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to show that both are generated by p-elementary induction. This re-
duces the problem of describing Ker(nz) to the p-group case, which
is handled in [4, Section 4], Similarly, this reduces the problem
of finding generators for Ker[K%oP(Aﬂ) - K;(Aﬂ)] to the case where
m is a p-group. It should be noted that neither K;oP(Aﬂ) nor

Kz(An) is generated by p-elementary induction.
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A RELATION BETWEEN WITT GROUPS
AND ZERO-CYCLES IN A REGULAR RING
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Let R be a commutative ring with unit, suppose 1/2 € R, and Il¢
W(R) denote the Witt group of R. This is the Grothendieck group of
isometry classes of nonsingular symmetric bilinear froms ¢: P x P -
where P is finitely-generated projective, modulo the subgroup gene-
rated by hyperbolic forms. (It is denoted Wé(R) or WO(CMO(R)) in
the body of the paper.) The main results of this paper are the follon

ing theorems, A and B.

Theorem A. Let A be a regular Noetherian domain containing 1,
and let K be its fraction field.

(i) If dim A < 3, then the natural map W(a) -» W(K) is injec
tive.

(ii) If dim A < 4 and A is local, then W(A) > W(K) is in-

jective.

It was shown in [P4] that, if in part (ii) of Theorem A it is al
assumed that A is essentially of finite type over a field, then the
dimension restriction can be removed. This was first proved (for loc.
ization at a closed point) by Ojanguren ([02]). He has also proved
Theorem A(i) independently and by different methods in [Ol].

The cuestion of injectivity of W(A) > W(K) when A is local,
seems first to have been raised by Grothendieck in a more general for
which also includes, for example, the theorem of Auslander and Goldma
on the injectivity of Brauer groups, Br(aA) > Br(K). An excellent su
very of this and related problems has been written by Colliot-Thél&ne
([¢Ll]; cf. also [crW and [K2].) )

There is a heuristic, if somewhat technical reason for the upper
bound on the dimension of the rings appearing in Theorem A. It is th
if something becomes trivial at the generic point (of Spec(A)), then
it ought to lift back to codimension one. It turns out that the resu
ing thing is trivial at all generic points of its support, so lifts
back to codimension two. The process can be continued until codimens
four is reached, at whose generic points symmetric bilinear forms app
again. These may be non-hyperbolic {i.e., non-zero in a Witt group),
impeding further progress.

This informal explanation is made precise in (2.4). Although I

don't know what happens in Theorem A(ii) for arbitrary 5-dimensional
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regular local rings, the co-ordinate ring A of the real variety s? x
s2 is an example for which W(A) » W(K) is not injective (KOS),
showing Theorem A(i) is false in dimension four. The following theorem
implies there aren't any such four-dimensional examples over € and
that the group of zero-cycles mod rational equiyalence, AO(—), accounts
for the examples over IR (at least modulo odd torsion). For its full
statement we need the Witt group W—l(A) of skew-symmetric forms (de-
noted Wal(A) or WSI(CMO(A)) in the body of the paper). 1Its defini-
tion is the obvious modification of that of W(A).

Theorem B. (i) Let A be a regular Noetherian domain, of dimen-
sion four and of finite type over a field k, char k # 2. If k is
algebraically or real closed, then there is a surjection of abelian
groups,

AO(Spec A) ® Z /2 » ker(W(A) > W(K)) © = /2

If the group C3(A) ® Z /2 =0 (defined in [CF]), then this is an iso-
morphism.

(ii) If A 1is as in (i) but is 2-dimensional, then there is a sur-
jection

Ay(Spec A) © 2Z/2 » W T (a) @ Z /2

If Pic(A) ® Z /2 = 0, then this is an isomorphism.

For instance, if k = € then AO(Spec A) 1is divisible, so
AO(Spec A) ® ZZ/2 = 0. On the other hand, according to [CI], AO(Spec A)
® Z/2 = (Z /2)r when k = IR; here r 1is (in some cases) the number
of compact topological components of the real algebraic 4-manifold de-
fined by A. (This is the explanation for the above example where A
is the co-ordinate ring of S2 X Sz.) A precise statement can be found
in (3.2).

A result like Theorem B, connecting Witt groups to geometric in-
variants, is the motivation for a program to study quadratic forms on
rings of dimension higher than one (the one-dimensional case being that
of classical arithmetic interest). Indeed, the techniques of this paper
can be globalized to apply to forms on schemes, for which the founda-
tions have been laid in [K3]. For example, using the methods here, it
can be shown that W(X) is a birational invariant of smooth projective
surfaces X over C. This was suggested by Colliot-Théléne and Sansuc
in [CS]. The papers [C2], [C3] and [CS] present another approach to
the study of quadratic forms over geometric rings.

In a more algebraic vein, .it is shown in §4 below that a construc-

tion of Serre and Horrocks (used by Horrocks to find indecomposable
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bundies on H>3) is closely related to the surjection in part (ii)
Theorem B. The consequence ((4.5)) is a fairly explicit set of gene
tors of W l(a) e = /2 .

As has already been suggested, the method of proof of Theorem 2
to use localization seguences, comparing what happens in adjacent cc
dimensions. A template both for this and Theorem B exists already i
[0], following ideas of Gersten [G] and Claborn-Fossum [CF]. Howeve
the technical details are necessarily different. For instance, one
must first find a suitable value group Vp for forms defined on moc
supported in codimension p. And not every such M can support a r
singular form M x M > V_: M 1is at least reflexive in the sense that
the natural map M > Hom(M,Hom(M,Vp)) is an isomorphism. (I was le
to some of these ideas by surgery theory and, to find a suitable VE
by [Bal.)

In §1 we make choices of the value groups Vp and of the catec
of codimension p modules M which support non-singular forms. (I
[P4] a more refined choice is used in a proof of the "Gersten conjec
ture" for Witt groups over rings of geometric type.). We then defir
the Witt groups ((1.7) and (1.12f)) and give some of their propertie

In §2 we define the maps in the localization sequences ((2.1))
prove Theorem A(i) in (2.3) (a), Theorem A(ii) in (2.5). The definit
are needed for the proof of Theorem B and the discussion of §4, but
more technical parts of the proof of exactness are deferred to §§5-¢

In §3 Theorem B is proved and the necessary comnutations of A
® /2 cited. In §4 the connection between the Serre-Horrocks con-
struction and Theorem B is made. It is also pointed out how Theoren
(ii) answers a question of Kustin and Miller about algebra structure
on resolutions of codimension four Gorenstein ideals in a regular Ic
ring.

§5 is devoted to a proof of the "Dévissage" theorem for Witt gz
In §§6-8 the notion of a Poincaré complex is introduced and its rele
to the Witt group is carried far enough for the applications in §8 |
exactness in the localization sequences of (2.1)). This theory is due ess
tially to Ranicki and the exposition attempts to familiarize the ree
with the considerable simplification in [R1] and [R2] brought about
the assumption that 1/2 is in the ground ring. (I am informed the
a program using Poincaré complexes and localization sequences to prc
Theorem A(i) is being carried out jointly by Barge, Sansuc and Vogel

Here are the chapter headings.

§1: Witt groups in the category of Cohen-Macaulay modules
§2: Localization sequences
§3: The Witt groupn and A,
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§4: Examples: skew-symmetric forms on surfaces and algebra structures

on resolutions
§5: Dévissage
§6: Poincaré complexes
§7: Poincarée complexes and Witt groups -
§8: Two applications of the theory of Poincare complexes to Witt

groups

Conventions

In this paper, dim refers to Krull dimension. If A is a ring
and p €A is a prime ideal, then ht p:= dim Ap; for any ideal I,
ht I = min{htp|p 2 I}. If M is an A-module, dim M:= max{dimA/p|p €
Supp(M)} and ht M = min{ht p|p € Supp(M)}. (There is the usual incon-
sistency between the two possible definitions of ht I, I an ideal;
this should cause no confusion.)

If M is an A-module, an M-regular sequence {xl,...,xn} E A
satisfies (i) (xl,...,xn)M # M and (ii) Xy is not a zero-divisor
on M/(xl,...,xi_l)M, i=1,...,n. ([K, p. 84]). If M 1is an A-
module and I € A an ideal, then depthI(M) = max{n|there is an M-
regular sequence {xl,...,xn} C I}; depth M means depth,(M). A

Cohen-Macaulay ring, or CM ring, is finite-dimensional Macaulay in the

sense of [N, p. 82]: it is Noetherian, finite-dimensional, and
dim Am = dim A = depth Am for all maximal m C A. A (Cl-module M

satisfies dim MP = depth Mp, for all primes p, or is the zero module.

Finally we make the following convention: All rings will be com-
mutative with unit, contain 1/2, and will be CM.
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§l. Witt groups in the category of Cohen-Macaulay modules.

Let A be a commutative CM ring of Krull dimension n.

(1.1) Definition. For each p > 0, CMp(A) denotes the categor;
of finitely-generated cM-modules of height p, together with the zero
module: If M # 0, then ht(M) =7p and for every p € Supp(M),
depth(Mp) = ht(p) - ht(Mp) = dim M .

When A is contextually specified we write CMp for CMp(A).

Here are some simple examples.

(1.2) Proposition. a) If M€ CMp, it is height-unmixed.
b) M € CMn if and only if M has finite length. c) If {xl,...,xp}
CA is an A-regular sequence, then A/(xl,...,xp) € ch. d) Let
My »—Mz -» Mg be a short exact sequence of finitely-generated A-modul
(i) 1If Ml,M3 € CMp, then M2 € CMp
(ii) If M,,M5 € CMp, then M; € CMp.
(iii) If Ml,M2 € CMp and ht M3 > p, then M3 € CMp+l'

proof: a) [ K, Thm. 141]. b) is clear from our assumption that
dim AM = n for all maximal M. <¢) [ M, Thm. 30(i)]. d) [ K, p. 102
Ex. 14].
(1.3) From now on let A be a Gorenstein ring of dimension n
such that dim AM = n for all maximal M. Let
d 4 d d
0->a-E,-0E -t ... ¥ty P
0 1
be the minimal injective resolution of A over itself, so that

E, = E(A/q) = E(A_/q A ) where E denotes injective
kK peg=x ntg=x ¢ ¢

hull (See [ B, §1]). Let
Vk(A) = ker dk, 0 <k <n.

Two useful properties of the injective resolution are recorded

here for later use. They follow from [B, (2.2)] and [B, (2.5)71,

respectively.

(1.4) For each prime p ca and k, 0 <k <n, there are iso-

morphisms Ek(A)p 3 Ek(Ap) commuting with the d;'s hence

¥

Vk(A)p Vk(Ap)’
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(1.5) If x €A is a non-zero-divisor on A then there are
isomorphisms E; (3/(x)) + (0:x) CE. (8) commuting with the d;

ls,

0 <k 2 n-1, hence -

(a) .

R

Vk(A/(x)) (0:x) C Vi1

The next result states some simple, mostly well-known properties
of CMp. Note in particular that the non-singularity asserted in

part a) is essentially the same as the isomorphism
M = ExtP (ExtP(M,n)n)

proved in [AB, (4.35)].

(1.6) Proposition. a) If ME CMP, then Hom(M,Vp) € CMp,
Ass (M) = Ass(Hom(M,Vp)) and the natural pairing

v Hom(M,Vp) x M - Vp’ v(f,m) = £(m)

is non-singular (both adjoints are isomorphisms) .
b) If NE€E CMp+1' then there are MO,Ml € CMp and a short
exact sequence

o
> M, - N.

My 0

Given any such exact sequence, there is a short exact sequence

~

/\u ~ ~
My > My >N,
where (-=)":= Hom(—,vp) and (=) m= Hom(—,Vp+1). M0 may be assumed
to be of the form (A/(Xl""'xp)) where {xl,...,xp} is an A-regular

sequence.
c) If Ml>§ M2 §>M3 is short exact in CMp,

~ B ot
M3 > M2 >> Ml

is short exact in CMP' where Mi = Hom(Mi,VP) .

Proof: We begin with b). Let p > 0 and N € CMp+l' Then
since ht(Ann(N)) = p + 1, there is by [ K, Thm. 136] an A-regular

sequence {xl,...,x } € Ann(N). Thus, there is a surjection Jj for

p+l
some m, with kernel Ml’
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m I
Ml» (R/(Xl""'xp)) > N

.= m
Then M, : (R/(xl,...,xp)) e CMp by (1.2) and M, € CMp by [k,
Ex. 14, p. 103].
From Vp>+ Ep *>Vp+1 we obtain the exact seguence

1 1
Hom(N,Ep) - Hom(N,Vp+l) -~ Ext (N,Vp) - Ext (N,Ep).

Since Ep is injective, Extl(N,E ) = 0; on the other hand,
Ass Hom(N,Ep) = Ass(Ep) N Supp(N) = g. Hence

Hom(N,V_,.) = Extl(N,Vp) .

p+l

Next, from M1>+ MO +»>N we obtain the exact sequence
1 1
Hom(N,Vp) > Hom(Mo,Vp) > Hom(Ml,Vp) + Ext (N,Vp) > Ext (MO,VP) .

As above, Hom(N,V_) = 0. From V E > 1 o
2 P = . . p-l’» le Vp we get lExt (Mo,vp)-
Ext (Mo,Vp_l); continuing in this way, Ext (MO,VP) + ExtP? (MO,A),
which vanishes by [ K, Thm. 217].
The proof of a) is by induction on p. By [AB, (4.12),(3.8)], if
M € CMy, then M 5 M¥* (M* := Hom(M,A)) and Ext'(M*,A) =0, i > 0.
By [ K, p. 163, Ex. 7] M* € CMO. This proves a) in case p = 0.
Let > 0, Hom(-,V_) = - - = (=)~
p > 0 om (-, p) (), Hom( 'Vp+l) (-)~, and N € CMp+l
We have Ass(N”) = Supp(N) N Ass(Vp+l) = Ass(N), since N is unmixed.
Let Ml>» M0 >N be a resolution as in b). Then M8>+ Mi >N~ is
also exact and Mj,M; € CMp by induction. So N~ € CMp+l by (1.2)(d).

Finally, consider the diagram of exact sequences

Ml > M > N
=1 =
Ml > MO > N

¥

It follows that there is an isomorphism N N™~ which can be shown to
be the right adjoint of wv.
c) is immediate from the chain of isomorphisms Extl(MB,V )
P

2 +1
Ext (M3'Vp—l) E Extp (M3'A) =0 by [K, Thm. 215].

(1.7) Now let

]
I+
an

A
M
Q (C p)’ A
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denote the category of pairs (M,¢) where M € CM and ¢: M x M » Vp
is a A-symmetric, A-bilinear form which is non- 51ngular, Ad¢: M >
Hom(M,Vp). For instance if N eACM and N":= HOT(N’VP) then the

(N ® N, 9,) €0Q (CMP) is defined by ¢h|N x N = 0 =
¢h]N” x N*, and ¢h|NA x N is the natural pairing v; it is non-singu-
lar by (1.6) (a). is called a lagrangian if
there is N CM such that ¢|N x N = 0, the induced pairing N x (M/N)

hyperbolic form

More generally, (M,¢)

> Vp is non-singular (both adjoints are isomorphisms) and N,M/N € CM .
N will be called a sublagrangian.

One may add isometry classes of objects in QA(CMP) by orthogonal
sum and obtain an abelian semi-group. The corresponding Grothendieck

group, modulo the subgroup generated by lagrangians is denoted
WO(CMp).

For instance if A 1is regular, then CMO(A) is the category of

finitely-generated projectives, and we set
(1.8) W) (CM o (a)) = wh(a)
. 0 0 0 !

the Witt group referred to in the introduction.

Here is a result describing the typical equivalence of elements in
(CM ).

(1.9) Proposition. Let (M,4) € Q*(CM ), L CM, L cr*
such that M/L and M/L € CM,. Then L*/L e ch,
duced form (L*/L, y) € O (CM )

be given

and there is an in-
. A

such that in WO(CMp).

(L7L,y) = [M,¢]

Proof: The same és [P1, (3.4),(3.5)].

Next comes the correspondlng Kl-functor, Wthh compares two ways

of making something in 0 (CM ) equal zero in WO(CMp).

(1.10) A A-formation in CMp is a triple (K,H,A), where

K,H € CMp and A: K >~ H® H" is an injection whose image is a sub-
lagrangian of the hyperbolic form (H @ HA,ph). For instance, if
p: K > K* satisfies p + A p" = 0, then (K,K",(p,1l)) is a A-formation

called a graph formation. The collection of A-formations is denoted

A
CM_), = +
F( p) A 1

(K,H,A) and (K',H',A') are isomorphic if there are isomorphisms

A
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A: K > K' and B: H +- H' so that

K é He® H"
‘A +BeB L

K' & H' & H'®

commutes. The (orthogonal) sum of these A-formations is (K & K',

H® H',A® A'); and the zero-formation has K = (0) = H.

