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1 . W e d e f i n e a s e q u e n c e o f f u n c t i o n s (f>Q(t), <£i(0> •••> & i ( 0 > ••• b y t h e
following conditions :

We call the functions <f>n(t) Rademacher'sf functions.
By means of Rademacher's functions, we define a new system as

follows. Let n = 2 n i +2 n 2 +. . .+2 n - ; then we write ifjQ(t) = 1 and

(1-1) 0n(«) = *ni(<)*«,(«).••*•.(*) (*><>).

This system has already been obtained in a different way by
Walsh J. Walsh has proved that the equation (] . 1) defines a normalized
set of orthogonal functions for the interval (0, 1). Every function f(t)
absolutely integrable in the interval (0, 1) can be expanded (quite
formally) by means of the functions *pn(t) in the form of a series

(1.2) f(t)~ S cn+n(t),
n=0

where the numbers cn are defined by means of the equation

(1.21) Cn

f See Bademacher, 9; Khintchine, 6; Paley and Zygmund, 8; Kaczmarz and Steinhaus, 5.
X Walsh, 12.
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Walsh established a connection between the series (1.2) and the
corresponding expansion in terms of another series of orthogonal functions.
These are the Haarf system of orthogonal functions {x}, which are defined
in the following way. We write

= l (0

We divide the interval into 2n equal sub-intervals, and denote by i^ the
interval (ra— l)/2n < £ < m/2n. Then we define the n-th group of functions
{x} in the following way:

n t n e interval ^2w-1),

= — •\/2n~1 in the interval i£m),

— 0 elsewhere (m = 1, 2, ..., 2n~1).

Walsh proves that, if the function f(t) is expanded by means of the
functions {x} in a series

(1-3) /(*)~co+ S 's'c^x^CO,
n = l m = l

then the 2n-th partial sums of the two series (1.2), (1.3) are equal. He is
able to deduce a number of properties of the series (1.2) from the corre-
sponding properties of the Haar orthogonal system. In a more recent
paper J Kaczmarz uses the same method to obtain further properties of
the system {$}. Most of the theorems which we obtain in this paper
follow from a recent theorem of Hardy and Littlewood§ on averages.

We begin by giving a fresh proof that the system {I/J} forms a normalized
orthogonal system for the interval (0, 1); in other words that

(1.31) r^«W0n(O = O (m#n),
Jo

= 1 (m — n).

t Haar, 1.
\ Kaczmarz, 4.
§ Hardy and Litfclewood, 2.
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The second result is immediate. For the first we have only to observef
that

n
!>n\<f>nl"'^>n'dt

vanishes, unless the numbers av a2, ..., av are all even, in which case the
integral is equal to 1.

The system is also complete%. In fact, the functions

are all constant in the intervals

i^={v-l)2-n^t<v2-n (v=l, 2, .... 2'1).

Suppose that f(t) e L i s a function for which

(1.5)

We write /£> = \ f(t)dt (v = 1, 2, ..., 2»).
J(K-1 )2 -»

Then (1.5) gives

The equation (1.6) is satisfied for 0 ^ m ^ 2 n — 1 . Now, in virtue of
(1.31), the determinant

does not vanish. Thus the numbers *l*m(i%*) are linearly independent,
and it follows from (1.6) that

(1.7) ^ } = r " " f(t)dt = O (v= l , 2, ..., 2-).
J(r-l)2-»

Now suppose that (1.5) is satisfied for all m, and let F(t) denote the
continuous function

Jo

f See Paley and Zygmund, 8, 340-341.
X See also Kaczmarz, 4, 190-191.
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Then we have, by (1.7),

and so F(t) is a constant. It follows that f(t) is equivalent to zero.
Thus the functions ifjn(t) form a normal complete orthogonal system.

2. Walsh I observes that the behaviour of the functions (1.1) is in
many respects similar to that of the trigonometrical functions. In
particular, he discusses this similarity in the case of convergence at a point,
and of uniqueness theorems. It will appear in this paper that in other
directions this similarity is even more striking.

We begin with some more or less elementary theorems. These are the
consequences of Hardy and Littlewood's maximal theorem. We first
prove a generalization of Kaczmarz's result, that if f(t) e L and sn(t)
denotes the n-th partial sumj of its expansion in terms of the system
{«/»}, then s2»(t) -+f{t) for almost all t. Kaczmarz's proof deduces this result
from the corresponding theorem for Haar's functions§. If f(t) e Lk,
where k > 1, we are able to prove a rather stronger result for both
systems of functions by an entirely different method.

We go on to consider some results of a more difficult nature. Let
fn(t) denote the difference s2»+i—s2». We show that

(2.1) Bk [pfn*(t))*dt < [\f(t)\kdt < Bk [{XfJWdt ( 1 < k < oo),
Jo Jo Jo

Bk denoting a constant which depends only on k (it may denote different
constants in different contexts). The corresponding result for Fourier
series is true||, but the proof for Walsh-Kaczmarz functions is considerably
easier. From the result (2.1) we now deduce the {«/»} analogue of
M. Riesz's well known result^"

S (K*<oo).

t Walsh, 12.
\ By the n-th partial sum we mean

§ Haar, 1.
|| Littlewood and Paley, 7.

IT M. Riesz, 10.
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We next consider a generalization of the result (2.1). Suppose that
{An} denotes an increasing lacunary sequence, that is to say a sequence
for which An+1/An > g > 1. We denote by hn(t) the difference

Then

(2. 2) B ^ f f S 8n*}» <tt < I | / ( 0 1 * * < **.a F{S8B*}**<tt ( 1 < fc < oo).
J J J

The constants Bk s depend only on k and 8. From (2.2) we may obtain a
generalization of the theorem

s2
n->/ p.p. in (0, 1).

