Some applications of algebraic surgery
theory: 4-manifolds, triangular matrix
rings and braids

THE UNIVERSITY
of EDINBURGH

Christopher Palmer

Doctor of Philosophy
The University of Edinburgh
2015



Some applications of algebraic surgery theory:
4-manifolds, triangular matrix rings and braids

Doctoral thesis

Christopher Palmer

SCHOOL OF MATHEMATICS
The University of Edinburgh

Christopher Palmer
James Clerk Maxwell Building, School of Mathematics, The University of Edinburgh

Supervisor: Professor Andrew Ranicki
James Clerk Maxwell Building, School of Mathematics, The University of Edinburgh

(©2015 Christopher Palmer

Doctoral thesis

Initial Submission for examination: 7th August 2015
Final Submission: 18th September 2015

Typeset in BTEX



Declaration

This thesis, which was composed by the candidate himself, is submitted to the University of
Edinburgh in partial fulfilment of the requirements for the degree of Doctor of Philosophy in
the School of Mathematics.

The candidate hereby declares that the work presented in this thesis is, to the best of his
knowledge and belief, original and his own, except where explicitly stated otherwise in the text.
He further asserts that none of the material contained in this thesis has been submitted, either

in part or whole, for any other degree or professional qualification.

Christopher Palmer
Edinburgh
18th September 2015



To my parents

ii



Abstract

This thesis consists of three applications of Ranicki’s algebraic theory of surgery to the topology
of manifolds. The common theme is a decomposition of a global algebraic object into simple lo-

cal pieces which models the decomposition of a global topological object into simple local pieces.

Part I: Algebraic reconstruction of 4-manifolds. We extend the product and glueing
constructions for symmetric Poincaré complexes, pairs and triads to a thickening construction
for a symmetric Poincaré representation of a quiver. Gay and Kirby showed that, subject to cer-
tain conditions, the fold curves and fibres of a Morse 2-function F : M* — %2 determine a quiver
of manifold and glueing data which allows one to reconstruct M and F up to diffeomorphism.
The Gay-Kirby method of reconstructing M glues the pre-images of disc neighbourhoods of
cusps and crossings with thickenings of regular fibres and thickenings of cobordisms between
regular fibres. We use our thickening construction for a symmetric Poincaré representation of
a quiver to give an algebraic analogue of the Gay-Kirby result to reconstruct the symmetric

Poincaré complex (C(M), ¢ar) of M from a Morse 2-function.

Part II: The L-theory of triangular matrix rings. We construct a chain duality on the
category of left modules over a triangular matrix ring A = (A1, A2, B) where Aj, Ay are rings
with involution and B is an (A, A2)-bimodule. We describe the resulting L-theory of A and
relate it to the L-theory of A;, As and to the change of rings morphism B ® 4, — : A2-Mod —
Aj-Mod. By examining algebraic surgery over A we define a relative algebraic surgery opera-
tion on an (n+1)-dimensional symmetric Poincaré pair with data an (n + 2)-dimensional triad.
This gives an algebraic model for a half-surgery on a manifold with boundary. We then give an
algebraic analogue of Borodzik, Némethi and Ranciki’s half-handle decomposition of a relative
manifold cobordism and show that every relative Poincaré cobordism is homotopy equivalent

to a union of traces of elementary relative surgeries.

Part III: Seifert matrices of braids with applications to isotopy and signatures.
Let 8 be a braid with closure B a link. Collins developed an algorithm to find the Seifert
matrix of the canonical Seifert surface ¥ of B constructed by Seifert’s algorithm. Motivated
by Collins’ algorithm and a construction of Ghys, we define a 1-dimensional simplicial complex
K(B) and a bilinear form Ag : C1 (K (B); Z)xC1 (K (B); Z) - Z[ 4] such that there is an inclusion
K(B) = X which is a homotopy equivalence inducing an isomorphism H;(3;Z) 2 Hy(K(8);Z)
such that [Ag] : Hi(K(B);Z) x Hi(K(8);Z) - Z c Z[5] is the Seifert form of . We show
that this chain level model is additive under the concatenation of braids and then verify that

this model is chain equivalent to Banchoff’s combinatorial model for the linking number of two



space polygons and Ranicki’s surgery theoretic model for a chain level Seifert pairing. We then
define the chain level Seifert pair (Ag,dg) of a braid 5 and equivalence relations, called A and
A-equivalence. Two n-strand braids are isotopic if and only if their chain level Seifert pairs are
A-equivalent and this yields a universal representation of the braid group. Two n-strand braids
have isotopic link closures in the solid torus D? x S1 if and only if their chain level Seifert pairs
are A-equivalent and this yields a representation of the braid group modulo conjugacy. We use

the first representation to express the w-signature of a braid £ in terms of the chain level Seifert

pair (Ag,dg).



Lay Summary

Imagine a sphere made out of rubber and suppose that you are allowed to squeeze, stretch or
twist it as much as you want but you are not allowed to cut it or to glue parts of it together.
Geometric properties of the sphere such as its surface area or the distance between two points
may change drastically under these transformations (imagine inflating the sphere). Other more
intrinsic properties may not change such as the fact that it a possible to draw a curve between

any two points on the sphere or that a sphere has an inside and an outside.

One of the main goals of topology is the classification problem: when can one continuously
deform one space to another or, slightly more generally, when can one continuously deform one
space to another through a family of deformations? For example, a doughnut can be continu-
ously deformed into to a coffee cup but it is not possible to continuously deform a sphere to a
point without puncturing the sphere first. A central idea is to first find topological invariants
of a space, namely properties of the space which do not change under continuous deformations.
If two spaces have different values for the same invariant then it is not possible to continuously
deform one into the other. Algebraic topology uses tools from algebra to help produce algebraic

invariants to distinguish spaces.

A manifold is a topological space which looks flat around each point but may have a more
complicated global structure. A hollow doughnut and the sphere are both 2-dimensional man-
ifolds (imagine what a tiny ant sees if it walks on them). There are natural operations one
can perform on two manifolds to produce a third manifold, such as taking a product or glueing

them over a particular piece.

glue lglue

Figure 1: The sphere can be obtained by glueing two discs over their boundary circle and the doughnut
can be obtained from a cylinder by gluing its two boundary circles.



Manifolds have a very rich set of invariants in algebraic topology and the invariants often
have intricate structures. Geometric surgery theory is a collection of tools developed to answer
the question of whether a topological space can be deformed into a manifold. Algebraic surgery
theory is an algebraic model for geometric surgery theory in which manifolds and the various
operations one can perform on them have precise algebraic analogues. The first part of this
thesis examines how some of the basic tools of algebraic surgery theory can be extended to give
an algebraic analogue of a geometric result which reconstructs a 4-dimensional manifold from
simple pieces. The second part of this thesis gives an algebraic model for a geometric operation
called a half-surgery and gives an algebraic analogue of a geometric result which decomposes a

manifold with boundary into the traces of half-surgeries.

The third part of this thesis is concerned with knot theory. A braid is a collection of pieces
of string travelling from left to right with the end points of each piece of string fixed on two
vertical walls. The strings are allowed to intertwine but can never meet or reverse their direction
of travel. Two braids can be concatenated by joining the right hand endpoints of the first braid
to the left hand endpoints of the second braid. Every braid can be written as concatenation of

elementary braids where each elementary braid has a single crossing.

Figure 2: A 4-strand braid with 10 crossings.

The closure of a braid is an object in knot theory called a link and is formed by joining the

end points of the braid as shown below.
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Figure 3: The closure of a braid.

A Seifert surface of a braid is a surface which has boundary equal to the closure of the

braid. One can produce Seifert surfaces using Seifert’s algorithm.



) |
=

—

Figure 4: A Seifert surface constructed by Seifert’s algorithm.

The Seifert form of a braid is an algebraic object which encodes geometric linking informa-
tion about its Seifert surface. It is natural to ask how the Seifert form of a braid changes under

the concatenation of braids.

To each braid we associate an algebraic object called a chain level Seifert form. We show
that the chain level Seifert form of a braid determines its Seifert form and we then construct
an algebraic glueing operation for chain level Seifert forms which models the geometric glueing
of braids. This allows us to understand how the Seifert form of an arbitrary braid can be

constructed from the chain level Seifert forms of elementary braids.

The common theme running through each of the three parts is an algebraic decomposi-
tion of a complicated algebraic object into simple pieces which models the decomposition of a

complicated geometric object into simple pieces.
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Introduction to Part 1

Ranicki’s algebraic theory of surgery [Ran80a],[Ran80b] is an algebraic model for geometric
surgery theory in which manifold objects are modelled by chain complex objects with symmet-

ric structures encoding various chain level dualities and symmetries.

An n-dimensional symmetric Poincaré complex (C,¢) over a ring with involution A is an
algebraic model for a closed manifold. It consists of a finite dimensional chain complex C' of
finitely generated projective A-modules together with a symmetric structure ¢ = {¢s|s > 0}
where ¢g : C"™* - (' is an abstract Poincaré duality and ¢s,1 is a higher chain homotopy
measuring the failure of ¢ to be symmetric. The symmetric construction associates to a
commutative ring R and an oriented n-dimensional manifold M, an n-dimensional symmetric
Poincaré complex (C(M;R),¢pr) such that if [M] e H,(M; R) is the fundamental class of M
determined by the orientation then (¢ar), = [M]n—-:C(M;R)"™* - C(M;R) is the Poincaré

duality chain homotopy equivalence.

symmetric
—
construction

Figure 5: A schematic diagram from the symmetric construction.

The relative version of a symmetric Poincaré complex is a symmetric Poincaré pair (f :
C - D,(d¢,¢)). This is an algebraic model for a manifold with boundary and consists of a
chain map f: C — D of finitely generated projective A-module chain complexes together with
a relative symmetric structure (06, ¢) such that (§¢g foo) : €(f)"*1* — D is an abstract
Poincaré-Lefschetz duality.

(D, d9)

Figure 6: A schematic diagram for a symmetric pair.

The relative symmetric construction associates to a commutative ring R and an oriented (n+

11
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1)-dimensional manifold with boundary (¥, M), an (n+1)-dimensional symmetric Poincaré pair
(C(M;R) - C(%;R), (¢s,0n)) such that if [3] € H,41(2, M; R) is the relative fundamental
class then ((¢x)o,i(Prr)o) = [2]n—: C(Z,M; R)"1™* - C(Z;R) is the Poincaré-Lefschetz

duality chain homotopy equivalence.

symmetrlc
constructlon

Figure 7: A schematic diagram for the relative symmetric construction.

A symmetric cobordism between two n-dimensional symmetric complexes (C, ¢) and (C’, ¢")
is a symmetric pair of the form ((f f'):C® C' — D, (0¢,p ® —¢')) and is an algebraic model
for a manifold cobordism. For a commutative ring R, the relative symmetric construction may
be applied to an (n + 1)-dimensional manifold cobordism (W;M,M') to obtain an (n + 1)-
dimensional symmetric cobordism (C(M;R) @ C(M';R) - C(W;R),(¢w,dnm & —Par)).

<M> W <M> <9 )-éw) <9

Figure 8: A schematic diagram for the relative symmetric construction applied to a manifold cobordism.

The standard operations which one can perform on manifolds, such as taking products and
glueing adjoining cobordisms, also have algebraic models such that the symmetric construction

commutes with these operations up to homotopy equivalence.

symmetric
M W M/ W/ M” construction (C(M)a d)M) (C(W Un W/)" ¢WUM’W/) (C(]\/f[”), OM ”)
4

(C(M), dag) | (CW) Ucarry C(W'), dw U, dw) [(C(M"), parr)

Figure 9: The effect of applying the symmetric construction to a union of adjoining manifold cobor-
disms.

A quiver Q = (Qo, Q1;8,t: Q1 — Qo) is a directed graph where each arrow « € Q; has a
source vertex s(a) € Qo and a target vertex t(a) € Qo. A representation of a quiver typically as-

sociates to each vertex v € Qg a vector space and two each arrow « € Q1 a linear map. We will
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work with n-dimensional oriented manifold (respectively n-dimensional symmetric Poincaré)
representations where to each vertex we associate an n-dimensional oriented manifold M, (re-
spectively an n-dimensional symmetric Poincaré complex (C,,¢,)) and to each arrow a we
associate an (n +1)-dimensional oriented manifold cobordism (Wa; My(a), My(a)) (respectively
an (n + 1)-dimensional symmetric cobordism (Cy(a) ® C(a) = Da, (Pas Ds(a) ® ~¢i(a))). The
manifold and symmetric Poincaré trinities of [BNR12a] are a special case of manifold and

symmetric Poincaré quiver representations.

M,y

|41

W M, W5

M, M; (Ca, ¢2) (Cs, ¢3)
Figure 10: Representations of the trinity quiver.

We generalise the manifold and symmetric Poincaré trinity thickening operations of [BNR12a]

Ml x I
M,
W1 x I
14}
thickening /_\
Wa, iy N\ Ws My x D?
My M;
My x 1 M3 x 1

Figure 11: The manifold thickening operation

to thickening operations for oriented manifold and symmetric Poincaré representations of
arbitrary quivers where we allow the thickening to be twisted by a self-homotopy equivalence

of the data associated to the target vertex of each arrow. This yields:

Theorem 3.5.9. The symmetric construction commutes with the twisted thickening op-

erations up to homotopy equivalence of the resulting symmetric pair, yielding a homotopy
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commutative diagram

twisted geometric

Waq; Mg, M y (Q,00

(Wa: Mo, Mg) thickening ( )
symmetric symmetric
construction construction

(C(9%; R) — C(; R), (¢, do))

2l

(0D - D,(¢p,%op))

(C(Mg; R)® C(My; R) » C(Wq; R),  twisted algebraic
(¢WQ s OMo @ —¢Mé2 ) thickening

A Morse 2-function is a smooth map F : M™ — %2 from a manifold to a surface which can be
written locally as a generic homotopy of Morse functions F(z) = (¢, fi(x)). Each f; : R"! - R
is a Morse function except at finitely many values of ¢ where either two critical values cross or
there is a birth-death singularity. Gay and Kirby [KG12] showed that if the fold curves of a
Morse 2-function F : M* — %2 bound simply-connected regions and the fibres are connected,
then the Morse 2-function determines a manifold representation of a quiver. One can then
reconstruct M? up to diffeomorphism by thickening with a twist this representation and then
glueing in disc neighbourhoods of cusps and crossings. We give an algebraic analogue of their
result to show how, under the same hypotheses, a Morse 2-function F : M* — £2 can be used to
reconstruct the symmetric Poincaré complex (C(M; R),¢nr) of M by thickening with a twist
a symmetric Poincaré representation of a quiver and then glueing in the symmetric Poincaré
pairs obtained by applying the symmetric construction to disk neighbourhoods of cusps and

crossings. This also allows one to recover the signature of M. This yields:

Theorem 5.2.2. Let R be a commutative ring with identity. The symmetric Poincaré
complex (C(M; R), $pr) may be reconstructed up to homotopy equivalence by thickening with
a twist a symmetric Poincaré representation induced from the 3-dimensional oriented manifold
representation (Wq; Mg, M() of Q .

Theorem 5.2.3. In the case R = Z the signature of M may be recovered from the 3-
dimensional oriented manifold representation (Wq; Mg, Mé) of @ and the twisted glueing data.

Part I is organised as follows.

In chapter 1 we recall from [Ran80a] the e-symmetric complex, pair and cobordism objects
which appear in the the L-theory of a ring with involution. We examine the symmetric construc-
tion and the glueing operation for adjoining e-symmetric cobordisms to show that symmetric
Poincaré complexes, pairs and cobordisms are algebraic models for closed manifolds, manifolds

with boundary and cobordisms.

In chapter 2 we recall from [Ran81] the e-symmetric triad objects and the triad definition
of a homotopy equivalence of symmetric pairs which appear in the the L-theory of a ring with
involution. We then examine a twisted glueing operation for e-symmetric triads and show this

is a model for the twisted glueing of manifolds with boundary and manifold triads.
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In chapter 3 we extend the symmetric construction to a symmetric construction for an ori-
ented manifold representation of a quiver where the vertices parametrise manifolds and the
arrows parametrise cobordisms. This produces a symmetric Poincaré representation of a quiver
where the vertices parametrise symmetric Poincaré complexes and the arrows parametrise sym-
metric Poincaré cobordisms. We also extend the definition of a symmetric pair to a symmetric
pair with an ¢-fold boundary splitting and show that this is an algebraic model for a manifold
with boundary where the boundary can be written as a cyclic union of adjoining cobordisms.
We then define algebraic thickening operations which are algebraic models for taking the prod-
uct of a cobordism with an interval and for taking the product of a closed manifold with a disc
D? where the boundary S* = 9D? is split into ¢ pieces. We use the quiver symmetric construc-
tion together with the thickening operations to generalise the manifold and symmetric Poincaré
trinity thickening operations of [BNR12a, p.44-46] to thickening operations for manifold and
symmetric Poincaré representations of a quiver where parts of the data can be twisted by a
self-homotopy equivalence. We then show that the twisted thickening operations commute with

the symmetric construction up to homotopy equivalence.

In chapter 4 we examine Gay and Kirby’s definitions of Morse 2-functions [KG13a] and of
trisections of 4-manifolds [KG13b] as natural generalisations of Morse functions and Heegaard
splittings of 3-manifolds. We use trisections to produce some examples of fold loci of Morse

2-functions.

In chapter 5 we give an algebraic analogue of the result of Gay and Kirby [KG12] to show how
a Morse 2-function F': M* — S? which has connected fibres and whose fold lines bound simply

connected regions can be used to reconstruct the symmetric Poincaré complex (C(M; R), dar)
of M.



Chapter 1

The L-theory of a ring with
involution: symmetric complexes

and pairs

In this chapter we recall from [Ran80a] the symmetric complex, pair and cobordism objects
which appear in the the L-theory of a ring with involution. We examine the symmetric con-
struction and the glueing operation for adjoining symmetric cobordisms to show that symmetric
Poincaré complexes, pairs and cobordisms are algebraic models for closed manifolds, manifolds

with boundary and manifold cobordisms.

1.1 Symmetric complexes

Definition 1.1.1. A ring with involution is a ring A with identity 1 together with a function
A - A;a~ @ such that

atb=a+b, ab=b-a, 1=1, a=a (a,b€ A).

Example 1.1.2.
(i) Complex conjugation is an involution on C.
(ii) The identity map of a commutative ring with identity is an involution.

From now on in Part I of this thesis let A denote a ring with involution and let all A-
modules be left A-modules unless stated otherwise. Modules over a ring with involution have

the following duals, transposes and tensor products.
Definition 1.1.3.

(i) The dual of an A-module M is the right A-module M* = Hom (M, A) equipped with the
scalar action
AxM* —» M*;(a, f) = (z - f(z)-a).

16



CHAPTER 1. THE L-THEORY OF A RING WITH INVOLUTION 17

(ii) The dual of an A-module morphism f: M — N is the A-module morphism
[N > Mg e (20 g(f(2))).
(iii) The tensor product of a right A-module M and a left A-module N is the Z-module

Moy N=M@e; N/[{ra®y-z®ay:xecM,ye N,ac A}.

(iv) The transpose of an A-module M is the right A-module M* such that M* = M as an abelian

group and M? is equipped with the scalar action
M'x A— M" (z,a) — ax
such that if IV is an A-module then

M'®@s N=M'e®; N/{ar®y-r®ay:xecM,ye N,aecA}.

(v) For A-modules M, N the slant map is the morphism
\: M'®4 N > Homa(M*,N);z@y~ (f~ f(x)-y)

and is an isomorphism if M, N are finitely generated (f.g.) projective A-modules.

The tensor product and slant map have the following extensions to chain complexes over a

ring with involution.
Definition 1.1.4. Let C, D be A-module chain complexes.

(i) The tensor product C* ® o D is the Z-module chain complex defined by
(C'®A D)y = ®peq=rC) ®4 Dy
with differential
deig,p i (C'® D), — (C'®4 D)py;z@y = @dp(y) +(-)de(x) @y (zeClyeD,).
(ii) The Hom chain complex Hom 4 (C, D) is the Z-module chain complex by
Homy (C, D), = ®4-p-rHomu (Cp, Dy)
with differential
dHom , (c,py : Homa(C, D), > Homa(C, D)1 f = dpf + (=)' fdc  (f € Homp(Cyp, Dy)).
(iii) The slant map is the chain map

\:C'®4 D - Homa(C*,D);z @y (f~ f(z)y)
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and is an isomorphism if C is finite-dimensional. Here C™* is the A-module chain complex
defined by
C."=(C..)",do-+ = dg.

We now turn to chain complexes over a ring with involution. As we will later be working
with chain complexes of manifolds which are homotopy equivalent to finite CW-complexes, it
is useful to have a definition of the dimension of a chain complex which is only defined up to

chain homotopy.

Definition 1.1.5. An A-module chain complex is n-dimensional (n € Zsg) if it is a chain
complex of f.g. projective A-modules which is chain homotopy equivalent to a f.g. projective

A-module chain complex of the form

C—>0—>Cnd—c>cn_1d—c>d—c>cld—0>00—>0

An A-module chain complex is finite-dimensional if it is n-dimensional for some n € Zs.

The symmetric Q-groups of a finite-dimensional chain complex are defined in terms of the
following W% functor. The geometric motivation for this functor will become apparent in the

proof of Theorem 1.1.11 where we discuss the symmetric construction.
Definition 1.1.6. ([Ran80a, Proposition 1.1]). Let W be the standard free Z[Zs] resolution
of Z

1+T

W > Wa = Z[Zs] — W = Z[Zs] —> Wi = Z[Zs] — Wy = Z[Z5]
and let C, D be finite-dimensional A-module chain complexes and let € = +1.
(i) There is a Zy action of T on C* ® 4 C defined by

T (z®y)=(-)y®cr (veClyecCy)

such that C* ® 4 C is a finite-dimensional Z[Zs]-module chain complex.

(ii) The Z-module chain complex W*C' = Homgz,1(W, C' ®4 () is such that under the slant
isomorphism \ : C* ® 4 C = Homy(C™*,C) a chain ¢ € (W”C), can be identified with a
collection of morphisms

¢={s:C" " 5> CplreZ,s>0}

and the boundary dyy%c¢ € (W?%C),,-1 may be identified with a collection of morphisms
dyicd = {(dg)s: C" 17 > Colr € Z,5 2 0}
which satisfy
(d)s = deds + (=) dsdi + (=) (pso1 + (=) Tetpso1) : C" V7 5 O (reZ,s>0,¢-1=0).
(iii) An A-module chain map f: C — D induces a Z[Zy]-module chain map

f®Af:Ct®AC—>Dt®AD
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and hence induces a Z-module chain map
[ WRC > WD ¢ ={dils >0} > fFd={fof]s >0}
such that a chain homotopy k: f ~ g: C — D induces a chain homotopy
K% f% s g% WEC - WD,
One can think of the chain complex W% = Homgz,1(W, C'®4 C) as the "homotopy fixed
points’ of the involution T.

Definition 1.1.7. Let C, D be finite-dimensional A-module chain complexes and let € = +1.

(i) The e-symmetric Q-groups of C are the Z-module homology groups

Q"(Cre) = Ho(WH(C)) (neZ).

(ii) The morphism of e-symmetric Q-groups induced by a chain map f: C — D is the morphism
f7%:Q™(C,e) = Hy(W”C) - Q"(D,¢) = H,(W”D)

such that if f is a chain homotopy equivalence then f” is an isomorphism.
Definition 1.1.8. ([Ran80a, p.102-3]). Let € = +1.

(i) An n-dimensional e-symmetric complex (C,¢) over A consists of an n-dimensional A-module
chain complex C together with an element ¢ € Q" (C,¢€). In the case € = 1 we write Q"(C,1) =

Q™ (C) and we call a 1-symmetric complex a symmetric complez.

(ii) An n-dimensional e-symmetric complex (C,¢) over A is Poincaré if the chain map ¢ :

C™"™* - (' is a chain homotopy equivalence.

(iii) A morphism f : (C,¢) — (C',¢") of n-dimensional e-symmetric complexes over A is an
A-module chain map f : C — C’ such that f%(¢) = ¢' € Q"(C",€). A morphism f : (C,¢$) —

(C',¢") is a homotopy equivalence if f: C — C' is a chain homotopy equivalence.

Symmetric (Poincaré) complexes of dimension 0 are precisely (non-singular) symmetric

forms.

Example 1.1.9. Let M be a f.g. projective A-module. A 0-dimensional e-symmetric structure
¢ € Q°(M, ) is the same as a morphism ¢q : M — M* which satisfies the e-symmetry condition
o = €pg : M — M*. Tt follows that (M, ) is Poincaré if and only if ¢g = e : M — M* is an
isomorphism, that is to say the e-symmetric form (M, ¢g) is non-singular. If M’ is another f.g
projective A-module then a map of 0-dimensional e-symmetric complexes f : (M, ¢) — (M', ¢")
is the same as an A-module morphism f : M — M’ which satisfies ¢g = f*¢(f : M - M'. In this
case f: (M, ¢) - (M’',¢") is a homotopy equivalence if and only if f: M — M’ is an A-module

isomorphism.

For (finite-dimensional) A-module chain complexes C,C" we have the identity

(CalCN)'os(CalC)=(C"0,C)0(C"0sC ) (C'esC) e (C"M e, C)



CHAPTER 1. THE L-THEORY OF A RING WITH INVOLUTION 20

and hence the symmetric @ groups fail to be additive under the direct sum of chain complexes.
By examining the Zy action we see that W”*(C @ C") = W*C @ W”(C' ® (C ®4 C') and hence
Q" (CeCe)=Q"(C,e)®Q"(C',¢)® H,(C'®4 C"). This inclusion of Q-groups determines a

direct sum operation.
Definition 1.1.10.

(i) The direct sum of n-dimensional e-symmetric (Poincaré) complexes (C, ¢ € Q" (C,¢€)), (C', ¢’ €

Q"(C",€)) over A is the n-dimensional e-symmetric (Poincaré) complex over A
(C,0eQ™(C,e)) @ (C",0eQ™(Ce)) =(Cal’,pa¢' cQ"(Cal )
determined by the inclusion

Q"(C,e)®Q"(C"e) > Q"(C o).

(ii) The zero n-dimensional e-symmetric Poincaré complex over A is (0,0 € @™(0,¢)).

(iii) The negative of an n-dimensional e-symmetric (Poincaré) complex (C, ¢ € Q™(C,€)) over A

is the n-dimensional e-symmetric (Poincaré) complex over A
_(Ca ¢ € Qn(c, 6)) = (07 _(725 € Qn(C7 6))

The most important symmetric complexes are those which arise from geometry. For a
topological space X and a commutative ring R, the diagonal map A : X —» X x X and the
Eilenberg-Zilber chain homotopy equivalence C(X x X;R) =~ C(X;R)! ®z C(X; R) may be
used to produce an n-dimensional symmetric structure on the chain complex C(X; R) from a
homology class [X] € H,(X;R).

Theorem 1.1.11. ([Ran80b, Proposition 1.2]). Let R be a commutative ring with identity
and let X be a topological space whose singular chain complex C'(X; R) is of finite dimension

(e.g. X is any space homotopy equivalent to a finite CW-complex).
(i) The symmetric construction is a chain map
ox :C(X;R) » WAC(X;R), [X]eC(X;R), = ox([X]) e (WAC(X;R)),

which associates to each chain in C'(X;R) a natural chain homotopy class of R-module mor-

phisms.

(ii) The induced homomorphisms in homology
ox  Ho (X3 R) > Q" (C(X; R)).

are such that a homology class [X] € H,(X; R) determines an n-dimensional symmetric com-
plex (C(X;R),¢x([X]) € Q" (C(X;R)) over R with the 0-dimensional part of the symmetric
structure ¢ x ([X]) given by the cap product with [X]

¢x([XDo=[X]n-:C(X;R)"™ - C(X;R).
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(iii) The symmetric construction is natural in the sense that a map of spaces f: X - Y induces

a commutative square of chain maps

C(X;R) —2% W*C(X;R)

fl lf%

C(Y;R) —— W”*C(Y;R)
Y
giving a commutative square

H.(X;R) 2% Q*(X;R)

f*l lf%

H(Y;R) —— Q"(Y;R)
such that for a homology class [X] € H,(X; R)
(COV; R); [ (6x ([XD))) = (C(V5 B), oy (£([XD))).

Proof. We sketch the definition of ¢x in the case R = Z. Recall that by the Eilenberg-Zilber

theorem there is a natural chain choice of chain homotopy equivalence
0:C(XxX;7Z)~C(X;Z) ©7 C(X;7Z)

such that 6 is unique up to natural chain homotopy equivalence, see [Bre97, p.316]. If A: X —

X x X is the diagonal map then there is a natural morphism
No:C(X:Z) 2 (X x X;2) & C(X:72) ®1 C(X: 7).
The composition with the slant map
C(X;2) 2 C(X;2) @7 C(X;Z) - Homg (C(X;2) ™, C(X3 7))
sends a cycle x € C\,(X;Z) to the chain map
o0 =\Ao(x)=2n-:C""(X;Z) - C(X;2).

Since the map T, : C(X;Z) ®z C(X;Z) - C(X;Z) ®z C(X;Z) is an involution it follows that
the composition 7.6 : C(X x X;Z) - C(X;Z) ®7 C(X;Z) is also a chain homotopy equivalence

and hence there is a natural chain homotopy 8 ~ T.0. This determines a degree 1 chain map
Ay : C(X3Z)x > (C(X32) ®2 C(X3Z) ) 541

providing a chain homotopy A : Ag ~ T. Ao which measures the failure of Ay to be symmetric.
If x € C,,(X;Z) is a cycle then the map

b1 =\AL(z): C"H(X;2) - C(X;7Z)
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is a chain homotopy between ¢g and T.¢g so that
de(xzyd1 + (=1)"¢1dex.z) + (-1)"(do = Tegpo) = 0: C(X;2)" - C(X;Z).

This process may be iterated to obtain a sequence A; : C(X;Z), » C(X;2)' ® C(X;Z)44; of
degree i chain maps which satisfy the relation

A1 + (=)' Aprd = T.A; + (=)D, (i20)

and we can think of A;;1 as a measure of the failure of A; to be symmetric. This sequence may

be expressed as a natural degree 0 chain map
Ax:WeC(X;Z)-C(X;Z)9 C(X;Z)
which has adjoint
Ax : O(X;Z) — Homyz, (W.C(X: Z) @ O(X;2)) = W(C(X;:2))
such that the image of a cycle x € C,(X;Z) is an n-dimensional symmetric structure with

0-dimensional component equal to z N —. O

The maps A; : C(X;R). - C(X;R)! ® C(X; R).,; encode higher level information about
the intersection properties of X. The cup product of two cocycles € CP(X;R),y € CP(X; R)
may be expressed as z Uy = Aj(z ® y) and the chain homotopy Ay : Ay ~ TA( expresses the
failure of the cup product to commute on the cochain level. In the case R = Zy the ith Steenrod

square may be expressed as
Sq': H"(X;Zy) - H"(X;Zy); z+- Al (z®).

See [Bre97, chapter 4.16] for more details.

Example 1.1.12. Let R be a commutative ring with identity and let M be a closed, oriented n-
dimensional manifold with fundamental class [M] € H,,(M; R) determined by the orientation.
Applying the symmetric construction to (M,[M] € H,(M;R)) produces an n-dimensional
symmetric complex (C(M;R),¢p([M)]) over R. The chain map of free R-module chain
complexes

(pm[M])o = [M]n-:C(M;R)"" -~ C(M;R)
is a chain homotopy equivalence since it induces the Poincaré duality isomorphisms
[M]n-:H"*(M;R) - H(M;R)

and hence (C(M; R), ¢ ([M])) is Poincaré . Applying the symmetric construction to (M, —-[M] €

H,(M;R)) produces the n-dimensional symmetric Poincaré complex

(C(M; R), ¢r (=[M])) = (C(M), =pp([M])) = =(C(M), ¢ ([M])).

From now on we denote ¢ ([M]) by ¢ar and we think of symmetric (Poincaré) complexes as

algebraic models of closed (orientable) manifolds.
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In Section 2.2 we will apply a relative version of the symmetric construction to a manifold
cobordism to produce a symmetric cobordism. It is first necessary to understand the symmetric

construction for a disjoint union.

Proposition 1.1.13. ([BNR12a, Proposition 4.4.3]). Let R be a commutative ring with iden-
tity and let X,Y be topological spaces whose singular chain complexes C(X; R),C(Y; R) are
of finite dimension (e.g. X,Y are any spaces homotopy equivalent to finite CW-complexes).

The symmetric construction on X 1Y
dxuy  Ho(XUY;R) > Q"(C(XuY); R)

is given by the composition

Px DPy
-

H.(XuY;R)=H.(X;R)eH.(Y;R) Q" (C(X;R))eQ™(C(Y; R)) = Q" (C(X; R)eC(Y; R)).

The behaviour of the symmetric construction on the boundary of a manifold cobordism is

as follows.

Example 1.1.14. Let R be a commutative ring with identity and let M and M’ be disjoint
closed, oriented n-dimensional manifolds with fundamental classes [M] € H,,(M; R) and [M'] €
H,(M';R). The disjoint union M u M’ is a closed, oriented n-dimensional manifold with
fundamental class ([M],[M']) € H,(M u M';R) = H,(M;R) @ H,(M'; R). The symmetric
construction applied to (M, [M]),(M’',[M']) and (M u M’ ([M],[M'])) produces three n-

dimensional symmetric Poincaré complexes over R

(C(M;R),¢n € Q"(C(M;R)))
(C(M';R), o € Q"(C(M'; R)))
(C(MuM';R), paprumr € Q" (C(M uM'; R)))

which satisfy

(C(MuM';R), ¢ru-mr € Q" (C(Mu-M';R)))
~(C(M; R) ® C(M'; R), rronr € Q"(C(M; R) & C(M'; R)))
=(C(M;R)® C(M';R),pn ® —dnr € Q"(C(M; R)) ® Q"(C(M'; R))
=(C(M;R),¢um € Q"(C(M;R))) ® (C(M';R), ¢ € Q"(C(M'; R)))
=(C(M;R), ¢ € Q"(C(M;R))) ® ~(C(M'; R), oar € Q"(C(M'; R))).

1.2 Symmetric pairs

Symmetric pairs are relative versions of symmetric complexes and are algebraic models of

manifolds with boundary.

Definition 1.2.1. The algebraic mapping cone of an A-module chain map f: C' — D is the
A-module chain complex €(f) defined by

_\n-1
d‘f(f):( dg) ( )0 f ):Cg(f)n:DneBCn1_)%(,][)711:Dn1®cn2 (’I’LEZ)
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with homology groups
Ho(f) = Ho(€(f)) (nelZ).

Example 1.2.2. Let R be a commutative ring and let f: X — Y be a cellular map of CW-
complexes with geometric mapping cone €9°°(f). Cohen [Coh73, §3.9] showed that there is a
chain homotopy equivalence C(€9°°(f);R) ~ €(f : C(X;R) - C(Y;R)) so we can think of

algebraic mapping cones as a model for geometric mappings cones.

Definition 1.2.3. The relative e-symmetric Q-groups of a chain map f : C - D of finite-

dimensional A-module complexes are the relative Z-module homology groups
Q"(f.) = Hu(¢(f*: W"C > W"D)) (nel).

The following long exact sequence of Q-groups is not needed for Part I of the thesis but will
be used in Part II of the thesis.

Proposition 1.2.4. The relative e-symmetric Q-groups of a chain map f : C - D of finite-

dimensional A-module complexes fit into a long exact sequence of e-symmetric Q-groups
f% f%
L= QUHCe) == QU (D, e) » QM (f,€) » QM(CLe) == QM(D,e) > ...
with morphisms

Q"N (D,e) > Q" (f,€); 0 (¢,0)
Q" (f.e) > Q™(Cre);  (58,9) ~ ¢.

Proof. The A-module chain map f : C — D induces a Z-module chain map f% : W*C —
W?%D. The algebraic mapping cone % ( f%) determines a short exact sequence of Z-module

chain complexes

0> (W2D), > € (%) > (W*C)uy > 0

which induces a long exact sequence of homology groups

Lo QUHC ) L QMDD ) - QM (fre) > Q(Cre) Lo QT(De) > ..

Definition 1.2.5.
(i) An (n + 1)-dimensional e-symmetric pair over A

(f:C~D,(6¢,0) Q" (f,¢))

consists of chain map f : C -— D from an n-dimensional A-module chain complex C to an

(n + 1)-dimensional A-module chain complex D together with a cycle
(6¢,0) e C(f7* :W*C > W”D),.1.

In the case € = 1 we write Q"™ (f,1) = Q"™ (f) and we call a 1-symmetric pair a symmetric

pair.
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(D, 60)

Figure 12: A schematic diagram for an e-symmetric pair.

(i) The boundary of an (n + 1)-dimensional e-symmetric pair (f : C — D, (¢, ¢) € Q" (f,¢€))

over A is the n-dimensional e-symmetric complex over A
O(f:C — D, (6¢,9) € Q" (f)) = (C,¢ € Q"(C,e)).

(iii) An (n + 1)-dimensional e-symmetric pair (f : C' - D, (d¢,¢)) over A is Poincaré if the
A-module chain map

( dpo  foo ) :Cg(f)mlqP - D

is a chain homotopy equivalence.

The symmetric construction for a topological space X extends to a relative symmetric
construction which produces a symmetric pair from a map of topological spaces f: X - Y and

a relative homology class [Z] € H,1(f; R) .

Theorem 1.2.6. ([Ran80b, Proposition 6.1]). Let R be a commutative ring with identity
and let X,Y be topological spaces with singular chain complexes C(X; R),C(Y;R) of finite

dimension (e.g. X,Y are any spaces homotopy equivalent to finite CW-complexes).

(i) By the naturality of the symmetric construction a map f: X — Y induces a natural chain

homotopy class of chain maps
¢r:6(f: C(X;R) -~ C(Y;R)) > C(f*: W"C(X; R) > W C(Y; R)).
(ii) The induced morphisms in homology

o5 He(f3R) = Q*(f),  [Z] € Huni(f5R) = 05([Z]) € Q"1 (f)
determine a morphism of long exact sequences

i ——— Hyr (Y;R) —— Hpn(f) —2— H(X;R) ——— H,(Y:R) — ...

[+ [N I8 [+

oo — Q"(C(Y;R)) — QVN(f) — Q"(C(X;R)) — Q"(C(Y;R)) — ...

such that for each homology class [Z] € Hy,+1(f) there is an (n+1)-dimensional symmetric pair

over R

(f:C(X;R) » C(Y3R),¢4([Z]) € Q"' (f))

with the O-dimensional component of ¢([Z]) € Q"*'(f) given by the cap product

01([Z)o=[Z]n-:€(£)"' > C(Y3R).
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(iii) The boundary of the (n + 1)-dimensional symmetric pair over R
(f:C(X;R) > C(Y;R), ¢4([2]) € Q" (f))
is the n-dimensional symmetric complex over R
(C(X3R),ox([X]) € @"(C(X:R)), [X]=0[Z] € Hn(X;R))

obtained by applying the symmetric construction to (X, [X] e H,(X; R)).

Our interest lies in the case where (Y, X) is an oriented manifold with boundary and the

map f: X - Y is the inclusion.

Example 1.2.7. Let R be a commutative ring with identity, let (X, M) be an oriented (n+1)-
dimensional manifold with boundary and let i : M — ¥ denote the inclusion so that H, 1 (i) =
H, 1 (X, M;R). Let [X] € Hyr1 (2, M;R) and [M] € H,(M;R) be the fundamental classes
determined by the orientations of ¥ and M so that [M] = 9[X] € H,(M; R). The symmetric
construction applied to (i : M — X,[X] € Hyy1(X,M; R)) produces an (n + 1)-dimensional
symmetric pair (i : C(M;R) - C(Z;R),¢:([2]) € Q™" (i)) which is Poincaré since the 0-

dimensional component of ¢;([W]) is given by the chain homotopy equivalence
6i([Z])o = [B]n=: C(S, M; R)™ 7 > C(3; R)

which induces the Poincaré-Lefschetz duality isomorphisms
¢i([£])o = [Z]n—: H(E, M; R)"™'™* - H(3; R).

The boundary of the (n+1)-dimensional symmetric Poincaré pair (i : C(M; R) > C(X; R), ¢:([X]) €
Q"*1(4)) is the n-dimensional symmetric Poincaré complex (C(M;R),pr([M])) obtained
by applying the symmetric construction to (M,[M] € H,(M;R)). From now on we write

symmetric
—_—
construction

Figure 13: A schematic diagram for the passage from a manifold with boundary to a symmetric Poincaré
pair.

6:([2]) = (¢s, dar) € Q*1(i) and we think of symmetric (Poincaré) pairs as algebraic models
of (orientable) manifolds with boundary.

1.3 Symmetric cobordisms and unions

Symmetric cobordisms are algebraic models of manifold cobordisms with a glueing operation

which models the glueing of manifold cobordisms.
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Definition 1.3.1. The union of A-module chain complexes D, D’ along A-module chain maps
f:C—>D,f":C— D'"is the A-module chain complex

DUcD':CK(( ]{, ):C’—)DGBD')

with differential

dp (5)"7'f 0
dpuep =] 0 dc 0
0 (U d
: (D Uc D,)T =D,oC,1® D; — (D Uc D,)r—l =D, 1®C, o0 D;—l (7“ € Z)

Example 1.3.2. Let R be a commutative ring with identity and let X be a topological space
with subsets X7, Xo ¢ X whose interiors cover X. Let C'(X; + X2; R) denote the subcomplex of
C(X; R) consisting of sums of singular chains in X; and singular chains in Xs. Let i1 : X1n X5 —
X1 and i : X1 n Xo > X5 be the geometric inclusion maps and j; : C(X1; R) - C(X1 + Xo; R)
and jp : C(Xg; R) » C(X; + X2; R) be the algebraic inclusion maps. There is a short exact

sequence of R-module chain complexes

() (j1 -32)

0—>C(X1 I"]XQ;R) C(Xl;R)@C(XQ;R)

C(X;+X9;R) >0
with chain homotopy equivalences
C(X;R) =~ C(X1 + Xo; R) ~ C(X1; R) Uo(x,nxs:r) C(X2; R).
This shows that up to chain homotopy equivalence the algebraic union of chain complexes is

an algebraic model for a geometric union of spaces.

A symmetric cobordism is a symmetric pair where the boundary is split into two disjoint
pieces, just as for manifolds. The above glueing construction may be used to glue adjoining

symmetric cobordisms along the common component of their boundaries.
Definition 1.3.3. ([Ran80a, p.135]).

(i) An e-symmetric cobordism between two n-dimensional e-symmetric Poincaré complexes (C, ¢), (C’, ¢")

over A is an (n + 1)-dimensional e-symmetric Poincaré pair over A of the form

((f [):CeC" > D,(6¢,0@~¢") Q" ((f [),e)).

(C,9) (D,69)  \(C",¢))

Figure 14: A schematic diagram for an e-symmetric cobordism.
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(ii) The union of adjoining (n + 1)-dimensional e-symmetric cobordisms over A

c=((fc for):CoC' > D, (6¢,00-¢") e Q" ((fo for).e€))
= ((ftr fen):C'OC" > D' (64 ,¢' ®—¢") € Q" (f&r fén)€)

is the (n + 1)-dimensional e-symmetric cobordism over A
CUC,:((fg f”//):CGBC”_)D”,((SQSH,(b@_QS”)EQ”+1((fgv f”//),e))

with D" the A-module chain complex

D" =Dux D' =% f,C' :C'>DeD'
Ior
with differential
dp (=) 'fer 0
dpr=| 0 de 0
0 (=)L dp
:D'=D,eC,_®D,—-D, =D, 18C|_,®D,_, (re)

and A-module chain maps

fe

fe=]1 0 |:C.-D/=D,eC]_ @D, (rez)
0
0

| o liemspr-pec oD (reZ)
fé'//

and the §¢" part of the relative symmetric structure (09", ¢ ® —¢") given by

0s 0 0
05 =| (2)"THLSE ()T ) 0
0 (=) fen ¢ 59,

:D/m+1—r+s — Dn+1—r+s ® Om—r+s ® D/n+1—r+s N D;I _ Dr ® Cyl»_1 ® D,,n
(T€Z78 Zovd)l—l :0)

and from now on we denote d¢" = 6 Uy d¢’ so that d¢” is obtained by glueing d¢ and d¢’ over
¢
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(@9 (D, 0¢) @% (D',6¢") @,qﬁ} = @% (DUgr D', 5¢ Uy 6¢) |(C”, 8")

Figure 15: A schematic glueing diagram for adjoining e-symmetric cobordisms.

Example 1.3.4. Let R be a commutative ring with identity and let (W; M, M') be an ori-
ented (n + 1)-dimensional cobordism of closed, oriented n-dimensional manifolds M, M’ with
OW = Mu-M'. Let [W] e Hupy (W, M UM’ R),[M] € Hy(M;R),[M'] € H,(M'; R) be the

fundamental classes determined by the orientation with
ow]=(M],-[M']) e H,(M;R)® H,(M'; R) = H,(M uM'; R).
Example 1.1.14 and Example 1.2.7 imply that applying the symmetric construction to
(i=ipUipg :OW=MuM-—>W,[W]eH, 1 (W,MuM';R))
produces an (n + 1)-dimensional symmetric Poincaré pair over R

(i: C(OW;R) » C(W;R), (dw, dow ) € Q" (i)
=((in inr) : C(M;R)® C(M';R) > C(W;R), (dw, dm & —dnrr) € Q" (ing ingr))

which is a cobordism between the n-dimensional symmetric Poincaré complexes (C'(M; R), ¢ar)
and (C(M'; R), ¢arr).

@) W <M> E @M} (W), éw) @)@

Figure 16: A schematic diagram for the passage from a cobordism of manifolds to a symmetric Poincaré
cobordism.

We will examine the effect of applying the symmetric construction to a union of adjoining
cobordisms (W; M, M")u (W’'; M', M") in Chapter 2 once we have established the notions of

symmetric triads and of homotopy equivalences of symmetric pairs.

The cobordism of symmetric Poincaré complexes is an equivalence relation, just as for

manifolds.

Lemma 1.3.5. Cobordism is an equivalence relation on n-dimensional e-symmetric Poincaré

complexes over A.

Proof. The identity map 1: (C,¢) — (C,®) determines an e-symmetric cobordism

(1 1):CoC~0C,(0,08-9) Q" (f 1))
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so we have reflexivity. An e-symmetric cobordism

((f [):CoC" > D, (8¢, 08-¢") e Q"' (f f'))

between (C,¢) and (C’,¢") determines an e-symmetric cobordism

((f f):C"®C~D,(36,¢'®~¢) Q"' (f f))

between (C’,¢") and (C, ¢) so this verifies symmetry. The glueing construction for adjoining

e-symmetric cobordisms then verifies transitivity. O

Definition 1.3.6. The n-dimensional e-symmetric L-group L™(A,€) (n > 0) of a ring A with
involution is the abelian group of e-symmetric cobordism classes of n-dimensional e-symmetric

Poincaré complexes over A with addition
(C,0eQ(Coe)) +(C, ¢ eQ™(C,e)) = (Cal 009 eQN(CC €)) e L"(A,e)
and zero element (0,0 € Q™(0,¢€)) € L™ (A, ¢) and additive inverses
~(C,¢eQ"(C,e)) = (C,=¢ e Q"(C,e)) e L"(Ae).

In the case € = 1 we write L"(A,1) = L"(A) and we call the 1-symmetric L-groups of A the

symmetric L-groups of A.

