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1 
Let A be a commutative domain with ~ ~ A, K its fraction field, 

and W(A) the Witt group of non-singular symmetric bilinear forms on 

projective modules over A. In [8] and [ii], the question of the in- 

jectivity of the homomorphism W(A) ÷ W(K) was studied, under the as- 

sumption that A be regular local. A technique is outlined here and 

carried out in detail for one case, which answers this question affir- 

matively if the Krull dimension of A is <4. The method introduces 

analogues forWitt groups of localization, d~vissage, and resolution theo- 

rems in algebraic K-theory; one consequence is a "Gersten Conjecture" 

[9] for Witt groups, which considerably generalizes the original ques- 

tion, but remains mostly conjectural. (C.F. Addendum following (3.19)). 

For A a local Gorenstein ring, a suitable category Mp(A) of 

A-modules supported in codimension p is introduced in §i, so that 

Witt groups W~(Mp)l (i = 0,1;I = ±i) fitting into localization sequences 

may be defined. This plus d~vissage gives rise in §2 to the "Gersten 

Conjecture" and to conjectured relations with other results inspired 

by the same ideas. In §3, the methods of §i are carried out in detail 

to prove W(A) ÷ W(K) is injective if A is a 2-dimensional regular 

domain. 

It is assumed throughout that A is a commutative noetherian ring 
1 

containing 2" 

§i. Localization and Devissage for witt group functors. 

Let (A,m) be a local Gorenstein ring of Krull dimension n. Let 

d O d 
A ~ ~ E0 ~ E1 -~ ... n,~ En 

be the minimal injective resolution of A over itself, so that E k = 

I ~(A/q) = I I E where E injective hull (see [2, 
ht(q)=k ht(q)=k (Aq/qAq), = 

§i].). Let Mp(A) denote the category of A-modules M such that 

dim(M) = n - p = depth (M) (M has "codimension p") ; such modules are 



301 

called Cohen-Hacauley in [7], and, if A is regular local, are perfect 

in the sense of [10,p. 126]). When A is specified we write Mp(A) = 

Mp. 

Let Vp = im dp. Using the fact that each M ~ Mp admits a length 

one resolution by objects of Mp_ 1 (p ~ i), one shows by induction that 

the natural A-bilinear pairing 

~: Hom(M,Vp) × M ÷ Vp, ~(f,m) = f(m) 

is non-singular (i.e., that M ~ Hom(Hom(M,Vp),Vp)). (Alternatively, 

one may use [1,4.35] and the easy fact that Hom(M,Vp) ~ ExtP(M,A).) 

Thus, in the category QIMp, whose objects (N,~), called l-forms in 

Mp, are non-singular, l-symmetric A-bilinear pairings 

~: N × N ÷ Vp (N e Mp, I = ±i) , 

there is a natural notion of hyperbolic form: (N,~) is called hyper- 

bolic if N = Hom(M,Vp) 8 M and ~(fl + ml'f2 + m2) = fl(m2 ) + I f2(ml); 

more generally, (N,~) is called a lagrangian if there is M C N, where 

M e Mp, ~]M x M H 0 and the induced bilinear form M x (N/M) ÷ Vp is 

non-singular; M is called a sublagrangian. (In [15], the term (sub) 

kernel was used for ~ub) lagrangian ). 

One defines Witt groups 

W~(Mp)1 (l : ±i, i = 0,I) 

as follows. One may add isomorphism classes of objects in QIMp by 

orthogonal sum and, in this way, form an abelian semigroup. The Groth- 

endieck group modulo the subgroup generated by lagrangians is denoted 

W~ (Mp) . 

Define a l-formation in Mp to be a triple (MI,M2,A) where 

M i e Mp and A: M 1 + Hom(M2,V p) @ M 2 is an injection whose image is 

a sublagrangian of the l-symmetric hyperbolic form on Hom(M2,V p) @ M 2. 

