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By R. E. A. C. PaLry.

[Received 29 April, 1931.—Read 14 May, 1931.]

1. We define a sequence of functions ¢,(t), ¢,(2), ..., Pn(t), ... by the

following conditions :
bol)=1 (0<t<})

$o(t) =—1 (F<t<1),
bo(t+1) = o(t),
$ult) =do(27t) (m=1,2, ...).

We call the functions ¢, (¢) Rademacher’st functions.
By means of Rademacher’s functions, we define a new system as
follows. Let n = 2m--2m-...4-2%; then we write y(¢) =1 and

(1.1) P () = bp () b3, (0) . S () (7> 0).

This system has already been obtained in a different way by
Walshi. Walsh has proved that the equation (1.1) defines a normalized
set of orthogonal functions for the interval (0, 1). Every function f(¢)
absolutely integrable in the interval (0, 1) can be expanded (quite
formally) by means of the functions ¢, (t) in the form of a series

(1.2) fO~ Z o)

where the numbers ¢, are defined by means of the equation

(1.21) c,.=j:f(t) oL

t See Rademacher, 9; Khintchine, 6; Paley and Zygmund, 8; Kaczmarz and Steinhaus, 5.
{ Walsh, 12.
SER, 2. VvoOL. 34. xo. 1864. R
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Walsh established a connection between the series (1.2) and the
corresponding expansion in terms of another series of orthogonal functions.
These are the Haart system of orthogonal functions {x}, which are defined
in the following way. We write

Xo(t) =1,
xut)=1 (0<t<)),

x1(t)=—1 (‘%<t< 1),

W =1+2 ¥ = 0<t<y),
(D(t) =—4/2, x20)= F<t<i),
xD(t) =0, PO =v2  (F<t<i),
x(t) = 0, (2)(t =—4/2 (<)

We divide the interval into 2” equal sub-intervals, and denote by ig") the
interval (m—1)/2* <t < m/2". Then we define the n-th group of functions
{x} in the following way :

x™(t) = 4/271 in the interval sm-1),
= —4/2"1 in the interval ;3™,
= 0 elsewhere (m=1, 2, ..., 271},
Walsh: proves that, if the function f(t) is expanded by means of the
functions {x} in a series
(1.3) ﬂmw+ZZWWW

el el
then the 27-th partial sums of the two series (1.2), (1.3) are equal. Heis
able to deduce a number of properties of the series (1.2) from the corre-
sponding properties of the Haar orthogonal system. In a more recent
paper] Kaczmarz uses the same method to obtain further properties of
the system {}. Most of the theorems which we obtain in this paper
follow from a recent theorem of Hardy and Littlewood§ on averages.

We begin by giving a fresh proof that the system {} forms a normalized
orthogonal system for the interval (0, 1); in other words that

(1.31) ﬂ%m%m=0<m¢m

=1 (m=n).

t Haar, 1.
1 Kaczmarz, 4.
§ Hardy and Littlewood, 2.
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The second result is immediate. For the first we have only to observet
that

1
(1.4) jo .. ot

vanishes, unless the numbers ay, a,, ..., a, are all even, in which case the
integral is equal to 1.
The system is also completef. In fact, the functions

dn) (0 <m < 27—1)
are all constant in the intervals
W= v—1)27"<t<v2™ (v=1, 2, ..., 2?).

Suppose that f(¢) € L is a function for which

(1.5) ij%w=o (0 <m < 2m—1).
v2-1

We write I}:’:j fydt (v=1,2, ..., 27).
(v—1)2-»

Then (1.5) gives
1 on

(1.6) jﬂWM=EW%Wh&
0 v=1

The equation (1.6) is satisfied for 0 <m < 2"—1. Now, in virtue of
(1.31), the determinant

[m@)] O<m<2"—1, 1<v <2,

does not vanish. Thus the numbers ,(:%)) are linearly independent,
and it follows from (1.6) that

(1.7) I;p:j"z_" fydt=0 (v=1,2, ..., 2").

(v—1)2-n

Now suppose that (1.5) is satisfied for all m, and let F(¢) denote the
continuous function

j: £(6)do.

t See Paley and Zygmund, 8, 340-341.
1 See also Kaczmarz, 4, 190-191.

R2
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Then we have, by (1.7),
F{v—1)2™=F@p2™) (=12 ..,2" n=1,2, ..),

and so F(t) is a constant. It follows that f(¢) is equivalent to zero.
Thus the functions y,,(¢) form a normal complete orthogonal system.

2. Walsht observes that the behaviour of the functions (1.1) is in
many respects similar to that of the trigonometrical functions. In
particular, he discusses this similarity in the case of convergence at a point,
and of uniqueness theorems. It will appear in this paper that in other
directions this similarity is even more striking.

We begin with some more or less elementary theorems. These are the
consequences of Hardy and Littlewood’s maximal theorem. We first
prove a generalization of Kaczmarz’s result, that if f(t)e L and s,(t)
denotes the n-th partial sum] of its expansion in terms of the system
{}, then s,u(t) > f(¢) for almost all ¢. Kaczmarz’s proof deduces this result
from the corresponding theorem for Haar’s functions§. If f(t) e L%,
where k> 1, we are able to prove a rather stronger result for both
systems of functions by an entirely different method.

We go on to consider some results of a more difficult nature. Let
fn(t) denote the difference syns1—s,.. We show that

ey B Eropa<|fora<s] Eropae a<i<o)

B, denoting a constant which depends only on k (it may denote different
constants in different contexts). The corresponding result for Fourier
series is true|l, but the proof for Walsh-Kaczmarz functions is considerably
easier. From the result (2.1) we now deduce the {i)} analogue of
M. Riesz’s well known resultq] '

[[lsmrar<B.[1f0ke a<t<w
0 0

t Walsh, 12.
} By the n-th partial sum we mean
1

n-1
PR L (0) ym(6) d6.

§ Haar, 1.
|| Littlewood and Paley, 7.
9 M. Riesz, 10.
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We next consider a generalization of the result (2.1). Suppose that
{A.} denotes an increasing lacunary sequence, that is to say a sequence
for which A,,,/A, >¢>1. We denote by 3,(t) the difference

&, (t)—sa,_,(0).
Then

2.2) BHE (55,3 dt < S;l f(6)1Fdt < Bys j: (£5,3%dt (1 <k< o).

The constants B, ; depend only on £ and §. From (2.2) we may obtain a
generalization of the theorem

s;n—>f p.p.in (0, 1).

In fact, if {A,} denotes a lacunary sequence of the type already discussed,
then

(2.3) () —>f(t)

for almost all ¢ in (0, 1). The results (2.2), (2.3) have alreadyt been
established for Fourier series.