The symmetric L-groups of a ring with involution are a chain complex generalisation of the
Witt group of symmetric bilinear forms. Recall from Example 1.1.9 that a symmetric Poincaré
complex of dimension 0 is the same as a non-singular symmetric form. For a ring A with
involution, one can identify [Ran80a, Proposition 5.1] the symmetric L-group L°(A) with the
abelian group of equivalence classes of non-singular symmetric forms (M, A : M ® M — A) over
A. The equivalence relation identifies two non-singular symmetric forms up to stabilisation by

a symmetric hyperbolic form of the form
* O 1 * * *
H(L):(LeaL ,( Lo ):L@L - (LeL")=L GBL)
and the group addition is given by orthogonal direct sum
! 4 ! >\ O
arn+ @) = (arear | ).

The symmetric L-groups of Z are as follows.

Proposition 1.3.7. ([Ran80a, Proposition 7.2]). The symmetric L-groups of Z are given by

Z (signature) if n=0 mod 4
Lz = Zs (de Rham invariant) if n=1 mod 4
|l o if n =3 mod 4

0 if n=3 mod 4
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where the signature map is given by
o(C.¢ € Q™(C)) = o ((H™(C), do : H**(C) > Har(C)).

The symmetric L-groups of a ring with involution are not 4-periodic in general. Aside from
the case R =Z the most general criterion for 4-periodicity is when the element 2 € A is invert-

ible, see [Ran80a, Proposition 3.3] for more details.

The signature map allows one to recover the signature of a manifold from its symmetric

Poincaré complex.

Example 1.3.8. Let M"™ be a closed, oriented manifold of dimension n divisible by 4. If
[M] e H,(M;Z) is the fundamental class of M determined by the orientation then applying the
symmetric construction to (M,[M]) produces an n-dimensional symmetric Poincaré complex
(C(M),dnr). In particular, the O-dimensional component of the symmetric structure is give by
Omo = [M]n—-:C(M;Z)"™ - C(M;Z) and hence (C(M), ¢ppr) maps to the signature of M
under the isomorphism L™(Z) = Z.

1.4 Algebraic surgery

There is an algebraic surgery operation on symmetric Poincaré complexes which is an algebraic
model for a geometric surgery on a manifold. The definition of algebraic surgery is not needed
for Part I of the thesis but will be used in Part II of the thesis.

Definition 1.4.1. ([Ran92, Definition 1.12, Proposition 4.1]).

(i) The effect of an algebraic surgery on an n-dimensional e-symmetric complex (C,¢) over
A with data an (n + 1)-dimensional e-symmetric pair (f : C — D, (d¢,¢)) over A is the n-

dimensional e-symmetric complex (C’,¢’) over A with the chain complex C’ defined by

dc 0 (5)"'gof*
der=1 (=)"fer dp  (=)"0¢o
0 0 (ra
: C:A = Cr ®D, 1@ Dn+l—r — 0;71 = Cr—l oD, ® Dn+2—r (’I" c Z)

and the symmetric structure ¢’ defined by

oo 0 0
do=| ()T (-)"Tbpr (-)" e
0 1 0
0T =C" "o D" "D, »Cl=C,®D, @ DT (reZ)
O 0 0
oo =| ()" fTepsi1 (=) TS¢sr1 O
0 0 0

. Cln—r+s — Cn—'rJrs ® Dn—r+s+1 ® Dr—s+1 N C;, — Cr ® -Dr+1 ® Dn+1—r (7, € sz > 1)
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(ii) The trace of such an algebraic surgery is the (n + 1)-dimensional symmetric pair

(9 ¢):CoC' D' (0,6 ®-¢") Q" (g9 ¢'))

defined by
d _\n+l *
dpe= [ 9¢ NI ) Lo e D L D 0 e D (reZ)
0 (g ' -
D

1 ! n+l-r

9=\, |G- Di=CreD (rez)

’ 1 00 / n-r+1 4 n—-r+1
9=y o L |G C@DmeD T > D =CeD (reZ)

In fact, the cobordism relation on m-dimensional e-symmetric Poincaré complexes is the
equivalence relation generated by surgery and homotopy equivalence, see [Ran80a, Proposition
4.1].

Example 1.4.2. [Ran02b, p.4]. As in [Ran80a, Proposition 7.3] suppose that (W; M, M') is an
oriented (n + 1)-dimensional cobordism arising as the trace of an index i geometric surgery on
a closed n-dimensional manifold M. This surgery removes a framed embedding S% x D¢ — M
with effect

M’ = M = St x D" Ugiygn-icn D71 x 7771

The trace of the surgery is the cobordism (W; M, M") given by
W =M x [0,1] Ugiygn-i-t Dt x D™

where W is obtained by attaching D! x D" to M x [0,1] along the framed embedding
Stx Sl x (1} > M x {1}.

Let R be a commutative ring with identity. As in Example 1.3.4, applying the symmetric
construction to the oriented (n + 1)-dimensional cobordism (W; M, M") produces an (n + 1)-

dimensional symmetric cobordism over R
((iar i) : C(M;R) ® C(M';R) » C(W; R), (¢w, nr ® —darr) € Q" (ins inrr))

between (C'(M;R),éar) and (C(M'; R), darr). Note that the chain map
( o ):C(M;R) > (i)
may be identified with the composition of chain maps
C(M;R) 25 C(W; R) &> C(W, M'; R) = % (iar)
so that the cobordism over R

((ZM iM/) : C(M,R) ® C(M’,R) - C(W,R), (¢W7¢M 52} _¢M’) € Qn+1(iM ZMr))
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induces an (n + 1)-dimensional symmetric pair over R
(wing : C(M; R) > C(W, M R), (pw [drrr, d1))-

This determines an algebraic surgery on (C(M;R), ¢ar) with effect (C’,¢") an n-dimensional
symmetric Poincaré complex which is homotopy equivalent to (C(M'; R), dnr), see [Ran80b,
Proposition 7.3].

There is a dual geometric (n —i — 1)-surgery determined by the obvious embedding D! x

S™==1 «» M’ and the trace of this surgery is an oriented (n + 1)-dimensional cobordism
W' = M’ x[0,1] Upisiggn-in D x D™

satisfying (W'; M/, M) = —=(W; M, M"). This induces a homotopy equivalence W ~ M’ Ugn-i-1

D™ % which induces a homotopy equivalence of pairs
(W, M) = (WM, M) = (D4 877471 57 77070 = (874, 4)
and a hence there is a chain homotopy equivalence
C(W,M';R) ~C(S™",%;R) ~C(S";R) ~ S" 'R = (n - i) - fold suspension of R
with

C.(M;R)®R ifr=n-i-1,i+1

Cl = C(M;R), & C(W, M),11 ® C(W, M) =
r ( ) ( Jre1 ( ) { C.(M;R) otherwise.

This shows that algebraic surgery on a symmetric Poincaré complex provides a model for

geometric surgery on an oriented manifold such that the effect is orientable.

Not every manifold is orientable. For a path-connected topological space X with universal
cover X the fundamental group 7 (X) can be identified with the group of covering automor-
phisms. In particular, there is an action of w1 (X) on the set of singular simplices in X so for
a commutative ring R the singular chain complex of X with R-coefficients can be viewed as
an R[m(X)]-module chain complex. A CW-structure on X can be lifted to a CW-structure
on X in such a way that if X is a finite CW-complex then C(X;R) is a finite-dimensional
R[m(X)]-module chain complex. The symmetric construction can be generalised to produce
a morphism ¢x : H,(X;R) - Q*(C(X;R)) such that if [X] € H,(X;R) is a homology class
then ¢x[X] is an n-dimensional symmetric structure on C(X;R), see [Ran80b, Proposition
2.1]. For a manifold M it is then possible to produce a symmetric Poincaré structure on its
universal cover M, see [Wal99, Theorem 2.1] and it is also true that algebraic surgery is an

algebraic model for any geometric surgery on a manifold, see [Ran80b, Proposition 7.3].

In Part I of this thesis we will only deal with oriented manifolds however. In chapter 5 we
will apply the symmetric construction to oriented cobordisms arising as the trace of a geometric

surgeries determined by a Morse 2-function.



Chapter 2

The L-theory of a ring with

involution: symmetric triads

In this chapter we recall from [Ran81] the e-symmetric triad objects and the triad definition of
a homotopy equivalence of e-symmetric pairs which appear in the the L-theory of a ring with
involution. We then examine a twisted glueing operation for e-symmetric triads and show this

is a model for the twisted glueing of manifolds with boundary and manifold triads.

2.1 Symmetric triads

Symmetric triads are relative versions of symmetric pairs and are algebraic models for manifold

triads.
Definition 2.1.1. ([Ran81, §1.3]).
(i) A triad T over A is a chain homotopy commutative square

f

C —— D
g \1‘15_& h
Cl f( Dl

of A-module chain complexes. A triad is commutative if the above square of A-module chain

maps is commutative, that is if we can choose k = 0.

(ii) The chain complex of a triad I over A is the algebraic mapping cone
C(T) =% ((g,h; k))
of the the A-module chain map of algebraic mapping cones

ho (=) k

0 ) :€(f)r=Dr®Cro > (') =Dy 0Cry

(g,h; k) : (

34
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with Z-module homology groups the triad homology groups
Hy(T) = Ho((9. 1)) (neZ).

Definition 2.1.2. ([Ran81, p.43]). Let € = 1.

(i) The e-symmetric Q-groups of a triad ' of finite-dimensional A-module chain complexes

r=

Q

A

[

Cl

SRl

<

are the relative homology groups
Q"(T,€) = Hu((g,h:k)™) (neZ)
of the Z-module chain map
(9,0 k)G (f7: W"C > W"D) > G (" WhC' > WD)

determined by Z-module triad

%
whe — 1 s w%p
g%l \K‘Kf\i—\—\y lh%
W — W”D’

which is obtained by applying the functor Homgz,1(W, -) to the A-module triad

CesC 2] > D®a D
g@gl (h)Ok+ka (g f) l’@h
C'eal’ Iy > D'@4 D’

(i) An (n+2)-dimensional e-symmetric triad (I',® € Q"*?(T,€)) consists of a triad I over A

ﬁ
Il
Q<

<

{4

Q-

<

together with an e-symmetric structure ® € Q"*?(T',¢), subject to the condition that C' is
an n-dimensional chain complex, C', D are (n + 1)-dimensional chain complexes and D’ is an

(n + 2)-dimensional chain complex.

The following diagram of long exact sequences of the e-symmetric @)-groups of the con-

stituents of a triad is not needed for Part I of the thesis but will be used in Part II of the
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thesis.

Proposition 2.1.3. The e-symmetric @Q-groups of a triad I" over A fit into a commutative

diagram of Z-modules with exact rows and columns

v ~ ~ ~

N QTHQ\(F,G) SN Qn+1(g7e) SN Q”*l(h,E) _ Qn+1(F,€) —_— ...

v ~ ~ ~

f

N QTHl(fyG) N Qn(o,e) —%> Qn(D,E) e Q”(fyf) —_— ...

g% h%
Vv ~

N Qn+1(g,6) N Qn(C,,E) L Q”(D',E) —_— Q"(ga€) —_— ...

~ ~ ~ ~

s QM(T, ) ——— Q"(g,6) —— Q"(h,e) ——— Q"(TI'ye) —— ...

Proof. The triad over Z

0y % 07
w%c —— w%p

. K7
g/ol lh%

W% ol e W% D'
determines a commutative diagram of short exact sequences of chain complexes over Z

0 0 0

~ ~ ~

0 —— W*D"), —— €(f*), ——— (W*C")ey —— 0

~ ~ ~

0 —— €(h"), —— €((g,h;:k)%*)y —— €(g%)ecy —— 0

~ ~ ~

0 —— (W”D)usy ——— C(f")ucs ——— (W?C)uey —— 0

and we then take the long exact sequences associated to the mapping cones. O
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Homotopy equivalences of symmetric pair and cobordisms are defined in terms of triads.
Definition 2.1.4. ([Ran81, p.45]).

(i) A homotopy equivalence of (n + 1)-dimensional e-symmetric pairs over A

L:(f:C~D,(36,0) Q™ (f,€)) = (f: C" > D', (8¢',¢') Q" (f',€))

is a triad over A of the form

C%D
F:gl\_\‘\_\i& h
Cl f, Dl

such that the A-module chain maps g: C — C’',h: D — D’ are chain homotopy equivalences
and the morphism of relative e-symmetric Q-groups respects the relative symmetric structures,
that is

(g, h; k)" (60, 0) = (6¢,¢') € Q" (f',€).

(ii) A homotopy equivalence of (n + 1)-dimensional e-symmetric cobordisms over A

L:((fo fer):Co®C" - D,(d¢,¢c ®—¢cr)) = ((for fom):C"@C" - D', (0¢', pcr ® —pcm))

is a homotopy equivalence of the form

CeC’ ( e Jo ) > D
(0o (v %) |,
0 4
C// @ O//I < D/
(rr 1o )

Example 2.1.5. Let (W; M, M"),(W’; M', M"") be two adjoining oriented (n+ 1)-dimensional
cobordisms of manifolds. Glueing W and W' along M’ produces an oriented (n+1)-dimensional
cobordism (W uppy W' M, M"). If R is a commutative ring with identity then applying the

symmetric construction produces three (n + 1)-dimensional symmetric cobordisms over R

((ing inr) : C(M;R) @ C(M';R) > C(W3R), (dw, dnr & —~darr € Q" (ing inrr)))
((ihy i) : C(M';R) @ C(M";R) > C(W'; R), (dwr, dasr @ —ppar € Q" (ilyyr )
(i i) : C(M;R) @ C(M"; R) » C(W upy W5 R), (dw, das  —parr € Q™ (il ilypn)).

The triad
(j(]\J7 R) ® C(M”7 R) —_— C(W, R) UC(I\/II;R) C(WI, R)

1l Iz

C(M;R)®C(M";R) ——— C(W upy W'; R)

implies that the (n + 1)-dimensional Poincaré cobordism, obtained by glueing the adjoining
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(n + 1)-dimensional Poincaré cobordisms

((ipg ing) : C(M;R) ® C(M';R) > C(W3 R), (dw,dns @ —~darr € Q" (ins inar)))
((ihy i) : C(M';R)® C(M"; R) > C(W'; R), (dwr, b & —dagr € Q" (i i)

over (C(M'; R), ¢nr), is homotopy equivalent to the (n + 1)-dimensional Poincaré cobordism
((i3r i) - C(M; R)®C(M"; R) > C(Wup W' R), (dwo, o wrs o @—darn € Q" (ify ip0)))

so that we may think of ¢wy,,, w’ = dw Ug,,, dw.

symmetric
M |\ W\ M|W| M X (C(M),dpr) | (COV Unr W), dwu,,w) ((C(M"), par)
construction
|

(C(M), ¢ar) | (CW) Ucarry CW'), pw U, dw) [(C(M"), paar)

Figure 17: A schematic diagram of the homotopy equivalence.

This shows that the union of adjoining symmetric cobordisms is, up to homotopy equiva-

lence, an algebraic model for the union of adjoining manifold cobordisms.

In chapter 3 we will work with symmetric pairs arising from a manifold with boundary
(B, M™) where ¥"*! is contractible or deformation retracts onto a space of dimension at
most n. The following lemma shows that ¥"*! makes no contribution to the relative part of

the symmetric structure.

Lemma 2.1.6. Let (f:C - D, (d¢,¢)) be an (n+1)-dimensional e-symmetric (Poincaré) pair
over A. Suppose that D’ is an A-module chain complex of dimension m such that 2m <n+1
and there is a homotopy equivalence h : D — D’. Then there is a homotopy equivalence of

(n + 1)-dimensional e-symmetric (Poincaré) pairs over A
(f:C > D,(6¢,9)) = (hf:C — D", (0,9))
Proof. If f'=hf:C — D’ then there is a commutative triad over A

I

ﬁ
I
<& Q

Q-0

Q

—
f

and applying the W% functor produces a commutative triad
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%
whc L w*%p

| e

w”%c i w”%D’

Since D' is of dimension 2m < n+1 it follows that the algebraic mapping cone of f% degenerates

to dimensions n,n+1,n+ 2 to

deyyer% deo 1%
C(f ") nee — Dy G (P ——LD 2 (F%),,
H H H
0 - s WR(C)n — W%(C) s

and hence
Q" (f',€) = Hyar (6(f'7)) = ker(dyysc : (W C)p = (WHC)n1) = Q"(Ce)

so that any element (¢, ¢") € Q™ (f’, €) is necessarily of the form (0, ¢") for some n-dimensional
e-symmetric structure ¢’ € Q"(C,€). It is clear then that (1,4;0)% (8¢, ¢) = (0,0) € Q" (f, €)
so that the triad I' defines a homotopy equivalence

I':(f:C~D,(6¢,¢)) = (hf:C D', (0,9)).

Example 2.1.7.

(i) Think of (D', S") as a CW-pair such that S° consists of two O-cells and D' consists of one
1-cell in addition to the O-cells of S°. The constant map h: D! — {} is a cellular homotopy

equivalence determining a commutative diagram of CW-complexes and cellular maps

SO c v Dl

q it

0
_—
S ——
such that if R =7 there is a commutative diagram of chain maps of cellular chain complexes

C(S%2) —— (D7)
1l :lh
Applying the symmetric construction to (D', S%) = ([0,1],{0} u {1}) with the orientation
+ —
0 1

A

produces a 2-dimensional symmetric Poincaré pair over Z
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(i:C(8%2) » C(DYZ), (¢p1, ds0))

which is homotopy equivalent to the 2-dimensional symmetric Poincaré pair over Z

(11):ZeZ—>Z(0,10-1)).

(i) Think of (D?,S') as a CW-pair such that S' has one 0-cell * and one 1-cell and D? has
one 2-cell in addition to cells of S'. The constant map h: D* — {*} from D? to the O-cell is
a cellular map defining a homotopy equivalence such that there is a commutative diagram of

CW-complexes and cellular maps

inducing a commutative diagram of cellular chain complexes and chain maps

C(S%;Z) —— C(D*1Z)

b

C(8%2) —— C(%2) =17

If R =7 then applying the symmetric construction to (D?,S!) with the standard orientation

produces a 2-dimensional symmetric Poincaré pair over Z
(i:C(8%2) - C(D*Z), (D2, $s51))
which is homotopy equivalent to the 2-dimensional symmetric Poincaré pair over Z

(hi:C(SYZ) - Z,(0,¢51))

The definition from [Ran81, p.113] of the condition for an e-symmetric triad to be Poincaré
is somewhat unwieldy and the following alternative description can be used to circumvent this

problem.

Proposition 2.1.8. There is a one-to-one correspondence between (n + 2)-dimensional e-

symmetric triads (T, ®) over A and quadruples consisting of:
(i) An n-dimensional e-symmetric complex (C, ¢) over A
(ii) An (n + 1)-dimensional e-symmetric pair (f : C' - D, (d¢,—-¢)) over A
(i) An (n +1)-dimensional e-symmetric pair (f': C' - D', (d¢',¢)) over A

iv) An (n + 2)-dimensional e-symmetric pair (e: Duc D' - E, (¢',0¢ Uy §¢’)) over A
¢
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where

O*>D

v ™ ]

D’*>E

(¢',6¢',60,0) € Q"*(T)
6=(g (=) 'k g’):(DUcD’)T:DTeBCT_l@D;eET (re)

Figure 18: A schematic diagram for the data in an e-symmetric triad.

Proof. See [Ran81, Proposition 2.1.1]. We have made a sign change in (ii) for convenience
later. O

The Poincaré condition for a symmetric triad is then more naturally expressed in terms of

the three symmetric pairs induced by the triad.

Definition 2.1.9. An (n + 2)-dimensional e-symmetric triad (T, ®) over A

C%D

A

D' — E
®=(¢',d¢",00,9)
is Poincaré if and only if the following four conditions are all satisfied:
(i) The n-dimensional e-symmetric complex (C, ¢) is Poincaré .
(ii) The (n + 1)-dimensional e-symmetric pair (f : C' - D, (6¢,—¢)) is Poincaré .
(iii) The (n + 1)-dimensional e-symmetric pair (f': C' - D', (d¢',¢)) is Poincaré .
(iv) The (n + 2)-dimensional e-symmetric pair (e: D' uc D' — E, (¢, 0¢ Uy §¢")) is Poincaré .

Example 2.1.10. Recall that an oriented (n + 2)-dimensional manifold triad (Q;%,%’; M)
consists of an oriented (n +2)-dimensional manifold with boundary (€2, 99) such that there are
two oriented codimension-0 submanifolds with boundary (X,-M), (X', M) of 02 such that ¥ n
¥ = M and 992 = Xup, Y . If Ris a commutative ring with identity then applying the symmetric
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construction to (X, -M), (X', M),(Q,99Q) produces two (n+1)-dimensional symmetric Poincaré

pairs over R

(C(M;R) -~ C(%;R), (¢5,-¢um))
(C(M;R) > C(ZsR), (¢sr, 1))

and one (n + 2)-dimensional symmetric Poincaré pair over R
(C(0% R) —» C( R), (90, Pon))

where the chain maps are induced from the inclusions of subspaces. This determines an (n+2)-

dimensional commutative symmetric Poincaré triad over R

C(M;R) —— C(3;R)
I= l l . @ =(dq,dx, bz, dum) € QD)
C(X;R) —— C(; R)

with the chain maps induced by inclusion. This shows that a symmetric Poincaré triad is an

are algebraic model for an oriented manifold triad.

X
Q M symmetric
construction
2 /

Figure 19: A schematic diagram of the passage from a triad of manifolds to a symmetric triad.

A cobordism of symmetric pairs is a symmetric triad which respects the boundary decom-

position.

Definition 2.1.11. ([Ran81, p.114]). An e-symmetric cobordism between (n + 1)-dimensional
e-symmetric Poincaré pairs (f : C - D, (6¢,9)),(f : C" — D', (§¢’,¢")) over A is an (n + 2)-

dimensional e-symmetric Poincaré triad (I, ®) over A of the form

(0]

Cel’ »De D’
()| SN2
oC 57 s 0D

¢ = (61/’ v, 6¢® _5¢,a¢ @ _d),) € Qn+2(F7€)'
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Figure 20: A schematic diagram for the data in an e-symmetric cobordism of e-symmetric pairs.

Example 2.1.12. Recall that an oriented (n+2)-dimensional relative cobordism (; 3, % W: M, M")
consists of an oriented (n + 2)-dimensional manifold with boundary (£2,99), oriented (n + 1)-
dimensional manifolds with boundary (X,-M), (X', M') and an oriented (n + 1)-dimensional
cobordism (W;M,M') such that 9Q = ¥ upy W uppy %' If R is a commutative ring with
identity then applying the symmetric construction to (2, M), (X', M"),(W; M, M), (2,00)

produces three (n + 1)-dimensional symmetric Poincaré pairs over R

(C(M;R) - C(%;R), (¢, ~0nr))
(C(M";R) » C(X; R), (¢sr, dr7))
(C(M;R)® C(M';R) » C(W; R), (¢w, mr © ~Pnar))

and one (n + 2)-dimensional Poincaré pair over R
(C(0S% R) - C(2 R), (D0, Pon))

where the chain maps are all induced from the inclusions of subspaces. This determines an

(n +2)-dimensional commutative Poincaré triad (I', ®) over R with

C(M;R)eC(M';R) — C(Z;R)® C(X; R)

-] |

C(W;R) » C(4 R)
P = (¢Q7¢W7¢E @ _¢Z’7¢M 5] _qu’)

which can be viewed as a cobordism between the (n + 1)-dimensional symmetric Poincaré pairs
(C(M;R) - C(%;R), (¢, ¢m)) and (C(M': R) - C(¥'; R), (¢, ¢p)). This shows that a
symmetric Poincaré cobordism of pairs is an algebraic model for a relative oriented manifold

cobordism.
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Q ( W ) symmetric

construction

Figure 21: A schematic diagram for the passage from a relative cobordisms of manifolds to a symmetric
Poincaré cobordism between symmetric pairs.

2.2 Unions of symmetric triads

The glueing operation for adjoining cobordisms from Chapter 1 may be extended to a glueing
operation for adjoining symmetric triads and adjoining symmetric cobordisms of pairs. This

gives an algebraic model for glueing adjoining manifold triads and adjoining relative cobordisms.

Definition 2.2.1. ([Ran81, p.481]). The union of two adjoining (n+2)-dimensional e-symmetric
(Poincaré) triads (I',® € Q"*%(T',¢)) and (I, ®" € Q"*2(I",¢)) over A of the form

%D

C
r= gJ’ \K% J,}” O = (dv,v, -0, —¢)

k
5C —57— oD
c—~L b

- “"J % Jh,, o' = (6,1, 60, 0)

oC’ 6—f’> D’
is the (n + 2)-dimensional e-symmetric (Poincaré) triad over A

(T, ® e Q"I e)) u(I,® e Q" (I,e)) = (TUL", dUd e Q"3 (IUT",€))

with
c— 1 s
h
rur’'= k" o |, U =(0vUies) 0V, 1V, -0p,—0)
0

0C" ————— 0D Usc 6D’
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with chain homotopy

(-t
k' = g :C, — ((SD Usc (SD,)T+1 =0D,1 00C, & (SD;_H (’I“ € Z)
(_)r—lk/
(D, 69)
glue (6D Usc 6D, 6v Ugy, ) 0V')
(D, d¢)
(C7 Qs)

Figure 22: A schematic diagram glueing for the glueing of adjoining e-symmetric triads.

By virtue of Proposition 2.1.8 the definition of a homotopy equivalence of symmetric pairs

has the following extension to triads.

Definition 2.2.2. A homotopy equivalence of (n + 2)-dimensional e-symmetric triads I' ~ TV

over A with

C ! > D
" £ s D" h
g
g’ _C” 1 » D'
o

inducing homotopy equivalences between the three e-symmetric pairs determined by I and I".
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Example 2.2.3. Two adjoining oriented (n+2)-dimensional manifold triads (€; %, X'; M), (Q; X/, 2" M)
may be glued over ¥’ to produce an oriented (n+2)-dimensional manifold triad (Qus/Q'; X, %" M).
If R is a commutative ring with identity then applying the symmetric construction produces

three (n + 2)-dimensional symmetric commutative Poincaré triads over R

C(M;R) —— C(%;R)
I'= J’ l 3 q):((bﬂvd)x’agbxa(;s]\/f)

C(¥X;R) —— C(; R)

C(M;R) —— C(X;R)
F, = l l 5 (I), = (¢Q’7¢Z"7¢E'a¢M)
C(X";R) —— C(QY; R)
C(M;R) — C(3;R)

l l " = (dauyars b, b, dar).-

C(X";R) —— C(Qug Q5 R)

FN

There is a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré triads over R
(T, ®") ~ ([, @) u(I,®") = (Tul’, dud’)
with

C(M;R) ———— C(3;R)

rul’= l % l

Z" *) C(Q R) UC(E’ R) C(Q R)

DUD = (¢ U(py,py) G, b5, O1r)

M symmetric

construction

Q Usy Q

2//

(C(Q) S7676>0) C(Q,)» 019} U(¢2’7¢M) ¢Q')

Figure 23: A schematic diagram for the homotopy equivalence.
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The glueing of relative manifold cobordisms has the following algebraic model.

Definition 2.2.4. ([Ran81, p.117]). Let

(f:C— D,(8¢,6) € Q"' (f,¢€))
(f':C" > D', (6¢,¢") € Q"' (f",€))
(f// . C// N D”, (5¢//7¢N) € Qn+1(f//7€))
be three (n + 1)-dimensional e-symmetric Poincaré pairs over A. The union of two adjoining

(n + 2)-dimensional e-symmetric Poincaré cobordisms of pairs (I',® € Q"*%(T,¢)), (I, ®" €

Q"*2(I",€)) over A of the form
Fo0
o 7

Cel’ >»De D’
()| SN2
oC 37 s 0D

® = (6v,1,0¢0 @ -0¢, ¢ & —¢')

o0
0 f”

C'eC” » D' D"
v (5 )| ) e
oC’ 5 s oD’

(bl _ (6V’,V,,6¢,®—6¢”’¢,®—¢”)

is the e-symmetric Poincaré cobordism of pairs (I', ®" € Q"*2(I'", €)) over A defined by

CeC” s D'o D"
= (3 g)J (F5) J(h i)
5C Uer 5C" 7 s 6D Upy 6D’

@li — (5V’l7l/,,75¢®—6¢”,¢® _(b”)

with 6C Ugr 6C" and §D Ups D' the A-module chain complexes

5CUC,5C'=<5(( 7 ):C’edC@éC’)
g

A h’ ! !
0D up 6D =<€(( - ):D —>5D€B5D)

h/
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with

déC (_)r—lgl 0
dscugscr =] 0 der 0
0 ()9 dscr
(6C Uer 6C"), = 5Cy ® C'_, @ 5C". — (5C Uer §C")r_1 = 6Cr 1 & C'y ®6C"_, (reZ)

dsp (=)™ 0
dspu,spr=| O dp 0
0 (_)r—liL/ szD’
:(6Dup/ 6D"), =6D, ®D,_, ®6D, > (6Dup 6D"),_1 =0D,_1® D, o ®dD,_; (reZ)

and chain maps

g

(3 3 )=]0 L Cr @ C" > (5C U 6C"), = 5C, @ C'_, & 5C", (reZ)
0 gll
ho0

(h W)=l 0 0 |:D,@D}~(DupdD'), =D, @D, ®D,  (reZ)
0 h”

5f (5K 0
§f"=| 0 I 0
0 (_)rflifl 5f,

(6C Uer 6C"), = 6C, ® C'_, ® 6C". - (6D Upr D'), = 6D, & D', @ 6D, (r € Z)

and a chain homotopy

ko0
(k & )=] 0 o [:¢c.ec)~(@Dup D)1 =0D, @D, 0dD;,, (reZ)
0 k//

and symmetric structures ", ov"

Vs 0 0
V;, — (_)n—r¢;gl* (_)n—r+s+1T¢1571 0
0 -ydd,

. (50 Ucr 6cl)n—’r‘+s+1 — 5Cm—r+s+1 ® Cln—T‘+S ® 6OITL—7"+S+1 N 50’:/ — 507 ® C’:»_l ® 60,:
(rez,s>0,¢",=0)
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OV 0 0
5V;’ = (_)”—T*'l(b;hl* (_)n—r+s+2T§¢;71 0
0 (-)*h'e), 8V

. (5D Upr 5D/)n—r+s+2 — 5Cm—r+s+2 eaDm—r+s+1 ea51)/11—r+s+2 N 5D,’! _ 5D7« ® D;—l ®5D;
(reZ,s>0,6¢",=0)

From now on we write
(I, @") = (I, @) u (I, ")

=(Tul',®oud’)
= (F U PI, ((Sl/ User,¢") (5V,7 vV Ugr I/,7 5(b 2] —(5(]5”, x> —¢”)).

(D, 69)
(€, ¢)

(6D Upr 6D, 5v Ui, ¢ 51/)( (6C Ugr 5C’ v Ug I/))

(C", (b//)
(D', 6¢")

(D', 6¢")
(€, ¢)
(oC", V) )
(C/,,¢//)
(D”, 6¢N)

Figure 24: A schematic diagram for the glueing of adjoining e-symmetric relative cobordisms.

Example 2.2.5. Two adjoining oriented (n+2)-dimensional relative cobordisms (; X, X' W; M, M"),
(X2 W M, M) may be glued over (X', M") to produce an oriented (n+2)-dimensional
relative cobordism (Qup Q; 35, X" Wupy W' M, M"). If R is a commutative ring with identity

then applying the triad symmetric construction from Example 2.1.12 produces three (n + 2)-
dimensional symmetric Poincaré triads (T, @), (I, @), (T, ®") over R with

C(M;R)®C(M';R) — C(5;R) ® C(X; R)

= 1

C(W;R) » C( R)
P = (¢97¢W7¢E @ _¢Z’7¢M 5] _(bM')
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C(M;R)eC(M";R) ——— C(¥;R)® C(X"; R)

- | |

C(W';R) > C(Y;R)

(I), = (¢Q’7 (z)W'a ¢E' @ _¢E”a ¢M ® _¢M")

C(M;R)®C(M";R) — C(Z;R)® C(X"; R)

e |

C(W Uy Wi R) ———— C(Qugs O R)

D" = (Paug ', Pwu,, W, O ® —sir, rr ® —Purr).
There is a a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré triads over R
(T, @")~ (I, ®)u (I, ®") = (TuTl', dud’)
with

C(M;R)®C(M";R) —— C(%:R) & C(X"; R)

rul’ = l l

C(W,R) UC(M';R) C(W/,R) _— C(Q7R) UC(E’;R) C(Q/7R)

DU = (0 Uiy ,0,,0) P OW Ug,, Owr, s ® —dsr, drr @ —dagm)

This shows that, up to algebraic homotopy equivalence, the glueing of symmetric cobordisms

of pairs is an algebraic model for the glueing of relative manifold cobordisms.

(C(%), ¢5)

M (C(M), pnr)
Q Usy ﬂ( W Unpr W ) (52 Usy 9), )| (COV U W), v )
M" (C(M"), pparr)

(C(E"), ¢s)

|

(C(%), ¢5)
(C(M), ¢)

(C() Ugzry C(Q), 60 Uiy ppr) P7) <(C(W) Ucury C(W'), ¢w Ug,,, ¢W')>

(C(M"), ¢nr)
(C(X"), dsr)

Figure 25: A schematic diagram for the glueing and homotopy equivalence.
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2.3 Twisted unions of symmetric pairs and triads

Symmetric pairs and triads may also be glued with a twist. This gives an algebraic model for

glueing manifolds with boundary and manifold triads with a twist.

Definition 2.3.1. ([Ran98, p.386-387]). Let

(f:C~D,(3¢,~¢) € Q"' (f.€))
¢ =(f:C~ D' (3¢,9) Q" (f'€))

C

be two adjoining (n + 1)-dimensional e-symmetric (Poincaré) pairs over A and let (h,x) :
(C,0) - (C,9) be a self-homotopy equivalence h : (C,¢) — (C,¢) together with a choice
of coboundary x € (W?C),.41 between ¢ € (W*C),, and h”¢ e (W*C),,.

(i) The twist of ¢ with respect to (h,x) is the (n + 1)-dimensional e-symmetric (Poincaré) pair

over A

c(h,X) = (fh:C > D,(6¢+ f*x,~¢) € Q"' (fh,€)).

(ii) The twisted union of ¢ and ¢’ with respect to (h,x) is the (n + 1)-dimensional e-symmetric

(Poincaré) complex over A
(Dup D', 6¢ Uy 6¢" € Q" (D up D',€)) = c Uy ¢ =c(h,x)uc

obtained by glueing c¢(h, x) to ¢, so that the chain complex

DUhD':‘K(( J;},L ):C’—>D€BD')

is given by

dp (=)"'fh 0
dpo,p =| 0 do 0
0 () dp

(D Up D,)T =D, ® Crl*fl o D;, - (D Up, D,)»,s,l =D, 1®C, o0 D;71 (7“ € Z)

and the symmetric structure d¢ U, d¢’ is given by

0s + [xs ™ 0 0
(6o Uy 0¢")s =| ()" Thsh* f* (Z)" T (Ps1) O
0 (=) f'¢s ¢

. (D U, Dl)n+1—r+s _ Dn+1—r+s ® Cn—r+s ® Dln+1—r+s N

(Dup D), =D,eC,_®D, (s20,7r€Z,¢_1=0).

Example 2.3.2.

(i) Let (X, M) be an oriented (n + 1)-dimensional manifold with boundary. Recall that the
twisted double of (X, M) with respect to an orientation preserving homeomorphism h: M — M

is the closed, oriented (n+1)-dimensional manifold Q = Yu, -X. If R is a commutative ring with
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identity then applying the symmetric construction produces an (n + 1)-dimensional symmetric
Poincaré pair (C(M;R) - C(3;R),(¢x,¢dr)) over R and an (n + 1)-dimensional symmetric
Poincaré complex (C(; R), pq) over R.

Since h: M — M is orientation preserving it follows that h”(¢ar) = ¢ar € Q™ (C(M; R)). More-
over, as C'(M; R) is n-dimensional it follows that (W”C(M;R))ns1 = 0 and hence h”(¢as) =
éar € (W?C(M;R)), so that x =0e (W?C(M; R))ns1. By [Ran98, p.387] there is a homotopy

equivalence of (n + 1)-dimensional symmetric Poincaré complexes over R

(C(XR), da) = (C(M; R) - C(X5R), (d5,6Mm)) Ym0y (C(M;R) - C(E5R), (=, —dm)).
This shows that the twisted glueing of adjoining symmetric pairs is an algebraic model for the
twisted glueing of manifolds with boundary.

(ii) In the case that h =1: M — M, the twisted geometric and algebraic unions degenerate to

untwisted unions so that

(C(Xum X5 R), dsuys)
(C(M;R) - C(%;R), (¢5,0Mm)) Ua,0) (C(M;R) - C(3; R), (b5, ~dr))
=(C(M;R) » C(%;R), (¢, 00m)) U (C(M; R) - C(E; R), (=9, ~dum))-

12

There is a relative notion of a self-homotopy equivalence of symmetric complex.

Definition 2.3.3. ([Ran98, p.393]). A self-homotopy equivalence

(61,1,6x,x) : (f : € = D, (6¢,¢)) > (f: C' = D, (66, 9))

of an (n+1)-dimensional e-symmetric (Poincaré) pair (f : C - D, (d¢,$)) over A is a quadruple
(01,1,0x, x) consisting of two chain homotopy equivalences | : C' - C and 6l : D - D determining

a commutative triad

c— b
ll l&z
CﬁD

together with chains y € (W”C)p.1) and 6y € (W% D),,2 such that
1%(¢) = b = dyucx € (WHC),,  817(56) - 3¢ = dyyopdx € (WD) i

The twisted union of pairs has an extension to triads where we perform a twisted glueing of

two triads by twisting the second triad and then glueing.

Definition 2.3.4. Let (I',® € Q""(T',¢)) and (I, ®’ € Q"**(I"’,¢€)) be two adjoining (n + 2)-

dimensional e-symmetric (Poincaré) triads over A of the form

c—L b
= !]J/\—\‘\—\"—\,If_\_\—\j J/hv ®:(6V7V7_6¢a_¢)
6C —— oD

of
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c—L b

- g,l \wwj lh" o = (80,1, 60, )

50’ T 5D,

and let (01,1,0x,x) be a self-homotopy equivalence of (f:C - D, (-d¢,¢)).

(i) The twist of (I',® € Q"*2(T,€)) with respect to (1,1,0x,x) is the (n + 2)-dimensional e-
symmetric (Poincaré) triad (I'(51,1y, P(sy,x) € Q"*2(T'y,€)) over A with

c—L b

Cesigy = gll k lhél v Py = (v +hOXDT v, =00 + X f*, o).

606—f>6D

(i) The twisted union of (I, ® € Q"**(T,¢)) and (I',®" € Q"*2(I",€)) over (dl,1,0x,x) is the

(n + 2)-dimensional e-symmetric (Poincaré) triad over A
(T Uty TP Uy @ € QT Ui ')
obtained by glueing (I'(51,1y, ®(s5y,x)) to (I, ®’) so that
(T, @) Usttoxn) T2 = (i), Proyxy) Y (T, @) = (T Ugsiy I, @ Ugsy,x) D).

Example 2.3.5.

(i) Let (;3,%; M), (%, X"; M) be two adjoining oriented (n + 2)-dimensional manifold
triads and let 61 : (X',M) — (X', M) be an orientation preserving homeomorphism which
restricts to an orientation preserving homeomorphism [ : M — M. The two triads may be glued
over (X', M) with the glueing twisted by 4l to produce an oriented (n+2)-dimensional manifold
triad (Qug Q';3, %" M). If R is a commutative ring with identity then applying the symmetric

construction produces three (n + 2)-dimensional commutative Poincaré triads over R

C(M;R) — C(3;R)

I= l l ; P = (¢, ¢y, s, Om)
C(:R) —— C(Q:R)
C(M:R) —— C(X;R)

= l l ; ' = (par, psr, Ps, ar)
C(3": R) — C(Q:R)

C(M;R) —— C(%;R)

| !

C(X";R) —— C(Qu; Qs R)

1—\II

¢” = (¢QU5[Q’7 ¢Z"7 ¢27 ¢M)



CHAPTER 2. THE L-THEORY OF A RING WITH INVOLUTION 54

Since (61,1) : (X', M) — (X', M) is orientation preserving it follows that
(1,68;0)" (dsr, dar) = (b3, 1) € Q" (C(M; R) - C(T'; R))
and hence there are some chains oy € (W?C(2; R))psa. X € (W?C(M; R)) 41 such that
317 (ps) =05 = dycsry (0X) € WPC(S; R) ) ars 17 (dnr)~0ar = dyncan (X) € (WPC(M; R)) i

Since C'(X'; R) is (n+1)-dimensional and C'(M; R) is n-dimensional it follows that (W”C(%'; R) ) ps2 =
0 and (W”C(M;R))n+2 = 0 and hence 6y = 0 and x = 0. Then there is a homotopy equivalence

(I, @") = (T, ®) Ugsi1,00) (T, @) = (T Uy I, 2 U D)
with

C(M;R) — C(%;R)

Tug I’ = l l

C(X";R) —— C(; R) u; C(QY; R)

DU = (do U dor, P, s, o).

This shows that, up to homotopy equivalence, the twisted glueing of symmetric triads is an

algebraic model for the twisted glueing of triads.

(ii) In the case that 6l =1: %" — ¥/, the twisted geometric and algebraic unions degenerate to

untwisted unions so that

(F, (I)) U((Sl,l,O,O) (F,7 (I),) = (F, ‘I)) U (F,, (I),) o~ (F”, (I)”),



Chapter 3

Thickening manifold and
symmetric Poincaré quiver

representations

In this chapter we extend the definition of a symmetric pair to a symmetric pair with an ¢-fold
boundary splitting and show that this is an algebraic model for a manifold with boundary where
the boundary can be written as a cyclic union of adjoining cobordisms. We define algebraic
thickening operations which are algebraic models for taking the product of a cobordism with
an interval and for taking the product of a closed manifold with a disc D? where the bound-
ary 0D? is split into ¢ pieces. We then extend the symmetric construction to a symmetric
construction for an oriented manifold representation of a quiver where the vertices parametrise
manifolds and the arrows parametrise cobordisms. This produces a symmetric Poincaré rep-
resentation of a quiver where the vertices parametrise symmetric Poincaré complexes and the
arrows parametrise symmetric Poincaré cobordisms. We use the quiver symmetric construc-
tion together with the thickening operations to generalise the manifold and symmetric Poincaré
trinity thickening operations of [BNR12a, p.44-46] to thickening operations for manifold and
symmetric Poincaré representations of a quiver where parts of the data can be twisted by a
self-homotopy equivalence. We then show that the twisted thickening operations commute with

the symmetric construction up to homotopy equivalence.

3.1 Products of symmetric complexes and pairs

There is a product operation for symmetric complexes and pairs which gives an algebraic model

for products of manifolds and manifolds with boundary.
Definition 3.1.1. Let A, B be rings with involution.

(i) The tensor product of A and B is the ring with involution A ®z B where

a®b=a®b (acAbeDB).
(ii) The tensor product of an A-module chain complex C' and an B-module chain complex D is

95
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the A ®7 B-module chain complex C' ®z D with the scalar action of A ®7 B given by

A®zBxC®;,D—->C®zD; (a®bx®y)+— ax®by.

The product operation for symmetric structures
®:Q"(C,e) @z Q"(D,n) ~ Q™" (C 8z D,e®n)

arises from the following chain level construction.

Proposition 3.1.2. ([Ran80a, p.174-6]). Let W be the standard free Z[Zs] resolution of Z

1+T

W > Wa = Z[Zs] — Wa = Z[Zs] — Wi = Z[Zs] — Wy = Z[Z5] » — ...
let W be the complete Z[Zy] resolution of Z
1-T = 4T — 1-T 4T —

W =Wy =7[ZLo] — Wy = L[ Zy] — Wy = L[ Zy] — Wo = Z[Zy] —> W1 = Z[Zs] - ...

and let €, = £1.

(i) For a finite-dimensional A-module chain complex C and a finite-dimensional B-module chain

complex D there is a natural identification of Z[Z]-module chain complexes
(Ct ®4C)®y (Dt ®p D)z (Cw®y D)t ® A, B (C®z D)

respecting the Zs-action given by T, ® T;, on the left and T.g,, on the right.

(ii) It is possible to construct a diagonal chain map A : W — W ®; W such that the restriction
A:W - W @z W defines a natural chain map

®: W*(C) &y W*(D) - W*(C &z D)
such that the product of chains

d={ps:C™ " 5 Cpls 20,7 € Z} € (W"C)pn
0={0,:D"" > D,|s>0,r e Z} ¢ (W*D),

is the chain
p®0={(¢®0),:(C oz D)™™ 5 (C @z D) |s>0,reZ} e W*(C &z D)pmin

with s
(0®0)s =Y (-) "4, @ T10,4: (C® D)™™ > (C® D),
t=0

(iii) The chain map ® : W*(C) ®; W*(D) - W”(C ®; D) induces a natural morphism of
Q-groups
®:Q"(C,€) ®2Q"(D,n) » Q™"(C @z D,e®1)
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defined by the composition

Q™(C,e) 82 Q™(D,n) = Hye(W”(C)) @2 Hy(W*(D)) »Hpp (W(C) @2 W7(D))

2 Hyp o (WH(C ®2 D))

=Q™"(C®zD,e®n).

This construction allows us to take products of two symmetric pairs as follows.

Theorem 3.1.3. Let €,7 = +1. The product of an m-dimensional e-symmetric (Poincaré) pair

over A and an n-dimensional n-symmetric (Poincaré) pair over B
(f:C—>D,(06,0) eQ™(fre)) @ (f':C" > D', (¢',6") € Q"(f",))

is an (m +n)-dimensional € ® n-symmetric (Poincaré) triad (I', ® € Q™*"(I",e®n)) over A®z B
with

Ce,C 2255 Ce, D

I'= f®1l lf@l

D ®y C’ — D ®y D!
1®f
©=(50®0¢",¢®5¢",00® ¢, ¢ ®¢)
Proof. The e-symmetric (Poincaré) pair over A and the n-symmetric (Poincaré) pair over B
(f:C—D,(6¢,0) € Q™ (f,€)), (f':C" D" (3¢',¢")eQ"(f,n))
induce two commutative triads over Z

1%
(WHC) @z (WHC") —2L s (WC) o5 (WD)

f‘%ll Jf%m

(W”D) ®@z (W*C") e (W?”D) ®z (W*D")

% 7 (1®f’)% % /
W”(C @y C') ———— W”*(C®z D)

(f@l)%l l(f@l)%

W?(D &z C") ———— W"(D &z D')
(1ef)”
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The naturality of the chain level product determines a commutative cube

10f%

(W7C) @z (W"C") » (W7C) @z (W*D')

/ /
N\%
W(C &z C") aer) > W (C @z D) f*e1
el
~ % Vv
el » (W”D) @z (WD)

(fo1)” (W”D) @z (W*C")

1\ \

A "%
W% (D @y C") (er) s W%(D @z D')

so that the cycles (d¢, ¢) € €(f7),(6¢',¢") € €(f'”) determine a cycle

d=(60®0¢,000¢, 600 ¢, )

representing an (n + m)-dimensional € ® n-symmetric structure on the triad

Ce,C 22, Ce, D

f®1l lf@l

D@y C" —— D@y D'
1®f

over A®yz B. O

The product of symmetric pairs then determines the product of a symmetric complex and

a symmetric pair as a special case.

