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Introduction

THis is the fourth of a sequence of five papers, the previous ones being
(2), in which I calculate certain homotopy groups of the Stiefel mani-
folds V], ,,. The present paper contains the calculations of those groups
which are given in the following tables. There nf,, denotes m;.,(Vismm):
Z, a cyclic group of order ¢, and + direct summation. Also s > 0.
A full table of results can be found in (2) (I) 249. For the notation used
throughout the body of this paper please see (2), especially §§ 1, 2, and
3.1. Also please note that sections are numbered consecutively through-
out the whole sequence of papers, §§ 1-5 being contained in (I), § 6-7
in (II), § 8 in (III), § 9 in (IV), and §§ 10-13 in (V).

TasLE FOR 7.

k pe=B p=4 p=235 p=2~6 p=7
1 0 Z 0 Zy, Zyy
3 Z, Z ALt Zy Zy+ZytZt+Z,
4 23+ Z+2, Zy+ 23+ Zy+Zy  Zy+24+23+2Z,
5 z, Z,+2Z, Z,
6 2, Z, Z,+Z,or Z,+2Z,
8s—1 Z, 2 +Z., Zy+Z+2Z,
8s+3 Z,+Z, Z,+2, Z,+Z,+2Z,
45+5 Z, z., Z,
8s Zy+2Z, Zy+2Z, Zy
8s+4 Zy+2Z, Zy+Z, Z,
42+ 6 Z1s Z, z,
TABLE FOR 7},.
p=2 p=13 p=4 pmB p=6

0 Z. 0 z, Za

9. Calculation of =f
We consider the fibring ¥, .5 5/Vi+¢« > S*+* and examine the sequence

A .
(D) > Toapaa(85H) 5> =25 FHES 1y (S544) .

9.1. k = 3 (mod8).

In this case there is a four-field on S*+¢ (1, 4), and so the fibring
admits a cross-section p. Hence Theorem 1.1 gives that

Thys = Lahat Pamrip(SEH).
Quart. J. Math. Oxterd (2), 10 (1959), 24169,
3605 2.10 B
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Using the values of =, as calculated in § 8.4, we obtain the values
shown in the table for =} ; when k = 3 (mod 8).
Note that, by Theorem 1.2 and Corollary 1.5, we have that
{tesss} = 0 for k = 3 (mod 8).
9.2. k = 7 (mod8).
(@) When p = 3, (D) gives

Lrue, Trra(SFH) i"’ Tha LN mh,5 > Tria(S*H),
i.e. > 24> 2y+ 2y > s> 0,
by § 8.4 (b). But i;1;,(0) # 0 since otherwise there would be a cross-
section in the above fibring by Theorem 1.2, and so a four-field on
Sk+4, which is impossible by Theorem 1.1 of (3). Also ;5 }34(0) = A, Z,,
and so must be cyclic. Hence
hs = Zy.

Note that A, 7., (S*H) is of order two, whence the image of p, ., i8
the Z,, subgroup generated by 2{h;,(s+d}-

To determine the generator of =}, we must evaluate {t,.ss} Which

generates 15 !,,(0). Consider the sequence associated with the fibring
Vi +e/S% > Vi 1as> Which is of the form

Ski13e DPiyean
= 7 ,a(8%) —— 7}, mhirs >

Then, by § 2.3 (b), Pr+esx{te+ss} = {ti+s), Which is zero by § 8.1. Hence,

by exactness, .
y {tess55) € Pesr,am Tera(SH),

and is non-zero by the previous paragraph. Hence, using the result of
§ 8.4 (b), we have that
{te+ss} = {rsr3Perssh
and the generator of n} i8 t4,534 8, Where ;01,8 = {hryysa)-
(b) When p = 4, (D) gives

Lrote, Te4s(SEH) "i‘" Tha L i Prose, Te+a(SEH) >,
i.e. +Zy>Zg>mts>Zyp >0,
by § 8.4(d), and since the image of p,,,, is a Z, subgroup by (a).
Also 15} (0) = 415 54 Tira(S*+?), which is generated by
hEionrdltiesst = BEisnsatbsvan{Prrsal = Vesranhisansa{Prnss)
€ %p11 08 Tx+4(S¥) = 0 since k > 1.
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Hence 1;}(4(0) = 0, whence

wt,ﬁ = Z8+Zuar
generated by i,.,.,43, where P, ;48 = {hiiax.d), 80d b such that
Prisaxd = 2{hr x+a). Note that A, is trivial, whence p, g, i8 onto.

(¢) When p = 5, (D) gives

A I p'
Lo, i 4g(S5H4) —> Tha 2, L 2 Tee(SEH) >,
ie. > Zy > 2yt Zy > i 5> Zy >0,

by § 8.4 (f), and since p,;, i8 onto by (b). But, by Theorem 4.2 (),
Ths M Thi14
= Zy+2y+2,
by § 8.1. Hence ¢z }5,(0) = 0, whence A, is trivial and p, ., onto, and
‘"z,s = Zyt+ 24+ 2,,
generated by 4,304 Pila s{Preshssh k+414G, and b,

where ;.48 = {hk+3,k+5}’ and Py 5140 = {Pxsa+s)
9.3. k=1 (mod4) and > 5.

