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Abstract. Meyer showed that the signature of a closed oriented surface bundle over a

surface is a multiple of 4, and can be computed using an element of H2(Sp(2g,Z),Z).

Denoting by 1 → Z → ˜Sp(2g,Z) → Sp(2g,Z) → 1 the pullback of the universal cover of

Sp(2g,R), Deligne proved that every finite index subgroup of ˜Sp(2g,Z) contains 2Z. As a

consequence, a class in the second cohomology of any finite quotient of Sp(2g,Z) can at

most enable us to compute the signature of a surface bundle modulo 8. We show that

this is in fact possible and investigate the smallest quotient of Sp(2g,Z) that contains this

information. This quotient H is a non-split extension of Sp(2g, 2) by an elementary abelian

group of order 22g+1. There is a central extension 1→ Z/2→ H̃→ H→ 1, and H̃ appears

as a quotient of the metaplectic double cover Mp(2g,Z) = ˜Sp(2g,Z)/2Z. It is an extension

of Sp(2g, 2) by an almost extraspecial group of order 22g+2, and has a faithful irreducible

complex representation of dimension 2g. Provided g > 4, H̃ is the universal central extension

of H. Putting all this together, we provide a recipe for computing the signature modulo 8,

and indicate some consequences.

1. Introduction

Let Σg → M → Σh be an oriented surface bundle over a surface. This is determined
by a homotopy class of maps Σh → BAut+(Σg). If g > 2 then the connected components
of Aut+(Σg) are contractible (Hamstrom [17]), and π0 Aut

+(Σg) = Γg is the (orientation
preserving) mapping class group of Σg. So BAut+(Σg) ' BΓg, and the bundle is classified
by a homotopy class of maps Σh → BΓg, or equivalently by the monodromy homomorphism

π1(Σh) = 〈a1, b1, . . . , ah, bh | [a1, b1] . . . [ah, bh] = 1〉 → Γg.

Now Γg acts on H1(Σg,Z) ∼= Z2g preserving the symplectic form given by cup product into
H2(Σg,Z) ∼= Z. So we have a map Γg → Sp(2g,Z), which is surjective. Composing, we
obtain a map

χ : π1(Σh)→ Γg → Sp(2g,Z),

and an induced map in cohomology

χ∗ : H2(Sp(2g,Z),Z)→ H2(π1(Σh),Z).

Meyer [22] constructed a 2-cocycle τ on Sp(2g,Z) and proved that

signature(M) = 〈χ∗[τ ], [Σh]〉,
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and that this is divisible by 4. In fact, for g > 3, we have

H2(Sp(2g,Z),Z) ∼= Z

and [τ ] corresponds to 4 under a suitably chosen isomorphism. For g > 3, Sp(2g,Z) is
perfect, so has a universal central extension.

Denote by ˜Sp(2g,Z) the central extension obtained by pulling back the universal cover of
Sp(2g,R):

1 // Z // ˜Sp(2g,Z) //

��

Sp(2g,Z) //

��

1

1 // Z // ˜Sp(2g,R) // Sp(2g,R) // 1

Then for g > 4 the group ˜Sp(2g,Z) is the universal central extension of Sp(2g,Z), while for
g = 3 there is an extra copy of Z/2 coming from the fact that Sp(6, 2) has an exceptional
double cover (see Lemma 6.11). Note also that the centre of Sp(2g,Z) has order two. The

centre of ˜Sp(2g,Z) is twice as big as the subgroup Z displayed above; it is isomorphic to
Z× Z/2 if g is even, and Z if g is odd.

Theorem 1.1 (Deligne [5]). The group ˜Sp(2g,Z) is not residually finite. Every subgroup of
finite index contains the subgroup 2Z.

To rephrase Deligne’s theorem, every finite quotient of ˜Sp(2g,Z) is in fact a finite quotient
of the metaplectic double cover Mp(2g,Z) of Sp(2g,Z) defined by

1

��

1

��

2Z

��

2Z

��

1 // Z //

��

˜Sp(2g,Z) //

��

Sp(2g,Z) // 1

1 // Z/2 //

��

Mp(2g,Z) //

��

Sp(2g,Z) // 1

1 1

A consequence of the theorem of Deligne is that if we compose χ with the map to a finite
quotient of Sp(2g,Z), we lose information about the signature; the best we can hope to do
is compute the signature modulo eight.

Our purpose in this paper is to produce a normal subgroup K E Sp(2g,Z) with finite
quotient H = Sp(2g,Z)/K of shape 22g+1 · Sp(2g, 2) (see §5.2 of the Introduction to the Atlas

[4] for notation describing group extensions), and a double cover H̃ of H which inflates to the
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metaplectic double cover Mp(2g,Z) of Sp(2g,Z). The group H̃ has a 2g dimensional faithful
irreducible representation over Q[i] which we shall investigate in a subsequent paper [1].

2. The subgroup K 6 Sp(2g,Z) and the main theorem

Denote by J the 2g × 2g matrix (
0 I
−I 0

)
.

Regarding J as a symplectic form, we have

Sp(2g,Z) =

{(
A B
C D

)
= X | X tJX = J

}
.