Corollary 3.1.4. The product of an m-dimensional e-symmetric (Poincaré) complex (C, ¢ €
Q" (C,e€)) over A and an n-dimensional n-symmetric (Poincaré) pair (f': C" - D', (§¢',¢") €

Q™ (f,m)) over B is the (m + n)-dimensional € ® n-symmetric (Poincaré) pair

(C,peQ(Cie))a(f :C"> D', (6¢',¢") € Q™(f,n))
=(1e f':Ce,C" > Coz D (606,009 ) eQ™"(1® [ e®n))

over A®yz B.

Proof. The m-dimensional e-symmetric (Poincaré) complex (C,¢ € Q@™ (C,¢)) determines an

m-~dimensional e-symmetric (Poincaré) pair (0:0 — C, (¢,0) € Q™(0,¢€)) such that the product

(0:0->C,(,0)€Q™(0,€)) @ (f':C" > D', (6¢",¢") € Q"(f,m))

is the (m +n)-dimensional € ® n-symmetric (Poincaré) triad (I', ® € Q™" (I",e®n)) over R®z S
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with

0 ——0

ST

’ /
CeyC W) C®yzD

P=(p®p",0®¢',0,0)
which determines the (m + n)-dimensional € ® n-symmetric (Poincaré) pair over A ®; B
(18 f:CezC" -C0zD , (¢®6d,00¢"))

O

Proposition 3.1.5. ([Ran80b, Proposition 8.1]). Let R be a commutative ring with identity.

The symmetric construction is natural with respect to absolute and relative products.

Examples of products are given in the next section.

3.2 Manifold and symmetric Poincaré thickenings

We now use the naturality of the symmetric construction with respect to products to examine
the symmetric pairs and triads obtained by thickening a manifold or cobordism by taking the

product with an closed interval or a disc.
Definition 3.2.1.

(i) The thickening of a closed, oriented n-dimensional manifold M is the oriented (n + 1)-

dimensional cobordism
M x (I:{0},{1})=(M x ;M x {0}, M x {1}).

(ii) The thickening of an oriented (n + 1)-dimensional cobordism (W;M,M') is the oriented

(n + 2)-dimensional triad

(MuM')x{0,1} —— (MuM')yxI

| |

Wx {01} — 5 WxI

which is equal to the product of the oriented cobordisms (W; M, M") and (I;{0},{1}).

(iii) The disc thickening of a closed, oriented n-dimensional manifold M is the oriented (n +2)-

dimensional manifold with boundary
M x (D?* 8Y) = (M x D* M x SY).

The effect of applying the symmetric construction to these geometric thickening operations

is as follows.
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Example 3.2.2. Let R be a commutative ring with identity and let (W; M, M') be an (n+1)-

dimensional oriented cobordism.

(i) Thickening M and applying the symmetric construction to the oriented (n + 1)-dimensional
cobordism M x(I;{0},{1}) = (M xI; Mx{0}, Mx{1}) produces an (n+1)-dimensional algebraic
cobordism over R

((io 1) : C(M; R) @ C(M; R) > C(M x I; R), (¢rrx1, o1 @ ~¢1r))

with the chain map ig induced by the inclusion ig : M = M x {0} & M x I and the chain map
i1 induced by the inclusion iy : M = M x {1} - M x I. The symmetric construction may be
applied to M to produce an n-dimensional symmetric complex (C(M;R),¢nr) over R. The
symmetric construction may be applied to (I;{0},{1}) to produce 1-dimensional symmetric
Poincaré pair over Z and by Example 2.1.7 this symmetric pair is homotopy equivalent to
(11):ZeZ - Z,(0,1®-1)). The product of this symmetric complex and pair is then an

(n +1)-dimensional symmetric pair over R = R ®z Z

(C(M;R),¢om)®((1 1):ZaZ —>Z,(0,1®-1))
=((1 1):C(M;R)® C(M;R) - C(M;R), (0,61 & —Pnr))-

This (n + 1)-dimensional symmetric pair is homotopy equivalent to the (n + 1)-dimensional

symmetric pair
((Go i1) : C(M;R)® C(M; R) » C(M x I R), (drixr, v ® =P )

since the Eilenberg-Zilber chain homotopy equivalence C'(M x I;R) ~ C(M;R) ®z C(I;Z)

determines a triad over R

(G0 1)

C(M;R)eC(M;R) ———— C(M xI;R)

T

C(M;R)® C(M; R) — C(M;R) @2 C(I:Z)
0 1

where the two vertical maps are chain homotopy equivalences. This implies that up to homotopy
equivalence, the symmetric pair induced by the cobordism (M x I; M x {0}, M x {1}) can be

obtained solely from the symmetric complex induced by M.

(ii) Thickening (W; M, M) produces an oriented manifold triad

(MuM')x{0,1} — (MuM')yxI

| |

Wx {01} — 5 WxI

If R is a commutative ring with identity then applying the symmetric construction produces
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an (n + 2)-dimensional symmetric Poincaré triad (I', ®) over R with

C(M;R)eC(M";R)eC(M;R)eC(M";R) —— C(M xI;R)e C(M'xI;R)

| l

C(W;R)® C(W;R) s C(W xI; R)

D = (dwr, dw ® —dw, —Onixs ® Oarrxi, O & —Phr & —dar @ Pyp).

There is a commutative cube

(M u M) x {0,1} s (MuMYxT
(M UM’ x{0,1} s MuM
W x{0,1} > Wx T
<4 o 1 -
W x{0,1} > W

where each of the sloped arrows is a homotopy equivalence and all other arrows are inclusions.
Example 3.2.2 implies that there is a homotopy equivalence of (n + 2)-dimensional symmetric
Poincaré triads (', @) ~ (I, ®') where

C(M;R)® C(M';R) ® C(M;R) ® C(M'; R) —— C(M;R)® C(M';R)

" | |

C(W;R)e C(W;R) > C(W;R)

(b, = (Oa¢W 53] _¢Wa07¢M @ _(bf/\/l @ _¢M @ (bff\/f)

This shows that up to homotopy equivalence, the symmetric Poincaré triad induced from the
thickening of (W; M, M') may be obtained from the symmetric Poincaré cobordism induced
from (W; M, M").

(iii) A closed, oriented n-dimensional manifold M may be disc thickened to produce an oriented
(n+2)-dimensional manifold with boundary (M x D?, M x S1). If R is a commutative ring with
identity then applying the symmetric construction produces an (n + 2)-dimensional symmetric

Poincaré pair over R
(C(M x 51§R) - C(M x D2§ R), (énxp2; Prrxst))-

The naturality of the symmetric construction with respect to products and Example 2.1.7 imply
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that there is a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré pairs over R

(C(M x 8% R) - C(M x D* R), (¢r1x02, Drrxst))
=(C(M;R),¢nm) ® (C(S';Z) > C(D% ), (dp2, ¢s1))
~(C(M;R),¢um) ® (C(SY2) > Z,(0,651))
=(C(M;R) ®2 C(S%Z) » C(M; R), (0, ¢r ® 1))

so that up to homotopy equivalence, the symmetric Poincaré pair induced from (M xD?, M xS1)

may be obtained from the symmetric Poincaré complexes induced from M and S*.
This motivates the following algebraic thickening operations.

Definition 3.2.3.

(i) The thickening of an n-dimensional e-symmetric (Poincaré) complex (C,¢) over A is the

(n + 1)-dimensional e-symmetric (Poincaré) pair over A
((1 1) C®C%C7(O7¢®_¢))
which is homotopy equivalent to the (Poincaré) product pair over A = A ®7 Z

(Ca d)) ® (C(San) - C(Dl;Z)7 (¢D1>¢S°))'

(ii) The disc thickening of an n-dimensional e-symmetric (Poincaré) complex (C,¢) over A is

the (n + 2)-dimensional e-symmetric (Poincaré) pair over A
(C®zC(S:7Z) - C,(0,0® ¢pg1))
which is homotopy equivalent to the (Poincaré) product pair over A = A ®7 Z.
(C.0) ® (C(S%;2) » C(D*Z), (¢p2, ds1)).
(iii) The thickening of an (n + 1)-dimensional e-symmetric cobordism over A
((f f):CoC" ~> D, (06,00 -¢"))

is the (n + 2)-dimensional e-symmetric commutative (Poincaré) triad (', ®) over A with

CeC'oCol > Co '
r=7s o0 f
o o f f
DeD s D
(1 1)

P =(0,000-00,0,00 -0 ®@—-¢p&)

which is homotopy equivalent to the e-symmetric commutative (Poincaré) product triad over
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A=A®;7Z
((f [):CoC - D,(6¢,0®~¢")) ® (i: C(S%Z) > C(DYZ), (41, Ps0))-
Proposition 3.2.4. Let R be a commutative ring with identity. For manifolds and cobordisms,

the symmetric construction commutes, up to homotopy equivalence, with (disc) thickenings.

Proof. By Example 3.2.2. O

3.3 Manifold and symmetric Poincaré pairs with bound-
ary splittings

We now extend the definition of a symmetric pair to a symmetric pair with an ¢-fold boundary
splitting and show that this is an algebraic model for a manifold with boundary where the

boundary can be written as a cyclic union of adjoining cobordisms.

Definition 3.3.1. An oriented (n + 1)-dimensional manifold with an £-fold boundary splitting
(W, OW;00W,...,0W) (£22)

consists of an oriented (n + 1)-dimensional manifold with boundary (W,0W) together with
a collection of ¢ cyclically adjoining, oriented n-dimensional cobordisms {(0;W; M;, MHl)}le
such that:

(i) each 9;W is a codimension 0-submanifold of oW
(ii) OW = u!_,0;W where the orientations agree
(iil) O;W N 941 W = M;41 where the index 4 is understood cyclically

(iv) O;W no;W =@ if i + j where the indices ¢, j are understood cyclically.

M2 81W

MZ\/ ot MZ

oW M; 1

Figure 26: A schematic diagram for the boundary decomposition.

Example 3.3.2. If £ > 2 then subdividing S* into arcs I1, I, ..., I, ¢ S* as shown below induces
an (-fold boundary splitting (D?,S*;I1,...,1;) of (D? S%)
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I;

Figure 27: A schematic diagram for the boundary decomposition of D?.

Definition 3.3.3. The disc thickening with an £-fold boundary splitting of a closed, oriented
n-dimensional manifold M is the ¢-fold boundary splitting

(M xD* MxSYMxI),MxI,...,Mx1I))=Mx(D*1,....,1;) (£>2)

M MXIl
M_. Vxp? ML
M M
MXIl' M

Figure 28: A schematic diagram for the boundary decomposition of M x D?.

This motivates the definition of a symmetric pair with a split boundary.
Definition 3.3.4.
(i) An (n+1)-dimensional e-symmetric (Poincaré) pair over A with an ¢-fold boundary splitting

(c;ery..0yc0) (£22)

consists of an (n + 1)-dimensional e-symmetric (Poincaré) pair over A

c=(f:0D > D,(¢p,¢op))

together with a collection of ¢ cyclically adjoining n-dimensional e-symmetric (Poincaré) pairs

over A of the form

¢i = ((f] f11):Ci®Cisn ~ 9:D,(¢o,0,0c, ® —dc,,,)) (1<i<l)

such that there is a homotopy equivalence of n-dimensional e-symmetric (Poincaré) pairs
(0D, ¢op) = Ut c; over A
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(CZa ¢C2) (81Da ¢31D)
(02D, ¢a,p)

(Cla d)Cl )

(Cs.900)8 (D, ¢p) (9eD, ¢o,p)

(i, 6c,) 4cibc,)

(ale ¢3iD) (Ci+l7¢ci+1)

Figure 29: A schematic diagram for the boundary decomposition defined in the homotopy equivalence.

(ii) A homotopy equivalence of (n+1)-dimensional e-symmetric pairs over A with ¢-fold boundary
splittings
(F;Fla"'vrf) : (C;Cla" '7CZ) = (C,;Cllv"' 762)

consists of a homotopy equivalence of (n + 1)-dimensional e-symmetric pairs over A

8D'*f>D

N R

oD’ T> D’

together with a collection of homotopy equivalences of (n + 1)-dimensional e-symmetric cobor-

disms over A

(5 7))

C; @ Ciyn > 0;D
Fi — 9; 0 h; 7 C;
0 gin
Cz, ® Cz{+1 > aiD,

such that there is a commutative diagram

(0D, dop) ——— Uiyci

£ ~
:lg Ui:lriJ/_

(8D',¢op1) ——=— UiL1¢
respecting the e-symmetric structures.

In the next section we will work with thickenings of manifolds and Poincaré pairs with split
boundaries where the geometric and algebraic data is parametrised by a quiver. It will be more
convenient to work with the schematic diagrams of the type in Definition 3.3.1 and Definition

3.3.4 rather than the schematic diagrams of chapter 1 of the type
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(61D, ¢a,p)

(0eD, ¢a,0)

Figure 30: The schematic diagrams from chapter 1.

Example 3.3.5. Applying the symmetric construction over Z to the ¢-fold boundary splitting
(D?%,8Y: 1h,..., 1) of (D?, S1) from Example 3.3.2 produces a 2-dimensional symmetric Poincaré

pair over Z with an /-fold boundary splitting (¢;c1,...,c¢) where

c=(C(SY2) - C(D*2), (¢p2, ds1))
CZ':(C(SOQZ)_>C(Ii§Z)’(¢Iw¢SO)) (1<Z§€)

By Examples 2.1.7 and 2.1.7 there is a homotopy equivalence of 2-dimensional symmetric

Poincaré pairs over Z with ¢-fold boundary splittings (c;c1,...,¢e) = (¢/;¢1,...,¢)) where

¢ =(C(SH2) > Z,(0,¢51))
=(ZeZ-17,0,18-1)) (1<i</).

Let M be a closed, oriented n-dimensional manifold and let R be a commutative ring with
identity. Applying the symmetric construction over R to the disc thickening of M with an
{-fold boundary splitting

(M xD* M xSY ;M x I, M xIp,...,M x I)

produces an (n + 2)-dimensional symmetric Poincaré pair over R with an ¢-fold boundary

splitting (¢’;¢f,...,¢;) where

"= (C(M x 51§R) - C(M x D2§R)7 (PrxD2, Prrxst))
¢/ = (C(M;R) ® C(M; R) » C(M x I;; R), (pnrx1;, dar ® =par)) (1 <i< ).

By the naturality of the symmetric construction with respect to products it follows that there

is a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré pairs over R with ¢-fold

boundary splittings (¢”;¢f,...,¢)) = ("¢, ..., ¢)") where

" = (C(M;R) ®7 C(SY;Z) - C(M;R),(0,pr ® g1))
' = (C(M;R)® C(M;R) - C(M;R),(0,6p & —dar)) (1<i<l).
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(C(M), o) (C(M x 1), dmxr1,)

(C(M), ¢pr) __(C(M),0)

(C(M x I>), prrxr,) (C(M), én) (C(M),0) (C(M), énr)

(C(M)zd)M) (C(M X IZ)v¢M><Iz) (C(M),d)M) : (C(M),O) (C(M),O)
(C(M), 6x) 4o, em) (C(M), ) (D, ou)
o (C(M),0)
; (C(M), dn)
(C(M X Iz)»d)Min) (C(]V[),¢M) M

Figure 31: A schematic diagram for the homotopy equivalence.

The relative symmetric construction from Theorem 1.2.6 then extends to a symmetric con-

struction for manifolds with split boundaries.

Definition 3.3.6. Let R be a commutative ring with identity and let (W, 0W;0,W,...,9,W)
be an (n + 1)-dimensional oriented manifold with an ¢-fold boundary splitting. The (n + 2)-
dimensional symmetric Poincaré pair over R with an ¢-fold boundary splitting (¢;cy, ..., ce)

obtained by applying the symmetric construction over R is defined by

C; = (C(M”R) ® C(Mi_,.l;R) - C(azva)a (¢8¢W7¢M¢ ® _¢Mi+1)) (1 A f)

This motivates the definition of product operation for a symmetric pair with a split bound-

ary.

Definition 3.3.7. The product of {an m-dimensional e-symmetric (Poincaré) complex (E, ¢g)
over A} with {an (n+1)-dimensional n-symmetric (Poincaré) pair over Z with an ¢-fold boundary
splitting (¢;cq,...,¢¢) (€2 2)} is the (m+n+1)-dimensional en-symmetric (Poincaré) pair over
A = A®z 7 with an ¢-fold boundary splitting

(E,9p)® (cic1,...,c0) = (c5¢h, ..., ch)
such that if

c=(f:0D - D,(¢p,%0p))

Ci = ((le fii+1) : Oi eC’Hl - azD’ (¢aiD’¢Ci ® _¢Ci+1)) (1 <@g é)
then
CI = (E7 ¢E) ®c

=(1ef:E®20D » E®zD, (¢ ® ¢p,¢r ® o))
ci=(E, ¢p)®c;
=((1& fi 1 fi1): (E®zC) @ (E @z Cint) ~
E®70;,D,(¢r ® ¢o,0, (¢£ ® ¢c;) ® —(dc ® dc,,,))) (1<i<d).

Definition 3.3.8. Let (C,¢) be an n-dimensional e-symmetric (Poincaré) complex over A.
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The disc thickening with an ¢-fold boundary splitting (£ > 2) of (C, ¢) is the (n+2)-dimensional
e-symmetric (Poincaré) pair over A = A ®7 Z with an ¢-fold boundary splitting (¢;cy, ..., ce)

where
c=(CezC(SYZ) ~ C,(0,6® ¢g1))
Ci = (CQC_)C7(05¢®_¢))
such that there is a homotopy equivalence (¢;c1, ..., c) = (C,9)®(c'; ¢, ..., ¢p) where (¢'; ¢, .., ¢})

is the 2-dimensional symmetric pair over Z with an /¢-fold boundary splitting from Exam-
ple 3.3.5 obtained by applying the symmetric construction to the ¢-fold boundary splitting
(DQ,Sl;Ila"'7I@)'

Proposition 3.3.9. Let R be a commutative ring with identity. For closed, oriented man-
ifolds the symmetric construction over R commutes, up to homotopy equivalence, with disc

thickenings with an ¢-fold boundary splitting.

Proof. By Example 3.3.5. O

3.4 Manifold and symmetric Poincaré quiver representa-

tions

We now extended the symmetric construction for oriented manifolds and cobordisms to a sym-
metric construction for an an oriented manifold representation of a quiver where the vertices
parametrise manifolds and the arrows parametrise cobordisms. This produces a symmetric
Poincaré representation of the quiver where the vertices parametrise symmetric Poincaré com-

plexes and the arrows parametrise symmetric Poincaré cobordisms.
Definition 3.4.1. A semi-groupoid A consists of:
(i) A collection of objects Obj(A).
(ii) For each pair of objects A, B € Obj(A) a collection of morphisms Homy (A, B) from A to B.

(iii) For each triple of objects A, B,C € Obj(A) a composition map
HOHIA(A,B) XHomA(B7C) —)HomA(A7C); (f7g) —>gof

such that the composition of morphisms is associative.
Example 3.4.2.

(i) Every category is a semi-groupoid. One may think of semi-groupoids as categories without

identity morphisms.

(ii) For each integer n > 0 there is a semi-groupoid M"™ where the objects are closed, oriented n-
dimensional manifolds and where a morphism from M™ to M’ is an oriented (n+1)-dimensional
cobordism (W; M, M"). The composition of morphisms (W; M, M"), (W'; M', M") is the mor-
phism (W upy W' M, M') obtained by glueing the cobordisms (W; M, M') and (W'; M', M"")

along M'. In fact, we may form M" into a category if we define a morphism from M to M’ to
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be a cobordism between M and M’ modulo oriented diffeomorphisms of the cobordism relative

to the boundary, but we shall not use this here.

(iii) For each integer n > 0 and each ring with involution A there is a semi-groupoid L™ (A, €)
where the objects are n-dimensional e-symmetric Poincaré complexes over A and where a mor-
phism from (C,¢) to (C’,¢") is an (n + 1)-dimensional e-symmetric cobordism over A of the

form

((f f,):CEBC,9D7(5¢7¢€B_¢,))~

The composition of morphisms

((fe for):CoC' > D, (66,4 @ -¢"))
((féf féu) O 0" > D/, (5¢/’¢/®_¢//))

is the morphism
((fg’ g‘”) :OQC"_)DUC’ Dl7(6¢ U(]ﬁ’ 5¢,7¢®_¢”))

obtained by the glueing construction for adjoining e-symmetric cobordisms from Definition
1.3.3. In the case e = 1 we write L"(A,€) =L"(A).

Definition 3.4.3.

(i) A quiver Q = (Qo,Q1,s,t: Q1 — Qo) is a directed multi-graph consisting of a collection of
vertices (Jg, a collection of arrows (1 and two functions s: Q1 — Qg respectively t: Q1 = Qo,
assigning to each arrow « € Q) its source verter s(«) € Qo respectively target vertex t(a) € Qo.

A quiver is finite if it has finitely many vertices and arrows.

(ii) A representation M = ((My)veQo, (9a)acq, ) of a quiver @ in a semi-groupoid A is a collection
of objects M, € A indexed by the vertices v € Qg together with a collection of morphisms

Go € Homy (M, My(a)) indexed by the arrows o € Q.

The most widely studied quiver representations are in the category of left R modules for
some commutative ring R. The data we will parametrise by a quiver will come from two different

sources: oriented manifolds and symmetric Poincaré complexes.
Definition 3.4.4.

(i) An (n + 1)-dimensional oriented manifold representation (Wq; Mg, Mg) of a quiver Q is a
representation of @ in the semi-groupoid M"”, consisting of a closed, oriented n-dimensional
manifold M, for each vertex v € Qg and an (n + 1)-dimensional cobordism (We; Mg(q), Mt’(a))

for each arrow a € Q.

(ii) An (n + 1)-dimensional e-symmetric Poincaré representation (fo : Co — Dg,(d¢q,¢q))
of a quiver @) over A is a representation of @) in the semi-groupoid L™ (A, ¢), consisting of an
n-dimensional e-symmetric Poincaré complex (Cy,¢,) over A for each vertex v € Qp and an

(n + 1)-dimensional e-symmetric cobordism

((fs(oz) ft(a)) : C@(a) @ Ct(a) = D, (6¢a7¢€(a) @ _(bt(a)))
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over A for each arrow a € Q1. In the case € = 1 an e-symmetric Poincaré representation of Q

over A is called a symmetric Poincaré representation of Q) over A.

A quiver @ can also be viewed as a A-set where the O-simplices are the vertices, the 1-
simplices are the arrows and there are no simplices of higher dimension. The face maps from
1-simplices to O-simplices are the source and target maps s,t: Q1 - Qp. An (n+1)-dimensional
e-symmetric Poincaré representation of ) over A is then the same as a A-map from @ to the

e-symmetric L-spectrum of A, see [Ran92, p.136] for more details.
Example 3.4.5.

(i) The trinity quiver T

2 3

Figure 32: The trinity quiver.

has (n+1)-dimensional oriented manifold, respectively (n+1)-dimensional e-symmetric Poincaré,

representations of the form

M,

Wi

Wa, S W

My M3 (Ca, ¢2) (Cs, $3)

Figure 33: Manifold and symmetric Poincaré representations of the trinity quiver.

where by the data (D;,d¢;) over an arrow we mean an (n + 1)-dimensional e-symmetric cobor-

dism over A of the form

((foi fii):Co®Ci— Dy, (56,0 ® —¢;) € Q" ((foi fii),€)) (1<i<3).

These representations are precisely the (n + 1)-dimensional manifold, respectively e-symmetric
Poincaré, trinities of [BNR12a, p.44-46].

(ii) The © quiver
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Figure 34: The © quiver.

has (n+1)-dimensional oriented manifold, respectively (n+1)-dimensional e-symmetric Poincaré,

representations of the form where by the data (D;,d¢;) over an arrow we mean an (n + 1)-

W]. (D176¢1)
W2 (D a6¢ )

My > M,y (Co, ¢0) 2= - (C1, 1)
W3 (D3, 6¢3)

Figure 35: Manifold and symmetric Poincaré representations of the © quiver.
dimensional e-symmetric cobordism over A of the form
((foi f1i): Co® Cy > Dy, (6¢i, 00 ® —¢1) € Q" ((foi fri),€)) (1<i<3).
The symmetric construction may be applied to oriented manifold representations in order

to produce symmetric Poincaré representations.

Proposition 3.4.6. If @ is a quiver and if R is a commutative ring then the symmetric construc-
tion may be applied to an (n+ 1)-dimensional oriented manifold representation (Wg; M, Mcl;))

of @ to produce an (n + 1)-dimensional symmetric Poincaré representation of @) over R.

Proof. For each vertex v € Qp applying the symmetric construction to the closed, oriented n-
dimensional manifold M, produces an n-dimensional symmetric Poincaré complex (C'(M,; R), o, )
over R. For each arrow « € ()1 applying the symmetric construction to the oriented (n + 1)-

dimensional cobordism (We; M(a), My(q)) produces an (n + 1)-dimensional cobordism
((is(a) Pt(a)) : C(My(ay; R) ® C(Myay; R) > C(Wa; R), (0w (), DM,y ® ~PMy(oy))
over R. The collection

((Ps(a) Pt(a)) t (C(My(ay; R) ® C(My(ay; R) > C(Wai R), (9w (a)s M,y ® ~PM,(0y))acQi s
(C(My; R), da1, )veqo )

is then an (n + 1)-dimensional symmetric Poincaré representation of @ over R. From now on
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we denote this representation by

Example 3.4.7. Let R be a commutative ring with identity.

(i) Applying the symmetric construction to the (n + 1)-dimensional oriented manifold represen-
tation of the trinity quiver from Example 3.4.5 (i) produces an (n + 1)-dimensional symmetric
Poincaré representation over R

(C(My), éry)

(C(Wl), ¢W1)

(C(Mz), par,)

Figure 36: A symmetric Poincaré representation of the trinity quiver obtained by applying the sym-
metric construction to a manifold representation.

where by the data (C(W;; R), ¢w,) (1<1i<3) over an arrow we mean the (n + 1)-dimensional

symmetric cobordism over A
(C(MQ, R) @ C(Ml7 R) - C(le R)a (QSWl ’ ¢Mo @ _¢M7', ))

(ii) Applying the symmetric construction to the (n+1)-dimensional oriented manifold represen-
tation of the theta quiver from Example 3.4.5 (ii) produces an (n + 1)-dimensional symmetric

Poincaré representation over R

(C(Wl)v ¢W1)

(C(W2)7 ¢W2)
(C(M0)7¢Mo) > (C(M1)7¢)M1)

(C(W3)a ¢W3)

Figure 37: A symmetric Poincaré representation of the © quiver obtained by applying the symmetric
construction to a manifold representation of the © quiver.

where by the data (C'(W;; R), ¢w,) over an arrow we mean the (n + 1)-dimensional symmetric
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cobordism over R
(C(Mo; R) ® C(My; R) » C(Wi; R), (pw;, das, © —Pr,))-

In chapter 5 we will see that a Morse 2-function on an oriented 4-manifold yields a 3-
dimensional oriented manifold quiver representation to which we may apply the symmetric

construction.

3.5 Thickening manifold and symmetric Poincaré quiver

representations

We extend the thickening operations from Section 3.2 to thickening operations of oriented
manifold and symmetric Poincaré representations of a quiver in such a way that the symmetric

construction and thickening operations commute up to homotopy equivalence.
Definition 3.5.1.

(i) The degree of a vertex v € Qg of a quiver @ is the cardinality deg(v) of the set of arrows

{aeQq:s(a)=v or t(a) = v} with source or target vertex v.

(ii) An ordered quiver is a quiver ) such that at each vertex v € Q there is an ordering of the
set of arrows {a € @1 : s(a) = v or t(a) = v} such that the arrows with source vertex v are

ordered before the arrows with target vertex v.

Example 3.5.2. An ordered quiver where the vertices from left to right are of respective
degrees 1,3,2,8,2 and with the ordering of the edges at each respective vertex are denoted by

natural numbers

Figure 38: An ordered quiver.

The geometric thickening operations from Definition 3.2.1 have the following extension to

quivers.

Definition 3.5.3. The thickening of an (n + 1)-dimensional oriented manifold representation
(Wq; Mg, M) of an ordered quiver @ is the (n+2)-dimensional oriented manifold with bound-
ary (Q,090) constructed as follows. For each vertex v € Qp with deg(v) # 1,2 construct the
disc thickening of the n-dimensional closed, oriented manifold M, with a deg(v)-fold boundary

splitting
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MUXIl

MvXIQ

M, x D? My X Lieg(w)

Mv X I,L
Figure 39: A schematic diagram for a deg(v)-fold boundary splitting of M, x D?.
and form the disjoint union U,eg, M, x D?. For each arrow « € Q1 construct the thickening

of the (n + 1)-dimensional oriented cobordism (Wy; My, My(a))
Wy x {1}

My(ay X I Wo x 1 Moy x I

Wy x {0}
Figure 40: A schematic diagram for the thickening of (Wa; My(a), My(a))-

If « is an arrow from s(«) to ¢(a) where « is the ith arrow around s(«) and « is the jth
arrow around ¢(car) according to the orderings, use the boundary splittings of M) and My(4)
to glue Wy, x I to My(q) x D? My(qy * D? ¢ Uye, M, x D? along Moy x I; and My(q) x I

Wo x {1}
~ » S =
M p2 | 5 e S owaxr |2 ghue Ol Y D?
s(a) X 3 —_— 3 e ‘;( _— % () X
Em E ~ S
W, x {0}

Figure 41: A schematic diagram for glueing M) x D? W x1I, Moy x D2,

If v is a vertex with deg(v) = 2 and if «, 8 are arrows such that t(«) = v = s(8) then we
glue the adjoining cobordisms (Wa;MS(a),Mt’(a)) and (Wg; Mgy, Mygy) in directly without
disc thickening the manifold M,. If v is a vertex with deg(v) = 1 and if « is an arrow with
s(a) = v or t(a) = v then we similarly glue the cobordism (Wy; My, My(a)) directly without

disc thickening the manifold M, and we may contract M, x I to M, so that W, x {0} and

W, x {1} are glued directly.
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Example 3.5.4. The thickening of the oriented manifold representation of the quiver from

Example 3.5.2 is of the form

Figure 43: The thickening of the representation.

Note the procedure of thickening an oriented manifold representation of a quiver is only
well defined once the quiver is ordered since otherwise the homeomorphism type of the result-

ing manifold may change unpredictably.

The geometric thickening operation for quivers, the algebraic thickening operations from
Definition 3.2.3 together with the glueing operations for triads from Definition 2.2.1 and for
cobordisms of symmetric pairs from Definition 2.2.4 motivate the following algebraic thickening

operation for quivers.

Definition 3.5.5. The thickening of an (n + 1)-dimensional e-symmetric Poincaré representa-

tion of an ordered quiver ) over A

(fq:Cq = Dq,(¢py.Pc,))

is the (n + 2)-dimensional e-symmetric Poincaré pair over A

(f:0D - D,(¢p,%op))
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constructed as follows. For each vertex v € Qp with deg(v) # 1,2 form the disc thickening with
a deg(v)-fold boundary splitting of the n-dimensional e-symmetric Poincaré complex (Cl, ¢y)

over A

(Co,00) ___(C,0)

(C0r0) (Cor )

Cnd) b 0 (C.r0)

(Cor ) ,(Cnd)
(CO\)_/(C )

Figure 44: A schematic diagram for the disc thickening with a boundary splitting of the e-symmetric
complex associated to the vertex v.

and for each arrow « € @ construct the thickening of the (n + 1)-dimensional e-symmetric

cobordism over A

((fsa) fi(a)) 1 Cs(a) ® Cria)y = Do, (00a; Ps(a) ® ~Pi(a)))

(Cs(a) Ps(a)) (Da; $a) (Cia)s Pt(a))

(Cs(a)+0) (D4, 0) (Ci(a);0)

(Cs(a)s Ps(a)) (Ci(a)y Pr(a))

(Da, ¢a)

Figure 45: A schematic diagram for the thickening of the e-symmetric cobordism associated to the
arrow a.

and then form the direct sum
$U€QO(OU ®Z C(Sl,Z) - Ova (07 ¢U ® d)Sl ))

If a is an arrow from s(a) to t(a), use the boundary splittings of (Cy(a); ¢s(a)) and (Cia), di(a)),
the ordering of the arrow « around the vertices s(«) and t(«), and the glueing operation for

adjoining e-symmetric triads to glue the thickening of

((fsca) fi@)) 1 Csca) ® Cria)y = Da, (00a; Ps(a) ® ~Pi(a)))

to

(Cy(a) @2 C(SZ) = Cy(ays (0, hs(a) ® 951)) @ (Cy(a) 82 C(55Z) = Cyay, (0, dr(a) ® Ps51))



CHAPTER 3. THICKENING QUIVER REPRESENTATIONS 77

along

1 0 1 0
(( 010 1 ) 1 Cs(a) @ Cia) ® Cs(a) ® Cia) = Cs(a) ® Ci(a)) (0, Ps(a) & ~Pt(a) ® ~Ps(a) ® ¢t(a)))

) (Cs(a), ¢s(a)) (Cs(a)3 d’s(a)) (Da, ¢a) (Ct(a)a ¢t(a)) (Ct(oz)v ¢t(a))
glue glue
(Cs(a),0) (Cs(e),0) —— (Cs(a+0) (Dg,0) (Ct(a),0) — (Ct(a),0) (Ct(a),0)
(Csa)s Ps(0))  (Cs(a)s Ps(a)) (Da, ba) (Ci(a)s Pr(a))  (Ci(a)s Pr(a))

Figure 46: Glueing the three pieces.

If v is a vertex with deg(v) = 2 and «, 8 are arrows such that t(«) = v = s(«) then we glue

the adjoining e-symmetric cobordisms

((fs(a) ft(a)) : Cs(a) @ Ct(a) = Dy, (6¢a7 ¢s(a) & _¢t(a)))

and
((fsay fup)) i Cs(p) ® Cupy > Dp, (008, ds(5) @ ~u(5)))

directly without disc thickening the e-symmetric Poincaré complex (C,,, ¢, ). If v is a vertex with
deg(v) =1 and « is an arrow with s(«) = v or ¢(a) = v then we similarly glue the e-symmetric

cobordism
((fsa) fi@)) 1 Cs(a) ® Cyia)y = Da, (00a; Ps(a) ® ~Pi(a)))

in directly without disc thickening the e-symmetric Poincaré complex (C,, ¢y).

One could also define the thickening of an e-symmetric Poincaré representation of a quiver
in terms of the e-symmetric L-spectrum L*(A4,€) = {L"(A4,¢€)ln > 0} of [Ran92, Section 12].
This is an Q-spectrum of pointed Kan A-sets with homotopy groups equal to the L-groups
of A mp(L*(A,e)) = L™(A,e). The 0-simplices of the A-set L"(A,¢) are the n-dimensional
e-symmetric complexes over A and the 1-simplices of L™(A,¢) are the (n + 1)-dimensional
e- symmetric cobordisms over A. Omne can thicken @ directly to produce a 2-dimensional
manifold (N,0N) which contains @ as a deformation retraction with a projection p: N — Q
which is a homotopy equivalence. An n-dimensional symmetric Poincaré representation (fg :
Cq — Dq,(¢py,%c,)) of Q can then be regarded as a A-map C: Q — LL"(A,¢). Choosing a
triangulation of (N,0N) such that the projection map is a CW-map, and hence is a A-map, the
composition Cp: N - Q - L™(A, €) then represents a cohomology class Cp e H™™(N;L(A4,¢))
which is Poincaré dual to a homology class Cp* € H,2(N,0N;L(A,¢€)). This homology class
can be described combinatorially as a cycle in the sense of [Ran92, Section 12] and represents
the thickening of (fq : Cq = Dq,(¢p,,Pc,,))- This approach uses the Kan extension condition
of L™(A,€) to glue symmetric triads and relative symmetric cobordisms rather than using the

glueing operations from chapter 1.

Example 3.5.6.
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(i) Thickening the (n + 1)-dimensional oriented manifold representation of the trinity quiver
T from Example 3.4.5 (i) produces an oriented (n + 2)-dimensional manifold with boundary
(22,00)

M1XI

W1XI

N

My x D?

My x T My x 1

Figure 47: A schematic diagram for the thickening of the manifold representation of the trinity quiver.

The inclusion W7 u Wy u W3 < 2 is a homotopy equivalence and there is a homeomorphism
(Wi un, Wa) u (Waun, Wa) u (Ws un, Wi) 209

as shown by the diagram

M

My M3

Wa Mo Ws

Figure 48: A schematic diagram for the homotopy equivalence and the boundary decomposition.

so that  and 0f) can be recovered, up to homotopy equivalence, by glueing copies of the
cobordisms Wy, Wy, W3. If R is a commutative ring with identity then this implies that there

are chain homotopy equivalences C'(Q2; R) ~ E where

E=%(C(Mo; R) > C(Wi; R) ® C(W2; R) ® C(W3; R))
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and C(0Q; R) ~ OF where

OF = 6 (C(Mi; R) @ C(Ma; R) ® C(Ms; R) »  €(C(Mo; R) - C(Wh: R) @ C(Wa; R))
¢ (C(Mo; R) -~ C(Wa; R) @ C(W3; R))
&% (C(Mo; R) > C(W3; R) @ C(W1; R))).

Applying the symmetric construction to (€2,09Q) produces the (n + 2)-dimensional symmetric
pair (C(9€; R) — C(%; R), (¢, dsq)) over R and by Example 2.1.5 and Example 3.2.2 there

is a homotopy equivalence
(C(9% R) » C(Q; R), (90, pon)) = (OF — E,(¢r,09F))

where ¢or = (=pw, Uow, ) U (=dw, Udw, ) U(=Pw, Vdw, ) If (9D — D, (ép,0¢p)) is the (n+2)-
dimensional symmetric pair over R obtained by thickening the (n + 1)-dimensional symmetric

Poincaré representation of Example 3.4.5 (i) then there is a homotopy equivalence
(C(0; R) » C( R), (¢0, pon)) = (OE » E,(¢E,0¢5)) ~ (0D - D, (¢p,0¢p)).

(ii) Thickening the (n + 1)-dimensional oriented manifold representation of the theta quiver
© from Example 3.4.5 (ii) produces an (n + 2)-dimensional oriented manifold with boundary
(2,00)

Figure 49: A schematic diagram for the thickening of the manifold representation of the © quiver.

such that the inclusion W1 uWs u W3 < (1 is a homotopy equivalence and there is a homeomor-
phism
(W1 Ungouar, Wa) u (Wr Unggung, Wa) U (Wa Unggunr, W) = 02

as shown by the diagram

so that Q and 0 can be recovered, up to homotopy equivalence, by glueing copies of the
cobordisms Wy, Wy, W3. If R is a commutative ring with identity then this implies that there

are chain homotopy equivalences C'(2; R) ~ E where

E=%(C(Mo; R)® C(Mi; R) > C(Wyi; R) @ C(Wo; R) © C(W3; R))
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Wy

My

Figure 50: A schematic diagram for the homotopy equivalence and the boundary decomposition.

and C(09Q; R) ~ OF where

OF = CK(C(M(),R) @ C(Ml,R) - C(Wl,R) ® C(WQ,R))
% (C(Mo; R) ® C(M1; R) » C(Was R) ® C(W3; R))
% (C(Mo; R) ® C(My; R) » C(Ws; R) ® C(Wh; R)).

Applying the symmetric construction to (€2,09Q) produces the (n + 2)-dimensional symmetric
Poincaré pair (C(0Q; R) — C(Q; R), (¢q,Pan)) over R and by Example 2.1.5 and Example

3.2.2 there is a homotopy equivalence
(C(O; R) - C(% R), (b0, 9oa)) ~ (OF — E, (¢, dor))

where ¢op = (d)Wl LJ—gi)W2 ) ® ((;5W2 L.J—(;sv(/3 ) ® (¢W3 U—ow, ) If (8D - D, (¢D, 8¢D)) is the (n+2)—
dimensional symmetric pair over R obtained by thickening the (n + 1)-dimensional symmetric

Poincaré representation from Example 3.4.5 (iii) there is a homotopy equivalence
((C(9% R) » C(&% R), (da, ¢oq)) = (OF > E, (95, ¢or)) = (9D ~ D, (¢p, ¢op))-

Theorem 3.5.7. The symmetric construction commutes with the thickening operations up to

homotopy equivalence of the resulting symmetric pair.

Proof. Let R be a commutative ring with identity and let (Wgq; Mg, My) be an (n +1)-
dimensional oriented manifold representation of an ordered quiver Q. If (2,99) be the thicken-
ing of (Wg; Mg, Mg) then let (9D — D, (¢p,dap)) is the thickening of the (n+1)-dimensional

symmetric Poincaré representation
(C(Mg; R) ® C(Mg; R) » C(Wq; R), (¢wq: darg © ~dnry,))

obtained by applying the symmetric construction to (Wg; M@Mé) over R. By Propositions
3.2.4 and 3.3.9 there is a homotopy equivalence of (n+2)-dimensional symmetric Poincaré pairs
over R

(C(0; R) - C(% R), (¢0; 9oa)) = (0D — D, (¢p, dop))-
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The following diagram is commutative up to the homotopy type of the resulting symmetric

pair.
geometric
s Mq, M » (9,00
(Wa3 Mo, M) thickening (62,09)
symmetric symmetric
construction construction
C(OQ;R) - C(R), ,
(C(MQ;R) ® C(Mé;R) N C(WQ;R), algebraic ( ( ) g ( ) (CbQ Qj)c’m))
- - 2
(owo, dmg ® —(/)Mé ) thickening

(0D - D, (¢p,%op))

O

Note that in Definition 3.5.3 one could choose to glue in the thickening of each cobordism
(Wa; Moy, Mt’(a)) with a twist on the right hand side

0 untwisted I twisted
M x D —_— Wa X EE— 2
s(e) glueing “ glueing Mt(a) x D

Figure 51: A schematic diagram for a twisted geometric glueing.

and using the twisted glueing operations for triads from Definition 2.3.4 one could choose
to glue in the thickening of each cobordism ((fs(a) fi(a)) : Cs(a) ® Ci(a) = Da; (00a; Ps(a) @
~@1(a))) With a twist on the right hand side

(Davs $a)
untwisted twisted
(Cs(a) ) 0) — (Da7 0) — (Ct(a)a 0)
glueing glueing
(Davs $a)

Figure 52: A schematic diagram for a twisted algebraic glueing.

Definition 3.5.8. Let @ be a finite quiver.

(i) A twisted (n + 1)-dimensional oriented manifold quiver representation of @ consists of an
(n+1)-dimensional oriented manifold representation (Wq; Mg, M) of Q together with twisted
glueing data at the right hand side of each cobordism (We; My(ay, M, t’(a)) determined by each

arrow « € Q1.
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(ii) A twisted (n + 1)-dimensional e-symmetric Poincaré quiver representation of @) consists of
an (n + 1)-dimensional e-symmetric Poincaré representation (fo : Cq — Dg, (069, ¢q)) of
Q@ together with twisted glueing data at the right hand side of each symmetric cobordism
((fsca) fi(a)) : Cs(a) ® Cia) = Da, (0¢a; ds(a) ® —Pi(a))) determined by each arrow a € Q.

Since the twisted union of adjoining triads is an algebraic model for the twisted union of

adjoining manifold triads we have

Theorem 3.5.9. The symmetric construction commutes with the twisted thickening operations

up to a homotopy equivalence of the resulting symmetric pair with a homotopy commutative

diagram.
twisted geometric
Wo; Mg, M/ > (2,00
(Wa: Mo, Q) thickening (62,00)
symmetric symmetric
construction construction

(C(9% R) » C(; R), (90, Pan))

2

(0D - D,(¢p,%op))

(C(Mg;R)® C(Mg; R) » C(Wg; R),  twisted algebraic
(Pwe, dr, ® —0 M, ) thickening

In chapter 5 we will show that a Morse 2-function on a 4-manifold M determines a twisted
quiver representation which can be used to reconstruct the symmetric Poincaré complex (C(M), ¢ar).

Part of the reconstruction uses the twisted thickening operation.



Chapter 4

Morse 2-functions

In this chapter we examine Gay and Kirby’s definition of Morse 2-functions [KG13a] and tri-
sections of 4-manifolds [KG13b]. These are natural generalisations of Morse functions and
Heegaard splittings of 3-manifolds. The geometric results in this chapter will be applied in
chapter 5 in order to produce a symmetric Poincaré analogue of the Gay and Kirby’s technique
[KG13b] to reconstruct a 4-manifold M* from a 3-dimensional manifold representation of a

quiver determined by a Morse 2-function.

4.1 Morse Functions, Heegaard Splittings and Heegaard
Diagrams

As a warm up, we first recall the relationship between a Morse function on a 3-manifold and a

Heegaard decomposition.
Definition 4.1.1. The standard index k Morse model in dimension m is the function

2

m ., mpm 2 2 2
pp R™ SRy (21,0, Tm) > =X — o X F Ty T Ty

Let W be a smooth manifold with boundary and let N be a smooth 1-manifold. A smooth
function f : W — N is locally Morse if f is locally of the form f(x) = ui*(x) around each
critical point p € W and in this case we say that k is the index of p. A Morse function on a
smooth cobordism (W; My, M7) is a smooth map f: W — [0,1] which is locally Morse such
that f~1(0) = My and f~1(1) = M; and all critical points of f occur in the interior of W.

Example 4.1.2.

(i) The height function on the torus above a tangential plane as shown below is a Morse function

with four critical points p, q,r, s of respective indices 0,1,1, 2.

83
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Figure 53: A Morse function on the torus.

(ii) The solid torus
St x D?={(0,z,y) e S* xR*: 2% +9? = 1}

has a Morse function
1 2 Lo o 1 2 9
f:8 xD*—10,1], (9,x,y)»—>§ xé+y +§cos(9)(1—x -y ) +1

such that f71(0) = @ and f~!(1) = S* x S and f has one critical point of index 0 at (,0,0)

1 3

with critical value 1 1

and one critical point of index of 1 at (0,0,0) with critical value

If W is a finite-dimensional smooth manifold then space of Morse functions of W is a dense,
locally stable subspace of the space of all smooth functions on W so that generically every
smooth function is Morse. See [BHO04, §5.5] for more details.

Definition 4.1.3.

(i) A Heegaard splitting of a closed, oriented, connected 3-manifold M is a triple (Uy, Us, ) such
that M = Uyux Uy where Uy, Uy are 3-dimensional handlebodies with boundary ¥ = 9U; = —9Us.
The closed orientable surface X is called a Heegaard surface for M and the genus of the splitting
is the genus of X .

(ii) Two Heegaard splittings (U, Us, X)), (U7, U3, %) of a closed, oriented, connected 3-manifold
M are equivalent if there is an orientation preserving homeomorphism f : M — M such that
f(U) = UL, f(U2) =Us, f(2) =X

(iii) The stabilisation of a genus g Heegaard splitting (Uy, Us, 2) of a closed, oriented, connected
3-manifold M is the genus g+ 1 Heegaard splitting (Uy §(S* x D?), Us j(D? x S*), S#(S* x S1))
obtained by taking the connected sum of the Heegaard splitting (Uy, Us, ) of M with the genus
1 Heegaard splitting (S x D?, D? x S1, 5% x S') of 3.

Morse functions can be used to yield Heegaard decompositions of 3-manifolds.
Theorem 4.1.4. Every closed, oriented, connected 3-manifold M admits a Heegaard splitting.

