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1. Introduction. Let G be a Lie group and M a differentiable (z.e. C*) mani-
fold. An action of G on M is a homomorphism ¢ : g — ¢, of G into the group of
diffeomorphisms (z.e. non-singular, differentiable homeomorphisms) of M with
itself such that the map® : (g, ) — ¢,(x) of G@ X M into M is continuous (it then
follows from a theorem of BocuNER & MoNTGOMERY [1] that & is automatically
differentiable). A triple (G, M, ¢) of such objects as those above we shall call
a differentiable G-transformation group. If O is an open submanifold of M in-
variant under each ¢, then g — ¢,|0 is an action of G on O and we will denote
by (G, O, ¢) the corresponding differentiable G-transformation group. If (G, M, ¢)
and (G, N, ¢) are two differentiable G-transformation groups then an ¢mbedding
of (G, M, ¢) in (G, N, ¢) is an imbedding f of M into N such that foep, = ¢,0f
for all g £ G.

A particular class of differentiable G-transformation groups consists of the
finite dimensional orthogonal representations of G, %.e. triples (G, M, ¢) where
V is a finite dimensional real Hilbert space and each ¢, is an orthogonal trans-
formation of V. We shall prove the following theorem, and in fact something
slightly more general.

Theorem. A differentiable G-transformation group (G, M, ¢) can be imbedded
in a finite dimensional orthogonal representation of G provided G and M are com-
pact.

*After this work was completed, the author was informed of a more general theorem of
G. D. Mosrow, in which differentiability and compactness of M are not assumed. While
Mosrow’s theorem is deeper and more difficult to prove, the simplicity gained by assuming
differentiability seems to justify the publication of this paper. (Added in proof: MosTtow’s
paper, which appeared under the title “Equivariant imbeddings in Euclidean space” in the
May, 1957 issue of the Annals of Mathematics, contains a special proof for the differentiable
case which, though very different from ours, is quite short.)
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In [2], page 215, E. CARTAN has proved this for the case that M is a compact,
irreducible, symmetric Riemannian manifold and G acts transitively and isomet-
rically on M.

2. The fundamental imbedding theorem. Let M be a Riemannian manifold,
M, the tangent space to M at p e M, and T(M) = U, M, the tangent bundle
of M with its usual manifold structure. Let D be the set of v ¢ T(M) such that
if » ¢ M, then the geodesic starting from p In the direction » can be extended
to have length ||v]| and let exp (v) be the point on this geodesic cutting off a
length ||v||. Then, as is well known, D is an open submanifold of T'(M) con-
taining the zero vector field and exp is a differentiable map of D into M. If ¢
is an isometry of M then clearly §g(D) = D and, for each v & D,g(exp ) = exp og(v),
where dg denotes the differential of g.

Let = be a submanifold of M, Z, the tangent space to = at p ¢ =, and =% the
orthogonal complement of Z,in M, . Then N(2) = U.: 33, the normal bundle
of =, is a submanifold of 7'(M) of the same dimension as M. If p ¢ = and 0, is the
zero vector at p then the restriction of exp to N(Z) M D is easily seen to have
a non-zero differential at 0, , and so by the implicit function theorem exp maps
a neighborhood of 0, in N(Z) diffeomorphically into M. If = is compact even
more is true, well known, and rather easily demonstrated, namely Lemma 1
below.

Definition. If = is a submanifold of the Riemannian manifold M then we let
NEZ,9 = {peNE) : |pll <é¢}
and
S(Z,9 = {pe M :p(p, Z) < ¢}
where p is the Riemannian metric function.

Lemma 1. If = is a compact submanifold of the Riemannian manifold M then
for some ¢ = 0 exp maps N(Z, €) diffeomorphically onto S(Z, €).

Now let G be a compact Lie group and let ¢ be an action of G on M such that
each o, is an isometry of M. Let Z be an orbit of M under G, i.e. 2 is of the form
G() = {¢,(p) : g £ G} for some p e M. Then, as is well known, = is a compact
differentiable manifold, and in fact if G, = {g ¢ G : ¢,(p) = p} is the isotropy
group at p then gG, — ¢,(p) is a differentiable imbedding of G/G, into M and
onto =. The mapping g — (8¢,), is an orthogonal representation of G, in M, .

Clearly Z, is an invariant subspace of M, under this representation, hence so
also is =7 .

Definition. We denote by U‘“'® the representation of G, in =% defined by
UL Pv = p,(v).