In fact, if {An} denotes a lacunary sequence of the type already discussed,
then

for almost all t in (0, 1). The results (2.2), (2.3) have alreadyf been
established for Fourier series.

3. We begin with the following lemma, due to Hardy and Littlewood J.
We denote by B, here and in the sequel, a positive absolute constant, and
by Bk, B&, ... constants which depend only on k, 8, ... (B, Bk, Bs, ...
may denote different constants in different contexts).

LEMMA 1. Let f(t) be a function absolutely integrable in (0, 1). Let
F(t) denote the upper bound

t-x

Then [* Fk(t)dt ^ ^ f l / W N * ( k > 1 ) ;
Jo Jo

F(t) dt^B^ f(t) | lo+g | f{t) | dt+B,
Jo

the right-hand side in each case being supposed to exist.

The function F{t) is what Hardy and Littlewood call the maximum
average of/ at the point t. They show that numerous functions common
in analysis, such, for example, as the Cesaro mean of positive order of the

t Littlewood and Paley, 7.
t Hardy and Littlewood, 2.
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Fourier series of/ at the point t, are maximized by F(t). For the functions
{ifj} we have

LEMMA 2. With the notation of the last lemma

\sAt)\<2F(t).

We have ,„.(«) = *S V«(0 [f(0) fm(0)dd
n»=0 Jo

m =0

2"- l
The kernel 2 r̂m(£) </»m(0) is identically equal to

»»=o

(3 . i ) n1 {i+^jt^je)},
m=0

and the expression (3.1) vanishes except in an interval of length 2~n

enclosing the point t. In this interval it takes the value 2n. Thus

M*)|<2» \
Jt-2-n

This proves the lemma.
From the last two lemmas we deduce the following theorem.

THEOREM I. Let n(t) denote an integer which varies arbitrarily with t.
Then, with the previous notation,

(3 .2)

f11«a»w(01dt < B T| f(t)| lo+g | f(t)\dt+B;
Jo Jo

|«2»w(0|< max

the right-hand side in each case being supposed to exist.

Suppose that 2l~x ^n<2l—l, and that n = 2<-1+ (m— 1). We write
Xn(t) = x\m)(t)> a n ( i rewrite the series (1.3) as

2 cnXn(t).
n=0

If t is fixed we observe that exactly one of the functions

Xn{t) (2'"1 < n < 2l— 1, Z fixed)
differs from zero.
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From Theorem I we may easily deduce the following result.

THEOREM II. Let nit) denote an integer which varies arbitrarily with t.
Let s'n{t)it) denote the nit)-th partial sum of the expansion of fit) by means
of the Haar system of orthogonal functions. Then

[\s'nw(t)\kdt^BS\f{t)\*dt (*>1);
Jo Jo

«;»(«)Idt < B f | fit)| lo+g | fit)\dt+B;
o Jo

the right-hand side in each case being supposed to exist.

Suppose that 2m® < n{t) < 2"l«>+i. Let

71=0

denote the Haar expansion of fit). Then, since at most one of the terms

can differ from zero, it follows that s'n^(t) is equal to either s£».(o(0 or
s'2m(t)+\(t). But sincef

S'2m{t)(t) = S2m{t)(t),

the required result follows at once from Theorem I.

THEOREM III. Let n denote a fixed positive integer. Then

i i f i
o Jo

the right-hand side being supposed to exist.

Let git) denote an arbitrary function of unit modulus, and let y2"(0
denote the 2n-th partial sum of the {(/»} expansion of git). Then, in virtue
of Theorem I, we have | y2n {t) \ < 1. Let

m=0

Kaczmarz, 4, 191.
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Then, since s2»(£) is a polynomial, we may use (1.21) to obtain

[s2,(t)g(t)dt^2>!L ambm=\1
Y2n(t)f(t)dt^\1\f(t)\dt,

Jo m=0 JO Jo

from which the desired result follows.
The following result has been established by Kaczmarzf.

THEOREM IV. Iff{t) c L, then, for almost all t in (0, 1),

4. For the theorem which follows we need the following two lemmas.
These, with Hardy and Littlewood's Lemma 1, are the key lemmas to the
theory. Lemma 3 is the averaging lemma, and expresses the fact that
functions of the form (4.1) are of more or less uniform modulus in the
interval (0, 1). Thus the functions <f>m{t) are averaging functions.
Lemma 4 we use for interpolation. If we have established a result of the
form (3.2) for two values of k, we may often apply the lemma to give a
similar result for intermediate values of k. We use the lemma exclusively
in this paper with y = a, and generally one of the two cases from which we
start is that with y = a = \. Sometimes the other is that with y = a = 0,
and in this case the expression (4.2) is to be interpreted as meaning

Effective maximum |T(/)|/Effective maximum |/|.

LEMMA 3. Let O(t) denote the function

(4-1) S C7n^m(0-
m=0

Then, if 0 < r < oo,

lt<BjI, cr
\tn=0

This result is due to Khintchine J.

LEMMA 4. Let f be a function defined in a field A, and let T(f) be a
function defined in a field ft, whose values depend on the values of f in A.
Then T(f)is described as a linear operation of the class L^a, if

(i) the operation is distributive, that is to say, for arbitary constants
p and q we have

I Kaczmarz, 4, Theorem II.
I Khintchine, 6; see also Paley and Zygmund, 8.
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(ii) there exists a constant M such that

Let Ma>y denote the upper bound for varying f of the ratio

(4.2)

where a = I/a, y = 1/c. Let (a, y) describe a segment of a straight line,
situated in the triangle

Then log Ma>yis a convex function of the points of the segment.