Proof. By [Sma61, Theorem C] one can find a Morse function f: M — R which is self-indexing

(the value of each critical point p € M is equal to its index) such that f has exactly one

critical point of index 0 and one critical point of index 3. Then % is a regular value of f
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and f71([0,2]), f7*([2,3]) are handlebodies with boundary a closed oriented surface f~(2)

of genus g equal to the number of index 1 critical points. O

A Heegaard splitting (Uy,Us, ) may be expressed combinatorially in terms of attaching

curves on the Heegaard surface X.

Definition 4.1.5. A set of attaching circles on a closed, oriented surface X of genus g is a

collection of simple closed curves v = (71,72, ...,74) embedded in ¥ such that
(i) The curves are disjoint from each other.
(ii) The homology classes [v1], [v2],---,[Vg] € H1(3;Z) are linearly independent.

The handlebody determined by -~ is the result of attaching 3-dimensional 2-handles to
Y x [-1,1] along the curves v1,7%2,...,7g € X x {1} to produce a cobordism between ¥ and

a disjoint union of k — g + 1 spheres and then capping these spherical boundaries with disks.

A Heegaard diagram is a triple (X, a, 3) where X is a closed oriented surface of genus g
and a = (a1,Q2,...,04),8 = (B1,52,...,84) are sets of attaching circles. This determines a
Heegaard splitting (U, Ug, 2) of M = Uy Us Ug where Uy is the handlebody determined by a
and Ug is the handlebody determined by 3.

Example 4.1.6. A Heegaard diagram for the genus 1 Heegaard splitting of S3

Figure 54: A genus 1 Heegaard diagram for S°.

Certain standard moves can be performed on the attaching circles to transform one Heegaard

diagram into another.

Definition 4.1.7. Let v1,72,...,7, be a set of attaching circles for a handle body U of genus
g.

(i) An isotopy is performed by moving 71,72, ...,7, through a one-parameter family of curves
parametrised by ¢ € [0, 1] such that the curves remain mutually disjoint from each other at each

instant.

(ii) A handle-slide is performed by choosing two distinct curves 7; and v; and replacing ; with
a new simple closed curve y; embedded in OU in such a way that ] is disjoint from 1,72, ..., 7,

and 7;,7/,7; bound an embedded pair of pants.

(iii) Attaching curves a, 8 for a Heegaard diagram (X, a, 3) of genus g are in standard position
if it is possible to perform a finite sequence of isotopies and handle slides such they are of the

form
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Figure 55: Attaching curves in standard position.

(iv) Two attaching curves a, 8 are cancelling if they intersect transversely in a single point

Figure 56: Cancelling attaching curves.

(v) Two attaching curves are parallel if they are of the form

Figure 57: Parallel attaching curves.

Example 4.1.8.

(i) An isotopy between two attaching circles (y1,72) and (71,~4) for a handle body of genus 2.

Figure 58: An isotopy of attaching circles.

(ii) A handle-slide between two attaching circles (v1,7v2) and (71, v4) for a handle body of genus
2 with the embedded pair of pants cobordism bounded by ~1, 72,71 -

Figure 59: A handle-slide of attaching circles.
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Theorem 4.1.9. ([Sin33]) Let (3, ,3) and (¥',a’,3") be Heegaard decompositions of a
closed, oriented, connected 3-manifold M. It is possible to apply finitely many stabilisations,

isotopies and handle slides so that the resulting Heegaard diagrams are equivalent.

4.2 Generic homotopies and Morse 2-functions

Gay and Kirby’s Morse 2-functions are smooth maps from a manifold to a surface which look

locally like a generic homotopy of Morse functions but with no global time direction.
Definition 4.2.1. Let M be a smooth manifold and let N be a smooth 1-manifold.

(i) A homotopy of Morse functions fy, f1 : M — N is a smooth map f : I x M — N such that
f(0,z) = fo(x) and f(1,2) = f1(x). We write f; = f(t,-): M - N.

(ii) An arc of Morse functions is a homotopy f : I x M — N such that each f; : M - N is Morse.

(iii) Let f:Ix M — N be a smooth homotopy between Morse functions fo, f1 : M - N. The

singular locus of the map
F:IxM—IxN, (tz)=(tfi(z))

is the set

Zp ={(t,x) : x is a critical point of f;}

with image
F(Zp) ={(t, fi(z)) : x is a critical point of f;}

the Cerf graphic of F.

Cerf graphics allow one to track the evolution of critical values in a homotopy of Morse

functions as time passes.

Definition 4.2.2. The standard index k birth-death singularity model in dimension m is the

function

2

k. pm 2 2,.3 2
op i R™ 5> R, (X1, @) P —Z] — oo =T + Tiyq + Thyg +on Ty

m

Definition 4.2.3. ( [Cer70] [KG13a, Definition 2.3]). Let M be a smooth m-dimensional
manifold and let N be a smooth 1-dimensional manifold. A homotopy f:Ix M — N of Morse
functions fy, f1 : M — N is called generic if each f; : M - N is a Morse function except at
finitely many values of ¢. At those values ¢, where f;, is not Morse, exactly one of the following

events should occur:

(i) Two critical values cross at ¢,. More precisely, f;, is locally Morse but not Morse and there
is a small € > 0 such that such Zp n ([t. —€,t. + €] x M) is a collection of arcs on which F is an
embedding except for exactly one transverse double point where the images of two arcs cross.

This event is called a crossing

(ii) A pair of cancelling critical points are born (or die). More precisely, there is a small € > 0
such that for all t € [t. —€,t4 + €], f; is a Morse function outside of a ball and inside that ball

there are local coordinates (which may depend on t) such that

fe(@y, .o ) = =25 — . —as 4 o — (E =) Tt + Doy + oo + T2,
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and f; has no other critical values near 0. This event is called a birth singularity.

In particular f;, has a birth singularity and f; is Morse when t # ¢, with no critical points
in this ball when t < t, and are precisely two critical points in this ball, one of index k£ and
one of index k + 1, when ¢ > ¢,. Moreover, F is injective on Zg n ([t, — €,t, + €] x M) and
Zp 0 ([te —€,t4 + €] x M) is a collection of arcs. All but one arc has end points at ¢, — e and
t. + ¢ and is smoothly embedded via F', and the remaining one arc has both end points at t, +¢
and is mapped via F to a semi-cubical cusp in [t. —€,t, + €] x N. The effect of reversing the

direction of t is a death singularity.

Example 4.2.4. The figure below is a typical Cerf graphic for a generic homotopy of Morse

functions

fe

Figure 60: A Cerf graphic.

Definition 4.2.5. ([KG13a, Definition 2.7]). Let X be a smooth, closed n-dimensional manifold
and let X be a smooth, closed 2-dimensional manifold. A smooth, proper map F : X — ¥ is
called a Morse 2-function if for each g € ¥ there is a compact neighbourhood S of ¢ with
a diffeomorphism ¢ : S — I x I and a diffeomorphism ¢ : F71(S) - I x W for a smooth
(n—1)-dimensional cobordism (W; M, M") such that the coordinate representation ¢yo Fop™':
I xW — I x1is of the form (t,z) ~ (t, fi(z)) for some generic homotopy of Morse functions
fi: (W; M, M") - (I;{0},{1}). A singular point of F is called a fold point if the homotopy
used to model F' at that point is an arc of Morse functions. A singular point of F' is called a

cusp point if the homotopy used to model F' at that point has a birth or death at that point.
Example 4.2.6. The map

1+2%+9°

F151XR29R2C527 (t7$7y)’_)(t’ 2

)

is a Morse 2-function on the (open) manifold S x R?. Here we are using polar coordinates on

the codomain. The function (z,y) — 1+2°49% 35 Morse with a single critical point of index 0 at
2 2

(0,0) so that F has singular set S* x {(0,0)}. The function f;(z,y) = MTW is Morse for each

fixed time ¢ so that each singular point of F' is a fold point. The image of the singular set is a

1

circle of folds in R? of radius 3

centred at the origin.
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4.3 'Trisections, trisection diagrams and the existence of

Morse 2-functions

We now examine Kirby and Gay’s result that every 4-manifold admits a Morse 2-function in
order to produce some examples of fold loci of Morse 2-functions . The existence of Morse
2-functions on a 4-manifold be connected to the existence of a trisection of a 4-manifold and is

a generalisation of the relationship between a Morse function on a 3-manifold and a Heegaard
decomposition.

Definition 4.3.1. ([KG13b, Definition 1]). For integers 0 < k < g let Zj, = (S x D?) be the
4-manifold with boundary Yj = #5(S! x S?) and let (1/,;'79,5/,;57,#g(S1 x S1)) be the genus g
Heegaard splitting of Y}, obtained by stabilising (g — k) times the genus k Heegaard splitting
(5 (S* x D?), i (S* x D?), #1(S* x S)) of V5.

A (g, k)-trisection of a smooth, closed, connected, oriented 4-manifold X is a decomposition

X = X7 UXyu X3 of X into 3 codimension 0-submanifolds X; with boundary satisfying the
following properties:

(i) For each i =1,2,3 there is a diffeomorphism ¢; : X; - Zj.

(ii) For each i = 1,2,3 ¢;(X;-1 n X;) = Y,:,g and ¢;(X; n X;41) = ijg where the index ¢ is
understood modulo 3.

(iii) X7 n X2 n X3 is an orientable surface of genus g.

Figure 61: A schematic diagram for the trisection of X into the submanifolds X;, X2, X3 or into the
pieces Z1,Za, Zs3.
Example 4.3.2.

(i) The 4-sphere

S*={(z,x3,24,75) e CxR®: |2]* + 23 + 23 + 2% = 1}
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has a (0,0)-trisection with

) 2T
Xj:{(rele,;g;;,u,xg)):r2+x§+xﬁ+x§:1,0<r,3 NUAN

27y 2r(g+1
;{(r,xg,x4,x5,9)|r2+x§+xi+x§:1,0<r,;UQOS7r(‘]3+)}
N )
3 3
= D4
:B(slxpi”)

where D? is the northern hemisphere of

93 = {(7",.’173,.’1747.1?5”7"2 +x§ +33421 +x§ =1}.

(ii) The clutching function w written in complex coordinates
w: 8 = 50(2), (x = (y = 2y))

determines a vector bundle 7,, over S? whose sphere bundle S(7,,) is the Hopf Bundle S* —
5% —» §%. Tt is shown in [GS99, Example 4.24] that 7,, has a disc bundle

(D?,8%) > (D(1), S(nw)) = (CP? - D*,5%) - S,

Decompose the base sphere S2 = D2 Ug: D? as the union of a northern and southern hemisphere
which intersect in the equator. The disc bundle D(7,) can be expressed as a union of the
induced bundles over the contractible spaces D? and D?. The induced bundles are the trivial
disc bundles D? x D%, D? x D? and hence we may decompose CP? as the union of three balls
D*.

Figure 62: A trisection of CP?.

The diagram on the right shows how the central torus S* x S! sits inside of each of the three
pieces D? x S1, D? x S1S! x D2. This determines a (1,0)-trisection of CP2.
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The 4-manifold analogue of a Heegaard diagram is a trisection diagram which allows one to

combinatorially record a trisection of a 4-manifold.

Definition 4.3.3. ([KG13b, p.8]). For integers 0 < k < g a (g, k) trisection diagram is a quadru-
ple (X, a, B,) where ¥ is a closed oriented surface of genus g and (X, o, 3), (%, 3,7), (X, v, &)
are genus g Heegaard diagrams for #,(S* x S?). This determines a 4-manifold X (%, o, 3,7)
obtained by attaching 4-dimensional 2-handles to ¥ x D? along

ax{1},8 x {e%},'yx {e%} c Y xSt =9(X x D?)

and filling in the rest with 3 and 4-handles (by [LP72] there is only one way to fill in with 3 and
4-handles ). Equivalently, we may think of X (¥, «,3,7) as being obtained by glueing three

copies of i (S* x D?) over their boundaries, using the Heegaard decompositions

#1.(S' x §%) = Uy Us Ug = Ug U Uy = Us Us, Ug

Figure 63: The trisection determined by a trisection diagram.

Example 4.3.4. ([KG13b, p.7-8]).

(i) A (1,0)-trisection diagram which determines the (1,0) trisection of CP? from Example 4.3.2

Figure 64: A trisection diagram for CP?.

(i) A (2,0) trisection diagram for S? x S2



CHAPTER 4. MORSE 2-FUNCTIONS 92

Figure 65: A trisection diagram for 5% x S2.

(iii) A (1,1) trisection diagram for St x §3

0o

Figure 66: A trisection diagram for S* x S%.

The connection between Morse 2-functions and trisections is as follows.

Theorem 4.3.5. ([KG13b, Theorem 4, §3]). If X is a smooth, closed, connected, oriented

4-manifold then there exists a Morse 2-function F : X — R? ¢ S2 with a fold locus of the form

Figure 67: The prescribed fold locus.

where each sector

] 2r(g +1
R? = {(rcos(Q),rsin(Q)) eR*:0<r, —> <0< 7r(]3+)} (1<7<3)
contains the same number of fold curves. If k is the number of fold curves without cusps in each
sector R then this induces a (g, k)-trisection of X with X; = F3"(R3) and g = x(X) + 2k - 2.

The key idea is that by Cerf’s 1-parameter theorem [Cer70] any two Morse functions fy, f1 :
M - [0,1] on a 3-manifold can be connected by a generic homotopy f; : fo ~ fi. The homotopy
can be chosen to keep the index one critical values below % and the index two critical values
above. During the homotopy are births and deaths of cancelling pairs of index one and two
critical points but these stabilise the Heegaard splittings of M induced by fy and f; such that

the induced handle slides taken one Heegaard splitting to the other. One can start with a



CHAPTER 4. MORSE 2-FUNCTIONS 93

trisection diagram (X, a, 3,v) of X and use Cerf’s 1-parameter theorem to extend a Morse
function on U,,Ug, U, which realises the Heegaard decompositions in the trisection diagram,
to a Morse 2-function on X. In terms of handles this corresponds to performing handle slides
and handle cancellations to transform any one of the Heegaard diagrams of U,,Ug, U, into any

of the other Heegaard diagrams.

Example 4.3.6. We now show that there exists a Morse 2-function F : CP? - R? - S? such
that the image of the fold locus in Theorem 4.3.5 is of the form

Figure 68: The fold locus for a Morse 2-function on CP?.

By Example 4.3.4 there is a genus 1 trisection diagram inducing a genus 1 trisection of CP?
into three discs D*

Figure 69: Trisection and trisection diagram for CP2.

By Example 4.1.2 there is a Morse function
1 2 Lo o 1 2.2
f:8 xD* 1, (G,x,y)H§ 7 +y +§cos(9)(1—x -y ) +1

which has exactly one critical point of index 0 and one critical point of index 1. Glueing the
two of S* x D2, D? x S, D? x S* over S! x S! produces a sphere S with a genus 1 Heegaard

decomposition arising from one of the Heegaard diagrams
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Figure 70: Three heegaard diagrams for S°.

and glueing the two Morse functions produces a Morse function on S3 which has two critical

points of index 0 and two critical points of index 1 and the results may be glued together

index 0 index 0

index 0

index 1 index 1

St x D?

index 1

index 1 index 1

index 0
mdex index 0 D2_ x St Di x St index 0

index 0 index 0

Figure 71: The critical points on the union.

We may thicken each of the three copies of S*xD? D2xS* D?xS! and their Morse functions
by crossing each of the three copies of S x D? and their Morse functions with the closed unit

interval I to produce a Morse 2-function
F:S5'xD?*xI>RxI>RxR, (0,2,y,t)~ (f(0,2,),t)

in such a way that after glueing a critical point of f becomes a fold of F', as shown below

—_—

\/

\ /

Figure 72: Extending the Morse function.

The resulting Morse 2-function then arises by performing handle slides and cancellations
to transform any one of the Heegaard diagrams of S® into any of the other of the Heegaard

diagrams.
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Example 4.3.7. We now show that there exists a Morse 2-function F : §% x §% — R? « §2

such that the fold locus has an image of the form

Figure 73: The fold locus for a Morse 2-function on S% x S2.

By Example 4.3.4 there is a genus 2 trisection diagram inducing a genus 2 trisection of
52 x 52

Figure 74: Trisection and trisection diagram for S? x S2.

The Morse function
1 2 (o o 1 22
S'xD* -1, (97x,y)»—>§ ety +§cos(9)(1—x -y )+1

from Example 4.1.2 with one critical point of index 0 and one critical point of index 1 induces a
Morse function S* x D? St x D? - I with two critical points of index 0 and two critical points
of index 1. This in turn induces a Morse function on the connected sum (S* x D?) (S* x D?)
with two critical points of index 0 and three critical points of index 1. The 1-handle I x D?
attached to S' x D211 St x D? to form the connected sum cancel with the 0-handle in the second
copy of S' x D? and so it is possible to a Morse function f : (S* x D?)§(S* x D?*) - I with one
index 0 critical point and two index 1 critical points. Glueing two copies of (S* x D?) (S* x D?)
over (S1x S1)#(S! x S1) produces a sphere S* with a genus 2 Heegaard decomposition arising

from one of the Heegaard diagrams
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Figure 75: Three Heegaard diagrams for S°.

and also produces a Morse function on S% which has two critical points of index 0 and four
critical points of index 1 We may thicken by crossing with the closed unit interval I to produce

a Morse 2-function
F: ((S1 ><D2)t1(S1 ><D2)) xI >RxI<>RxR, (0,z,y,t)~ (f(0,z,y),1)

in such a way that a critical point of f becomes a fold of F' as shown below

index 0

o . \A/

Figure 76: Critical points on the union.

The resulting Morse 2-function then arises by performing handle slides and cancellations
to transform any one of the Heegaard diagrams of S into any of the other of the Heegaard

diagrams.

Example 4.3.8. The (1,1) trisection diagram for S! x S* from Example 8
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Figure 77: Trisection diagram and trisection for S x S3.

induces a Morse 2-function such that the fold locus has an image consisting of no cusps, no

crossings and two circles.

Figure 78: The fold locus of a Morse 2-function on S* x 2.



Chapter 5

Algebraic reconstruction of

4-manifolds

Gay and Kirby [KG12] showed that, subject to certain conditions, the fold curves and fibres of
a Morse 2-function F : M* - S? determine a manifold representation of a quiver from which
one to reconstruct M* up to diffeomorphism. The reconstructions thickens with a twist the
quiver representation and then glues in disc neighbourhoods of cusps and crossings. We give
an algebraic analogue of their result by applying the symmetric construction at each step to
show how a Morse 2-function F: M* — S can be used to reconstruct the symmetric Poincaré
complex (C(M; R), ¢pr) of M. The algebraic reconstruction thickens with a twist the symmetric
Poincaré representation of a quiver and then glues the result to the symmetric Poincaré pairs
obtained by applying the symmetric construction to disk neighbourhoods of cusps and crossings.
This section follows closely the method in [KG12] and we recall the geometric reconstruction

method presented there in order to motivate the algebraic reconstruction method.

5.1 Determining the quiver and its representations

From now on let M™ and %2 be smooth, closed, connected oriented manifolds of dimension
n and 2 respectively and let F : M™ — X2 be a Morse 2-function with connected fibres. By
definition each point p € M has a Euclidean neighbourhood R x R"™! and f(p) € ¥ has a
Euclidean neighbourhood R x R so that locally F(z) = F(t,z) = (¢, f;(x)) where f; : R" 1 - R
is a generic homotopy of Morse functions. It follows for each point p € M the rank of the
differential DF(p) : T,M — T,y is at least 1 so F' has no critical points. The set of points
in M for which the rank of the differential DF is precisely 1 is an embedded 1-dimensional
submanifold of M with image under ' an immersed 1-manifold in ¥2, see [AGZV12, p.28].

Definition 5.1.1. The fold graph of F is the embedded graph I' ¢ ¥? which is formed from
the immersed 1-manifold in ¥2 by placing a degree 2 vertex at each cusp and a degree 4 vertex

at each crossing.

The fold graph I' then divides ¥ into a collection of finitely many regions which we label
Ri,Rs,...,R,,. For each region R; fix a representative point y; € R; in the interior of R; so

that y; does not lie on any of the edges surrounding R;.

98
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Example 5.1.2. A fold graph I' ¢ R? in the case where ¥ = 5% = R? U {c0}.

)

- Y4

<

Figure 79: A fold graph.

Lemma 5.1.3.

(i) Let M; = F~'(y;) be the preimage of the representative point y; under f. Then M; is a
smooth, closed, oriented (n —2)-dimensional embedded submanifold of M.

(ii) In the interior of each region R; the map F' is the projection of a locally trivial fibration, so
that for any point g in the interior of R; there is a small disc neighbourhood D? of y with a
homeomorphism h : F~1(D?) - D? x F~(y) such that there is a commutative diagram

F(D?) —'s D? < F7(y)
1~
D? /

(iii) If each region R; is simply connected then F is a trivial fibre bundle over the interior of R;.
Proof.

(i) The compactness of M; follows from the fact that M is compact and M; is a closed subset of
M. By assumption y; lies in the interior of the region A; and hence is a regular value of F'. By
the Thom transversality theorem [Tho54] F is transverse regular to {y;} c ©% and hence M; is

smooth, closed (n — 2)-dimensional submanifold of M. There is a commutative diagram

M —LE 5 52

such that the normal bundle of M; in M is the pullback of the normal bundle of {y;} in ¥ and
hence the normal bundle of M; is trivial. The bundle isomorphism Ty, & vas,nr = Thar|ar, then
implies that Ths, ® €2 = Tas|ps, so that the tangent bundle of M; is oriented and hence M; is

oriented.

(ii) The map F is proper and each point in the interior of R; is a regular value so by Ehresmann’s
fibration theorem [Ehr51] it follows that F' is a locally trivial fibration on the interior of R;

(iii) The interior of R; is then a simply-connected open subset of ¥ which embeds into R? and

hence is contractible. This implies that hence F' is a trivial bundle over the interior of R;.
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O

Suppose now that R; and R; are adjacent regions with the points y; and y; chosen close to
an edge which separates R; and R;. Choose a path «: [0,1] = M from y; to y; which intersects
the separating edge between R; and R; transversely at a single point p which is neither a cusp

nor a crossing, as shown below

R, Y

Figure 80: An edge between regions separated by a fold curve.

Lemma 5.1.4. Let M; = F~*(y;),M; = F"Y(M;),W; j = F"'(c; ;). The points p,y;,y; and
the arc a can be chosen such that (W j; M;, M;) is an oriented (n —1)-dimensional cobordism

which arises as the trace of a surgery on M; with effect Mj.

Proof. Since F' is a Morse 2-function there is a compact neighbourhood of p diffeomorphic to

I x T and an (n —1)-dimensional cobordism W such that locally F' is of the form
IxW>1IxI, (t,x)w~ (¢ fi(z))

for some generic homotopy of Morse functions f; : W — I. Since p is a fold point the generic
homotopy f: can be chosen to be an arc of Morse functions. Choosing ¥;,y; and the path «
such that the image of a has the same ¢ coordinate as p then implies that there is a Morse
function f: W — [0,1] such that y; and y; are regular values of f and p is the only critical value
of f between y; and y;. Ordinary Morse theory then implies that (W ;; M;, M;) is a cobordism

which arises as the trace of a surgery on M; with effect M;. O

We now specialise to the case n = 4 and assume that each regular fibre is connected so that
each M; is homeomorphic to a a standard, closed, oriented, connected surface F; of genus g;.
In the context Lemma 5.1.4 it follows that F; and F); differ by one in their genus since the
surgery relates the Euler characteristics by x(Fj) = x(F;) + 2, see Proposition 4.33 [Ran02a).

This naturally determines a quiver.

Definition 5.1.5. The ordered quiver of F is the ordered quiver Q = (Qo, Q1,$,t;Q1 — Qo)

defined as follows:
(i) The vertices (g are the representative points {y;}72;.

(ii) If R; and R; are adjacent regions such that F; has higher genus than F} then there is an
arrow o € (01 with source y; and target y; for each edge of the fold graph I' which separates R;
and Rj.

The quiver contains no cycles because the regular fibres F; are all assumed to be connected the

genus of the regular fibres is strictly decreasing along the directed edges.
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Example 5.1.6. The fold graph in Example 5.1.2 determines the quiver

Figure 81: The quiver determined by a fold graph.

where, for example, Fy, Fy, F5 have genus 3, F; has genus 2 and Fj has genus 1 as shown

below

F1 F2 F3 F4 F5

Figure 82: Regular fibres.

Lemma 5.1.4 then determines a 3-dimensional oriented manifold representation of the quiver.

Definition 5.1.7. The 3-dimensional oriented manifold representation (WQ;MQ,Mé) of @
associates to each vertex y; € Qg the 2-dimensional oriented manifold M; and associates to each

arrow « € Q1 from y; to y; the 3-dimensional oriented cobordism (W; ;; M;, M;).

Example 5.1.8. The quiver from Example 5.1.6 has a 3-dimensional oriented manifold repre-

sentation of the form

Figure 83: A manifold representation of a quiver.

as in Example 3.5.4 where each cobordism (W;M;, M;) arises at the trace of a surgery.

This determines a symmetric Poincaré representation.
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Definition 5.1.9. Let R be a commutative ring with identity. The 3-dimensional symmetric

Poincaré representation
(C(Mg: R) ® C(Mp: R) » C(We: R). ($w baig ® ~0ar,))

of @ over R is obtained by applying the symmetric construction over R from Proposition 3.4.6

to the 3-dimensional oriented manifold representation (Wg; Mq, M) of Q.

5.2 Algebraic Reconstruction

The 3-dimensional oriented manifold representation (Wg; Mg, MfQ) of @ together with glueing

data is enough to reconstruct M and F' geometrically.

Theorem 5.2.1. ([KG12, p.6-8]). Let F': M* — X2 be a Morse 2-function and suppose that
all the regions bounded by F' are simply-connected and the regular fibres of F' are all of genus
at least one and are connected. Then the following data suffice to reconstruct M and F up to

diffeomorphism:
(i) The fold graph T.

(ii) The standard fibre over an interior point in each region R;, that is a drawing of a standard

closed, oriented surface F; of genus g;.

(iii) An attaching circle C,, for each arrow « of the quiver @ such that passing from from F; to

F}; along the arrow « is achieved by attaching attaching a 2-handle to F; via Cl,.

(iv) Glueing data for each arrow « of the quiver @ , that is a collection of 2(g; — 1) simple closed
curves on F;

al,a; bl,aa sy Qg1 bgrl,a

which are disjoint from C,, such that aj o Nbg, = {*} is a single transverse point of intersection
and (ag,o Ubk,a) Nage Nby e =@ if k #1, so that the genus g; — 1 surface obtained from F; by
surgery along C,, should be identified with Fj in such a way that the curves

al,a; bl,aa sy gi—1,a bg,;fl,oz

map to the standard basis for Fj}.

Figure 84: The standard basis for the standard surface of genus g.

Proof. The full proof of existence and uniqueness is given in [KG12]. We only sketch the
existence part of a reconstruction of M and use it later as a template for an an algebraic analogue
to reconstruct (C(M), ¢ar). Part (iii) of Lemma 5.1.3 implies that F' is a trivial fibre bundle



CHAPTER 5. ALGEBRAIC RECONSTRUCTION OF 4-MANIFOLDS 103

over the interior of each region R;. It follows that the thickening of the 3-dimensional oriented
manifold representation (Wq; Mg, M) of @ from Definition 5.1.7 is an oriented 4-manifold
with boundary (€2, 992) which determines M outside of the preimage of disc neighbourhoods of
cusps and crossings. We invite the reader to look the sequence of diagrams from Examples 5.1.2,
5.1.6, 5.1.8 and 3.5.4 to see this process. If we wish to work with the standard fibre over an
interior point y; in each region R; as in part (ii) of Theorem 5.2.1, then instead of working with
the preimage F~!(y;) directly as in (WQ;MQ,Mé), we must use the glueing data from part
(iv). By assumption M is an extension of (£2,09) over the preimages of disk neighbourhoods of
cusps and crossings. Gay and Kirby then show that this extension is unique. The preimage of a
disc neighbourhood of a cusp z between regions R; and R; is a 4-manifold 2; ; with boundary
08 = Wzlj UN,uM; -W?2. such that €); ; deformation retracts onto the central fibre F1(2)

i,
which has the same topological type as M;.

Yi Yj M; M;

Figure 85: The pre-image of the disc neighbourhood of a cusp.

The preimage of a disc neighbourhood of a crossing z between regions R;, R;, Ry, R; is
a 4-manifold €; ; ; with boundary 0% ;r; = W;; u W, u =W} u =W, such that Q; ;
deformation retracts onto the central fibre F~1(z). The central fibre is homotopy equivalent
to the space obtained from M; by separately collapsing the disjoint framed embeddings S™? x
D*™i o M; and §™i x D*™i < M; on which we do surgery to obtain M; and Mj,.

Yj

Yk

Figure 86: The pre-image of the disc neighbourhood of a crossing.

The symmetric Poincaré complex (C'(M), ¢pr) may then be reconstructed by applying the
symmetric construction to the twisted thickening of the 3-dimensional oriented manifold rep-
resentation (WQ;MQ,MC’Q) of @ and to the preimages of disc neighbourhoods of cusps and

crossings, and then glueing the results. O

Theorem 5.2.2. Let R be a commutative ring with identity. The symmetric Poincaré com-
plex (C(M;R), ) may be reconstructed up to homotopy equivalence from the 3-dimensional

oriented manifold representation (Wgq; Mg, M(,) of Q with twisted glueing data.
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Proof. By Theorem 3.5.9 the symmetric construction commutes with the twisted thickening

operations up to homotopy equivalence of the resulting symmetric pair, as expressed in the

diagram
twisted geometric
Wa; Mg, M —— > (9,00
(Wa: Mg Q) thickening (62,00)
symmetric symmetric
construction construction

(C(0%; R) -~ C(; R), (90, Po0))

(0D - D,(¢p,%op))

(C(Mg;R)® C(Mg; R) » C(Wg; R),  twisted algebraic
(Pwe > dr, ® —0 M, ) thickening

This implies that up to homotopy equivalence, the 4-dimensional symmetric Poincaré pair
(C(O; R) = C(% R), (d0, Poq))

can be reconstructed by thickening the algebraic Morse 2-function determined by the 3-dimensional

symmetric Poincaré representation
(C(Mq; R) ® C(M{; R) » C(Wq; R), (pwyq, a1 © —dary,))

and twisted algebraic glueing data obtained by applying the symmetric construction to the
3-dimensional oriented manifold representation (Wq; Mg, M(,) of @ and twisted geometric
glueing data.

The symmetric construction may be applied to the pre-images of disk neighbourhoods of
cusps and crossings described in the sketch of the proof of Theorem 5.2.1. In the case of a
cusp the resulting 4-dimensional symmetric Poincaré pair has a 2-fold split boundary. Since
Q; ; deformations retracts onto M; and M; is 2-dimensional, it follows by Lemma 2.1.6 that the

relative part of the symmetric pair is given up to homotopy equivalence by (C(M;),0).

(C(Wil,j)a ¢W}J) (C(Wilvj)’ ¢W’LIJ)

(C(M;), éur,) (C(Mj),dm;) 2 (C(M;), dnr,) (C(M;), én1,)

2
(C(Wi’j), ¢W3]) (C(Wz?,j)a ¢Wf])
Figure 87: A schematic diagram for a homotopy equivalence of the algebraic data associated to a cusp.

In the case of a crossing, the resulting 4-dimensional symmetric Poincaré pair has a 4-fold
split boundary. Since €; ;1 deformations retracts onto M;, it again follows that the relative

part of the symmetric pair is given, up to homotopy equivalence by (C'(M;),0).
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(C(M;), d,)

(C(Wi,j)v ¢Wi,j) (C(Wj,l),qﬁwjyl) (C(MJ)7¢MJ)

(C(Wij), dw; ;) (C(W;1), dw,,)
(C(Ml)’¢MZ) (C(Qi7jykal)7¢ﬂi,j,k,l) (C(Ml)v(rsz) ~ (C(Mz)ﬂz)Ml) (C(Ml),(le)
(C(Wi,k)’¢wi,)c) (C(Wk,l)’d)Wk,z)
(CWik), o) (C(Wi), dw) (C(My), 6a1,)

(C(Mk), éu.)

Figure 88: A schematic diagram for a homotopy equivalence of the algebraic data associated to a
crossing.

Glueing in the symmetric Poincaré pairs obtained by applying the symmetric construction
to each cusp and crossing produces a 4-dimensional symmetric complex which is homotopy
equivalent to (C' (M), dur). O

Corollary 5.2.3. The signature of M may be recovered from the 3-dimensional oriented man-
ifold representation (Wg; Mg, Mclg) of @ and the twisted glueing data.

Proof. If R =7 then the isomorphism L*(Z) = Z from Proposition 1.3.7 sends (C(M;Z), ¢ar)
to o(M). O

5.3 An open question

Ranicki showed [Ran80a, Proposition 4.7] that every (n+1)-dimensional e-symmetric cobordism
is homotopy equivalent to a union of elementary e-symmetric cobordisms arising as the traces
of elementary surgeries. This is an exact algebraic analogue of the result of Thom [Tho49]
and Milnor [Mil61] that every manifold cobordism has a handle decomposition as a union of
elementary cobordisms which arise as the traces of elementary surgeries. We may think of this

manifold and algebraic data as being parametrised by quiver representations of the form

Wo Wi Wi—1
. > - > * . .. — »
My M, Moy M1 M;,
(Do, d¢0) (D1,6¢1) (Dg—1,00)
o . ) e - 5

(COT(ZSO) (C1, 1) (02:¢2) (Cr—1,P1-1) (Ck, Pr)

Figure 89: Quiver representations for a sequence of adjoining cobordisms.

In [BNR12a, Theorem 4.5.6] it was shown that every relative symmetric Poincaré cobordism
is homotopy equivalent to the thickening of a symmetric Poincaré representation of the trinity

quiver.
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(C1,¢1)

(C2, ¢2) (Cs, ¢3)

Figure 90: A symmetric Poincaré representation of the trinity quiver.

This suggests the following;:

Open question: Is every (n + 2)-dimensional symmetric Poincaré pair (f : C - D, (d¢,¢))
homotopy equivalent to a twisted thickening of an n-dimensional symmetric Poincaré represen-

tation of a quiver?

Open question: Does every (n + 2)-dimensional symmetric Poincaré complex (C,¢) arise
from data which can parametrised in an n-dimensional symmetric Poincaré representation of a
quiver. In the sense of Meyer [Mey73], is there an explicit cocycle on the space of n-dimensional

symmetric Poincaré representations of a quiver which realises the signature of (C,¢)?



Part 11

The L-theory of a triangular

matrix ring
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Introduction to Part I1

Recall from Part I that the algebraic model for a surgery on a closed n-dimensional manifold
M with surgery data a framed embedding S* x D"* < M and effect an n-dimensional mani-
fold M’ is an algebraic surgery on an n-dimensional e-symmetric complex (C, ¢) with surgery
data an (n + 1)-dimensional e-symmetric pair (f: C - D, (d¢, ¢)) with effect an n-dimensional
e-symmetric complex (C',¢"). The algebraic model for the trace (W; M, M’) of the geomet-
ric surgery is the trace of the algebraic surgery which is an (n + 1)-dimensional e-symmetric
cobordism ((g ¢'):CeC" - D', (0,¢ @& —¢')). Milnor [Mil61] and Thom [Tho49] used Morse
theory to show that every (nm + 1)-dimensional cobordism (W;M, M) can be expressed as
a union of elementary cobordisms which arise as the traces of surgeries. Ranicki [Ran80a,
Proposition 4.7] gave a precise algebraic analogue of this decomposition and showed that every
(n + 1)-dimensional e-symmetric cobordism is homotopy equivalent to a union of elementary

e-symmetric cobordisms arising as the traces of elementary algebraic surgeries.

Borodzik, Némethi and Ranicki [BNR12a] generalised the ordinary surgery operation on a
closed manifold M to a half-surgery operation on an (n+1)-dimensional manifold with boundary
(X, M) as follows:

The effect of an index i+ 1 right half-surgery with surgery data a framed embedding S?x D"~% —

M is the (n + 1)-dimensional manifold with boundary

(X', M) = (S Ugixpn-i D™t x D" M — S x D=t Ugign-i-1 D™t x §77071),

Si % ani

right half-surgery

/ /
(3, M) (X, M)
Figure 91: The effect of a right half-surgery.
If (W;M,M") is the trace of the ordinary surgery on M removing the framed embedding
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S x D™ < M, then the trace of the right-half surgery is the (n + 2)-dimensional relative
cobordism
' x LY x {0}, Y < {1}, W; M, M")

between (X, M) and (X', M").

The effect of an index i + 1 left half-surgery with surgery data a framed embedding (D! x
D"t St x D) < (X, M) is the (n + 1)-dimensional manifold with boundary

(X, M") = (X — D1 x Dn=i, M — §i x Dn=i Ugi, gn-i1 D™ x S77071),

left half-surgery

- A
N N

(X, M) (X', M)

Figure 92: The effect of a left half-surgery.

If (W;M,M’) is the trace of the ordinary surgery on M removing is the framed embedding
S x D" — M, then the trace of the left-half surgery is the (n + 2)-dimensional relative
cobordism

(Ex LY x{0},5 < {1}, W; M, M")

between (X, M) and (X', M").

Borodzik, Némethi and Ranicki [BNR12b, Theorem 4.18] used Morse theory on a manifold
with boundary to show that every (n+2)-dimensional relative cobordism (; 3, %', W; M, M"),
such that X, ¥, Q have no closed connected components, can be expressed as a union of adjoining

elementary relative cobordisms
Q:QOUQ% U UQ% U...UQM_% UQpqao

where Qg arises as the effect of an index 0 handle attachment, €2; arises as the trace of an index
i right-half surgery, Q,, 1 arises as the trace of an index i left half-surgery and €2,.o arises as

the effect of an index (n + 2)-handle attachment.

This suggests that the algebraic model for a half-surgery on an (n+1)-dimensional manifold
with boundary should be a relative algebraic surgery on an (n + 1)-dimensional e-symmetric

pair (f:C — D, (0¢,¢)) with algebraic surgery data an (n + 2)-dimensional e-symmetric triad
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(T, @) of the form

c—1+p
SN

6C —57+ 6D
© = (¢",00",00,0).

The effect of the algebraic surgery should be an (n+1)-dimensional e-symmetric pair (f’: C’ —
D', (6¢',¢")) with trace an (n+2)-dimensional e-symmetric relative cobordism (I, ®') between

(f:C—>D,(6¢,¢)) and (f': C" > D', (6¢',¢")) of the form

[0
CeC’ L DeD’
F = ( g/ g// )J/ l( n R’ )

5C" ——— 5§D
sf
&' = (0,0,00 ® 69", & —9¢").

Moreover, (C',¢") should be the effect of an algebraic surgery on (C, ¢) with algebraic surgery
data the (n + 1)-dimensional symmetric pair (¢ : C — 0C,(66,¢)) and trace the (n + 1)-
dimensional e-symmetric cobordism ((¢' ¢") : C & C' - §C’,(0,¢ & —-¢')). In addition, every
(n+2)-dimensional commutative e-symmetric Poincaré relative cobordism should be homotopy

equivalent to a union of traces of elementary relative surgeries.

The obstruction to doing an algebraic surgery on an (n + 1)-dimensional e-symmetric pair
(f:C > D,(6¢,¢)) is that the symmetric structure (d¢, @) is a relative cycle in the algebraic
mapping cone of f% : W”*C - W?%D. There is no chain homotopy equivalence between € ()

and W7 (f) and so we cannot interpret (8¢, $) as a non-relative symmetric structure directly.

The triangular matrix ring A determined by two rings with identity A, Ay and an (A, As)-

bimodule B is the matrix ring

b
A:{( @ ):aleAl,ageA%beB}.
0 as

By the work of Green [Gre82] an n-dimensional A-module chain complex C can be identified
with a triple (C,C’,u: B®4, C' - C') where C is an n-dimensional A;-module chain complex,
C" is an n-dimensional As-module chain complex and p: B® 4, C' - C is an A;-module chain
map. A chain map f: C - D can be identified with a pair of chain maps (f: C - D, f': C' -> D’

such that there is a commutative triad
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This suggest that the relative surgery problem could be solved by working over a triangular
matrix ring. However, if A, Ay are rings with involution then the extension of the involutions
of Ay, As to A given by

_. Al B Al B . ai b a1 b _ a b
. 0 A, 0 A, ’ 0 as 0 ao - 0 ag

is in fact not an involution since

ap b ay v [ a1a} arb’ + bas ~ ZaT a1b’ + bas
0 ao 0 df 0 asal 0 @ch
ay O\ fa b\ _[ap UV \[@ b \_[da @b +baz
0 da 0 ap 0 ab 0 @ 0 abas '

It follows that the techniques from chapter 1 cannot be applied directly to determine the sym-

whereas

metric L-theory of A. To resolve this problem, one must construct a chain duality on the
additive category A-Mod of A-modules which allows to dual of an object in A-Mod to be a

chain complex in A-Mod.

The L-theory of triangular matrix rings was first considered [Ran06] in connection with
generalised free products and noncommutative localisation A - X' A of a ring with involution
A. Ranicki made a suggestion [Ran06, Section 2.5] for a chain duality on A-Mod and gave a

claim that there was a long exact sequence
.= L' (Ag€) > LA e) = L™(A,€) > L"(Ag,€) = L™(Ay,€) > ...

relating the L-theory of A to the L-theory of A; and Ay via the change of rings morphism
B®y, —: Ay-Mod — A;-Mod.

Under the assumption that B is equipped with a non-degenerate bilinear pairing 3 : Bx B —

A; which is symmetric modulo the involution on A;, we show that:

Theorem 7.2.7. The contravariant additive functor

T : A-Mod — A - Chain
M=(M,M p:Boa, M' > M) C=(C,C",i: B®s, C' - C)

where C is the 1-dimensional chain complex

M* 0 0—2 M+
C = C C, 0 = -1 * -1 *
= ( P 7/”') = J’(ﬂ )™ 5 lO 5 lo J’(B ®1)p
B®a, M™ M"  B@a, M —— Boa, M

determines a 1-dimensional local chain duality (T, e) on A-Mod.
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We then examine the resulting L-theory of A-Mod to show that e-symmetric complexes over

A may be described in terms of symmetric pairs over A;:

Theorems 7.4.2, 7.4.4. A locally n-dimensional symmetric Poincaré complex C = (C,C’, )
over A determines an (n+1)-dimensional symmetric Poincaré pair (p: B®4,C’ - C, (3¢, 7' ®
@)) over Aj.

We then describe e-symmetric pairs over A in terms of e-symmetric triads over A; and e-

symmetric cobordisms over A in terms of e-symmetric relative cobordisms over Aj:

Theorems 8.1.4, 8.2.3. A locally (n + 1)-dimensional symmetric pair f = (f,f') : C =
(C,C",n) - D = (D,D',v) over A determines an (n + 2)-dimensional symmetric Poincaré
triad (T', ¢) over A; where

®= (¢, ®6¢,60",67" @ 9).

Theorem 8.2.5. A locally (n + 1)-dimensional e-symmetric cobordism ((f f) : Ce C' —
D,(A®,® @ -P')) over A determines an (n + 2)-dimensional symmetric relative cobordism

(T, ®) over Ay
nw 0
0 u

(B®a,C YO (B®y, C") ————— CaC”
' (ef 1®f”’)l l(f )
B ®a, D’ > D

v

D= (¢”a 571 ® 5¢”a 5¢ @ _6(;5/7671 ® (¢ @ _¢/))'

The description of cobordisms yields a long exact sequence of e-symmetric L-groups which

recovers [Ran81, Proposition 2.2):

Theorem 8.2.8. For a triangular matrix ring A = (A;, Az, B) there is a long exact sequence

of e-symmetric L-groups
.= LY (Ag,€) » L™ (A €) > L™(A,€) » L™(Ag,€) > L™ (A, €) — ...
such that an element in L™ (A, ¢€) is a pair
((C',0€Q4,(C".0)). (n: Boa, €' > C, (66,57 ® 9) € Q47 (1))

consisting of an n-dimensional e-symmetric Poincaré pair (C’,¢) over As and an (n + 1)-

dimensional e-symmetric Poincaré pair (u: B®, C' — C, (06, 371 ® ¢)) over A; subject to the
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equivalence relation

((C",0),(n: B®a, C' > C, (66,67 ®))) ~ ((C",¢), (4 : B®a, C" > C", (8¢, 57 ® ¢")))

if and only if there exists an (n + 1)-dimensional e-symmetric cobordism over A of the form
(f" f7):C"eC" - D', (64", 0@ -¢"))

and an (n + 2)-dimensional e-symmetric Poincaré triad (I', ®) over A; of the form

(n p)

By, (C'aC") ———— CeaC”
I'= e f”’)l l(f )
B ®a, D’ m > D

Q= (¢”7 571 ® §¢”7 6¢ @ _5921)/7[371 ® ((b @ _¢,))

We then examine the effect of algebraic surgery on an e-symmetric complex in A-Mod with
surgery data an e-symmetric pair in A-Mod and as an application we consider the special case
A = (R,R,R) where R is a ring with involution. This allows us to define a relative alge-
braic surgery operation on an (n+ 1)-dimensional symmetric Poincaré pair over R with surgery
data an (n + 2)-dimensional symmetric triad over R and is an algebraic model for geometric
half-surgeries. This is used to give an algebraic analogue of Borodzik, Némethi and Ranicki’s

half-handle decomposition theorem:

Theorem 8.3.5. Every (n +2)-dimensional commutative e-symmetric Poincaré relative cobor-
dism over a ring with involution is homotopy equivalent to a union of traces of elementary

relative surgeries.
Part IT is organised as follows.

In chapter 6 we present the basic constructions of [Ran92] needed to determine the L-theory
of an additive category with a chain duality. This is a generalisation of the L-theory of a ring
with involution where the dual of an object in A is allowed to be a finite chain complex in A

rather than just an object in A.

In chapter 7 we use the techniques of chapter 6 to construct a local chain duality on the
additive category of left modules over a triangular matrix ring A = (A1, A2, B). We then use
the results of chapter 1 to show that an e-symmetric (Poincaré) structure on an A-module chain
complex C = (C,C’', ) over A can be described in terms of a relative e-symmetric (Poincaré)

structure on the A;-module chain map p: B®y, C' - C.

In chapter 8 we extend the description of e-symmetric complexes over a triangular matrix
ring A = (A1, Ay, B) to e-symmetric pairs, cobordisms and surgery on e-symmetric complexes
over A;. We then use the results of chapter 2 to show that a relative e-symmetric (Poincaré)
structure on an A-module chain map can be described in terms of an e-symmetric (Poincaré)

structure on a commutative A;-module triad in such a way that an e-symmetric cobordism over
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A can be viewed as a relative e-symmetric cobordism over A;. We then describe the effect of a
surgery on an e-symmetric complex over A and examine the special case A = (R, R, R) to prove

the relative surgery decomposition theorem.



Chapter 6

The L-theory of an additive

category with a chain duality

The L-theory of an additive category A with a chain duality is a generalisation of the L-theory
of a ring with involution where the dual of an object in A is allowed to be a finite chain complex
in A rather than just an object in A. This chapter is based on [Ran92] and presents the basic

constructions needed to determine the L-theory of an additive category with a chain duality.