One defines the zero formation and the orthogonal sum of two l-formations 

in the obvious way, so that the set of isomorphism classes of l-forma- 

tions is an abelian semigroup. An equivalence relation on this semi- 

1 used there group is defined in [15,1.34], by replacing the category D F 

1 by Mp and removing the quadratic form K (because. [ ~ A is assumed 

here). The equivalence classes form a group, W~(Mp).± 
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Theorem 1 (Localization) Let A be an n-dimensional local Goren- 

stein ring. For p = 0,l,n - 2 or n - i, there is a long exact sequence 

(Mp = Mp(A)) , 

+%m(Mp) ~ II w~(Mp(A)) + wh(Mu p+l  ) i • D 

q 

÷ WII(M p) ÷ I I W~I(Mp(Aq)) + Wll(Mp+ I) 
q 

+ w0x(%) + I I w; Mp(A)) . . . .  
q q 

where the direct sums _~_ extend over all primes q of height p. (I 

conjecture that Theorem 1 holds for all p.) 

The theorem should be compared to [16, Thm. 5] where the subscript 

shifts are different, and the category Mp is less restrictive. If p=0, 

Theorem 1 is closely related to the theorem of [15]: when A is regu- 

lar, V 0 = A, E 0 = fraction field of A = K, V 1 = K/A, M 0 = category 

of projectives, and M 1 = category of A-torsion modules which have a 

short free resolution. It is likely that the theorem holds without the 

restriction that A be local. 

Note that when p = ht q, Mp(Aq) = A - modules of finite length. 
q 

Theorem 2 (Devissage) If (A,m) is local Gorenstein with residue 

field k(m), and F A = category of finite length A-modules, then F A = 

Mdi m A(A) and there are inclusions Fk(M) ÷ F A, k(m) ÷ E(k(m)) which 

induce isomorphisms 

Wl(Fk(m) ) ~ WI' (FA)l 

Remarks a) W 1 Wl(k(m)) = 0 if i = i; or if i = 0 and i(Fk(m) ) = i 

I = -i. b) To my knowledge, no "resolution theorem" for the functors 

W~(A) has appeared. A suitable version is furnished by the theory of 

[17]. For example, one may show that to any object (M,~) ~ QI(Mp) 

can be associated a chain complex C, with "Poincare duality" pairings 

C k ® Cp_ k ÷ A (induced by ~) such that Hi(C . ) = 0 i ~ 0 and 

H0(C) = M. It is necessary to use this theory to prove exactness in 

Theorem 1 at W~Mp). 

§2. Conjectures 

It is now possible to make conjectures analogous to those of [9,§7]. 



303 

Conjecture A If (A,m) is an n-dimensional regular local ring 

with fraction field K, then there is an exact sequence 

DO W 1 (K) D1 
WO 1 (A) • ' o > ]I 

ht(q)=l 

1 D 1 
W0 (k(q)) .... --~ W0 (k (M)) 

where D O 

from the 

is induced by 

p = i - 1 and 

K, D i (i h i) is the composition of maps 

1 versions of Theorem i, 

1 1 1 
I I Wo(Mi_I(Aq)) ÷ (M i) ÷ I I (Mi(A) 

ht (q)= i-i WO ht (q)=i WO q 

1 1 
and W0(F A ) ~ W0(k(q)) by Theorem 2. 

q 

The following holds if p = 0 and would imply Conjecture A. 

Conjecture B If A is regular local, then 

~(Mp) W01(Mp) W = 0 = , I = ±i, p ~ O. 

The injectivity of D O in A is the issue in [8] and, as pointed 

out in [5], is equivalent to a special case of a conjecture of Grothen- 
1 

dieck; it is equivalent to WI(MI) = 0. It is well-known to hold if 

dim A = 1 and is shown in [8] to hold if A is complete, or if A is 

a polynomial ring over a field. In [5] forms of low rank over A which 

become hyperbolic over K are shown to be hyperbolic. Since this paper 

was written, Ojanguren [14] has given a remarkably simple proof that D O 

is injective, in case A is regular local and essentially of finite 

type over an infinite perfect field (see also Addendum following (3.19) 

below. 

Assuminq Theorems 1 and 2 all vertical and horizontal sequences are 

exact in the following diagram: 

W~ (M 4 ) 

" l(M3) + "01(M2) + I I .01(k(q)) 
htq=2 

+ + 

]I w[l(k(q)) 
htq=3 

1 1 wl(K) W I(M I) ÷ W 0(A) ÷ 

+ 

1 
]I Wl(k(q)) 

htq=l 
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1 
Given an element of W (A) which vanishes in W0(K), a diagram chase 

using the remark following Theorem 2 gives the following result if 

dim A < 3. 