(1.11) Here are two useful properties of A-formations (K,H,A):

If A = (O’IY):
form on H & H”

K > H ® H® then y~"a + Xa”y = 0; and the hyperbolic
induces an isomorphism H & H"/im(A) -~ K", by defini-

tion of sublagrangian.

A
(1.12) Next define two operations on (K,H,A) € F (CMP) as fol-
lows. )
a) Let (e) = (L>> Hy +»»H) be an extension in CMp and X; the
pullback in
]
I.»-Kl %} K

¥= &al Yo

L > Hl i H

where A = (a,Y). Let Yy = jijl and Al = (al,yl): Kl > Hl -] Hl'

, d its isomorphism class depends only on
Then (Kl,Hl,Al) € F (CM ), and i p

that of (K,H,A) and the extension (¢). It is denoted
GE(K,H,A)
and is called the stabilization of (K,H,A) by (g).
b) Let Yy: H x H > Vp be a (-))-symmetric A-bilinear form and
A i ted
set Aw = (o,y + (Ad Y)o). Then (K,H,Aw) € F (CMp) and is deno

X(H,y) (K,H,4) .

It is said to be isometric to (K,H,A).

We define
A
wl(CMp)

to be the Grothendieck group on isomorphism classes of elements of
FA(CM ), modulo the subgroup generated by elements of the form
p
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(KIHIA) - X(H'w).(KIH'A)I(KIHIA) - UE(KIHIA), and (K,KA,(Q,].)).

(1.13) Remarks. a) This is Ranicki's definition [ ,], except that
e roles of H and H" are reversed. This makes no difference be-
use of (1.19) below. b) When p = 0 and A is regular, then CM0
the category of finitely generated projectives and we write in this

se
Wl (Chy (@) = W (a)
1 0 -
iO(A) = 0, then Wi(A) is the commutator quotient of the (stabil-

ed) group of isometries of (Am + AAm,¢h) modulo hyperbolic rota-
ons (cf. [Pl, 1.21 (b)] and matrices w, ([P1, 1.21 (a)]).

. . A

We need to discuss the above relations in wl(CMp). Clearly,
g, - yv) <« {x(H,¥) * (X,H,8)} = (K,H,A). We next show how to inveru
aration (1.12) (b), as well.

(1.14) Given (Kl,Hl,Al) € FA(CMP), suppose there is L € CM
1 an inclusion ilz L ~» Kl such that Y11, = 0, where Al = (al,yl),
i cok(il), cok(ul il) € CM_. Then alil is injective (since Al
), and we set K = Kl/il(L)’ H = Hl/alil(L), and a: K > H equal to
2 induced map. As 4;(L) C H; we have Al(L)L 2 HiL= H,. From the

A

serbolic form on Hy <] Hl we get a form

A A~
H x (A (L) al HI) ~ vp

ich induces an isomorphism

1
Al(L) N H

1ce im(Al) = im(Al)'L and yl(L) =0, Y1 induces a map K > Al(IJL
i, which, composed with the above isomorphism, gives vy: K - H".
ting A = (a,y) it is easily checked that (X,H,A) € FA(CM ), the
stabilization of (Kl,Hl,Al) by L. The reason for this terminology
the following.

a,i
(1.15) Proposition. a) Let (e) denote the extension L i»l H1
I in the construction (1.14) above. Then OE(K,H,A) = (Kl,Hl,Al).
b) Given (K,H,A) € FA(CMP) and an extension (&) = (L» H #H),

» destabilization of OE(K,H,A) by L is (X,H,A).

Thus the operations (1.12) (a) and (b) are reflexive and symmetric.
we call the equivalence relation generated by isomorphism plus these
'rations stable isometry, then Wi(CMp) is the Grothendieck group on
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stable isometry classes of A-formations, modulo the subgroup generated
by graph formations.

The next proposition allows us to represent elements of Wi(CMP)
by formations instead of by their formal differences. It is analogous
to the fact that if (M,4) € QA(CMp), then (M,4) @ (M,-¢) is hyper-
bolic.

(1.16) Proposition. Let (K,H,(a,y)) € FA(CMP) be given. Then
the formation

(K,H, (a,y)) & (K,H™, (y,=-xa))
is stably isometric to a graph formation
(K, K, (p,1)) .

Proof: Let 6; = (Ky,Hj,(ay,v7)), 0, = (Ky,H3, (y,,-2a,)) where

Ki = K, Hi = H, o0 = ar Yy = Y- Then el ] 92 = (Kl ¢ K2,Hl -] Ha,
(al -] YorYy @ -Aaz)). Define the (-))-symmetric form

b: (H) ® HJ) x (H; ® H)) - Vp
to be the standard hyperbolic form (H1 = HZ)' Then

Let 1i: K - K, ® K, be the diagonal inclusion.

Then if we denote the right side of (1.17) by (M,N, (8,8)),

§i = 0, Bi 1is injective, and «cok(i), cok(Bi) € CMp. By the construc-
tion of (1.14) we may destabilize. It is now easily shown that if
(G,L, (p, 1)) is the resultant A-formation, T is an isomorphism and

G =~ K. Such a formation is isomorphic to a graph formation of the re-
quired form.

Besides allowing us to represent elements of Wi(CMp) by actual
formations, the last result shows that the following two operations on °
a formation (K,H,A) do not change its class in Wi(CMp).

(1.18) a) Given (g) = (L ~» Hi > H"), let Kl and Yy be de-
fined by pullback in

L > Kl %i»K
AR T

L > Hi &>HA
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andxset oy = L7 a Ql' A (al,yl): Kl - Hl @ Hi. Then (Kl,Hl,Al)
€ F (CMp) and is denoted EO(K,H,A).
(1.18) b) Let Y: H® x H® » V be a (-A)-symmetric form and set
-
wA = (a + (Ad ¥V)Y,Y). Then (K,H,wA) € FA(CMP) and is denoted
X(H",¥) (K,H,4).

(K,H,A) be a XM-formation. Then ele-
(K,H,A) - x(H™,¥) + (K,H,A)

(1.19) Proposition. Let
ments of the form (K,H,8) - eU(K,H,A) and
in wi(ch) are trivial. ,

It is now easy to deduce that the definition of Wl(CMp) given a-
bove agrees with that of [Pl, (1.34)]. (Note that (K,K",(p, 1)) =
X (K™, p) - {EO(O,O,(O,O)).) We will freely use this fact in what fol-
lows. i ; Ny ‘ i

The idea of a formation is to' compare two lagrangian structures on
a non-singular form. However, somewhat awkwardly, one structuée is
actually hyperbolic, while the other is not in general so. This causes
some serious technical difficulties (cf. (2.23), which we will not
address here. 1In one case it is useful to know that a lagrangian struc-
ture is always hyperbolic.

(1.20) Proposition. Let 1

(M,9) € Q" 7(CM_(A)) where n = dim A
and 1/2 € A. If L CM is a sublagrangian, then there is an isometry

(L & L“,¢h) > (M, ) extending the inclusion of L in M.

Proof: Suppose we have K C M with K C K*, K NL = (0) and
2(K) + &(L) < &(M). Then we first show it is possible to choose
y €M - (K+ L) so that ¢(y,K) = 0.

Choose any y € M - (K + L). Define ¢y: K~+E = Vn by ¢y(k) =

¢(y,k). since E
is a homomorphism ¢;: M/L - E, so that ¢y = ¢

is injective and i: K - M/L is injective, there
o i, Since L 1is a

1
; Yy
sublagrangian, L = Hom(M/L,En) so there is £ € L. such that

$(%,%) = ¢, (x), x € M/L
Then y - 2 €M- (K+ L) and ¢(y - 2,K) = 0.

If K' =K + (y), we may repeat the above procedure (on K'
and L) until &(K) + 2(L) = &(M), in which case K & L = M. Since
K CK + and L C LY it is clear that M is hyperbolic.

Finally we give a simpler description of zero in Wi(CMp).

(1.21) Proposition. Let (K,H,A) € FA(CMP). Then (K,H,A) re-
presents zero in Wi(CMP) if and only if it is stably isometric to a

graph formation.

Proof: See ( 8. 1).

ooz A
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§2. Localization sequences.

This section provides the localization sequences and states the

dévissage theorem needed for the applications.

(2.1) Theorem. Let A be a regular Noetherian domain of dimen-
sion < 4 with fraction field K. Then there are exact sequences where
AL
CMi = CMi(A), A = #*1, and Ki is induced by (®8a

A X A p)’
L D K
A 1.2 1 2 0 ..\
a): wl(K) - wl(CMl) -> WO(A) > WO(K)
\ LA p7? KA
- 0 -2 0 by 1 X
b) : W, " (CM (A )) =7 wW_"(CM,) »~ WJ(CM,) - W2 (CM, (A )
hEp=1 0; 1'% 0 2 1 1 hEp=1 1 1%p
= -1 -1 k-1
-1 1 -1 1 -1 0 -1
c): W, (CM(A )) »= W, (CM,) >~ W. (CM,)) - W, " (CM(Aa )
htp=21 3;0 1 3 0 2 hEp=2 0, M2(p
Lk ol k71
1 0.1 0 -1 1 -1
d) : W, (CM{A )) =~ W_(CM,) > W, (CM,)) - W, (CM{a ))
htp=30 :gp o 4 1 3 htp=31 M:#p

The proof of the theorem is given later in this section.

Let (R,M) be a local Gorenstein ring of dimension n. Since
k(M) is isomorphic as an R-module to f{e € E (R) = E(R/M) |[Me = 0}
([sV,4.24]), we may choose an imbedding k(M) - En and use the inclu-
sion of the category of k(M)-vector spaces into CMn(R) to produce

a map
WAk (M) > W (CM_(R))
i i n N

(2.2) Theorem.
ring of dimension n with residue class field k(M). Then there is
0,1 and X = #1)

(Dévissage) Let (R,M) be a local Gorenstein

an isomorphism (i
A = A
Wi k(M) » WI(CM_ (R)).

Proof: §5. N
It is well-known that W (k(M)) = 0 = Wal(k(M)), so we have the

following consequences of the two theorems:

(2.3) Corollary. a) If A 1is a regular Noetherian domain of

dimension < 4 then there are isomorphisms

[t

1 1 1 '
ker (Wy (&) > Wi (K)) = W (CM,)

-1
= W, (CM2)
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and set 0y = 2" «a 21, Al = (al,yl): Kl > Hl -] Hl' Then (Kl’Hl'A

)
1
[S] FA(CMP) and is denoted €O(K,H,A).

(1.18) b) Let y: H” x H™ =+ Vp be a (=1) -symmetric form and set
wA = (¢ + (Ad ¥)Y,Y). Then (K, H’WA) e r (CM ) and is denoted
X(H",¥) * (K,H,D).

(1.19) Proposition. Let (K,H,A) be a A-formation. Then ele-
ments of the form (K,H,A) - EG(K,H,A) and (K,H,A) - x(H",y) - (K,H, A)
in LA (CM ) are trivial.

It 1s now easy to deduce that the definition of W (CM ) given a-
bove agrees with that of [P1, (1.34)]. (Note that (K, K ,(o, 1)) =
X(K™,p) - fEG(O,O,(O,O)). We will freely use this fact in what fol-

lows.

The idea of a formation is to compare two lagrangian structures on
a non-singular form. However, somewhat awkwardly, one structure is
actually hyperbolic, while the other is not in general so. This causes
some serious technical difficulties (cf. (2.23), which we will not
address here. 1In one case it is useful to know that a lagrangian struc-
ture is always hyperbolic.

(1.20) Proposition. Let (M,4) € Q"l(cM_(a)) where n = aim a
and 1/2 € A. If L CM is a sublagrangian, then there is an isometry
(L & LA,¢h) > (M,$) extending the inclusion of L in M.

Proof: Suppose we have KCM with K c K*, K NL = (0) and
2(K) + 2(L) < 2(M). Then we first show it is possible to choose
7€ M- (K+ L) so that ¢(y,K) = 0.

Choose any y € M - (K + L). Define ¢y: K - E = Vn by ¢ (k) =
5(y,k). Since En is injective and i: K - M/L is injective, there

.S a homomorphism ¢;: M/L » En so that ¢y = ¢, ° i. Since L is a

]
Y
€

sjublagrangian, L = Hom(M/L,En) so there is _2 L such that
$(8,x) = ¢;(x), x € M/L .
hen y -2 €M- (K+ 1) and ¢(y - 2,K) = 0. ,
If K' =K+ (y), we may repeat the above procedure (on K'

nd L) until ¢(XK) + £(L) = 2(M), in which case K @® L = M. Since
€K + and L C L+ it is clear that M is hyperbollc.
Finally we give a simpler description of zero in w (CM ).

(1.21) Proposition. Let (K,H,A) € F (CM ). Then (K,H,A) re-
‘esents zero in WA(CM ) if and only if it 1s stably isometric to a
‘aph formation.

Proof: See (8. 1).
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§2. Localization sequences.

This section provides the localization sequences and states the

dévissage theorem needed for the applications.

(2.1) Theorem. Let A be a regular Noetherian domain of dimen-
sion < 4 with fraction field K. Then there are exact sequences where
CM, = CM,(A), X = #1, and Ki is induced by (@Ap),

i i

A A A
L ) K
1A 0 . A
ay: Wi >t wieen) -t wda -0 W)
-2 I ) X
-2 0 .-X 0 .2 1 oH. (A ))
: w- oM a ) -0 witiem,) -0 wriem) - W (CHy
b) nEpo1 0 1B o (CHy 1My hEp=1 p
-1 -1 -1
1 b o o1 CiLy S0 Wl (Cia )
: T (CM W, T (CMy) > W~ -
c): nep=2 1 (CHfAg)) ~7 Wy (CMy o (fy nEp=2 0 p
I l Kt
0.1 0 -1 (Chea ))
: w CM{a ) =" W_(CM,) > W, (CM,) - w Mj .
D ht p =3 (hgny) o 4 L 3 ht p =3

The proof of the theorem is given later in this section.

Let (R,M) be a local Gorenstein ring of dimension n. Since
k(M) is isomorphic as an R-module to f{e € E (R) = E(R/M) |Me = ?}
([sv,4.24]), we may choose an imbedding k(M) - En and use the inclu-
sion of the category of k(M)-vector spaces into CMn(R) to produce

JA- (A)) )\~(C\/ (R))-
W, (k A WJ

(2.2) Theorem. (Dévissage) Let (R,M) be a local Gorenstein
ring of dimension n with residue class field k(M) . Then there is

an isomorphism (i = 0,1 and A = =+1)
M) > whiem (r))
wi i n N

Proof: §5. N L
It is well-known that wl(k(M)) =0 = w0 (k(M)), so we have the

following consequences of the two theorems:

(2.3) Corollary. a) If A 1is a regular Noetherian domain of

dimension < 4 then there are isomorphisms

114

ker(Wé(A) > wé(x)) Wi(CMl)

1
= Wy (CMz)
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o1
= Wl (CM3)
1
1 Lo 1
= cok ( WO(CMéA )) ~ 4 WO(CMJA ))) .
htp=3 p hEp=4 p
In particular ker(wé(A) > wé(K)) =0 if dim A < 3.

b) With A as above but dim A < 2, there are isomorphisms

wola) = wit(eu) = cok( || wé<CM4Ap)) > 1l Wé(CMéAp)))
htp=1 htp=2

(2.4) Remark. The corollary furnishes one reason for the restric-
tions, dim A < 4 or dim A < 2: the obstructions to increasing the
codimension p of the guadratic objects W;(CMP) all vanish until an
element of wé is reached (p = 4 in a), P =2 1in b)). This seems
to be a kind of internal periodicity. The other reason has to do with
the problem of finding CM-modules (cf. (2.11)).

But it is easy now to show that the codimension four obstruction
vanishes if we localize. (This presages the connection with cycles in
§3.)

(2.5) Theorem. Let (R,M) be a regular local ring of dimension
< 4. Then Wé(R) > Wé(K) is injective.

Remark: Since R is local the conclusion is equivalent to the
assertion that two symmetric forms o, R" x R® 5= R are isometric if
and only if their extensions ¢ © K and Yy ® K are.

Proof: From (2.3) it is sufficient to show that the composition
wh(cH,) % Wit oms) %! wlien,)
0'tMg? > Wy (CM3) 7 W, (M,

is trivial.
Choose two regular parameters x,y € M, so that- R:=R/(x,y) is
regular local, 2-dimensional, and has maximal ideal W = M/ (x,y).

By (1. 5) there are isomorphisms E;(R) = (0:(x,y)) C E;j, 5 (R),
i =0,1,2, commuting with the differentials of E,(R) and E, (R).
Consequently there are commutative diagrams, i = 0,1,2,

Vi(R) > B (R) > v, (R
¥ v ¥

Vigp (R)> E; 0 (R) »V, o (R)

Also there are obvious inclusions

given below,
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CM; (R) > CMj ,(R), 1 =0,1,2

- 012
CMy (R > CHy,p(R ), & =0,1
p

where ht p =1+ 2, and (x,y) C p.