3. We begin with the following lemma, due to Hardy and Littlewood {.
We denote by B, here and in the sequel, a positive absolute constant, and
by By, B;, ... constants which depend only on %, 8, ... (B, By, B, ...
may denote different constants in different contexts).

Lemma 1. Let f(t) be a function absolutely integrable in (0, 1). Let
F (t) denote the upper bound

* 1 i+
FO)=sup g | |F(0)]db.

1 1
Then So Fe(t)dt < B, jo| FOFd (> 1);

1 +

1
SO P(t)dt < BSO | /(&) log | £(8)| dé+ B,
the right-hand side in each case being supposed to exist.

The function F(t) is what Hardy and Littlewood call the maximum
average of f at the point ¢. They show that numerous functions common
in analysis, such, for example, as the Cesiro mean of positive order of the

t Littlewood and Paley, 7.
1 Hardy and Littlewood, 2.
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Fourier series of f at the point ¢, are maximized by F(t). For the functions
{)} we have

Leuma 2. With the notation of the last lemma

|sgu(t)| < 2F(2).

n—

2n—1 1
We have )= 2 (8| £O14n(0)20

m=0

=[O E bn1pa(e) |0

2-1
The kernel X i,,(t)¢,,() is identically equal to

m=0
(3.1 T (144,(0) 6,0),

and the expression (3.1) vanishes except in an interval of length 2-*
enclosing the point ¢. In this interval it takes the value 2*. Thus

142
lsan(8)| < 27 L_ | £(6)]d8 < 2F(2).

2-"
This proves the lemma.
From the last two lemmas we deduce the following theorem.

Treorem I. Let n(t) denote an integer which varies arbitrarily with t.
Then, with the previous notation,

1 1
(32) Solszuu)(t) |kdt<BkL)|f(t)lkdt (k> l),

[, emotlar< B | 50 10g | 10)| -+ B3

| 8gr0(2) | < max | f(2)],
the right-hand side in each case being supposed to exist.
Suppose that 21 <n < 2!—1, and that n = 271+ (m—1). We write
Xn(t) = x{™(t), and rewrite the series (1.3) as
Z €y X (t)-
n=0

If ¢ is fixed we observe that exactly one of the functions
xa(t) (271 << <21, I fixed)

differs from zero.



1931.] A REMARKABLE SERIES OF ORTHOGONAL FUNCTIONS (I). 247

From Theorem I we may easily deduce the following result.

Treorem II. Let n(t) denote an integer which varies arbitrarily with t.
Let s, (t) denote the n(t)-th partial sum of the expansion of f(t) by means
of the Haar system of orthogonal functions. Then

1 1
Lgs;,m(t) lkdt < B, L| fOFd (k> 1);

S: I5h(0)|dt < B S:| £(t)|1og | £(8)| di+B;

|sn (| <max f(2),
the right-hand side in each case being supposed to exist.

Suppose that 2m® < n(t) < 2mO+1,  Let

F) ~ = ¢ xal®)

n=0

denote the Haar expansion of f(t). Then, since at most one of the terms
Cr Xn(t)  (2™0 < n < 2m0HY)

can differ from zero, it follows that s, (¢) is equal to either sz.w(t) or
Sgn@+1(t). But sincet

8ém (t)(t) == 82m (] (t),
the required result follows at once from Theorem 1.

Tuworem III. Let n denote a fixed positive integer. Then

1 1
[Jev@lae<] [folar
the right-hand side being supposed to exist.

Let g(¢) denote an arbitrary function of unit modulus, and let y,.(t)
denote the 27-th partial sum of the {i)} expansion of g(f). Then, in virtue
of Theorem I, we have |y, ()| <1. Let

1O~ 2 aninl®), 90) ~ 3 bpin(t).

t Kaczmarz, 4, 191.
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Then, since s,:(t) is a polynomial, we may use (1. 21) to obtain

an-1

Jse090d =% a6, ={ yers0 @< 501
0 m=0

from which the desired result follows.
The following result has been established by Kaczmarzt.

Taeoren 1V. If f(t) € L, then, for almost all tin (0, 1),

$qn(t) > f(2)

4. For the theorem which follows we need the following two lemmas.
These, with Hardy and Littlewood’s Lemma 1, are the key lemmas to the
theory. Lemma 3 is the averaging lemma, and expresses the fact that
functions of the form (4.1) are of more or less uniform modulus in the
interval (0, 1). Thus the functions ¢,(f) are averaging functions.
Lemma 4 we use for interpolation. If we have established a result of the
form (3.2) for two values of k, we may often apply the lemma to give a
similar result for intermediate valucs of . We use the lemma exclusively
in this paper with y = a, and generally one of the two cases from which we
start is that with y =a =4. Sometimes the other is that with y = =0,
and in this case the expression (4.2) is to be interpreted as meaning

Effective maximum |7'(f)|/Effective maximum |f].
Leuma 3.  Let O(t) denote the function
(4.1) Z o dnll)
Then, if 0 <r < o,
© i 1 © ir
B,{ 5 cmz} gS [o@ra<s,| s et}
m=0 1} m=0
This result is due to Khintchinef.

Lemma 4. Let f be a function defined in a field A, and let T(f) be a
function defined in a field p, whose values depend on the values of f in A.
Then T(f)1s described as a linear operation of the class L,*, if

(i) the operation is distributive, that is to say, for arbitary comstants

p and q we have
T(pfitaf) =2T(f)+9T(fo);

t Kaczmarz, 4, Theorem II.
{ Khintchine, 6; see also Paley and Zygmund, 8.
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(ii) there exists a constant M such that

2 < ffisean™.

Let M., denote the upper bound for varying f of the ratio
1/c 1/a
“.2) {[17epan™ [ f1sea)™

where a=1/a, y=1Jc. Let (a, y) describe a segment of a straight line,
situated in the triangle

0], 0Ky, y<a.
Then log M, . is a convex function of the points of the segment.

The result is due to M. Riesz7¥.

5. We now proceed to the proof of the following theorem.

Tueorem V. Let f(t) eL and have the {s} expansion

O~ 3 opm®)

Let f, (t) denote the partial sum
gu+l—]
(5.01) )= Z ¢, Pn(t) (n=0,1,2,...).

m=2n

For simplicity let co=0. Then, for 1 <k < oo,

(5.1) B, J: {Sf20)kdt < j: [£(t)|edt < B, ﬂ {Zf.2 ),

whenever either member exists.
Let €, €1, ..., €,, ... denote a set of arbitrary unit factors. Let

0= afald)
Then

(5.2) B rropa<|lsora<B[If0re 0 <i<w

The constants By, are independent of the choice of the numbers e,.

t M. Riesz, 11.
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It is convenient to divide the proof up into a number of parts, which
we state separately as lemmas.