(a) When p = 3, (D) gives

Jhoe, Te+a{ S¥H) i Tha RN k5 > Tea(SEH),

i.e. > Zig> 2442y > 1l s> 0,
by § 8.3(b). As in §9.2(a) above, i;15(0) % 0 since otherwise the
fibring Vi, 55/Visee > S*™* would admit a cross-section by Theorem
1.2, which would imply a four-field on S*+4, which is impossible by
Theorem 1.1 in (3). Also i3z 1,(0) = A, Z,, and so must be cyclic.
Hence s = Zy.
Note also that A,m.,(S*+*) is of order two, whence the image of
Pr+aa i8 the Z, subgroup generated by 2{A, . (x4}

To determine the generator of n} s we must evaluate {t,.;s} which
generates i;1:,(0). Consider the sequence associated with the fibring
Vee+4.4/S¥ = Vir4a, which is of the form

t P
k+13% f < 13
+! s +4,3 'y

- Te43(S¥) kA T Tkt1,3 >

Then, by § 2.3 (b},
Pisaaaltesss) = {tessd
= (V431 Phesanss), by 8.2(a),
# 0.

Hence {tesss) ¢ Tki1a% i 43(S%),
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whence, using the result of § 8.3 (b) we have that
{terss} = (Seast PPasapast+Mfesra Brpss), whered = Oor 1.
Thus the generator of n} 5 i8 {1}, ( Ay k4a}-
(b) When p = 4, (D) gives

A .
—pki‘" Te45(S*H) — Tha e, T Prise, T 4(S¥H) -,
i.e. >2q>Z3>7ts>Z,>0 (k> 5)
and +>2,> 242, >4y >2Z,>0 (k=25)

by § 8.3(c), and since the image of p,,,, i8 8 Z, subgroup by (a).
Further, 15}44(0) = ty.55% 7i+(S¥*?), which is generated by

B sans dtiesss) = PEran+alierain PalPrssnss) + Mk s sniPrsss))
= a1 Pa Pl okt alPrreira} A% 130 PR+ a0+ el Pikrs)

_ {ik+3.1* Pulbrsox+d (k=9)
B vg1% PalPro} + At 34 {Bsg} (K = 5).
Thus nhs = Zo whenk>9,
generated by a such that p,.5,48 = 2{he s 1d)s
and nis = Zg+tZw,

generated by {1, ,h;,}, and a such that p,5;,a = 2{h;s}. Note that in
either case A;1(0) = 0, whence p, ., is trivial.
(c) When p = 5, (D) gives

Prisn A, Teyon 5 Priss 3
—— g SFH) > 7715;.4 > Tk,5 > Mers(SEH) -,

ie. > 2> Zy~>7is—>0,
by § 8.3 (d) and (e), and sinoe py,, is trivial by (b). Also
15256(0) = trsn s Tess(S5H),
which is generated by
R yanssitissst = Alvonss(isnie PulProogsal H A0k an{Besss})

= thi01n Pu P4 o stPironss} F A1 30 AL 4 .k s{Pr i+ s}
= tr4310 P 12{Arsniss)s

gince my,;(S*) = 0 (k > 8), and 1534 mo(S%) = 0 (k = 5) by § 8.3 (e),
= 0, since =, is of order two.

Thus #;}4(0) = 0.and mhs = Zg,

generated by {i; 55 Phrses+s)- Note that A, is trivial, whence p, 44 i8

onto.
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84. k=1,
(@) When p = 3, (D) gives
A .
B (89 2> mh —> s > (89,
i.e. >Zp—>Zy>n}5>0,

by §8.5(b). Again igl(0) # 0 since otherwise the fibring ¥, 5/V; , -> §°
would admit a cross-section by Theorem 1.2, which would imply a
four-field on 8%, which is impossible by Theorem 1.1 in (3). Hence
'n'is = O a’ld ﬂ:" = 0,
the latter by virtue of Theorem 4.2(a). But, by Corollary 1.5, {t,s}
generates 1;1(0), = n} . Thus from § 8.5 (b) we have that
{tes} = {1 Phy.-
Note that the image of A, is of order two, whence the image of py, is
the Z,, subgroup generated by 2{h}.
() When p = 4, (D) gives

p o A, e Px
> mg(S%) > 77{,4 —_— ‘":,5 > mg(S%) >,

ie. > 2> 2y >mig>Z,—0,
by § 8.5 (c), and since the image of p;, is a Z, subgroup by (a). Also
156 (0) = bosx mg(S1),
which is generated by
By aftest = Ptsters Palhsd = Se1x Pu{has), the generator of nf 4.