The result is due to M. Rieszf.

5. We now proceed to the proof of the following theorem.

THEOREM V. Let f(t) eL and have the {i/»} expansion

0
m=0

Let fn(t) denote the partial sum

(5.01) /»(O=2"s~1cM^rro(*) (n = 0, I, 2, ...
m=2n

For simplicity let c0 = 0. Then, for 1 < k < oo,

(5.1) Bk [&fn*(t)}»dt
Jo

whenever either member exists.
Let e0, e1} ..., en, ... denote a set of arbitrary unit factors. Let

/*(*)= S en/B(0.
n=0

(5.2) ^ f V ^ N ^ r i / W N ^ ^ f V * ^ ) ! * 1 ^ (Kib<oo).
Jo Jo Jo

The constants Bk are independent of the choice of the numbers en.

j M. Kiesz, 11.
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It is convenient to divide the proof up into a number of parts, which
we state separately as lemmas.

LEMMA 5. The assertions (5.1), (5.2) are equivalent.

That (5.2) follows from (5.1) is immediate. For the opposite result
we observe that, if (5.2) is true, and if/*(£) denotes the function

/ ,*(*)= s 4>n(0)fn(t),
n=0

<f>n{6) being Rademacher's functions, then, for all 9,

f i i r i
o Jo

Integration with respect to 6 gives

o Jo Jo Jo Jo

and an application of Lemma 3 gives the required result.

LEMMA 6. Let m1 > max(w2, m3, ..., mq). Then

j fmJm2---fmqdt=0.

We observe that, when we expand fma> /Ml3, ..., fmq by means of (5.01),
and then express the separate terms by means of Rademacher's functions,
using the equation (1.1), then none of the terms contains <f>mi(t) as a factor.
Thus, when the product/m2/m,... fmq is expressed by means of Rademacher's
functions, none of the terms contains <f>mi(t) as a factor. On the other
hand, in the expansion of fmi by means of Rademacher's functions, all of
the terms contain <f>mi{t) as a factor. The result of the lemma then follows
from (1.4)

LEMMA 7. For q^2,

l
n=0 Jo

We observe first that

m=0Jo

and thus max | fn (t) | < max \f(t)\.
n,t
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Also, from elementary considerations,

n=0

We now apply Lemma 4 for the line a = y, 0 ^ a
respectively the fields

( 0 < £ < l ) and 7i = 0 , l , 2 , . . .

Then the logarithm of the upper bound M1/q of

, A, JU. denoting

W=OJO

is a convex function of 1/q for 2<g f <oo . Since M0^.l, M4 < 1, it
follows that M1/q < 1 (2 ^ g < oo), and the desired result follows.

LEMMA 8. The conclusions of Theorem V are true when k = 2v is an
even integer.

Let Fn(t) = s2»(t) denote the partial sum

Fn(t) =
 nZfJt).
m=0

We have

(5.3)

in virtue of Lemma 6. Now, by Holder's inequality, we have, for

in f n f 2 Fk~2rlt\ i f f
o ) Uo

where # = (̂/x,) lies between 0 and 1. It follows that

Substitution in (5.3) gives
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Summing from n = 0 to n = N we get

>n*} ^ma,x^{F*-*}dt+Bk[_ lfn
kdt

r[l t N )ik - | 2 / * r f l

o n=0

f ) f
<2?J S/B* dt\ max {*

by Holder's inequality. Now, by Theorem I,

fi fi
max {.Fn*}<ft<.Bfc| Fy+1dt,

J0 O^n^N Jo

and thus it is not difficult to deduce that

ri t n (* u

Jo Jo ln=0 U I
dt

11 f oo ^ Jft

S/n2i dt.
0 ln=0The same argument will show that, if N1 < N2,

Jo Jo ln=

and thus

fA*dt,
)

Urn \1{FN2(t)-FNl(t)}
kdt = 0.

00, J^2—>•«> JO

Thus FN+1 tends stronglyf with index h to some limit function F(t), and

!

1 /-I / oo A J i

0 Jo (n=0 i

the right-hand side being supposed to exist. AlsoJ

£o j

so that F(t) is in fact identical with/(£). Thus

fl / oo - 4*

k\ \2fA dt.
Jo (n=0 )

| See, e.g., Hobson, 3, 254.
\ See, e.g., Hobson, 3, 251, equation (1).
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We now go on to prove the opposite inequality. Consider the integral

JO

where v = \h, and N— 1 > nx > n2 > % > . . . > %,_!. I t may be written

jv-i ri

!

1 JV-]

fnjn, •••fnp.iFll+idt-\- S
0 7t==!?li~

+2 *x \lfUl..-fLJnFni+i+z s s \1flfl...fLJjmdt.
n=tii+lJ0 n¥=m JO

The last two summations vanish in virtue of Lemma 6. It follows that

NX fViA-. / i lfn
2dt^\1flfl...fl_iFN*dt.

n=ni+lJo JO
Summing over all the possible combinations of the numbers

for which max(n1, n2, ..., nv_^) <N—1, we get

(n \ ri 1N-1 \ fc-2

(5-4) S I / i / i - > i * < ^ 2 E ^1 dL

tii, «a, n,,.i, «„ Uo ' J O ^n=0 '
all different

max (ni, n2, ..., n

Also Lemma 7 gives

N-i in. | ri

n=0 Uo J ^ &J0

Now, if S denotes the summation on the left-hand side of (5.4), it is not
difficult to see that

(-1 (N-l N J& r- N-l f l "I

Jo I n=0 J L n=0 Jo J

Ql / JV-1 ) fc-2 f l

0 l n=0 ' Jo

From Holder's inequality again, the right-hand side of (5.5) does not
exceed

(k-2)lk fl1'*
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and thus

S fA dt^BA FN*dt^Bk\ fk{t)dt,
Jo U-i ' Jo Jo

from which the desired result follows.
We have proved (5.1) in the case when k is an even integer, and (5. 2)

follows by Lemma 5.