Lexya 5. The assertions (5.1), (5.2) are equivalent.

That (5.2) follows from (5.1) is immediate. For the opposite result
we observe that, if (5. 2) is true, and if f*(¢) denotes the function

fo¥(t)= Z ¢n(0)fn(t)’
n=0
$,,(0) being Rademacher’s functions, then, for all 6,
1 1 1
B[ 10 Fa < |fora <[ fe0ra 0 <t<w)
Integration with respect to 8 gives
11 1 (eS|
5[ af1pewpas <[ |soka <] af 1pora a<i<w),

and an application of Lemma 3 gives the required result.

Levma 6. Let my > max (my, mg, ..., mg). Then

1
5 fmxfmz '--fmq dt = 0.
0

We observe that, when we expand f,,,, fuy ---» fm, by means of (5.01),
and then express the separate terms by means of Rademacher’s functions,
using the equation (1. 1), then none of the terms contains ¢, (¢) as a factor.
Thus, when the product f,,, f,n, --- fm, 18 €xpressed by means of Rademacher’s

functions, none of the terms contains ¢,, (!) as a factor. On the other
hand, in the expansion of f,, by means of Rademacher’s functions, all of

the terms contain ¢,, (t) as a factor. The result of the lemma then follows
from (1.4)

Lemma 7. For q =2,

8

[ 1 faleae< [ s

n

We observe first that
£a0)= [ 16) 8010 80(6) T (14,00 (00} 0,

and thus max | Ffa(t)| < max|f(t)|
n,
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Also, from elementary considerations,

(5 i~ frora

We now apply Lemma 4 for the line a =y, 0 <a <3, A, p denoting
respectively the fields

0<LtLl) and »n=0,1,2,... (0L,

Then the logarithm of the upper bound M, of

B ™/ {[roreat™

is a convex function of 1/g for 2 <qg <<oo. Since My<1, M, <1, it
follows that M,;, <1 (2 <g <), and the desired result follows.

Lemma 8. The conclusions of Theorem V are true when k= 2v is an
even integer.

Let F,(t) = sy+(t) denote the partial sum

n—1

F,(0)= "% a0
We have

k(k 1)

(5.3) J {F,,H—Fn’“}dt:ﬁ {kanﬁ‘l fnzF" 2+ +fn’°1dt

Ny

in virtue of Lemma 6. Now, by Holder’s inequality, we have, for
3<p<h—1, '
-3

Ciorae (emal {[pea)”

where & = $(u) lies between 0 and 1. It follows that

1 1 1
H b T gy ’ <J 7,2 F,’i'zdt-l—j Fkdi.
0 0 0
Substitution in (5. 3) gives

1 1
‘j {FI:I+1_Fnk} dt‘ < Bk [j' fn2 Fﬁ_z dt+j1f’nk dt-,
1Jo 0 0 2
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Summing from n =0 to n = N we get

JFNHdt B, j {lzv 7.2l max {Ft-% dt+ B, j 5 fn"dt

n=0 J 0sasN

[ﬁ {néofn2[i"dt]21k [ j’:oglnaélN 7.5 dt](k—z)/k
+ B, U’l {Ezof"z} k]’

1 1
j max {F *}dt < B"j F% .t
0 0

o<ng N

by Hoélder’s inequality. Now, by Theorem I,

and thus it is not difficult to deduce that
1 1 (N Y
j Ff\,ﬂdthkJ. (2 fal"a
0 0 \n=0
<B,,S > f,f} dt.
n=0

The same argument will show that, if N, < N,,

v o-Fyopas<s[{ 5 p"a

n=N1+1
and thus
1
lim 5 (F ()= Fy,(0)}edt = 0.

Ni—>w0, Na—>o Jo

Thus Fy,, tends stronglyt with index k£ to some limit function F(t), and

ﬂFk(t)dt<Bkj 5 f,,}

0 \n—O

the right-hand side being supposed to exist. Alsof
1 1
S F(t)y(t)dt = lim 5 Fy(t) dn(t)dt =c,,
0 N—>w» JO
so that F(t) is in fact identical with f(¢). Thus

[ronsn] 5"

t See, e.g., Hobson, 3, 254.
t See, e.g., Hobson, 8, 251, equation (1).
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We now go on to prove the opposite inequality. Consider the integral

1
5 fflf;%e“'ff,._l Fdet’
0 v

where v=13k, and N—1>n,>n,>n,> ... >n,_,. It may be written

1 N— 1
|2t Bt 'S g fh fra
0 0

n=n+1

N-1 1 1
+2 5 [ pfhe bty 25 (A St
n=n,
n1<n,m<N -1

The last two summations vanish in virtue of Lemma 6. It follows that

1
= (s gt g fsh o Fa

n=n;+1

Summing over all the possible combinations of the numbers

gy Mgy veey My,
for which max (n, n,, ..., n,_;) <N—1, we get
1 1 1 N-1 [k—Z
(5.4) z |[mgepat<[rels e w
1, sy Be1y 1, 0 ’ *) 0 (neo”™)

all different
max (n, %2, ..., 7,) S N—1

Also Lemma 7 gives:
N

{5 fokai) < B 5 Fkdt.

n=0

Now, if § denotes the summation on the left-hand side of (5.4), it is not
difficult to see that

( — % N—-1 1
j s } dt<B,[8+ S jfnkdt]
1 n=0 n=0 JO
(5.5) <B, [ F IS b Jl Fdet].
0 {neo’™ ) 0

From Holder’s inequality again, the right-hand side of (5.5) does not

exceed
1 2/k 1 (N-1 &k k—2)/k 1
B,,HS Fytdi! U [ fnz} dt] | Farat |,
L 0 s 0 ‘n=0 o
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and thus

1 (N-1 Py 1 1
[ % el a<s,| Fra<n| ro,
0 0

0 '‘n-1

from which the desired result follows.
We have proved (5.1) in the case when £k is an even integer, and (5. 2)
follows by Lemma 5.

Lemma 9. The conclusions of Theorem V are true for k > 2.

Let e, €, ..., €, ... denote a fixed sequence of unit factors. Let
Fy* denote the function

-1
Fy*= X ¢, f,(t).