1 
Theorem 4 If A is regular local and dim A ! 4, then W0(A) ÷ 

W~(K) is injective. 

The 4-dimensional case requires the machinery of [17] and will not 

be treated here. If dim A < 3, Theorem 4 holds without the assumption 

that A be local; complete details are given for the 2-dimensional 

case in §3, following the argument for Theorem 4 above. 

When A is regular, the negative K-groups of [3, XII, §7], K_i(A), 

are trivial, i ~ I. In one case this alone suffices to guarantee D O 

is injective. 

Proposition Let A be a one-dimensional integral k-algebra, k 

a field, char(k) ~ 2, K = fraction field of A. Let A be the inte- 

gral closure of A in K, C = the conductor of A in A, and suppose 

W~(A/C) ÷ W~(A/C) is injective. Then there is an exact sequence 

K I(A) ® ZZ/ 2 W I(A) DO 1 
_ ÷ ÷ W 0 (K) . 

The hypotheses are all satisfied if A = k[x,y]/(y 2 - x2(x + i)) 

(node); here K_I(A) = ~ and ker D O = ~/2 . Also, if A = k[x,y]/ 

(y2 _ x 3) (cusp), K_I(A ) = 0 but A is not regular. Other examples 

of a less trivial nature, where dim A > i, are given in [8] to show 

the necessity of the regularity assumption. However, the hope that the 

vanishing of K_,(A) for higher dimensional A might imply D O is 

injective must take into account the example in [12, §5] of an 8-dimen- 

sional regular ring (not local) for which ker D O ~ 0. The example dis- 

appears if the ring is localized since it depends on the non-triviality 

of K 0. In fact, as Ojanguren has pointed out to me, one may use the 

same idea as [12] to produce a non-trivial element in ker D 0 when 

A = B ®~ B, B = ~ [X,Y,Z]/(X 2 + y2 + Z 2 _ i). 

The lower sequence in the following conjecture was constructed and 

proved exact in [4]. 

Conjecture C Let (A,m) be a regular local ring. There is a 

commutative ladder for each r > 0, 
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i i i i 
W0(A) ÷ W0(K) ÷ I I W0(k(q)) ..... I I W0(k(q)) 

ht (q) =I htq=r 

+ w r + w r + Wr_ 1 + w 0 

r r t (K; 2Z/2) H4t (A; 2Z/2) ÷ H ÷ 
r-i 

I l,. H4t (k(q) 
ht(q)=l 

0 
; ZZ/2) ..... [I H4t (k (q) ;~12) 

ht(q)=r 

where w i = ith Stiefel-Whitney class defined in [6] or [18]; w 0 may 

be identified with the rank mod 2, w I with the discriminant, and w 2 

with the Hasse-Witt invariant. This is the relation of Conjecture A to 

classical invariants of quadratic forms. 

§3. D0 is injective for 2-dimensional regular domains 

Although the complete proof of Theorem 1 will not be given here, 

the ideas involved are essentially the same as those in [15]. To illu- 

strate this, the injectivity of D O will be proved in a special case, 

following the method of Theorem 4. The proof begins with a device which 

simplifies the first step (obtaining (K,H,A) in (3.1)) and which does 

not work for 3-dimensional rings. This is the reason for restricting to 

the 2-dimensional case. Since A is assumed regular, but not local 

Mp(A) will now denote the category of A-modules M whose homological 

dimension = grade (M) = p. (If A is local, this is the same as the 

definition given in §i). 

Theorem 5: Let A be a regular Noetherian domain of dimension 2 

with ~ ~ A. Then W (A) ÷ W0(K) is injective, where K = fraction 

field of A. 

Proof: Let ~: N x N ÷ A be a non-singular symmetric bilinear 

form where N is projective and ~ ® K is hyperbolic. Choose L ~ N 

so that (L ® K) ~ = L ® K C N ® K. Then L C L z If x e L ~- L, 

(L + Ax) C (L + Ax) ± ; thus, there exists M C N with M = M ~. We 

first show M is projective. 