LEMMA 9. The conclusions of Theorem V are true for k^2.

Let e0, ev ..., en, ... denote a fixed sequence of unit factors. Let
FN* denote the function

71=0

Then, if k is an even integer, we have

(5.6)

by Theorem I. The conditions of Lemma 4 are satisfied, and so we
may use that lemma to interpolate between k = 2 and any arbitrary
even integer; hence the inequality (5.6) is true for all k ̂  2. Thus
FN* tends stronglyf, with index k, to a limit function/*, whose Walsh-
Kaczmarz series is obtained by expanding 2 enfn(t), and

Since / is obtained from /* in the same way as fx is obtained from / , we
have also

Thus (5.2) is satisfied for the particular sequence of e considered, and
consequently for all sequences e. In virtue of Lemma 5, (5.1) is also true
for k > 2.

LEMMA 10. The conclusions of Theorem V are true for 1 < k ^ 2.

f See Hobson, 3, 254, and the argument of Lemma 8.



1931.] A REMARKABLE SERIES OF ORTHOGONAL FUNCTIONS (I) . 255

Let e0, ev ..., en, ... denote a fixed sequence of unit factors. Let
g(t) e Lk, where k' is defined by the equation

Then, if g* is formed from g in the same way as / * is obtained from /,
we have

[fN*(t)g(t)dt=[gN*(t)f(t)dt
Jo Jo

0

by Holder's inequality, whenever the right-hand side exists. Using (5.6),

ri (n \ i/

(5.7) }Qh*(t)9(t)dt^Bk\^\g(t)\*dt\

Since (5.7) is satisfied for all choices of g(t), it follows that

where Bk is independent of N, and of the sequence e0, cx, .... Thus,
arguing as in the last lemma, we may show that/#*(£) tends strongly with
index k to /*(£), and that (5 . 2), and consequently also (5.1), is satisfied
for 1 < k < 2.

Lemmas 9 and 10 together give the result of Theorem V.

6. From Theorem V we deduce the following result, analogous to
M. Riesz's well-known result| for Fourier series.

THEOREM VI. Let n denote a fixed positive integer. We suppose that
1 < k < oo. Then

We have

(6-1) sn{t) = [f(B) "S1 $m{t) rfjjd) M
JO m=0

f M. Riesz, 10.
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Suppose that n = 2""+2n2+...-f-2ra\ We write

Suppose that g(6)~ S cm'ifjjd),
0m=0

and write gn(d) = " s " 1 cm'iftjd) (n = 0, 1, 2, ...).
m=2»

From (6.1) we have

[ V W1 (0) dd
7»=0

m=0
Now the kernel

m=O

is identically equal to

It follows that

Hence, using Theorem V twice,

= Bk\ Sgri «ft<5fc (S
J0 IK=1 ) J0 ln=

( grn
2 dt

0 ln=0 i

the desired result.

7. We now pi^*c tne following lemmas.

LEMMA 11. Let

J \ I 771,71 T

n=0 »n=0
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Then 2?r{S<^<fV(0M*<£r{2<n}ir (0<r<oo).
Jo

We first prove the lemma in the case when r = 2v is an even integer.
We observe that fn(t), defined in the usual way, is

TO=O

Now, using Theorem V, we have

, s s ... s
ni=0n2=0 n»=0 JO

(I ( f l \ 1/* ( f l ) 1/" f f l ) II"
N o w Z"2 f2 f2 tJt < \\ fr I \\ fr y \ I fr [

Jo Uo ; 'Jo ' U o '

- l \ ( n « - l

=0 > \ W=0 '

It follows that

(7.1) [
Jo

whenever r is an even integer. Since

(7.2) {jol/(OM*[

increases with r, the result (7 .1) is true for all values of r.
To prove the opposite inequality for r < 2 we need only combine

the result (7.1) with the equation

using Hausdorff's theorem on the convexity of means. For r > 2, we
have again to observe that the mean (7.2) increases with r.

LEMMA 12. Let

00 00

S t
m=0 n=0

(0 < r < oo)
o Jo

The proof is similar to that of the last lemma.
SER. 2. vor,. 34. NO. 1865.
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8. THEOREM VII. Let f(t) denote the function

[May 14,

Let fni> n, (wx > n2) denote the polynomial

21 ' i+2"»*i-l

fni>n2(t)= 2 cnfm(t).
m=2»i+2"=

Then, assuming for simplicity that c2» = 0 (n — 0, 1, 2, ...), c0 = 0,

(8. B k < oo),
o " Jo

whenever either member exists.
Let {em> n J denote a double sequence of arbitrary unit constants. Let

00 »li — 1

/ * ( « ) = S S eni>njni>n2(t).
ni=0 n2=0

Then, assuming for simplicity that c2,, = 0 (w = 0, 1, 2, ...), c0 = 0,

(8.2) | f |
Jo Jo

whenever either member exists.