N
n=0

Then, if k is an even integer, we have
1/

(5.6) ”:{FN*(t) kil < B, ”:| Fy(t) -]

<B{[Irora) ",

by Theorem I. The conditions of Lemma 4 are satisfied, and so we
may use that lemma to interpolate between k=2 and any arbitrary
even integer; hence the inequality (5.6) is true for all £>2. Thus
Fy* tends stronglyt, with index £, to a limit function f#*, whose Walsh-
Kaczmarz series is obtained by expanding X ¢, f,.(¢), and

Flf*(t) [Fdt < Bkr| f@)|Fdt.
0 0

Since f is obtained from f* in the same way as f; is obtained from f, we
have also

1 1
J | (&) [Fat <Bkj | () [Fde.
0 0

Thus (5.2) is satisfied for the particular sequence of ¢ considered, and
consequently for all sequences ¢. In virtue of Lemma 5, (5. 1) is also true
for k> 2.

Lemua 10, The conclusions of Theorem V are true for 1 <k < 2.

t See Hobson, 3, 254, and the argument of Lemma 8.
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Let €y, €, «..; €, ... denote a fixed sequence of unit factors. Let
g(t) e L¥, where k' is defined by the equation

1 1
Tty =t

Then, if g* is formed from ¢ in the same way as f* is obtained from f,
we have

[rswa={ avwsoa
0 0

<{ | low @ a ™ {] 1 1ea) ™,

by Holder’s inequality, whenever the right-hand side exists. Using (5. 6),

1 1 ! UK (1 1/k
6.n  [rrosoa< ] ooral™ ([ opa™
0 0 0

Since (5.7) is satisfied for all choices of g(t), it follows that

1 1
[0l < B[ | foFa
0 0

where B, is independent of N, and of the sequence e, €;, .... Thus,
arguing as in the last lemma, we may show that fy*(t) tends strongly with
index k to f*(t), and that (5.2), and consequently also (5.1), is satisfied
forl<k<2.

Lemmas 9 and 10 together give the result of Theorem V.

6. From Theorem V we deduce the following result, analogous to
M. Riesz’s well-known resultt for Fourier series.

Tureorem VI. Let n denote a fixed positive integer. We suppose that
l<k< . Then

F | sn(8)[Fdt < By 51 | @) |* dt.
Y 0
We have
(6.1) 8, () = j:f(ﬁ) gsl'm(t) &..(8) df.

t M. Riesz, 10.
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Suppose that n = 2m-2m2 | 4-27.  We write
9(8) =f(6) $1.(6) 61 (0) -... b, (6) = £(6) ,,(8)-
Suppose that g(8) ~ 5 ()R
m=0
and write g.(6) = 2’%—1%’ Ya(0) (n=0,1,2, ..).
m=2n
From (6.1) we have
040 = [ 1040 S Y0010
1 n—
=000, % 04035
Now the kernel
504 1) 6)
is identically equal to
gm+1-1 gm-1+1—1 gm+1-1
IR AR T RO R R O}

It follows that

Sn(t) ¢n(t) = gm(t)'l—gm_l(t)—k e +gn1(t)

Hence, using Theorem V twice,
1
L |8, (8)[* dt = LI I () F a0+ -+, (B) [F

1 A ik 1 -] lik
=Bk5 (3 gﬁvl» dthkj {z g2l b
0 lv=1 0 n=0 J

1 1
<Bi| lg)de =B, | s as
the desired result.

7. We now p:..c the following lemmas.

Lemma 11.  Let

1O~ £ S apnbnl) )
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1

Then B.(Sad <5 1fOTd <B{Zad ) (0<r <o)
0

We first prove the lemma in the case when r = 2v is an even integer.
We observe that f,(t), defined in the usual way, is

n—1

Now, using Theorem V, we have

51|f(t)|'dt<B 5 {Zf. 3 dt = B, Z E S o fe, . fedt.
0 n.,=0

m——O ny=0

N A AR A {jof}'

<B mz—ll 2 } gl ) (ngl 2 [
S {m— A,y {m— am,u f '{ am,n,.} .

It follows that
7.1 [[1f0ra<B.(za,
0

whenever 7 is an even integer. Since
( 1 ]1/1
(7.2) (1 rorad
0

increases with 7, the result (7.1) is true for all values of r.
To prove the opposite inequality for r <2 we need only combine
the result (7.1) with the equation

1
Sofz(t) dt =Z a3, n

using Hausdorff’s theorem on the convexity of means. For r > 2, we
have again to observe that the mean (7.2) increases with r.

Lemma 12.  Let

f(t’ t') ~ § § amn‘#m(t) ¢n(t’)°

m=0 n=0
11
Then B,{Za2, <5 5 (&, ) dede' < B {Sa J (0<r<wo).
0J0

The proof is similar to that of the last lemma.
SER. 2. VOL.34. NO.1865. 8
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8. Tueorem VII. Let f(t) denote the function
f(t) NmEO cﬂl lp?ll(t)'

Let f,, n, (ny > n,) denote the pol Jnomml
20,4 2ug ¢ L —
fn.,ng(t) = 2 6m ‘/’m(t)

m=2Mm+2"2

Then, assuming for ssmplicity that ¢,, =0 (n=0, 1, 2, ...), ¢, =0,

(8.1) ka{zf,?,.n..}*"dt <flf(t)l“dt <Bk51{2f3.,m}“‘dt (1 <k <o),
0 0 0

whenever either member exists.

Let {e,,,, »,} denote a double sequence of arbitrary unit constants. Let
o n-1
f ()—— z z eﬂx,nafnl ”2()
n,=0 n=0

Then, assumang for simplicity that ¢, =0 (n=20, 1, 2, ...}, ¢, =0,
1 1 1
(8.2) B[ 1fe0ra<| sl <B.[|f0ka 1<k<w)
0 0

whenever either member exists.

We write
on-1_1

f'n(t) = 2 Cm l/Jm (t)= ¢n Va( (t);

m=2

fm,n ¢n1(t ¢1’b2 7’77,1 ne )

The result (5.1) may be expressed in the form

dt,,

(5.9) Jjrora<sfal] £ 080

with the opposite inequality. Applying Theorem V again, we get
Z (1) balty)

51
0l n=0

Thus (8. 3) gives

E |f(®)[Fdt < B, S:dt L L

1 1
< Bkj {Zyi, nftidt = Bkj E 13, et
0 0

k 1 1
mgm]ms
0

'S yn,.M(t) B (02) B (t) / dt,.

=0 n,=0

=0 n,;=0

Z E Ym nz(t ¢n1 tl) ¢n2 , dtldtZ
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by Lemma 12. Similarly we get

1
Jlsopd> B[ @0y
%] 0

This proves (8.1), and the extension to (8.2) is immediate.
The reader will see how, by further inductive stages, we may obtain
further results analogous to those of Lemmas 11 and 12 and Theorem VIL.