1 -1
With these facts and the definitions of the maps vo and Dl
it is immediate that there is a commutative diagram

1 -1
0 D

= Py I SR -
WS (emy (R)) >0 Wit (omMy () »1 wg™(cmg (R)

¥ ¥ - ¥

1
% -1 by -1
wh(emy () =0 Wit (emy(R)) »T WO (eHy (R))

But because dim R = 2 and dim R = 4, dévissage says each of the

R . 1 ical
extreme left terms is isomorphic to Wo(k(M)) and the left verti

- = -1,z .
is an isomorphism. And Wol@Mo(R)) =W, (R) (cf. (1.8)) vanishes.

Hence the composition along the bottom is trivial, as claimed.

Proof (of (2.1)). The first exact sequence is part of the theorem

in [Pl]. Most of the remaining work just generalizes this, so the
more routine details will be omitted. We begin with the definitions
of the maps.
s A A -
(2.6) Definltlonlgg Dy WO(CMp+l) - Wy (CMp) . . e
ro
Given (T,u) € Q (CMp+l)’ [P3, 3.12(b)] shows how to p

(K,H,8) € F-A(CMP): . )
a) Choose a resolution of T, K» H T where K,H € C p°

b) Lift u to T,

¥

H x H

vix3J +d

Y=

T x T v

p+l
c) Define y by the commutativity of the diagram

v
>

K H® := Hom(H,Vp)

Ya ¥

g 4T Hom (H,E_)

and set A = (a,Y).



276

The proof of [P3, (3.19)] shows that the class of (K,H,A) €
WIA(CMP) depends only on the isometry class of (T,u) . Moreover,
since the construction is additive (sending orthogomal sums to ortho-
gonal sums), we need only check it sends lagrangians to zero in
WIA(CMP). Indeed, [P3, (3.16) (b)] shows that if (T,u) is a lagrangian,
then there is a choice of ¢: K - H and 1t so that (K,H,A) has
A = (a,y) where <y is invertible. This is isomorphic to a graph

formation, so (K,H,A) represents zero in WIA(CMP).

(2.7) Definition of L): hterWé(CMp(Ap)) > W (CH, ) (A))  in case
a) p=0 and A is a Gorenstein domain.

b) p
c) p=dimA -1 or dimaAa - 2 and A is Gorenstein.

[

1 and A is Gorenstein and locally factorial.

For the duration of this section we write, when R is local CM

of dimension p,
CMp(R) = F(R),

the category of modules of finite length.

(2.8) Definition. Let p>0 and F = Fi’ where Fi € F(Aqi)
and ¢; € Spec A has height p, i = l,...,n. A gﬁp—lattice LCF

is an A-module L € CMP(A) such that Lq = F; for each i. 1If
i
(F;,15) € QA(F(AQ )), then L CF is called an integral lattice if
it is a CM_-lattice and (L x L) CV_(CE_ = E_(A,)), where
p - p= htq=p P ¢
T = T -
L. A
(2.9) Proposition. Let (F;rty) €Q (F(Aqi)) where htqi = P
i=1,...,n. Then under the conditions a), b), c) above there is an
integral lattice L CF := F.. -
Proof: We may assume n = 1 and set q = Ql. To begin with we

need a CMp—lattice in F. For p =0 this is obvious. If p =1,
we use the fact that A is a DVR to assume F = Aq/(q Aq)t, t > 1.
(t) Q(t) denotes the t-th
symbolic power. L belongs to CMl because A is locally factorial.
Finally, if p=dim A - 1 or dim A - 2, then we need the fol-

In this case we take L = A/q , where

lowing result, essentially due to Hochster. A proof is given in [P4].

(2.10) Lemma. Let M be a finitely-generated R-module, ht M = P,
where R 1is local Gorenstein and P=dimR -1 or dim R - 2. Then
Hom(M,Vp) € CMp(R).

From this lemma, it follows that, choosing any finitely-generated

L € F where Lq = F, Hom(L,Vp) will be everywhere locally CM. This
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is also true of Hom(Hom(L,Vp),Vp) c Hom(Hom(F,Ep),Ep) *~ F, so we have
our lattice.

Now suppose L 1is a CMp—lattice in F for any p > 0. Let
{21,...,15} generate L and let {pl,...,pm} mbe a finite set of
height p + 1 primes such that dpr(zi,lj) < E(A/pk), for some

k=1
fixed i and j. Let de(Ri,lj) =1 ry, nrk € EﬁA/pk). By [svV,
k
(4.23)] there is an integer n, so that P Ty = 0, k=1,...,m.
Each Py 2 ¢ by [sV, 4.21] so let X € P~ 4- Then if n = max(ni)

and z =1 x?, we get zr, = 0 for all k. Since z € ¢, z acts
isomorphically on F. Consequently, zL is still a CMp-lattice and

d T(ZZi,ZRj) = 0, so r(zzi,zlj) € Vp. Continuing in this way (for all
p

i and j) completes the proof.

(2.11) Remark. The existence of (M_-lattices is essentially
equivalent to the existence of small CM-modules ([Ho, Conj E''"''])
about which very little is known if p > 3. It is perhaps only acci-
dential, but if A is regular, then (2.9) applies for all p if and
only if dim A < 4, which is precisely the range of dimensions for
which our quadratic form techniques are successful (see (2.4)).

(2.12) Definition. Let (Fi,Ti) € QNF(AQ )) be given, htqi = p,

i
i=1,...,n. set F= || F;, t=_|]| 13: F X F > E . Suppose L CF
is an integral lattice. The dual lattice (to L) is

L' = {f € F|1(f,L) gvp} .

Since L 1is integral, L CL'. Since 1 is non-singular, there

is an isomorphism

L5 Hom(L,Vp)

(2.13)
2 > {2 > t(2',2)}
so L' € CM by (1.6). Using the fact that L =L! =F for each
P 4y 4y
i, it follows from (1.2)(d) that L'/L € CMD+1. Set L'/L = M and de-
fine ¢: M x M > Vp+l by
(2.14) ¢(j£l,j£2) = dp T(Zl,lz)

where j: L' > M is the quotient map.

(2.15) Remark. The composition L - L' > Hom(L,Vp) is Ad(t|L x L).

Thus the map Y constructed in (2 6) () ia the idan+titu (mAdnla +ha
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identification L = L""). Conversely, if for a given (M,¢) € QA(CMP+1)
one gets y equal to the identity in the construction of Dé above,
then it is straightforward to verify there is a nopsingular form (F,T)
and an integral lattice L CF so that M = L'/L and 1 defines ¢
by the formula (2.14).

Returning to the construction of Lé, one proves that (M,¢) €
QA(CMP+1) as in [P3, p. 354]; and that the class of (M,¢) in
wé(CMp+l) depends only on the isometry class of (F,1) (not on the
choice of lattice L) as in [P3, 3.3].

Since the construction preserves (orthogonal) sums, it remains to
show that lagrangians are sent to lagrangians. The case p = 0 1is done

in [P3, §3]. For the remaining cases we need

(2.16) Lemma. Let i: N > G be a CMp—lattice where G is a
finite length Aq—module and ht ¢ = p. Then there is an injection of
A-modules whose image is a CMp—lattice, i,: Hom(N,V_ ) > Hom(G,Ep),
such that (i, f)(i(n)) = £(n), where f € Hom(N,Vp) and n € N.

Proof: Use injectivity of Ep to fill in:

N > G
¥ vi f
£
V_ -+ E
P p

This defines i,f and imbeds Hom(N,Vp) in Hom(G,Ep) because inclu-

sion induces isomorphisms N, > G and (Vp)q > E(A/q) .

Now for any p, if X = -1, then by (1.20), a lagrangian (F,T1)
is hyperbolic: (F,1) = (G @& §,¢h), where G = Hom(G,E_). Setting
(=)~ = Hom(—,Vp), we use the lemma to find a CMp—lattice L=N®& i,(N") .

in F such that 1|L x L is the skew-symmetric hyperbolic form on
(N® N") X (N® N"). Hence L = L', so the construction produces the

+1)'
Incase p=1 and X =1, R := Aq

zero form in QX(CMp
is a DVR. In this case a
lagrangian over CMl(R) is an sum of hyperbolics and "unary"

forms, (R/(tzm),r) where t is a uniformizer and r € (R/tzm)x. (This
is an exercise.) The form (R/(tzm),r) has a sublagrangian tm(R/(tzm)
Cc R/(th)_ Since the hyperbolic case was treated above, we may assume
(F, 1) = (R/(£%™),1r).

Choose an integral lattice A/q(2m)

> R/ (£2M)
of (2.9)). Define K to be the kernel of the natural surjection
A/q(zm) > A/q(m). Then K € CMl(A) by (1.2) and Kq = t™F, the
lagrangian of (F,T).

(compare the proof

Consider the diagram, where (-) = Hom(—,Vp),
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(2m)

K > A/q #a/q M

¥ ¥ ¥

B/ ™) (a/q P 5k
¥ ¥ ¥

N > M > M/N

in which the second row is the dual of the first (short exact by (1.6))
(2m) X A/q(zm) and

the fact that T|K x K = 0; and the last row is the resulting sequence

the upper row of verticals is induced from T|a/q

of cokernels. Since (F,T) is non-singular, the upper verticals are
injective, making the bottom row a short exact sequence in (M
(cf. (1.2)(q)).

Now (A/q(zm))* is identified with the dual lattice by (2.13), so
M€ CMp+l supports the form ¢ constructed above. By (1.6),
M/N =~ N*. 1In fact ¢[N x N = 0 and it is easily checked that ¢ in-

ptl

duces the latter isomorphism. Thus, M,¢) 1is a lagrangian, as re-
quired.

Finally, assume p = dim A - 2 or dim A - 1, and that (F,7) €
oM (F (ag))
an integral lattice L CF and set I = im{L > F + F/G}. Then Ass(I)
{¢} and so for every maximal ideal M of A, depth IM > 1. Since
L € CMp(A), it follows from (1.2)(d) that N := ker(L - I) € CM_(a) if
p=dim A - 1. If p =dim A - 2, we again get N € CMP(A), by [ K,
Ex. 14, p. 103].

Now N C N* since N C G, so there is a commutative diagram of

(ht ¢ = p) is a lagrangian with sublagrangian G. Choose

exact sequences

N >»> L -»1I
¥ ¥ ¥
I">» L' > N

where the verticals are induced by Ad(t|L x L), the bottom line is the
dual of the top one, L' is identified with L by (2.13), but L' >
(Extl(I,Vp) #0 if p=dim A - 2 and
depth Iy =1 for some maximal M € Supp(I).) However, if p = dim A -.

N* need not be surjective.

the bottom line is exact by (1.6) and if p = dim A - 2, it is exact at

all primes of height dim A - 1. Thus, taking cokernels of the vertical
maps we are finished (as in the case p =1 above), if p = dim A - 1.

If p = dim A - 2, the sequence of cokernels

S>» L'/L - T
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is exact at all primes of height dim A - 1. Hence to complete the
proof, it suffices to apply the following lemma to the class of (L'/L,¢$)

be a short exact sequence with L,N € CMp (cf. (1.6)). Dualize (2.19)
to N~ % L~ > H" using (1.6) and its notation. Add the sequences,

in Wé(CMn_l(A)). - . getting a resolution of H & H7,
(2.17) Lemma. Let A be Gorenstein of dimension n. Then E a® Ao’ k
' (2.20) L &N »>> N® L~ ->H & H~

A A
Wo (Ol () > Mo (Ol (Ag))

tg=n- and set M = k" 1(A(K)); clearly M € Ch,

Let Q = Ass(L) = Ass(N) and let (—)Q denote localization at

is injective.
N the set of primes in Q. Using the isomorphisms and inclusions
Proof: Let (M,¢) € Q (CMn_l(A)) be a lagrangian at each ¢ € .

Ass(M). Consider the collection L of submodules N cM such that L 3Q N. DN
N C Nt and Nq is a sublagrangian of (Mq,¢q) for each ¢ € Ass(M). Q= Q-
L is not empty: if Kq is a sublagrangian of ? and i: M » Mq (2.21) and
(¢ € Ass(M)) 1is the canonical imbedding, then i~ K ) is such an
N. Since A is noetherian and M is finitely-generated, L has a ; Hom(L,Vp) c Hom(L,Vp)Q > Hom(LQ,Ep)
maximal element N,. Then N, = N;': if x € Ny - Ny, ny,n, € Ny 1
and aj,a, € A, then . define t1: (N ® L") x (N & L") - Ep by
' -1 -1
¢(ny + a;x,n, + ayx) = a; a, ¢(x,x). f w(n; ® £1,n, ® £,) = fz(aQ (ny)) + kfl(aQ (n,))
If this is zero, then (NO + Ax) C (N0 + Ax)*, contradicting the : where n; € N and fi € L. Then ((N ® L”)q,rq) € Qk(CMp(Aq)) for
maximality of Nj. But (No)q = ((NO)Q)L for each ¢ € Ass(M) so . all ¢ € Q and the diagram
¢q(x,x) = 0, hence ¢(x,x) = 0. Write N for NO’ ’
T
Now consider the commutative diagram (N® L") x (N® L") - Ep
_ (2.22) v+ k x k v d
. N N ¢h P
N . (H® H”) x (H ® H") - Vp+1
K/ \a ’
N™” B+ (M/N) © : commutes. It follows that T(M x M) C Vp so MCN®L"”C (N® L)Q
‘ is an integral lattice in ((N & LA)Q,TQ).
where « is the canonical map and ao,R are induced by ¢. Ad ¢ 1is Set Yy = T|M x M. Since 9 is non-singular, in order to show
AN

L

injective, so is o , which means « is. Since N = N7, B |is injec- : Y: M x M > Vp is non-singular, it suffices to show M = M', the dual
tive; this implies M/N is height-unmixed (because N”" 1is). But this | lattice. Let m € M', so that t(M,m) € V.. Then m € N & L™ C
means N and M/N € CMn—l(A) because for M maximal, Ny(or (M/N)M) : (N ® L")Q because (o ® Aa”)(L ® N*) CM and {(a ® Xa") (L & N™M)}' =
can have depth zero if and only if M € Ass(NM) (or Ass(M/N)M). Thus N @ L. By (2.22) we get ¢h(A(K),k(m)) = 0. But since A(K) = A(K)L,
k is an isomorphism by (1.6) (a) and B” is surjective because £ was k(m) € A(K); hence m € M. Since M C M', this proves equality.
injective. This means a and B are isomorphisms, so N CM is a | Thus we conclude (M,y) € QA(CMP(A)) and denote it by I((K,H,A);R),
sublagrangian. where R 1is the resolution (2.19). We next show the class of

(2.18) Definition of Di: Wi(CMp+1) N Wé(ch). » I(K,H,A);R) 1in Wé;CMP) jis independent of R.

Let (K,H,A) € FA(CMP+1) and let . Let Ry = (L1 »L N1 51 H) be another resolution and form the

pullback P,

W
(2.19) ‘ LS N »H
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o
i o
oo1p L

L> P %Nl

%, ¥ 3

L>» N H

From this we get a commutative diagram with exact rows

a ]
1 1
Ll > Nl > H
*pr, 4o 4 =
i, +1 23 =273
LeL, 1 )3 P Ly
$pr1 32 v =
a 3
L > N »> H

Hence it is sufficient to compare resolutions connected by

Ll>gl Nl 1} H
R K23 vy =
L ;i N -» H
Let (My,¥p) = I((K,H,A);Ry). Then ker 2 € M;, ker 2 C (ker ot
and the induced form on (ker E)*/ker % is isometric to (M,y). Hence

by (1.9) [M,y] = [M;,4;] in wé(cmp), as claimed.

Next we claim that I((X,H,A);R) 1is isometric to I(X(H,y) -
(K,H,A);R) where y: H X H > Vp is any (-))-symmetric form. This is
shown following the argument in [Pl, p. }76].

Finally, there are choices R and R' for any extension (e) of
H so that I((K,H,A);R) is isometric to I(OE(K,H,A);R'). Indeed if
R= (L>N=>H) and (g) = (I -~ Hy > H), then from the pull-back dia-

gram

we take R' = (L > P -~ Hl)' Details are left to the reader (cf. [P1l,
p. 3761).
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e s -1 -1 -1
(2.23) Definition of Ll : htp:pwl (CMp(Ap)) - Wy (CMp+l)

It is sufficient to define Lillwil(CMp(Ap)) for each p of height
p. Given an element (F,G,T) € F—l(CMp(Ap)), we have seen in (1.20) that
if ' = (u,vV: F>G®G, G := Hom(G,Ep), then T can be extended to

an isometry

VQ
]
)
|
¥
(9]
@
Q|

of the hyperbolic forms on F @ F and G @ G. It is easy to verify
that

(2.24) & g)(ﬂ

the identity map of F © F.