6.1 Chain complexes in an additive category

Definition 6.1.1. An additive category is a category A satisfying the follow properties:

(i) For any pair of objects A, B € A, the set of morphisms Homy (A, B) has the structure of an

abelian group such that for any object C € A the composition of morphisms
HOIHA(AaB) XHomA(Bvc) —>H0mA(A7C), (fag) '_)gf

is bilinear over Z. The zero element in Homy (A, B) is the zero morphism.

(ii) There is a zero object 0 € A such that for each object A € A the groups Homy(A,0) and

Homy (0, A) are trivial and contain only the zero morphism.

(iii) For any pair of objects A, B € A there is an object C € A together with morphisms

1A iB
A0 P Z e
A C B
~— ~
TA T™B

such that maia = 14,7pig = 15,iama +igmp = 1. Such an object C' is a biproduct of A and
B and we write C' = A® B and it follows that C' is necessarily both a product and coproduct
of A and B.

Example 6.1.2. Let A be a ring with involution. The category of f.g. free left A-modules is
a full additive subcategory of the additive additive category of f.g. projective left A-modules.

Chain complexes, chain maps and chain homotopies in A are defined as follows.
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Definition 6.1.3. Let A be an additive category.

(i) A chain complex in A is a collection of objects C' = {C}.},z in A together with a collection
of morphisms
dc = {dc € HomA(Cr, C’r‘fl)}rgz

such that
dode =0 € Homy (Cyr, Cr_2) (rez).

(ii) A chain map of chain complexes C, D in A is a collection of morphisms

f = {fr € HomA(CraDr)}reZ

such that the following diagram is commutative

C’r‘ % Dr

dcl ldD (rez)

Cr—l Q Dr—l

that is
der :fr—ldC EHomA(CraDr—l) (TEZ)'

(iil) A chain homotopy k: f ~ g: C - D between chain maps f,g: C — D in A is a collection of
morphisms
k= {kr € HOIHA(CT, Dr+1)}reZ

such
fr—gr =ke_1dc +dpk, € Homy (C,., D) (reZ).

(iv) A chain map f:C — D in A is a chain homotopy equivalence if there exists a chain map

g:D — C in A such that there are chain homotopies k and h with

k:gf~1:C—->C, h:fg~1:D - D.
As in the case of a ring with involution, it is useful to have a definition of the dimension of
a chain complex which is only defined up to chain homotopy.
Definition 6.1.4. A chain complex C' in an additive category A is
(i) finite if C, =0 for all but finitely many r € Z.
(ii) strictly n-dimensional if n > 0 and C, = 0 except possibly when 0 < r < n.

(iii) m-dimensional if it is chain homotopy equivalent to a strictly n-dimensional chain complex
in A.

The additive category of finite-dimensional chain complexes in A and chain maps is denoted by
B(A).
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Example 6.1.5. For an additive category A there is a natural embedding 1: A - B(A) which
identifies an object M € A with the 0-dimensional chain complex M given by

M ifr=0
M, =
0  otherwise.

Double complexes in A and total complexes thereof are defined as follows.
Definition 6.1.6. Let A be an additive category.

(i) A double complez in A is a collection of objects C' = {C) 4}pqez in A together with two

collections of morphisms
d = {d;,q € Homy (Cp.q; Cp-1,9) bp,gez, d” = {d;',q i€ Homa (Cpq, Cp g-1) }p.gez
such that

dd =0¢ HOmA(Op,qv CP—2,q)
d"d" = 0 e Homa (Cyp g, Cpg—2)
dld" = d"d, € HOmA(Cp’q, Cp*l,qfl) (p7 qc¢ Z)

(ii) The total complex of a double complex C in A is the chain complex C' in A defined by

d= @ (d"+(-1)¥d):Cr= P Cpy—->Cro1= P Cpy (rel).

p+q=r p+qg=r p+g=r—-1

Example 6.1.7. Let C, D be chain complexes in an additive category A. There is a double
complex of Z-modules Homy (C, D) with chain groups

Homa(C, D), q =Homy (C_p,Dy) (p,q€Z)
and differentials

d,(f) = de : C(—p+1 - Dq
d”(f) = de : Cfp - qul (f € HomA(C*vaq))‘

The total complex Homy (C, D) is given by

Homy (C,D), = @ Homu(C-,,D,) (reZ)

p+q=r

with differential

dHomA(C,D) :Homy (C, D), - Homy(C, D),—1
frdpf+(-1)fdc (feHomu(Cop, Dy)).
The total complex of a double complex is used in the following extension construction.

Definition 6.1.8. Let A be an additive category. The standard extension of a contravariant



CHAPTER 6. THE L-THEORY OF AN ADDITIVE CATEGORY 118

additive functor
T:A->B(A); M~T(M)

is the contravariant additive functor
T:B(A) - B(A); C~T(O)

defined to send a finite chain complex C in A to the total complex T'(C') of the double complex
T(C) in A with
T(C)p,q = T(C—p)m d' = T(dc), d" = dT(C_p)

so that

dT(C) = e9p+q=r(dT(C,p) + (—)qT(dC)) : T(C)r = €Bp+q=rT(Cfp)q - €Bp+q=7”71T(Cfp)q
(rez)

6.2 A chain duality on an additive category

A chain duality on an additive category A is a generalisation of the functor from Definition
1.1.3 in Part I which sends a left A-module M to its dual M*.

Definition 6.2.1. ([Ran92, p.27]). A chain duality (T,e) on an additive category A is a
contravariant additive functor

together with a natural transformation of covariant functors
e:T? > 1:A - B(A) > TB(A)

such that for each object M € A
(i) e(T(M))T(e(M))=1:T(M)~T*(M)~T(M)
(ii) e(M):T?*(M) - M is a chain equivalence.

A chain duality (7T, ¢e) on an additive category A is n-dimensional if for each object M € A the

chain complex T'(M) is strictly n-dimensional.
A chain duality is used to define duels of objects and chain complexes in A as follows.

Definition 6.2.2. Let (A, T,e) be an additive category with chain duality and let C,D be

finite chain complexes in A and let f:C — D be a chain map:
(i) The dual of C is the finite chain complex in D defined by C* = T'(C)_,.

(ii) The dual of f is the chain map of finite chain complexes in A defined by
F*=T(f):D* =T(D)_. » C* =T(C)_,
(iii) The n-dual of C is the finite chain complex C™™* in A defined by

donee = (1) dipey s O™ = T(C) oy > OV = T(C)yorcn (re2).
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(iv) The n-dual of f is the the chain map of finite chain complexes in A defined by

f* — T(f) . D’I‘L** s CTL**.

Example 6.2.3.

(i) Let A be a ring with involution and denote by A-Mod the additive category of f.g. projective
left A-modules and by A-Chain the additive category of finite chain complexes in A-Mod. Recall
that the the dual of a A-module M is the left A-module M* = Hom4 (M, A) with action

AxM* > M (a, f) = (x> f(z)-a)
such that if M if f.g. projective then there is a natural isomorphism
e(M)™ M~ M™: we(f - f(2))
This implies that the contravariant additive functor
T:A-Mod - A-Chain;, M~T(M)=M"

and the natural transformation
e(M):T> (M) > M

define a 0-dimensional chain duality (7, e) on A-Mod.

(ii) In chapter 7 we will construct a 1-dimensional chain duality on the category of left modules
over a triangular matrix ring A = (A1, A, B). This will resolve the difficulty of the non-existence

of a O-dimensional chain duality as mentioned in the introduction.

A chain duality (T, e) on an additive category A determines a tensor product of finite chain
complexes complexes C, D in such a way that a slant equality holds C' ®, D = Homy (T'(C), D)
and there is an e-duality involution T¢ . : C ®4 C - C ®, C.

Definition 6.2.4. Let (A, T, ¢e) be an additive category with chain duality.

(i) The tensor product of two objects M, N € A is the finite Z-module chain complex
M ®, N = Homy (T(M), N)
defined to be the total complex of the double complex Homy (T'(M), N) such that

(M ®4 N), = Homu(T(M)_,,N) (r€Z).

(ii) The tensor product of two finite chain complexes C,D in A is the finite Z-module chain

complex
C®x D =Homy (T(C),D)

defined to be the total complex of the double complex Homy (T(C), D) such that

(C ®a D)n = ®p+q+r=n(cp ®a Dq)r (7“ € Z).
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Proposition 6.2.5. ([Ran92, p.28-29]). Let (A, T, e) be an additive category with chain duality
and let € = £1.

(i) For objects M, N € A there is an e-duality isomorphism
T.=Tyne: M@y N> NeoyM
of Z-module chain complexes with
Tyun,e: (M®yN), =Homy(T'(M)_p,N) > (N &y M), =Homa(T'(N)_,, M)

given by
(f:T(M)-p > N) = (Tu,n(f) : T(N)- »~ M)

with

Tarn o (f) = ee(M)T(f) s T(N) - o (T(M) ) > T2(M)g 22 My = M

and inverse
Tifl,z\ue =Tnme: NOAM - Moy N

(ii) For finite chain complexes C, D in A there is an e-duality isomorphism
T.=Tepe:CouD > Doy C
of Z-module chain complexes with

TC,D,E = @(_)quCp,Dq,e : (C ®a D)n = EB (Cp ®a Dq)r g

p+g+r=n
(D@AC)n: @ (Dq®ACp)T (neZ)

pt+q+r=n

and inverse
Tc_*,lD,e =Tpce:D®yC—ConD.

(iii) For finite chain complex C' in A the e-duality isomorphism
T, :TC,e :TC7C7GZC®AC—>C®AC

is an involution which defines a Zs-action on C ®, C.

6.3 Symmetric complexes in an additive category

The generalisation of the W% functor from a ring with involution to an additive category with

chain duality is as follows.

Definition 6.3.1. ([Ran92, p.29-30]). Let W be the standard free Z[Z2] resolution of Z

1+T

W > Wa = Z[Zs] — Wa = Z[Zs] — Wi = Z[Zs] — Wy = Z[Z5].
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Let (A, T, e) be an additive category with chain duality and let C, D be finite-dimensional chain

complexes in A and let € = +1.

(i) The e-duality isomorphism
TEIC®AC—>C®AC

defines a Zs-action on C ®, C so that C'®, C' is a finite Z[Zy]-module chain complex.

(ii) The Z-module chain complex
W = Homgz,1(W,C e, C)
is such that under the definition
C oy C=Homy(T(C),C)
a chain ¢ € (W”(C),, can be identified with a collection of morphisms
¢ ={¢s € Homy (C""° . C)|r € Z,s > 0}
such that the boundary dy%o¢ € (W?%C),,—1 can be identified with a collection of morphisms
dys 9 = {(d¢)sHomy (C™ 177, C,)|r € Z, 5 > 0}
satisfying

(d§)s = degs + (=) dsdis + (=) (dso1 + (=) Teps1) € Homy (C"177°,C,)
(rez,s>0,¢0_1=0).

(iii) An chain map f:C — D induces a Z[Zs]-module chain map
fosf:C®yC—>D®yD
and hence induces a Z-module chain map
fEWRC > WD ¢={uls >0} > fh = {fouf"|s >0}
in such a way that a chain homotopy k: f ~ g: C - D induces a chain homotopy

k%:f%':g%:W%C»W%D.

The e-symmetric @-groups of a finite chain complex C' over A are then defined in the same

way as for a ring with involution.
Definition 6.3.2. Let (A, T, ¢e) be an additive category with chain duality and let e = £1.

(i) The e-symmetric Q-groups of a finite chain complex C in A are the Z-module homology
groups

Q"(C,e) = H,(W*C) (neZ).
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(ii) The morphism of e-symmetric @-groups induced by a chain map f: C - D of finite chain

complexes in A is the morphism of Z-module homology groups
17:Q™(C,e) = Hy(W"C) - Q"(D,¢) = H,(W”D).

Similarly, e-symmetric Poincaré complexes and homotopy equivalences thereof are defined

as for a ring with involution.
Definition 6.3.3. Let (A, T, ¢e) be an additive category with chain duality.

(i) An n-dimensional e-symmetric complex (C,¢ € Q"(C,¢€))) in A is an n-dimensional chain
complex C in A with a cycle ¢ € (W*C),,

(ii) An n-dimensional e-symmetric complex (C, ¢) in A is Poincaré if the chain map ¢g: C"™* -

C is a chain equivalence.

(iii) A morphism of n-dimensional e-symmetric complexes f : (C,¢) - (C’,¢’) in A is a chain
map f : C — C’" in A such that f%(¢) = ¢'. A morphism of n-dimensional e-symmetric
complexes f: (C,¢) - (C',¢") is a homotopy equivalence if the chain map f:C - C’ is a chain

homotopy equivalence.
The e-symmetric @-groups again have the same failure to be additive.

Proposition 6.3.4. Let (A,T,e) be an additive category with chain duality and let C,C’ be
finite-dimensional chain complexes in A. The e-symmetric Q-groups of the finite-dimensional

chain complex C'® C’ are given by
Q"(ColCe)=Q"(C,e)@Q"(C"€) ® Ho(C®s ' 6)
so that there is an inclusion
Q"(Ce)®Q"(C',e) > Q" (Ca ' e).

One may also form direct sums and negatives of e-symmetric Poincaré complexes.
Definition 6.3.5. Let (A, T, ¢) be an additive category with chain duality.

(i) The direct sum of n-dimensional e-symmetric (Poincaré) complexes (C, ¢ € Q" (C,¢€)), (C', ¢' €

Q™(C",¢)) in A is the n-dimensional e-symmetric (Poincaré) complex in A
(C.heQ"(Cie))o(C,0eQ"(Ce))=(Col d0¢ cQ"(Cale)
determined by the inclusion

QR™M(C,e)@Q"(C'e) > Q" (Ca ' e).

(ii) The zero n-dimensional e-symmetric Poincaré complex in A is (0,0 € @™(0,¢€)).

(iii) The negative of an n-dimensional -symmetric (Poincaré) complex (C, ¢ € Q*(C,¢€)) in A is

the n-dimensional e-symmetric (Poincaré) complex in A

_(Ca pe Qn(ca 6)) = (07 —¢¢ Qn(cve))
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If we wish to emphasise the additive category A then we write W (' = WZJC and Q" (C,e) =
Q% (C,¢). In chapter 7 when A = (A1, Az, B) is a triangular matrix ring we will work with the
additive category A = A-Mod. We will relate the Q-groups of a chain complex C = (Cy,Cs, u)
over A to the @Q-groups of C; over A; and Cs over Ay and it will be necessary decorate the

Q-groups with the subscripts A, Ay, As to keep track of which category we are working over.

6.4 Symmetric pairs and cobordisms in an additive cate-
gory

An e-symmetric pair in an additive category with chain duality is a generalisation of an e-
symmetric complex over a ring with involution where a relative symmetric structure of a chain
map f:C — D is defined in terms of a cycle of the mapping cone of f%: W*C - W% D.

Definition 6.4.1. The algebraic mapping cone of a chain map f : C - D in an additive
category A is the chain complex € (f) in A defined by

_\n-1
dcg(f) = ( dOD ( ZC f ) : Cg(f)n =D, Cyq — (g(f)n—l =D, 180C,_ o (n € Z)

and homology groups
Hn(f) = Ho(€(f)) (neZ).

It will be useful in chapter 7 to have a definition of an algebraic mapping cone with different

signs.

Definition 6.4.2. The algebraic mapping cone of a chain map f : C — D in an additive

category A is the chain complex € (f) in A defined by

degsy = ( dOD Z; ) :C(f)n=Dn®Cp1 > C(f)n-1=Dn1®Cpz (nel)
e

and homology groups
Ho(f) = Ho(€()) (neZ).

These two definitions of mapping cones are in fact the same up to isomorphism.

Lemma 6.4.3. If f : C - D is a chain map in an additive category A then the algebraic

mapping cones € (f) and €(f) are isomorphic.

1 0
o )
D,eCr.y ——— = D, o(C,
dp  (5)7'f dp f
0 do 0 -d¢
Dr—l ® C’r‘—2 T EEEE— Dr—l © Cr—2

0 ()

Proof. The commutative diagram
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implies that there is a chain map 6 : € (f) — ‘g(f) defined by

1 0 ~
92( 0 (_)Fl ):Cg(f)r_’cg(f)r (re)

and it is clear that 6 is an isomorphism. O

Relative symmetric structures are expressed in terms cycles of the algebraic mapping cone

C(f* - W*C - W”D).

Proposition 6.4.4. ([Ran92, p.31]). Let (A,T,e) be an additive category with chain duality
and let f: C — D be a chain map of finite-dimensional chain complexes in A. The Z-module
chain map f% : W*C — WD has an algebraic mapping cone € (f”) such that a cycle
(6, $) € €(f”)ns1 consists precisely of a cycle

¢ = {ps € Homy (C™*5,C,)|s > 0,7 € Z} € (WHC),,
together with a chain
8¢ = {6 € Homu (D™ 1775 D,)|s 20,7 € Z} € (W”D)pi1
such that

dD5¢s + (_)T5¢sd*D + (_)n+5(5¢571 + (_)STe((qusfl)) + (_)nf(bsf* =0¢ HomA(Dn_T+S7 Dr)
(T € Z7S 2 076¢—1 = 07¢—1 = 0)

Definition 6.4.5. Let (A,T,¢) be an additive category with chain duality and let ¢ = +1. The
relative e-symmetric Q-groups of a chain map f: C'— D of finite-dimensional chain complexes

in A are the relative Z-module homology groups
Q"(f.€) = Hy(€(f*: W"C > W% D)) (neL).

If we wish to emphasis the additive category A over which we are working we will decorate

the relative Q-groups with the symbol A as in the absolute case.

An e-symmetric Poincaré pair is then defined as follows.
Definition 6.4.6. Let (A, T, e) be an additive category with chain duality and let € = £1.

(i) An (n + 1)-dimensional e-symmetric pair (f : C - D,(5¢,¢) € Q" (f,€)) in A consists of
chain map f:C — D from an n-dimensional chain complex C in A to an (n + 1)-dimensional
chain complex D in A, together with a cycle (6¢,¢) € €(f%: W*C - W?%D),.1.

(ii) An (n+1)-dimensional e-symmetric pair (f : C' - D, (¢, ¢)) over A is Poincaré if the chain
map

(6¢0  fo):€(f)" " =D
is a chain homotopy equivalence.

A chain map f : C — D determines a long exact sequence of e-symmetric Q-groups as

follows.



CHAPTER 6. THE L-THEORY OF AN ADDITIVE CATEGORY 125

Proposition 6.4.7. Let (A,T,¢e) be an additive category with chain duality. The relative
e-symmetric Q-groups of a chain map f:C — D of finite-dimensional chain complexes in A fit

into a long exact sequence of e-symmetric Q-groups

S Q) LS QD) > QM) » QNG L QU(DL) .
with

Q" (f.€) > Q"(C,€); (6¢,0) = ¢
Q"(D,€e) = Q"(f,€);0¢ = (6¢,0).

Proof. As in the case for a ring with involution using the long exact sequence associated to the
chain map f%: W%C - W”D. See the proof of Proposition 1.2.4 in Section 2.2. O

An e-symmetric cobordism in an additive category with chain duality is a generalisation of

an e-symmetric Poincaré complex over a ring with involution.

Definition 6.4.8. Let (A,T,e) be an additive category with chain duality. An e-symmetric
cobordism between n-dimensional e-symmetric Poincaré complexes (C,¢),(C’,¢') in A is an

(n + 1)-dimensional e-symmetric Poincaré pair in A of the form

((f [):CeC" > D,(6¢,0@~¢") Q" ((f [).e)).

The n-dimensional e-symmetric L-group L™ (A, €) of A is the abelian group of cobordism classes

of n-dimensional e-symmetric Poincaré complexes in A with addition
(C,peQ™(Cre))+(C',¢" eQ™(Cye))=(CoC"p@¢ cQ"(CadC€)) e L"(A€)

and zero element

(0,0€Q"(0,€)) € L" (A, €)

and additive inverses
_(Ca ¢ € Qn(ca 6)) = (Ca _¢ € Qn(ca 6)) € Ln(Aa 6)'

Example 6.4.9.

(i) Let A be aring with involution and equip A-Mod with the 0-dimensional chain duality (7, e)
from Example 6.2.3. Then the L-theory of the ring A is the same as the L-theory of the additive
category (A —Mod,T,e).

(ii) In chapter 8 we will show in Theorem 8.2.8 that for a triangular matrix ring A = (43, A3, B)

there is a long exact sequence of L-groups

% %
.= L' (Ag,€) RGN L™ (A, €) » L™(A,€) » L™ (A, ¢€) RGN L"(Ap,e) > ...
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6.5 Algebraic surgery in an additive category

Algebraic surgery in an additive category with a chain duality is a generalisation of algebraic
surgery over a ring with involution with an analogous trace construction constructing a cobor-

dism between the input and the output of the surgery.

Definition 6.5.1. ([Ran92, Definition 1.12]). Let (A, T, e) be an additive category with chain
duality.

(i) The effect of algebraic surgery on an n-dimensional e-symmetric Poincaré complex (C, ¢) in A
with data an (n+1)-dimensional e-symmetric pair (f: C' - D, (d¢,¢)) in A is the n-dimensional

e-symmetric Poincaré complex (C’,¢") in A with the chain complex C’ defined by

de 0 (—=)"gof*
der=| (=)"f dp  (=)"0¢o
0 0 (=)"dp

:Cl=Cr@®Dpyy @D 5Ol =Cry® D, ® D" (reZ)

and the e-symmetric structure ¢’ defined by

o 0 0
$o=| ()" fTepr (D)L (=) e
0 1 0
. Cm—r — Cn—r ® Dn+1—7‘ ® (T2D)T+1 N C;a — Cr ® Dr+1 ® Dn+1—r (T c Z)
bs 0 0
¢; = (_)n_rfTersH (_)n_T+STe(S¢s+1 0
0 0 0
10" = 0y @ Dyt @ (T2D) g1 = Cl = Cr @ Dy ® D™ (reZ,s>1).

(ii) The trace of such an algebraic surgery is the (n + 1)-dimensional e-symmetric pair in A

(9 9):CoC" D, (0,§®-¢") Q" (g ¢'))

defined by
dpr = d()C (_():l;j;f* ) D =Cr o D™ D, 1=Cra® DT (rez)
g= (1)):CT—>D;=CTEBD"+1T (reZz)
g = (1) 8 (1) ):C’;:CTGBDTHGBD”H1—>D;:CTEBD"Hl (reZ)

Proof. The proof is the same as in the case of a ring with involution, see [Ran80a, Proposition].

Note the presence of summand involving 72 in the C'*~" and the natural transformation e in
0%. O



Chapter 7

The L-theory of a triangular
matrix ring: symmetric

complexes

As mentioned in the introduction to Part II a triangular matrix ring A = (A1, As, B) does not
admit a natural involution. Using the techniques of chapter 6 we construct a local chain duality
on the additive category of left modules over A. We take the candidate contravariant additive
functor T : A-Mod — A - Chain of [Ran06], find its standard extension T : A-Chain — A-Chain
and show there exists a natural transformation e : T2 - 1 : A-Mod — A-Chain such that
the triple (A, T, e) satisfies a weakened version Definition 6.2.1. We then use the results of
chapter 1 to show that an e-symmetric (Poincaré) structure on an A-module chain complex
C = (C,C", ) over A can be described in terms of a relative e-symmetric (Poincaré) structure
on the Aj-module chain map u: B®4, C’' - C in such a way that there is a long exact sequence

of e-symmetric Q-groups
Lo Qfﬁl(C’,e) - Q"% (C,e) > QZQ(C,,E) - Q% (Ce)—>....

7.1 Chain complexes and chain maps over a triangular

matrix ring

Definition 7.1.1. The triangular matriz ring A determined by rings A;, Ay with identities
1a,,14, and an (A;, Az)-bimodule B is the matrix ring

b
A:{( a“ ):aleAl,ageAg,beB}
0 ag

127
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with addition

and multiplication

A, B A, B A, B
X —

0 A2 0 A2 0 A2

ap b ay arai  arb’ +bas
0 ay |\ 0 d 0 asal

and identity

For brevity we write A = (A1, Az, B).

In order to describe symmetric complexes over a triangular matrix ring A it is first necessary
to describe modules and chain complexes over A. Left A-modules and morphisms thereof have

the following descriptions in terms of the data Ay, As, B.
Proposition 7.1.2. ([Gre82]).

(i) A left A-module M can be identified with a triple
(Ml,MQ,,LL : B®A2 My — Ml)

where M; is an A; module, M5 is an As module and p is an A;-module homomorphism.

(ii) A left A-module morphism
f:M=(M;,Mo,pu: B®4s, My > M;) > N = (N1, No,v:B®a, No > Ny)
can be identified with a pair of morphisms
(f1 € Homa, (M1, N1), fo € Homy, (M3, N2))
such that the following diagram is commutative

B®a, My —— M,

1®f2l J’fl .

B®A2 Ny — Ny

(iii) The addition of morphisms

f=(f eHoma,(M,N), f' e Homa,(M',N")) ¢ Hom4 (M, N)
g=(geHomu, (M,N),g" € Homa,(M',N")) e Hom4 (M, N)
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is given by
f+g=(f+geHoma, (M,N),f +g €Homa,(M' , N")) e Hom(M,N)
and the composition of morphisms

f=(feHomyu,(M,N), f' e Homa,(M',N")) e Hom 4 (M, N)
g=(geHomau, (N, P),g" ¢ Homa,(N',P')) e Homs (N, P)
is given by
gf = (gf e Homa, (M, P),g' f' € Homa,(M',N")) e Hom4 (M, P).
(iv) A left A-module M = (My, Ma, i : B®4, My — M) is a (f.g.) projective if and only if M;
if (f.g.) projective, coker(u) is (f.g.) projective and p is split injective.
The above description of A-modules extends to one of A-module chain complexes.

Proposition 7.1.3. Let A = (A1, As, B) be a triangular matrix ring.

(i) An n-dimensional A-module chain complex C can be identified with a triple
C=(C,C",u:B®y, C' > C)

where C' is an n-dimensional Aj-module chain complex, C’ is an n-dimensional As-module

chain complex and p: B®y4, C' - C is a chain map of A;-module chain complexes with
C,=(C.,Clop:B®a, Cl. - C) (0<r<n).

(ii) Let (C,C',pu) and D = (D, D’,v) be A-module chain complexes. A chain map f: C > D

can be identified with a pair of chain maps
(f:C—>D,f:C"> D)
such that the following diagram is commutative

Bey, O 1 C,
tor| lf (re).

B®a, D, —— D,

(iii) The addition and composition of morphisms is componentwise.

(iv) An A-module chain complex C = (C,C’,u: B®a, C' - C) is (f.g.) projective if and only if
C' is (f.g.) projective, coker(u) is (f.g.) projective and p is split injective.

Proof.

(i) Suppose that C has chain groups C, and differential d¢ : C, - C,_1. Write

C, = (C'm C;,,U/T :B ®a, C»; - C’r)
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so that the differential d¢ : C, — C,_; may be identified with a pair
dc = (de € Homy, (Cy, Cr_1),dcr € Homa, (C), Cr_y)).
The composition di € Hom4(C,, C,_2) is then identified with the pair
d%, = (d% e Homy, (C,, Cy_s),dZ, € Hom 4, (CL,C!_,))
and hence
d%, =0eHomy(C,,C,_3) <= d%=0¢cHomu(C,,C,_2) and dZ, =0 € Hom4(C’,C’_,).

It follows that (C,d¢) is an n-dimensional A-module chain complex if and only if (C,d¢) is
an n-dimensional Aj-module chain complex and (C’,d¢r) is an n-dimensional Ag-module chain

complex and p: B®4, C' - C is a chain map of A;-module chain complexes.
(ii) Asin (i) we may identify the morphism f, €e Hom4(C,, C,) with a pair of morphisms
f. = (f- e Homa, (C,, D..), f\ € Hom,(C., D))
and it remains to show that the diagram

c, — D,
ch’ J’dD (0<r<n)

Cra f*_ﬁ D,

is commutative. The composition dpf,. € Hom4(C,,D,_1) is represented by the composition

of the commutative diagrams

B®u, D, —=— D! Bey, C. s C, Bey, ¢ —t
1®dDJ’ J{dD' 10 f/. J(fr = 1®(dD,f,C)l ldD,fT
B®a, Dry ——> Dy B®ua, D, —— D, B®a, Dy —— D,

and the composition f._1dc € Hom 4(C,,D,_1) is represented by the composition of the com-

mutative diagrams

B®a, O, % ¢,y Be®a, O — ¢, By, C. — C,
1®f;_, J’fr—l 1®dc'l ldc = 1®(f£_1dc')l J(frﬂdc
B®a, Dl —— Dy B®a, C)y o—> Cry B®a, Di_y —— Dy

It follows that we have commutativity of the required diagram if and only if dp/ f’ = f'dc and
dpf = fdc, that is if and only if f: C — D is an A;-module chain map and f': C’ - D’ is an

As-module chain map.
(iii) Follows from part (iii) of Proposition 7.1.3.

(iv) Follows from part (iv) of Proposition 7.1.3.
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7.2 A local chain duality for a triangular matrix ring

We now take the candidate contravariant additive functor T : A-Mod — A — Chain of [Ran06],
find its standard extension T : A-Chain — A-Chain and show there exists a natural transforma-
tion e: T? - 1: A-Mod — A-Chain such that the triple (A, T,e) satisfies a weakened version
Definition 6.2.1.

From now on we assume that B is f.g. as a left A;-module and B is equipped with a pairing
B: B x B — Aj such that for all ay,a] € Ay,as € Ag,b,b',b" € B

B(b,0"+b") = B(b, V') + B(b, ") € Ay

B, b) = B(b,b') € Ay
B(b,b'az) = B(baz, V')
Barb, ayby) = ai B(b, by )ar
The A;-module morphism
B:B— B =Homa, (B, A1); (b (' = B(b,1)))
is an isomorphism such that 8 = 8* e Homy, (B, B*).

Proposition 7.2.1. There is a contravariant additive functor

T : A-Mod — A - Chain
M=(M,M p:Bos, M' > M)~ C=(C,C",i: B®4, C" - C)

where C is the strictly 1-dimensional chain complex

M 0 0—2 M+
C=(C,Cp) = J{(ﬂ‘l(@l)u* 7 lo 7 lo J{(B”@l)/t*
B ®A2 Mlx- M/x— B ®A2 Mlx- il B ®A2 Ml*

and i : B® C’ — C the inclusion chain map of A;-module chain complexes.
Proof. We first check the functoriality of T and then check the additivity of T.

(i) Proposition 7.1.3 implies that C' is a chain complex of A-modules so that T sends objects to

objects.
(ii) Let N=(N,N',v: B®4, N' - N) be a second A-module with
N~ 0 0 —2— N*

D:(D,D/7]>): l([_}fl@l)y*’ lo R lo J{(ﬂil@l)y*
B®a, N™ N™ B®a, N* —— B®a, N
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A morphism fe Hom4 (M, N) may be identified with a pair of morphisms
f=(f eHoma,(M,N), f' e Homa,(M',N"))
such that the following diagram commutes

Bes, M — 5 M

o s

B®A2N,#>N

The dual of this square with respect to Ay is the commutative square

N* / s M*

/| b

B* ®A2 N/* Tf’*> B* ®A2 M,*

which when composed with the commutative square

1®fl>(—
B* ®Aa, N —— B* ® A, M’

ﬁ*1®1l lﬂ*lm

B ®A, N'™* —>1®f'* B ® A, M

yields the commutative square

N* f M*
(/3®1)_1V*l l(,@@l)'lu*

B®a, N™ “er B®a, M™

which then defines a chain map T'(f) : D — C of Aj;-module chain complexes. The dual
morphism [ € Homa, (N", M"") then defines an As-module chain map T'(f)' : D' - C’. Tt
follows that the pair (T'(f),T(f)") defines a chain map T(f) : T(D) - T(C) of A-module chain

complexes if and only if the following diagram is commutative

Bes D' —25 D

1®T(f)’l lT(f)

B®y, C' — C

Since D’ is 0-dimensional, commutativity needs to only be checked in dimension 0 and this

follows by the trivial commutativity of the diagram

B®uy, N* —— By, N™
1®f/sr ll®fl*
B®a, M —— B®a, M™
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so T sends morphisms to morphisms.

(iii) Note that
T'(1ar) = (1: M™ > M"™) = 17s(ary

and
M —t
T(1m) = (ﬁ*@l)u*l J((B’1®1)/L* =1y

B®a, M" ——— B®a, M
so that T(1nm) = L) as required.

(iv) Let P = (P,P',§ : B®a, P’ > P) be a third A-module and let g € Hom4(IN,P) be a

morphism. Under the identification
g=(geHomyu, (N,P),g" € Homa,(N', P"))
the composition gf € Hom4 (M, P) is identified with the pair
gf = (gf e Homa, (M, P),¢' f' € Homa,(M', P")).

It is clear from (ii) that T'(gf) = T(f)T(g) and T(gf)’ = T(f)'T(g)’" and so that T(gf) =

T(f)T(g) as required and hence T is contravariant.

(v) For A-modules M, N it is clear that the map
T :Homy (M,N) > Hom (T(N),T(N)), f~ T(f)

is a homomorphism of abelian groups so that T is additive.

We may now write down explicitly the standard extension of T.

Proposition 7.2.2. The standard extension of the contravariant additive functor
T : A-Mod - A - Chain; M~ T(M)
is the contravariant additive functor
T : A- Chain - A - Chain; C+~ T(C)

such that if C = (C,C’, u) is a finite chain complex of A-modules then
2 I—% 1 I—% 21 - —%
T(C). =((5(M(5_1®1))1_*>C ( 0 )iB®A20 ~E(u(p 1) )

where p(87! ® 1) is the A;-module chain map

w(Br®1):B*®y4, C' > B®y, C' - C
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so that T(C) has chain groups given by
1
T(C), = ((B ®4,C e C”,C’T,( 0 ) :B®s, C"" - (B®a, C"") @ C”))

and differential dr(cy : T(C), - T(C),_1 given by

()

(B®a, C"™ Y@ CH " 't B®s,C" — (Boa, C" e C
1@d*, (BTlenu* % " 1@dr, (BTlenu*
[ N [ )
(B®a, C7") @ O C"™" Bey, C"" — (Boa, crye o

(o)

Proof. Recall from Definition 6.1.8 that T(C) is the total complex of the double complex
T(C). . with chain groups

T(C)p,q = T(C—p)q
d;hq =T(dc:C1, > C) : T(Cp)q = T(C1yp),
d;,;q = dT(C—p) : T(C_p)q - T(C—p)q—l (p7 qc¢€ Z)

so that

T(C), =T(C-;)o®T(C1r)1
= T(C—T7C, K B ® 4, C,r - C—’I")O @ T(Cl—’m C{—'NM :B®a C{—r - Cl—r)l

—rs —

=(B®4,C"",C""1:B®,C" "> B®s, C") @ (C",0,0:0-C")

= ((B ®4, C"") @Cl",()”",( 0 ) :B®4,C"" - (B®4,C"™") @Cl"))

The chain complex T(C) has differential

d, d_
dr(c) = ( 80 Y 1;11 ) : T(C), =T(C_)o®T(Ci_)1 = T(C)r_1 = T(Ci; )0 ® T(C2oy )1

where

d’ ,,=((B"®1)u* e Homa, (C""",B®4, C"'™"),0 € Hom, (0,C"))
d,=(1®d¢, e Homa, (B®4 C"",B®4 C"""),df € Homa, (C",C"77))
d, ;= (d5 € Homy, (C"",C"™7),0 € Hom g, (0,0))

so that dp(cy : T(C), — T(C),_1 is represented by the pair of morphisms

( 1eds (B7rel)u”

0 o ) eHomy, ((B®4, C"™™) @ O (B®4, C"'"") @ C?)
—Yc

d, € Homy, (C'",C"T)
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so that
T(C)« = (‘g(/i(ﬂ’1 ® 1))1’*,0"*7( (1) ) :B®s, O > E (B @ 1))1_*)

as required. By comparison with Proposition 7.2.1 is clear that T : A-Chain — A-Chain is an
extension of T : A-Mod - A-Chain. It then remains to check the functoriality and additivity
of T.

(i) Proposition 7.1.3 implies that T(C) is indeed an A-module chain complex so that T sends

objects to objects.

(ii) Let D= (D,D',v: B®a, D' - D) be another A-module chain complex. Proposition 7.1.3

implies that an A-module chain map f: C — D may be identified with a pair of chain maps
£=(f:C—D,f':C' - D)

such that the following diagram commutes

Note that f*: D'™* - C'~* defines an As-module chain map. Since fu =v(1® f) the following

diagram is commutative

I-r 1-r ( 1®({ fo* ) -r 2-r
(B®a,D™")® D (B®a, D" )@ D

( 1@k, (FTleny* )l J{( 18d%, (B lenn* )
0 -d¥, 0 —d*c

(B ®A2 C,_T) €B Cl_r W (B ®A2 Oll_r) @ CQ_T
0 F*

so that
lef™ 0
0 fr
is an Aj-module chain map. The commutative diagram

(+)

B®s, D" ~2% (Bea, D' ")® D"

[ 2)
B®a, O — (B®a, C") e Cl7

(+)

and Proposition 7.1.3 implies that the pair

T(F) - (( tef" 0 )f) . T(D) > T(C)

) G el) T > C(u(s e 1))

0o f

defines an A-module chain map and hence T sends morphisms to morphisms.
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(iii) It is clear from (ii) that T(1¢) = 1p(c)

(iv) Let E=(E,E',{ : B®a, E' - FE) be third A-module chain complex and let g € Hom 4 (N, P)

be a morphism. Under the identification
g=(9:D~>E,g:D' > E)
the composition gf is identified with the pair
gf=(9f:C>E,g'f:C' > F)

and it is clear from (ii) that T(gf) = T(f)T(g) so T : A - Chain - A - Chain defines a

contravariant functor.

(v) For finite A-module chain complexes C,D it is clear from (ii) that the map
T :Homu(C,D) > Hom4(T(C), T(D)), f~ T(f)

is a homomorphism of Z-modules.

O

We next need to find a natural transformation e : T> - 1: A-Mod — A-Chain. The effect of

T? on an object in A-Mod is as follows.

Corollary 7.2.3. For an A-module M = (M, M’, 1), the chain complex T?(M) is a strictly

1-dimensional A-module chain complex with

B*®4, M’ 0 00— 5 B o4 M
Tz(M) = pen ) 0> 0 el
—u(B'e1) -p(Be1)
(Boa, M Yo M M’ B®A2M’m (Boa, M Yo M
0

Proof. Use Proposition 7.2.1 to write down T(M) and then use Proposition 7.2.2 to write down
T?(M) = T(T(M)). O

In order for the chain map e(M) : T*(M) - M to be a chain homotopy equivalence it is

necessary to work with the weaker class of morphisms in the category A-Mod.
Definition 7.2.4. Let C=(C,C’,u) and D = (D, D’ ,v) be A-module chain complexes.

(i) A local A-module chain map is a pair of chain maps
f=(f e Homy, (C, D), f, € Homy, (Clv Dl))
(ii) An A-module chain map

f=(f eHomy, (C, D), f €Homy,(C',D"))
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is a local chain equivalence if both f and f’ are chain homotopy equivalences.

Note that the forgetful functor

(A-Mod, A-module chain maps) - (A-Mod, local A-module chain maps)
(f17f2) = (flaf?)

is not in general surjective since a local chain map f= (f € Homu, (C, D), f’ € Homa,(C’,D"))

does not necessarily determine a commutative diagram

Proposition 7.2.5. There is a natural transformation of covariant functors
e:T? > 1: A-Mod - A - Chain
such that for each A-module M the A-module chain map
e(M): T*(M) > M

is a local A-module chain equivalence.

Proof. Let M = (M, M’, ) be an A-module which we may view as a strictly 0-dimensional

A-module chain complex. By Corollary 7.2.3 we may write

B* ®4, M’ 0 0 —2—— B*o, M
T3(M) = et e o 5ol
—p(B8te1) -u(B7'e1)
(B, M Yo M M’ B®A2M’ﬁ>(B®A2M’)®M
0

Each component of the chain map e(M) : TZ(M) — M is necessarily zero apart from the

0-dimensional component e(M) : T2(M)o -~ Mg = M. The pair of morphisms
e(M)=(( p1 1 )eHoma, ((B®a, M')® M, M),1¢Homyu, (M, M))

determine a commutative diagram

()

B®s, M' — (B®y, M") & M,

ol Lo )

Beay, M ————— M
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so that e(M) : T?(M) - My is an A-module morphism. The commutative diagram

B o, M ——% 0

-1
B el 0
-u(Btel)
(Boa, M Yo M —— M

(v 1)

implies that there is a commutative diagram

T>(M); —2— 0

de(M)l lo

2

so that e(M) : T?(M) — M is an A-module chain map. It remains to show that e(M) is a
local chain equivalence. We explain after the proof why it is not possible to choose e(M) to be

a genuine chain equivalence.
For ease of notation, let f=e(M). Since M is a strictly 0-dimensional A-module chain complex,
a local chain map g = (g1,92) : M » T?(M) is uniquely determined by an arbitrary local

morphism of A-modules g: My = My - TQ(M)O with no commutativity requirements . Define

a local A-module chain map g: M — TQ(M) by the pair of morphisms
0
(( ) ) € Homy, (M,(B®a, M')® M),1¢ HomAQ(M',M')).

The composition fg: M — TQ(M) — M is represented by the pair of morphisms
(1 € Homa, (M, M),1 € Homa,(M',M"))

so that fg = 1 and hence there is a chain homotopy 0 : fg ~ 1.

Denote by C' the strictly 1-dimensional chain complex

& B* ® A, M’
_ g lel
do -
-p(B'e1)
Co (B ® A, M’) o M

The composition h = gf: T?>(M) - M — T?(M) is represented by the pair of morphisms
4 O 0 ! ! ! 4
h=(hh")= ) eHomy, (B®a, M"Y® M,(B®a, M")® M),1 € Homa,(M',M")].
1

Since h is only required to be a local chain equivalence, it is then enough to find a chain

homotopy k:1~h:C — C. The morphism
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k:( ge®l 0 )€H0mA1((B®A2 M')®e M,B*®4, M)

defines a degree one morphism k : C, - C, 1 satisfying

k:dc=( Be®l1 0 )( _f(é_?;l) )

= 1—h€H0mA1(Cl,Cl)

glel
dek=| g )( fel 0)

(1 0
- 0

o)

=1-he HOHlA1 (Co,Co)

so that k:1~h:C — C is a chain homotopy as required. O

Note that if we require that e(M) to be a genuine A-module chain map then necessarily
e(M) = + (( uo 1 ) € Homu, (B®a, M')® M, M), 1€ HomA2(M',M’))

so that e(M) is unique up to sign. A genuine A-module chain map g: M — T?(M) is uniquely
determined by a genuine morphism of A-modules g : My = My — TQ(M)O determining a
commutative square

Bosy, M —* s M

o )

Boa, M' —— (Boa, M) M
1

()

Given the data available, the only natural choice for g3 is g3 = 1 so that necessarily gop = 0 and
9114 = 1. Proposition 7.1.2 implies that : B®4, M’ — M is split-injective since M is projective.
Choose a morphism k: M — B® 4, M’ which splits x4 and then set g; = x. Recall that we want
g to be a chain homotopy inverse to f. Note that the composition fg: M — M is represented
by (uk,1). Since M is a zero-dimensional chain complex, the requirement that fg ~1: M - M
is equivalent to the requirement that fg = 1: M — M. However k is only a left inverse for u

S0 it is not necessarily true that puk = 1 unless p is invertible and this is too strong of a restriction.
This difficulty can be resolved if we weaken the requirement that g is a chain map to g is
a local chain map. See [Ran92, chapters 4,7] for other examples of local morphisms and local

homotopy equivalences used elsewhere in L-theory.

We now check that (T, e) satisfies the remaining requirements of Definition 6.2.1.
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Proposition 7.2.6. For each A-module M
e(T(M))T(e(M)) =1: T(M) - T*(M) - T(M)

Proof. If M = (M, M’, ;1) then let C = T(M),D = T?(M). By Proposition 7.2.1

M 0 0 — 2 — M*
C-= fﬁl@l)m’ Jo ) Jo J(W@l)u*
B ®A2 Ml* M/»(— B ®A2 Ml* - B ®A2 MH—

and since C is a strictly 1-dimensional chain complex it is enough to verify the identity
e(T(M))T(e(M)) = 1 only in dimensions 0,1. By Corollary 7.2.3 the chain complex D is

strictly 1-dimensional

B* @, M’ 0 0 —2 5 Bea, M
1 -1
D: pret ) 0> 0 pel
—u(Blel) -u(B7le1)
(B®a, M Yo M M Bea, M’ ﬁ) (Boa, M'Yo M
0

and by Proposition 7.2.2 the chain complex T(D) is given in dimensions 0 and 1 by

(B* ®4, M"™) ® M* 0 0 0 s (Boa, M) ® M*
1 -1
( g‘lzi —(zf‘loemw* )’ 0 0 ( g‘lzi —(zrlooal)u* )
(B®a, M) & (B®4, M"™) M"™ (B®a, M™)® M* ﬁ (B®a, M) & (B®4, M"™)
0

Dimension 0: By Proposition 7.2.5 we have
e(M) = (( o1 )eHomAl((B ®4, M')® M, M), 1 e Homa, (M',M')) € Hom 4 (T*(M)o, M)

and hence by Proposition 7.2.2 the morphism T(e(M))o € Hom 4 (T(M)o, T?(M),) is identified

with the pair of morphisms
1
(( 0 ) eHomy, (B®a, M, (B®a, M )® (B®a, M™)),1¢ HomAZ(M'*,M'*)).

Similarly the morphism e(T(M)) € Hom 4 (T?(M)o, T(M),) is identified with the pair of
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morphisms
((1 1)eHoma, (Boa, M) @ (Boa, M™), Boa, M™*),1eHomu, (M"™, M"))

so that the composition e(T(M))T(e(M)) € Hom 4 (T(M)o, T(M)y) is identified with the pair

of morphisms
(1 eHoma, (B®a, M, B®4, M"™),1 € Homa,(M"™,M"™))

which is the identity morphism 1 € Hom 4 (T(M)g, T(M)).

Dimension 1: By Proposition 7.2.2 the morphism T(e(M)); € Hom4(T(M), T?(M);) is
identified with the pair of morphisms

(( “1 ) e Homa, (M*,(B* ®4, M™*) ® M*),0 ¢ HomAz(O,O))

and the morphism e(T(M)) € Hom 4 (T?(M),, T(M),) is identified with the pair of morphisms
((0 1 )eHoma, (Bo, M*)®M*), Bos, M"™),0€Homy,(0,0))

so that the composition e(T(M))T(e(M)) € Hom4 (T (M), T(M),) is identified with the pair
of morphisms

(1 eHomy, (M™*, M*),0 € Hom4,(0,0))
which is the identity morphism 1 € Hom4(T(M);, T(M);) as required. O
Theorem 7.2.7. The pair (T,e) defines a local chain duality on the additive category A-Mod.

Proof. By Propositions 7.2.1, 7.2.2, 7.2.5, 7.2.6. O

7.3 Symmetric complexes over a triangular matrix ring

Having established the existence of a local chain duality (T,e) on the additive category A-Mod
we may now describe the e-symmetric Q-groups of a triangular matrix ring A = (Ay, Az, B). We
start by obtaining a description of the tensor products of objects M ® 4 N and of the e-duality
involution Ty N,e : M ®4 N - N®4 M for A-modules M, N.