9. We now prove a generalization of Theorem V in a slightly different
direction.

Tarorem VIIL.  Let Xy, Ay, ..., A, ... denote an increasing sequence of
positive integers for which A, /A, =q > 1. Let 3,(t) denote the difference

Sn(t) = 80, (8) —Sruma (B) ()‘—1 =0).
Then

1 1 1
9.1) B, 5 (58,5 ds < S | f(t)|"dt<Bk’qj (£5,28dt (1 <k <o),
0 0 0
whenever either member exists.
We first prove the following lemma.

Lema 13, Let 2" <A, <27t Let p,(t) denote the partial sum
8, (1) —8an(t). Then

[[epar<fIora a<k<o.
0 0

We may assume without loss of generality that ¢, =0, and that 2, is
actually greater than 2. Let

A, —2% = 2a) 4 ol f | Lo [ = p(n)].
We define f,, v,, as previously. We write

'}’n* =Yn ¢v1(n) ¢’vg(’n) e ¢l’p(n); fn* = ¢'n. 'y'n.*’

and suppose that f, * is split up into partial sums

n—-1
(92) fn*‘_‘— Eofz:v+c§‘¢n
52
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in the usual way. Asin Theorem VI, we observe that

Pn (t) ¢v1 (n) (t) Sbv._; (n)(t) LA ﬁl’v,.(n)(t) = f;: Va +fn, V- | 'I" +fn " (n)
Thus

0-3) [ o= U AT oot f2 D

! k
By .(’-0 ‘ ? S ) ST SO gy ‘ dt,

by Theorem V. Thus, by Theorem VII, the expression (9.3) does not
exceed

Bkj l:z TS o AT SO o iy V'(”)}:l dt

(9.4) | <Bk£{ ) f,,,g}

np=0 =0

Using Theorem VII again, we see that the expression (9.4) does not
exceed

(9.5) B, S:

0 k
7= 3 cdalt)] db
n=0
where f* denotes the function X f,*(¢). Now, by Theorem V,
1 1
j lf*(t)l‘“dt<Bkj {ZfiEaedt
0 0

9.6) —B, 51{2 f2yEdL < B, 51 | F(0) £ ds.
0 0
Also, if h(t) = 2d,, ¢,(¢) (2d,2=1), thent, by Lemma 3,

z«;gs.%:jz FEO B dt
1 ) 1/k 1 } 1/¥
<{];lr=wra™ ([ |0 ka)

<B{[1r0ra) " < B[ 170ra) ™

t The argument is due to Zygmund. See Zygmund, 18, Theorem G (106).
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It follows that
(1 ) 2k
Toj? <B, «J fopa
0

and thus

1| o k 1
[0 £ et ‘ < B <B,| fopa
0 n=0 1]
Combining this with (9.5), (9.6), we obtain the required result.

‘We can now prove the first half of (9.1). Suppose that ¢ > 2. Then
the number of partial sums §,(¢) which are contained partially or entirely
in the summation
gnel-1

z cn ‘/’n (t)

m=2s

cannot exceed G+1. We divide up the set {3,} into two subsets, and
write

Sn(t) = Sn’ () +8n” (®),

where 8, () = §,,(t), except when the range (A,_;, A,) contains a power
of 2, in which case §,(t) vanishes. By Lemma 13,

1
I
and thus

(9.7) f

0

© 113 1
E Situmsolt)| #<B| |FOFA (@ =0,1, .., @),

0 ik 1
> 3,;2(z)‘ dt < By, j | £ dt.
n=0 0

Also, if we define 7(n), o(n) for (not necessarily all) values of » by means
of the inequalities

9n—1 < )‘7 -1 < 211,’ 9n+to(n) < )‘r w < 2n+ar(’n)+l’

then we have

|

-] ik
T 57%(1) ) dt

n=0

o0 Ak

1
. 20 (Savguy—San+om) 2+ (Sgn ot —8n) 2+ (85081, 1y-1)% | @E
n=

<By

1
<B,[ [roa.
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Combining the last result with (9.7), we obtain
B, o, < IR
For the proof of the opposite inequality we write
fo) = "§=°:0 CeosDnre Sagsnnse®) (@=0,1, ..., 26+1),

and observe that at most one of the partial sums

8(2G+2)n+¢7(t) (0‘ ﬁxed)
has points in common with a given interval (2*, 2"*1). Thus we may apply
Theorem V, and without much difficulty we obtain
1 1 © o [1)76
J1roora < B ot @ 0=0,1, ., 2041)
0 0 ‘n=0 )
Combining these results, we obtain
1 © Y3

D fOFdt < B“jo b 5,2 .

ln

This completes the proof of the theorem.

10. From Theorem VIII we may obtain the following result which is
the generalization of Theorem I.

Trrorem IX. Let Ay Ay, ..., A, ... denote an increasing sequence of
positive integers for which A, /A, =q>1. Let n(t) denote an arbitrary
positive integer which may vary with t. Then

10.1) [, Isna®rd < B, [ 1s0FE (1 <t< )

whenever the right-hand member exists.
Let N denote a fixed positive integer. Let f(t) denote a fixed function of
class L* (1 <k < ). Then the integral

1
(10.2) ‘ S sup | f(t)—s,, (8)|< de
On=>N
tends to zero as N — oo, so that
8, ) =>f(t) (fel¥)

for almost all t.
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We prove the assertion (10.1) first for g =2. Then no two members
of the sequence {A,} can be in the same interval 2" <<A, K <2"¥l. We
suppose that

2 L\ < QUL
Then

1 1 @ 3k 1
[t <[ £ @0-sn0r} @< B[ |10k

0 \n=0

by Theorem VIII. Also, by Theorem I,
1 1
L | g [Fdt < By L | £(6) [ dt.

1 1
Thus [0 Far< B, It
0 ! 0

If ¢ <2, then we may divide the sequence {A,} into a finite number of
subsequences

Donse] (0=0,1,..., G—1) G=G(),

for each of which the theorem is satisfied. It follows at once that the
theorem is satisfied for the sequence {A,}, but with a constant which now
depends on ¢ as well as on %.

Suppose that Ay > 2. Then, by (10.1), we have

1 1 2r—1 k
j sup |f(t)—s,\"(t)]kdt<Bk,5J' )f(t)—— z Cm‘/’m(t)l dt
Onz=N 0 m=0

1| o k
=B || £ nola
<Buf[E pof a

by Theorem V ; the last expression tends to zero in virtue of the existence of

j: { 5 f,ﬁ(t)} .

n=0

The last assertion, that, for almost all ¢ in (0, 1),

8. (8) > f(1)

follows at once from (10.2).
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A REMARKABLE SERIES OF ORTHOGONAL FUNCTIONS (II)

By R. E. A. C. Paury.

[Received April 29, 1931.—Read May 14, 1931.]