We write

The result (5.1) may be expressed in the form

(8.3) Pi/(*)!*<&<
i n
dt

o Jo n=0

with the opposite inequality. Applying Theorem V again, we get

n=0
dt<Bi.\ dt

i n

o jo

oo n i—1

m=o n.»=o

Thus (8.3) gives

1/(01** f f
o Jo Jo

I " s 1 yni>n2(t)<f>ni{tx) j>ni{t)
0 n0na=0

dt1dt2

= Bk U^fl^Ht,
Jo
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by Lemma 12. Similarly we get

This proves (8.1), and the extension to (8 . 2) is immediate.
The reader will see how, by further inductive stages, we may obtain

further results analogous to those of Lemmas 11 and 12 and Theorem VII.

9. We now prove a generalization of Theorem V in a slightly different
direction.

THEORKM VIII . Let Ao, Xv ..., AH, ... denote an increasing sequence of
positive integers for which A,l+1/Art ^ q > 1. Let $a(t) denote the difference

Then

(9.1) Bk>q [{XKTdt < fl f{t) \*dt < Bk>a \\xKTdt (Kk< oo),
Jo Jo Jo

whenever either member exists.

We first prove the following lemma.

LEMMA 13. Let 2n ^ Xn < 2n+1. Let pa(t) denote the partial sum
sKll(t)—s2,,(t). Then

( ' J 1 ( K * < o o ) .

We may assume without loss of generality that c0 = 0, and that Xn is
actually greater than 2n. Let

We define fn, yn as previously. We write

Yn* — Yn <f>vi(n) 4>v%(n) • • • <£.> (n) 5 /n* = 0n 7n*»

and suppose t h a t / n * is split up into partial sums

(9.2) /„• =
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in the usual way. As in Theorem VI, we observe that

Thus

(9.3)
Jo Jo

^ -n 1 v i^ i I

[May 14,

Jo

by Theorem V. Thus, by Theorem VII, the expression (9.3) does not
exceed

f1

1 i oo ji]—1

0 Ui=0n2=0

Ik
eft.

Using Theorem VII again, we see that the expression (9.4) does not
exceed

(9.5) ( C) • ^* Con i

n=0

where/* denotes the function 2/n*(£). Now, by Theorem V,

9.6) = Bk ['{Xfn
Jo

Also, if h(t) = I,dn<l>n(t) (Sdw
2 = 1), thenf, by Lemma 3,

Bk f11 / ( 0 |*cft.
Jo

=? f*(t)h(t)dt

t The argument is due to Zygmund. See Zygmund, 13, Theorem G (106).



1931.] A REMARKABLE SERIES OF ORTHOGONAL FUNCTIONS (I) . 261

It follows that

and thus

O n=O

Combining this with (9. 5), (9 . 6), we obtain the required result.
We can now prove the first half of (9.1). Suppose that qG > 2. Then

the number of partial sums hn(t) which are contained partially or entirely
in the summation

m=2"

cannot exceed (2+1. We divide up the set {8n} into two subsets, and
write

where hn'(t) = Bn(t), except when the range (An_1} An) contains a power
of 2, in which case Bn'(t) vanishes. By Lemma 13,

n=0
= 0 , l G),

and thus

(9.7)
n=0

K2(t)

Also, if we define r(n), a(n) for (not necessarily all) values of n by means
of the inequalities

2n, AT
(B)

then we have

f. n=0

1 I 00

o | n=0

1

0

Jfc
dt
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Combining the last result with (9.7), we obtain

o Jo

For the proof of the opposite inequality we write

n=0

and observe that at most one of the partial sums

0 (<T fixed)

(° = 0, 1, .... 2(9+1),

has points in common with a given interval (2", 2"+1). Thus we may apply
Theorem V, and without much difficulty we obtain

[ | S 8f2G+2)n+l*\fc (o = 0, 1, .... 2(7+1).
o (w=0 )

Combining these results, we obtain

\f(t)\kdt^BkS\ S Sn
2

Jo ' Jo 'n=0

This completes the proof of the theorem.

10. From Theorem VIII we may obtain the following result which is
the generalization of Theorem I.

THEOREM IX. Let Ao, Al5 ..., An, ... denote an increasing sequence of
positive integers for which An+1/An ^ q > 1. Let n(t) denote an arbitrary
positive integer which may vary with t. Then

whenever the right-hand member exists.
Let N denote a fixed positive integer. Let f(t) denote a fixed function of

class Lk (1 < k < 00). Then the integral

(10.2) P sup | / (*) -M
Jo ^No

tends to zero as N-^-oo, so that

for almost all t.
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We prove the assertion (10.1) first for q = 2. Then no two members
of the sequence {An} can be in the same interval 2" ^ Xn < 2"+1. We
suppose that

2"(n) <̂  An <

Then

Jo Jo u=o

by Theorem VIII. Also, by Theorem I,

Thus [\s> (t)\*dt^Bk\
l\f(t)\«dt.

Jo l/ Jo
If # < 2, then we may divide the sequence {An} into a finite number of
subsequences

( W ) (or = O,l, ..., G-l) Q =

for each of which the theorem is satisfied. I t follows at once that the
theorem is satisfied for the sequence {An}, but with a constant which now
depends on 0 as well as on fc.