Since J−1 = −J , a matrix is symplectic if and only if its transpose is symplectic. Writing
out the above condition explicitly, a matrix is symplectic if and only if

(i) ABt and CDt are symmetric, and ADt −BCt = I, or equivalently

(ii) AtC and BtD are symmetric, and AtD − CtB = I.

We write Sp(2g, 2) for the matrices satisfying the same conditions over F2, and note that
reduction modulo two Sp(2g,Z)→ Sp(2g, 2) is surjective (Newman and Smart [24]).

We write Γ(2g,N) 6 Sp(2g,Z) for the principal congruence subgroup consisting of sym-
plectic matrices which are congruent to the identity modulo N . We write Γ(2g,N, 2N)
for the Igusa subgroup [20] of Γ(2g,N) consisting of the matrices ( A B

C D ) where the entries of
Diag(ABt) and Diag(CDt) are divisible by 2N , or equivalently where the entries of Diag(AtC)
and Diag(BtD) are divisible by 2N . If N = 1, this is the theta subgroup, also known as the
symplectic quadratic group, and denoted Spq(2g,Z). It is the inverse image in Sp(2g,Z) of
the orthogonal subgroup O+(2g, 2) 6 Sp(2g, 2).

Definition 2.1. We write K for the subgroup of Sp(2g,Z) consisting of matrices(
I + 2a 2b

2c I + 2d

)
∈ Sp(2g,Z)

satisfying:

(i) The vectors of diagonal entries Diag(b) and Diag(c) are even, and
(ii) the trace Tr(a) is even.

Thus we have Γ(2g, 4) 6 K 6 Γ(2g, 2) and |Γ(2g, 2) : K| = 22g+1. The interpretation
of the subgroup K is that it is the inverse image in Sp(2g,Z) of the largest subspace of
Γ(2g, 2)/Γ(2g, 4) on which the quadratic form in part (iv) of the theorem below is identically
zero.

Our main theorem is as follows. We assume that g > 4 for the purpose of simplifying the
statements. In an appendix we include statements for all values of g. The main difference
for low values of g is that the cohomology of Sp(2g, 2) in degrees one and two contributes
some further annoying complications.

Theorem 2.2. Let g > 4.

(i) K is a normal subgroup of Sp(2g,Z). We write H for the quotient Sp(2g,Z)/K.
(ii) The quotient Γ(2g, 2)/K 6 H is an elementary abelian 2-group (Z/2)2g+1.

3



(iii) The extension

1→ (Z/2)2g+1 → H→ Sp(2g, 2)→ 1

does not split.
(iv) The group (Z/2)2g+1 supports an invariant quadratic form q given by

q

(
I + 2a 2b

2c I + 2d

)
= Tr(a) + 〈Diag(b),Diag(c)〉

(see Remark 5.3 for definition of the pointy brackets here).
(v) The action of Sp(2g, 2) on (Z/2)2g+1 described by the extension in (iii) gives the ex-

ceptional isomorphism Sp(2g, 2) ∼= O(2g+1, 2), the orthogonal group of the quadratic
form q.

(vi) We have H2(H,Z/2) ∼= Z/2, and an associated central extension

1→ Z/2→ H̃→ H→ 1.

(vii) For n > 2, the inflation map H2(H,Z/2) → H2(Sp(2g,Z/2n),Z/2) is an isomor-
phism.

(viii) The non-zero element of H2(Sp(2g,Z)/K,Z/2) inflates to the reduction modulo two
of 1

4
[τ ] as an element of H2(Sp(2g,Z),Z/2).

(ix) Restricting the central extension of H to the subgroup Γ(2g, 2)/K gives an almost

extraspecial group 21+(2g+1) 6 H̃.

The proof of this theorem occupies the rest of the paper.

3. Extraspecial and almost extraspecial groups

For background on extraspecial and almost extraspecial groups, we refer to §I.5.5 of Goren-
stein [13] and §III.13 of Huppert [19], as well as the papers of Bouc and Mazza [2], Carlson
and Thévenaz [3], Glasby [10], Griess [14], Hall and Higman [15], Lam and Smith [21],
Quillen [26], Schmid [31], Stancu [32], and the letter from Isaacs to Diaconis reproduced in
the appendix of Diaconis [7].

The cohomology ring H∗((Z/2)n,Z/2) is a polynomial ring in generators z1, . . . , zn of
degree one. Thus

H1((Z/2)n,Z/2) = Hom((Z/2)n,Z/2)

is an n dimensional vector space spanned by the linear forms z1, . . . , zn. An element of
degree two is therefore a quadratic form q on (Z/2)n. Letting b be the associated bilinear
form (Z/2)n × (Z/2)n → Z/2, we have

q(x+ y) = q(x) + q(y) + b(x, y).

In the corresponding central extension

1→ Z/2→ E → (Z/2)n → 1

the role played by q and b is as follows. If x and y are elements of (Z/2)n, choose preimages
x̂ and ŷ in E. Then as elements of the central Z/2, we have x̂2 = q(x) and [x̂, ŷ] = b(x, y).

Definition 3.1. We say that a quadratic form q is non-singular if the radical b⊥ of the
associated bilinear form b is {0}, and non-degenerate if b⊥ ∩ q−1(0) = {0}.
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If q is non-singular then n = 2g is even; in this case there are two isomorphism classes of
quadratic forms, distinguished by the Arf invariant. The corresponding groups E defined by
the central extension

1→ Z/2→ E → (Z/2)2g → 1

are called extraspecial 2-groups, and are characterised by the properties

Φ(E) = [E,E] = Z(E) ∼= Z/2.