11. We begin this half of the paper by considering the behaviour of
Cesaro means of Walsh-Kaczmarz series. Let f(t)e LF (1 <k < ).
Then, for almost all ¢, the {i} series of f is strongly summable (C, 1/k+38),
and is summable (C, §) to-sum f(t). In fact, let

n=1 m\ -1
Ly N e 7 ML
) (1_ﬁ>"

m=0 n

(n>0)

denote the strong Rieszian mean, and o{" the weak Rieszian mean of
order ». -Thent, for all positive 8, we have

1 1

(11.2) j sup {7g}/k+5)(t)}kdt<Bk,5J £ [k de,
01<<n<w 0
1 1

(11.3) 5 sup logf)(t)|kdt<Bk,55 (0)[Fd.
01<n<w 0

We next consider convergence factors of {y;} series. If 1 <k <2, then

log=1/%(n+42) is almost everywhere a convergence factor of the {y} series
of f(t)e L*¥. 1In fact, if
n—1

su (t)= I cy log /¥ (m+2) i, (1),
m=0

¢, being the ¢ coefficients of f(t), then we have

1 X 1
[, lstotola < B, | 7o),
0 0

+ The Fourier analogues of both theorems are known. That of (11.2) seems never to
have been stated explicitly. For the analogue of (11.8), see Hardy and Littlewood, 8.
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where n(t) varies arbitrarily with ¢. If f(t) € L, then log=1(n+-2) is almost
everywhere a convergence factor of the {i} series of f. In each case the
Fourier series analogue has already been established }.

12. We next consider the ¢-analogue of an inequality of Hardy and
Littlewood}, of which proofs have also been given by Gabriel and
F. Riesz§. Let ¢y, ¢y, ..., C,, ... denote a bounded set of real numbers,
and let ¢ff, ¢f, ..., ¢, ... denote the set |cy|, |¢,], ..., |¢,], ... rearranged
in descending order of magnitude. Let

J0)~ E a0, PO~ E ok ().

We show that, if ¢ is an even integer, then

1 1
(12.1) Lfa(z) dt < So P dt,

whenever the right-hand side exists. From the result (12.1) we may
obtain results analogous to those which Hardy and Littlewood| deduce
for Fourier series. The arguments are almost identical.

13. We begin by stating without proof the following theorem for strong
means.

Tarorem X. Let -0 denote the strong Rieszian mean (11.1) of order »
of the i series of f(t). Then, for positive 3,

[, sup_ @ommpa < By [ 1f0Fa 6> 1),
0

01gn<w

the right-hand side being supposed to exist.

For Fourier series more is known. In fact, we may substitute 3 for
1/k+3 in the above theorem. The result has never been explicitly
stated, but follows at once from the results of the papers Hardy and
Littlewood, 3 and 6. It seems likely that a similar result is also true for
-series, but I have not yet succeeded in obtaining one.

t Littlewood and Paley, 7; Hardy, 2.
t Hardy and Littlewood, 4.

§ Gabriel, 1, F. Riesz, 9.

| Hardy and Littlewood, 5.
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For the weak Rieszian mean we obtain a stronger result, analogous
to Hardy and Littlewood’s theorem for Fourier series.

Tarorex XI. Let ol” denote the weak Rieszian mean
n—1 m\"
o) ="5 (1=2) el (1> 0)
Then, for positive 3,

1 . 1
[ swp toporasn, [ isora @,
01<n<w 0

the right-hand side being supposed to exist.

We write
H(t) = Sup lan(t)"

l1<n<w

Putting § = 1/k’ in Theorem X, we observe that

1 1
(13.1) j Hk(t)dthkj |f(t) [Fd.
0 0
Let = QM gm . f2m,
Then

(13.2) 5 onlt) (1=2) = [ 1O E (014 (1=7) o

n n

If we write J(0) =£(6) ¢o(6) $1(6) = ¢y,,-1(6),
the last integral is identically equal to
1 , 2nm—1 —om 1 8
Ao $1(0--0ia(® [ £O [ E ) n(0) (=2 s,
0 m=0 n /
If now ¢,/, s,/, 0,/, H'(t) correspond to f'(f) in the same way as
Cm> Sm> Om> H (t) correspond to f(6), then the expression (13.2) has the

same modulus as

(13.3) #2056,y (t) (n— 2 14m)
m=0

2n,—1
=n‘8[ T 5, (OA{(n—2m 4 14m)8} +s4.,(2) ns],
m=1

t Hardy and Littlewood, 3.
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where A {(n—2™+14m)?} denotes (n—2%+m)*—(n—2™~1+4m)’. The
second member of (13.3) is less in modulus than 2F(t) in virtue of
Lemma 2, where F(f) is the maximum average of |f| at the point &.
Using Abel’s transformation again, we may write the first as

(13. 4) n‘al_’;?.jmam’(t) Ag{(n—2m 4 14m)}
+(@M—1) o (O {(n— 1P}
Ay{(n—2™+14-m)% denoting the double difference
(n— 2™ m)—2(n— 2™ 1+ m)+ (n—2m24m)’
Observing that A {(n—2m+1+m)?} = O(m*2),

we see that the expression (13.4) is of the form

21,2
O(n—s)[ S mLH () 2mnt-L HY (¢ ] O(H' ().

m=1

Thus we get

gn—1 8
mz-:o Cm !Lm(t) (1_%> 'g BS {H’(t)+F(t)}‘
Now
2ggta—1 m\ 8
(3.9 2 o (1-7)

2" -2"—1

=S: £6) z Gin(t) P (0) (1—-’3)5]%.

=2
If we write J7(0)=1(0) bn, (6) $o(0) $1(6) ... b, 1(6)

the last integral is identically

na_ __om__9ng 8
b 09600 b O 7O Z n)n(®) () ap,

Arguing as before, we obtain

221
3 cpnlt) (1—-—- \<B6

m=2"

) {(H" &)+ F ()}
< 2B, {H”(t)+F(t)},
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where H''(t) is obtained from f/(#) in the same way as H(t) is obtained
from f(6). In the same way,

2M 4244 2%—1 8
et (1=2)| < 278 BL{H" 0+ F0),

m=2"+42"

and so on. Combining these results we get
|o®(t)| < By {F(t)+H'(t)+ 2 H"(t)+2"2 H"'(t)+...}.
Thus Minkowski’s inequality gives
|o®(t)[F < BE(1+14-278 427204 )k
X{F*()+H™()+27" H"*(0)+272 H'"5(t)+ ..},

and the desired result follows at once by (13.1),

It is not difficult to extend the proofs of the last two theorems to prove
that, if f(¢) e L* (k > 1), then, for almost all values of ¢, the {¢)} series of
f(t) is strongly summable (C, 1/k+48), and summable (C, ) for all
positive 3.