Lemma 7.3.1. Let M = (M, M’ 1),N = (N, N’ ,v) be A-modules. The tensor product M® 4 N

is the Z-module chain complex concentrated in dimensions 0 and -1 with chain groups

(M®4 N)o = Homa((B®a, M"™, M, 1: Bos, M" - Bea, M™),(N,N',v: Bos, N' > N))
(M ®4 N)_; =Homa((M*,0,0),(N,N',v: B4, N' > N))

and differential
dM®AN : (M ®4 N)o — (M ®A N)_1
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which sends a pair of morphisms
f=(f=v(1® f") eHoma1(B®a, M N), f' e Homa,(M"™,N")) e (M &4 N)g
to the pair of morphisms
dme,~n(f) = (v(B' ® f)p* € Homy, (M*,N),0 € Homa, (0,M')) e (M ®4 N)_;.
Proof. Recall from Definition 6.2.4 that
(M®4 N), =Homa(T(M),N), = &p1q-rHom g (T(M)_,,N,) = Hom4 (T(M)_,,N).
Since T is a 1-dimensional chain duality it follows that (M ® 4 N),. is zero except for

(M®4 N)o =Homa((B®a, M"™, M, 1: Bos, M" - Bes, M™),(N,N',v: Bos, N' > N))
(M®4N)_; =Homa(M*,0,0),(N,N',v: B®a, N' > N))

The chain complex T(M) has differential
drovy = (87 ® 1)p* € Homy, (M*, B®4, M™),0 € Homa, (0, M")))
and the differential of the chain complex M ® 4 N is given by the composition

HOInA(T(M)O, N) g HOHlA(’I‘(].V_[)l7 N), f— de(M)

so that if
f=(v(1® f') eHoma,(B®a, M™ N), f" ¢ Homa,(M"™ ,N"))
then
dme,~n(f) = (VB ®© f)p* e Homu, (M*,N),0 € Hom 4, (0, M"))
as required. O

Lemma 7.3.2. Let M = (M, M’ 1),N = (N,N’,v) be A-modules. The abelian group chain
complex isomorphism

TM’N’EIM®AN—>N®AM

is zero in all dimensions apart from dimension 0 where it is given by

(v(1® f') e Homu, (B®a, M™,N), f" € Homa,(M"™ ,N")) —
(en(1® f™) e Homa, (B®a, N, M), ef"™ € Homyu, (N, M"))

and in dimension -1 where it is given by

(f e Homa, (M*,N),0 € Homa, (0, N"))
(ef* e Homy, (N*,M),0 € Hom, (0, M"))

Proof. Recall from part (i) of Proposition 6.2.5 that the abelian group homomorphism Ty N e :
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(M®4N), > (N®4 N), sends an element
fe M®4 N), =Homa(T(M),N), =Hom (T (M)_,,N)
to the composition

T2(M)o = My = M) € Hom 4 (T(N)_,, M).

T(f) inclusion
_

(r(N)_, 22 1 (rm) ),
By Lemma 7.3.1 it follows that T ne=0: (M ®4 N), > (N®4 M), unless r =0 or r = —1.
Dimension 0: If fe (M ®4 N)g is identified with

f=(v(1® f') e Homa,(B®a, M™,N), f' € Homa,(M"™,N"))
then T(f) : T(N)g - T(T(M)p)o is identified with
T(f) = (1® f* e Homa,(B®a, N, B®4, M'), f* ¢ Hom, (N, M")).

The inclusion T(T(M)g)o = T?(M), is identified with
1
(( 0 ) € Homa,(B®a, M',(B®a, M')® M),1¢ HomAz(M',M'))

and T?(M)y - M = M is identified with
e(M)=(( p 1 )eHoma,((B®a, M') @M, M), 1€ Homa, (M, M"))
so the composition

T2(M)y <20 My = M

T(f) inclusion
—_—

T(M)y 22 T(T(M)y)o
is identified with
(en(1® f*) e Homa, (B®a, N, M), ef"™ e Homa, (N, M"))
Dimension -1: If fe (M ®4 N)_; is identified with
f=(f eHomu,(M*,N),0eHomy,(0,N"))
then T'(f) : T(N); -» T(T(M)1); is identified with
T(f) = (f* e Homyu, (N*,M),0 € Hom4,(0,0))

and the inclusion T(T(M);); = T?(M), is identified with

0
(( ) ) € Homy, (M, (B®a, M") EBM),OEHOIHAQ(O,M,))
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and e(M) : T*(M)y - Mg = M is identified with
e(M) = (( p1 1 )eHoma, ((B®a, M')® M, M),1 ¢ Homa, (M', M"))

so the composition

T2(M)o <, M,y =M

inclusion

T(N); —2 T(T(M),);

is identified with
(ef* e Homa, (N*, M),0 € Homa, (0, M"))

as required.
O

We may now describe the tensor product C® 4 C and the e-duality involution Tg . : C®4C —
C®4 C for an A-module chain complex C.

Proposition 7.3.3. Let C = (C,C’, ) be a finite-dimensional A-module chain complex. The
Z-module chain complex C ® 4 C is such that there is a one-to-one correspondence between

chains ® € (C ®4 C),, and collection of pairs of morphisms
(5(;57 ¢) = {(5¢T € Hompy, (Cn+1—r’ Cr)a ¢r € Homy, (C,n7T7 C;,))|T’ € Z}

such that each pair (0¢,, ¢,) determines a commutative diagram
(o)
B ®A2 Cln—r (B ®A2 C/n—r) ® C/n+1—r
1®¢Tl J’(Mr(1®¢'v') 3or)
B®y, C! > O

T /”l/’V‘

Proof. Proposition 7.2.2 implies that we may write
1
T(C)r,n — ((B ®A2 Clnfr) ® Cn+1—r’ Clnr’( 0 ) - B ®A2 Cln—r N (B ®A2 Cln—r) ® Cn+1r))

and by Definition 6.2.4 the tensor product (C ® 4 C) has chain groups
(C®4C),, =Homuy(T(C),C), = ®,.Hom4(T(C),—yn,C,).
It follows that a chain ® € (C®4 C),, can be identified with a collection of pairs
{((n @) 86, )eHoma, (Bea, €)@ ™' 77,C,), 6, € Homa, (C7.C)) ) I e 2}

with the data of each pair determining a commutative diagram
() 1
B ®A2 CITL—T H (B ®A2 C/TL—T) @ CITL+ =T
1®¢TJ' J’(ﬂr(1®¢r) 5¢r)
B®a, C! > Cp

r o
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Such a pair
(( s @) 86, )eHoma, (Boa, C"7) @ C™'7,C,), 6, € Homa, (C™7, 1))
is uniquely determined by, and uniquely determines, a pair
(8¢, € Homu, (C™°",C,), ¢ € Hom 4, (C™",CL)).

O

We may then write the e-duality involution on A-Mod in terms of the e-duality involutions
on A;-Mod and Ay-Mod.

Corollary 7.3.4. The e-duality involution T¢: C®4 C - C®4 C is given by
TC,E(5¢7 ¢) = (TC,€(5¢)) TC’,e(d)))'
Proof. As Proposition 6.2.5 write

@, (- (n—r)rT . 0
Te. :( (-) Cnr o,

(C®aC),»>(C®40C),
0 697"(_)(n+17T)TTCn,+1_T,CT,e ) ( A ) ( A )

where the domain is decomposed as
[©-(Crn-r ®4 Cr)o] ® [€,(Cris1-r ®4 Cr)-1]
and the codomain is decomposed as
[©/(Cr ®4 Cpr)o] @ [€:(Cr @4 Cri1—r)-1]-
By Proposition 7.3.3 we may identify an element ® € (C ® 4 C),, with a collection of pairs
(06, 9) = {(3¢, € Homa, (C"'7",C;), ¢ € Homa, (O, 7)) € Z}
so that

Tc C,.,E(M(l ® ¢r) € HOIIlAl(B ® A, C’n_r,CT),qu € HOIIlA2 (C’n_r707’,))

=(eu(1® ¢)) e Homy, (B®a, C",Cp_y), ¢ € Homa, (C,C) _.))

n-r,

and

TCn+17T,C7~,6(5¢7‘ € Homy4, (Cn+1_r, C,),0¢ HOIHAQ(O, C;))
=(ed¢; € Homyu, (C",Cy1-r),0 € Homa, (0,C),1_,.))-

Under the identifications of Proposition 7.3.3 it follows that T (0@, @) = (T, (00),Tcr (4))
as required. From now on we write T, = Tc.e = (Tc.e,Tcr.e) = (Te, Te). O]

The description of the e-duality involution on A-Mod may then be used to determine the

chain complex WZBC and its differential.
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Proposition 7.3.5. Let C = (C,C’, 1) be a finite A-module chain complex and let € = +1. A
chain ® € (W7 C),, may be identified with a collection of pairs

(0¢,0) = {(66s € Hom, (C"77+ C,), ¢bs € Hom 4, (C""5 . C1))|s > 0,7 € Z}

such that if ® has differential the chain x € (W7 C),_1 then x is identified with the collection

of pairs
(6x,x) = {6¢], e Hom, (C™"* . C,.), ¢ € Homy, (C™ 1775 C)|s > 0,7 € Z}
where

xs = dcdgs + (=) 10¢sdi + ()" (0smr + (<) Te(5¢s1)) + ()" 1(B™" ® ¢ )1’
Xs = derds + (=) bodi + (=) (o1 + () Te(hs-1)-

Proof. By Definition 6.3.1 the chain ® = {®, ¢ Hom4(C" ", C,)|s > 0,7 € Z} has differential
X = {dc®, + (=) @ dg + (=) NPy + (-)"T(®,.1)) e Homua (C" 174 C,)|s 2 0,7 € Z}.
From Proposition 7.3.3 we may identify

D, = (8¢, 05) = { (8¢5 € Hom 4, (C™177%5 C,), s € Homa, (C™77%,CL))|r e Z}

where we have now dropped the r indices on d¢, and ¢,. The composition dc®, € HomA(le*”S, C,)
is then identified with

(dcd¢s € Homa, (C™17745,C, ), derds € Homoa, (C7745,C1).

Note that

(16 o0, ),¢s)(( He e (ﬁl_j*cl)“* )wi?y)

1 dx—l -1 1 *
:(( u(126,) 6@)( oo (78 D ),assdzw)
C

(1 @puds) p(B ® 6 )u ~buds ), dudi )
so by Proposition 7.2.2 the composition ®,dg € Hom4(C™ ™! C,) is identified with
(LB ® ¢s)* = dsd, € Homu, (C™7745,C,), psdi € Homa, (C™177%,C1)).

By Corollary 7.3.4 it follows that we may identify ®5_1 + (=)*T(Ps_1) € HomA(CW”S*l, C,)
with

(5¢s—1 + (_)3T6(5¢S—1) € HOH’IAI (Cn—7‘+s7 C’!‘)7 (bs—l + (_)STe(¢s—1) € HomAg (Cln—l—r+s7 C;))
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and hence we may identify
de®, + (=) " ®.dg+ (-)" N @,y + (-) T(Ps 1)) € Hom, (C™""71 C,)
with
{6xs € Homa, (C™77**,C,), x € Homa, (C™7177%, G )|r € Z)
where
OXs = dodds + (=) " 10sdE + (=) T (051 + (<) Te(8¢5-1)) + (=) 1(B™ ® ¢ )u*
Xs = dC’¢s + (_)T(bsdé" + (_)n+s_1(¢sfl + (_)STE(¢S—1))
as required. O

We now work towards showing that each A-module chain complex C = (C,C’, 1) induces a

long exact sequence of e-symmetric Q-groups

n ’ (1,8)% n n n / (1,8)% n
L QO ) s QO ) - Q(Che) —» QL (CFhe) s QT (Cre) .

The key idea is to identify the e-symmetric Q-groups Q7 (C,e) with the relative e-symmetric
Q-groups of a chain map induced by p and S.

Proposition 7.3.6. A finite-dimensional A-module chain complex C = (C,C’, ) induces a Z-
module chain map (i, 8)% = (B ' ®@-): WZ; C' - WZZC such that there is an isomorphism
of Z-module chain complexes W7 (C, ), =€ ((1,8)7%)ss1.

Proof. If
¢ = {¢s € Homa, (C""",C1)[s 2 0,7 € Z} € (WLC)

then define
fled={f"'®dp, c Homy, (B®s, C" " Bos, C)s>0,7eZ}e WZ’I(B ®a, C").

Since the differential of the chain complex B ® 4, C’ is given by 1 ® d¢ it is clear that there is

a commutative diagram

WP, —22= s (W (B®a, C'))n

d % o d % ’
wi o Wk (Bea, N

(WZ;CI)n—l W (VVZ’1 (B ®4, C,))nfl

so that 37'®— defines a Z-module chain map. Since u% is a Z-module chain map the composition
(1, 8)% is a Z-module chain map. By Proposition 7.3.5 an element ® € (W7 C),, is identified

with a collection

(00, 0) = {(66s € Homp, (C™774 C,), ¢ps € Hom 4, (C"7,C1))|s > 0,7 € Z}



CHAPTER 7. THE L-THEORY OF A TRIANGULAR MATRIX RING 148

and there is a bijection

O : WE(C) > € (11, 8) st
{(66s,05)|s > 0,7 € Z} = {((-)""' 7005, ¢s)|s > 0,7 € Z}  (n>0).

Clearly 6,, is an isomorphism of Z-modules so it is enough to show that the following diagram

is commutative
en
(WEC)y —— C((11,8)")ni1

dw;{wl ld‘f((uﬁ)%)

(WECht —— C (1)),
By Proposition 7.3.5 the differential x = dwj{n((:)‘i’ € (WZ’C)n_l is identified with the collection
(0%, x) = {0xs € Homu, (C™"*%,C,.), xs € Hom, (C™ 1774 C1)|s > 0,7 € Z}
where

s = dedps + (=) 10¢sdE + (=) T (0o + (=) Te(3s5-1)) + () (B~ ® ps )’
Xs = dors + (=) Gsdin + (=) (Psm1 + (=) Te($5-1))-

If 4 = 0,_1(x) € €((1, 8)7), is identified by the collection
(59,1p) = {6%ps € Homa, (C™7"*%, C,.),1bs € Homa, (C""177* . CL)|s > 0,7 € Z}
then

s = (=) (deds + (=) 1 ¢sdr + ()T (051 + (<) Te(6¢s-1)) + () (57" ® 6)”)
= (_)n_rd06¢s + (_)n+16¢sd6 + (_)S_T_l(&bs—l + (_)STE(6¢S—1)) + (_)nﬂ(ﬁ_l ® Q/)s)lf
s = derds + (=) Gsdir + (=) T (domr + (-) Tere($5-1))-

On the other hand, if v = 6,,(®) € €((1t, 8)”)ns+1 then v is identified with the collection
(6v,v) = {dvs = (=)™ "¢, € Hom g, (C™77%5 0L, v, = ¢ € Hom g, (C""774 . CL)|s > 0,7 € Z}.
The algebraic mapping cone € ((u, 8)7) has differential

dW:fl ) (_)n(ﬂuﬁ)%
deg((u,p)%) = 0

Ay ()
2 E((118) Ynsr = WE (O @ W (C) > C (11, 8) ) = WL (Chn @ W (C)n
so that if w = de((,,5)%)v s identified with the collection

(0w, w) = {6ws € Hom 4, (C™"* C,.),w,s € Hom 4, (C" 175 C7)|s 2 0,1 € Z}
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then

Sws = derdug + (=) vsdin + (=) (vgo1 + (=) Te(6ps-1)) + ()" u(B™ ® v ) p*
= ()" der8ps + ()" 0dadgy + (-)TH (Ovams + () Te(86a-1)) + (5)" (BT ® do) 1
ws = derds + (=) dadgy + (=)™ (Gsm1 + () Tere(h5-1))-

It follows that 1 = w and hence the diagram is commutative. O

Theorem 7.3.7. An A-module chain complex C = (C,C’, 1) induces a long exact sequence of

e-symmetric Q-groups

(uﬁ)c (/ B)%

2 QN(C ) = QU (Cre) > QA(Cle) > Q1,(CFhe) —— Q4 (Ce)

Proof. The Z-module chain map (u, B)% : WZ; C' - WZ’lC induces a short exact sequence of

Z-module chain complexes
0> (WZC) = E((11,8) ) > (WL C)ua =0
which induces a long exact sequence of e-symmetric Q-groups

(1,8)% (M 8%

> QI H(C ) = QET(C0) » Q" (1, B),€) > Q4 (CF ) ——— Q4 (Cre) >

The isomorphism of Z-module chain complexes W7 (C,€), = € ((1,3)”)++1 induces an isomor-

phism of homology groups

Q4(C,e) = Ho(WX(C,€)) 2 Hoa (6((1,8)%)) = Q" (1, 8), €)
and hence there is a long exact sequence of e-symmetric QQ-groups

(1,8)% (u 8%

2 QEEN(C ) —— QU (Ce) » QU(Cle) » Q4,(C',6) ——— Q}4,(Cre) ~

as required. O
Example 7.3.8.

(i) Let A; and Az be rings with involution determining the triangular matrix ring A = (A, Ao, 0).
A finite-dimensional A-module chain complex C is then the same as a pair (C,C") with C' an
Aj-module chain complex and C’ an As-module chain complex. Since 8 = 0 it follows that
(1,3)%=0: WZZC' - WZOIC and hence

C((1,8)")e = (WEC)e ® (W,C)umn
Proposition 7.3.6 implies that there is an isomorphism

Q4(C,e) 2 QA (Cre) @ Q4,(C€)
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and by Theorem 7.3.7 there is a long exact sequence of Q-groups

n 0 n n n n
e QAZl(Olv 6) - QAJil(Oa E) - QA(Ca 6) = QAil(Cv €)®QA2 (C,a 6)
~Ql,(C1.0) > Q4,(C.e) ~ ..
(ii) Let R be a ring with involution determining the triangular matrix ring A = (R, R, R) where

the third copy of R with R is viewed as an (R, R)-bimodule in the standard way. Let C =

(C,C’, 1) be a finite-dimensional A-module chain complex. The isomorphism of rings
R - Homp(R,R), z+ (y~ay)
gives an identification such that the map
B:RxR—>R; (v,y)~zy

has adjoint

f=1:R— R=Homg(R,R)

n+1

and hence by Proposition 7.3.6 there is an isomorphism of @Q-groups Q4 (C,¢€) = Q%" (i, €) and

there is a long exact sequence of Q-groups

L QENC ) o QEN(C) » QA(C, ) 2 QR (1) ~ QR(CT ) P QR(CLe) ~ .

This recovers the standard long exact sequence of @Q-groups associated to the chain map pu :

C" - C of R-module chain complexes from Proposition 1.2.4 from Part I.

We may now interpret a symmetric complex over A as a pair consisting of a symmetric

complex over Ay and a symmetric pair over A;.

Theorem 7.3.9. Let C = (C,C’,u) be a finite-dimensional A-module chain complex. An

n-dimensional e-symmetric structure
® = {(6¢p5 € Hom 4, (C™177%5 C,), s € Homa, (C™ 77, C1))|s 20,7 € Z} € Q4 (C, )
determines

(i) An n-dimensional e-symmetric complex (C',¢ € Q" (C’,¢€)) over As.

(ii) An (n + 1)-dimensional e-symmetric pair over A;

(1:B®a, C' > C, (60,7 ®¢) € Q"' (1,€))

where
5¢/g — (_)n+1—r5¢s € HOHlAl (Cn+1—r+s7 Cr)

Proof. This follows from the long exact sequence of Theorem 7.3.7 O
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7.4 The Poincaré condition for a symmetric complex

Having described the e-symmetric @Q-groups of a triangular matrix ring A = (A, A, B) we now

describe the Poincaré condition for symmetric complexes over A.

Definition 7.4.1. An n-dimensional e-symmetric complex (C, ® € Q% (C, €)) over A is Poincaré

if and only if ¢ : C" " - C is a local A-module chain equivalence.

Theorem 7.4.2. Let C = (C,C', 1) be a n-dimensional A-module chain complex. An n-

dimensional e-symmetric structure
® = {(0¢s € Homa, (C"*'77*°,C;.), b € Homa, (C"77°,C7))[s 2 0,7 € Z} € Q%4 (C €)

is Poincaré if and only if both of the following conditions hold:
(i) (C',¢) is an n-dimensional e-symmetric Poincaré complex over As.

(i) (u:B®a, C' > C,(6¢',3 1 ®¢)) is an (n + 1)-dimensional e-symmetric Poincaré pair over
A1, where
5¢); _ (_)n+1—r5¢)s € HOIIlAl (Canrl—rJrs7 Cr)

Proof. Definition 7.2.4 and Proposition 7.3.3 imply that ® is Poincaré if and only if both of

the following conditions hold:
(1)gg : C"™* > C" is an As-module chain homotopy equivalence.
(1)( p(l®¢o) doo ) 16 ((u, 8)%)"'~* - C'is an A;-module chain homotopy equivalence.

The commutative diagram of Aj-module chain maps

B* e, ' (B e1)
2

—_—
g-1®1l; ll;
U A— C

B®a, c’

induces an isomorphism of algebraic mapping cones

B lel 0
0 1

)=‘€((u,ﬁ)%) - E (")

with dual an isomorphism of A;-module chain complexes

(6‘1®1 0

. Poyn+l-* _ Y% \n+1-%
0 1 )-%(u ) G ((n,8)7)" 7

Hence the A;-module chain map

(u(1® ¢o),060) : € ((u, B)*)" 1 = C

is a chain homotopy equivalence if and only if the A;-module chain map

(u(a ®o0) dog ):E (W > C
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is a chain homotopy equivalence. By Proposition 7.3.6 it follows that ® is Poincaré if and only
if both of the following conditions hold:

(i) (C,¢) is an n-dimensional e-symmetric Poincaré complex over A,.

(i) (u:B®a, C' = C, (04,71 ®$)) is an (n + 1)-dimensional e-symmetric Poincaré pair over
Ay

O

Recall from Definition 6.1.4 that a chain complex in an additive category A is n-dimensional
if and only it is chain homotopy equivalent to a strictly n-dimensional chain complex in A.
This implies that any n-dimensional chain complex can be viewed as an (n + 1)-dimensional
chain complex. In the context of Theorem 7.4.2 where A = A-Mod, if C = (C,C’,u) is an
n-dimensional A-module chain complex then C' is an n-dimensional chain complex over A; and
C" is an n-dimensional chain complex over A;. By the above remark we can view C as an
(n + 1)-dimensional chain complex over A; so that (u: B®a, C' - C,(6¢',7' ® ¢)) is an
(n+1)-dimensional symmetric pair over A;. As such it is useful to introduce a weaker notion of
dimensionality to allow C to be a chain complex which is (n+1)-dimensional but not necessarily

n-dimensional.

Definition 7.4.3. A chain complex C = (C,C’, u) over A is locally n-dimensional if C is an
(n+1)-dimensional chain complex over A such that C” is an n-dimensional chain complex over
As.

Theorem 7.4.4. Under the assumption that C = (C, C’, i) is a locally n-dimensional A-module

chain complex, Theorem 7.3.9 gives a one-to-one correspondence and Theorem 7.4.2 still holds.



Chapter 8

The L-theory of a triangular
matrix ring: symmetric pairs and

surgery

Using the results of chapter 2 and chapter 7 we now extend the description of e-symmetric
complexes over a triangular matrix ring A = (A;, As, B) to e-symmetric pairs, cobordisms and
surgery on e-symmetric complexes over A. We show that a relative e-symmetric (Poincaré)
structure on an A-module chain map £ = (f,f) : C = (C,C’,u),» D = (D,D’,v) can be
described in terms of an e-symmetric (Poincaré) structure on the commutative A;-module

triad
Bes, ¢t C

o

B®A2D,#>D

in such a way that an e-symmetric cobordism over A can be viewed as a relative e-symmetric

cobordism over A;. This determines a long exact sequence of L-groups
o> L™ (Ag€) > L™ (A €) > L™ (A €) > L"(Ag,e) = L™(Ay,€) > ...

We then describe the effect of a surgery on an e-symmetric complex over A and examine the
special case A = (R, R, R) to define a relative algebraic surgery operation on an an e-symmetric
pair over R. This is an algebraic model for geometric half-surgeries on a manifold with boundary.
We then show that every e-symmetric relative cobordism over R is homotopy equivalent to a

union of relative algebraic surgeries.

8.1 Symmetric pairs and cobordisms over a triangular

matrix ring

The first step is to understand relative symmetric structures over A is to examine the morphism
£ W73(C) - W7 (D) induced by a chain map f: C - D.

153
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Proposition 8.1.1. Let f=(f,f"): C=(C,C',u) > D = (D,D’,v) be a chain map of finite
dimensional A-module chain complexes and let € = +1.

(i) The Z-module chain complex map £ : W7(C) > W(D) is given by
D ={(6¢s,05)|s > 0,7 € Z} > £OF = {(fODs f*, [ D f™)|s 20,7 € Z}.
(ii) A chain (A®,P) € % (£%) 41 is represented by a collection of morphisms

A® = {(¢, e Homy, (D" D,),0¢., € Homa, (D™ "7 D/))|s > 0,r € Z}
® = {(665 € Homy, (C™77%5 ), ¢ € Homa, (C™77F,CL))|s > 0,7 € Z}

and has differential (Ax,x) € %(f%)n represented by the collection of morphisms

Ax' = {(x} e Homy, (D™ D,),8x" e Homa, (D™ D.))|s > 0,7 € Z}
x' = {(6xs € Homyu, (C""**,C,), xs € Homa, (C™"777,C)))|s > 0,7 € Z}
where
XL =t + (0L + ()™ (61 + ()T 1)) + () f0* + (4 108 @ 0L
Oy = dp oy + (=) 0 dp + (=) (0¢_q + (=) Te(dd5_1)) + (=)" f'os [
5Xs = dedds + (=) 6sds + (=) (6hsr + (=) Te(5¢ps—1)) + (=) (B~ @ g )p*
Xs = ders + (=) bsdin + (=) Hso1 + (=) Te(s-1))
Proof.

(i) Proposition 7.3.3 implies that an element ® € W7 (C),, can be identified with a collection of
pairs

{(6¢s € Homy, (C™1775 0, s € Hom, (C™75,C0))|s > 0,7 € Z}.

By Proposition 7.2.2 the map f*: D" ™"** - C™"** is then identified with
1 ® I* O
( of i ) € Hom, ((B®a, D""7"**) @ D" 77, (B @, C"77*%) @ CH177*%)
fl* € HOmA2 (Dln—’r‘+8’ Cln—r+3)

The composition ®,f* € Hom (D" C,) is then identified with the collection of pairs

(( nieo,) 060, )( 1®0f'* ; ),@f’*):(( (100 ") 60uf" ) 65f")

so that we may identify ®,f* with the collection of pairs
{(6¢ps f* € Homu, (D™1775 C,), s f™* € Homa, (D™ "5, C1))|r € Z}
and hence the composition f®,f* is then identified with the collection of pairs

{(f3¢sf* e Homa, (D™ 175, D,), f'¢, [ € Homa, (D7, D)) |r € Z}
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as required.

(ii) The chain map £ of Z-module chain complexes has an algebraic mapping cone with differ-

ential

dW% (—)”f%

- (D)

e _( 0 duso
A

: Cg(f%)nﬂ = WZ{)(D)nH ® W,?(C)n - Cg(f%)n = WZ{)(D)n ® W?(C)n—b

The result then follows from part (i) and Proposition 7.3.5.
O

We now show that a relative e-symmetric structure (A®,®) € Q4! (f) determines an e-

symmetric structure on a commutative triad.

Theorem 8.1.2. An (n + 1)-dimensional e-symmetric pair (f: C - D, (A®,®) € Q\ (£ €))

over A with

A® = {(¢; e Hom 4, (D"**7**, D,),0¢, € Homa, (D7, D]))|s > 0,r € Z}
® = {(§¢s € Homy, (C™77* C,), by € Homy, (C™",C1))|s 2 0,7 € Z}
determines
(i) An n-dimensional e-symmetric complex (C’, ®) over A,.
(i) An (n + 1)-dimensional e-symmetric pair (1: B®a, C' — C,(5¢", 87 ® ¢)) over A;.
(iii) An (n+ 1)-dimensional e-symmetric pair (f': C" — D', (6¢’,¢)) over A,.

(iv) An (n +2)-dimensional e-symmetric triad (I, ®) over A; where

Bey, ¢ 5 C

I'= 1®f’l lf

B®a, D' —— D

D= (¢, ®¢,6¢", 87" ®¢)
where

5¢g _ (_)n+1—7‘5¢s € HOI’HAl (Cn+1—r+s’ Cr)

Proof. Note that if (f: C » D, (A®,®) € Q"' (f,¢)) is an (n + 1)-dimensional e-symmetric

pair then necessarily (C,® € Q" (C,¢)) is an n-dimensional e-symmetric complex so that
(i) Follows from Theorem 7.3.9.
(ii) Follows from Theorem 7.3.9.

(iii) Follows from part (ii) of Proposition 8.1.1.
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(iv) Follows from part (ii) of Proposition 8.1.1.
O
As in the case of e-symmetric complexes over A, it is useful to introduce a weaker notion of
dimensionality for e-symmetric pairs over A.

Definition 8.1.3. A locally (n+1)-dimensional e-symmetric pair is an e-symmetric pair (f: C —
D, (A®,®) € Q" (f,¢)) such that the chain complex C = (C,C’, 1) is locally n-dimensional

and the chain complex D = (D, D', v) is locally (n + 1)-dimensional.
The following is an analogue of Proposition 2.1.8 from Section 2.5 of Part 1.

Theorem 8.1.4. Under the assumption that (f: C - D,(A®,®) € Q"' (f ¢)) is a locally

(n + 1)-dimensional e-symmetric pair, Theorem 8.1.2 gives an one-to-one correspondence.

We now describe the long exact sequence for e-symmetric pair structures over A and relate

it to the long exact sequences for e-symmetric triad structures.

Proposition 8.1.5. A chain map f=(f,f): C=(C,C",u) > D = (D, D’,v) of finite dimen-

sional A-module chain complexes determines:

(i) A commutative triad T of A;-module chain complexes

B®y, ¢ L C

I'= 1®f’l lf

B®A2D,#>D

(ii) A commutative triad T of Z-module chain complexes

W% o —T L o
Az — Ay

f = fl%l lf%

% %
WAD — = WD

(iii) A Z-module chain map

f%

0 % ) 2 E((1.8)*) » € ((.5)")

(f "= (

given by

{(6¢s € Homy, (C’”H*”s, C,),ps € Homa, (C™77*° CL))|s > 0,7 € Z}
{(fopsf* e Homy, (D™ D), f'és f* € Homu, (D™ D.))|s > 0,7 € Z}.

(iv) A Z-module chain map

(n,B8)% 0

v,B)% =

) ()~ € ()
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given by

{(§¢9 € HOHIA2 (D,n+1ir+sa Dvlﬂ)a @s € HOH1A2 (Cm*wrsv C;“))|5 20,7¢€ Z} g

{(V(ﬁ_l ® 5¢S)V* € Homy, (Dn+1_r+8a D?”)v N(ﬁ_l ® (ZSS)N* € Homa, (Cn_HSv Cr))|8 20,r¢ Z}'

(v) A commutative diagram of chain maps of Z-module chain complexes

T
w%(C), ————— W%(D).

el o]
%((M76)%)x—+1 (f f,)% %((Vﬁﬁ)%)*+1

where the two vertical maps are isomorphisms.

(vi) A commutative diagram of e-symmetric Q-groups

Q4(Ce) — 5 Qi (D,e)

o N
QM (1, 8); ) W QM (v, 8);€).
where the two vertical maps are isomorphisms.

(vii) An isomorphism of Z-module chain complexes

0 fc

9=( o 0 ):‘f(f%)*i‘f((f,f’)%)wr

(viii) An isomorphism © : Q% (f,€) = H, 41 (T).
Proof.
(i) Follows from part (iv) of Theorem 8.1.2.
(ii) Follows from Proposition 7.3.6.
(iti) Tmmediate from the commutativity of T.
(iv) Immediate from the commutativity of T'.
(v) Follows from part (iii) and Propositions 7.3.6, 8.1.1.

(vi) Follows from part (v) by taking homology groups.

(vii) The chain map © of algebraic mapping cones is an isomorphism with inverse

o= ( 9(;’3 9?1 ) LC((f, 1)) e,
C

(viii) Follows from (vii) and the definition

H. (D) = Ho((f%, 17%:0)) = H(((f. 1))
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of the homology of a symmetric triad from Definition 2.1.2 of Section

O

Corollary 8.1.6. A chainmap f=(f,f"):C=(C,C",u) > D =(D,D’,v) of finite dimensional

A-module chain complexes determines:

(i) A commutative diagram of short exact sequences of Z-module chain complexes

0 0

Loy Ly

0

0 —— WZZ)I(D)* E— %((146)%)* —

(

— ()1 —— 0

) ()]
0 —— (%), — C(f, )%).

(+)] ()]

0 — WOt 7 €1t 7

| (o) | (

0 0

(ii) A commutative diagram of long exact sequences of Z-modules

V-

] 1 o
e QTR ———— QY (f, )

~ N

v Y%
e QU B0) > Q1 (C ) —

(.1H% 1%

(v.8)%

)
%
(
o)

N

W5 (D)uey — 0

W% (C")eg — 0

~

L) ——— QU () ——— .

V-

QZI(Cve) —_— Q"(‘u’lﬁye) —_— ...

f%

~

(f.f1H%

~

LT QB 2 QD) — > QL (D) > QM B9 ——— .

w ~

(,v,8)%

L QM () > Q4 (f ) — > Qh(f,) ————> Q" (le) — > ...

~

~
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(iii) A commutative diagram of long exact sequences of Z-module chain complexes

~ ~

(v,8)% n+l

~

QYT (fe) ——— QUM e) == QU (f,e) ——— Qh(f,e) —— ...

N

c > Q4(Cre) ——— Q4 (

N ~ ~

(1,8)%

rd Jcl% f% 7

N ~ ~

(v,8)%

' e) —2 . Qn (Cre) —— Q(Cre) —— ...

o QU(D,e) ——— Q' (D', e) ——— Q% (D,e) —— Q4(D,e) —— ...

~+ ~+ Vv

(,v,8)%

L Qh(fe) ——— QE,(f.e) ——— Qi (f,) ——— Qi () ——— ...

Proof.

(i) The three vertical and three horizontal short exact sequences of chain complexes are those

associated to algebraic mapping cones.
(ii) Follows by taking the homology groups in part (i).

(iii) Follows from part (ii) and the isomorphisms Q% (C) = Q"*!(u, 8) and Q%4 (D) = Q" (v, 3)
from Proposition 7.3.6 and the isomorphism Q% (f) & Q"**(T') from part (vii) of Proposition
8.1.5.

O

Example 8.1.7. Asin Example 7.3.8 let R be a ring with involution determining the triangular
matrix ring A= (R,R,R) and let f=(f,f):C=(C,C",u:C"->C)->D=(D,D',v:D" - D)
be a chain map of finite A-module chain complexes. The commutative triad of A-module chain
complexes from part (i) of Proposition 8.1.5 reduces to the commutative triad of R-module
chain complexes
¢t C
SV

D" —— D

such that Q*(I') = H*(T) and the commutative diagram of exact sequence from part (i) of
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Corollary 8.1.6 reduces to the commutative diagram of exact sequences

v v Vv

p,v,1)%

. ? Qn+2(r76) ? szl\(,flve) ( ? tal(fae) — QTH—I(F:e) — 7 ..

v v v v

N QnH(MaE) SN Qr}b(C/’e) “—%> Qzl(076) — Q" (ye) ———— ...

(f, )% §r% ad (f. )%

v v v v

L— Q”*;(y,e) — Q%,(D'¢) AN Q% (D,e) ———— Q" (v,e) ———— ...

A Vv ~

’ w1 n
e QU ) ——— QL (fe) — D

~

This is the same diagram for the e-symmetric @Q-groups of a triad of R-module chain complexes

as Proposition 2.1.3 from Section 1.5 of Part I.

8.2 The Poincaré condition for a symmetric pair

We now examine the Poincaré condition for an e-symmetric pair and show that every e-

symmetric Poincaré pair determines a commutative e-symmetric Poincaré triad.

Definition 8.2.1. Let f: C - D be a chain map of finite dimensional A-module chain com-

plexes. A relative e-symmetric structure (A®, ®) € Qs (£, €) is Poincaré if and only if

(f@0 A® ):€(H"'* > D

is a local A-module chain equivalence.

We first need a technical lemma to compute the (n + 1)-dual of a chain complex C in the

sense of Definition 6.2.2.

Lemma 8.2.2. A chain map f=(f,f):C=(C,C",u) > D = (D, D’,v) of finite dimensional

A-module chain complexes determines:

(i) An A;-module chain map
(v u):BeaC(f) >4
given by

0
(g ) ):(B®A2D;,)EB(B®A2C;1)_>DTEBC7,*1 (reZ)

tf,e) — Q"(Te) —— ...
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(ii) An algebraic mapping cone

). = (C(N0C()e( v p )i Boa,E(f)e>E(f).)
which is a finite A-module chain complex with differential

d%&(f) : %(f)r g cg(f)r_l

given by

(v »)

() G B, €(f)r ——— €(H)r

ld%’(f) ’ ld%’(f’) ’ f@d(ﬂ(ﬂ) ld‘f(f)

(g(f)r—l (g(f,)r—l B ®4, %(f,)r—l — %(f)r—l

(v n)
(iii) An Aj-module chain map

(v u)B 0B @1 E(f) > Bos €(f) ().

(iv) A dual algebraic mapping cone
GO =@(v on) (ﬂ1®1))“,‘€(f’)*7( ; ) BowL, (/)" ~¢((v ) o))

which is a finite A-module chain complex with differential

A+ C(H7 - (0

given by
C((v ou )BT gy Bmmf')-rM%((u p) (B e)

* * * *
ldf((u w(B-le1)’ ld%(m , 1@deg g1y J{dwu w(B-1e1))

“(v ou)Eten)y™  CUNTT Bea@(f)er —— €(v p ) (Bl e1)*T

(o)

Proof.
(i) By assumption p: B®4, C' > C and v: B®4, D' - D are Aj-module chain maps and so

the commutative diagrams

B®a, C. —5— C, B®,, D —— D,

1®dcll ldc 1®dDrJ/ ldD

B ®A2 07,._1 T) C»,a_l B ®A2 D;-—l #) Dr—l
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imply that there is a commutative diagram

( . )
! I 0 s
B®A2 (D'r@cr—l) > Do Crg
yr=1gps _yr-1
1®( dﬁ" ()dcff )l J{( dOD ()‘icf)

B®a,(D._10C| o) — D18 Crs
v 0

0 u

which can be written as

(v »)

B ®A, Cg(f/)r — Cg(f)r

1®dcg(fr)i J’d%(f/)

Boa, C(f),y 77— €(f)r

(v n)

0
as required. Note that we are using ( vou ) as a shorthand for ( g )
I
(ii) By definition the algebraic mapping cone ¢ (f) has chain groups

%(f), =D, ® C,_,

=(D,,D.,v:B®a, D, > D,.)® (C,,Cl,u: B®a, Cl. - C,)

=(DT®CT,1,D;®C;,1,( v ):B@A2 (DL.oCl_y > D.&C,_1))

and differential

dp (-)'f
d‘f(f) = : %(f)r =D,oC,_ 1~ Cg(f)r—l =D,.18C,

0 dc
given by
(v »)
DroC DL, Bea, (DioCl) /D, ec,
_yr=1 , _ T_l. ’ _yr-1
R T A Y Pe(e ) [
D,1®C,_5 D;_l @ C;_Q B ®A, (D,. ® 07«_1) — D10 C,_o

(v on)

which by part (ii) can be written as

(v »)

C(f)r  CU)r  BeaC(f)r ——— ()

J{d%m ) J{d%’u‘w ) J}@dﬁf(.f’) ld‘ﬁ(f)

(g(f)rfl Cg(f’)rfl B®a, Cg(f)r - %(f)rfl

(v n)

(-t
dc

)
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as required.

(iii) This is the composition of the A;-module chain map 37! ®1: B* ®4, C' - B®4, C' with
the A;-module chain map ( v ou ) :B®a, €(f") > €(f) from part (i).

(iv) The dual algebraic mapping cone is € (f)™* = T(%(f)). where the chain duality T is as in
Proposition 7.2.2. The rest follows from part (iii) and Proposition 7.2.2.

O

It then follows that every e-symmetric Poincaré pair over A determines a commutative

e-symmetric Poincaré triad over Aj;.
Theorem 8.2.3. An (n + 1)-dimensional e-symmetric pair (f: C > D, (A®, ®)) over A with
A® = {(¢, e Homu, (D" D), 3¢, € Hom 4, (D" D!))|s > 0,r € Z}
® = {(§¢s € Homy, (C™774 C,), by € Homy, (C™"5,CL))|s 2 0,7 € Z}
is Poincaré if and only if
(i) (C',¢) is an n-dimensional e-symmetric Poincaré complex over As.

(ii) (u:B®a, C' > C, (66", ®¢)) is an (n + 1)-dimensional e-symmetric Poincaré pair over
Ay

(iii) (f':C" > D', (6¢',9)) is an (n + 1)-dimensional e-symmetric Poincaré pair over A,.

(iv) (', ®) is an (n + 2)-dimensional e-symmetric Poincaré triad over A; where

D= (¢, ®60,6¢", 87" ®¢)
with

5¢);I _ (_)n+1—r5¢)s € HOHlAl (Cn+1—r+s, Cr)
5¢/// (_)n+1—r5¢; € HOHIA2 (Dm+1_r+s, Dr)

Proof. Recall that a relative e-symmetric structure (A®, ®) is Poincaré if and only if the A-
module chain map (A®q f®g): € (f)"*1"* - D is a local chain equivalence. In the case that
(f: C - D,(A®,P)) is Poincaré then necessarily (C,®) is Poincaré. Theorem 7.4.2 implies
that parts (i) and (ii) are equivalent to (C, ®) being Poincaré.

"% were identified
in part (iii) of Lemma 8.2.2. Note that f®,: C"™* - D is identified with the collection

The chain groups and differential of the dual algebraic mapping cone % (f

{(fé¢0 € Homa, (C™'77, D), f'¢po € Homa, (C"™", Dy))|r € Z}
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and A®,: D" 5 D is identified with the collection
{(6¢( € Homa, (D™**™", D), ¢, € Homa, (D", D.))|r € Z}
so that (A®, f®() : €(f)""17* - D is identified with the collection
{(60)  f3¢0) € Homy, (D"**"&@C™ " > D,), (¢ ['¢0) € Homa, (D™ "@C™ " > D)|r € Z}.

By Definition 7.2.4 and Proposition 7.3.3 it follows that (A®,®) € Q4! (f) is Poincaré if and
only if both of the following conditions hold:

(a)( 0oy o ) c € (f)"* - D' is an Ay-module chain homotopy equivalence.

(a)( v(1® f'o0) v(1@ody) foen ¢ ): (v u )(5—1®1))"+2-* - D is an A;-module

chain homotopy equivalence.

It is clear (iii) is equivalent to (a). The commutative diagram of A;-module chain maps

B o4, 6(f) 2D, (1)

o] s

B®a, €(f) W c(f)

induces an isomorphism of algebraic mapping cones

(51®1 0

. 1):%<(u w)@Elen)-e(v ou)

with dual an isomorphism of dual algebraic mapping cones

R T T P Tt

so that (b) is equivalent to

(b’)( Spo  fépo v(Br® f'oo) v(B e ) )‘5( vou )n+2_* — D is an A;-module chain

homotopy equivalence.

If parts (i), (ii) and (iii) hold then (iv) is equivalent to

n+2—%
(i) 805 foso v(B ®f'00) Bled ) E(f 0 v) - D is an A;-module
chain homotopy equivalence.

and it is then enough to show that (iv’) is equivalent to (b’). Indeed, the chain map
(£ 0 v ):CUposc (Boa, D)= D
has an algebraic mapping cone with chain groups

“(f 0 -v) =Dre(Cupe,,c (Boa,D))rs
=D, ®C,_1®(B®a,C. )0 (B®a, D._;)
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and differential

do (Y0 (T
Geis o do ()7 (e

0 0 1®der 0

0 0 0 1®dp

D, @Cr1®(B®a4,Cl5)®(B®a,D. ) > D, 10C, 200 (B®a,Cl_3)®(B®a, D._,).
On the other hand the chain map
(v n)iBoa() »Bew6(f) > %))
has an algebraic mapping cone with chain groups
%( vou )7- =6(f)r®(Bos, C(f)r1)=D,®Cr_1®(B®a, D._1)®(B®4, Cl_5)

and differential

dp (9)"'f () 0
i | o dc 0 (=)t
g 0  1edp (-)1ef
0 0 0 1®de

D, @®Cro1®(B®a, D, _1)®(B®4,C) 5) > D1 ®Cr2®(B®a, D, _5)®(B®a, C,_3).
and hence the algebraic mapping cones of ( f 0 -v ) and ( VoW ) are isomorphic so (iv’)
is equivalent to (b'). O

Theorem 8.2.4. Theorem 8.2.3 holds under the assumption that (f: C —» D, (A®,®)) is a

locally (n + 1)-dimensional e-symmetric pair over A.

It then follows that every e-symmetric cobordism over A determines a commutative e-

symmetric relative cobordism over A;.

Theorem 8.2.5. A (n+1)-dimensional e-symmetric cobordism ((f f): CeC’' - D, (A®, P
-®")) over A with

C=(C,C"p)
Cl — (C”,C”’,u’)
D=(D,D',v)

f=(f eHoma, (C,D),f €Homa,(C',D"))
f' = (f" e Homu, (C",D"), f" e Homa,(C", D""))
® = {(0¢s € Homy, (C™77*5.C,), s € Homa, (C"™" . C"))|s > 0,7 € Z}
@' = {(6¢}, e Homu, (C""*'77%,C)), ¢ € Homa, (C"™ 775, C1"))|s > 0,1 € Z}
A® = {(¢! e Homy, (D" D,),5¢" e Hom 4, (D% D.))|s > 0,7 € Z}
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determines an (n + 2)-dimensional e-symmetric Poincaré triad (I", ®) over A; with

Be, (C'eC™) — ) cgcn

F = 1®(fl f///)l l(f f”)
B®y, D' > D

v

= (¢",8"®d¢" 0we -6, ®(p®-¢"))
where

5&15 — (_)n+1—r5¢s c HOIIIAI (Cn+1—’r‘+s7 Cr)
5w; — (_)n+1—7’5¢; c HomA2 (C1lln+1—7-+s7 C;f)

such that (T, ®) can be viewed as a relative e-cobordism

n 0
0 u

(B4, C')®(B®y, C") ———— Ca(C”

' (ey 1®f”’)l l(f 0!
Bea, D' s D

v

Q= (QSH, 571 ® 6¢”a dw ® _5“),7 571 ® (¢ @ _¢,))

between the (n + 1)-dimensional e-symmetric Poincaré pairs (pu: B®a, C' - C, (0w, 71 ® ¢))
and (p': B®a, C"" - C",(6w', 7t ® ¢)) over Aj.

Proof. The statements about the symmetry conditions follow from Theorem 8.1.2 and the

statements about the Poincaré conditions follow from Theorem 7.3.9. O

Theorem 8.2.6. Theorem 8.2.5 holds under the assumption that ((f f') : CeC’ — D, (A®, o

-®')) is a locally (n + 1)-dimensional e-symmetric pair over A.

‘We may now use the description of cobordisms to obtain a long exact sequence of e-symmetric
L-groups.