Let P = Hom(P,A) for any A-module P. There is a commutative 

diagram 

M 

where < is the canonical map and ~: M ÷ N/M , S: N/M ÷ M are in- 

duced from the adjoint of ~. Since M = M ~, a is an isomorphism and 
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8 is injective; ~ is injective because ~ is torsion free and B Q K 

is an isomorphism. Thus K is an isomorphism. 

This implies M is projective, for given any partial projective 

resolution of M, 

Q1 f' Q0 -~ ' 

we may dualize it to the exact sequence 

since A has global homological dimension 2, M = M is projective. 

Next, following [15, §7] we construct a (+l)-formation (K,H,A) 

representing an element of WI(M I) (= WI(K/A) in [15]) whose image 

in W (M 0) (= W0(A)) under the map of Theorem 1 for p = 0 (= the 

exact sequence [15, 2.1]) is [N,¢]. To do this we first choose an 

A-submodule L C N such that L @ K = N @ K, L ~ P + P (P is projec- 

tive), and the form ~:= #IL × L has Ad(~) : P @ P ÷ P • P = P • P 

given by a (2 × 2)-matrix [~ ~] where h ~ Hom(P,P). (Here ~ is a 

hyperbolic approximation to ~, although it need not be non-singular). 

Since N/M is torsion free, the natural map <: N/M ÷ N/M is 

injective; let t 8 A be chosen so that t(cok(K)) = 0. Then there 

is a injection o: N/M ÷ N/M so that Ka = tI . Let j: N ~N/M be 
N/M 

the projection and define 

.--i 
L := 3 O(N/M). 

Then M C L and there is short exact sequence M~ L ~ N/M where N/M 

is identified with O(N/M). As N/M ~ M is projective, L ~ M @ M . 

One may verify that, for a suitable choice of splitting of L + N/M, 

= ~JL x L has Ad ~ = (This uses ~ ~ A.) 

Let L' = {n e N @ K 1 %(n,L) C A} , the dual lattice of L; then 

induces an isomorphism £: L' % L, and composing this with the in- 

clusion L ÷ L' yields Ad 4: L ÷ L. Thus, letting i: L ÷ N be the 

inclusion and k := £ o (N ÷ L'), we have a commutative triangle 

Ad~= It 0] 
P@P=L 0 t ~ = p ~  
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Set K := cok(i) and H := cok(t: P ÷ P) ; then setting 

H ̂  := Hom(H,V I) (V 1 = K/A) 

H ̂  ~ cok(t: P ÷ P) (see [15, 1.4] or (3.8)) and cok(Ad ~) = H @ H ̂ . 

Let A: K ÷ H @ H ̂  be the induced map (covered by k). By the argument 

of [15, 7.3], we obtain the following. 

(3.1) Lemma (K,H,A) is a (+l)-formation in M I. (Note that 

these are precisely the objects of [15, 1.32], after omitting the form 
1 

< - since ~ ~ A - and allowing projective resolutions for K and H 

in place of free ones.) 

Next we generalize the method of [15, 1.17, 1.18] to produce a non- 

singular skew-symmetric form ~: T × T ÷ V2, where T ~ M 2. ([T,~] 

is the inverse W01(M2 ) image of [K,H,&] under the map W01(M 2) ÷ 

W~(M I) := W~(K/A) of Theorem 1 for p = i; see the proof of Theorem 4.) 

(3.2) Lemma Suppose given K,H ~ Mp and (e,y) : K ÷ H @ H ̂  

where H ̂  := Hom(H,Vp), ~ is injective, coke @ Mp+l, and ~^7 = 

l(e^y) ^. Then there is a unique l-symmetric bilinear form T: H × H ÷ 

E such that 
P 

K ~ ; H 

(3.3) +Y i, + AdT 

H ̂  ~ Hom(H,Ep) commutes, 

÷ E . where i, is induced by Vp P 

b) Conversely, given a bilinear l-symmetric form T: H × H + Ep 

and a: K ÷ H with cok ~ e Mp+ I, such that (dp), • AdT • a = 0 

(where (dp), : Hom(H,Ep) ÷ Hom(H,Ep+l) is induced by dp: Ep ÷ Ep+ I) 

there is a unique map Y: K ÷ H ̂  making (3.3) commute and satisfying 

~^y = ~(~^y)^. 

i 
Proof. Part b) follows from the exactness of H ̂  = Hom(H,Vp) * 

(dp) , 
Hom(H,Ep) ~ Hom(H,Ep+ I) and the l-symmetry of T. 