Thus 15(0) = 7

whence nds = Zy,

generated by pg iy 2{h;5}. Theorem 4.2 (a) then gives that
e = Za,

generated by pg e 2{h;5}. Note that A;(0) = 0, whence p,, is trivial.
(c) When p = 5, (D) gives

P A !
L0 o (85) =2 w8 (2 8 o T 2 (85) >,

ie. +>Z,>0>7;—>0,
by § 8.5 (d), and since p,, is trivial by (b). Thus
‘n'g's =0 a’ld W:" = 0’

the latter by virtue of Theorem 4.2 (a). Note that, since A, is trivial,
P14 18 Onto.
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(@) When p = 6 (D) gives

P A .
T8 mg(88) 2> 8 > 8 o 10 (88) >,

i.e. > 2y > L+ my s> Zy >0,
by § 8.5 (e), and since p,, i8 onto 7,(8%) by (¢c). Further, izX(0) = 0,
since it is impossible to map a finite group essentially into an infinite
cyclic one. Thus n$; 18 an extension of Z, by Z,, as, by Theorem 4.2 (a),
18 73 .. Note that A, is trivial, whence p,, is onto.

To calculate the extension we operate with A?, ., on the section of
the sequence associated with the fibring ¥, ,/S* -V, for which r = 5
and 6, to obtain the diagram

1 A
- ,(S%) ey mhe Pre s s g(S%) >

T,,. T,,. T,,. T,,.

— 7g(S?) l’ 7"';.4 ﬂ:’ ”g.a _A'—.’ ""'s(Sz) -,

which is commutative by Lemma 3.1 (b). Using the results of § 7.2 (d),
(f), and (c) above, the diagram becomes

> 2y >3y > Zot Zy > Zyy—~

S S

>Z,> 0 > Z, > Z,—>.

Now let a be the generator of =35 and a’ a generator of order four in
435 Then from the exactness of the lower line it follows that

Aga = {ha.s}'
Hence Ayh*a = h*A,a = higfh, ) = 6{hy ).
Thus A*a 5= 0, whence it follows that
h*a = 2a’, .

the only element of order two in =§ 5, and that
Ay22" = 6{ha,s} 7 0.

Again, Vox T7(S2) = 45, h¥mg(8%) = h*ig, mg(S?) = 0,
whence p,, is an isomorphism into. Hence, if n}, were Z,+Z,, 2a’
would be in p,, 73, since 2a’ is the only element of order two in =},
and so must be the image of the element of order two in #§,. Thus
A, 2a’ would have to be zero, and we have just proved the contrary.
Hence e = Za,
generated by a such that pg,,a = {hs}, and

77;,5 = Zm:
generated by a such that p,;,a = {hs,}.
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(¢) When p = 7, (D) gives

P A I
i y(SF) —2 17;" e 7"{.5 —p:» mg(85) >,

i.e. >Zyg>0>m]g+ 2,0,

by § 8.5 (f), and since p,, is onto my(S?) by (d). Thus

generated by psiu{hss). Hence, by Theorem 4.2 (a), we have that

84 = Zyy,

generated by pgia{hsg}. Note that since A, is trivial, p,, is onto.
9.5. k = 2 (mod 4)'and > 6.
We first calculate {t, s} € n},. We have from § 2.3 (b) that

Prraanitesss) = 2Hherapesk

Using the result of § 8.2 (b) we thus have that {t,,; ¢} generates & cyclic
infinite summand of n}, = Z,,+ Z,.

(a) When p = 3, (D) gives

D A ¥ Prys
=t Trra(S5H) — 7"'2.4 e, "ﬁ.s S, ""k+a(Sk+‘):
i.e. > 2o 2yt 2> s> 0,

by § 8.2 (b). Also 15 }54(0) is generated by {t, s}, i-0. 15.L34(0) is & cyclic
infinite summand of »{ ,. Hence
s = Z1,
generated by {i,,; % 4.3} Note that AJ(0) = 0, whence Py, i8
trivial.
{b) When p = 4, (D) gives

Pryse

A It
—— m,5(S*H) —> "":,4 >

Prian
> ‘”2.5 > "kH(SkH) -,

i.e. +>2Z,+>Zy—>nhsg—>0,
by § 8.2 (c), and since p; 4 is trivial by (a). Further,

"I?-:u(o) = tiis5m "k+4(‘gk+3):
which is generated by A}.;s:.tisss)- To determine this we consider

the section of the sequence associated with the fibring V., /S* > V(s
which is of the form

Priise
> Tpi(8%) > 7h — TR 113 >

We have from § 2.3 (b) that

Pkﬂ,a-r{ths,s} = {t,, +5,4} .
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Thus
PrreanPtrapralterss) = BliantaPrrasslliors,s)

= htrak+atessd
=0 by8.4(b).
Thus, since ;. (S¥) = 0 (k > 6),
B +ak+altessst = 0.
Hence 35} 4(0) = 0, and 8o
' ‘”’::,s = Z,,

generated by {i;,54Phrs1r4e). Note that A, is trivial, whence p, 5, is
onto.