14. We may prove the following theorem on convergence factors of

{i} series.
Trueorem XII. Let f(t) e L¥ (1 <k < 2), and let

*® n— ! m"»bm
0= X ogiim+3)

Let n(t) denote an integer which varies arbitrarily with t. Then

1 1
[Jsto@a < B | 1@l
0 0

where the constant By, is independent of the choice of n(t)
For almost all t, log=1*(n+42) is a convergence factor for the series
Z ey Pult).

The proof is almost identical with that of the corresponding resultf
for Fourier series.

15. When we come to investigate what happens to the above theorems
in the case k = 1, we obtain weaker results. We state without proof the
following two theorems.

t Littlewood and Paley, 1.
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Tueorem XIII. Let n denote a fixed positive integer. Then, with the
notation of Theorem X1,

1 1
j | o®(t)|dt < st | f(t)|dt,
0 0

the right-hand side being supposed existent. The constant Bs is independent
of the choice of n or f(t), and depends only on 8.

TaroreMm XIV. Let
(15.1) J(t)~ gocn‘pn(")EL-

Then, for almost all values of t, log='(n+2) is a convergence factor for the
series (15.1).

The last result is the {)} analogue of Hardy’s well-known theoremt
for Fourier series. ‘

16. Wenow go on to prove the {j} analogue of Hardy and Littlewood’s}
“star”’ theorem. We first have to consider what exactly the analogue is.
We introduce a fresh notation. Suppose that

(16.1) Y, (8) o, (0) Piny () o () = P (8) (0 S <)

then we say that
(g, ngy Mg, ..., M) =m.

If the left-hand side of (16.1) is identically 1, then we have§

(nla ng, n3, ceny ’I?:u) = O

t Hardy, 2.

1 Hardy and Littlewood, 4.

§ The game of Nim js played with matches according to the following rules. A number
of matches is arranged in three heaps on a table. Two players move alternately. At each
turn the player must remove one or more maiches, all from the same heap. He is at liberty
to decide how many matches he will remove, and from which heap. The player who removes
the last match loses the game. We call (I, m, n) a winning combination, if, by leaving his
opponent with heaps of I, m, and n matches, a player is in a position to force a win. The
criterion that (I, m, n) should be a winning combination is either

(I, m, n) =0, max (I, m, n) > 1,
or l+m+n=1 (mod 2), max (I, m, n)=1.

The last formula may be extended to give winning combinations if the game is played with
any number of heaps. For an analysis of the game see, e.g., Rouse Ball, 10.
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Suppose that a,, a, ..., @, are A4+1 non-negative numbers. Suppose
further that a,* >a,* >a,*... >a,* are the same numbers rearranged
in descending order of magnitude. We call this arrangement the
standard arrangement of the a, and say that the a,* are arranged un
type P.  We prove the following theorem.
Tueorem XV. The sum
S= Z a,bgc...
(r,8,¢..)=0

18 greatest when the a’s, b’s, ¢’s, ... are all arranged in type P,1.c.
S=2Xabgc,.. <8*=%Xa*bFcH...
We first need

Lenma 14. It is sufficient to prove the theorem in the case when all of
the numbers a,, b, ¢, are either 1 or 0.

The proof of the lemma is exactly similar to that of the analogous lemma
for Fourier series, proved by Hardy and Littlewood in their papert.

We proceed now to the proof of the theorem. We may suppose
without loss of generality that the numbers of members of the sets
{a}, {b}, {c}, ... are all equal, and that this number is of the form
2¥, where v is a positive integer. Assuming, in virtue of Lemma 14,
that all the numbersa, b, ¢, ... are either 1 or 0, we give an inductive proof.
We show that, if the theorem is assumed to be true for a given value of v,
then it may be deduced for higher values of v.

We first establish the theorem for v=1. Let N denote the number
of sets {a}, {b}, {¢}, ... which have two non-vanishing members. We
assume, without loss of generality, that each set has at least one non-
vanishing member. Then, if N =0, we have § <1, §% =1, from which
the result follows. If N > 0, we may assume, without loss of generality,
that the set {a} contains two non-vanishing members. Now let s, ¢, ...
denote any set of numbers for which b, =¢,= ... =1. It is not difficult
to see that (s, ¢, ...)=0 or 1, and thus] the corresponding member of the
set {a} is also non-vanishing. Thus we have

S= % abg... =251,
(r,8,¢,..)=0

Similarly §* = 2¥-1. This proves the required result for v = 1.

17. Theproofof the result for v > 2is best represented diagrammastically.
We assume that the result has already been established for v—1. We

t Hardy and Littlewood, 4, 108.
1 Clearly, if (s, ¢, ...) =7, then (r, 5, ¢, ...)=0.
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consider first a new type of rearrangement, defined as follows. We are

given 2 numbers a, ay, ..., ay,_;, all equal to 1 or 0. We arrange the
first 2! numbers a,, @,, ..., @5,-;_; in descending order, and we arrange
the last 2! numbers ay.-1, @y.-1,, ..., @p_; also in descending order.

We say that the numbers {a} have been rearranged in type @,. We prove
the following lemma.

Lryya 15, The sum 8 is not decreased by rearrangement in type Q,,
it being assumed that Theorem XV has already been established for sets
{a}, {b}, {c}, ... which contain each not more than 2°-* members.

Let
(17.) E a0 0) =16) = (0)+ 200

where f,(6) denotes the first 21 terms of the polynomial (17.1) and
é,-1(0)f1(0) denotes the remainder. Then f,(6) is a polynomial of the
same type as fy(6), containing ¢’s only of suffix not exceeding 2-1—1.
We write similarly

-1

2V
Py bn ‘/’11(9) =g(0) = 90(9)‘]'4’-:—1 (9) g1(0) >

n=0
2v_
T 00 (6) = 16) = lg(O) + 41 O) 1 (0);
Then
S= = a,bsc,...=51f(0)g(e)h(0)...d0
(r,8,¢..)=0 0
=£ {fo(0)+,_1(0) f1(0)} {g0(0)+,-1(0) 9:(8)} ... 26
17.2) = = Yf,,(e)g,(e)h,(a)...df).
{,0,7,..)=0J0

Since the theorem is supposed to have been established for sets which
contain each less than 2*-1 members, it follows that each term of the sum
(17.2) is not decreased when we rearrange the terms of f,, g,, k., ... in
star order. But this is exactly equivalent to the rearrangement @,, and
the result of Lemma 15 follows.