Now choose a CMp-lattice

@

N®N CG®

N
@

where N C G, N° = Hom(N,VP) and N~° according to (2.16). Simi-

larly, choose a CMp-lattice

LeL" CF ®

|

this time so that

A(L® L") CN®&N"

By restricting the entries of the above matrix for A to L and L"

we set

L®L">N®N".

B=alter = (T 5:

n

Let B": N® N° - L & L™ be given by

Then by (2.24),
B"B = (C gA): LeL >L®L"

Let H = cok (€ CMp+l by (1.2)), so that H™(:= Hom(H,V = cok z°

by (1.6). Let K = cok B and set

p+l))

A: K > H® H”
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equal to the map cok B » cok B”B induced by B”. Then im(A) is a
sublagrangian of the skew-symmetric hyperbolic form on H & H~ so

-1
(K,H,A) € F (CMP+1).
an easy generalization of [P1,586].

Further details, including wéil-definedness, are

(2.25) Exactness of the sequences (2.1) (a)-(d): The exactness of
the first sequence is part of the theorem of [P1]. The exactness of c)
follows easily from [P1l,§8]. This will use the fact that lagrangians
are hyperbolic ((1.20)), so that given the above construction of the
maps involved, exactness is another straightforward generalization.

Given the Remark (2.15), exactness at Wé(CMp) in b) and 4) is
immediate from (1.21). It follows from the constructions in [P3, §3]
that a A-formation (XK,H,A), with A = (0,¥) and a injective, repre-
sents an element in im DBA. Thus exactness at Wi(CMl) in b) follows
from (8. 4).

Given what we now have, it remains to prove W%(CM4) - W;l(CM3) is

surjective in d). (The analogous fact in b) was proved using the fact
that A is a DVR at all height one primes.). Since we now also know
that c) is exact and the extreme terms are zero, it is sufficient to

prove that the composite
1 -1 -1
(2.26) WO(CM4) > Wy (CM3) > W, (CMy)

is surjective. This is what was proved in [P3,83] except that in place
of the sequence {4,3,2} of heights, the descent was from height 2 to
height 0. The surjectivity of (2.26) is a straightforward variation.
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§3. The Witt group and Ajy-

To state the result we first recall the definition of the Chow groug
of cycles mod rational equivalence ([Ch], [Fu]). Let X be an n-dimen-
sional scheme of finite type over a field. Let Xy denote the set
of generic points of irreducible closed subsets of dimension k and
2y the free abelian group on Xy- Let x € X, yE€ xk+l’ x € {y} ,
f e k(y)x. Then f = g/h, g,h € OY,x , where Y is the integral sub-
scheme corresponding to y. Define a homomorphism

x
by: k(y)™ - Xy

by

b _(f) = I length (0 /90 )x~- I length (0 /h0 IxX.
y X€T§T Y,x Y,x X€T§T Y,x Y,x

Finally, set

x
1L kw»® - 2y

bk+l = by:

vy 4
and
Ak(X) := cok bk+l’
the k-th Chow group.
Next is the definition of "higher class groups" from [CF]. Given

an A-regular seguence {xl,...,xn_k}, let

d(xl,...,xn_k) = z

length(Aq/(xl,...,xn_k)) Q€ 7z
htg=n-k

where 2y = Zk(Spec A), the free abelian group on height n-k primes.
Let Ry C 2y be the subgroup generated by expressions d(xl,...,xn_k),

for all A-sequences {xl,...,xn_k}, and let
Ck = Zk/Rk .

(This is denoted Cn—k
group of A, when A is a normal domain. If A is regular local and

in [CF]). For instance Ch-1 1is the class

essentially of finite type over a field, then it is a consequence of
truth of the Gersten conjecture in this case that the groups W, (A) of
[CF] are trivial. Consequently, C,(A) = 0 also, by [CF,3.4].

(3.1) Theorem. Let A be a regular domain of finite type over a
field k which is either real or algebraically closed. Let K be the
fraction field of A and let X = Spec A. Then
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a) if dim A = 4, there is a surjection with Bloch's formula ([Q]) and a Gersten resolution for W(a) (cf.
1 1 [P4]). ’
A (X) @ Z /2 » ker(W,(A) » W-(K)) @ Z /2 . . .
0 0 0 - To simplify notation, whenever ht p = p, we replace CMp(A ) by
F(A ), the category of A -modules of finite length. (This uses (1.2).)

b) if dim A = 2, there is a surjection 1
Also W(-) will always mean Wy(-). If (M,9) € QMF(a)) is a

-1
AO(X) Q Z/2 » W (A) @ ZZ /2 lagrangian, then the length of M is clearly even. Thus there is a
homomorphism
Cl(A) ®@ Z /2 =0 in either case, then the corresponding map is an
omorphism. %yt W(F(Ap)) > Z /2
In some cases the left side of the surjection of a) and b) 1is . . L ’

given by 2p(M,¢) = length of M, mod 2; its composition with the

own. . . . .
dévissage isomorphism is the usual rank homomorphism

(3.2) Proposition. Let A be as in (3.1). Then

a) if k =k, Ag(X) ® /2 =0 ;

bp) if k = R, and X 1is an open subscheme of X, an integral
heme proper over IR where X(R) = X(R), then Aj(X) © Z /2 =
Z/2)r where r is the number of connected components of X(IR), in

rk: W(k(p)) ~ Z /2

The proof of the proposition comes down to the following three
lemmas.

(3.5) Lemma. Assume Cl(A) = 0. Then for each prime p C A of

e Euclidean topology of X(R).
height n-1, there is an element (Mq,¢q) e . W(F(Aq)) such

(3.3) Remark. a) Suppose A = Hl[xl,...,xn]/I, A is a regular that htg=n-1
main and there is £ € I such that V(fd) = {0} or @, where fd 1, <=
. the homogeneous part of f of highest degree. (Here V(fy) is M) =
e set of real points x such that fd(x) =0.) Then_the conditions e 9 q 0, < #
1 (3.2) (b) aie satisfied on setting X = Spec A and X = the closure and
X in Pre LI 0 )) = o.

b) It is possible to make a statement in (3.2) (b) for k any
sal closed field (by defining "algebraic components"--cf. [DK]); and

z (3.6) Lemma. Let IW(F(A )) = ker ¢ . Then there is a commuta-
)r the case where X(IR) ; X(IR) . These are left to the reader. - P P

tive diagram

Proof of (3.1). What will be shown is the following more general

«ct, which is sufficient by (2.1). IW(F(A ) £ W(F(A,))
cs . . ; htg=n-1 4 htM=n M
(3.4) Proposition. Let A be an n-dimensional regular Noetherian ~ 4 dévissage ~ ¢ devissage
ymain of finite type over k ,where k is either real or algebraically
osed. Let X = Spec A and identify CM_(A) with the category of h*JJE lIW(k(Q)) hE%L Wi(k(M))
tg=n- =n
sdules of finite length. Then there is a surjection ¢ v dis + rk
1 k@2 2222 /
A (X) ® Z/2 + cok(L: W (CM__, (A q) " /k(q z /2
0 X / ( AL W (CMy i Ap)) htg=n-1 hEf=n

htp=n-1

N Wé(CMn(Ap))) ® /2. where dis and rk are the discriminant and rank mod 2, respectively.
htp=n
P (3.7) Lemma. For k either real or algebraically closed, there

1

rere L = Lj is defined in (2.7). If Cy(A) & Z /2 = 0, then this are isomorphisms

a) rk: Wk(W) @ B/2 » B /2,

where M is maximal in A, and

5 an isomorphism.
Notice that (if Cl(A) ® Z /2 = 0) the proposition is consistent
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~ - 2
b) I ¢ m/2 > I/I2 @ Z/2 > k(q)x/k(q)x where I = IW(k(q)),

ht ¢ = n - 1 and the second isomorphism is induced by dis.

Assuming the three lemmas, the proof of (3.4) if completed as
follows. Lemma (3.5) says that, if Cl(A) = 0, then im L =

(im L| IW(F(A_))) and Lemmas (3.6) and (3.7) then imply that,
htg=n-1 k.

mod 2, this is im(bl @ Z /2); taken by themselves, (3.6) and (3.7)
give the surjection in (3.4).

Proof of (3.5). Let p be a fixed height n - 1 prime. Then
the hypothesis Cl(A) ® %Z /2 = 0 means there are A-regular sequences

i {Xi,l""’xi,n—l}’ i=1,...,k

such that for any height n-1 prime ¢,

1 q¢=p
T length(Aq/(Xi)q) = , mod 2
i 0, ¢ #p

By the reasoning for (2. 5), there is a homomorphism

W(CHMy (A/(2)) > W(CM _; (B))

for any A-sequence Z with n-1 elements. For each i =1,...,k,
let a; € W(CM_ _;(A)) be the image of <1> € W(CMy(A/(X;))).
Set

¢ = K(Z ai)

where K: W(CM__,(A)) - htq—n—1W(F(Aq)) is from (2.1). It is an easy
consequence of the definition of L in (2. 7), that the composition

L o K = 0. This means the desired element is a representative of ¢.

Proof of (3.6). For any maximal ideal M of A, localization at

M induces the vertical homomorphisms in the commutative diagram (cf.
(1. 4)) where R = A

MI
L
W(F(ag)) ~ 1l wF@a)))
htg=n-1 htg=n g
¥ ¥

1L wrr.)) L W(F(R)) .
htg=n-1 g

qCM

Note that Aq = Rq if g € M (a slight abuse of notation) and that

the verticals are the consequent projections. Thus, to prove (3.6),
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we may replace A with its localization R. To compute Llw(F(Rp))
for p of height n - 1, the idea is to reduce to the l-dimensional
case by passing to R/p. However, since R/p 1is not, in general,
Gorenstein, this does not seem to be possible. (But if dim R = 2,
then R/p 1is Gorenstein and the following argument can be greatlY
simplified.) Instead we work with a complete intersection ideal in p,

whose quotient is Gorenstein.
so fix p, ht p=n- 1. Let {xl,...,xn_l} C p be a regular

sequence with

(3.8) (xl""’xn—l)p =P Rp'

and set

s = R/(xl""’xn—l)'

a one-dimensional Gorenstein ring. From (1. 5) it is easy to construct

a commutative diagram

S > EO(S) a»El(S)
(3.9) v v v

Vn_l(R)>+ En—l(R) >V (R) = E, (R)
There are inclusions
CHj(s) > CMy, (R}, i =0,1
and
(3.10) F(s) SF(R), K=/ (Rpseei®gy)

From these facts we get an exact commutative diagram of localization

sequences
Wi (s)) - L W)  HE wre)
0 htgq=0 4 4
¥
(3.1 ' L=L(R)
wieM__;(R) » |l WEFRY) —— W(F(R))
n-1 htqg=n-1

(The exactness of the top sequence can be extracted from [P1l]). Using
dévissage the right vertical is an isomorphism; it is similarly see?
that the middle vertical is an inclusion to the summands corresponding
to ¢ containing (xl"“’xn-l)' .

Now if I 1is the set of non-zero-divisors of S, there 1s a
canonical map Sy EO(S) extending S -~ EO(S), hence also an induced

map SZ/S > El(S) of S-modules. Since

S» S -»SZ/S

z
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is also a minimal injective resolution of S over itself (cf. [B, 6.2])

these maps are isomorphisms making

S»Sz »sys
= = 2]

S » EO(S) —»El(S)

commutative. We also have EO(S) = E(S/q) and (clearly) S 3
Sa where the sums are over the minimal primes ¢ of §S. Hence

there are canonical isomorphisms

E(S/7) ,

ANH

(3.12) Sq

the localizations of S -+ EO(S) at the minimal primes q C s.
Next let

(0) =0 N ... NQ
be the minimal primary decomposition of the zero ideal in S, with
associated primes 51""'5r' Let

@y =P = p/(Xysee Xy )
Then by (3.8),

(3.12) Q; = 4y, so Sql = k(p)

3ince the decomposition is unmixed,

Q, = ker(s -~ sz ), i l1,...,r.

3

"rom this there are canonical factorizations of S =+ Sq ,

>

S Sz
'3.13) \~ J

5/,

Je are now prepared to prove (3.6) commutes (when A is local).
It is well-known that IW(k(p)) (= IW(F(RP))) is generated by
vinary forms <f,-1>, f € k(p) = k(ﬁ). Clearing its denominator we
N

Q. - ¢, in k(p); similarly
i#1 i 1
-eplace -1 by minus the square of an element of n Qi - 51' The
i#l

\ay take £ to be in the image of

-esult is a symmetric bilinear form

ot (8/3 % x (8/3 % > 52,
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such that
im ¢, Cim(( N Q, - ;) > S=)
! i1+t a
and
0 8 57 = <f,-1> .
1
Similarly, for each j = 2,...,r, choose
2 2
.t . S . S~
¢J (S/Qj) x ( /Q]) > qj
with
im ¢, € im(( N Q. - q.) -+ S-
’ i#o0
and
6. @ S- = <f.,-f.>
J q. J
J
for some f. € S- . (This will use the fact that n Q. - E. # B.)
RS ity +
Choose liftings a € N Qi - for £ and aj e N Qi - qj
i#l i#]
for fj. Then
b := a + a, + ..+ ay b' := a' - ay ... - ay

are not zero-divisors in S. Indeed, if so, then b € U Ej’ so
b € El (say). But for each J # 1, aj € Q1 C El, which implies
a € El, contradicting the choice of a.

Now let y: S2 X 52 > S have matrix (g g,). Then

£ 0 .
(o o) 1= 1
U] Sa ]
i £, 0 .
SR O Y, 1AL,
0 -f
because aj e N Qp localizes to zero in SE- if i # j. Referring

to (2.8), thiz%%eans we have found a lattice 1(Sz,\p) for the element
of _EL W(F(SE) represented by <f,-1>eW(k(q)) = W(F(Sa)).
htg=0
Referring now to the diagram (3.11), the image L(s)<f,-1> € W(F(S))
is supported on the S-module

cok (ad y: 82 » s°) ;

this is immediate from the definition (2.7) of L(S). Since we have
seen that the right vertical in the diagram is an isomorphism and the

center one induces W(F(Sa )) 5 W(F(Rp)), we will be done if we can
1



292

sthow that
length(cok (Ad ¥)) = bl(E) mod 2

£

there a is the image of a 1in S/El = R/p.
By a formula of Grothendieck ([Gr, IVv.21.10.17.81),

3.14) Lglcok ad ) =L &g  (S_ )I_S/E_(cok((Ad y) ® s/ai))

7; Y *

‘here the subscript on £ indicates the local ring with respect to

hich length & is being computed. Now for each i > 1,

a. o}

1

0 -a,
1

‘here ai # 0 and is the image of ay in S/Ei (because aj € Qj -

for j # i); also, by construction, a' 1is a square in the domain

/qq = S/p. Finally, Sal = k(ql), so Zsal(sal) = 1. Thus, from

v 8 S/q; =

3.14) we get, mod 2,

ls(cok Ad y) = ls/ﬁ(cok(a: s/p » S/p))
ince the latter is bl(E), the proof of (3.6) is complete.

Proof of (3.7). If k is algebraically closed, rk: W(k) 5 7z /2
nd if k 1is real closed, W(k) iz by the signature. Since rank
nd signature are congruent mod two and since k(M) is either real or
lgebraically closed, we get a). The second follows from [L] and
K1, §11] and uses the fact that if ht p = n - 1, then k(p) has

ranscendence degree one over k.

Proof of (3.2). If k = k, then we claim AO(X) is divisible;

his is sufficient for a). Each closed point of X is in the image
f a proper map from a smooth affine curve C. Covariance of Ao for
roper maps ([Fu, 1.9]) reduces the claim to the case X = C. Complete

to a smooth projective curve C; the existence of a Jacobian for

implies that the group of zero-cycles of degree zero, AO(E), is

jvisible. Now from the exact sequence of [Fu, 1.9],

Ao(pts.) = B, (C) +>A0(c),
o Ag(C) also divisible since AO(E) = AO(E) ® Z.
For (3.2) (b), tensor [Fu, 1.9] with Z/2 to get an exact sequence

1
Ao(i -X) ® Z/2 » A0(§> ® Z/2 »Ay(X) 8 Z/2 .

rom [CI, 3.2], it follows that there is an isomorphism
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il

8: A (X) ® & /2

r
0 (zZ /2) -

(The argument in [CI, (3.2)(1)] requires that X/IR be smooth in order
to prove AO(X ) is divisible using Bertini's theorem. This hypothe-
sis is avoided with the argument in the k = k case above.) 1In fact,
looking at (3.2) (i) and the proof of (3.1) in [CI], 6 is induced by
the natural map ZO(X) - (22,/2)r which sends complex points to zero
and a real point in the i-th component of X(IR) to the i-th stan-
dard basis vector of (ZA/Z)r. But since we are assuming
(X -X)(R) =g, 6 o i=0. Hence i = 0, which means AO(X) ® 7 /2
3 m/2)*.