The two isomorphism classes of extraspecial groups are denoted 21+2g
+ (Arf invariant zero)

and 21+2g
− (Arf invariant one).

If q is singular but non-degenerate then n = 2g + 1 is odd; in this case there is one
isomorphism class of quadratic forms. The corresponding groups E defined by the central
extension

1→ Z/2→ E → (Z/2)2g+1 → 1

are called almost extraspecial groups. The central product of Z/4 with an extraspecial
group of either isomorphism type of order 21+2g gives the almost extraspecial group of order
21+(2g+1).

If G is a group, we write Aut(G) for the group of automorphisms of G, Out(G) for the
group of outer automorphisms, and Inn(G) for the group of inner automorphisms. These fit
into short exact sequences

1→ Z(G)→ G→ Inn(G)→ 1

1→ Inn(G)→ Aut(G)→ Out(G)→ 1.

Writing the automorphism groups of the extraspecial and almost extraspecial groups as
extensions of the outer by the inner automorphisms in this way, we have sequences

1→ (Z/2)2g → Aut(21+2g
+ )→ O+(2g, 2)→ 1

1→ (Z/2)2g → Aut(21+2g
− )→ O−(2g, 2)→ 1

1→ (Z/2)2g → Aut(21+(2g+1))→ Sp(2g, 2)× Z/2→ 1.(3.2)

which do not split provided g > 4. It is the last case that is of interest to us: in this case the
extra factor of Z/2 in the outer automorphism group Out(E) acts by inverting the central
element of order four, and for g > 3 the derived subgroup Out(E)′ is Sp(2g, 2).

It was proved by Griess [14] using representation theory, that in each case, there is an
extension of the extraspecial group by its outer automorphism group, and of the almost
extraspecial group by the subgroup of index two in its outer automorphism group.

We are interested in the almost extraspecial case. In this case, what Griess proved (part (b)
of Theorem 5 of [14]) is that there is a group which he denotes H0 of shape 21+(2g+1)Sp(2g, 2),
with the following properties. The normal 2-subgroup O2(H0) is the almost extraspecial
group 21+(2g+1), and the quotient H0/Z(H0) is isomorphic to the subgroup of index two in
Aut(21+(2g+1)).

Dempwolff [6] proved that for g > 2 there is a unique isomorphism class of non-split
extensions of Sp(2g, 2) by an elementary abelian group (Z/2)2g with non-trivial action. We
shall combine the results of Griess and Dempwolff to show that the group H of Theorem 2.2
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is isomorphic to the quotient of Griess’ group H0 by the central subgroup of order two. This
in turn allows us to compute H2(H,Z/2) and relate it to H2(Sp(2g,Z),Z).

There is another approach to this, which we describe in a separate paper [1]. This avoids
the use of the theorems of Griess and Dempwolff, replacing them with a computation showing
that the group H̃ has a Curtis–Tits–Steinberg type presentation. This approach is closely
related to the action of H̃ on a certain 2g dimensional space of theta functions, and shows
that the following defines a projective representation σ : Sp(2g,Z)→ U(2g,Q[i])/{±I} with

kernel K, and then induces a 2g dimensional representation H̃→ U(2g,Q[i]).
The underlying vector space for the representation has as a basis the vectors ew for w ∈
{0, 1}n. In the following matrices, we regard detA, which is really an element of (Z/4)× =

{1,−1}, as being either +1 or −1 in C, and
√

detA is either 1 or i.

σ

(
I B
0 I

)
: ew 7→ iw

tBwew

σ

(
A 0
0 (At)−1

)
: ew 7→

√
detA e(At)−1w

σ

(
0 I
−I 0

)
: ew 7→

1

(1− i)g

∑
w′

(−1)w
tw′ew′ .

Note that Sp(2g,Z) is generated by these elements, but it is not at all obvious that the
relations in Sp(2g,Z) hold up to sign for the linear transformations listed here; this is proved
in [1]. Note also that in the first formula above, the matrix B may be interpreted as having
diagonal entries in Z/4 and off-diagonal entries in Z/2, so that it represents a quadratic form
on (Z/2)g, taking values in Z/4.

Further references for the representation described here include Funar and Pitsch [9],
Glasby [10], Gocho [11, 12], Nebe, Rains and Sloane [23], Runge [27, 28, 29], and Tsushima [35].

4. Signature modulo eight

Given an oriented surface bundle over a surface Σg → M → Σh, recall that we had an
associated map χ : π1(Σh) → Sp(2g,Z). Composing with σ : Sp(2g,Z) → U(2g,Q[i])/{±I},
we obtain a map

φ : π1(Σh) = 〈a1, b1, . . . , ah, bh | [a1, b1] . . . [ah, bh] = 1〉 → U(2g,Q[i])/{±I}.
Now the commutators [φ(ai), φ(bi)] are well defined in U(2g,Q[i]), since changing the sign
on φ(ai) or φ(bi) changes the sign twice in the commutator. Since the product of the
commutators is in the kernel of φ, we have

[φ(a1), φ(b1)] . . . [φ(ah), φ(bh)] = ±I ∈ U(2g,Q[i]).