To prove a), let Ass(H) = {Pl ..... Pn } ; by [i0, Thin. 175], ht(Pi) 

= p, i = l,...,n. Thus, 

n n 
Hom(H,Ep) = ] I H°m(H,E(A/Pi)) = [ I Hom(H ,E(A/Ni)) , 

1 1 Pi 

the second inequality because E(A/Pi) is an Api-module ([19, Prop.5.6]). 
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Hence the desired T must split as an orthogonal sum T = _~_ Ti: H 
Pi 

× Hp i ÷ E(A/Pi)' Pi C Ass(H). Since api: Kpi ~ Hpi (because cok(a) 

Mp+ I) define 

-i 
AdT i (i,) Pi YPi 

:= (~pi) 

It is easily shown that T is l-symmetric. 

(3.4) Remark The proof shows that 

Hom(H,Ep) ~ Hom(K,Ep). 
induces an isomorphism 

(3.5) Lemma a) Given T: H × H ÷ Ep and a: K ÷ H satisfying the 

hypotheses of (3.2) (b), there is a l-symmetric form ~: T × T ÷ V 
p+l' 

where T := cok(a) such that 

H x H S/-~ E 
P 

(3.6) & d 
P 

T x T _i~ Vp+l commutes. 

b) Conversely, given a l-symmetric bilinear form ~: T × T ÷ V 
p+l' 

T e Mp+ I, there is a resolution K~ H ~ T with K,H e Mp and a l-sym- 

metric form T: H × H ÷ Ep making (3.6) commute; in particular, T and 

satisfy the hypotheses of (3.2) (b). 

Proof. Part a) is immediate. 

Let {t I, .... tn} generate T. Suppose ~(ti,tj) = vij ~ Vp+ 1 and 

let dp(eij) = vij, eij e Ep. Since vij = I vji, we may assume eij = 

I eji. Let Vij = {plvij has non-zero component in E(A/p) C Ep+I} , 

and Eij = {qleij has non-zero component in E(A/q) C Ep}. Since 

dpeij = vij , each q e Eij is contained in some p ~ Vij (see [19, 

Prop. 4.21]). 

Because ~ is bilinear, Ann(ti) U Ann(tj) C Ann(vij) C {PiP e 

Vij}. Thus, ~ Ass(At i) ~ V := U Vij. From this it follows that there 

is an integer 1 such that 

( II pl) (Ati) = 0, i = i ..... n , 
p@V 

and hence a surjection 
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j: (A/ H q£)n ÷ T 
qeE 

where E = ~Eij, and, if gl .... 'gn are the obvious generators of 

(A/K q£)n, gi ÷ ti" Using [19, Prop. 4.23] , and increasing Z if 

necessary, there is a l-symmetric bilinear form T: (A/K qZ)n × 

(A/H q£)n ÷ Ep defined by T(gi,g j) = eij. Now taking H = (A/K qZ)n 

makes (3.6) commute; but the choice of H must be modified as follows 

to insure H e Mp. 

If I C A is any ideal and Z(I) :={ PlP is prime, p ~ I}, then 

Z(H qZ) = Z(~q). Since Z(I) and Ass(I) have the same minimal ele- 

ments for any I, and Ass(~{qlq e E}) = E (by definition), ht(~q ~) = 

p. Since A is regular, hence Gorenstein, there is an A-sequence 

{al, .... ap} C H qi [i0, Thmo136], hence a surjection 

(3.7) (A/(a I ..... ap))n-~ (A/~ qZ)n. 

The Koszul complex and [2, §i] shows A/(a I ..... ap) ~ Mp. Compose (3.7) 

with T and j constructed above, and set K = ker((A/(al,...,ap)) n 

÷ T). By [10,4-1], h.d. K = p; and Ass(K) C Ass(H), which consists 

of height p primes. Thus K e Mp and the proof is complete. 

(3.8) Given a short exact sequence K~ H ~ T with K,H ~ Mp, 

T ~ Mp+ I, we obtain a short exact sequence 

= , ~ K^ -~ Extl(T,Vp) . H ̂  Hom(H,Vp) a^ 

d 
From the exact sequence Vp i Ep P~ Vp+ 1 and the fact that Ep is 

injective, there is an isomorphism Extl(T,Vp) ~ Hom(T,Vp+l). We need 

to make this isomorphism explicit, viewing Extl(T,Vp) as cok(eA). 