The possible distributions of the non-zero elements of any given one
of the sets {a}, {b}, {c}, ..., after a rearrangement @,, are shown in Fig. (i).
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The thick lines denote that part of the range (0, 2*—1) which contains
non-zero elements. The range is divided into four equal quarters.

Fig. (i).

We now interchange ¢,_;(6) and ¢,_,(6), with the consequent alterations
in the order of the functions i, so that

(17.3) $,(0) = 6,,,(0) $5,,(6) ... $,1(6)
is changed into

P (0) = ¢5,,(6) (ﬁnn(e) cee by_a(0).
The relation between » and »’ is (1, 1) and has the effect of interchanging
the second and third quarters in Fig. (i). We observe that the relations
(r, 8,8 ...)=0, (,8,t,...)=0

are equivalent. It follows that S is unaltered by the change which
we have carried out. The new possible distributions of the non-zero
elements are shown in Fig. (ii).

Fig. (ii).
SER. 2. VOL. 34. No. 1866. T
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We now apply the operation @, a second time. This cannot
decrease §. The new distributions of the non-zero elements are shown in
Fig. (iii).

4,

4y

BC S

D,

Fig. (iii).

The next step is to change ¢,_,(f), whenever it occurs in the expansion
(17.3), into ¢,_4(0) ¢,_,(8) and ¢,_,(8) ,_1(60) into ¢,_o(8), leaving ¢,_, ()
unchanged when it occurs without ¢,_5(f). This again does not change
8. The result is shown in Fig. (iv).

4,

BC I —

D 1 | —

Dy o

Fig. (iv).

A fresh application of @, gives the distributions of Fig. (v).
We now interchange ¢,_,(8) and ¢,_,(8) once more, which can be done
without altering 8. The possible distributions of the non-zero elements
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are shown in Fig. (vi).

4,

4,, BC,

BC?)‘DI

Aﬂl BCI —

BC,, D,

Fig. (vi).

Finally, another application of the operation @, gives the standard
star rearrangement of the elements. Each of the operations carried out
has had the effect of increasing S or of leaving it unchanged. It follows
that S < 8%, when the number of elements does not exceed 2*. The
desired result now follows.

18. If we put @, =b, =c, = ... in the above theorem we obtain the
following theorem, which is the {i)} analogue of Hardy and Littlewood’s
theoremt for Fourier series. Clearly, by allowing the moduli of the
coefficients to vary, we do not increase the g-th mean of f(t) when g is an
even integer.

t Hardy and Littlewood, 5.
T2
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Trerorem XVI. Le!
ft)~ Z ¢, ,(8)

n=0

where Z¢,? < oo, and let
F(t)y~ 5 c ¥ P (t)

n=0

where the members c,* > c,* > c,* > ... denote the set {|c,|} rearranged in
descending order of magnitude. If q is an even integer, then

5 fu(t dt<:5 P dt,

whenever the right-hand side exists.
We need the following lemmas. The first is knownt.

Leyaa 16, Let 9,(t) (n =0, 1, ...) denote a set of normalized orthogonal
Junctions, all less tn modulus than some constant X.  Let

l1<p<2Kg< o0,

Let}
[0~ £ 0,8, (0.
Then
(18.1) EOlc.,,,ll’(7rz+l)”“2 < B\ E)If(t)l”dt,
(18.2)

1 ]

[l Ra < By, = fopfrtm+ 12,
0 m=0

the right-hand side tn each case being supposed existent.

In the particular case where &,(t) is identified with ,(f) and the
coefficients ¢, are in starred order, we can assert more than Lemma 16.
‘We hayve, in fact,

Lenya 17, Let 1 <k < o, and

F(t)~ 2 e dult),
m=0

t See Paley, 8.
1 That is to say, we write

1
(i) em = Jo FU) 3w (t) dt.

The inequality (18.2) is then to be interpreted as meaning that when the sum on the right-
‘hand side is finite, then an f(t) exists satisfying (i) and (18.2).
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where the coeﬁicz'ents ¢, are positive and decreasing. Then
(18.3) B, T ci(mt1y-2< J IF()[dt < B, T cxk(m+1)2,
m=0 m=0.

whenever either member existst.

We consider separately the cases k <2 and k> 2. When k <2, the
first of the inequalities (18.3) follows from (18.1). For the second we
observe by Theorem V that, if

2"—1

F'n.(t): % cm*‘/)m(t)
m=2"-1
0 ik
then J‘,F Ikdt J {002—{— = F,nz(t)} dt
n=1

<Bflel+ £ [ |F0F el
n=1 J0

1
For 5 \F, (¢ dt
0

we observe first that, for 0 <t < 2", we have |F, ()| <2" ¢} _,. Also
it may easily be verified{ that

u B

and, since the coefficients c,,* are decreasing, Abel’s transformation formula
at once gives

1 ) Beg,.
)2 Gm* ll’m(t) } < 'tLl
m=2n-
Thus j T (0) [ dt <j j
2r=l-1
< Byeik 2600 L B, T ciF(mA-1)k-2,
m=2n-2

from which the desired result follows.

t For the interpretation of (18.8) see the preceding foot-note.
i In fact, if 2"+ < ¢ <2-¥, then ¢x(f) = —1, and thus, for arbitrary integral I,

12V+1
2 \;m(t) =0,

m=0

since, when expressed by means of Rademacher’s functions, the left-hand side is divisibie by
1+ pn(t).
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For k& > 2, the second of the inequalities (18.3) follows from (18.2).
For the first we observe that, by Theorem V,

1 1 [ © V‘k
j ]Fn(t)]"dt>Bkj o+ 5 B2 ai
0 01 n=1 )

o (1
> Bufloot+ £ [ B0 1.

Also

1 2-1
[iRopas [ mopa
0 0

2"—1 k
> 2—n< > Gm=i:> P Bk 2<k—1)n02=£="k_1

m=2""1
24401-1 2k A
=B, T cp(m+1)2
m=2"

from which the desired result follows.

We may now continue the argument in exactly the same way as in
Hardy and Littlewood’s investigations, and we obtain results analogous
to those which they obtain for Fourier series. Of these the most important
are given in the theorems which follow, which also result immediately
from Lemmas 16 and 17.

TaeorEM XVII. Let

f0~ 2 odu®; FO)~ = c¥ilt)

n=0

where cy®, ¢,¥, ¢, ¥, ... denote the set {c, |} rearranged in descending order.
If 2 < g < 0, we have

1 1
RECIZ A AREOIE S
0 0
whenever the right-hand side exists. B, is a constant which depends only on g.

Taeorem XVIII. With the notation of the last theorem we have, for
I1<p<2,

1 1
L |F)Pdt< B, Ll P,

whenever the right-hand side exists. B, depends only on p.
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