Theorem 4.1. We have

[φ(a1), φ(b1)] . . . [φ(ah), φ(bh)] =

{
I iff signature(M) ≡ 0 (mod 8)

−I iff signature(M) ≡ 4 (mod 8).

Remarks 4.2. (1) As a method of computation, this theorem is not very useful, because
of the large size of the matrices involved. Endo [8] provided a much more efficient
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and purely algebraic method for computing the signature, and not just modulo eight.
On the other hand, there are consequences of the theorem that are not very apparent
from the point of view of Endo’s method.

(2) The following is a consequence of the theta function point of view, and will be dis-
cussed in a separate paper [1]. Let Spq(2g,Z) be the theta subgroup of Sp(2g,Z).
If the image of χ lies in Spq(2g,Z) then we have signature(M) ≡ 0 (mod 8). In
particular, this holds if the action of π1(Σh) on H1(Σg,Z/2) is trivial. This proves a
special case of the Klaus–Teichner conjecture; see the introduction to [16] for details.

(3) Consider next the subgroup consisting of the matrices ( A B
C D ) ∈ Sp(2g,Z) such that

the entries of C are even, and of Diag(C) are divisible by four. If the image of χ lies
in this subgroup then again we have signature(M) ≡ 0 (mod 8). This will be proved
in [1].

5. Symplectic groups and their Lie algebras

Let R be a commutative ring, and Sp(2g,R) be the symplectic group of dimension 2g over
R. Explicitly, this consists of matrices X with entries in R, and satisfying X tJX = J , where
J is the symplectic form

J =

(
0 I
−I 0

)
and I is a g × g identity matrix. Denoting by VR a free R-module of rank g, and setting

WR = V ∗R = HomR(VR, R),

the matrices X act on UR = VR ⊕WR, preserving the skew-symmetric bilinear form

〈 , 〉 : UR × UR → R

given by

〈(v, w), (v′, w′)〉 = w′(v)− w(v′).

For the action of matrices in Sp(2g,R), we regard (v, w) as a column vector of length 2g
with entries in R. The skew-symmetric bilinear form induces an isomorphism from UR to
U∗R sending u to 〈u, 〉. If R = F2, we shall write U , V and W instead of UF2 , VF2 and WF2 .

The Lie algebra sp(2g,R) consists of matrices Y with entries in R, and satisfying

JY + Y tJ = 0.

Thus

Y =

(
a b
c −at

)
where b and c are symmetric. To say that b is symmetric is to say that as an element of

HomR(WR, VR) ∼= VR ⊗R VR

it is invariant under the transposition swapping the two tensor factors. Thus b is an element
of the divided square D2(VR) (which may not be identified with the symmetric square S2(UR)
unless 2 happens to be invertible in R, which will not be the case for us). Similarly, we have
c ∈ D2(WR) and

a ∈ HomR(VR, VR) ∼= VR ⊗R WR.
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Putting this together, we see that

Y ∈ D2(VR)⊕D2(WR)⊕ (VR ⊗R WR) ∼= D2(UR).

Thus, as a module for Sp(2g,R), we have identified the Lie algebra sp(2g,R) with the divided
square of the natural module. More abstractly, if u ∈ UR then the symmetric tensor u⊗u is
identified with the endomorphism sending x to 〈u, x〉u. Polarising, this identifies u⊗u′+u′⊗u
with the endomorphism of UR sending x to 〈u, x〉u′+ 〈u′, x〉u. We have therefore proved the
following.

Theorem 5.1. For any commutative ring R, we have isomorphisms

sp(2g,R) ∼= D2(UR) ∼= Rg(2g+1).

The first isomorphism is an isomorphism of Sp(2g,R)-modules, while the second is an iso-
morphism of R-modules.

We are interested in the group Sp(2g,Z/4). This sits in a short exact sequence

1→ sp(2g,F2)→ Sp(2g,Z/4)→ Sp(2g, 2)→ 1.

The elementary abelian 2-subgroup is identified with sp(2g,F2), and consists of the matrices
I + 2Y with Y ∈ sp(2g,F2). These have the form(

I + 2a 2b
2c I − 2at

)
with b and c symmetric. We have a short exact sequence

0 // Λ2(U) // D2(U) //

∼=
��

U // 0

sp(2g,F2)

where Λ2(U) is spanned by elements of the form u⊗u′+u′⊗u. As a submodule of sp(2g,F2),
this consists of the matrices where Diag(b) = Diag(c) = 0. The quotient U corresponds to
the diagonal entries in b and c. Thus the above short exact sequence can be thought of as
a short exact sequence of groups

1→ Γ(2g, 2, 4)/Γ(2g, 4)→ Γ(2g, 2)/Γ(2g, 4)→ Γ(2g, 2)/Γ(2g, 2, 4)→ 1.

More generally, we have short exact sequences

1→ sp(2g,F2)→ Sp(2g,Z/2n+1)→ Sp(2g,Z/2n)→ 1

and

1→ Γ(2g, 2n, 2n+1)/Γ(2g, 2n+1)→ Γ(2g, 2n)/Γ(2g, 2n+1)→ Γ(2g, 2n)/Γ(2g, 2n, 2n+1)→ 1.