Definition 8.2.7. The n-dimensional e-symmetric L-group of a triangular matrix ring A =
(A1, Ay, B) is the abelian group L™(A,¢€) of cobordism classes of locally n-dimensional chain
complexes C = (C,C’, u) over A.

Theorem 8.2.8. For a triangular matrix ring A = (Aj, Aa, B) there is a long exact sequence

of L-groups
o> L™ (Ag,€) > L™ (A €) » L"(A€) » L™(Ag,€) » L™ (Ay,€) > ...
such that an element in L™ (A, ¢€) is a pair

((C",¢ € Q4,(C"0)),(n: Boa, C' ~ C, (66,57 ® 9) € Q4 (1,€)))
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consisting of an n-dimensional e-symmetric Poincaré pair (C’,¢) over Ay and an (n + 1)-
dimensional e-symmetric Poincaré pair (1: B®a, C' - C, (06, 371 ® ¢)) over A; subject to the

equivalence relation

((C",9),(n: B®a, C' = C, (66,67 ®))) ~ ((C",¢), (4 : B®a, O~ C", (3¢, 57 ® ¢")))

if and only if there exists an (n + 1)-dimensional e-symmetric cobordism over As of the form
((f" f"):C"eC" - D', (6¢", o © -¢))

and an (n + 2)-dimensional e-symmetric Poincaré triad (I', @) of the form

Bea, (C'ec”)y — ) L cgor
F = 1®(fl f///)l l(f f”)
B®y, D' — > D

d=(¢", "' ®3¢",00® 64", @ (d®-¢))

Proof. The long exact sequence follows from Theorems 7.3.7, 7.4.2 and Theorem 8.2.5 and the

equivalence relation follows from Theorem 8.2.3. O
Example 8.2.9.
(i) When (A;,A2,B) = (B,A2,B) and f =1: B - B ~ B* then the long exact sequence of
e-symmetric Q-groups
n+1 -~/ " n+l n+l n ! n” n
sl T QAQ (O ’6) — &R (076) - Q (Maé) - QAQ(C ’6) - QB(Oaé) EEE
induces the long exact sequence of L-groups

L% %
oo LY (Agy€) £ L Y(BLe) > L™ (p,€) » L™ (Ag,€) £ L (B.e) — . ..

This recovers the long exact sequence of e-symmetric Q-groups associated to the change of rings
morphism p: Ay - B,as — l.as from [Ran81, Proposition 2.2]. The description of cobordisms
over A from Theorem 8.2.5 is a generalisation of the equivalence relation [Ran81, p.123] used

to define the relative L-groups of the change of rings morphism p: A2 — B.

(ii) The long exact sequence of e-symmetric @Q-groups from Example 7.3.8 (i) determines the

long exact sequence of L-groups
oo LY (Ag €) > L™ (Ay,€) > L"(A,€) > L™(As,€) > L™ (A1, €) — ...

with an isomorphism of L-groups L"™(A,¢) = L™ (Ay,¢) ® L"(Ag,€).

8.3 Algebraic surgery over a triangular matrix ring

Having established a description of symmetric complexes, pairs and cobordisms over A we may

now describe the effect of algebraic surgery over A. We will be particularly interested in the
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special case A = (R, R, R) to obtain a definition of algebraic surgery on an e-symmetric Poincaré
pair (f:C - D, (d¢,¢)) over R with data an e-symmetric triad over R. This will provide an

algebraic model for geometric half-surgeries on a manifold with boundary.
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We now show that the definition of algebraic surgery on a symmetric Poincaré pair over R
with data a symmetric triad over R provides an algebraic model for geometric half-surgeries of

Borodzik, Némethi and Ranicki on a manifold with boundary.

Definition 8.3.3. [BNR12a, p.5-10] Let (X, M) be an (n+1)-dimensional manifold with bound-

ary.

(i) The effect an index i + 1 right half-surgery removing a framed embedding S x D"~ < M is

the (n + 1)-dimensional manifold with boundary

(Z,,M’) = (E Ugix pn—i DHl X Dnii,WUSiXSn—i—l Di+1 X Snfifl),

Si % ani

right half-surgery

!/ /
(X, M) (X', M)
Figure 93: The effect of a right half-surgery.

If (W;M,M") is the trace of the ordinary surgery on M removing the framed embedding
S x D" < M, then the trace of the right half-surgery is the (n + 2)-dimensional relative
cobordism

' x LY x {0}, % < {1}, W; M, M")

between (X, M) and (X', M").

(ii) The effect of an index i+ 1 left half-surgery removing a framed embedding (D! x D"~%, S x
D"%) < (¥, M) is the (n + 1)-dimensional manifold with boundary

(X, M') = (X = D1 x D= M — S¢ x D"~ Ugi, gn-i-1 D" x §™717 1),

left half-surgery

- £
N N

(3, M) (2, M)

Figure 94: The effect of a left half-surgery.
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If (W;M,M") is the trace of the ordinary surgery on M removing is the framed embedding
S x D"" « M, then the trace of the left half- surgery is the (n + 2)-dimensional relative
cobordism

(ExI; 2= {0}, %" x {1},W; M, M")

between (X, M) and (X', M").

Example 8.3.4. ([BNR12a, p.49-51]). Write the half-surgery traces as (; 2, %', W; M, M").
If R is a commutative ring with identity then applying the symmetric construction to the
(n + 2)-dimensional relative cobordism (£2;3, X", W; M, M") produces an (n + 2)-dimensional

commutative symmetric Poincaré triad (I', @) over R with

C(M;R)eC(M';R) —— C(Z;R)® C(X; R)

-] |

C(W;R) » C(4 R)
¢ = (¢, dw, ds ® —dsr, dar ® —Parr)

which can be viewed as a cobordism between the (n + 1)-dimensional symmetric Poincaré pairs
(C(M;R) - C(3; R), (95, ¢m)) and (C(M": R) — C(X; R), (¢5r, oarr))-

In the case of a left half-surgery the inclusion (W, M") = (Q,%’) is a homotopy equivalence
so there is a chain homotopy equivalence

C(Y:R)~C(W,M';R) ~ S" "R = (n - i)-fold suspension of R

so that
n C(M;R),®R ifr:i+1,n—iT1 (re).
C(M;R), otherwise
» C(%;R).®R ifr:i+1,i+2,n—i.—1 (re).
C(Z; R), otherwise

In the case of a right half-surgery the inclusion ¥’ < €2 is a homotopy equivalence so there is a

chain homotopy equivalence

C(Q,X;R)~C(X,¥;R) ~ C(%;R) ~ SR = 0-fold suspension of R

so that
M:R), ifr=i+ln—i-1
COM': R),= C(M;R),®R ifr=i+l,n z. (re)
C(M;R), otherwise
O R, C(3%;R),®R 1f7':z+1,z+2,n—zjl (re).
C(%; R), otherwise

In fact, the (n+1)-dimensional symmetric Poincaré pair (C(M': R) - C(X'; R), (¢sr, darr))
is homotopy equivalent to the effect (C' — D', (6¢,¢)) of relative algebraic surgery on the
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(n + 1)-dimensional symmetric Poincaré pair (C(M;R) - C(X;R), (¢x,¢n)) with data the

n + 2)-dimensional symmetric triad (I, ®") over R with
y

C(M;R) ——— C(3;R)

| |

C(W,M'; R) ——— C(,%; R)
@I = (¢Q/¢E’7¢W/¢M’7¢E7¢M)

with

Cl=C(M),®C(W,M")..1 & C(W, M) (reZ)
D, =C(%),®C(LY ) @ C(W,M )" " @ C(Q, )" (rez).

such that the triad (T', @) arises as the trace of this relative algebraic surgery. This shows that

relative algebraic surgery gives an algebraic model for a geometric half-surgeries.

Milnor [Mil61] and Thom [Tho49] used Morse theory to show that every (n+1)-dimensional

cobordism (W; M, M") can be expressed as a union of elementary cobordisms
(W; _]\4'7 M/) = (WQ;MQ; Ml) @] (Wl;Ml;MQ) u...u (WZ;MZ;MZ+1) (MO = M, Mg+1 = M/)

where (W;; M;, M;,1) arises the trace of a surgery on M; with effect M;,;. Ranicki [Ran80a,
Proposition 4.7] gave a precise algebraic analogue of this and showed that every (n + 1)-
dimensional e-symmetric cobordism over a ring with involution is homotopy equivalent to a
union of elementary e-symmetric cobordisms arising as the traces of elementary algebraic surg-

eries.

Borodzik, Némethi and Ranicki [BNR12b, Theorem 4.18] used Morse theory on a manifold
with boundary to show that every (n +2)-dimensional relative cobordism (; 3, %/, W; M, M'),
such that ¥ and X’ have no closed connected components and € has no connected components,

can be expressed as a union of adjoining elementary relative cobordisms
Q:QOUQ% u UQ% U...UQM% U Qo

where () arises as the effect of an index 0 handle attachment, €2; arises as the trace of an index
i right-half surgery, €, 1 arises as the trace of an index ¢ left half-surgery and €2,.o arises as
the effect of an index (n + 2)-handle attachment. Ranicki [BNR12b, Theorem 4.71] gave an
algebraic analogue and showed that every (n + 2)-dimensional e-symmetric relative Poincaré
cobordism is homotopy equivalent to a union of traces of algebraic half-surgeries. Whereas
Ranicki’s proof was indirect and made use of the thickening operation for algebraic trinities,

we can give a more direct proof using triangular matrix rings.

Theorem 8.3.5. Let R be a ring with involution. Every (n + 2)-dimensional commutative e-
symmetric Poincaré relative cobordism is homotopy equivalent to a union of traces of elementary

relative surgeries.

Proof. Let A = (R, R, R) be the triangular matrix ring determined by R. By Theorem 8.2.5 an



CHAPTER 8. THE L-THEORY OF A TRIANGULAR MATRIX RING 180

(n + 2)-dimensional e-symmetric relative Poincaré cobordism (I", ®) over R with

0]

CeC' ——— Do D’

()] I w)

oC — 0D
®=(¢",00",00@-0¢",p®-9¢').

determines a locally (n+1)-dimensional e-symmetric cobordism ((f f): CeC’' - D, (A®, ®®
~-®")) over A. It follows from [Ran92, Proposition 1.13] that ((f f): Ce® C' - D,(A®, ® @
—-®')) can be realised, up to homotopy equivalence, as the trace of a surgery over A and it
follows from the additive category with chain duality generalisation of [Ran80a, Proposition
4.7] that this surgery can be decomposed as a sequence of elementary surgeries over A. By
Example 8.3.2 the trace of an elementary surgery over A can be interpreted as the trace of an

elementary relative surgery over R. O

8.4 An open question

We end with an open question reality relating the L-theory of the triangular matrix ring A =
(R, R, R) to the L-theory of (R, K)-modules.

Definition 8.4.1. Let R be a ring and let K be a simplicial complex.

(i) An (R, K)-module is a f.g. projective R-module M with a fracturing over K, that is a choice
direct sum decomposition M = @,cx M (o) such that each summand M (o) is a f.g. projective

R-module and at most finitely many summands M (o) are non-zero.
(ii) A morphism of (R, K)-modules f : M = @,cxM(c) > N = @&, N(7) is a collection of
morphisms

f={f(r,0) e Homr(M(c),N(7))|o,7 € K|f(7,0) =0 unless o > 7}

between the summands.

Example 8.4.2. Let K be a locally finite simplicial complex. The simplicial chain complex
A(K; R) of K with R-coefficients is an (R, K)-module chain complex where a simplex o € K

contributes the summand
A(K,R)(0) = SR = |o|-fold suspension of R

to A(K; R).

Ranicki and Weiss [RW90] examined when an R-module chain complex admits a fracturing
over a simplicial complex K. The L-theory of (R, K)-modules was determined by Ranicki by
constructing a chain duality on the category of (R, K)-modules, see [Ran92, chapter 5].

Example 8.4.3. ([Ran92, Example 5.4]) Let R be a ring with involution and let A™ =

[0,1,...,n] denote the standard n-simplex.
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(i) An n-dimensional e-symmetric Poincaré complex over A° is the same as an n-dimensional

e-symmetric Poincaré complex over R.

(ii) An n-dimensional e-symmetric Poincaré complex over A' = [0,1] is the same as an n-
dimensional e-symmetric Poincaré cobordism over R which is fragmented over [0,1] as shown
below

2C(0,1] — C0,1], (¢10,1], 00
(Cl0], 610 @ (0C[0,1] = C10, 1], (¢(0,1) [0,1]))'(0[1]’¢[1])

Figure 95: An e-symmetric complex fragmented over a 1-simplex.

(iii) An n-dimensional e-symmetric Poincaré complex over A? = [0,1,2] is the same as an n-
dimensional e-symmetric Poincaré pair over R with a 3-fold boundary splitting (recall Definition
3.3.4 of Section 3.1 of Part I) and is fragmented over [0, 1,2] as shown below

(9C[0,1,2] — C[0,1,2],
(b10,1,2]> 0910,1,2]))

(C[o], ¢))  (AC[0,1] = €10, 1], (¢po,11, 9¢10,11))  (C[1], bpay)

Figure 96: An e-symmetric complex fragmented over a 2-simplex.

Note that the category of (R, K)-modules is a small abelian category and hence by the
Freyd-Mitchell embedding theorem [Fre03] there exists some ring A such that the category of
(R, K)-modules can be embedded as a full subcategory of the category of A-modules. In Ex-
ample 8.4.3 (i) we can take A = R and in Example 8.4.3 (ii) we can take A to be the triangular

matrix ring (R, R, R). In general, one would wish to find a simple model for A.

Open Question: Given a simplicial complex K and a ring R with involution, does there exist
a generalisation of a triangular matrix ring A such that the L-theory of (R, K)-modules is

equivalent to the L-theory of A-modules?
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Introduction to Part 111

Let 3 be a braid with closure 3 a link. The canonical Seifert surface of 8 constructed by Seifert’s

algorithm resolves each crossing of B

crossing resolution crossing

R AN
NN SN

Figure 97: Resolving overcrossings and undercrossings.

to produce a collection of disjoint, oriented, simple, planar circles called Seifert circles. Each
Seifert circle bounds a planar disc and we may push the planar disks vertically to make them
disjoint. Attaching a twisted band between the Seifert circles for each resolution of a crossing,
with the twist matching the type of the crossing, then produces the canonical Seifert surface of

B\, which is a closed orientable surface of genus g > 0 with boundary 3

)

=
—

Figure 98: A Seifert surface produced by Seifert’s algorithm.

Choosing an ordered basis {[%]}ffl of Hi(X;Z), with each basis homology class [v;] rep-
resented by simple, closed curve v; c X, we may push each ~; in the positive normal di-
rection to produce a simple closed curve ;7 which lies in S® — ¥. The Seifert form V :
H,(X;Z) x Hi(X;Z) - Z is the bilinear form determined on the basis homology classes by
the linking numbers Lk(7;,7}).
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Two n-strand braids /3, 3’ may be concatenated to produce an n-strand 33’. The effect of
the concatenation of braids is a gluing of Seifert surfaces along parts of their boundaries. The
Mayer-Vietoris sequence then provides an obstruction for the Seifert form to be additive under
the concatenation of braids. This suggests that one could try to find a chain level Seifert form,
expressed in terms of partial linking numbers, which is additive on the chain level under the

concatenation of braids and descends to the Seifert form on the homology level.

Banchoff [Ban76] gave a combinatorial linking formula for two disjoint space polygons ex-
pressed in terms of partial linking numbers of pairs of edges as follows. Let X = {X¢, X1,..., Xn-1}
respectively Y = {Y,Y1,...,Y,_1} be a set of points in general position in R®. For a unit vector
£eS? let De : R3 > P denote the projection map from R? onto the plane P orthogonal to £. A
vector £ € 52 in called general for X and Y if the projections pe(X),pe(Y) c R? are in general
position. For a vector & € S? which is general for X and Y, define C; ;(X,Y,£) to be the sign
of Pe(Yji1 - Y;) x Pe(Xi1 - X;).(X; = Y;) if there are interior points X; of the edge X; X1
and Y; of the edge Y;Y;41 such that pe(X;) = pe(Y;) and define C; ; (X, Y, €) to be zero otherwise.

The linking number of two space polygons is then expressible as the sum of the partial

linking numbers of all edge pairs.

Theorem [Ban76, p.1176-1177] For disjoint polygonal knots X,Y c R? the value

C(X7K€): Z C?,](X7Y7£)EZ
0<ism~—1
0gjsn~1
is independent of the choice of general vector £ € S2. The linking number of the polygonal knots
determined by X and Y is the average value of C(X,Y,¢), that is

1 1
Lk(X,Y :—f X,Y,&)dw = — f . (XY, z
()= [ ey w1 S [0y

0<ism—1
0<j<n-1
where w is the volume form on S2. Moreover this integral may be expressed in terms of dihedral

angles of tetrahedra.

The closure of an n-strand braid with /-crossings arises as the trace of ¢ 0-surgeries on
a disjoint union of n circles. Ranicki [Ranl4] applied the algebraic theory of surgery to the
geometric surgeries to obtain a chain level formula which is defined inductively in terms of Seifert
graphs. The Seifert graph of a braid 8 is the 1-dimensional CW-complex X (8) constructed
from the canonical Seifert surface of 5 by collapsing each Seifert disc to a point and collapsing
each twisted band to its core. If 8 is an n-strand braid with ¢-crossings then the Seifert graph

X (5) has ¢ 1-cells and n 0-cells and has a cellular chain complex of the form
d:Ci(X(B);Z) 2 2 > Co(X(B);2) = 2"

where d is a signed incidence matrix. If 8" is another n-strand braid with ¢’ crossings then the
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Seifert graph X (') has a cellular chain complex of the form
d':C (X(B):2) 2 2" ~ Co(X(B');2) = 2.

The Seifert graph of the concatenated braid 83’ is a CW-complex which can be formed from
the Seifert graphs of 8, 8" by identifying the 0-cells so that X (88") has (£+¢') 1-cells, n 0-cells

and a cellular chain complex of the form
d"=(d @ ):Ci(X(B):2) 22 @ 2" ~ Co(X(BA') Z) = 2"

Ranicki defined the canonical generalised Seifert matrices of the elementary regular n-strand

=1 to0 be the 1 x 1 matrices

w‘”:( 1 ) %;1:( —1)

and inductively defined the generalised Seifert matrix of the concatenated braid 83’ to be the

braids o;, 0

matrix

Vo = ( ff ‘i;d ) L CL(X(BB');Z) x C1(X(BB');Z) — T

where x is the lower triangular n x n matrix with ones below the diagonal.

Theorem [Ranl4, p.37-38] Let 3, 8’ be regular n-strand braids. The generalised Seifert matrix
s CL (X (BB Z) x CL(X (BB Z) > Z

induces the Seifert form of 33’
Vpp s Hi(X(BB'); Z) x Hi(X(BB'); Z) — L.

Motivated by the space polygon linking formula of Banchoff [Ban76] and the surgery-
theoretic linking formula of Ranicki [Ranl4] we construct a new chain level Seifert form. Fol-
lowing a suggestion of Etienne Ghys, to each braid § we associate a 1-dimensional simplicial
complex K () called a fence. The fence of an elementary n-strand braid o3! with a single
crossing between strand ¢ and strand ¢ + 1 is the oriented 1-dimensional simplicial complex

K () with 2n 0-simplices and (n + 1) 1-simplices as shown below

(P
1—1 o:—n
7 ——
[ Ko =Ko
14+1 o—o
i+2 o——o
n o:—n

Figure 99: The fences associated to the elementary n-strand braids o7'.
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The fence of a regular n-strand braid 8 = 8185 ... 8¢ with £ crossings is the concatenation of
the fences of the elementary braids from left to right and there is a natural embedding of the

fence of g into the canonical Seifert surface of 3.

Figure 100: The embedding of the fence K () in to the canonical Seifert surface for (.

By examining how a fence links with itself when it is pushed in the positive normal direction

to the canonical Seifert surface

Figure 101: Pushing part of the fences in the positive normal direction.

we can associate to each fence a Z[ 5 ]-valued bilinear form Az : C1 (K (8); Z)xC1 (K (8); Z) —
Z[3] which encodes partial self-linking information. This descends to the Seifert form of 3 on

the homology level:

Theorem 10.2.1. The embedding K () = X is a homotopy equivalence inducing an isomor-
phism H,(K(B);Z) 2 H,(X;Z) with a commutative diagram

H,(K(B);Z) x H(K(B);Z) [As]

H\(S:Z) x Hy (55 Z)

ZcZ[}]

Moreover, this chain level Seifert form is additive under the concatenation of braids:

Theorem 10.3.4. Let 5 = 5102...08; be a braid where each (§; is an elementary braid. The
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chain level pairing Ag : C1(K(B);Z) x C1(K(B);Z) — Z[1] can be represented by a block

diagonal matrix

As, 0 0
0 Mg, 0
0 0 As,

We then compare our model to Banchoff’s and Ranicki’s. Our model has the advantage
that the partial linking numbers are Z[%]—Valued and not R-valued as in Banchoff’s model.
Moreover, the concatenation behaviour in our model is additive and gives an instant chain level

Seifert form whereas Ranicki’s model is inductively defined.

Propositions 10.4.7, 10.4.8. Our model is chain equivalent to Banchoff’s combinatorial
model for the linking number of two space polygons and chain equivalent to Ranicki’s surgery-

theoretic chain level Seifert pairing model.

We give two applications of this chain level Seifert form to the isotopy of braids and to the

signature of braids.

Two n-strand braids 3, 3" are isotopic if 3 can be continuously deformed to 3’ through a
family of n-strand braids. Isotopy is an equivalence relation on the set of n-strand braids and the
set of isotopy classes form a group B, called the n-strand braid group. Artin [Art47] showed
that there is a presentation of the braid group B, with generators the elementary n-strand

braids {o1,02,...,0,-1} and relations of the form

1

oi0;=0j0; for |i—j|>2, o0,0;0;=0;0;0; for |i—j|=1, oot o;=1.

i —0;

We define the chain level Seifert pair (Ag,dg) of a braid § and two equivalence relations,

called A and A-equivalence, such that:

Propositions 11.1.7, 11.1.13. The A-equivalence class of the chain level Seifert pair of an
n-strand braid § is a complete isotopy invariant. The Zl\—equivalence class of the chain level
Seifert pair of an n-strand geometric braid  is an isotopy invariant of the closure B inside the

solid torus.

The A-equivalence relation yields a universal representation of the braid group and the A-

equivalence relation yields a representation of the braid group modulo conjugacy:

Theorems 11.1.8, 11.1.14. Let n > 2 and denote by F), the free group on the set of elementary
n-strand braids {01, 09,...,0,-1} and denote by B,, denote the braid group. The map

(A, d) : F,, - {chain level Seifert pairs}, S~ (Ag,dg)

is a bijection such that words 3,8’ € F,, differ by the relations in the braid group if and only if
the chain level Seifert pairs (Ag,dg), (A\g,dg) are A-equivalent. Moreover two words 3,3’ € B,,
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are conjugate if and only if the chain level Seifert pairs (Ag,dg),(Ag/,dg) are A-equivalent.

This induces an isomorphism of groups

{chain level Seifert pairs}

()‘ad) : B —~ ’ [5] ind [()‘B’dﬁ)]

A — equivalence
and descends to a bijection

B, {chain level Seifert pairs}

A d): o [BI= [(Ag,dp)]

conjugacy A- equivalence

such that there is a commutative diagram

F, ()\;’d) > {chain level Seifert pairs}
B (\.d) . {chain level Seifert pairs}

11

A-equivalence

| |

B, (A\,d) {chain level Seifert pairs}

\

conjugacy = A-equivalence

N

For a unit complex number w # 1 the w-signature of a braid § with Seifert matrix V' is the
signature o, (8) of the hermitian form (Hy(%;Z), (1 -w)V + (1 -w)V?). We can express the

w-signature of a braid in terms of its chain level Seifert pair:

Theorem 11.2.6. Let 5 be a braid with chain level Seifert pair (Ag,dg) and let w # 1 be a

unit complex number. The w-signature of 5 is the signature of the hermitian pair

(Cl(K(5)§C)®Co(K(5);C),( (1—w)/\3d;(1—w)/\2 dgi ))

so that

S | I CETO PR CER-) P
RO (e ")

Part III is organised as follows.

In chapter 9 we introduce the basic operations one can perform on braids such as concatena-
tion, taking the closure, performing an isotopy and constructing a Seifert form from a canonical

Seifert surface.

In chapter 10 we define the 1-dimensional simplicial complex K(3) and the Z[%]—Valued
bilinear form A : C1(K(8);Z) x C1(K(B);Z) — Z[5]. We show that there is an embedding of
K(B) = ¥ with image a deformation retract of the canonical Seifert surface X of 3 constructed
by Seifert’s algorithm. We examine how the image K(3) is pushed along the positive normal
to the Seifert surface to show that Ag descends to the Seifert form on the homology level.

We then show that the bilinear form Ag is additive under the concatenation of braids and we
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compare our chain level Seifert form to the space polygon linking model of Banchoff and the

surgery-theoretic Seifert form of Ranicki.

In chapter 11 we define the A and A-equivalence relations and use the chain level Seifert
pair (Ag,dg) of a braid 8 to produce a representation of the braid group and of the braid group
modulo conjugacy. We then construct a chain level formula for the w-signature of a braid.



Chapter 9

Braids and Seifert forms

In this chapter we introduce the basic operations one can perform on braids such as concatena-
tion, taking the closure, performing an isotopy and constructing a Seifert form from a Seifert

surface.

9.1 Links and linking numbers

Definition 9.1.1. An n-component link is an embedding L : U, S' < S of n disjoint, piecewise
smooth, simple, closed curves. A knot is a one-component link. Let P c R? be a 2-dimensional
subspace of R? and let p : R®> - P be the orthogonal projection map onto P. We say that
p:R3 = R is a regular projection of a link L if for each x € P the intersection p~(z) N L consists
of at most two points, in which case the link diagram is the image p(L) c P with the over and
under crossings recorded. An oriented link is a link for which each connected component has
been given an orientation and this is recorded on a link diagram by a choice of arrow on each
component of the link diagram. Two links L, L’ are ambient isotopic if there is a homotopy
of orientation preserving homeomorphisms f; : u,S* < S% with (0 <t < 1)such that fy is the
identity and f1(L) =L’

We will abuse the terminology in the standard way, with the word ’link’ sometimes referring

to the embedding and sometimes referring to the image of the embedding.

Example 9.1.2. Regular projections of an oriented trefoil knot and oriented Hopf link.

& (0

Figure 102: Projections of the trefoil knot and hopf link.

The linking number of two knots is an important numerical invariant in knot theory and

may be defined in any of the following ways.

190
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Definition 9.1.3. Let J, K be two disjoint oriented knots in S3.

(i) Let p : R® - P be a regular projection of the link J u K c R®. The linking number is
half the sum of the signed crossings Lki(J, K) = %Zzepu)ﬁp(m €; € Z where each crossing

x e p(J) np(K) is assigned a sign €, = 1 as follows

A

€Exr = €x = —

Figure 103: The signs associated to an overcrossing and an undercrossing.

(ii) Orienting S x S and S?, the linking number Lky(J, K) € Z is the degree of the Gauss map

J(u) - K(v)

: St x St - 5% ) = :
f ) = Ty~ R ()]

(iii) The linking number Lks(J, K) is the Gauss integral

1 (2’ — 2)(dydz’' — dzdy") + (y' - y)(dzdz' - dxd2") + (2 — 2)(dzdy’ — dydx’)
w e [ =)+ (o ~9)+ (2~ 2)2J°F2 .

Theorem 9.1.4. [Rol90, p.132-135]. The above definitions of linking numbers agree and the

linking number is an ambient isotopy invariant.

9.2 Seifert surfaces and Seifert matrices of links

Definition 9.2.1. A Seifert surface for an oriented link L is a compact oriented surface ¥ c §3

with oriented boundary 9% = L such that the normal bundle vsgs is trivial.

Seifert’s algorithm [Sei35] produces a Seifert surface for an oriented link L in the following

way. Fix a regular projection of L and resolve each crossing as shown below.

crossing resolution crossing

/N N\
NN N

Figure 104: Resolving an overcrossing and an undercrossing.

Doing so produces a collection of disjoint, oriented, simple, planar circles called Seifert
circles. Each Seifert circle bounds a planar disc. If some of the discs are not disjoint, because the

corresponding Seifert circles are nested, we may push some the discs in a direction perpendicular
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to the plane to make them disjoint. We then attach a twisted band between the Seifert circles

for each resolution of crossing with the twist matching the type of the crossing.

Example 9.2.2. Seifert surfaces for an oriented trefoil knot and oriented Hopf link constructed
by Seifert’s algorithm. We have labelled the Seifert circles to keep track of them when we move
the discs they bound.

Figure 105: Seifert’s algorithm performed on a trefoil knot and Hopf link.

A link has many regular projections so the Seifert surfaces constructed by Seifert’s algorithm
are highly non-unique. A Seifert surface for a link is however unique up to a certain relation

called S-equivalence.

Definition 9.2.3. Two compact surfaces with boundary (X;,0%1) and (X2,0%9) are S-
equivalent if (X2,0%9) can be obtained from (X1,0%1) by a combination of ambient isotopy

and adding or subtracting finitely many handles by ambient surgery.
Theorem 9.2.4. [Kaw96, Lemma 5.2.4] Any two Seifert surfaces of a link L are S-equivalent.

Let L be an oriented link with Seifert surface ¥ of genus g. Then H;(X;Z) is a f.g. free
abelian group of rank 2g. Choose a basis {[’yi]}?zgl of H1(X;Z) with each basis homology classes
[vi] represented by simple, closed curve ; c 3. Use the triviality of the normal bundle v g3 to
define a small bi-collar ¥x[-1,1] of ¥ ¢ §? and for each 1 <i < n define v/ = y; x {1} c ¥ x[-1,1]
to be the simple, closed curve in S% obtained by pushing ; in the positive normal direction to
3.

Definition 9.2.5. The Seifert matriz of ¥ with respect to this bi-collar and this choice of basis
is the 2¢g x 2g matrix V defined by
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and the Seifert form of ¥ is the bilinear form
V:H{(3;Z)x H(X,Z) > Z.

The ambiguity in the choice of Seifert surface for a link means that the Seifert matrix of a

link is only unique up to an algebraic S-equivalence relation.

Definition 9.2.6. Two n xn integral matrices are S-equivalent if one can be transformed into

the other by a finite sequence of the following operations:

(i) V = PV P! with P integral and unimodular.

N V]eo
<H)V’_>( 0 01)
0lo00

14
(iii) V (T’%).
0110

Theorem 9.2.7. [Mur65, Theorem 3.1] The S-equivalence class of the Seifert matrix of a link

is an isotopy invariant.

In chapter 10 we will develop a chain level lift of the Seifert matrix for a link which can be
expressed as the closure of a braid. In chapter 11 we will develop equivalence relations, called
A- and A-equivalence, such that the A-equivalence class of the chain level lift is an isotopy
invariant of the braid and the A-equivalence class of the chain level lift is an isotopy invariant
of the closure of the braid.

9.3 Regular braids, geometric braids and closures

We are particularly interested in those links which can be written as the closure of a braid.

Definition 9.3.1. For 1 < i < n -1 the elementary n-strand braid o; is the n-strand braid of
polygonal arcs with a single crossing of strand ¢ over strand ¢ + 1 and no crossings between
any other pairs of adjacent stands and the elementary n-strand braid o; ! is the n-strand braid
with a single crossing of strand i under strand 7+ 1 and no crossings between any other pairs of

adjacent strands. The trivial n-strand braid 1 is the n-strand braid of polygonal arcs with no

crossings.
1 _ 1
i—1 i—1
7: \/ ) \\
i+1 / ’i-l-l A
i+2 i+ 2
n n
op ot 1

Figure 106: The elementary n-strand braids.
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A regular n-strand braid 8 = 182 ...0¢ is the concatenation from left to right of finitely

many elementary n-strand braids and trivial n-strand braids.
Regular braids are combinatorial models for geometric braids.

Definition 9.3.2. Let n > 1. A geometric n-strand braid S with permutation o € S, of the set

{1,2,...,n} is an embedding
B:{1,2,...,n} x[0,1] > R*x[0,1];  (k,t) = B(k. 1)
such that

B(k,0) = (k,0,0) eR*x {0}  (1<k<n)
B(k,1) = (0(k),0,1) e R* x {1} (1<k<n)

and each composition

B(k,-)

[0,1] R? x (0,1] projection

[0,1] (1<k<n)

is a homeomorphism.

Example 9.3.3. A geometric 4-strand braid with permutation o = (123)(4) € Sy

N =
SR

e
t

~
/

Figure 107: A 4-strand braid.

Definition 9.3.4. The concatenation of geometric n-strand braids § with permutation o € S,

and B’ with permutation ¢’ € S,, is the geometric n-strand braid
BB :{1,2,...,n} x[0,1] > R? x [0,1]
with permutation oo’ € S,, defined by

B'(k,2t) if 0 <
<

Bﬁl(k’t):{ B(k,2t-1) if
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Definition 9.3.5. Two geometric n-strand braids 3, 8" are isotopic if there exists a family of

geometric n-strand braids
Bs:{1,2,...,n} x[0,1] > R*x [0,1] (s¢€[0,1])
such that 8y = 8 and 31 = 8’ and each function function
{1,2,...,n} x[0,1] x [0,1] = R? x [0,1]; (k,t,s) = Bs(k,t) (1<k<n)

is continuous.

Lemma 9.3.6. Isotopy of geometric n-strand braids is an equivalence relation. The set of

isotopy classes of geometric n-strand braids is a group with:

(i) The composition of the isotopy classes [3],[8'] of geometric n-strand braids 3, 8" equal to
the isotopy class [88] of the geometric n-strand braid 5f5'.

(ii) The identity element equal to the isotopy class of the geometric n-strand braid

{1,2,...,n} x[0,1] > R*x [0,1];  (k,t) = (k,0,1)

(iii) The inverse of the isotopy class [S] of a geometric n-strand braid S
Bi{L,2,...,n} x[0,1] > R?, (k1) = B(k,1)
equal to the isotopy class of the geometric n-strand braid

{1,2,...,n} x[0,1] > R?, (k,t) ~ B(k,1-1).

) b

Regular braids can be used to give a presentation of the braid group.

Theorem 9.3.7. [Art47] Each geometric n-strand braid is isotopic to a regular n-strand braid

so that the braid group B, of isotopy classes of geometric n-strand braids has a presentation
(01,09,...,0n-1|0i0;5 = 0jo; for |i—j| 22, o400, =0,0,0; for |i —j|=1).

In particular, two geometric n-strand braids 3, 3’ are isotopic if and only if they are isotopic to

regular n-strand braids determined by braid words 3,8’ from the alphabet

{o1,09,... 001,07 ,05",...,0,1,} such that 3’ can be obtained from 3 by applying finitely
many of the relations

10’¢=1

(i) ov0;! =07
(11) 0,05 =005 for |Z—]|>2
(111) 0i0j0; =000 for |Z_.7|:1

Every braid 8 determines a link B by a closure operation.

Proposition 9.3.8. [KT08, p.18] Let U c R? be an open disc containing the set of points

{(1,0),(2,0),...,(n,0)}.
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(i) Any geometric n-strand braid

B:{1,2,...,n} x[0,1] > R*x [0,1]

is isotopic to a geometric n-strand braid

B :{1,2,...,n}x[0,1] = U x [0,1] = R* x [0,1]
with image contained in U x [0, 1].

(i) Any two geometric n-strand braids which are isotopic in R?x[0, 1] and have image in Ux[0, 1]
are isotopic in U x [0, 1].
(iii) The quotient map

2
D2X[0’1]_)D2X51:DX7[0’1]

(,0) ~ (x,1)
sends a geometric n-strand braid 3’ contained in U x [0,1] ¢ D? x [0,1] c¢ R? x [0,1] to a
canonically oriented link 3 contained in U x S ¢ D? x §1.

(iv) Given a geometric n-strand braid 3, the isotopy class of the link B in D? x S! relative to
the boundary S! x S* depends only on the isotopy class of 3.

Definition 9.3.9. The closure of a regular n-strand braid S is the isotopy class of the link B

formed from any geometric n-strand braid isotopic to the regular n-strand braid .

Proposition 9.3.8 ensures that the closure operation is well-defined. It is often convenient
to picture the closure of a braid, which is oriented from left to right, as follows

A

A A

Figure 108: The closure of a braid.

Theorem 9.3.10. [Ale23] Every oriented link in S® is isotopic to the closure of a regular braid.

The choice of such a braid is highly non-canonical. However, by Markov’s theorem [Mar| any

two such braids (with the same braid axis) differ only by a braid isotopy and a finite number
of braid stabilisations and destabilisations.
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Figure 109: The stabilisation and destabilisation operations.



Chapter 10

A chain level Seifert form

In this chapter we associate to each braid 8 a 1-dimensional simplicial complex K(8) and a
Z[1]-valued bilinear form Ag : C1(K(B);Z) x C1(K(B);Z) - Z[4]. We show that there is an
embedding K(8) = X with image a deformation retract of the canonical Seifert surface ¥ of
3 constructed by Seifert’s algorithm. We examine how the image K (/) is pushed along the
normal to the Seifert surface to show that Ag descends to the Seifert form on the homology
level. We then show that the bilinear form Ag is additive under the concatenation of braids
and we compare our chain level Seifert form to the space polygon linking model of Banchoff

and the inductive surgery-theoretic Seifert form of Ranicki.

10.1 Pushing fences

Definition 10.1.1. The fence of the elementary n-strand braid o*' with a single crossing
between strand ¢ and strand 4 + 1 is the oriented 1-dimensional simplicial complex K () with
2n O-simplices and (n + 1) 1-simplices as shown below. The fence of the trivial n-strand braid

1 is the O-dimensional simplicial complex K (1) with n O-simplices as shown below.

1 o———o e
i—1 o——Mme °
i o—>I 0
1+1 o—e °
’é+ 2 ..—). (o]
n o.—n o
K(o;) = K(o; ") K(1)

Figure 110: The fences associated to the elementary braids ¢! and the trivial braid.

The fence of a regular n-strand braid 8 = (182 ...0¢ is the concatenation of the fences
K(B1),K(B2),...,K(B¢) from left to right so that K(8182...0¢) = Uf=1K(ﬁi) where K(3;)
intersects K (B;;+1) in the right hand vertex set of K(;) and the left hand vertex set of K (841)-

198
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Example 10.1.2. The 3-strand braid 3 = 01010207 09

ZX/\/%

Figure 111: The braid o1010207 0.

has the fence

o—o

——eo 50 50 50 50

Figure 112: The fence K(o1010207 02).

v

Proposition 10.1.3. For a regular braid 8 with closure J3 let ¥ be the canonical Seifert surface
of 3 constructed by Seifert’s algorithm. There is an inclusion K(8) — ¥ which is a homotopy

equivalence.

Proof. Suppose that g = 318... 0 is a regular n-strand braid with ¢ crossings where each ; is
an elementary n-strand braid . The orientation of the n strands of the braid from left to right
induces an orientation of the link J in a natural way. Seifert’s algorithm resolves the ¢ crossings
of 3 to produce n Seifert circles. The Seifert circles may be labelled 1,2,...,n, stacked one
below the other with 1 at the top and n at the bottom and then filled in with discs. For each
1 < k < ¢ we then attach a twisted band between the Seifert circles corresponding the crossing
encoded by Si. The order in which the bands are attached from left to right is determined by
the order in the braid word 185 ... 8.

Firstly suppose that ¥ is connected. A deformation retraction of ¥ onto an embedding of
K () is obtained by pushing the left and right most parts of the discs to meet the ends of K (3)
and then contracting each of the twisted bands to its central vertical core and contracting each
of the discs to a part of its horizontal diameter. The inclusion K () — X is a homotopy inverse.

The reader should try to visualise this in the case 3 = 01010907 0.
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! b

Figure 113: The inclusion of K () into X.

Now suppose that ¥ = X7 1Yo U ... U X is disconnected with k£ connected components.
It is then possible to write 8 = 1 u 85 u...u g, for sub-braids 5 c 8 such that ¥; is the
connected Seifert surface for the closure of the braid ;. Similarly we may write K(3) =
K(B)uK(py)u...K(B,). It follows from the connected case that the inclusion K(f;) = X;

is a homotopy equivalence and the inclusion K(3) — X is a homotopy equivalence. O

Definition 10.1.4. For a regular n-strand braid 8 with a fence K(8) define a bilinear form
Mg C1(K(B);Z)xC1(K(B8);Z) - Z[%] with values on the basis oriented 1-simplices as follows:

—% if if z =y =|=a vertical simplex corresponding to a o;
% if x = y =|= a vertical simplex corresponding to a o;*
-
Ag(@,y) = % if (z,y) = (—,!) are adjacent simplices meeting like o
% if (z,y) = (I, ~) are adjacent simplices meeting like o> o
0 otherwise.

Example 10.1.5. If the 1-simplices in the fence K () from Example 1 are labelled as follows

€15 €23
€ € (& e e €9/
4 8 12 16 20 24 pe

Figure 114: Labelled 1-simplices in the fence K (o101 020{102).

then Cy (K (8);Z) = Z{e1, ez, ..., e24) and for pairs of basis elements (z,y) € {e1, e ..., e2}>
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we have

% if (a:,y) € {(61,62), (62,63)a (65, 66)7 (66767)(69,610)7 (610,611), (6147615),

(615, 615), (615, 616)a (6177 618), (618, 619)7 (622, 623), (623, 624)}

As(w,y) =
—% if (z,y) € {(e2,e2), (es,€6), (e10,€10), (€18, €18), (€23, €23) }

0 otherwise.

The motivation for the chain level pairing Ag : C1(K(B);Z) x C1(K(B);Z) - Z[3] is as
follows. Let 8 = o; be the elementary n-strand braid with a single crossing of strand i over
strand i+ 1. The Seifert surface for B consists of a disjoint union of n disks, stacked one above
the other with a single twisted band attached from disc ¢ to disc ¢+ 1. Smooth the corners of ¥
and choose the positive normal direction to the smoothed Seifert surface to be in the upwards
direction. Let K; be the embedded part of K between disc ¢ and disc ¢+ 1. If K is obtained by
pushing K; in the direction of the positive normal, then ’reversing’ the embeddings produces

disjoint simplicial complexes with crossings of the following type

1+ 1
Figure 115: Pushing K; in the normal direction.

The twist in the diagram refers to the direction of the twist in the attached band and the
resulting twist of the positive normal vector to the Seifert surface along the vertical part of the

red curve. In the case 8 =0;' we obtain crossings of the type

1
1 >\
) 1
twist
L —— y
! ——

Figure 116: Pushing K; in the normal direction.

Recall that from Definition 9.1.3 that the linking number of the components of a two compo-
nent oriented link may be computed as one half of the sum of the signed crossings between one

component and the other. The crossings above define a pairing A : C1(K;;Z) x C1 (K[, Z) —
1

Z[5]. Since K; and K| are simplicially isomorphic we may equivalently think of this as a

pairing \: C1(K;;Z) x C1 (K Z) — Z[%] which is given by
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—% if if x =y =]= a vertical simplex corresponding to a o;
% if x = y =|= a vertical simplex corresponding to a o;*
-3
Aa,y) = % if (z,y) = (—,!) are adjacent simplices meeting like o
% if (z,y) = (},~) are adjacent simplices meeting like e °
0 otherwise.

10.2 Descending to homology

We now show that the chain level formula gives the Seifert form on the homology level.

Theorem 10.2.1. Let 8 be a braid with Seifert surface ¥ constructed by Seifert’s algorithm
and Seifert form V : Hy(3;Z) x Hi(X;Z) — Z. If K is the fence of § then inclusion K - %

induces an isomorphism H;(K;Z) =2 H1(X;Z) with a commutative diagram

H\(K;Z)x H\(K;Z) G B Z[3]

P

Hy(3:2) x Hi(%:Z)

Proof. Suppose that 8= 10;...0, is a regular n-strand braid with £ crossings where each (; is
an elementary n-strand braid. Proposition 10.1.3 implies that there is an inclusion K — ¥ which
is a homotopy equivalence and hence H(K;Z) =~ H(X;Z). Suppose that ¥ has k connected
components. For 1 <i<n-1 let [; denote the number of crossings between strand ¢ and strand
i+ 1. By [Coll2, Lemma 3.1] we may write

n-1

b (KGZ)=b1(%Z)= Y (li-1)=l-k+n

i=1
and Collins shows that there is a basis of H;(X;Z) with one basis element for each pair of
consecutive crossings between between adjacent strands. More explicitly, a pair of consecutive

crossings between strand ¢ and strand 7 + 1

NN

Figure 117: A pair of consecutive crossings between strand 4 and strand i + 1.

determines a 1-cycle, shown in red below as an embedded polygonal circle oriented in the
clockwise direction, in the part of 3 which is created by attaching to two Seifert disc two twisted

bands corresponding to the two crossings between the same strands.
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)
1+ 1
Figure 118: The 1-cycle.
The cycles may be labelled ¢y, co, . .., co_pnik € Z1(X;Z) according to their positions from left

to right along the braid diagram. The set of homology classes [¢1], [c2], - - ., [¢i—n+k ] is then a ba-
sis for H1(X). The cycles ¢1,¢,. .., Co—n+k € Z1(X;Z) induce cycles ¢, ¢h, ... ,¢h_.p € Z1(K;Z)
giving a basis [¢]],[ch],- .., [¢h_pip] of H1(K;Z). The homology class [c;] € Hy(K;Z) maps
to the homology class [¢;] € H1(X;Z) under the isomorphism H;(K;Z) = Hy(%;Z) induced
by the inclusion K - X. If c;f is the push of the cycle ¢; in the positive normal to ¥ then it
suffices to show that A(cj,c}) = Lk(c;,c}) for 1 <i,j < £-n+k. Note that since the linking
number Lk(c;,c}) is always an integer and H;(/;Z) is a free abelian group this implies that
A H(K;Z) x H(K;Z) — Z[%] factors through a map Hi(K;Z) x H{(K;Z) — Z. The proof

now proceeds by cases.

Diagonal Entries: Suppose that ¢ = j. The diagram below shows ¢; in red and its push off ¢}

in blue
R . 1
—1
B
o 0; oF

Figure 119: The cycle ¢; and its pushoff cj.

so that the self-linking numbers are given by

-1 if both crossings correspond to a o;

Lk(ci,c;) =4 1 if both crossings correspond to a o7t

0 otherwise.

The cycle ¢; € Z1(X;Z) corresponds to a cycle ¢ € Z1(K;Z) which may be written as ¢} =

—e1+ (X055 ep) - (T22475€p) as in the diagram
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€2 . €s+1

el €542

O— >0 ¢ ¢ ¢ O—m0

€25+2 €543

Figure 120: Labelled 1-simplices in the cycle c}.
It follows that

)‘(Cgv C;) = /\(_617 _61) + /\(634—1’ es+2) + )\(63+2, 6s+2) + /\(634—2’ _es+3)
1 1
=X(e1,e1) + 5 + A(ess2,€542) — 3

=A(e1,e1) + A(es+2, €s+2)

and hence
-1  if both crossings correspond to a o;

A(cj,¢;) =4 1 if both crossings correspond to a o

0 otherwise.

Non-Diagonal Entries: Suppose that 1 <i<j<f¢-n+k. . Let the cycle ¢, be written as in

the diagonal case and let the cycle ¢} be written as ¢} = —f1 + (X453 fo) = (X742 f,) as in the

diagram

fo ft+1

@ ® o o O— >

fi Jteo

O—>0@ ¢ ¢ ¢ O—0

fotyo Jt43

Figure 121: Labelled 1-simplices in the cycle cj.