We now come to the fundamental imbedding theorem.
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Theorem I. Let M and N be Riemannian manifolds, G a compact group, and
let ¢ and ¥ be actions of G on M and N respectively such that each ¢, and each ¢,
is an isometry. Suppose p e M and q ¢ N are such that G, = G, and U‘*'” is equiv-
alent to a subrepresentation of U'*'®. Then, letting = be the orbit of p in M under
G and = the orbit of ¢ in N under G, there is an ¢ > 0 such that (G, S(Z, ¢), ¢)
can be imbedded in (G, S(Z, ¢), ¥).

Proof. Note that since each ¢, is an isometry and = is invariant under each
@, it follows that S(Z, ) is invariant under each ¢, for any ¢ > 0, so (G, S(Z, €), v)
makes sense.

We define a map F of N(2) into N(Z) which we will show to have the following
two properties: (1) F o 8p, = &, o F for all g e G and (2) F is a differentiable
imbedding of N(Z) in N(Z). Let T set up an equivalence of U‘*"® with a sub-
representation of U'?, i.e. T is an isometric linear map of =7} into =% such that

T = U(\P.u)TU;g;v)

for all g ¢ G. We define F on Z3,,, to be the one-to-one linear map into 25
given by 8, Tdp,~: . If 0,(p) = ¢;(p) then h = g7 ¢ G, = G, so

oW Tdg5-2 = ¢, U P TUD bp,-2 = 8¢, e,

so that F is well defined. Since F is a one-to-one map from =%, to =y, and
since ¢,(¢) = ¥,(q) if and only if ¢,(p) = ¢,(p) (because G, = G,), it follows that F
is one-to-one on all of N(Z). Since 8¢, maps =5, onto Zy,,q, it follows that

F o dp, = (8¢, dpap-) 0on = 8¢ o F

which proves (1). It remains to show that F is differentiable and non-singular
and therefore (since it is one-to-one) an imbedding. By the homogeneity prop-
erty (1) it suffices to show that F is non-singular and differentiable on a set of
the form N(U) = \U,.y =% where U is a neighborhood of p in Z. Since G acts
transitively on 2 the map g — ¢,(p) of G onto Z is a fiber map, equivalent in
fact to the natural map of G onto G/G, ; hence we can find a non-singular, dif-
ferentiable, local cross-section ¢ defined on a neighborhood U of p in Z. Now
K : (u, v) — 8¢, @) is clearly a diffeomorphism of U X Z} with N(U) and
F 2 (u, v) — 8. (T) is readily seen to be a differentiable, non-singular map of
U X =% into N(2). Since clearly F = F o K™* on N(U) we have the desired
result.

Now using Lemma 1 choose ¢ so small that exp maps N(Z, ¢) diffeomor-
phically on S(Z, ¢ and N(Z, ¢ diffeomorphically on S(Z, ¢) and let

= exp o F oexp™ " where exp™ is the inverse of the restriction of exp to N(Z, €).
Then clearly f is an imbedding of S(Z, €) in S(Z, ¢). Moreover using property
(1) of F and the fact that exp o dp, = ¢, o exp and exp o &), = ¥, © exp we get
easily that f o ¢, = ¢, o f so that f is an imbedding of (G, S(Z, ¢), ¢)
in (G, S(Z, ¢), ¥) as was to be proved.
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3. Imbedding in orthogonal representations.

Lemma a. Let G be a compact Lie group and H a closed subgroup of G. There
s a finite dimensional orthogonal representation 0 of G in a space W and w e W
such that

H={gG:0,w = w}.

Proof. Let R be the real regular representation of G and let f be a continuous
real function of G/H which takes on the value 1 only at H. Define f on G by
f(@ = f(gH). Then it is trivial to verify that H = {ge G :R,(f) = f}. Let L*(@) =
@V be the decomposition of L*(G) into finite dimensional invariant subspaces
irreducible under R and let f; be the projection of f on V; and

H; = {geGR,(f) = f.}.

Clearly H, is a closed subgroup of G including H and M H; = H. Now the closed
subgroups of a compact Lie group satisfy the descending chain condition (at
each step in a descending chain either the dimension or number of components
must drop) so we can find ¢, , --- , ¢, such that H = M;H,,. Then let W =
@D;V:;, w = =;f;,; , and let 6 be the restriction of R to W.

Lemma b. Let G be a compact group, H a closed subgroup of G, and o a finite
dimensional unitary representation of H. Then there is a finite dimensional unitary
representation = of G whose resiriction to H contains o as a subrepresentation.