Proposition 5.2. As modules over Sp(2g, 2), for g > 1 and n > 1 we have

Γ(2g, 2n)/Γ(2g, 2n, 2n+1) ∼= U, Γ(2g, 2n, 2n+1)/Γ(2g, 2n+1) ∼= Λ2(U).
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Now the symplectic form on U gives us a map Λ2(U)→ F2, which sends u⊗u′+u′⊗u to
〈u, u′〉. We write Y for the kernel of this map, and we write Z for D2(U)/Y , an F2-vector
space of dimension 2g+1. Putting these together, we have the following diagram of modules.

0

��

0

��

Y

��

Y

��

0 // Λ2(U) //

��

D2(U)

��

// U // 0

0 // F2

��

// Z

��

// U // 0

0 0

We claim that the symplectic form on U lifts to a non-degenerate orthogonal form on Z,
invariant under Sp(2g, 2). The quadratic form Z → F2 is given by

q(u⊗ u) = 0, q(u⊗ u′ + u′ ⊗ u) = 〈u, u′〉,

and the associated symmetric bilinear form is

b(u⊗ u, u′ ⊗ u′) = 〈u, u′〉,
b(u⊗ u′ + u′ ⊗ u, u′′ ⊗ u′′) = 0,

b(u⊗ u′ + u′ ⊗ u, u′′ ⊗ u′′′ + u′′′ ⊗ u′′) = 0.

A priori, these are a quadratic form and associated bilinear form on D2(U). But they
clearly vanish identically on Y , and define a non-degenerate but singular quadratic form and
associated bilinear form on Z. These are invariant under Sp(2g, 2), which is therefore the
orthogonal group on Z ∼= F2

2g+1, displaying the isomorphism

Sp(2g, 2) ∼= O(2g + 1, 2).

Remark 5.3. Translating back from D2(U) to sp(2g,F2), the quadratic and bilinear form
are given as follows:

q

(
a b
c −at

)
= Tr(a) + 〈Diag(b),Diag(c)〉

b

((
a b
c −at

)
,

(
a′ b′

c′ −a′t

))
= 〈Diag(b),Diag(c′)〉+ 〈Diag(b′),Diag(c)〉.

Here, the pointy brackets denote the standard inner product on F2
g given by multiplying

corresponding coordinates and summing.
The normal subgroup K described in Section 2 is the inverse image of

Y 6 sp(2g,F2) 6 Sp(2g,Z/4)
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under the quotient map Sp(2g,Z)→ Sp(2g,Z/4). Thus there is a short exact sequence

1→ Z → H→ Sp(2g, 2)→ 1

and the subgroup Z ∼= (Z/2)2g+1 may be viewed as the orthogonal module F2
2g+1 for Sp(2g, 2)

via conjugation.

Remark 5.4. The submodule structure of the Sp(2g, 2)-modules Λ2(U) of dimension g(2g−
1) and D2(U) ∼= sp(2g,F2) of dimension g(2g+ 1) can be described explicitly as follows (see
also Hiss [18]). There is a map Λ2(U)→ F2 corresponding to the symplectic form, given by

u⊗ u′ + u′ ⊗ u 7→ 〈u, u′〉.

There is a dual map F2 → Λ2(U) coming from the fact that the representation Λ2(U) is
self-dual. In terms of the natural bases v1, . . . , vg of V and w1, . . . , wg of W , this is given by

1 7→
∑
i

(vi ⊗ wi + wi ⊗ vi).

If g = 1 then Λ2(U) ∼= F2 is one dimensional, Y = 0, and Z = D2(U) decomposes as a
direct sum F2 ⊕ U .

If g > 2 is even then the composite F2 → Λ2(U) → F2 is zero, and the quotient of the
kernel by the image is a simple module S of dimension g(2g−1)−2. Thus Λ2(U) is uniserial
(i.e., it has a unique composition series) with composition factors F2, S, F2.

If g > 3 is odd, then the composite is non-zero, and Λ2(U) decomposes as a direct sum of
a trivial module F2 and a simple module S of dimension g(2g − 1)− 1.

In both cases with g > 2, D2(U) has Λ2(U) as its unique maximal submodule. We can
therefore draw diagrams for the structure of D2(U) ∼= sp(2g,F2) as follows.

g = 1: F2 ⊕ U g > 2 even :

U

F2

S

F2

g > 3 odd :
U

F2 S

For g > 2, the quotient Z of D2(U) has structure

U

F2

and this is the orthogonal module for Sp(2g, 2) ∼= O(2g + 1, 2). The submodule Y is S for
g > 3 odd, it is a non-split extension

0→ F2 → Y → S → 0

for g > 2 even, and Y = 0 for g = 1.

Lemma 5.5. (i) For g > 1 we have H0(Sp(2g, 2), Y ) = 0 and H0(Sp(2g, 2), U) = 0.
(ii) For g > 2 we have H0(Sp(2g, 2), Z) = 0 and H0(Sp(2g, 2), sp(2g,F2)) = 0.
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Proof. This follows immediately from the structure of Y , U , Z, and sp(2g,F2) as Sp(2g, 2)-
modules given in the above remark, since these modules admit no non-trivial homomorphisms
to F2 with trivial action. �

6. Computations in degree two homology and cohomology

Lemma 6.1. (i) We have H2(Sp(2g, 2)) = 0 for g > 4, and H2(Sp(6, 2)) ∼= Z/2.
(ii) We have H2(Sp(2g, 2),Z/2) = 0 for g > 4 and H2(Sp(6, 2),Z/2) ∼= Z/2.