Given f: K ÷ Vp, there is a unique ~: H ÷ Ep such that Is = if (see 

(3.4)). Then dp Ze = dp is = 0, so there is a unique e: T ÷ Vp+ 1 

such that 

(3.9) ej = d £ . 
P 

(3.10) Lemma With the notation of (3.5) and the identification 

of (3.8), there is a commutative diagram 
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K ky~ H ̂  

A 

(3.11) H Y > K ̂  

{J 
T Adu~ T ~ := Hom(T,Vp+I ) 

Proof: It is only necessary to prove the bottom square commutes. 

Given h e H, y^(h) is the homomorphism f: K ÷ V defined by f(k) 
P (3.3) 

= [7(k)] (h), for all k e K. Then if(k) : i[y(k)] (h) 

[((AdT)~) (k)] (h). Thus the map Z: H + E produced in (3.8) is 
P 

(AdT) (h) : H ÷ Ep. Since for any h e H, and t' := j(h'), ~(t,t') = 

d T(h,h') (by assumption), the equation (3.9) completes the proof. 
P 

Returning to the proof of Theorem 5 we have a (+l)-formation 

(K,H,A) in MI; setting A = (~,y), ~: K + H, ~: K ÷ H ̂ , Lemmas (3.2) (a) 

and (3.5) (a) produce a (-l)-symmetric bilinear form Z: T x T ÷ V 2. 

The next two lemmas show it is a nonsingular lagrangian. 

(3.12) Lemma a) Given a (-l)-formation (K,H,A) in Mp, let 

p: T × T ÷ Vp+ 1 be the l-symmetric bilinear form constructed from 

(3.2) (a) and (3.5) (a) , where £ = (~,y) : K ÷ H + H ̂ . Then ~ is non- 

singular. 

b) Conversely, given ~: T x T + Vp+I, l-symmetric, bilinear and 

nonsingular, the triple (K,H,£) , £ = (~,y), produced by (3.2) (b) and 

(3.5) (b) is a (-l)-formation in Mp. 

Proof: Putting (3.2), (3.5) and (3.10) together, it suffices to 

show that in the commutative diagram 

(3.13) 

K 17+ H ̂  

H ' Y^+ K ̂  

T Ad p ÷ T ~ = Hom(T,Vp+I ) 

and ~^ induce isomorphisms 

(3.14) ker(Iy) ÷ ker(y^), cok(Iy) ÷ cok(y ̂ ) 

if and only if (K,H,A) is a (-l)-formation in Mp; the latter holds 

if and only if im(£) is a sublagrangian, since y^e = la^y implies 
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implies im(A) C im(A) ; and im(A) is a sublagrangian if and only if 

the adjoint of the natural (-l)-symmetric hyperbolic form # on H + H ̂  

induces k: H • H^/im(A) ÷ im(A) ~. But from the commutativity of 

K~(~'Y)> H • H ~ +>H • H^/im(A) 

I i j Ad :(_~ 0 ) k 

H ̂  $ H (~^rT^)>>K ̂  

k is an isomorphism if and only if 

K (-Iy,~)~ H $ H ̂  (~^'Y^!'~ K 

is short exact. This in turn is equivalent to (3.14). 

In case A is 2-dimensional, each object (T,~) ~ QI(M 2) the 

category of nonsingular l-symmetric bilinear forms in M2, splits ortho- 

gonally into the sum • (Tm,~m) of its localizations at all maximal 

ideals m of A, and each T is of finite length over A . We next 
m m 

prove a special case of Theorem 2 (~ = -i, i = 0). 

(3.15) Lemma If (T,~) is a nonsingular (-l)-symmetric bilinear 

form in Mp, p = dim A, then each (Tm,%m) , and hence (T,~), is a la- 

grangian. 

Proof: The proof is by induction on the length Z(T m) of Tm. 