Suppose that A# > 2T. Then, by (10.1), we have

f1 k f1

JOn^N " ' J o m=0

k

dt

O n=r

k

dt

by Theorem V; the last expression tends to zero in virtue of the existence of

f l I 00

Jo U=0

The last assertion, that, for almost all t in (0, 1),

follows at once from (10. 2).
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A REMARKABLE SERIES OF ORTHOGONAL FUNCTIONS (II)
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11. We begin this half of the paper by considering the behaviour of
Cesaro means of Walsh-Kaczmarz series. Let f(t) eLk (1 < k < oo).
Then, for almost all t, the {«/>} series of/is strongly summable (C, 1/&+8),
and is summable (C, S) to sum f(t). In fact, let

( H . l ) T£>(0 =

m=0 \ n ,

denote the strong Rieszian mean, and a^ the weak Rieszian mean of
order rj. Thenf, for all positive S, we have

(11.2) f sup
JO l < n < »

(11.3) T sup | oj)(«) Ikdt < Bk>s P |/(«) |*dt.
JO l<n<oo JO

We next consider convergence factors of {ifj} series. If 1 < k ^ 2, then
log~1/fc(w+2) is almost everywhere a convergence factor of the {0} series
of f(t)eLk. In fact, if

s*(t) = E c
TO=0

cm being the «/r coefficients of f(t), then we have

t The Fourier analogues of both theorems are known. That of (11.2) seems never to
have been stated explicitly. For the analogue of (11.3), see Hardy and Littlewood, 3.
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where n(t) varies arbitrarily with t. If f(t) e L, then log~1(w+2) is almost
everywhere a convergence factor of the {0} series of / . In each case the
Fourier series analogue has already been establishedf.

12. We next consider the ^-analogue of an inequality of Hardy and
Littlewood J, of which proofs have also been given by Gabriel and
F. Riesz§. Let c0, cv ..., cn, ... denote a bounded set of real numbers,
and let c$, cf, ..., c*, ... denote the set |co|, IcJ, ..., \cn\, ... rearranged
in descending order of magnitude. Let

f(t)~ £ cn0tt(t), F(t)~ £ c*0n(e).
71=0 n=0

We show that, if q is an even integer, then

(12.1) (V(0^< [ F*(t)dt,
Jo Jo

whenever the right-hand side exists. From the result (12.1) we may
obtain results analogous to those which Hardy and Littlewood|| deduce
for Fourier series. The arguments are almost identical.

13. We begin by stating without proof the following theorem for strong
means.

THEOREM X. Let TW denote the strong Rieszian mean (11.1) of order i?
of the ip series of f(t). Then, for positive 8,

sup

the right-hand side being supposed to exist.

For Fourier series more is known. In fact, we may substitute 8 for
1/fc+S in the above theorem. The result has never been explicitly
stated, but follows at once from the results of the papers Hardy and
Littlewood, 3 and 6. It seems likely that a similar result is also true for
ifj-series, but I have not yet succeeded in obtaining one.

f Littlewood and Paley, 7 ; Hardy, 2.
I Hardy and Littlewood, 4.
§ Gabriel, 1, F. Riesz, 9.
|| Hardy and Littlewood, 5.
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For the weak Rieszian mean we obtain a stronger result, analogous
to Hardy and Littlewood's theoremf for Fourier series.

THEOREM XL Let a^ denote the weak Rieszian mean

Then, for positive 8,

sup \a
JO Kn<«

the right-hand side being supposed to exist.

We write
H(t)= sup \an(t)\.

1 <n<oo

Putting 8 = 1/k' in Theorem X, we observe that

(13.1) P #*(«)«&< 5* T
Jo Jo

Let 7i = 2ni+2n»+...

Then

(13.2) '£" cmifim(t) (l-—) = f /(0)[* S~
m=0 V nJ Jo Lm=0

If we write f'(6) =f{6) <f>0(
e) <f>i(e) =

the last integral is identically equal to

m=0 \ % / J

If now cm', srn', am', H'(t) correspond to f'(6) in the same way as
cm, sm, am, H(t) correspond to f(6), then the expression (13.2) has the
same modulus as

(13.3) n-^Cn'^Min
W2=0

f Hardy and Littlewood, 3.
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where A {(n—2n'+l+m)4} denotes (n—2n>+m)5— (n—2ni+l+m)s. The
second member of (13.3) is less in modulus than 2F(t) in virtue of
Lemma 2, where F(t) is the maximum average of j / | at the point t.
Using Abel's transformation again, we may write the first as

\ S~(13.4)

A2{(n—2ni+l+m)s} denoting the double difference

(n—2n'+m)6—2(n—2ni+l+m,y+(n—2ni+2+ra)s.

Observing that A2{(n—2^+1+™)*} = 0(m8-2),

we see that the expression (13.4) is of the form

O(rc-s)p£2ms-1#/(0 + 2^w5-1 #'(*)] = 0{H'{t)\.

Thus we get

2". - ]

<B&{H'(t)+F(t)}.

Now

(13.5)

+
s

TO=2'

If we write f" (6) = f(6) <f>ni

the last integral is identically

11 i - 2 n j - l

f"(e)\ s
0 L m=0

Arguing as before, we obtain

)\
/ J

dd.

2"'+2"—1

s
wi=2"»
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where H"(t) is obtained from f"{9) in the same way as H(t) is obtained
from f(6). In the same way,

m=2".+2"»

and so on. Combining these results we get

Thus Minkowski's inequality gives

and the desired result follows at once by (13.1),
It is not difficult to extend the proofs of the last two theorems to prove

that, if f(t) e Lk (k> 1), then, for almost all values of t, the {</»} series of
f(t) is strongly summable (C, 1/fe+S), and summable (C, 8) for all
positive 8.

14. We may prove the following theorem on convergence factors of
{«/>} series.

THEOREM XII. Letf(t) e i * ( l < K 2)>

Let n(t) denote an integer which varies arbitrarily with t. Then

where the constant Bk is independent of the choice ofn(t).
For almost all t, log~1/fc(w+2) is a convergence factor for the series

The proof is almost identical with that of the corresponding result f
for Fourier series.