Proof. (i) This is computed in the paper of Steinberg [34].
(ii) This follows from the universal coefficient theorem, since Sp(2g, 2) is perfect for g >

3. �

Lemma 6.2. For n > 1 and g > 2 we have H0(Sp(2g,Z/2n), H1(Γ(2g, 2n))) = 0.

Proof. Proposition 10.1 of Sato [30] computes H1(Γ(2g,N)), the abelianisation of Γ(2g,N).
Namely, the derived subgroup is Γ(2g,N2) if N is odd, and Γ(2g,N2, 2N2) if N is even.

Taking N = 2n, it gives

H1(Γ(2g, 2n)) ∼= Γ(2g, 2n)/Γ(2g, 22n, 22n+1).

As modules over Sp(2g,Z/2n) we have

Γ(2g, 2n)/Γ(2g, 22n) ∼= sp(2g,Z/2n)

Γ(2g, 22n)/Γ(2g, 22n, 22n+1) ∼= U

(cf. Section 5). This gives us a short exact sequence

(6.3) 0→ U → H1(Γ(2g, 2n))→ sp(2g,Z/2n)→ 0.

We also have short exact sequences

0→ sp(2g,F2)→ sp(2g,Z/2n)→ sp(2g,Z/2n−1)→ 0.

By Lemma 5.5 (ii), for g > 2 we have

H0(Sp(2g,Z/2n), sp(2g,F2)) = H0(Sp(2g, 2), sp(2g,F2)) = 0

and so by induction on n and right exactness of H0, we have

H0(Sp(2g,Z/2n), sp(2g,Z/2n)) = 0.

Finally, by Lemma 5.5 (i) we have

H0(Sp(2g,Z/2n), U) = H0(Sp(2g, 2), U) = 0.

Therefore, using right exactness of H0 on the sequence (6.3), the lemma is proved. �

Proposition 6.4. For n > 1 and g > 2,

(i) the map H2(Sp(2g,Z))→ H2(Sp(2g,Z/2n)) is surjective, and
(ii) the map H2(Sp(2g,Z/2n+1))→ H2(Sp(2g,Z/2n)) is surjective.
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Proof. (i) The short exact sequence

1→ Γ(2g, 2n)→ Sp(2g,Z)→ Sp(2g,Z/2n)→ 1

gives rise to a five term sequence in homology

H2(Sp(2g,Z))→ H2(Sp(2g,Z/2n))→ H0(Sp(2g,Z/2n), H1(Γ(2g, 2n))

→ H1(Sp(2g,Z))→ H1(Sp(2g,Z/2n))→ 0.

The proposition therefore follows immediately from Lemma 6.2.
(ii) This is similar, using the observation that H1(Γ(2g, 2n)/Γ(2g, 2n+1)) ∼= sp(2g,F2), so

that by Lemma 5.5 (ii) we have

H0(Sp(2g,Z/2n), H1(Γ(2g, 2n)/Γ(2g, 2n+1))) = 0. �

Corollary 6.5. For n > 1 and g > 3, the map

H2(Sp(2g,Z/2n), A)→ H2(Sp(2g,Z), A)

is injective for any abelian group of coefficients A with trivial action.

Proof. This follows directly from Proposition 6.4 together with the universal coefficient the-
orem for cohomology, as the groups Sp(2g,Z) and Sp(2g,Z/2n) are perfect for g > 3. �

Proposition 6.6. For g > 2, the maps H2(Sp(2g,Z/4)) → H2(H) → H2(Sp(2g, 2)) are
surjective.

Proof. For the first map, we use the five term sequence for the short exact sequence

1→ Y → Sp(2g,Z/4)→ H→ 1,

and the computation

H0(H, H1(Y )) = H0(Sp(2g, 2), Y ) = 0

given in Lemma 5.5. Note that Y is an elementary abelian 2-group, so H1(Y ) ∼= Y .
The computation for the second map is similar, using the short exact sequence

1→ Z → H→ Sp(2g, 2)→ 1

and the computation H0(Sp(2g, 2), Z) = 0 given in Lemma 5.5. �

Corollary 6.7. For g > 3, the inflation map H2(H, A) → H2(Sp(2g,Z/4), A) is injective
for any abelian group of coefficients A with trivial action.

Proof. This follows directly from Proposition 6.6 and the universal coefficient theorem for
cohomology, as the groups Sp(2g,Z/4) are perfect for g > 3, hence all their quotients are
perfect as well. �

Proposition 6.8. For g > 4 the group H = Sp(2g,Z)/K ∼= Sp(2g,Z/4)/Y is isomorphic to
the quotient H̄0 of the group H0 of Griess, described in Section 3, by its central subgroup of
order two.
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Proof. Examine the extension

(6.9) 1→ Γ(2g, 2)/Γ(2g, 2, 4)→ Sp(2g,Z/4)/Γ(2g, 2, 4)→ Sp(2g, 2)→ 1.