(I learned the above argument for the k = k case from V. Srinivas.
The reference for (3.2)(b) and a correction of its attempted proof I

owe to J.-L. Colliot-Théléne.)
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Examples: EEew—szmmetric forms on surfaces and algebra structures
on resolutions.

We begin by summarizing (without proofs) Ferrand's [ Fe, §1] descrip-
of a construction due to Serre and Horrocks. Throughout, I is a
ittwo ideal of an n-dimensional regular domain A such that

2 CMn—Z(A)'

Suppose given an isomorphism n:
«tension (g) in Extl(I,A) corresponding to n(l) under the

A/I > Eth(A/I,A); then there is

>rphism

ext2(A/I,A) = Extl(I,A).

) (&) = (3% ESI)

E is projective and there is an isomorphism 0o: A2E 5 A defined
s'o(x ~y) = s(x)y - s(y)x. Thus, setting h: E >~ A equal to s
owed by the inclusion of I into A, the top line in

1]
AS E B A »as:

2) ¥ YAdoY n'+y n

if‘» E~>A > Ext(1,8) = Ext?(A/I,A)
(using o') a Koszul resolution of A/1; the maps A ~ A(= Hom(A,A))
the obvious ones; ¢ is the non-singular skew-symmetric form

E - A2E S A; the bottom line is the Ext-sequence of (e); n' is
iced by the verticals on its left; and the whole diagram is commu-
ive.

Conversely, given rank 2 A-projective E and h: E » A a regular
ection (at any prime containing im(h) the image under h of a
is of E 1is a regular sequence of A) such that A2E ~ A, we have
Koszul resolution of A/I, which can be dualized to reproduce (4.2)
hence also the isomorphism n: A/I 3 Extz(A/I,A).

The two constructions are inverse in an appropriate sense.

Using the canonical isomorphism Extz(A/I,A) = Hom(A/I,Vz), we
regard the initial data in the first construction as coming from
element (A/I,u) € Ql(CMZ(A)), and the resulting pair (E,$) as an

ment of Q—l(CMO(A))-

(4.3) Proposition. The diagram
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SH -
ot (e, (a)) - o™t ety (a))

¥ 1 -1 ¢
W (oM, (A)) %0 w71 (cu, (a) 0w ien, ()
0 2 1 1 0 0
commutes, where SH 1is the Serre-Horrocks construction.
proof: We recall from (2. 6) and (2.18) the definition of the
maps Dé and D;l. Given (A/I,u) € Ql(CMz(A)) choose a € I, a#0,

hence a surjection j: A/ah - A/1I and lift u to 1 in

A/aA x A/ahA I E1
v 3 x3 ¥ dl
A/I x B/I %V,

Setting A/aA = H, I/aA = K, (inc: I/aA > A/aR) = o and defining

Y by the commutativity of

I/ahA & A/ah
vy v Ad T
H =: Hom(A/aA,Vl) -> Hom(A/aA,El),

the triple (K,H, (a,Y)) € F—l(CMl(A)) represents D%(A/I,u).
Now let J: A & A ~ H®H" = A/ah ® A/ahA be the natural surjec-

tion and set
(4.4) g' = 3 Y(im(a,y)) CA® A

Then E' is A-projective, and there is a non-singular skew-symmetric
form ¢': E' x E' > A such that D;l[K,H,(a,y)] = [E',06'] € Wé(A).
Now consider the commutative diagram, with exact rows and columns,

Hom(A/I,Vz)
¥
Hom(A,Vz) “ Hom(A,Bl) <« Hom(A,Vl)
¥ ¥ ¥
Hom(I,Vz) <« Hom(I,El) <« Hom(I,Vl)

v
Extl (A/I,vl)

Let ug = (Ad ) (1) € Hom(A/I,V,) and let ﬁo be its image in

Hom(A,Vz). view (Ad t1)(l) as a map A > Eq; it then maps to ﬁO and

so its image in Hom(I,El) 1ifts back to a unigue element f € Hom(I,VlL

where
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1 § v,
4P 4
1/aa ¥ Hom(A/ah, V) -

ommutes. Further, the image of £ wunder Hom(I,Vl) > Extl(A/I,Vl)
quals the image of u, under Hom(A/I,V,) 3 Extl(A/I,Vl). From this,

‘he commutativity of

1) > Extl(I,A)
v =

Hom (I,V

Hom (A/T,V,) 3 Extl(A/I,Vl) 5 Ext?(a/1,n) ,
Hop I > n(l)

nd the definition of Hom(I,Vl) > Extl(I,A) we see that the extension
€) corresponding to n(1) (or to po) in the Serre-Horrocks con-

truction is the top line in the pull-back

A > A[a—l] »» (0:a) = Hom(A/aA,Vl) ZE I

b= txa”t 4=

X
A 3 A -»A/ah

‘e see that (e) 1is likewise the top line of the pull-back in

A» E 51

y= ¥ ¥ Yp

A>3 A »Hom(a/ah,V,)
etting h equal to s followed by the inclusion of I into A, we
et amap E > A ® A and it is immediate that E' (from (4.4)) and

define the same submodule of A ® A. One shows routinely that
E',¢') = (E,¢) := SH(A/I,n).
ﬁi a corollary of (4.3) and (3.1) we get the following description

£ W0 (A) ® @ /2, where A is a smooth 2-dimensional real affine k-
1r---/I. CA Dbe
deals representing a basis of AO(Spec A) ® Z /2. These can be

lgebra satisfying the conditions of (3.2)(b). Let I
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taken to be the maximal ideals of real points in the «r topological
components of (Spec A) (R). Then the unary forms <1>: A/Ii x A/Ii >
R - E(A/Ii) give elements (gi) in Extl(Ii,A) as above, hence
rank 2 projectives Pl”"’Pr‘

(4.5) Proposition. The skew-symmetric forms

P. x P. > A2 P. =~ A
1 1 1

generate Wal(A) ® Z/2 as a =& /2-vector space; they form a basis if
Pic(A) ® Z /2 = 0.

(4.6) Remark. I don't know whether class group assumptions are
necessary here or in (3.1). Observe also that no class group assump-
tion is needed for A2Pi to be free: by construction, the 'Pi come

from codimension 2 in the Grothendieck filtration of RO'

(4.6) We next give an example of the kind of forms predicted by
the Serre-Horrocks construction in dimensions 2 and 4. However, the
connection between the 4-dimensional example and the Koszul resolution
will not be justified.

Let An = n{[xo,...,xn]/(i Xz - 1) be the real co-ordinate ring
of the n-sphere. According to [ F] the upper left 2n x 2n block of
the following matrix defines an endomorphism a: (An)2n - (An)2n
whose kernel (or cokernel) generates KO(An), n=1,2, or 4.

1—x0 -Xq -X, 0 ~X4 0 0 ~X,
-Xy l+x0 0 ) 0 X3 X,
-X, 0 l+x0 Xy 0 “X, -Xq
0 -X, Xy l—x0 Xy 0 0 ~X3
“Xq 0 0 Xy l+x0 % X, 0
0 -X3 —X, 0 Xy l-xo 0 X,
0 Xy —X3 0 X, 0 l—x0 -Xq
—Xy 0 0 -X5 0 X5 -%q l+xO

Let P, = ker a . Define h: P~ Al by (bl,...,bzn) > bl' I

claim h is a regular cosection (n = 1,2, or 4) and will verify it
when n = 4. To simplify notation, drop the subscript n's. First
(1 + xo,l - xo) is the unit ideal so Spec(A) = Spec(Al+X0)
Spec(Al_xo). Then (bl""’bs) € Pl—xo can be written
x X X X
1 2 3 4
(=——Db, + —Db, + 3= b, + 53— b,,b,,b,,
l—xo 2 1-x, 3 1-x, 5 1 Xq 8’72’73
X X be X
2 1 4 3
Tx,2 ~ T=xg°3 e 1-x0b8'b5"")
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Hence a basis for Pl—x can be gotten by setting successively each of
0

b2,b3,b5 and b8 equal to 1 and the others equal to zero. The image

{ 1 *2 ¥z %4 } -
under h of this basis is Tox ' ,l_xo,l_xo ; a regular sequence

0 0
in Al—x . The ideal it generates has zero set equal to (-1,0,0,0,0) €
0
st - {(1,0,0,0,0)} = (Spec A,_ ) (R). Inverting 1 + Xy and carrying
0

out the same procedure, the image of a basis turns out to be the unit
ideal. Thus h 1is a regular cosection and V(im(h)) = {(-1,0,0,0,0)},
a real point which generates AO(S4) ® /2 =7 /2.

Now consider the form

e
oY A2P X A2P > A4P z A

where ¢(x ~y,z ~w) =e(x ~y ~2z ~w) and e is some isomorphism.
The claim is that the class of (AZP,¢) e Ql(A) in wé(A) is the non-
zero element of ker(wé(A) > wé(K)) ® Z /2 (corresponding to the above
generator of AO(S4) ® Z /2). Going through ;he same construction, but
using instead the co-ordinate ring a, of S%, the class of (P,¢) €
Q—l(Az) (where P is a rank 2 projective) is the non-trivial element of
Wal(Az) by (4.5), since A, is a UFD. But in the 4-dimensional case,
it is not known (to me) whether Cl(A4) ® Z/2 =0, so it may be of
some interest to show that the above element of ker(wé(A) - Wé(K)) ® Z/2
is non-trivial. (That the form (AZP,¢) over A, becomes hyperbolic
over the fraction field is left to the reader.)

Kere is a sketch of the non-triviality of [AZP,¢] in Wé(A),
found with the help of M. Ojanguren.

First, Fossum [Ibid.] showed that the usual Serre-Swan construction
gives a surjection

K, (a) 5 ko(sh)
so we can use the computation of Adams operations on the generator of
Ro(s4) in [Hu, p. 175] together with a simple computation to show
(4.7) [0%6] - (%) = 29

where & is the vector bundle corresponding to P, €6 is the 6-dimen-
sional trivial bundle and g is the generator of RO(S4).

Now view
(AZP,¢) as an element of the topological Witt group [MH, App. 1].

w(s?) 3 ko(s?
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where the isomorphism sends a "bundle of forms" n to [n+] - In_1,
i ositive- (negative-) definite subbundle. Hence if
and n (n)) is the p g

(AZP,¢) is hyperbolic, then the corresponding topological bundle of
forms is also: hence it is zero in W(S4). The isomorphism above thus

says [(A2£)+] = [(AZE)_] in KO(S4). Combining this with (4.7) we
get
. ~ 4
(4.8) g = [(a%5),) - [’] in Ro(sh).
. x2
But ﬂ4(BO3) - n4(BO) is not surjective (it is Z ~> Z by [Hu, 5.1211]
so [(AZE) 1 - [23] cannot generate RO(S4), contradicting (4.8).
+

(4.9) We now make a connection between the results of §2 (speci-
fically, (2.5)) and the constructions in §6. This involves the theory
of algebra structures on resolutions from [KM] and [BEI].

Let A be a regular local ring of dimension n and I an ideal
such that A/I 1is Gorenstein.

Let dp dl

F = (Fp > Fp_l > > Fy = A > A/I)

be a free resolution of A/I. A differential graded commutative algebra
structure on F is a multiplication F ® F » F, FiFj C Fi+j’ such
that if deg Xy = L, N

(1) d(xixj) = di?i)xj + (-1) Xy dxj '

(ii) xixj = (-1) x5 X -
By [BE,(1.1),(1.5)] each such F supports an algebra structure.(not
in general associative), and if F is minimal, the multiplicatlon
.+¥ F, ® F. »> Fp ~ A induces isomorphisms 0yt Fk - Fp—k’ 0 <k<p
1+3=p

such that el
a) Ok—ldk—l = (-1) dp—k+l Oy
and by (ii) above one also has
* k (p-k)
= (- o .
b) oy (-1), p-k

Now F has only one non-zero homology group, HO( F) = A/I; hence,
since A/I is Gorenstein, the only non-zero cohomology group is
HP(F) = ExtP(a/1,n) = Hom(A/I,Vp). This means that ?f we define ¢r =
O—Er’ y(F,d,¢) satisfies (6.1), and so defines a Poincare complex
(F,a,{v}) € P;(Mp), where U + Tjy = ¢ (cf. (6.2€£)). '

According to [KM,(1.5)], when p = 2q is even, the map Oq’ Fq
F; defines a non-singular symmetric ?111n?ar form s: Fq f Fq +_A .
which becomes hyperbolic at the generic point. By (2.5) if n=p
(Fq,s) is also hyperbolic, making the algebra structure 1n [KM, Thm.
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1.1] canonical in a sense.
Thus, if one believes the claim of (7.1), then the algebra struc-
tures above (when n = p = 4) are null-cobordant and this fact is equi-

valent to the algebra structures being canonical.

§5. Dévissage.

The purpose of this section is to prove Theorem (2. 2). To simpli-
fy notation, we write F(R) for the category of R-modules of finite
length, where R is local Gorenstein. If dim R = n, then this is
CMn(R) by (1.2).

Begin with surjectivity. Let (M,9) € QA(F(R)) and let & be the
smallest integer for which sz = 0. If & =1, there is nothing to

prove, so we suppose £ > 1, and set M, = m™M.

Claim. Mo 4 < (Ml_l)L and the naturally induced form
. L i L . et
o' MZ-l /Ml-l * Mg 7 /Mﬁ—l > E := En(R) is non-singular.
Assuming this, it follows from ( 1.9) that [szi /M2—1'¢'] = [M, ¢]
. A . L c 2-1 4 _
in WO(F(R)). But since My /My ; S M/My ,, M (My73/Mp_4) =0
so induction on & finishes the proof of surjectivity.

To prove the first statement of the claim, let my,...,m generate
2-1

M and let a,benm M. Then a = I P; My b =212 qj mj where
2-1 _ _ _
Py 9y em . Then ¢(a,b) = iz' ¢(pimi,qjmj) = .Z' ¢(piqjmi,mj) =0
] i,]
since qipj € m2(2-1) and 2(%2 - 1) > &. To prove the second state-
ment, we need to know that
K = k**

for any K C M. Clearly K C K**. There is an obvious bilinear form
Kkt x M/K - E inducing an isomorphism Kt > Hom (M/K,E). Since
L(M/K) = % (Hom(M/K,E)) ([B,(2.1)iv] where & denotes length, it

follows that (K + £(K) = £(M). Similiarly, 2(K**) + 2(xY = 2M),

so (k) = 2(k**). since k C k**, Kk = k*. Applying this to
K = Mz—l gives the injectivity of Ad ¢'; surjectivity follows from
this and [ibid.]. Hence ¢' is non-singular and the claim is proved.

Next suppose given (k(m)n,¢) whose class vanishes in Wé(F(R)).
This means there are lagrangians (Ml’Yl)' (Mz,yz) 5] QA(F(R)) and an

isometry

(k(m™,0) ® My,y) = (My,v,) -

Using the technique of the claim above, we may assume mM; = 0, but it
remains to show (Ml,yl) and (MZ,YZ) are still lagrangians. It is
evidently sufficient to show that if (M,y) is a lagrangian and L C M
satisfies L C LL, then the induced form on L‘VL is a lagrangian.

The following stronger statement suffices for this.

(5.1) Lemma. Let (M,Y) be a lagrangian and let L €M satisfy
7, C T+ Then if K' DL is maximal such that K' C (K')L. then
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K' = (K' )"'

and K' 1is a sublagrangian.

Proof: Let K be a sublagrangian of (M,y), and set J =K 0 K'.
Then in J%J, K'/J C (K'/3)*; and from [P1, (3.5)] Tt follows that
K' is a sublagrangian of M if and only if K'/J is a sublagrangian
in JY¥J. Hence, working inductively on £(M) we may assume K' NK =
(0). We have K - (M/K) ", so &(K) = 2(M/K) ") = 2(M/K) = &(M) - 2(K)
where (M/K)" := Hom(M/K,E). Hence g(M) = 22(K). Since K'++ = k',
the naturally induced form K' x (M/K'*) » E is nonsingular, so
Q') = L((M/K'&) ) = 2/ = (M) - L(K'L) .

If 8(K') < 2(K), then &(K't) > 2(Mm) - 2(K), which means K't>
M » M/K is not injective, so that K'* N K # 0. Then since K' NK =
(0), K'+ - K' contains an isotropic element, which contradicts maxi-
mality of K'. Thus &(K') = 2(K) = 1/25(M), so &(K') = a(k'Y. Since
K' Ck't, K' = K'+ and K' is a sublagrangian.

i=1. It is well-known that W;(k(m)) =0 (see, e.g., [P2, (4.1)]
where our Wi is denoted LX.). Hence surjectivity is enough here.