15. When we come to investigate what happens to the above theorems
in the case k = I, we obtain weaker results. We state without proof the
following two theorems.

f Little wood and Paley, 7.
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THEOREM XIII. Let n denote a fixed positive integer. Then, with the
notation of Theorem XI,

the right-hand side being supposed existent. The constant B6 is independent
of the choice of n orf(t), and depends only on 8.

THEOREM XIV. Let

(15.1) / («)~ S cnljjn(t)eL.

Then, for almost all values of t, log~1(n-\-2) is a convergence factor for the
series (15.1).

The last result is the {i/r} analogue of Hardy's well-known theorem f
for Fourier series.

16. We now go on to prove the {0} analogue of Hardy and Littlewood's %
" star " theorem. We first have to consider what exactly the analogue is.
We introduce a fresh notation. Suppose that

(16.1)

then we say that

(nv n2, n3, ..., nv) = m.

If the left-hand side of (16.1) is identically 1, then we have§

(nv n2, n3, ..., nv)~0.

t Hardy, 2.
I Hardy and Littlewood, 4.
§ The game of Nim is played with matches according to the following rules. A number

of matches is arranged in three heaps on a table. Two players move alternately. At each
turn the player must remove one or more matches, all from the same heap. He is at liberty
to decide how many matches he will remove, and from which heap. The player who removes
the last match loses the game. We call (I, m, n) a winning combination, if, by leaving his
opponent with heaps of I, m, and n matches, a player is in a position to force a win. The
criterion that (I, m, n) should be a winning combination is either

(I, m, n) =B 0, max (I, m, n) > 1,

or l + vi + n = 1 (mod 2), max (I, m, n) = 1.

The last formula may be extended to give winning combinations if the game is played with
any number of heaps. For an analysis of the game see, e.g.. Rouse Ball, 10.
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Suppose that aQ, av ..., aK are A-f-1 non-negative numbers. Suppose
further that a0* ^ a x * ^ a 2 * . . . ^a A * are the same numbers rearranged
in descending order of magnitude. We call this arrangement the
standard arrangement of the ar and say that the ar* are arranged in
type P. We prove the following theorem.

THEOREM XV. The sum

S = S arbsc,...
(r , s ,« , . . . ) = 0

is greatest when the a's, b's, c's, ... are all arranged in type P, i.e.

i8 = Sar6,c«...<-8f* = SaP*6,*c/*....

We first need

LEMMA 14. It is sufficient to prove the theorem in the case when all of
the numbers ar, bs, ct are either lor 0.

The proof of the lemma is exactly similar to that of the analogous lemma
for Fourier series, proved by Hardy and Little wood in their paper f.

We proceed now to the proof of the theorem. We may suppose
without loss of generality that the numbers of members of the sets
{a}, {6}, {c}, ... are all equal, and that this number is of the form
2", where v is a positive integer. Assuming, in virtue of Lemma 14,
that all the numbers a, b, c, ... are either 1 or 0, we give an inductive proof.
We show that, if the theorem is assumed to be true for a given value of v,
then it may be deduced for higher values of v.

We first establish the theorem for v = 1. Let N denote the number
of sets {a}, {&}, {c}, ... which have two non-vanishing members. We
assume, without loss of generality, that each set has at least one non-
vanishing member. Then, if N = 0, we have 8 ^ 1, S* = 1, from which
the result follows. If N > 0, we may assume, without loss of generality,
that the set {a} contains two non-vanishing members. Now let s, t, ...
denote any set of numbers for which bs = c( = ... = 1. It is not difficult
to see that {s, t, ...) = 0 or 1, and thus $ the corresponding member of the
set {a} is also non-vanishing. Thus we have

S= E arbscl... = 2*-1.
(r,s,t,...) = O

Similarly 8* = 2N~1. This proves the required result for v — 1.

17. The proof of the result for v ^ 2 is best represented diagrammatically.
We assume that the result has already been established for v— 1. We

f Hardy and Littlewood, 4, 108.
} Clearly, if (s, t, ...) = r, then (r, s, t, ...) = 0.
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consider first a new type of rearrangement, defined as follows. We are
given 2" numbers a0, av ..., a2»_v all equal to 1 or 0. We arrange the
first 2""1 numbers a0, av ..., a2,-\-\ in descending order, and we arrange
the last 2"-1 numbers ar^, ar-\+1, ..., a2"_1 also in descending order.
We say that the numbers {a} have been rearranged in type Qv. We prove
the following lemma.

LEMMA 15. The sum 8 is not decreased by rearrangement in type Qv,
it being assumed that Theorem XV has already been established for sets
{a}, {&}, {c}, ... which contain each not more than 2""1 members.

Let

(17. i) " V
n=0

where fo(9) denotes the first 2""1 terms of the polynomial (17.1) and
</>„_! (6)^(6) denotes the remainder. Then f^d) is a polynomial of the
same type as /o(0), containing ^f's only of suffix not exceeding 2""1—1.
We write similarly

2i\M9) = g(9) =
n=0

2Xcntn(9) = h{9) =
n=0

Then

8 =
l

(r,s,t,...) = O

...d9

(17.2) = S [fp(O)g.{e)hr(d)...d0.
(P,<T,T,...) = OJO

Since the theorem is supposed to have been established for sets which
contain each less than 2""1 members, it follows that each term of the sum
(17.2) is not decreased when we rearrange the terms of fp, ga, hT, ... in
star order. But this is exactly equivalent to the rearrangement Qv, and
the result of Lemma 15 follows.