Proof. We can clearly assume that ¢ is irreducible, in which case the lemma
is an immediate consequence of the Frobenius reciprocity theorem for induced
representations of compact groups. See the italicized remark at the bottom of
page 83 of [3].

Lemma c. Let G be a compact group, H a closed subgroup of G, and U a finste
dimensional orthogonal representation of H. Then there is a finite dimenstonal
orthogonal representation & of G whose restriction to H contains U as a subrepresenta-
tion.

Proof. Let U be the complexification of U. When the space of U is regarded
as a real vector space, U becomes an orthogonal representation containing U.
By Lemma b we can find a finite dimensional unitary representation = of G
whose restriction to H contains U. Let & be the orthogonal representation of
G that = becomes when the space of 7 is regarded as a real vector space.

Lemmad. Let G be a compact Lie group, H a closed subgroup of G, and U a
finite dimensional orthogonal representation of H. Then there is a finite dimensional
orthogonal representation ¥ of G in a space V and a vector v € V such that

H =G, = {geG:,0) =}

and U™ contains a subrepresentation equivalent to U.
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Proof. Let 0 be the representation of Lemma a and § the representation of
Lemma ¢, and let ¢y = 6 P & so that V = W @ Space of 8. Then if we take
v = (w, 0) the conclusions are readily verified.

Theorem II. Let G be a compact Lie group, (G, M, o) a differentiable G-trans-
formation group, and = any orbit in M. Then there is an tnvariant neighborhood
O of Z in M and a finite dimensional orthogonal represeniation ¢ of G in a space V
for which there exists an imbedding f of (G, O, ¢) in (G, V, ¥).

Proof. Since @ is compact we can find a Riemannian structure for M relative
to which each ¢, is an isometry. Let p ¢ 2 and choose ¢ by Lemma d where
H = G,and U = U‘*'”, By Theorem I for some ¢ > 0 we can find an imbedding
fof (@, S(Z, ¢), o) in (G, S(Z, €), ¥) where I is the orbit of v. Now O = S(Z, ¢)
is an invariant neighborhood of Z in M and f is a fortior: an imbedding of (G, O, ¢)
in (G, V, ¥).

Theorem III. Let G be a compact Lie group and let (G, M, o) be a differentiable
G-transformation group. If O is any relatively compact, open, tnvariant submani-
fold of M then there s a differentiable mapping f of M into the space V of a finite
dimensional orthogonal representation ¢ of G which is equivariant (i.e. satisfies
0, of =y, of for all g € Q) and s such that f|O is an tmbedding of (G, O, ¢) in
@, V,¥).

Proof. Let 0., --- , O, be a covering of O by a finite number of invariant
open submanifolds of M and f; : O; — V; an imbedding of (G, O, , ¢) in a finite
dimensional orthogonal representation (G, V; , ¥.) of G. The existence of such
follows from Theorem II and the compactness of 0. Let W, , --- , W, be an
open covering of O with W,; C O, . We can assume that each W; is invariant,
otherwise replace W; by {¢,(w) : g £ G, w ¢ W,}. Let g, be a differentiable real
valued function on M which is identically unity on W; and identically zero on
M — O, . We can assume that each g, is invariant under the action ¢ of G on M
(otherwise replace g;(z) by [ g:(¢,(x)) du(g) where u is the normalized Haar
measure). Let V, = R and let ¢, be the identity representation of G on V, .
Define fo : M — Vo by folz) = (g:(2), - -+, g.(2)), and define Ji:M— 7V, by
f:(@) = g:(@)f:(x) for z € O; and f;(x) = the zero vector of V;forz e M — O, .
Let V=V,@ - DVa,¢¥ =D -+ D ynanddefinef: M — V by f(z) =
(fo@), -+, fu(@)). Clearly f is differentiable and equivariant, and since f; is an
imbedding of O; it follows that f; is non-singular on W, and hence that f is non-
singular on the union of the W, and so on O. If z, y £ O and f(z) = f(y) then for
some ¢ 2 € W, s0 g;(x) = 1, hence, since f,(x) = fo(¥), 9:(¥) = g:(x) =1soy e O; .
Thus 2 and y both belong to O; , where f; is one-to-one. Moreover f;(z) =
9:@)f:(x) = Ju(@) = Fiy) = 9:W)f:(y) = f:(y) and it follows that z = y, so f
is one-to-one on O.

We note that the theorem of the introduction is a special case of Theorem III.
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