Let [M,N,(a,Y)] € FM(F(R)) be given. We denote by p: (N ® N7)
x (N ® N*) - E the standard A-symmetric hyperbolic form. By stabliz-

ing ((1.12(a))) using the extension
ker p» (R/mn)l EaN ,

(for some n,%& and surjection p), we assume N = (R/mn)x. The point
of the proof is to reduce n to 1, inside the class of [M,N,(d,y)]
e W) (F(R)) .

We begin with some observations. First, for any k, 0 <k <n,

and with respect to the natural pairing v: N* x N =+ E

(Kt = mFy

(5.2) and
mn—kNA - (mkN)L
Second, if {miiil <i<r,1<3j<e)isany k(m)-basis of m
o n- n . .
(r = dlmk(m)m /m ) then there is a subset {fijll <icgr, 1<
c N such that

£i050(myy) = 85508551 € kK(m CE

and {fij} is a basis of N° mod m . To prove this use (5.2) to get a

nonsingular pairing
N~ /mN~ x mPTIN > k(m) € E.

e f£ 1 i twme a 1ifrina +n N~ of a dual basis in N"/mN".
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. . -1
Now let {pill <i<r} bea k (m) -basis of T [« R/m® and
{bl""’bl}’ an R/mn—basis of N. Then we may take mij = pibj in
the discussion above. Note that

(5.3) 85518550

In particular, for each j, each of

(5.4) p; £y

ij = Py fkj £0, 1<i, k<r

is a basis for the 1-dimensional k(m)-vector space it generates (be-
cause m™L(rR/m™)~ - Hom(R/mR,E) = k(m) and N/mN = (R/mR) ¥ has for

a basis the classes of bl""'bz mod m) .

Step 1. is to show we may modify (M,NAa,y)) within its class in
W) (F(R)) so that

(5.5) w2l oan = 0.

If this is not already sO, choose y € M with mn—l aly) # 0. Then

aly) € mN, so by Nakayama's lemma, we may take aly) to be part of
an R/m"-basis of N, say {aly) = bl’bZ""’bz}’ Clearly, Yy generates
a summand of M isomorphic to R/m".

suppose Y(y) = L hi € N°, where hj is characterized by:
i=1

l=
hj(bk) # 0 only if Jj = k. Define r: N - N° by r(bl) = 1/2 hy +
I hy and r(bi) =0, 1i> 2. Set

i>1

p=1r - Ar": N > N~ (N

m
=
>
>
N
.

Then p 1s (-)) -symmetric and a computation shows

z hi, A= -1

p(by) =
L hi’ A= 1.

i>1
When X =1, 0= ¢h(a(y) + y(y),aly) + y(y)) = 2h1(b1) so hl = 0.
Thus, in general (i.e., A = 1), p(bl) = Y(bl), which means
(y - pa)(bl) - 0. After an operation of type (2.11) (b) we may thus de-
stablize using the submodule Ry CM (even splitting off a formation
(R/mn,R/mn,(l,O))). Repeating the process if necessary, we eventually

get (5.5).

Step 2. is to show (M,N, (a,y)) can be modified within its class
in Wi(F(R)) so that
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(5.6) Tty = o,
keeping (5.5) also. Again if this is not so, cheose y € M with

Y(y) = h,, where hi is characterized as above and where, say,
i=1
ph; # 0 for some p € m" l.

Suppose first that
(5.7) ph;, =0, 1i>1.

Then since al(py) = pa(y) = 0 by (5.5), we may destabilize using the
submodule R{(py) C M. (Notice that only the first terms of the direct
sum decompositions of N and N” are changed in this process.) In

general, we can get (5.7) by replacing bj with

b, = b, - ELEiﬁEii b j>1
j j P hl(bl) 1’
and setting bi = bl. Then in terms of this new basis, if j > 1,
' ' ph.(b.)
PY(Y) (by) = I phy(by) = phy(by) - EH%TB%T phy (b)) = 0,

so (5.7) is satisfied.

Assuming the result still has mn-ly(M) # 0, we continue the pro-

cess; this time the first term phl of py(y) must be zero for all

p € mn_l because of (5.4). This completes Step 2, and shows we may
assume
(5.8) m o) = 0 = m™ Ly (my .
From this it follows that
Wy o+ 8% C (a,y) ().
n-1 n-1 _ L. n-1_. -
For Vv(y(M),m N) = v(m Y(M),N) = 0; similarly, v(m N™,a(M)) = 0.
Consequently
o (e, )M, m™ Hn + 8%)) = 0
so that
v+ N C et = @,y ) .
Now let L' = {m € M| (a,y)(m) € mn_l(N + N°)} . Then
(a,y)|L': L' 5 mn_l(N + N"), an isomorphism of k(m)-vector spaces.

n—lNA

Consider Y|L': L' > m . This is surjective with kernel L, say,

305

and o|L: L > mn_lN. Evidently, destabilizing with L CM leaves a

formation (M',N',(a',y')) with mn-lN'

= 0. Now we may begin the
process over again, replacing n with n - 1 at the beginning of th
proof then performing Steps 1 and 2.

This completes the proof.

In one case we need to "de-localize" these results.

(5.9) Corollary. Let A be a locally factorial Gorenstein ring
Then each element of Wi(CMl(A)) has a representative (X,H, (a,y))
such that if ht ¢ = 1, then (Kq,Hq,(aq,yq)) is isomorphic to the

orthogonal sum of formations of the form

R/ (x5) & R/ ™5, R/ (™), ((0,x5), ™%, 0))

where R = Aq’ (x) = qu and 0 <t <m. If A = -1, then we can
take t = m.

Proof: There is a surjection p: (A/q{m) n...n qém))n -~ H, fo
some m,n > 0 and height one primes GprecerQp- Since A 1is locall
factorial, A/q{m) n...nNn qim) € CMl(A), so ker p € CMl(A). After
stabilization, we may therefore assume

m n
H = (R/(t , = A
q (R/ (7)) R q

for each ¢ € Ass(H) and (t) = qu.

Let X =1 and set ¢ = q;. We will carry out "Step 1" of the
proof of Dévissage for i =1 above, but over A. Namely, recall th
Yq was first changed to y_+ paq, where p: Hq - H; is the adjoint
of a skew-symmetric form. To be able to lift this operation back to
we change (aq,yq) to (suq,s;lyq), s €A - g, an isgmorphism of th
formation. Now p becomes s“p. For suitable s, s“p 1is the loca
zation of the adjoint H - H® of a skew-symmetric form. If s is
further chosen in qém) n...nNn qém), then at every other height one
prime, there is no change in (X,H, (a,y)).

The effect of this modification is to give a subformation
(R/(£™,R/ (™) ,(1,0)) of (K, Hoo(ag,v,)) . Further operations will
be carried out below to actually split off such a formation. We will
assume these operations have also been delocalized (as above, up to
isomorphism of the local formation (Kq,Hq,(aq,yq))). The fact that
(R/ (™M)~ = R/(t™) (because dim R = 1) means we can carry out
modifications in place of Step 2 exactly like those above from Step
1: only the roles of a and Y are reversed.

We next want to see that the subformations (R/ (£™) ,R/ (™), (1,0)

and (R/(t™), (R/(£™)"~.(0,1)) of (K..H. ,(ax ,v.)) (¢ € Ass(H)) can
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be split off. This will be carried out more generally below, for sub-
formations where 0 < t <m in the statement of (5.9).

We assume we have completed Steps 1 and 2, so that

-

(5.10) £k, = 0, ¢ € Ass(H), () = ¢A -

Let (K ,Hq,(a Y D)) = (M,N, (8,68)). Suppose m €M has minimal annihi-
lator, (xt), say. Either Ann(g(m)) or Ann(§(m)) = (xt). If it is

g(m), we may assume
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ing set (along with m - rlx_tm'); say, m; =m - rlx-t

m' and m, = m'
in G above.

By considering the expression ¢h(6£ml) + é(ml),B(mj) + 6(mj)) =0,
j > 3, we see that the coefficient of bl in the expression for §(m.)
is divisible by xt, j > 3. Again, by adding appropriate multiples ’
of m, to the mj, j > 3, we can take

*
(5.14) §(m.) = I r..b., 3 >3.
J is2 1301 -

Putting (5.12), (5.13) and (5.14) together, we have shown (M,N, (8,6
has an orthogonal summand (R/(x%) @ R/(xm—t),R/(xm),((O,xm_t),(Xt,O))
as desired.

The proof of (5.9) when X = -1 is much easier. Given
(M,N, (B,68)) € F-l(F(R)) we know from (1.20) that im(B,8) 1is a sum-
mand of N & N* = (R/(xm))zn, so that M = (R/(xm))n. Following the
construction of Lil in (2. 7), we can thus extend (M,N, (RB,8)) to an

element

B

(5.15) a= (5 1) oespy (R/(x™)

where szn(—) is the symplectic group.

there is a symmetric

o: (R/(x™)™ » (R/(¥™)™ such that

B + pé

Now by [P2,(3.12),(3.14)],

is

(5.11) g(m) = x" b, €N
*
where {bl,...,bn} is an R/(xm)—basis for N. Let §(m) = I ry bi’
where {b;,--.,b;} is the dual basis. Since xfs(m) = 0, xm_t|ri.
pefine r: N » N° by
pr k"M, 3=1
b.) =-
r( J)
0 , J >1.
Then if we set p =1 - r, p 1is skew-symmetric and p(bl)
- *
I r, xt mbi; so after an operation of type (2.11) (b) we get
i>2
*
§(m) = ry by
By considering the expression ¢h(B(m) + 6(m),B(m) + 8(m)) =0 we find

that xt|rl.
Let G = {m = ml,mz,...,mn} be a minimal set of generators of M.

Since Ann(m) C Ann(m.), the coefficient of by in the expression of
m-t
(

B(mj) is divisible by X or is zero). Hence by adding appropriate

multiples of m to the mj, j > 2, we may assume

(5.12) B(m.) = £ s.,.b., Jj=2,...4n
J R

Now there is m' € M such that g(m') = 0 and &§(m') = xth
because ¢h(B(m.) + 6(mj),xth) = 0, for all j by (5.11) and (5.12).

* -
So xtbl e [im(B,8)]1F = im(8,8). Replacing m = my with m - r;x tm‘,
we get
B(m - rlx_tm') = xm-tbl, B(m') =0
(5.13)
§(m - ryx m') =0 , &(m") = xb) .

It is easy to see that we may take m' to be part of a minimal generat-

invertible. Then after a basis change (in

N), we can take B = id

in (5.15). Hence an operation of type (1.18) (b) wusing -8 gives
§ =0 in (5.15).
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§6. Poincaré complexes.

The aim of the next three sections is to prove (1.21). The proof
is rather long because in this section we first dntroduce another de-
finition of Wi(CMp), in terms of chain complexes. This is a natural
thing to do, since, for example when p = 0 and A 1is local, (1.21)

is a consequence of Sharpe's normal form for elements of the unitary

Steinberg group. This in turn is motivated by the geometric description

of odd-dimensional surgery theory, so the chain complexes are taking
the place of manifolds. The idea of using chain complexes to prove
(1.21) comes from Ranicki's work ([R1] and [R2]), on which we will rel
heavily. For the convenience of the reader, we recall some of the de-
finitions, making explicit the simplifications that come from the as-

sumption, 1/2 € A.

Let (C,d) be an n-dimensional chain complex of finitely-generated

projective A-modules, Cir and let ¢r: ct - Cn—r be a sequence of
homomorphisms, 0 < r < n, where ct := Hom(Cr,A). Then (C,d,¢) is
Poincaré complex if, for 0 < r < n,
a) do. = (-1 T4 &
r r+l
(6.1) p) ¢, = A(-1TOTE 4"

c) ¢r induces H¥(C) 5 H (C)

where ¢* = Hom(¢,A) and d* = Hom(d,A).
It is useful to reformulate this. Given finitely-generated pro-

jective A-modules P and Q, there is an isomorphism

¥

Hom(P,A) ® Q
f®g

Hom(P,Q)

¥

{p > £(p)g}

Ile

Taking this and C C** as identifications, let C ® C be the chain

complex with

(C®c) = : Hom(ct,c.) ,
i+j=k J
and differential
; i 9o d joi-1 9% 500
§(¢: ¢t » c.) = (¢t > c. » c, + (-1)3(c c .
(¢ J) ( 3 > J_1) (-1)-“( > - Cj)

Thus, the collection of maps {¢i} satisfying a) and b) above give
rise to a "A-symmetric cycle" in H (C 8 C). 1In [R1] and [R2] the col
lection of such maps is denoted ¢O’ and there is also postulated a

sequence of higher chain operators ¢, € (C ® C) k > 1, (not the

n+k’

y

a
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¢k above!) satisfying certain conditions [R1l, p. 104]. All these
chain operators together define a cocycle in a certain % /2-hypercohor
ology group, Qn(C,A). Since 1/2 € A, this simplifies as follows.

Let TX: C®C~>C®C be the chain map defined, for f €
i
C
Hom (C ,Cj) Cc(ce C)i+j' by
(6.2) T, (£) = (-1)*a£* € Hom(c?,c)) .

Since 1/2 € A, the sequence

(1-1,) (1+T,) (1-T,),

(6.3)... - Hn(C 8 C) > Hn(C ® C) - Hn(C @ C) » ...

is exact, so (1 + TX)* induces

¥l

(6.4) H_(C 8 C)/im(l - T,), > im(l + 7)), CH (C®C) .

¥l

This is the isomorphism Q (C,}) o™(c,)) of [Rl, pp. 102-3] and we

here adopt the notation
(6.5) Qn(C,A) = Hn(C ® C)/im(1 - TA)* .

We view the homomorphisms by satisfying (6.1) (a) and (b) as
elements of im(l + TA)*’ but in practice we work with a sequence of

antecedents (under (6.4)) {wr} <] Qn(C,X).

(6.6) Definition. Let A be a commutative ring with 1/2 € A.
A A-symmetric chain complex over A is a triple (C,d,{y}) where

(c,d) is a chain complex of finitely-generated projective A-modules
and {y} € Qp(c, M) . It is called n-dimensional if (C,d) is homotops
equivalent to a complex (D,d') with Di =0, i>n or i< 0, and
{v} € Qn(C,A). It is A-Poincaré if, in addigion, the maps ¢ := ¥, -
(_l)r(n—r)xwg_r induce isomorphisms af(c) > Hn—r(c)’ 0 <r <n.

Let (C,dc) and (D,dD) be chain complexes and f£: (C,dc) -

(D,dD), a chain map. Define the mapping cone of f£, (C(f)’dc(f)) by
c(f), =D, ®C__, and
r-1
dD (-1) £
(dee))e = 2Dy ®Cy > Dy ®C
0 dc

If C and D are n- and (n+l)-dimensional respectively, then
C(f) is (n+l)-dimensional. Let (C(f) 8 c(f),d) be the chain com-
plex with
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(6.7) (C(£f) 8 C(E))y = I Hom(D1,D.) ® 3 Hom(Cr,CS)

j n-dimensional Poincare complex (C',d',{y'}) 1is constructed as follow
i+j=k r+s=k-1

L n-r+1
Let Cr = Cr -] Dr+l ® D

r
and, for (8¢;,y. ) € Hom(D,,D.) @& Hom(C™ ,C_)
irVe 17Dy s’ de 0 -1 T ) pEr
(6.8) acs )= d s + (-1)I(spy, dr + (DD £ oy, £ - len*s a £
. Yyrby) = dp 8yy ¥ 419p by d.. = | (=D p (LT + T,)8y
-1t a*
In analogy with what has been done above, we define 0 0 ( D ’
(6.9) Q_(£,)) = H_(C(f) & C(£f))/im(1 = T,),. vy 0 0
m m A
pr =0 0 0
o 1 of .

(6.10) Definition. Let A be a ring with 1/2 € A. A A-symmetric

i A i i f: C D, h f: C D i hai CL . . . .
pair over A 1S a pair ( > {8y, v}) where > 1§ & chain (6.14) Proposition. With the above notation, if (c,da,{y}) €

PA(M) and H,(D) € M_ then (c',d',{y']) e Ph(M,) and is M -co-
bordant to (C,d,{y}).

map of chain complexes of finitely-generated projective A-modules and
{8y, v} € Qm(f,k), for some m. It is (n+l)-dimensional if C and D

are n- and (n+l)-dimensional, respectively, and {&y,y} € Qn+l(f,x).
Proof: [Rl, (4.1)(ii)] The cobordism is ((g,g'): C & C' - D'),

{0,y ® y'}) where

Finally, it is relative A-Poincaré of dimension n + 1 if, in addition,

the pair (8¢,9) := (v + Tx(dw),w + wa) induces isomorphisms,
=~ n+l
(6.11) wE(C(£)) > H (D) dc (DT AT ) pER .
n+l-r n-r+1 ' n-r+:
dye = :D_=C_®D +D_, =C._; @D
(x,y) > £¢x + (389)y r oo* r r *
0 (-1) dD
where x € cF™ 1, y e D%.
* In this case the A-symmetric complex (C,dc,{w}) is A-Poincaré of g = (é) Cr N D; =c, ® Dn-r+l
dimension n, and is called the boundary of (f: C - D,{8y,P}). and
Let M denote the category of A-modules M such that ht M > p,
P = . (1 0 0)_ Cl - c @D ® Dn-r+1 R D'

together with the zero module. Then 9 =1 0 1’° “r  r r+l r

A
Pn(Mp) We next need to assemble some facts about chain complexes (C,d)

. . for which H,(C) € M_. We begin with a quotation of the Acyclicity
denotes the collection of n-dimensional A-Poincaré complexes (C,d,{y}) X p .