This is non-split, since the element of order two in Sp(2g, 2) which swaps the first basis
vectors of L and L∗ and fixes the remaining basis vectors does not lift to an element of order
two in Sp(2g,Z/4)/Γ(2g, 2, 4).

Let E be the almost extraspecial group O2(H0) of shape 21+(2g+1). The action of Sp(2g, 2)
on Γ(2g, 2)/Γ(2g, 2, 4) ∼= U is the same as the action of Out(E)′ on Inn(E) (see (3.2)), namely
the natural symplectic module. It follows from the main theorem of Dempwolff [6] that

H2(Sp(2g, 2),Γ(2g, 2)/Γ(2g, 2, 4))

is one dimensional. Therefore Sp(2g,Z/4)/Γ(2g, 2, 4) is isomorphic to the group Aut(E)′.
Since Γ(2g, 4) ⊆ K ⊆ Γ(2g, 2, 4) it follows that the short exact sequence

1→ Z → H→ Sp(2g, 2)→ 1

also does not split. We have Γ(2g, 2, 4)/K ∼= Z/2, and since g > 4, by Lemma 6.1 we have
H2(Sp(2g, 2),Z/2) = 0. So H2(Sp(2g, 2),Γ(2g, 2, 4)/Y ) = 0, and hence H2(Sp(2g, 2), Z)
is at most one dimensional. Since we have a non-split extension (6.9), it is exactly one
dimensional. The modules E/[E,E] and Z for Sp(2g, 2) are both isomorphic to the natural
orthogonal module of dimension 2g + 1, so it follows that H is isomorphic to H̄0. �

Remark 6.10. In the case g = 3, Proposition 6.8 is still true, but needs a bit more work.
The group H2(Sp(6, 2),Z/2) is one dimensional by Lemma 6.1, and we are left with the
nasty possibility that H = Sp(6,Z/4)/Y is isomorphic to a quotient of the pullback of

H̄0 → Sp(6, 2) and S̃p(6, 2)→ Sp(6, 2) by the diagonal central element of order two. In order
to prove that H is really isomorphic to H̄0 and not this other group, it suffices to construct
a matrix representation of a double cover of H of dimension eight. Explicit matrices for this
representation were given in Section 3. On the other hand, the smallest faithful irreducible
complex representation in the case of the other possibility has dimension 64. It is worth
noticing, though, that it does not matter which possibility is true, if we just wish to prove
the next theorem.

Lemma 6.11. We have H2(Sp(2g,Z)) = Z for g > 4 and Z⊕ Z/2 for g = 3.

Proof. See for example Stein [33], Theorem 2.2 for g = 3 and Theorem 5.3 and Remark 5
following Corollary 5.5 for g > 4. See also Theorem 5.1 of Putman [25] for g > 4. �

Theorem 6.12. For g > 3 we have H1(H) = 0. For g > 4 we have H2(H) = Z/2, and for
g = 3 we have H2(H) = Z/2⊕ Z/2. The map

H2(Sp(2g,Z/2n))→ H2(H)

is an isomorphism for n > 2.

Proof. The computation of the abelianisation H1(H) is straightforward. It follows from
Propositions 6.4 and 6.6 that for n > 2 the maps

(6.13) H2(Sp(2g,Z))→ H2(Sp(2g,Z/2n))→ H2(Sp(2g,Z/4))→ H2(H)→ H2(Sp(2g, 2))
13



are surjective, and from Theorem 1.1 that the kernel of the first map contains every element
divisible by two. Consulting Lemma 6.11, we see that H2(Sp(2g,Z/2n)) and H2(H) are
quotients of the groups given.

By Proposition 6.8, there is a non-trivial element of H2(H,Z/2) which is killed by the

map to H2(Sp(2g, 2)). Namely, the central extension H̃ → H is not inflated from Sp(2g, 2)

because the kernel of H̃→ Sp(2g, 2) is the non-abelian group E.
Comparing the value of H2(Sp(2g,Z)) given in Lemma 6.11 with the value of H2(Sp(2g, 2))

given in Lemma 6.1, the theorem follows. �

Corollary 6.14. The map

H2(H, A)→ H2(Sp(2g,Z/2n), A)

is an isomorphism for g > 3, n > 2, and any abelian group of coefficients A with trivial
action.

Proof. This follows from Theorem 6.12 and the universal coefficient theorem. �
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Summary of homology and cohomology groups

Values for g > 4

{
even

odd
are as follows:

Group H1(−) H2(−) H2(−,Z) H2(−,Z/8) H2(−,Z/2)

Γg 0 Z Z Z/8 Z/2

Sp(2g,Z) 0 Z Z Z/8 Z/2

PSp(2g,Z) 0

{
Z⊕ Z/2
Z

Z

{
Z/8⊕ Z/2
Z/8

{
Z/2⊕ Z/2
Z/2

Sp(2g,Z/4) 0 Z/2 0 Z/2 Z/2

PSp(2g,Z/4) 0

{
Z/2⊕ Z/2
Z/4

0

{
Z/2⊕ Z/2
Z/4

{
Z/2⊕ Z/2
Z/2

H = Sp(2g,Z/4)/Y 0 Z/2 0 Z/2 Z/2

Sp(2g, 2) 0 0 0 0 0

Values for g = 3:

Group H1(−) H2(−) H2(−,Z) H2(−,Z/8) H2(−,Z/2)