(c) When p = 5, and k > 10, (D) gives

Pries
—_— > ”kﬂ(S"'H) ‘”i.c > ‘"k.u > me4p(SEH) >,

i.e. >Zy > 2Z,>7nhs>Zy—>0,

by § 8.2 (d), and since p;,s, i8 onto m, ;(S¥H) by (b). But we have
from Theorem 4.2 (b) that

4
Th & Thila
= Zg

by § 8.4 (d). Hence 17}, (0) = 0, whence A, is trivial and 80 p;. 44 i8

onto, and
an "k,s = Zs»

generated by a such that p, 5,46 = {(Briis+s)
(d¢) When p = 5, and k = 6, (D) gives
Pise Ay ¢ tue ¢ Pus 0
—> my5(S1) —> o4 —> o5 —> T (8) >,
i.e. > 2y > 2+ Zy > mhs > 23>0,
by § 8.2 (e), and since p,,, is onto 7,;(51°) by (b). Further,
1%(0) = g 5 ™1 (S°),
which is generated by
henftis} = Mo Beaoftust = 0
by (b) above. Thus ¢;31(0) = 0, whence
w5 18 an extension of Z,+-Z, by Z,.
Note that A, is trivial, whence p,,, is onto.

To determine the extension we consider first the section of the
sequence associated with the fibring ¥, /8% - ¥, ,, which is of the form

~> 7y, (8%) - ‘"’g.u > 7'?.4 > mo(8%) =,



THE GROUPS m,(V,4) 249
which becomes, with the result of § 8.4 (d),
> Zp>mhg > Zyg>0.

From this we see, bearing in mind the result of the last paragraph, that
g5 18 also an extension of Z,, by Z,. Thus we have two possibilities
for n§¢: Zo+ 25 or Z,+2Z,. But the method used in § 7.32 (f) and
8.2 (¢) does not yield a result in this case, and so all we can say is that

”5,5 18 either Zco+zs or Z4+Zm)
generated respectively by {s;,k,;,}, and a of order eight such that

P111e8 = {B1011}; OT 41, 4G, Where a is of order four and p, ;4@ = {hy1,},
and b such that p;;,,6 = {kyo1,}-

9.6. k= 0 (mod4). ‘
Our first task is to calculate {t; 54} in 7} . We have that
tb+u|St+’ = ’.k+3,1 tere
by § 2.3 (b), and that {tered =0

by § 8.1. Thus we can extend ;4,4 Over the hemisphere E%*3 of
S*+3, and, since #,,, i8 a symmetric map (2.3a), we can extend it
symmetrically over E**3. Denote this extension by

g:8%* >4 21(Veras) C Vevaar
Now we use construction ‘Q”’ of §6, with r = k43, X =V (o
Ji = tius s and f; = g as defined above. Then we have that

2{h} = {f+{fe} = {esss} o)

Prrare 2{h} = Prraralterss} TPrrarsld) = 2hrsansals
by § 2.3 (b) and since {g} € 445,47}, Thus
Prrarslh} = {rsspeals
and {3} = {Phrsan+s)tirsa1ew, wherewe i,

Further, if we consider {g} for the moment as in =}, we see that
Draag: S%+3 > Sk+2 jg & symmetric map such that, in the notation of
52.3(), Dr+3a gupis = Prisa tk-i-l,(“k_-:l:Pk-’-’ - Sk+3,
which is essential by § 2.3 (c); whence p;.s, g is essential by Theorem
6.1. We thus have, using the results of § 7.31 (c), that, in n} 3,

{g} = (£k+l,ltj+i)’

where Z € m,,,(S*), and Z generates a Z, summand with

Hence

2Z € Vkyp 10 Pa Teas(SFY).
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Thus
{tk+5,5} = 2{h}—{g} = 2{Phk+a,k+s}+ 2ik+3,1t W—ix,1346 % —tpsa1a 2
Hence {tk+5.5} = t1138 T+ ksa10 2+ ZPt{hk+a,k+s}»

where z € m, ,,(S*) and z generates a Z, summand of =} ; with

22 = {ig 403 Phasrpsal
What remains to be done is to determine z (mod 2) in m,,,(S*). We
shall see that there is a distinction between the cases k = 0 and 4 (mod 8),
quite apart from the special case k = 4.
9.61. k = 0 (mod8).
First let us pick generators in =} 5, 7}, 7§_1.0 7h_15- By §7.31 (c),
m}e = Zy+2Z, Pick generators
G, of order twenty-four, a8 ;. s4{hs x+3};
b, of order four, as the z defined in § 9.8 above.
By § 8.1 and 7.31(c), 7} = Zgy+2Z4+Z,. Pick generators
a, of order twenty-four, a8 15,314 8;
b, of order four, a8 t;,5,4b;
¢, of infinite order, a8 p,{h;.ax+s}-
By § 8.4(d), mh-1,4 = Zy. Let
¥ be any particular generator.
By §9.2(b), nt_15 = Zg+Z,. Pick generators
v, of order eight, a8 4;.3,,7;
w, of infinite order, a8 {5 ¢}.
This latter choice is possible since