. Lemma of Peskine and Szpiro [PS, Lemme 1.8].
such that H,(C) € M_. A cobordism (resp. Mp—cobordlsm) between
(c,d,{y}) and (c',a',{vp'}) € P;(Mp) is an (n+l)-dimensional X-Poincaré
pair (£ & £f': C ® C' ~» D,{6y,y ® ¥'}) with boundary (C ® C',d & &',

{y ® ¥'}) (resp. such that H,(D) € Mp).

(6.15) Lemma. Let R be local Noetherian and let

- L, > 0

0+ Lg>Lo_q > oo >Ly 0

(6.12) Definition-Proposition [R1,(3.2)] Mp—cobordism is an be a finite complex of finitely-generated R-modules. Suppose that fo:

equivalence relation on Pg(Mp). The cobordism classes form an abelian every i > 0,
group 1) depth L; > i and
A
Qn(Mp) 2) depth H;(L) = 0 or H, (L) = 0 .

Then Hi(L*) =0, i>1.

Using this result we may restrict the homology of certain comple:

with addition induced by direct sum of complexes.

(6.13) Next let (f: C » D,{8y,y}) be an (n+l)-dimensional A-

symmetric pair whose boundary (C,d,{y}) is A-Poincaré. From this an (6.16) Proposition. Let A be a CM ring and let
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d +k d
p > e > Cl C0 - 0

0 > Chix > Coik-1

G
be a chain complex of finitely-generated projective A-modules for which
Hg (C) € Mp' Then Hi(C) =0, 1 > k.

Proof: Applying the Acyclicity Lemma to the complex Cp+k > e

> Cry1 im dk+l at all height p primes shows Hi(C) € Mp+l for each
i > k. Localizing at all height p + 1 primes shows Hi(C) € Mp+2;
eventually, Hi(C) =0, 1 > k.

We also need a kind of universal coefficient theorem.

(6.17) Proposition. Let A be a CM ring and let

p+k
0 - Cp+k > Cp+k—1 > e
be a chain complex of finitely-generated projective A-modules such that

H,(C) € Mp and p > k. Then there is an isomorphism

HP(c) = Extp(Ho(C),A)

Remark: Since ht HO(C) > p the arguments used in (1.6) show
4 =
Ext (HO(C),A) Hom(HO(C),Vp).
Proof: When k = 0, the previous proposition says C, 1s a reso-
lution of HO(C), so the result is immediate from the definition of

Ext. Hence we assume k > 0.
If p=1 (hence k =1, since p > k > 0), then Extl(HO(C),A) =
cok(C0 -+ (im dl)*). From the exactness of (im dl)*>+ Cl + (ker dl)*

and the fact that (ker dl)*>+ C2 (dualize the exact sequence C2 -

ker dl %»Hl(C)), we find that

d
(im @) * = ¢l »? ¢?
is exact. This means cok(C0 - (im dl)*) = Hl(C) as required.
Finally, if p > 2, then ExtP(H,(C),A) = ExtP™l(im a ,a) =
Extp_z(ker d;.a) = ... = Extl(im dp_l,A) = cok(cp—l + (ker dp_l)*).
* = . * _ _ 1
But (ker dp-l) (im d_)* because H p = 0 = Ext (Hp_l,A) (the

latter because Extl(Hp_l,A) = Hom(Hp_l,Vl) and ht Hp_l >p > 2).
As above we find that cok(Cp—l +> (im dp)*) = HP(Cc) so the proof is
done.

Finally, we need a spectral sequence describing representatives
in H (C ® C) of the duality maps {y} € Q,(C,x) (cf. (6.5)) where
(C,d) 1is an n-dimensional A-symmetric complex. Let FS(C ® C) :=

_Z Hom(ct,c), a subcomplex of C ® C. The corresponding spectral
i<s
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sequence has
EZ . = H(Hom(C*,H,_(C)))

with Hs being computed using the differential on the chain complex
E, = Hom(C*,Ht(C)) induced from d* on C*. It converges to the

associated graded groups of the filtration

Fs Hs+t(c ® C) := lm[Hs+t(Fs(C ® C)) » Hs+t(c ® C)l,
Note that in the sgecial case where Hi(C) =0, i > 0, and HO(C) ]
d
CMn’ so that C0 >£ Cl R 4 ch *’Hn(c) is exact,

H  (Hom(C,H,(C)) = Ext” ° (8" (C) ,H, (C))
(6.18)

]
o

Ext’ S @"(C) Hy(C)), t

0 , t#0

When s + t = n, this is the well-known fact that chain homotopy

classes of chain maps C* - C are in 1-1 correspondence with the homo

morphisms g (c) » Hy(C) they induce.
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§7. Poincaré complexes and Witt groups.

In this section it is assumed that A is an pr-dimensional regular
domain. As always, 1/2 € A and CMP means CMP(A). We prove the
connection between stable isometry classes in FX(CMP) (cf. (1.15))
and homotopy classes in Pg+l(CMp), p > 0. There is an analogous
(and more apprent) one-to-one correspondence between isometry classes
in QA(CMP) and homotopy classes P;(Mp). These one-to-one correspon-

dences give rise to isomorphisms

A < oA
Wo () = Qp ()
(7.1)

A ~ oA
wl(CMp) = (M

which might be thought of as a replacement for the "resolution theorem"
in algebraic K-theory. We prove only a connection between FA(CMD) and
A . . . . =
Qp(Mp+1) since it is all that is needed here.
(7.2) Proposition. Let A be a regular Noetherian domain,
1/2 € A. For each p > 0, there is a map of sets

{stable isometry classes} N {homotopy classes}
A:

. A . A
in F (CMp) in P (Mp)

Proof: Let (XK,H,(a,y)) be given. Choose a complex R of dim=
ension p such that

e}
>
[
0]
o

0, 1#0

where (-)" means Hom(-,VD). Since A 1is Cohen-Macaulay,
depthAnn(M)(A) =p ([K, Tgm. 136]),Dso by [M, p. 103, Prop.]
Hi(R) =0, i< p, While HY (R) = Ext“(H",A) = Hom(HA,Vp) = H*" = H.
Hence, setting

Rt is a resolution of H. Set

D=R®& Rt
and define y;: pt ~ Dp-i by
S
i ty i t
R* @ (R") >Ry @ (RO
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Then (D,{y}) € Pp(Mp). (The differential in D 1is excluded here from
the notation.)

Next let D' be a resolution of K"; as above, #P(p') = k** =K
and Hi(D') =0, i # p. By general principles, there is a chain map
£': D - D', unique up to homotopy, such that

(a,y) = HP(£): HP(D') ~ HP(D).
Let f£f' = (g,h), where g: R > D', h: Rt > D. Then (referring to (7.3)
below), £4{¢} := {£'9£'*} = {hg*} = {hg* - 1/2(1 - T)) (hg*)]} =
{1/2(1 + TA)hg*}, which is trivial in Qp(D',A) since it induces the
zero map a’y + AyTa: K = #P(p') - HO(D') = K~ (cf. (1.11)). Now
from [R1, ] we have the exact sequence
£

1 |l > % A
(7.3) Q (D',A) ~» Qp+l(f /) Qp(D,A) -+ Qp(D /A

p+l

But (D',») = 0 since (6.18) shows (D' ® D') = 0. This means

9] H
p+l p+1l
there is a unique {8y,y} € Qp+l(f',A) giving a A-symmetric complex

(7.4) (f': D > D', {8y, u})

unique up to a homotopy equivalence inducing the identity on the boun-

dary (D,{v}). It is easily checked to be A-Poincaré of dimension p+l1
with H,(D) € Mp'
Similarly, set D" = Rt and let £": D - D" be projection to the

second factor, so that HP (£") : HP (D") - uP (D) is inclusion H” > H @
H~ to the second factor. Once again there is a relative A-Poincaré

complex,
(£": D » D", {sy",v})

well-defined up to homotopy equivalence inducing the identity on the
boundary (D,{v}).
Referring to [Rl, o. 135], let

(7.5) (c =D' Yy D",dc,{n})

be the glueing of D' and D" along D. Evidently, C is a (p+l)-
dimensional complex with H,(C) € Mp’ Since D' and D" were rela-
tive A-Poincaré with common boundary D, (C,dc,{n}) € P;+1(Mp). This
is A(K,H, (a,Y)).

For the usual reasons, the homotopy type of C (as defined in
[R1,p. 140]) is independent of the resolutions R and D' of H" and

K*; as observed above the classes {sy',v} € Qp+l(f‘,k) and {8y",v} €
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Qp+1(f",x) are also well-defined. Hence the homotopy type of
A
(C,dcr{n}) € Pp+l
We next need to show invariance of homotopy type after
1) stabilization of (X,H,(a,y)) (1.12(a))
2) isometry of (X,H,(a,y)) (1.12(b)).

For 1) let (Kl,Hl(al,yl)) be a stabilization of (K,H, (a,y)) so

(Mp) depends only on (K,H, (a,y)).

that we have, in particular, a commutative diagram

<t
Q
Y
M« W <<

(7.6)

RN &« R

g

Correspondingly, there is a homotopy commutative diagram of chain com-

plexes
v 9,
Dl « Rl
+2 tk
pr 4 R

realizing the bottom square of (7.6) as its HP. B construction of C,
Yy

Cr = Dr (<] Dr—l ] Dr’ and
dye (1T e 0
= . ' " ' "
d, 0 ap O Dblep ,eD!~>D' @ D._, @D ..
0 (=1)r=lgn dpu

L] n
If Cl = Dl UDl Dl is the chain complex constructed for (Kl'Hl'(al’Yf)
define a chain map S: C » Cq by

' ¢ . (20k©000)

t ”
r =Py ®R._, @R, ®D > (D) @ (Ry), ;@ (Ry) 3 @ (D).

It is not difficult to verify that S is a homotopy equivalence in
A
PP(Mp+l)'

For part 2), the isometry of (H ® H",¢h)

1 0

(p l):

H® H - H e H

is induced as HP of a map of the A-symmetric complex

_ /1 0
G-—(k l) &

t & R + R"-@® R =D

R

where k: R
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t , R satisfies (1 + T )k = 0. It is easily verified that
a) the glueing Cl of D' and D" along D obtained from
£'G: D > D' and f": D - D" is a )-Poincaré complex constructed from

(K,H, (a,y + pa)) (by A), and
b) cq is homotopic to C by a map restricting to the identity

on D' and D", and to K on D.
Finally, it is now easy to show that if the formations (K,H, (a,y))

and (K',H',(a',y')) are isomorphic, then their corresponding Poincare
complexes are homotopy eguivalent (for any choice of the resolutions
R and D').

Next we define the inverse to A.

(7.7) Proposition. Let A be a regular noetherian domain con-

taining 1/2. Then for each p > 0 there is a map of sets

{homotopy classes} N {stably isometry classes}
B-

. A . A
in Pp+l(Mp> in F (CMP)

A .
Proof: Let (C,d{n}) € Pp+l(Mp) be given. By (6.16) we have

We first show how to find a chain map

f: C > D
where D = (Dp+l > . > D1 -+ 0) satisfies
. HE M, i=p+1
H' (D) =
0 , i1 #p+ 1,
and
(7.8) #P gy P o) - wP*l(o)

. = +1 .
is surjective. To do this we need to define £f: H - BP(c) and fill

in the verticals in

T = Ann H*(C) . an ideal of heiah+ > n hv assump-
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tion, and choose a regular sequence xl,...,xp € I (cf. [K,Thm.136]). Let
D* be the associated (sum of) Koszul resolutions of H:=(A/(xl,...,xp)
where #P*l(c) has n generators. Then f is deffhed by a choice
of such generators and fp+l is any lifting of f. Since the bottom
sequence is exact at Cp+l, fp+l can be lifted to fp. However, it
may not (& priori) be possible to fill in fp_l because C* 1is not
in general exact at cP. To remedy this, we change D* by replacing
the regular sequence {xl,...,xo} by {xi,...,x;} (still a regular
sequence in I by [K, p.103]): thus multiplying the values of £ on
generators of DP by elements of I. This keeps commutativity of the
second sguare. Now in any case, d;+l . fP . § = 0 so that, since
18P (c) = 0, the above change in fP° (and §) means im (£Ps) C im d;.
Thus, fp“l can be chosen to make the left square commute. Comple%ing
the rest of the diagram is immediate because Hi(C) =0, 1 < p.

Consider now the exact sequence from [R1,3.1] (cf. (7.3))

£

3
(£,0) (C,0) > gy (D)

¥

(7.9) Qpsa(PrN) > Qpyp Q1

il

According to (6.18), Hp+l(D ® D) = Extl(H,H“) and the construction
and naturality of the spectral sequence giving this result shows that

f%{n} is represented by the composition pP fg cP Cy i D, » Hl(D):=H,

viewed as a cycle in the chain complex Hom(D*,H"). Recall, however,
that in the construction of f above we arranged that im £P ¢ I(Cp).
Hence the cocycle above is actually zero, so f%{n} = 0. Thus, we ob-
tain a class {én,n} € Qp+2(f,k) and hence a A-symmetric pair

(f: ¢ > D,{8n,n})

with H,(D) € M.
Now do algebraic surgery on £ ([Rl, p. 145] or (6.14)) getting

(C',dc.,{n'}), where dC' and n' are described in [R1, p. 145] or
(6.14).
Let C(f)+l denote the mapping cone of £, C(f), shifted in de-
gree,
(C(f)+l)r = C(f)r+l °

Let D' be the complex defined by

._ npt2-r o a*
(D')r := D , dD' 1= dD.

Then we have a short exact sequence of complexes

3 1]
(7.10) ce),, > c 5o

)n
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where i is the inclusion of the first two factors and f' is the pro-
jection to the third. From this we get a canonical chain homotopy equi-

valence

C(f') 3 c(f)

which we use to identify H,(f) with H,(f").
We are now ready to define the A-formation (K,H,(a,y)) associated
to the A-Poincaré complex (C,dc,{n}) by B. Namely, set
.k = Bl = wP )
. 1 =8
. a: Hp+l(C(f)) > HP+1(D) is the map Hp+1(j), where j: D->C(f).
.y is the composition H*l(c(£)) := #P(c(p), ) $ HPTH DY)
Hl(D) =~ H~, where § is the boundary in the cohomology sequence of
(7.10).
Specifically, straightforward computations show that a is induced
by
(a,b) » b,
and vy by

(a,b) -~ Af ¢(a) + A(6¢)b € Dy

where a e cP, bepP™, ¢ = (1 +T)n and 8¢ = (1 +T,)én.

(7.11) Remark. a) The formula for Yy induces (up to sign) the

duality maps

r
Y (C(£) > Ho o (D)

for the A-symmetric complex (£: C = D,{én,n}) (cf. (6.11)). Conse-
quently, the latter is A-Poincaré if and only if y is an isomorphism.

b) The formula for <y also shows that B applied (C,d,{-n})
gives (K,H, (a,-Y)).

Before we show (K,H,(a,y)) above is actually a formation, we
sketch how it depends on the choices in its construction. Fix the
chain map f£: C - D. Then if {§'n,n} € Qp+2(f) is another element
mapping to {n} in (7.9), then there is {1} € Qp+2(D,A) such that
T =268'n - 8n: D* > D. If p: H~> H" is the map on homology. induced
by T and (a',y') are the maps produced from the choice {8'n,n},
then p = -Ap~, a' =a and Yy' =Y + pa. Thus (K,H,(a,y)) and
(K,H, (a',y")) are isometric ((1.12b)). If we choose another chain
map g: C - E where E satisfies the conditions D did and Hp+l(g)=
Hp+l(f) then the resultant formation changes by an isomorphism. If

another surjection H' - Hp+1(C) is realized by Hp+l of a chain map,
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it is not difficult to show that the resultant formation changes by
stabilizations ((1.12(a)) and/or destabilization ((1.14)).