, and E : E(k(m)). Then if K C T, Set T : T m, B = ~m' A = A m 

K ±± = K. For it is clear that K C K ±m and that B induces K m 

Hom(T/K,E) ; by [3, (2.1) (iv)], £(Hom(T/K,E)) = z(T/K), and hence 

£(K ~) + Z(K) = £(T). Similarly, i(K ±~) + z(K m) = Z(T), so Z(K ~m) = 

i(K). This together with K c K ±~ implies K = K ±m . 

Now if t ~ T, the submodule K := At C T satisfies K C K m be- 
1 

cause B(t,t) = -B(t,t) and [ e k(m) c E. The naturally induced (-l)- 

symmetric form on K~/K, (K±/K,~ ') has ~(K~/K) < ~(T) . Moreover, 

both it and the naturally induced K x (T/K m) ÷ E are nonsingular: 

this is immediate from K = K ~± . By induction and the argument of 

[15, 3.5] the proof is complete. 

Thus, the (-l)-symmetric form (T,~) produced in (3.12) is a 

lagrangian. We next use (3.5) (b) to find a special resolution M~ L 

T, L,M ~ M 1 and ~: L x L ÷ E 1 covering ~ as in (3.6). 

(3.16) Lemma Let (T,~) be a l-symmetric lagrangian in Mp+ 1. 
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Then there is a resolution I • J^~J • I ̂  ~+T with I,J ~ Mp and 

= g^ , g: I ~ J, 6: J^ ÷ J; and a X-symmetric form ~: (J • I ̂ ) 

× (J ~ I ̂ ) + E covering ~ as in (3.6), with (Add) • ~: I • J^ ÷ 
P 

Hom(J • I^,Ep) equal to 

i, 
I • J^ ÷ J^ • I = (J • I ̂ ) ̂  ~ Hom(J • I^,Ep) 

[0 
where < = and i, is induced by i: Vp p. 

J • I ̂ , (v,<)) is a (-l)-formation in Mp, by (3.12) (b)). 

Proof: Let S = S~ C T be a sublagrangian. The adjoint of 

induces an isomorphism T/S ÷ S ̂ , hence an exact sequence 

S ~+ T ~+S ~ := Hom(S,Vp+ I) 

! --t Choose generators Sl,. S'm for S ~ and lift them back to elements 

Sl, .... s m ~ T. Carrying out the procedure of the proof of (3.5) (b), 
m k 

find an A-sequence a I ..... ap ~ A, a map (A/(a I .... ,ap)) ~* T and a 

l-symmetric form T: (A/(a I ..... ap)) m x (A/(a I ..... ap)) m ÷ Ep such that 

dp T(b,b') = ~(kb,kb') for all b,b' ~ (A/(a I ..... ap)) m. Let I ̂  = 

)m and J^ a^ I ̂  be the kernel of the composition (A/(a I ..... ap) 

i ̂  k T ~+S~. (We are using the fact (§I) that M ̂ ^ = M for all M e 
A 

Mp and B ̂ ^ = 8 for all maps in Mp.) Thus from J^ a ; I ̂  ~*S~ we 

obtain I a j ~+S as in (3.8), since S ~ S ~~ canonically for all 

S ~ Mp+ I. In the usual way we obtain ~ as required. 

To prove d can be chosen as claimed, let r be the unique map 

making 

I ̂  = Hom(I,Vp) { Hom(J,Ep) 

i, ~ ~ ~ ( 3 . 4 )  

Hom(I,Ep) 

commute, and let p: I ̂  x J ÷ E satisfy Ad p = r; define p^: J x I ̂  

÷ Ep by p^(a,b) = i p (b,a), b ~ I ̂ , a e J. We claim ~ = ^ 

covers p in the sense of (3.6). It suffices to show 

I^ x J +O E 
P 

(3.17) ¢ ~ dp commutes, 

S ~ x S ÷ Vp+ 1 
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where S ~ × S ÷ Vp+ I is the natural pairing. Let f e I ̂ , a ~ J. If 

e: S ÷ Vp+ 1 is the image of f by the construction of (3.8) and 

~: J ÷ Ep satisfies (3.9), then e(ja) = dp£(a) ; but by construction 

of 0, ~(a) = p(f,a), so (3.17) commutes. Evidently, (Ad 0) e ̂  := 

re^: J^ ÷ Hom(J,Ep) is i,, so the proof of (3.16) is complete. 