Prreanlterss) = 2{Priapea}
by § 2.3 (b).
Now consider the diagram:

f P,
k3% L43.3% wa

- 7mh,5(S*1) % S

14
Priaas  Prasae
e 1a(S*+2)
where the horizontal sequence is associated with the fibring
Vets o/ 851 > Vessss

and the triangle is commutative 8ince p;.s; Pyrias = Pi4sy- Further,
8ince m,,3(S*~1) = 0, Py,334 i8 & monomorphism. Thus

Pri33a® = 3‘5+I»‘$,
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where ¢ = 1(mod 2}, and u unknown. But

Prisanf = {hrigxssh
by § 8.4 (d) and e el

Pri31xd =0, Pk+3,u-5 = {hk+2,k+s}’ Pr+3ax 2b = 0,
by § 7.31 (¢). Hence we have by commutability that u is odd, i.e.
Prirze® = 3eaFb, where ¢ = 1(mod 2).
Now consider the commutative diagram

_ "k..n Priras A, _
= ia(S*) > ‘”:—1.4 > 7"2,3 > g 4o(S*1) >

l"k,o:t l';kmt l"m.n l“.k.om

kg Drysan A, _
> mera(SFY) > Th_18 = 7 Theg(S¥T) =,

in which the horizontal sequences are associated with the fibrings
Vess /S5 > Viigs and Vg s/S¥-1 > ¥, (- Substitution for the groups
changes the diagram into

0> Zy > Zyt+Z, >2Z,—~>

v v v ¥
> 0> 24+ 2, > Zoy+Z,+Z > Zyy .

Thus . .
Prraar? = Prraantissin® = Yeiz1xPrrasa ¥
= £k+a.1t(3d:{:b)
= 3aFb.

Further, since by § 2.3 (b) Pyieaxiti+se} = {ti+ss}, We have from § 9.8
that Priaar W = Aa+b+2¢,

where A 18 to be determined.
Now the next stage of the lower sequence is

s ol 8570) > oy g > ha 5 e (85) >,
which becomes, with the results of §§ 9.2 (a) and 8.1 and 7.31 (b),
> 2> 2y Zy+2,> 2y —,
whence we have by exactness that A, 7} , = m;,o(SE-1).
To recapitulate, the position now is this:

O"Za+zmp—w:’ utZitZo—> Zy -0
generated by v, 1w, a, b ¢, {hk—l,k+2}’

where Prrcas? = 3eaFh (e = 1(mod 2)),

pk+"4*w = Aa+b+2c (A to bC detemiﬂved).
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Hence the factor group 7}, /Py, ¢ce 71,5 i8 generated by a, b, c with the
relations:

24¢ =0, 46 =0, 3eaFb=0, Mat+b+2c=0.

Hence 4(3ea<Fb) = 0;
whence 122 = 0.
Further 2(3eaFb) = 0;
whence 6a+2b =0,
But 6(Aa+b+2c) = 0;
whence 6A'a+2b+412¢c = 0,
where

A=1ifA=1(mod2) and A’ = 0if A = 0 (mod2).
But, if A’ = 1, we have, since 6a42b = 0, that 12¢ = 0, i.e.
12¢ = 12b = 12¢ = 0,
and the factor group cannot possibly be cyclic of order 24. Hence
A =0, and thus A = 0(mod2),

ie. A =20
Thus {tesss) = b+2(ca+tc).
(a¢) When p = 3, (D) gives
P (85 e T s (8,
ie. > 25> 2o+ 2+ 2> 75> 0,

by § 8.1 and 7.31(c). But i; ;s is generated by {t,,s}, that is by
b+ 2(ca+-c) in the notation of the last paragraph. Hence

‘"’2,5 = Zu+za»

generated by {8, hyz.a} 80d {80 PReisrses}. Note that, since
AFY(0) = 0, Prigy is trivial.
(b) When p = 4, (D) gives
Prite L (SEH) D0 e Prv gk,

i.e. > By > Byt Byt Zy >l > 0,
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by § 8.1 and 7.31(d), and since p;,,, is trivial by (a). Also
’.k_-:u(o) =155 "k+4(‘gk+3)’
which is generated by
Rirsxsa042(c8+c)] = Ry sasab+2(0a+0)ufbirsnrd
= h:+a.k+tb
= h;+3,k+4ik+3,1*b = ‘;k+3,1$h:+3,k+4 b,
by Lemma 3.1 (). But
Pk+s,uk2+u+45 = h:+3,k+dpk+3,l*l_) = h:+8.k+l{hk+2,k+3}
= {hk+z,k+t}'
Thus we see, by looking at the results of §§ 8.1 and 7.31 (d), that iz} ,4(0)
is a Z, subgroup of = ,, and that
nhs = Zg+2Z,,
generated by {i;,o3Phri1k+a} 8DA {8401 Phrisn+a). Note that again
ALY(0) = 0, whence py;, i8 trivial.
(¢) When p = 5, (D) gives