We now show (K,H, (a,Y)) is a A-formation, be&inning with the in-
jectivity of

(a,y): #P*Tc(e)) » 8P hD) @ wP*l(p') := wP*H (D) @ H (D)

First the following observations:
i) (a,y) is given on the chain level by

cP @ pP*l L pP*l @ D,

(a,b) » (b,Af¢(a) + r8¢(b))

. * +1
ii) (a,b) € cP e Dp+1 is a cocycle if dca + (—l)p f*b = 0;

iii) (a,b) is a coboundary if, for some (a',b') € cP~1 ¢ pP,
(a,b) = (daga' + (-1)Pe*b" ,a p) 5
iv) (Co)cycle conditions on Dp+l and Dy on the right side of
(i) are automatic;
v) the right side of (i) is a coboundary if there are X € Dp,
y € D, such that (@hx,dpy) = (b,Afo(a) + A(8¢)Db) .

*
Assume then that (in (i)) (b,xf¢a + A(8§4)b) = (de,dDy). By
(iii) it suffices to find a' such that
dza' = (—l)p+lf*x + a
(taking x = b'). But f¢ induces an injection HP(c) - Hl(D) = H”

+ .
(because H2(C(f)) = 0), so it suffices to show (-1)P lf¢f*x + foa is

a boundary.
Now from the definition of (f: C - D,{8n,n})

(<1)P*Leoerx = —dp (80)x = (-1) (6¢)dpx

(6¢)d;x

3

(§¢)b
where & means "homologous." By assumption, dDy = Afoa + A(S¢4)b, so
foa v -(8¢)b

Hence
(-1) P lepexx + f£oa
v (80)b + foa
~ (84)b - (6¢)b = 0.
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Next we show im(a,y) is totally isotropic. This is equivalent

to y"a + Aa”y = 0. We have by (i) above that oy 1is induced by

p+l

= o= P =
C(f) :=C" @D > Dy > C0 ® Dy : C(f)l

(a,b) » Afga + A(Sd)b > (0,xfda + A(8¢)Db)

and Yy"a by

cP ¢ pP*l . pPHL c, @ D;

(a,b) » b » ((-1)P*e£*b, (-6¢)b)

Hence Y“o + Aa”y is induced by

(a,b) » ((-1)P™Loe*b, £a).
Since (a,b) 1is a cocycle in C(f)p+l,

_1yPtl I

(-1) ¢£*b = -¢d.a = -dada

sO
dc (g (-62,0) = (-dcoa,fea) = ((-1)P"loe*p, o)

Thus vy"a + Aa”y = 0, as claimed.

It is finally necessary to show that im(a,y) CH @ H” 1is a sub-
lagrangian. This is in the spirit of the above and is left to the
reader.

The next result compares the functions in (7.2) and (7.7).

(7.12) Proposition. The composition BA is the identity.

Proof: Start with a formation (X,H,(a,y)) € FA(CMP) and apply
A to get a (p+l)-dimensional A-Poincaré complex C. We will show
there is an obvious choice of the chain map f: C » D in construction
B so that if (X',H',(a',Y')) is the resulting formation, then
K=K', H=H', a=oa'" and vy =7Y'.

To begin, let D =R @& Rt and D' be chosen as in (7.2) with

P (D) = #P(R) @ HP(RY) = H @ H"

HP(D') = K
and f' = (g,h): D =R @& Rt > D' such that
HP(£) = (a,v).
Let f'" = pr,: D = R ® RE - Rt := D" and glue to get (7.5),

(C = D' Uy D',dg, {nd) -
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Now in the construction of B, define p: C » C(f") by

"
C_=D_6D £ Dr - D

r r r-1l ® Dr = C(f )r

r-1

(a,b,c) » (b,c)

The following are easily verified:

(i) there are inverse chain homotopy equivalences R L3 C(f")+l
and C(f")+l ¥ R, the first induced from the short exact sequence of
chain complexes

t

£
R»»> D "» R~ = D"

and defined by x - (x,0,0) in

_ _ t ”n
r +l)r =D ®D ., =R ®R &D

The second is (x,y,z) > x in (C(f")+l)r > Rr'

(ii) There is a short exact sequence of chain complexes D' > C
15 C(f") (inclusion to the first summand and projection to the last
two) , hence a chain homotopy equivalence «: D' - C(p)+l induced by

x » (x,0,0,0) 1in

1 1
Dy (C(p)+1)r =c. @ c(f )r+l =Dy ® Dy ® D, 8 c(f )r+l
(iii) (p: Cc » c(f"),{0,n}) 1is a A-symmetric complex.
We now complete the construction in B by setting H' = Hp+l(c(f")),
K' = Hp+l(C(p)), a' = Hp+l(j) where j is the canonical map Jj: C(f")

- C(p) and y': Hp+l(C(p)) > Hl(C(f")) is the map induced by the
duality map in the X-symmetric complex of (iii) above.

Using i) and ii) we identify K with K' by HP(x) and H with
H' by BP(u). It is easily checked that the diagrams

l 1
B ey % P )
y = =
a
uP(p) > #P(R)

and
s cp)) > mpc(em)
v = =
HPD") P EP(RY = B, (®)

commute. This completes the proof of (7.12).

(7.13) We next show that the function A above actually induces
a homomorphism of abelian groups
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A
> Qp+1(Mp)

wi(CMp)
Since A in (7.2) clearly preserves sum, it is sufficient to show that
the Poincare complex (C,dc,n) obtained from the graph formation

(5" ,H, (a,1)) is Mp—cobordant to one for which H, = 0. By the proof
of (7.12) there are natural choices so that B(C,dc,n) gives y an
isomorphism; but in (7.11) (a) we observed that in the construction of
B, (f: ¢ - D,{8n,n}) is A-Poincaré if and only if y is an isomor-
phism. Now an easy calculation shows that the result (C',d',{n'l})

of algebraic surgery on (f: ¢ - D,{8n,n}) yields H,(C') =0 (cf.
(6.14)). Since (c',a',{n'}) is Mp—cobordant to (C,dc,{n}), the

ts zero in QX (M_)
latter represen p+1Mp) e
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Now in the construction of B, define p: C - C(f") by Wl( p p+tl'p
c = D' ® D o D" > D ® D" = @(f") Since A in (7.2) clearly preserves sum, it is sufficient to show that
r r r-1 r r-1 r ° r

the Poincare complex (C,dc,n) obtained from the graph formation
(@rbse) = (bre) (4" ,H, (a,1)) is Mp—cobordant to one for which H, = 0. By the proof
of (7.12) there are natural choices so that B(C,dc,n) gives T an

isomorphism; but in (7.11) (a) we observed that in the construction of
8, (f: C » D,{én,n}) is A-Poincaré if and only if y is an isomor-

phism. Now an easy calculation shows that the result (c',d',{n'})

The following are easily verified:
(i) there are inverse chain homotopy equivalences R H‘b(f")+l
and C(f“)+l ¥ R, the first induced from the short exact sequence of

chain complexes

£" of algebraic surgery on (f: C - D,{6n,n}) yields H,(C') = 0 (cf.
Re> D T>RT = DY (6.14)). Since (c',a',{n'}) is Mp—cobordant to (C,dc,{n}), the
. A
t ro in Q (M_) .
and defined by x - (x,0,0) in latter represents ze i p+1 My
" _ " _ t n
Rr »> (C(f )+l)r = Dr (] Dr+l = Rr (] Rr (2] Dr+l
The second is (x,y,2z) » x in (C(f )+l)r > Rr'

(ii) There is a short exact sequence of chain complexes D' - C
R c(f") (inclusion to the first summand and projection to the last

two) , hence a chain homotopy equivalence «k: D' - C(p)+l induced by

x +~ (x,0,0,0) in
Ll L} L}
Dr > (c(p)+l)r =Cp @ clf )r+l = Dr ® Dy ® D, & clt )r+l
(iii) (p: C » C(f"),{0,n}) 1is a A-symmetric complex.
We now complete the construction in B by setting H' = Hp+l(c(f")),
+
K' = 8P l(C(p)), a' = Hp+l(j) where j 1is the canonical map j: C(f")

+ C(p) and y': Hp+l(C(p)) - Hl(C(f")) is the map induced by the
duality map in the A-symmetric complex of (iii) above.

Using i) and ii) we identify K with K' by HP(«) and H with

H' by BP(u). It is easily checked that the diagrams
1 cp)) % wP e
b= ¢ =
#P(') > BP(R)
and
#P* ey Y mp(c(em)
vy = y =
HP(D') 1 HP(RY = H (R)

commute. This completes the proof of (7.12).

(7.13) We next show that the function A above actually induces
a homomorphism of abelian groups
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§8. Two applications of the theory of Poincaré complexes to Witt groups

The first application is the proof of (1.21).~

(8.1) Proposition. Let A be a regular domain. Then a A-forma-
tion (X,H,(a,y)) € FA(CMP) represents zero in Wi(cMD) if and only
if it is stably isometric to a graph formation. )

Proof: One implication is clear. Conversely, suppose [K,H, (a,y)]
=0 1in Wi(CMP). Then the )-Poincare complex (C,d{n}) associated to
it (by (7.2)) is trivial in Q;+1(Mp) by (7.13). If (g: C » D,{dn,n})
is the null Mp—cobordism (a A-Poincarée complex), then by (6.16) the
only possible non-zero cohomology groups in the exact sequence of

g: C > D appear in
(8.2) HP(g) >8P (D) »HP(C) »HP* L (g) 5 P (D) » HPHL(c) 5 HPY2(g) 4 uP*2(p) .

Now, proceeding as in (7.7), find a A-symmetric complex (h: D » E,
{6¢,6n}) such that the homomorphism in degree p + 2 is the identity,
Hp+2(E) € CMp and E 1is a sum of Koszul resolutions (cf. the construc-
tion of £ at the beginning of the proof of (7.7)). Doing algebraic
surgery using h ([Rl, p. 145] or (6.14)) yields a A-symmetric complex
(D',dD,,{G'n}) which has boundary homotopy equivalent to (C,dc,{n})

(by [R1, (4.1)(i)]) and for which HP*2(p') = ¢ = Hy(D'). (Compare
[R2, pp. 335-6].

Hence (using (7.12)) we can assume in (8.2) that Hp+2(D) =0 =
Ho(D). But by (6.17), HP = ExtP(H (D),A) = 0 and by duality HP*2(q)
= HO(D) = 0. Hence the remaining terms in (8.2) are

B2 (c) » P (g) » wP*l(p) »uP* ()

In particular the surjectivity on Hp+l induced by g qualifies g
for use in the construction of B in (7.7) applied to C. By (7.11)
(a), the resultant A-formation has Yy an isomorphism and by (7.12)
it is stably isometric to (K,H, (a,y)).

The next result amounts to exactness of (2.1) (b) at Wi(CMl). For

its proof we need a special case (p = 1) of the result referred to in
(7.1),

e

LA A
(8.3) A W) (CH) > 05 (M)

This is due to Ranicki ([R2, p. 359]).

(8.4) Proposition. Let A be a regular Noetherian domain contain-
ing 1/2. Then every element [K,H, (a,y)] € Wi(CMl) admits a represen-
tative for which o is injective.
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Proof: Let (C,d,{n}) € P;(Ml) be associated to (K,H, (a,y)) by
(7.2). Suppose it is possible to find a A-symmetric pair (f: C » D,
{6n,n}) such that
. = i 2

Hi(D) 0, 1i #

(8.5)

. H2(f): HZ(D) > HZ(C) is an isomorphism at all height one

primes

Then HY(C) > H2(f), which easily implies (f: C » D,{8n,n}) is A-

Poincaré. By (7.11)(a), surgery on f (cf. (6.14)) yields a complex
(c',d',{n"}) which is Ml—cobordant to (C,d,{n}) and whose associated
\-formation (in (7.7)) (XK',H',(a',vy'"')) has y' an isomorphism at all

height one primes.

Now (7.11) (b), together with (8.3) and the fact that (C',d',{n'})
is inverse to (C',d',{-n'}) in Q) (M;), show that [K',H',(a',~y")]
is inverse to [K',H',(a',y')] in wi(CMl). But by (1.16) the latter

is also inverse to [K',H',(y',=Xxa')]. Hence in Wi(CMl), [K',H',
(a',vy")] = [K',H',(y",Xa")], so we are done.

It remains to provide (8.5). Let ¢ be a height one prime of A
and let R = Aq, (x) = ¢gA_. By (5.9), (Kq,Hq,(a,y)q) is isomorphic

to a sum of formations of the form

“t,0))

(R/(x%) ® R/(x™ %), R/ (x™, ((0,x%), (x"
where 0 < t < m. Evidently, each such formation can be destabilized
t » . = T — A . .
to (R/(x"),R/(x),(0,1)). so if (C,d,m € PY(M (R)) is a formation
constructed from (KQ,H , (o ’Yq)) by (7.2), there is a homotopy equi-

q q
valence

h: (C,d,{n}) > (E,d,{nh

Moreover, since a = 0 in (R/(xt),R/(xt),(O,l)) we can extract from
the construction in (7.7) (cf. also proof of (7.12)) a A-symmetric com-

plex over R,

(g: T > D, (8n,n))

such that Hz(é): Hz(ﬁ) > HZ(E). Setting f = gh, we get a A-symmetric
complex
f: D,{8n,
(£ Cq + D,{8n nq})
with
#2(5): w5 > wi(c,) .
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Now if HZ(B) = (R/(xt))m, let M==(A/q(t))m, where q(t)

ial. Hence we may construct a chain complex of projective A-modules

' E= (B, » E))
with
M, i=1
H; (E) =
OI i=2

and from the natural inclusion M - (R/(xt))m, a commutative diagram
’

E2 > El > M
v ¥ v
b, > D) » (R/(x*N)"

Thus the corresponding map of complexes E > D is a homotopy equival-
ence at gq. anally, multiplying f and §n by some element of
A - q gives f(C) CE and 3&n(E*) € E, hence a \-symmetric complex

(8.6) (f: ¢ > E,{6n,n})

Y

where £ = f|c, 6én = 3n|E* and Hz(fq): HZ(E)q #2(c) . Taking the
sum of the complexes (8.6) for each height one ¢ givesqthe desired

A-symmetric complex in (8.5).
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§1: INTRODUCTION
The title of this paper coincides with that of section IV.3 of [Sn 1].

M. Nagata, Local Rings, Interscience (1962), New York-London.

M. Ojanguren, A splitting theorem for guadratic forms, Comment.

Math. Helv. 57 (1982), 145-157. In that section I gave an upper bound, in terms of unitary K-homology, for the

, Quadratic forms over regular rings, J. Indian algebraic K-theory (mod 2¥) of a ring-after the latter has been inflicted with

Math. Soc., to appear.

Bott periodicity. In this paper I will improve the results of [Sn 1, §IV.3] in
W. Pardon, The exact sequence of a localization for Witt groups, twWo ways:

Lecture Notes in Math., No. 551 (1976), 336-379. (i) We remove the condition that the ring we consider should have £’-th

, An invariant determining the Witt class of a roots of unity.

unitary transformation over a semi-simple ring, J. Alg. 44
(1977), 394-410.

(ii) We show that the indecomposable quotient of the upper bound of
[Sn 1] is a (better) upper bound.

, A "Gersten conjecture" for Witt groups,
Springer Lecture Notes in Math. No. 966 (Proceedings of Confer-
ence on Alg. K-Theory Oberwolfach, 1980).

The upper bound is sometimes 'easier'" to compute. For example, when A

is a finite ring, the upper bound is determined by the representation theory

, A relation between the Witt group of a regular of GL A (n>1). See [Sn 1, §IV.3].
Tocal ring and the Witt groups of its residue class fields, pre-

print.

Recall [B;G-Q;Ql] that the algebraic K-groups of a ring A, with unit,

. . . . . L may be defined as
C. Peskine and L. Szpiro, Dimension projective finie et cohomo- Y

logie locale, Pub. Math. I.H.E.S. 42 (1973), 47-119. KA = [Si BGLA+] e (BGLA+) G 1)
i s i s >
D. Quillen, Higher algebraic K-Theory I, Springer Lecture and
Notes in Math. No. 341 (1973), 85-147. i-1 i + .
Ki(A;Z/n) =[S Uue, BGLA'] = ni(BGLA ;2/n), (1 >2)

A. Ranicki, The algebraic theory of surgery I: Foundations, n

Proc. L.M.S. 40 (1980), 87-192. .
where BGLA  is obtained from the classifying space of the infinite general

, Exact sequences in the algebraic theory of
surgerv, Math. Notes, Princeton University Press (1981),
Princeton.

linear group of A by applying the "plus'-construction relative to the commu-

tator subgroup of GLA, One can extend these groups to lower dimensions,

. . . . . although we will not d them, i h
D. W. Sharpe and P. Vamés, Injective Modules, Cambridge Univer- ug v not nee em, in such a way as to make

sity Press (1972), Cambridge.

KA= 8 KA
i>0 T
aad 12

K, (A;2/n) = @ K, (A;2/n)

i>0
into graded rings (provided that 16|n if n is even and 9|n if 3|n). In fact we

will require only a (graded) multiplication to exist on K, (A;Z/n) for which it
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