another way of evaluating nltt. Consider the sequence
associated with the fibring V^S* -*• V^t:

i.e. ->- 7rJ3 -+ 7r|tl -> n6(S*) -»- wltt -+ 7rJ>t ->• nt(S*) ->.

I shall show in § 8.5 (c) and (d) respectively that TJ-Ĵ  = Zx and ir\s = 0.
Hence the sequence is of the form

-*• ° -*• "».t - * zi - * zt -*• zt -*• zt -+

since Trf̂  = Zk by (c). Thus, by exactness, we have

generated by any o suoh that p M *o = {AM}. Note that i6m ifl trivial
and that this implies that A7* p#{A,>7} = AfA^}, where A is odd. Exact-
ness then gives that the image of p1^ is the subgroup Zm-\-Zx which is
generated by (2^*{A,,7}-A(E{A Ŝ}) and

(/) When p = 4, and k 5* 7, (A) gives

But u-t+4((S
k) = 0, and by (d) the image of pk+4,+ is Zs. Hence

"i% = zt for odd k^ 7,
and is generated by 2>t+M* 12{At+1Jfc+4}.

((7) When p = 4 and i = 3, (A) gives

i.e. -• Zt+ Zt -*• Zt -> 7rJtl -> Zm-\-Zt -> 0
since the image of p1% is Zm-\-Zt by (c). Again we cannot make use of
Theorem 1.3. But consider

» 7 * M = ^{KjiKl} = *7«A*7{fcM} = AJ.7 *«•{*«} = 0
since t6# is trivial by (e). Hence i7*"'7(/83) = 0; and we have the result
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and is generated by

P&ffltiKJ-WKA) (Aodd)
Note that, by Theorem 1.4,

which is generated by

A£7 being a homomorphism sinoe [(7) Theorem IV] there is a multi-
plication on 8* = 2{A 7̂} = 0. Thus A8* <£ir7{8*) = 0. But *7* ir^S3) = 0,
whence, by exactness,

So we have that the image of ps+ is the Zt subgroup (E7r7(#*).
(A) When p = 4 and £ = 5, (A) gives

i .e. -•• 0 ->• Zt -»- w ^ -»• Z , c Z M -> 0

since by (d) the image of ptm is Z t. Thus wj^ has four dements. To
determine ita structure we operate with A?>9 on that section of the
sequence given in (e) to obtain the diagram

Let a be a generator of wjpl such that ^74*0 = 12{AM}, and let o ' b e a
generator of v\t ( = Z4). Then

Hence

Thus A*o' = o+»8*6, where 6 6 7r,(5s); and 2A*o' = 2a+2it+b.

But 2»B+ 6 = t8* 26 = 0;

and further Zh*a' = 2a^{h} = <£> 2^^} = 0.

Hence 2o = 0,

i.e. TTJJ = Zt+Zt,

and is generated by {tMh^} and any o such that p7^a = 12{AM}.
(*) When j> = 5 and k ^ 7, (A) gives
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But fft+j(St+1) = 0 = irk+6(S
k) when k > 7. Hence

*•£, = 0 for odd i > 7.

(j) When JJ = 5 and i = 3, (A) gives

Pt* i at\ ^** / oa\ *** _6 ' • • / ai\

i.e. -*-Zt+Zt-*-Zt-+ultl-*-ZtcZt+Zt-*-0

since by (0) the image of pM is Z,. Again we cannot make use of Theorem
1.3; but as in {g) we consider

since »6+ is trivial by (e). Hence t8*w8(<818) = 0, and we have the result

and is generated by PsJ* ^{h^.,}. Note that, by Theorem 1.4,

which is generated by

AJ8 being a homomorphism since there is a multiplication on S*.
Thus A8* (E7r8(*Sf*) = 0. But »8*w8(/S

8) = 0, whence, by exactness,

A.* ̂ { M = {*«}•
So the image of p9m is the Zt subgroup generated by

(k) When p = 5 and k = 5, (A) gives

i . e . -̂ - Za -»• Z , -»- irffl -»• 0 .