ﬂ’ e 46(S*H) ‘é:’ Tha ﬂ" RS Jrase, T s5(S5H) >,
i.e. >2y>Zy+Zy> s> 0
by § 8.1 and § 7.31 (e), and since p, s, i8 trivial by (). Further
Vet se(0) = brrspu Thas(SF),
which is generated by
he+an+ s 0+2(08+0)] = Ay axs5b+2(0a+0)u{hrianrs}
= M ish+sd
= h:+a,k+s’:k+3,ul—7 = 14314 h:+3.1=+53-
But
pk+&1.h2+u+55 = hz+a.k+sl’k+s,u5 = Pirak+siPeson+al
= 12{hk+2.k+5}-
Thus we see, by looking at the results of §§ 8.1 and 7.31 (e), that 15 }5.(0)
is a Z, subgroup of =} ,, and that
"2,5 = Zy,
generated by {i;,,1 Phrisr+s}. Note that again p,.g, is trivial.
9.62. k = 4 (mod 8) and > 12.
We have from §9.1 that #f_, s = 7%_, 4+ Zo, where the infinite
summand is generated by p,{h; .33}, and from§ 8.4 (d) that n§_, , = Z;.
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I shall show in § 10.7 that
{tessel = v+20u{besapen} € mhove

where v generates the finite summand. Thus we can pick generators
in Wt_l,s as

v, of order eight, as defined above by {t;.5.};

w, of infinite order, a8 p {hz.3x+3}-
By §§ 8.1 and 7.31(c), n} 4 = Zy+ Z,+2Z,. Pick generators

a, of order twenty-four, a8 4,3 34{Ass+a};
b, of order four, as 1 ,5,,2, where z is as defined in 9.6;
¢, of infinite order, a8 p {h; 3443}

Consider now the section of the sequence associated with the fibring
Ve+as/S*t = Viri4» Which is of the form

> Ta(85 1) > iy Prow k>
ie. 0> Zg+-Zo > 2o+ B+ Zo >
generated by v, w, a, b c
Thus we have, since v is of order eight,
Priaan ¥V = 3ea+tub, where e = 1(mod?2),
and, since w is of infinite order,
Prrean W = an+pb+ye, where y % 0.
But, by § 2.3 (),
{tessst = Prsaanllesnel
= Pk+4,4m(v+2w)
= (3e+2a)a+(p+2B)b+2yc.
But we have from § 9.6 that
{tesss) = Aa+b+2c.

Hence
A=1(mod2), ie. A= 20+1, p+28=1(mod4), y=1.
Thus {tersa} = (a+b)+2(0a+-c).

(@) When p = 3, (D) gives

A .
Lras, T SFH) *> ha iae, 7},5 > Tesa(SEH),
i.e. > 2+ 2o+ 24+ 25> 15> 0,
by § 8.1 and 7.31(c). Also ii};4(0) is generated by {t;,ss}): that is, in
the notation of the last paragraph, by (a+b)+2(ca+c). Hence
‘lTak’s == Z‘+Z“,
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generated by #;.4¢4a, Where
Pit2140 = (Priapsal and 20 = {84,5; Phesyira)s
and {esa1 PPesassa}+Ho{lerse Brs)-
Note that, since A;}(0) = 0, p,,,, i8 trivial.
(b) When p = 4, (D) gives

ie. +>Zy> Zg+ 2342y~ b s> 0,
by § 8.1 and 7.31(d), and since p,_,, is trivial by (a). Also
il a(0) = Ye+5,64 e +o(S5HY),
which is generated by
BE s sxra[(@40)+2(0a+0)] = A, 3 a4 a(340)+-2(0a+0){hrine+d

= A isx+e0+hEianrad.
But

* * . . " —
hrtsx+e0 = REiaxia 'k+1,3¢{hu+a} = tk41,3% hk+a,k+4{hk,k+a} = 0.
Also, if b = 4;,3,,5, we have that

h:+a,k+4b = h:+8.k+4ik+3,1*5 = ik+3,1# h:+s,k+45r
by Lemmas 3.15,

Prizan h:+a.k+45 = h:+u+4pk+s,u$ = 7‘:+a.k+4{hk+u+a}
= {hk+z.k+4} .
Thus we see, by looking at the results of §§ 8.1 and 7.31 (d), that i3} (4(0)
is & Z, subgroup of =} ,, and that
mhy = Zy+Zy,
generated by {i4,osPhei1k+d 804 {fi01PPrisrrd. Note that again
AFY(0) = 0, whence p, g, is trivial.
(¢) When p = 5, (D) gives