Γ3 0 Z⊕ Z/2 Z Z/8⊕ Z/2 Z/2⊕ Z/2

Sp(6,Z) 0 Z⊕ Z/2 Z Z/8⊕ Z/2 Z/2⊕ Z/2

PSp(6,Z) 0 Z⊕ Z/2 Z Z/8⊕ Z/2 Z/2

Sp(6,Z/4) 0 Z/2⊕ Z/2 0 Z/2⊕ Z/2 Z/2⊕ Z/2

PSp(6,Z/4) 0 Z/4⊕ Z/2 0 Z/4⊕ Z/2 Z/2⊕ Z/2

H = Sp(6,Z/4)/Y 0 Z/2⊕ Z/2 0 Z/2⊕ Z/2 Z/2⊕ Z/2

Sp(6, 2) 0 Z/2 0 Z/2 Z/2
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Values for g = 2:

Group H1(−) H2(−) H2(−,Z) H2(−,Z/8) H2(−,Z/2)

Γ2 Z/10 Z/2 Z/10 (Z/2)2 (Z/2)2

Sp(4,Z) Z/2 Z⊕ Z/2 Z⊕ Z/2 Z/8⊕ (Z/2)2 (Z/2)3

PSp(4,Z) Z/2 Z⊕ (Z/2)2 Z⊕ Z/2 Z/8⊕ (Z/2)3 (Z/2)4

Sp(4,Z/4) Z/2 (Z/2)2 Z/2 (Z/2)3 (Z/2)3

PSp(4,Z/4) Z/2 (Z/2)3 Z/2 (Z/2)4 (Z/2)4

H = Sp(4,Z/4)/Y Z/2 (Z/2)2 Z/2 (Z/2)3 (Z/2)3

Sp(4, 2) Z/2 Z/2 Z/2 (Z/2)2 (Z/2)2

Values for g = 1:

Group H1(−) H2(−) H2(−,Z) H2(−,Z/8) H2(−,Z/2)

Γ1 Z/12 0 Z/12 Z/4 Z/2

Sp(2,Z) Z/12 0 Z/12 Z/4 Z/2

PSp(2,Z) Z/6 0 Z/6 Z/2 Z/2

Sp(2,Z/4) Z/4 Z/2 Z/4 (Z/2)2 Z/4⊕ Z/2

PSp(2,Z/4) Z/2 Z/2 Z/2 (Z/2)2 (Z/2)2

H = Sp(2,Z/4)/Y Z/4 Z/2 Z/4 (Z/2)2 Z/4⊕ Z/2

Sp(2, 2) Z/2 0 Z/2 Z/2 Z/2
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3. J. F. Carlson and J. Thévenaz, Torsion endo-trivial modules, Algebras and Representation Theory 3

(2000), 303–335.

4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups,

Oxford University Press, 1985.

5. P. Deligne, Extensions centrales non résiduellement finies des groupes arithmétiques, Comptes Rendus

Acad. Sci. Paris, Série I 287 (1978), no. 4, A203–A208.

6. U. Dempwolff, Extensions of elementary abelian groups of order 22n by S2n(2) and the degree 2-

cohomology of S2n(2), Illinois J. Math. 18 (1974), 451–468.

7. P. Diaconis, Threads through group theory, Character Theory of Finite Groups (Mark L. Lewis, Gabriel

Navarro, Donald S. Passman, and Thomas R. Wolf, eds.), Contemp. Math., vol. 524, American Math.

Society, 2010, pp. 33–47.

8. H. Endo, A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35

(1998), 915–930.

9. L. Funar and W. Pitsch, Finite quotients of symplectic groups vs mapping class groups, Preprint, 2016.
16



10. S. P. Glasby, On the faithful representations, of degree 2n, of certain extensions of 2-groups by orthogonal

and symplectic groups, J. Austral. Math. Soc. 58 (1995), 232–247.

11. T. Gocho, The topological invariant of three-manifolds based on the U(1) gauge theory, Proc. Japan

Acad., Ser. A 66 (1990), 237–239.

12. , The topological invariant of three-manifolds based on the U(1) gauge theory, J. Fac. Sci. Univ.

Tokyo Sect IA, Math. 39 (1992), 169–184.

13. D. Gorenstein, Finite groups, Harper & Row, 1968.

14. R. L. Griess, Automorphisms of extra special groups and nonvanishing degree 2 cohomology, Pacific J.

Math. 48 (1973), no. 2, 403–422.

15. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside’s

problem, Proc. London Math. Soc. 6 (1956), 1–42.

16. I. Hambleton, A. Korzeniewski, and A. Ranicki, The signature of a fibre bundle is multiplicative mod 4,

Geometry & Topology 11 (2007), 251–314.

17. M.-E. Hamstrom, Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math.

10 (1966), 563–573.

18. G. Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. (Basel) 42 (1984), 408–416.

19. B. Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, vol. 134, Springer-

Verlag, Berlin/New York, 1967.

20. J.-I. Igusa, On the graded ring of theta constants, Amer. J. Math. 86 (1964), 219–246.

21. T. Y. Lam and T. Smith, On the Clifford-Littlewood-Eckmann groups: A new look at periodicity mod 8,

Rocky Mountain J. Math. 19 (1989), no. 3, 749–786.
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