Since wu(5e) # (Ewlo(/S
B), we cannot use Theorem 1.3 to determine the

kernel of »!„*, but have to use a special method. Note, however, that
ir|>a is at most Zt.

Consider first the P\ imbedded in V,^ [2.3 (d)], which is of the same
homotopy type as T\ which consists of an S* to which a 6-oell has been
attached by a map of degree two on its boundary. Then (Y\, 86) is a pair
of the type considered in § 2 of (12), and so we have the exact sequence

where ^Ta is defined as a* (E~*jff by
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H being the Hopf invariant and a the attaching map, of degree 2. Since
there exist maps : S11 -*• 8* of Hopf invariant 2 (11), but not of Hopf
invariant 1 (20), and, since a is of degree 2, the image of Q is Zv But
nlo(S*) = 0. Hence

Now V7j, being a fibre space over 8* with fibre 8s, is an eleven-
dimensional space, and the cellular decomposition of (22) shows that,
besides PJ, Vlt contains just one other cell, an E11. Thus

"iiflk. -PS) = Zm 7rlo(F7fS, PJ) = 0,
and the homotopy sequenoe of the triple (V7Jt, PJ, 8*):

7 f l , PJ) - ^ TT1 0 (PJ, 8*)

beoomes -> wu(PJ, 8s) -+Zw +Zw^-Z

Hence ^ M , ^U(PJ, 5s) = 0,

and 8;: i r ^ , PJ) is 'onto'.
Next consider the commutative diagram

0

t

X
t

in which both the horizontal and vertical sequences are exact. Since
8* is 'onto', so iBJ'm. Since ^ M * is trivial and </<74+ is an isomorphism,

Hence *V1(0) = 0, and thus wlo(Pj) is an extension of Z% by ZK. I show
below that ^{Aĵ o} can be halved in rrlo(PJ), whence wlo(Pj) = Z%. But
,7*8^ ^ 8J, which is 'onto'. Hence 8^ is 'onto', and

"loOk) = 0.
To prove that i^h^g} can be halved in TT10(PJ), consider Y\ and let

<FJ and 7J) be two cones with different vertices based on T\, so that
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(Y* n FS> = 7Jand (7S U YD = CEFJ ~ Y\.-\ Then consider the diagram

where 8+, 81+J and t* are the triad-boundary, homotopy-boundary, and
injection homomorphisms. Since (Y\ is contractible, 81+ is an isomorph-
ism. Let 8,^ be the oorresponding isomorphism on irr(Y\), YD, and let
A6>5 and h'it be generators of wt(YD, YD ^ d w7«rj,TJ). Then

«i. S+[*M, *i.J = -8i*[S«* *i.6, Ai.a], t>7 4-3 of (4),
= - P i . A'M> 8« Ai,J, by 3.5 of (4).

But 8,« A'B>5 = ,;{*„}, s1+A'B-9 = »;{v,}.

Hence Sw 8+[A'8>t> A'M] = »;{AMo}-

If we now shrink Y\ to a point in (FJ; <7J, 7J)), we obtain a triad
(X; A, B), where A and B are two different copies of Y\ having only a
single point in common. By §§ 5, 6, and especially p. 403 of (2), we have
t h a t

 TM(72; {Y\, YD)'» na(X;A, B) = Z4;
and further that, if a is a generator, [Aj^, A^J = 2a. Henoe

and so can be halved in TT10(YD-

6.3. i = 1. As in § 5.2, we have from § 2.3 (6) that
Then

(a) when >̂ = 0, (A)1 gives

i.e. -> Z,, -* Z,,, -• 7r?it -» 0,
where t'ii1(0) is generated by {t^, i.e. by 2[hu}.

Thus TT^, = Z,, generated by {i^ h^}.
Note that Ai'1(0) = 0, and thus pt+ ia trivial.
(6) When p 5* 1, (A) gives

But wp+1(<S1) = 0 when p ^ 1; and we also have from (o) that JJ1+ is
trivial.

Thus TT-JJ = 0; and irf4 « wp+1(fi
r*) for p ^ 2. The values of TT?, for

p ^ 2 are then as shown in the tables.
t I am much indebted to Dr. M. G. Barratt for the following argument.
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