L ] A i [ ] (1]
Pt o (SEH) e b Y, e PRete L (SEH) o,
Le. - Zy~> 24+ Zy > mi 5> 0,
by §§ 8.1 and 7.31 (e), and since p, s, is trivial by (b). Also
i t5a(0) = tpigsumias(S5H2),
which is generated by
Bt aa+s[(@+0)+2(0a+4-c)] = A i3 p+5(a+0) 4208+ C)a{rranssl
= Alianss0+RhEianssd

— h*
- hk+8.k+5 b
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sinoe hiisnt58 = REiqpeshhespred =0,
by (b). Further, if b = "ua,ul—’: we have
hz+a,k+sb = h;+3,k+5ik+3,1t5 = ik+3,1:t h:+s.k+s.5,
PrrsanPhsonss® = PliskrsPirsind = A iansslhuronsa}
= 12{hk+2,k+s}-

Thus we see, by looking at the results of § 8.1 and 7.31 (e), that 15} 54(0)
is & Z, summand of =} ,, and that

"Ti.s = Zy,
generated by {iy,,; PAri5x+s}- Note that again p, e is trivial.
9.63. k= 4.
We first consider the diagram

i".lt Pa,lc
—> 77;.4 > 738 —> 7,(87) >

lput l?l,“ 11-33,10

. p
—-»1713——‘1'1;»772_‘—2»#7(37) -,

where the horizontal sequences are those associated with the fibrings
Ves/Vou— S7 and W JV,, > 8. By § 2.1 the diagram is commutative
and fg,, an isomorphism. By § 8.1, 9.1 the 1,,, are monomorphisms
and the p,,, are onto. Hence, with the results of §§ 8.1 and 9.1, together
with those of §§ 7.31 (c) and 8.4 (¢), the diagram becomes

0> Z+2, » 2Z+Z2.4+2, > Z, -0
a v v w {haa}
v v v
0> Zm+glz+zd-’zm+zu+z4+zw—> Zy =0,
a b ¢ a b ¢ d {ha2}

the summands being generated by the elements displayed below them.
These generators are chosen as follows.
In § 10.7 it will be shown that {t, ¢} € =} 5 is of the form

{to.e} = {204+ 1)t714 5+2P*{h7.1}.

where ¢ generates an infinite summand of »4,. Thus we can chooso
generators as follows. In »4, = Z,+4 Z,, choose

i, of order four (any such);
7, of infinite order, as defined above by {¢;.}.
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Inns = 2,4+ Z,+2Z., choose

u, of order four, as 1,,,4;

v, of infinite order, as i,,,7;

w, of infinite order, a8 p,{A, .}+pv.

Innds = Z,+2Z,,+2Z,, choose .

a, of infinite order, as i, ., P.{k, .} (D i8 Hopf map);
b, of order twelve, as t;,, G{h; ¢};
¢, of order four, as the z defined in § 9.6.

Innd, = 2,+4+2,,+2,+2Z,, choose

a, of infinite order, as 1,,,d;
b, of order twelve, a8 i,,5;
¢, of order four, as 1,,,¢;

d, of infinite order, as p,{h,}.

Now consider the sequence associated with the fibring V, /8%~ V,,,
which is of the form .

- 7h4 LN .3 “A"“’ mg(S%) > 734 > ""'2.3 > 75(S?) >

From the second paragraph of § 8.4 (¢) we have that p,,, i8 an iso-
morphism into. Further, since 7}, = Z; by § 8.4(c), 7l 5 = Z,+Z, by
§ 7.31(b), and =y (S?) = Z,, it follows by exactness that A, is onto
mg(S?). Now both n$, and =5 project onto m,(S®), so that we have the
diagram

A
> b T2 Dt mg(S3) > 0,

N, o
,(S8°)
which is commutative. Now from § 7.31 (c) we have that
Putg =0, P17 0, D1 e26=0.
Thus, since, by § 8.4 (¢), ;1% = 0 and since 4 is of order four,
Poseth = 3eb+2uf, where €= F1 and p=0orl

Again, by § 7.31(c), Dq148 = 0. Thus, since p,;,0 # 0 and 7 is of
infinite order,

Prax® = ci+Pb+(2y+1), where a 52 0and y = 0or 1.
Now change the basis of = ; to {4, b,, &}, where
by =b42ui, & = [20y—Bp)+1k.