Let E = {ep}251? and F = {f,}2542. It is enough to consider the five cases of the relative
positions of the cycles as in [Coll2, Section 3.3]:

1. Either EnF = {eg, €541, €57} = {ft3, ft+a, - - -, farsa} for some 2 < ' < " < s+ 1 with
€y = fareo and egn = fri3 as in

S TR ;5 BN
h fra2
€2 Cy = f2t+2 Cglt = ft+3 €541
4 Qe o o Qe o eO———— Q¢ o o
€1 ‘ €542
L 0e ¢ e O @s o e0— 0% ¢ s0— 30
€25+2 €513

Figure 122: The cycles ¢; and ¢}.
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or EnF ={ey,e3,...,es11} = {ftr, fr41,-- -, fer} for some ¢t + 3 <t/ < ¢’ < 2t + 2 with

€2 = fir and eg41 = fp as in

fo fri
@ ¢ eO—H>0e¢ ¢ e O— >0 ¢ e O— >
f Jreo
P @ o 0@ EZthN Qe o -M e o e @O—m 30
for42 fte3
el €542

O————0 ¢ ¢ Op—m—0
€25+42 €s+3

Figure 123: The cycles ¢; and c;.

so that in the first case

i, ¢) =0

K3

1 1
)\(C;',C;) = /\(_flaes’—l) + )‘(ft+27€s”) = —5 + 5 =0
and in the second case

A(ci,c5) =0

Ay €)= A= frsrs —e1) + M= fir, €542) = =0.

DO | —
DO | —

The push-off c;-“ of ¢; in relation to ¢; is given in the first (respectively second) case by

AN

Cj Cj

Figure 124: The cycles ¢} and ¢;.

and in either case Lk(c;, c}) = 0. The push-off ¢f of ¢; in relation to c; is given in the first

(respectively second) case by and in either case Lk(c;,c;) = 0.

Cj Cy

+ 1
¢

Figure 125: The cycles ¢j and c;.
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2. In this case F and F' are disjoint as in

ST L0 SN
fi ft2
€2 .....es+—1,o-oo—).-...—>.
fotvo ftes
€1 Cs+2

O—————0° ¢ ¢+ 0———0
€25+2 €543

Figure 126: The cycles c; and c;.

so it is immediate that A(cf,c}) = A(c},c}) = 0. The push-off ¢} of ¢; in relation to ¢;

(respectively the push-off ¢f of ¢; in relation to ¢;) is given by

C .
J
¢
so that Lk(cj,¢}) = Lk(¢],¢j) =0.
3. In this case ENF ={es42} = {f1} as in
9 st f2 Jt+1
Qe o o0 @ Qe o s O— >
el Cs+2 = fl ft+2
O———— 0 o O (o} Qe o O0——mmmmm0
€25+2 €s+3 ft+3

Figure 127: The cycles ¢; and c;.
and it follows that

)\(CQ,C;') = Mess1,—f1) + Aessa, —f1) = —% - A f1, /1)

and hence

., 0 if f; corresponds to a o;
)‘(Civ c ) =

-1 if f; corresponds to a o;*.

The push-off ¢} of ¢; in relation to ¢; is given in the first (respectively second) case by

so that

Lk(ci,c;) _ 0 if f; corresponds to a o;
-1 if f; corresponds to a o;!.
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Figure 128: The cycles ¢} and ¢;.

Similarly
(G, ei) = M= f1,es12) + A= f1,=€s13) = =A(f1, f1) + %
and hence
)\(c;,cg) _ 1 if f; corresponds to a o;
if f1 corresponds to a 0;1.

The push-off ¢; of ¢; in relation to ¢; is given in the first (respectively second case) by

Figure 129: The cycles ¢] and c;.

so that

if ficorresponds to a o;

Lk(cj,c;) = ’
if f1 corresponds to a o;!.

4. In this case F and F are disjoint as in

fo Jte1

Qe o e @0—— 30 o s O—— >

f fe+2
@O——————————>0°¢ o o O Qe o o0 (o)
. Joy2 . . . fe+3
€9 . . * Cs41  °
Qe o e0——H>0° o o
el €542

O———0¢ ¢ s O——0 ¢ ¢ O—m0

9542 €5+3

Figure 130: The cycles ¢; and c;.

so it is immediate that A(c{,c;) = A(c},¢;) = 0. The push-off ¢} in relation to ¢; and
+

¢; in relation to c; are given by the similar figures as in case 2 and it follows that
Lk(cj,cf) =Lk(cf,¢;) = 0.
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5. Either En F = {es;3,€544,---s€s} = {fa, f3,..., fer} for some s+ 3 < s’ < 25+ 2 and
2<t' <t+1 with ey = fo and eg,3 = frr as in

€9 €s+1
O o sO—— 300 s sO——m —

el €542
€yl = f2 €543 = ft’ ft+1
O————————0e o o O Qe o o0 Qe o o
€25+2
f ft—l—?

o Qe o o O Qe o oo °
fot+2 ft+3

Figure 131: The cycles ¢; and ¢;.

or EnF ={ey,eg41,..-res11} = {fvs fr+1,- -+, fotea} for some 2 < 8" < s+ 1 and some

t+3<t' <2t +2 with ey = for40 and ez41 = fp as in

p) Jtr1

Qe o o0& @ ¢ s O—— >

=
Q—0
b
+
[}

€2 o s = f2t+2. esk1=fp b
fe+3
4] €542
@— Qe o o & Qe o o c
€25+2 s+3
Figure 132: The cycles ¢; and ¢;.
In the first case
P 1 1
A(cis€5) = Mes+a, fr-1) + A(=esri1, = f1) = z3t3=1
/\(C;»,C;) = _/\(ft’>€s+2) =0.
and in the second case
(e, c)=0
P 1 1
Mej i) = M=fryesm1) + A(=fryesi2) = =5 - 5 = -1

The push-off c;-“ of ¢; in relation to ¢; is given in the first (respectively second case) by
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Figure 133: The cycles ¢; and ¢;.

so that
1 in the first case

Lk(c;, c;r) = {

0 in the second case.

The push-off ¢f of ¢; in relation to ¢; is given in the first (respectively second) case by so

Figure 134: The cycles ¢j and c;.

that
0 in the first case

Lk(cj,¢f) = {

-1 in the second case.

This motivates the following definition.

Definition 10.2.2. The chain level Seifert pair of a regular n-strand braid § is the pair

(Agsdg) = (Ag : CL(K(B); Z) x CL(K(B); 2) Z[%Ldﬁ CL(K(B);Z2) = Co(K(B); 2))

Corollary 10.2.3. A regular n-strand braid 8 with chain level Seifert pair (\g,dg) has Seifert
form

1
g ker(dg) xker(dg) > Zc 2[5]

Proof. The fence K () is a 1-dimensional simplicial complex and hence

Hy (%) 2 Hi(K(f)) = ker(ds : C1(K(8); Z) - Co(K(B); 2))

Example 10.2.4. The 2-strand braid 8 = 010107 with closure B the trefoil knot
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1 /‘
2 /
Figure 135: The braid oio101.
has the fence K ()
€1 €4 e7
o] > > >
€2 65{ €8
o > O > O >0
€3 e €9
Figure 136: The fence K(o10101).
such that C1(K(B);Z) is a free abelian group of rank 9 with a basis {e1,ea,...,e9}. The

bilinear pairing Ag : C1(K(8);Z) x C1(K(B);Z) - Z[3] is represented with respect to the

ordered basis (e1,ea,...,e9) by the upper triangular matrix
04 00 0 00 0 O
05 30 0 00 0 O
000 00 0 00 0 0
00 00 5 00 0 0
00 00 -3 20 0 0
000 00 0 00 0 0
00 00 0 00 2 0
00 00 0 00 -5 1
00 00 0 00 0 0

If y=e4+e5—eg—ez and 0 = e7 + eg — eg — e5 then

Hy (K (B); Z2) = ker(dg : C1(K(B); Z) - Co(K(B); Z)

is a free abelian group of rank 2 with a basis {,d}. One then checks that the Seifert matrix

with respect to the ordered basis (v, d) of Hi(K(53);Z) is given by

[

as usual.
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10.3 The effect of concatenation

We now examine the effect of the concatenation of braids on Seifert surfaces and fences to
obtain an inductive formula for the chain level pairing A : C1 (K (8); Z) x C1 (K (B); Z) ~ Z[3].
We first construct the Seifert surface of a closure of a braid in a way which mirrors more closely

the decomposition of a braid into a concatenation of elementary braids.

Definition 10.3.1. The open Seifert surface ¥ :1 of the elementary n-strand braid o' with
a single crossing between strand 7 and strand ¢ + 1 is the disjoint union of a single twisted band

and n — 1 line segments, stacked vertically one above the other, as shown below
1 . . 1 . .

i — i il — i

/ / twist ™~ \ twist
> —
i+1 ~ / i+1 \ \

—1
g; ZO‘@' O, Z —1
Figure 137: The open Seifert surfaces associated to the elementary braids o,

The open Seifert surface X3 of a regular n-strand braid 8 = 313> ... B¢ is the concatenation
of the open Seifert surfaces ¥g,,%,,...,%s, from left to right so that ¥z = Uf_, X5, where g,
intersects Xg,,, in the right hand part of X3, and the left hand part of ¥3,,, as shown below

Bi Bita Zﬁz’ E,Bi—i—l
Figure 138: The concatenation of open Seifert surfaces associated to two adjacent elementary braids.

The closure ig of the open Seifert surface of a regular n-strand braid 8 = 8152 ... 5 is the

union of the open Seifert surface g with n horizontal discs as shown in the diagram below
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T T T ——

/Bl 5@ 2,31 Eﬂe 25

Figure 139: The closure of an open Seifert surface.

Proposition 10.3.2. Let § be a regular n-strand braid. The closure of the open Seifert surface

for (8 is the Seifert surface for the closure of 5 constructed by Seifert’s algorithm, that is iﬁ =Y.

Proof. By induction on the length of the braid.
O

In order to obtain an inductive formula for the chain level pairing Ag : C1(K(8);Z) x
C1(K(B);Z) - Z[5] we first consider the effect of concatenating a braid 8 with an elementary
braid ;.

Proposition 10.3.3. Let S be a regular n-strand braid with ¢ crossings and fence K. Let §;
be an elementary n-strand braid with a single crossing between strand ¢ and strand i+ 1. Define

an (n+1) x (n+ 1)-matrix Ag, by

—% ifj=k=4and ;=0

1 ifj=k=iand B =0}
Ms)jk=1 5 ifj=iandk=i+1

3 ifj=i+land k=i+2

0  otherwise.

Then the chain level Seifert pairing for 3; is represented by the matrix

g 0
Agg; = :
0 Ag,

Proof. The fence K(/3;) is a simplicial complex with n 0-simplices, n-horizontal simplices and
a single vertical 1-simplex as shown below. With respect to the ordered basis (f1, f2- .., fn+1),
the pairing g, : C1(K(8;);Z) x C1(K(B:); Z) — R is represented by the (n+1) x (n+1)-matrix
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Ag; with

ifj=k=4and 3; =0;
if j=k=1dand §;=0;"
(Mg )ik = if j=iand k=i+1

ifj=i+land k=7+2

S NI~ N= = N=

otherwise.

Suppose that we have a matrix representation Ag : C1(K(8);Z) x C1(K(5);Z) - R with
respected to an ordered basis e (g) of C1(K(3);Z). The fence K(3f;) of 3f3; is obtained from
K(B) by the fence K(3;) as follows

fiyo

fn

e

f’n,+1

Figure 140: The fences of 8, 8; and 36;.

Here the red simplices are simplices added to K () and the 1-simplices of K () and K(/3;)
are disjoint. This gives an ordered basis ek (gg,) = (€k, f1, f2, .-, fns1) of C1(K(BB;);Z) and it

follows that with respect to ex(sg,) that the pairing Agg, : C1(K(83;);Z) x C1(K(BB:); Z) —

Z[%] is represented by the block diagonal matrix

As 0
Mg, =
0 g,

as required.

O

Theorem 10.3.4. Let 8= 3155... 05, be a regular n-strand braid with ¢ crossings, where each
Bi is an elementary n-strand braid with a single crossing between strand j; and j;+1. The chain

level pairing Ag : C1(K(B);Z) x C1(K(8);Z) — Z[%] can be represented by a block diagonal
matrix
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where

if j=k=7 and §; =0y,
ifj=k=j; andﬂi:crjfil
(A8 )ik = if j=j; and k=j; +1

if j=j;+1and k=j; +2

O = N N N

otherwise.

Proof. By the definition of the concatenation of fences we may write K (3) = uf_, K(8;). Since
K (B;) intersects K(B;;1) in a set of O-simplices then Cy (K (3);Z) = @‘_,C1(K(B;);Z). The
proof follows induction on the number £ of crossings in the braid with the concatenation formula

from Proposition 10.3.3. O

10.4 Comparison with other models

We now show that this model of a chain level Seifert pairing is chain equivalent to Banchoff’s
formula for the linking number of two space polygons and Ranicki’s surgery-theoretic chain

level linking formula.

Motivated by the Gauss map in Definition 9.1.3, Banchoff [Ban76] gave a combinatorial
linking formula for two disjoint space polygons expressed in terms of the partial linking numbers

of pairs of edges as follows.

Definition 10.4.1. Let X = {Xy, X1,..., X1} respectively Y = {Yp,Y7,...,Y,_1} be a set of

points in general position in R3.

(i) For a unit vector ¢ € S% let pe : R* - P denote the projection map from R® onto the
plane P orthogonal to £&. A vector & € S? in called general for X and Y if the projections
pe(X),pe(Y) c R? are in general position.

(ii) For a vector ¢ € S? which is general for X and Y, define C; ;(X,Y,€) to be the sign of
Pe(Yji1 - Yj) x Pe(Xi41 — X)) .(X; —7]) if there are interior points X; of the edge X;X;,; and
Y; of the edge Y;Yj.1 such that pe(X;) = pe(Y;) and define C; j(X,Y,€) to be zero otherwise

The linking number of two space polygons is then expressible as the sum of partial linking

numbers of all edge pairs.
Theorem 10.4.2. [Ban76, p.1176-1177] For disjoint polygonal knots X,Y c R? the value
C(vavf): Z Ci,j(va,f) 3/

0<ism~—1
0<j<n-1

is independent of the choice of general vector € € S2. The linking number of the polygonal knots
determined by X and Y is the average value of C'(X,Y,¢), that is

1 1

LkX,Y:—f C(X,Y,&)dw = — f Cy i(X,Y,6)dw e Z

R = RSO TIEP - S SR FIE S ASLAE
0<jsn~1

where w is the volume form on S2. Moreover this integral may be expressed in terms of dihedral

angles of tetrahedra.
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Ranicki gave an alternative chain level formula in terms of the Seifert graph. The Seifert
graph of a braid records which strands of the braid cross but not whether the crossings and

over-crossings or under-crossings.

Definition 10.4.3. The Seifert graph of a braid § is the 1-dimensional CW-complex X (3)
constructed from the canonical Seifert surface of 8 by collapsing each Seifert disc to a point

and collapsing each twisted band to its core.

If 8 is an n-strand braid with ¢-crossings then the Seifert graph X (8’) has £ 1-cells and n

0-cells and has a cellular chain complex of the form
d:C1(X(B);Z) 27" - Co(X(B); Z) = Z".

If 8’ is another n-strand braid with ¢’ crossings then the Seifert graph X(8’) has a cellular

chain complex of the form
d':Cy(X(B):Z) 27" - Co(X(B):Z) 2 Z".

The Seifert graph of the concatenated braid 85" is a CW-complex which can be formed from
the Seifert graphs of 8 and 8’ by identifying the O-cells in pairs so that X (85) has (¢ + ¢')

1-cells, n 0-cells and a cellular chain complex of the form
@"=(d & ):Cu(X(BF):Z) 2T @ L' ~ Co(X(BF);Z) = 2.

The closure of an n-strand geometric braid with ¢-crossings arises as the trace of ¢ 0-surgeries
on a disjoint union of n circles. Ranicki applied the algebraic theory of surgery to the geometric

surgeries to obtain a formula which is defined inductively.

Definition 10.4.4.
(i) The canonical generalised Seifert matrices of the elementary regular n-strand braids o;, ;!

are the 1 x 1 matrices
(1) o= (1)

(ii) Let 3,8’ be regular n-strand braids and let y be the lower triangular n x n matrix with
ones below the diagonal. The generalised Seifert matriz for the concatenated braid 83’ is the

inductively defined matrix

—d*xd'
Vppr = ( 1”0’3 w; ) L CL(X(BB'):Z) x CL(X(BB');Z) >

Theorem 10.4.5. [Ranl4, p.37-38] Let 53, 5" be regular n-strand braids. The generalised Seifert

matrix

Upgr s CL(X(BB'); Z) x CL(X(BB'); Z) ~ Z

induces the Seifert form of 33’

on the homology level.
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The equivalences of Banchoff’s and Ranicki’s models to the model we developed are both

established via the following lemma.

Lemma 10.4.6. Let C and D be Z-module chain complexes with C finitely generated free and
concentrated in dimensions 0 and 1 and D concentrated in dimensions 1 and 2. If Ho(C) is

torsion free then the morphism
Ho(Homz(C, D)) ~ Homg (Hy (C), Hi(D));  f = f.

is an isomorphism, that is any two chain maps f,g: C — D are chain homotopic if and only if
fe =g« Hi(C) > H(D).

Proof. Any Z-module homomorphism f: Cy — Dj fits into the commutative diagram

0 0 o 25 o 0
0 Dy Dy 0 0
dp

so that there is an one-to-one correspondence between chain maps f : C - D and Z-module
homomorphisms f : C; - D;. It is then enough to show that if f, f' : C' - D are chain maps
satisfying f, = fI : H,(C) - H,(D) then there is chain homotopy A : f ~ f': C - D. We
can clearly choose A, =0: C, - D,y if » # 0,1 and it then suffices to construct Z-module
homomorphisms Ag: Cy - D1 and Aj : Oy — Dy such that f— f' = Agde +dpA;y : C; » Dy.

The Z-module im(d¢) c Cj is a submodule of a finitely generated free Z-module and hence
is also finitely generated free. Choose a basis {x;}; of im(d¢) and for each x; choose a point

z; € C such that do(z;) = z;. The short exact sequence
0- lm(dc) - C() g HO(C) -0

splits since Hy(C) is f.g. free and hence there is an isomorphism Cy 2 im(d¢) @ Ho(C). The
Z-module homomorphism g : im(d¢) — Dy defined by g(z;) = (f - f')(z;) induces a Z-module
homomorphism

AO = (g,O) 1m(dc) @ Ho(C) - Djq.

The Z-module homomorphism s : im(d¢) — C1 defined by s(x;) = z; satisfies dgs = idim(dc)

and hence provides a splitting of the short exact sequence
0— kCI‘(dc) - C > im(dc) -0

and induces an isomorphism im(d¢)@ker(de) — C;. The Z-module ker(d¢) c C} is also finitely

generated free and so choose a basis {y;}7_; of ker(d¢). By assumption

D,
m(dp)

and hence for each basis element y; we may choose an element w; € Dy such that (f -
[)(y;) = dp(w;). The Z-module homomorphism f : ker(dc) — Do defined by f(y;) = w;

(f—f,)* :O!Hl(C) :ker(dc) - Hl(D) = :
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induces a Z-module homomorphism A; = (0, f) : im(d¢) ® ker(dg) — D,. For element
c= (X Nizi, Xy pjy;) € Cy it follows that

AM&@:AuiAﬂmnzixmw»:§u>f3@»:u—fxixm)

and
Ao 8a(e) = dp (3 10,) = Yo sl () = 3 s () = 3 s (F = £)(w)
j= J= j= j=
= (1= 1) )
and hence (Agde +dpAq)(c) = (f - f')(c) as required. O

Proposition 10.4.7. Our model is chain homotopy equivalent to Banchoff’s model.

Proof. Let X = {Xg,X1,...,Xm-1} respectively Y = {Y;,Y7,...,Y,_1} be a set of points in
general position in R3. The set of vertices X respectively Y determines an oriented one-
dimensional simplicial complex X respectively Y in R? with positively oriented edges {e; =
X;Xi:1|0 <@ < m -1} respectively {f; = Y;Y}.1]0 < j < n -1} where X, = X respectively
Y, =Y. By [Ban76, p.1176-1177] the linking number of the space polygons X and Y is given
by

47

0<jsn—1

1
Lk(X,Y)=— % f Cij(X,Y,6)dweZ
0<i<m-1 J&¢5

where w is the volume form on S2. For basis elements e;, f; the associated integral i fgesg C; i (X,Y,&)dw

is in general a real number and not an integer. Banchoff’s formula induces a bilinear pairing
p:Ci(XGZ) x Ci(Y;2) » R

m=1 n-1 1

e 2, bili ) b/ Ci (X, Y, €)dw.

Z(:) ae JZ:(:) ifi o ogigzr:n—la i Jeese g &)dw
0<jsn—1

which has adjoint a Z-module homomorphism
p:C1(X;Z) - Homz(C1(Y;Z),R) = C*(Y;R).

Since X and Y are 1-dimensional simplicial complexes this is the same as a chain map pu :
C«(X;Z) - C**(Y;R) by Lemma 10.4.6.

Now consider the special case where X = K and Y = K* where K = K(/3) is the fence for
a braid 8 and K% is its push off in the positive normal direction. This yields a chain map
p: Cu(K;7Z) - C?**(K*;R). Recall that the simplicial complexes K* and K are simplicially
isomorphic and the bilinear form A : C1(K;Z) x C1(K;Z) -~ Z[%] may be considered as a
bilinear form A : C1(K;Z) x C1(K*;Z) -~ Z[4] ¢ R. As above, this yields a chain map A :
C.(K;Z) - C?>*(K*;R). Both XA and x compute linking numbers when we pass to homology,
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that is
[\ =[] : Ho (K Z) > B> (K Z) > H* (K3 R).

By the universal coefficients theorem there is an isomorphism
H**(K*;R) 2 Homg(H,_.(K*;Z),R)
and the inclusion Z c R induces a monomorphism
Homg(Hz_«(K*;Z),Z) - Homz(Hy_.(K*;Z),R).
It follows that there is a factorisation
(Al = [u]: Hi(K;Z) > Homg(Ha-o (K" 2), Z) = Homy (H,-. (K™ Z), R)

with both maps admitting the same factorisation through Homgz(H?* *(K*;Z),Z). By Lemma
10.4.6 there is a chain homotopy A ~ u: C,(K;Z) - C**(K*;R) so that the models are the

same up to chain homotopy. O

Our model has the advantage over Banchoff’s in that the averaged partial linking numbers

are Z[%]-valued and not R-valued.
Proposition 10.4.8. Our model is chain homotopy equivalent to Ranicki’s model.

Proof. Let 8 be a braid with Seifert graph X and fence K. We work with the opposite orien-
tations to Ranicki, so the differential d : C1(X;Z) - Co(X;Z) is the negative of the differential
Ranicki uses. This does not effect the definition of generalised Seifert matrix [Ranl4, p.37-38].
Ranicki also chooses the opposite positive normal direction when defining linking numbers. This
implies that the canonical generalised Seifert 1 x 1 for the elementary n-strands braids ¢; and
o;! are defined in our situation by 1,, = ( -1 ) and 1/)01_—1 = ( 1 )

The Seifert graph X = X(8) can be produced from the fence K = K(§) by individually
collapsing each horizontal row of simplices to a point so that the quotient map ¢: K — X is
a homotopy equivalence. The chain map ¢ : C(K;Z) - C(X;Z) of cellular chain complexes is
then a chain homotopy equivalence. The diagram

Hi(K:Z) x Hy(K;Z) -2

gxXqx | =

Hy(X;Z) x Hi(X;7Z)

is commutative since both [A] and [p] compute the Seifert matrix of the Seifert surface of the
link ﬁ . This is implies that

(A =g 'q]: Ho(K;Z) » H**(K;Z) > H** (K;R)

where as before the injection H>™*(K;7Z) < H**(K;R) is induced by the inclusion Z c R and
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the universal coefficients theorem. By Lemma 10.4.6 there is a chain homotopy
A2 g g Cu(K;Z) » C* (K R)

giving a chain homotopy equivalence to Ranicki’s model. O

Our model has the advantage over Ranicki’s model in that the concatenation behaviour is
additive and gives an instant chain level Seifert form whereas Ranicki’s model is inductively
defined.



Chapter 11

Applications to isotopy and

signatures

We now define equivalence relations, called A- and A-equivalence, on the chain level Seifert
pair (Ag,dg) of a braid S to produce a universal representation of the braid group and a
representation of the braid group modulo conjugacy. We then construct a chain level formula

for the w-signature of a braid.

11.1 Isotopy of braids and their closures

We first examine the effect of isotopy on the chain level Seifert pair (Ag,dg), firstly by an
isotopy of 3 and secondly by an isotopy of its closure /3 in the solid torus D? x S™.

Definition 11.1.1. Two square matrices with entries in %Z c R are A-equivalent if one can be

transformed into the other by a finite sequence of A-operations defined as follows:

A 0 0 O A 0 0 0
(i) 0 Aee 00 L0 Ao 00 li-jl>2
0 0 A, O 0 0 XA, O
0 0 0 B 0 0 0 B
A 0 0 A 0
0 A 0 0 0 A ol
i - i with |z — j] > 2
0 0 Ao 0 0 At 0
0 0 0 B [ 0 0 B
A 0 0 0 0 A 0 0 0 0
0 Xy O 0 O 0 As; O 0 O
@10 0 X, 0 0=l 0 0 X, 0 0 |with|i-j[=1
0 0 Aoi O 0 Ao, O
0 0 0 B 0 0 B

220
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A 0 0 0 A 00 0
0 Api 0 0 0 Ao 0 0 0
000 A 0 0 |efo 0 Ao 0 0| withli-j=1
0 0 Ao 0 00 0 Ao 0
0 0 B 0o 0 0 0 B
A 0 0
(m)(A 0\ |0 A 0
0 B 0 At 0
0 0 B
A 0 0
A0 0 At 0 0
0 )H 0 Ao, 0
0 0 0 B
A 0 0 0
0 A 00 A 0
0 0 Ao 0 H( 0 B )
0o 0o 0 B
A 0 0
0 A, 0 A0
0 0 Ao 0 H( 0 B )
0 0 0 B

We now examine the effect of an A-operation on the chain level Seifert pair (Ag,dg) of
a braid 8. Once we write 8 as a concatenation of elementary braids then the effect of an
A-operation on Ag is clear from Theorem 10.3.4. It then remains examine the effect of an A-
operation on the differential dg. We first give a matrix representation for the differential dg, of

an elementary n-strand braid and then examine the effect of concatenation on the differential.

Lemma 11.1.2. The elementary n-strand braid 8; has a fence K (8;) with differential
da, : CL(K(B:); Z) - Co(K(Bi); Z)
represented by the (n + 1) x 2n matrix

1 ifl<k<iandj=n+k
-1 ifl<k<iand j=1

1 ifk=i+landj=n+i+1
(dg,)jk=1-1 ifk=i+land j=n+i
1 ifi+2<k<n+landj=n+k-1

-1 ifi+2<k<n+landj=n+k-2

0 otherwise.

Proof. This is the representation with respect to the ordered bases (f1, fo, ..., fn+1) of C1(K(5;);Z)
and (v1,vs,...,v2,) of Co(K(53;);Z) as shown below
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'Ulo—ln Un+1

fiot

_ 1.—). Un+i—1

fi

Upn+4-i

; fix
Ui+loi>oljn+l+1

Vig 2ot LoVt

Une—rt—se U2y,

fn—l—l
O

Lemma 11.1.3. Let 3;8; be the concatenation of two elementary n-strand braids §; and 3;
with fences K (8;) and K(f;).

(i) The decompositions

K(Bi) = (K(B:) N K(8;)) u (K (8:) n K(8;))
K(B;) = (K(B:i) n K(8;)) u (K(8;) ~ K(8:))

imply that the differentials

dp: C1(K(B:);Z) — Co(K(B:); Z)
dgr + C1(K(B;);Z) - Co(K(B4);Z)

may be written as

( % ) CL(E (B 2) ~ ColK (5:) ~ K(8,)52) ® Co(K (8:) 0 K (5): 2)
Bi

( j%,j ) 1C1(K(B));Z) - Co(K(B;) n K(B;); Z) ® Co(K(B;) N K(B:); Z)
Bj

where (n + 1) x 2n-matrix representation of dg, from Lemma 11.1.2 induces (n + 1) x n-matrix

representations of d5 and dj with
(di ka=(dg )kt (dE) k1= (dp ) nsks (1<k<n,1<I<n+1)

and similarly for dg, and dj , dj .

(ii) The decomposition

K(Bi) v K(B;) = (K(8:) N K(8;)) 0 (K (8i) n K(8;)) u (K(8;) ~ K(8i))

implies that the regular n-strand braid with two crossings f3;3; has a fence K(3;6;) with



CHAPTER 11. APPLICATIONS TO ISOTOPY AND SIGNATURES 223

differential

dﬁiﬁj : Cl(K(ﬂiBj); Z) - CO(K(ﬂiBj); Z)

has a block decomposition

d’ 0
8,
g, dy |:CL(K(8i);Z) © CL(K(B5); Z)
0 d
8,

Co(K(B:) ~ K(8;);Z) @ Co(K(8:) n K(5;);Z) & Co(K(B;) N K(B:); Z).

Proof. The simplicial complexes K (3;), K(8;) ¢ K(5;3;) intersect in a 0-dimensional simplicial

complex so that

Co(K(B:);Z) = Co(K(Bs) N K(B;);Z) ® Co(K(B:) n K(B5); Z)
Co(K(B;);Z) = Co(K(Bi) n K(B;); Z) ® Co(K(85) N K(Bi); Z)
Co(K(BiB;); Z2) = Co(K(Bi) N K(B5); Z) @ Co(K (Bi) n K(B;); Z2) ® Co(K(85) ~ K(8i); Z)
C1(K(BiB)); Z) = C1(K(B:); Z) @ C1(K(B5); Z)
from which the decomposition of the differentials is clear. O

This decomposition may be extended to a concatenation of elementary braids.

Proposition 11.1.4. Let 8 = 183> ...8¢ be a regular n-strand braid with £ crossings where
each (3; is an elementary n-strand braid. The decompositions

K (i) = (K(Bi) ~ K(Bi+1)) u (K (Bi) n K(Bi+1))
K(Biv1) = (K(Bi) n K(Bi+1)) U (K(Bis1) N K(Bi))

imply that the differentials

dg, : C1(K(8:);Z) » Co(K(Bi); Z)
dp,., : C1(K(Bis1); Z) = Co(K(Bir1); Z)

may be written as

( Z%L ) tC1L(K(Bi); Z) = Co(K(Bi) N K(Bis1); Z) & Co(K (Bi) N K (Bir1);Z)
Bi

( Z%M ) 1 C1(K(Biv1); Z) » Co(K(Bi) N K(Bi+1);Z) © Co(K(Biv1) ~ K(Bi); Z).
Bi+1

The decomposition

K(B) = U_ K(B;) = (K(B1) N K(B2)) u (Uis] (K(B;) n K(Bi1))) b (K (Be) N K(Be-1))
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implies 8 has a fence K () with differential

dg : C1(K(B); Z) - Co(K(B); Z)

which has a block decomposition

dlﬁl 0 0 0
dg, dp, 0
0 de 0
0 0 d%e_ L 0
" ’
0 0 Be-1 Be
0 0 0 dg(

&Ly C1(K(8:);Z) ~ Co(K(B1) N K (B2)) ® (121 Co(K (8:) N K (Bis1); Z)) ® Co(K (Be) ~ K (Be-1))-

Proof. Follows by induction on ¢ with the base case £ = 2 given by Lemma 11.1.3 and the
equality

Co(K(Bi) N K(Bir1);Z) = Co(K(Bi-1) N K(B:);Z) (2<i<l-1).

Corollary 11.1.5. The elementary n-strand braid relations
(i) 005 =0j0; for [i—j]>2

(11) 0,040 =000 for |Z—j| =1

(iii) oyo;t =0o7lo; =1

have the effect of replacing the differentials

d. 0
(i) | d7, dy, |:C1(K(0i0;);Z) > Co(K(0i0;); Z)
0 dl
respectively
d:r.‘l 0
Ay i | C1 (K (071051); 2) > Co(K (07 071): Z)
0 dl.
j
d 0 0
i d 0
(ii) 8 d(’T'J i :C1(K(04050:);Z) - Co(K(0i00,);Z)
agj [eF)
0o 0

respectively
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d, 0 0
d;,.‘l d;—.l 0

0 @ @ :Cl(K(Ji_lU;lai_l);Z) —>CO(K(0;10]710;1);Z)

0 0 dl.
d, 0
(iii) | do, di | CL(K(0i07");Z) - Co(K (0i07"); 2)
0 a,
and
d;,—l 0
d;’v,l dy,, :C1(K(07'0:);Z) - Co(K (07 04);Z)
d d//
by the differentials
d;j 0
(i) | d7, d;, |:C1(K(0j0);Z) > Co(K(0j0:);Z)
0 dl
respectively
d_.. 0
J
dly d . |:C(K(05'07);2) - Co(K (0707 "); 2)
0 d:rl.—l
d 0 0
J
. i d. 0
(ii) o o oo I Ci(K(0joi05);2) - Co(K(0j0i05);Z)
T; O'j
0 0 d
J
respectively
d. 0 0

d(,;_.l d;,—l 0
0 dzlflfl d;fl

i 3J
0o 0 d,

: Cl(K(crjfla{lJ;l); Z) — C’O(K(J;»laglajfl); Z)

(iii) 0:Cy(K(1);Z) = 0 » Co(K(1);Z)

Definition 11.1.6. Let S and 8’ be regular n-strand braids. The chain level Seifert pairs
(Ag,dg) and (Mg, dg) are A-equivalent if there exists a finite sequence of A-operations which
transforms both Ag to Ag and dg to dg.

Proposition 11.1.7. The A-equivalence class of the chain level Seifert pair of an n-strand

geometric braid § is an isotopy invariant.

Proof. Two geometric n-strand braids 3, 8" are isotopic if and only if they are isotopic to regular
n-strand braids determined by braid words 3, 3" from the alphabet {o%! 0%, ... o%1,} such

that 8" can be obtained from (8 by applying finitely many of the relations
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(1) 0,05 =040 for |Z—]| 2 2

(11) 0;0j0; =0j0;0; for |’L—.7| =1

1 1

i) o0, =0;"0;=1
K2 7

and their inverses. By Theorem 10.3.4 and Proposition 11.1.4, these relations and their inverses
correspond to transformations (i)-(iii) in the definition of A-equivalence of a chain level Seifert

pair. O

The isotopy invariance of the A-equivalence class of the chain level Seifert pair of a braid

yields a universal representation of the braid group.

Theorem 11.1.8. Let n > 2 and denote by F;, the free group on the set of elementary n-strand
braids {o1,02,...,0,-1} and denote by B,, denote the braid group. The map

(A, d) : F,, - {chain level Seifert pairs}, 5~ (Ag,dg)

is a bijection which respects the concatenation of braid words such that words 3, 3’ € F;, differ
by the relations in the braid group if and only if the chain level Seifert pairs (Ag,dg), (Mg, dg)
are A-equivalent. This induces a well defined bijection

(\d): B {chain level Seifert pairs}
5 H n >

o [8] = [(As,ds)]

A — equivalence
which is group homomorphism and which determines a commutative diagram

F, ();d) {chain level Seifert pairs}

| |

B (\,d) . {chain level Seifert pairs}
n ~ 7

= A-equivalence

where the vertical maps are quotient maps.
Proof. This follows from Corollary 11.1.5 and Proposition 11.1.7. O

Example 11.1.9. Let 8 be the regular 4-strand braid with 8-crossings represented by the braid

word 3 = 0’10'30‘20’10'2_10'I10’§10’1. The sequence of isotopies

010302010510I10§101 = 0301020102_1(7I105101

= 0302010202_101_105101
= 030205101

_ -1

= 020303 01

= 0201

arising from applying the relations of the braid group By, implies that the chain level Seifert
pairing

Ao+ CL(K(9),2) x Cu(K (B):2) ~ 2L
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and differential
dg: C1(K(B);Z) » Co(K(B); Z)

is A-equivalent to the chain level pairing

Ao 0
)\0'20'1 :( 02 )\ )
o1

(C1(K(02);Z) @ Cr(K(01); Z)) x (C1(K (02); Z) © CL (K (01); 2)); Z) — Z[%]

and differential

dpyoy 1 C1(K(0201);Z) = Co(K(0201);2Z)

We now construct a second equivalence relation which corresponds to isotopy of the closure
of a braid inside in the solid torus.

Definition 11.1.10. Two square real matrices with entries in %Z c R are A-equivalent if one

can be transformed into the other by a finite sequence of A-operations defined as follows:

(i) A-operations

A 00
i) A= 0 A 0 for o an elementary n-strand braid
0 0 Aot
A 0 0
(iii) 0 A 0 — A for a an elementary n-strand braid
0 0 Mg

The A-operations have the following effect on the differential of a fence.

Proposition 11.1.11. Let 8 = 3155... 8, be a regular n-strand braid with ¢ crossings where
each f8; is an elementary n-strand braid and let a be an elementary n-strand braid. The
conjugacy transformation 3 € B, + afa ! is such that if the fence K () has differential

represented by the block matrix as in Proposition 11.1.4

ds 0
z, @,
0 dj ... 0 0
dg=| + : P Cu(K(B);Z) » Co(K(B);Z)
ds,, 0
dg, , dg,

0 0 ... 0
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then the fence K (aBa™!) has differential represented by the block matrix

d, 0 0 0 0
dy dg 0 ... 0 0
0 &l 4y 0 0
dapar=| 0 0 d4 ... 0 0 |:Ci(E(aBa');Z) - Co(K(aBa™)Z)
. . . d[Bé 0
1/ U
0 0 dg, d,
0 0 0 di.,
Proof. Follows from Proposition 11.1.4. O

Definition 11.1.12. Let 3, 5’ be regular n-strand braids. The chain level Seifert pairs (Ag, dg)
and (Mg, dg) are A-equivalent if there exists a finite sequence of A-operations which transforms
both Ag to Agr and dg to dg.

Proposition 11.1.13. The A-equivalence class of the chain level Seifert pair of an n-strand

geometric braid g is an isotopy invariant of the closure B inside the solid torus.

Proof. By [KT08, Theorem 2.1] for any regular n-strand braids 3,8’ € B, the closed braids
E, 3’ are isotopic in the solid torus if and only if 8 and 8’ are conjugate in B,,. The proof is
then similar to the proof of Proposition 11.1.7 but now with the conjugacy of elements in the

braid group corresponding to operations (ii) and (iii) in the definition of A-equivalence. O

The isotopy invariance of the A-equivalence class of the chain level Seifert pair of a braid

yields a representation of the quotient of the braid group by the conjugacy relation.

Theorem 11.1.14. Let n > 2 and denote by Fj, the free group on the set of elementary n-strand
braids {o1,02,...,0,-1} and by let B,, denote the braid group. The map

(A, d) : F,, - {chain level Seifert pairs}, S~ (Ag,dg)

is a bijection such that conjugate words 3, 8 € B,, have chain level Seifert pairs (Ag, dg), (Mg, dg)

which are X—equivalent. This induces a well-defined bijection

B, chain level Seifert pairs
() -, ichain L (8] (o)

conjugacy A — equivalence

and determines a commutative diagram

B (\,d) . {chain level Seifert pairs}
" = A-equivalence

| |

B, (A.d) . {chain level Seifert pairs}
conjugacy E A-equivalence

N

Moreover, words 3, 8’ € F,, differ by the relations in the braid group plus conjugacy if and only
if the chain level Seifert pairs (\g,dg), (Mg, dg) are A-equivalent so that there is commutative

diagram
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F, ()\;’d) > {chain level Seifert pairs}
B, (\,d) . {chain level Seifert pairs}
conjugacy E ’ A-equivalence
which factors as
F, (/\;’d) > {chain level Seifert pairs}
Bl (A,d) . {chain level Seifert pairs}

S
2

= A-equivalence

| |

(\,d) . {chain level Seifert pairs}
conjugacy = A-equivalence

N

Proof. Follows from Theorem 11.1.8 and Proposition 11.1.13. O

11.2 Signatures of braids

We now use the chain level Seifert pair (Ag,dg) of a braid § to give a chain level combinatorial

formula for the w-signature of a braid.

Definition 11.2.1. If L is an oriented link with Seifert matrix V' then the signature of L is the
signature (L) of the symmetric form (H1(3;Z),V +V*). For a unit complex number w # 1 the
w-signature of L is the signature o, (L) of the hermitian form (H(%;C),(1-w)V +(1-w)V?).

The —1-signature of an oriented link is the same as its signature.

Proposition 11.2.2. [Rol90, p.219] For an oriented link L and a unit complex number w # 1

the value o,,(L) does not depend on the choice of Seifert surface for L.

The signature of a link may also be interpreted as the signature of a 4-manifold with bound-

ary.

Proposition 11.2.3. [KT76] Let L c S® be a link with Seifert surface ¥ c S% = 9D*. Keeping
the boundary of ¥ fixed in S®, push ¥ inside D* to form a new surface ¥’ with boundary L.
If W is the two-fold branched cover of D* branched along ¥ then W is an oriented 4-manifold
with boundary such that W is a 2-fold cover of S® branched over L. Moreover, there exists a
choice of basis such that the intersection form on Hy(W) is represented by the matrix V + V*
so that o(L) = o(W).

Definition 11.2.4. If § is braid and if w # 1 is a unit complex number then the w-signature

of B is the w-signature o,,(3) of the oriented link B.

Example 11.2.5. From Example 10.2.4 the 2-strand braid 8 = oy0107 with closure B the

trefoil knot has Seifert matrix V and symmetrisation V + V' given by

-1 0 -2 1
V= ., V+Vi=
1 -1 1 -2
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so that o(8) = -2.

Theorem 11.2.6. Let 3 be a braid with chain level Seifert pair (Ag,ds) and let w # 1 be a unit
complex number. The w-signature of 3 may be expressed on the chain level as the signature of
the hermitian form

(1-w)hg+ (1-@)N,  df ))

(01(1((6);@) ®CO(K(5);C),( " 0

so that

R | I CETO PR CER-) N P
B)- (( ; : ))

Proof. The C-coefficients chain level Seifert pair Ag : C1(K(8);C) x C1(K(8);C) - C deter-

mines a commutative diagram

0 - » CO(K(B);C)

b I

Oy (K (5):0) TN ey -

| %

Co(K(B);C) -

The algebraic lemma of [RS76, p.26] implies that the signature of the hermitian form
(Hi(K(8);C),(1-~w)V +(1-@)V")
is equal to the signature of the hermitian form

(L-w)g+ (1D d
dg 0

(Cl(K(ﬁ);C) ® CO(K(ﬁ);C),(

and hence

o[ s A, df
- (( ; : ))

O

This chain level formula shows that the signature of a braid is not additive under the

concatenation of braids.

Corollary 11.2.7. Let w # 1 be a unit complex number. The w-signature concatenation defect

Uw(ﬁﬁ,) - O—w(ﬁ) - O'w(ﬂl)

is equal to the difference in signature between the block matrix

(I-w)hg+(1-@)A, df djt 0 0
djy 0 0 0 0
dy 0 0 0 dly,
0 0 0 0 g
0 0 dj di (1-w)hg+(1-w)A}
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and the block matrix

-—w +(l-w
1 A+ (1 )\tﬁ dg d'ﬁ’t 0 0 0
d% 0 0 0 0 0
dg 0 0 0 0 0
0 0 0 0 0 d'ﬂ,
0 0 0 0 0 dg,
0 0 0 d’é, dgf Agr + )\%,

where we have decomposed the differential of K(38") in terms of the differentials of K(3) and
K (p') as in Proposition 11.1.4.

Proof. By Proposition 10.3.3 the chain level Seifert pairing for the concatenation 53’ is repre-

Xs 0
Aspr =
0 Ay

so that there is an equality of block matrices

sented by the block diagonal matrix

(1-w)As + (1-w)A, 0 di o dgto0

0 )\5/ + )\bwt 0 d't, d"f

( das 0 = d;j 0 0 0 0
d dy 0 0 0

0 i 0 0 0

One can then perform identical row and column exchanges to find a congruence

(L-w)hg + (1-w)A, 0 ag dpt o0
0 (I-wAg+(1-D)Ag" 0 df djf
djy 0 0 0 0
df dfy 0 0 0
0 dj 0 0 0
(L-w)hg+(L-w)Ay df djt 0 0
djy 0 0 0
S djj 0 0 0 dj
0 0 0 0 dly,
0 0 dj di (1-w)g+(1-D)A}

so that by Theorem 11.2.6

(L-)g+(1L-@)N, i df 0 0 0
N d, 0O 0 0 0 0
ou(B)=c| 0T TEE ) g d! o 0 o0 o0
) dpg 0 ? 4
0 o 0 0 o d

0 0 0 b dif A+,
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On the other hand, there is an equality and congruence of block matrices

L-w)g + (1-@)N,  df,  dpf 0 0 d
dg 0 5 ~ A
ﬂ I 00 Ay, di Ag+ A,
so that
t t ¢ "
O'w(ﬂ)‘f‘()'w(ﬁ,):o-w AB+A[‘3 dﬁ ‘o )\ﬁl"’)\ﬁ, dﬂ’
Mg+ dy 0 0
. dg 0 0 0
0 0 )\B'+)‘tﬁ’ d%,
NeeXy @ a0 0 0
dg 0o 0 0 0 0
dj 0o 0 0 0 0
=0
0 o 0 0 0 djy
0 0 0 0 0 dy
0 0 0 d% d’ﬁ"f Agr + ,\tﬁ,
O

11.3 An open question

One would wish to find an elementary closed form expression for the w-signature concatenation
defect, but this is not possible in general. In the spirit of [KT76] Gambaudo and Ghys [GG05]
constructed from n-strand braids §, 8" an oriented, compact, connected 4-manifold M (3, 5")
of signature zero in such that way that M(5,5") can be obtained by glueing three oriented
4-manifold manifolds C(8),C(8"),C(85") with signatures which satisfy

a(C(B) =a(B), o(C(B)=0(B), o(C(BB))=0(BB).

They extended this to an equivariant version for branched cyclic covers where there is an action
of Zy on M(B,8"),C(B),C(8"), C(B3") which respects the decomposition of M (83") and used
an equivariant version of Wall’s non-additivity theorem for the signature [Wal69] to express
the w-signature concatenation defect in in terms of the Meyer cocycle and the Burau-Squier
hermitian representation of the braid group B, : B — Sp(oo,R). Bouwrrigan [Boul3] gave a

different proof using infinite cyclic covers.

Theorem 11.3.1. ([GGO05, Theorem A], [Boul3, Chapter V]). Let w # 1 be a root of unity.
The w-signature of the concatenated braid 53’ is related to the w-signature of the braids 3, 5’
by

0,(88") = 0,(B) — 0w (B") - Meyer(B.(8), B.(8"))-

This suggests the following:
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Open question: Is it possible to use the chain level Seifert pair (Ag,dg) of a braid and the
L-theory techniques of [Ran98] to express the w-signature concatenation defect in terms of an

L-theoretic analogue of the Meyer cocycle?
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