The possible distributions of the non-zero elements of any given one
of the sets {a}, {&}, {c}, ..., after a rearrangement Qv, are shown in Fig. (i).
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The thick lines denote that part of the range (0, 2V—1) which contains
non-zero elements. The range is divided into four equal quarters.

A

B

C

D

,

Fig. (i).

We now interchange 4>v_i{6) and <£,,_2(0), with the consequent alterations
in the order of the functions ijjn, so that

(17.3) &i(0) = ^

is changed into

The relation between n and n' is (1, 1) and has the effect of interchanging
the second and third quarters in Fig. (i). We observe that the relations

(r,s,t, ...) = 0, (rf, s',t\ ...) = 0

are equivalent. It follows that S is unaltered by the change which
we have carried out. The new possible distributions of the non-zero
elements are shown in Fig. (ii).

A

B

C

D

Fig. (ii).

SEE. 2. VOL. 34. NO. 1866.
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We now apply the operation Qv a second time. This cannot
decrease S. The new distributions of the non-zero elements are shown in
Fig. (iii).

A.2

BC

A

A

Fig. (iii).

The next step is to change ^V_2(^)J whenever it occurs in the expansion
(17.3), into ^(0)^(0) and ^_2(0)^-i(0) into ^_2(0), leaving ^ ( 0 )
unchanged when it occurs without ^ _ 2 (0). This again does not change
8. The result is shown in Fig. (iv).

BC

A

A-

Fig. (iv).

A fresh application of Qv gives the distributions of Fig. (v).
We now interchange ^^{d) and <f>v^2(^) o n c e more> which can be done

without altering S. The possible distributions of the non-zero elements
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are shown in Fig. (vi).

D,

Fig. (v)

Ai,BC1

BC«, D,

Fig. (vi).

Finally, another application of the operation Qv gives the standard
star rearrangement of the elements. Each of the operations carried out
has had the effect of increasing S or of leaving it unchanged. I t follows
that S < #*, when the number of elements does not exceed 2". The
desired result now follows.

18. If we put an = bn = cn = ... in the above theorem we obtain the
following theorem, which is the {(/»} analogue of Hardy and Littlewood's
theoremf for Fourier series. Clearly, by allowing the moduli of the
coefficients to vary, we do not increase the g-th mean of f(t) when q is an
even integer.

Hardy and Littlewood, 5.
T*2
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THEOREM XVI. Let

f(t)~ S cnfn{t),
n=O

•where 2 cn
2 < oo, and let

F(t)~ S cn*fn(t),
n=0

ie members c0* ^ C j * ^=c2* ^ ... denote the set {\cn\} rearranged in
descending order of magnitude. If q is an even integer, then

10

whenever the right-hand side exists.

We need the following lemmas. The first is knownf.

LEMMA 16. Let &n(t) (n = 0, 1, ...) denote a set of normalized orthogonal
functions, all less in modulus than some constant A. Let

Let%
<p <2 <g-< oo.

n
wi=0

I \f(t)\<idt<.B S
Jo ' m—0

the right-hand side in each case being supposed existent.

In the particular case where &n(t) is identified with i[tn{t) and the
coefficients cn are in starred order, we can assert more than Lemma 16.
We have, in fact,

LEMMA 17. Let 1 <k< oo, and

F(t)~ 2 cm*j/»m(2),

t See Paley, 8.
X That is to say, we write

<(i) cm=ff{t)&m(t)dt.
Jo

The inequality (18.2) is then to be interpreted as meaning that when the sum on the right-
hand side is finite, then an f(t) exists satisfying (i) and (18.2).
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where the coefficients cn* are positive and decreasing. Then

(18.3) Bk S c**(m+l)fc"2< [\F(t)\*dt^Bk S c**(m+l)fc"2,
m=O Jo n»=0 •

whenever either member exists f.

We consider separately the cases k < 2 and & > 2. When & < 2, the
first of the inequalities (18.3) follows from (18.1). For the second we
observe by Theorem V that, if

Fn(t)=
=2""1

then f \F{t)\*dt^Bk[ \co*+ 2 2^(0 j eft
J0 J0 I n= l J

<JBtl|c0|*+ S [
I n=l Jo

For

we observe first that, for 0 < t < 2~n, we have |jPn(O| < ^n~1c%.v Also
it may easily be verified J that

M

m=0 t'

and, since the coefficients cm* are decreasing, Abel's transformation formula
at once gives

jn=2"-'2

from which the desired result follows.

For the interpretation of (18.3) see the preceding foot-note.
In fact, if 2'(JV+r ^ t < 2~N, then <px(t) = —1, and thus, for arbitrary integral I,

2
m=0

since, when expressed by means of Eademacher's functions, the left-hand side is divisible by
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For k > 2, the second of the inequalities (18.3) follows from (18.2).
For the first we observe that, by Theorem V,

n=l

>Bk\\c0\*+ S (V
I «=lJo

Also

c
n —1

2,,* l - l
^J5k 2J Cm (

ro=2"

from which the desired result follows.
We may now continue the argument in exactly the same way as in

Hardy and Littlewood's investigations, and we obtain results analogous
to those which they obtain for Fourier series. Of these the most important
are given in the theorems which follow, which also result immediately
from Lemmas 16 and 17.

THEOREM XVII. Let

?i=0 n=0

where c0*, c^ , c2*, ... denote the set {\cn\} rearranged in descending order.
If 2 ^ q < oo, we have

f | / | f l [
o Jo

whenever the right-hand side exists. Bq is a constant which depends only on q.

THEOREM XVIII. With the notation of the last theorem we have, for

V ( 0 !*#<*, T|/(«)|*<ft,
o Jo

whenever the right-hand side exists. Bp depends only on p.
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