3605 .2.10 8
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Then the position becomes

0> Z 4B 2220 2 4 2t Ty Dyy > O
generated by @ ¢ éa b &
with Drge = 3551, where e = F1,

D13e 0 = oB+Pb,+6E, where a #0.
Thus the factor group, 7} 3/P;3e 744, is generated by &, b,, &, with the
relations '
125, =0, 46, =0, 35, =0, od4pb,+¢ =0.
There are now two cases
(@) B = 0(mod3), (b) B =¢€,(mod3), wheree, = FI.
In the case (@) we see that the factor group becomes Z,+ Z,,. But the
factor group is in fact Z,;, = Z;+Z,. Hence
a=1.
In case (b), we first change the basis to {3, ), ,}, where
Ea = €151'f"":1’
and then to {g, B, &y}, where
& = 51.+332-

The factor group will then be generated by &, b,, ¢;, with the relations

125, =0, 46, =0, 6 =0, ad}+b,=0.
Thus in this case the factor group becomes Z,,,. Butitis Z,,. So again

o= 1.

Thus we have that
Praf = d+ﬁl—’+(2)’+l)&-
PoaxV = Dgax ’.7.1;'0 = 17,4 D734
— a+Bb+(2y+1).
Also, 8ince pg,y w0 = {h73}, Ps,14 Psxw = {hy;}. Hence
Poaa W = a’'a+p'b4y'ctd.

Hence

But, by § 2.3 (b),
{to,a} = Pa.u{ts,a}
= Peasl(2p+1)v+2p (P2}
= Paax(v+2w).
Thus {5} = (2'+1)a+(28"+B)b+[2('+7)+ e+ 2d.
But we have from § 9.6 that
{tos} = Ma+pb+c+2d,
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whence, by comparing coefficients, we see that
A=2a41,  2(y'+y) = 0(mod4),
{tos} = a+pb+-c+2(ca+d) (0=o).
(@) When p = 3, (D) gives
P g 89) S0y T g o (Y,
i.e. > 20> Z2o+ 23+ 2+ 2, 7550,
by § 8.1 and 7.31(c). But i71(0) is generated by {t;}: that is, in the
notation of the previous paragraph, by [(a+pub-+c)+-2(ca+d)]. Thus
s = Z1t+ 24+ 2o,

generated by {5 €k e}, 17343, Where p; 1, a = {he } and 2a = {iy; phy,5},
and {ig, ph, ;}+o{is (R, ;). Note that A, 1(0) = 0, whenoe p,, is trivial.

(b) When p = 4, (D) gives

A ; P
ot mg(88) 2> 7h > mh > my(S9) >,

i.e. > Zy > 2yt 2o+ 23+ Zy+Zy > mh g > O,
by § 8.1 and 7.31 (d), and since pg, is trivial by (a). Further
150 (0) = to 54 ms(87),
which is generated by
Ri.dl(@+pb+c)+2(oa+d)] = hyga+phisb+hTsct+2(oa+d){h}

= h;.s a+h'-','_3 b+h’;’.s c.
But

h78a = hiatsas Dafhaz} = 530 Da hlsthrz} = t530 Dalhas)
h;.sb = h;,s t'5 3% (E{hx.e} = is,st Gh:ﬂ{ha,e} = '.B,St G{haﬂ}-
Further higc = hTgir 4 € = 1514 BT3¢,
Pr1whtsC = Bl sPs1a € = higlhas} = {hos}-

Thus, using the results of §& 8.1 and 7.31(d), we see that 151(0) % 0,
and, since it must be cyclic, that it is a Z; summand, and that

‘”:,5 = Z2+Z2+Za+zz:

generated by {ig; ph g}, {1g5Phse}, {354 €hys}, and {iy, ;4. Note that
AZ(0) = 0, whence p,, is trivial.

(c) When p = 5, (D) gives

Piox A, Tou Don
—_— wlo(Sa) —_— 7745,‘ —_— ”2,5 —_— ‘”’(Sa) —),

i.e. _>Z19Z2+Z2+Z2+Z2+Z2+72.5_)0’
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by § 8.1 and 7.31 (e), and since p,, is trivial by (b). Further,
15(0) = to 54 me(S7),

which is generated by .
Bzl (@+pbt+c)+2(08+d)] = AT 6+phT o b+hT o+ 2(00+d) o{ by}

= hipa+hisb+h7sc.
But

h29a = hiotssa Dalhrs} = Ss30 PaFlolhr s} = t530 Palbas)s
h:,ob = h:,o"s,at (E{ha,e} = ia,st Gh:.s{hs,o} = is,a* (E{ha,s}
Further B3¢ = hlot714€ = $714 87,06,
Pra1#P79C = B9 D114 = Al olhes} = 12{hg4}.
Thus, by looking at the results of §§ 8.1 and 7.31(e), we see that
t5+(0) = 0, whence it must be a Z, summand since it is cyclic, and
or that Moy = Lyt Zy+Zy+ 2,

generated by {15 phyo}, {3a1 Phi o}, {¥54Dhrs} and {i5,Cye}. Note that
again A;1(0) = 0, whence p,,, is trivial.
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