To summarize, we have shown that the (+l)-formations (K,H,A) of 

(3.1) and (I @ J^,J @ I^,(v,<)) of (3.16) induce the (-l)-symmetric 

form (T,~), in the sense of (3.5); moreover, < is an isomorphism. 

(3.18) Lemma Any (-l)-formation 8 = (F,F^,(~,<)) 

which < is an isomorphism, represents zero in W[l(Mp) 

(F ,Vp) ) . 

Proof: Add to 

is the zero map and 

tion 8', and note 

in Mp, for 

(F ̂  := Hom 

% the formation (F^,F,(0,1)) where 0: F ̂  ÷ F 

i: F ̂  + F ̂  is the identity; denote the new forma- 

wiX [e] = [ 0 ' ]  i n  (Mp) by [ 1 5 , 1 . 3 4 ( i i ) ] .  Now 

8' has the form (K',H',A') where H' = H 1 • H~. Letting wl: H' × 

H' ÷ V 1 denote the standard l-symmetric hyperbolic form, the identity 

of [15,4.9] shows we may assume that if A' = (e',y'), then e': K' ÷ H' 

is an isomorphism. Such a formation is easily seen to represent zero 

in WII(Mp). 

Since [K,H,A] ÷ [N,~] under the map WI(M I) ÷ W (M 0) := W (A) := 

W(A) the following lemma completes the proof of Theorem 5. 

(3.19) Lemma. The formations (K,H,A) of (3.1) and (I @ ~,J • I ̂ , 

(~,<)) of (3.16) represent the same element (hence zero by (3.18)) in 

w~(M1). 

Proof: Set 8 = (K,H,A) and 81 = (KI,HI,A I) := (I • J^,J • I ̂ , 

(~,<)) ; let £ = (~,y) , A 1 = (el,Yl) . We first show we may assume 

K = K I, H = H 1 and ~ = el" 

Let H 2 be the pullback of H 1 ~ T ~H, so that there is a commu- 

tative diagram of short exact sequences 

K -- K 

i 1 
KI ~ ~ H2 k+ H 

Jl ~ kl ~ J 
e Jl 

K 1 >+ H i 
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Setting e2 = il ~ i: K 1 @ K + H2, it follows that 

Pl 
K 2 := K 1 @ K ~ K 1 

Pl 
K 2 := K 1 @ K * K 

+ ~2 +el and + ~2 

k 1 
H 2 ~ H 1 H 2 ~ H 

are pullback diagrams. Hence, denoting the short exact sequences 

i 1 k 
E := (K I , H 2 ~) H) 

k 1 
E 1 :=  (K i +  H2 ~ H1 ) 

and using the operation [15, 1.34(i)], we obtain new formations OE8 and 

with [OES] = [8] [OE181] [81 ] in 1 OEI8 I, , = WI(M I) and GEe = (K2,H2, 
I 

(e2,Y2)) , and OE181 = (K2,H2, (e2,Y2)) for some homomorphisms Y2' 
! 

Y2 : K2 ÷ Hi" 

Finally, we claim that there is a (-l)-symmetric bilinear form 
! 

p: H 2 x H 2 ~.V 1 such that Y2 - Y2 = (Ad P)e2" By [15, 1.34(iii)], 

this will complete the proof of (3.19). To construct p, observe first 

that there is a commutative diagram 

K2 -B H2 
I 

~2 ~2 ~ ~' 

H 2 6^, "K2 

T Ad~ T ~ = Hom(T,V2 ) 

! 

where 6 = Y2 or Y2 (See (3.13)). From this is follows that there 
w 

is a unique 6: H 2 ÷ H~ such that e~6 = y~ ~ y2^; hence ~6~ 2 = Y2~2 
I^ I 

- Y2 e2" Dualizing, e~6^a 2 = (d~6~2)^ = (Y2~2 - Y2^e2 )^ = - Y2~2 - 
! 

(-y2^~2) = -~6~ 2. Since ~2 and ~2 are injective, 6 = -6 ̂  . Define 

p so that Ad p = 6 ̂  . 

Addendum (February, 1981) By the method of [16,5.11], I have proved 

exactness in Conjecture A if dim A ~ 4 and that D O is injective 

(without dimension restriction), both results assuming A is essential- 

ly of finite type over a field of characteristic ~ 2. 
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