
THE EXACT SEQUENCE OF A LOCALIZATION FOR WITT GROUPS 

by William Pardon* 

gO Introduction 

It is often useful to compare the value of a functor defined 

on a "global" ring to its values on the "local" components of the 

ring. For example, the Hasse-Minkowski theorem [L,6.3.1] states 

that a quadratic form over a global field F is isotropic if and 

only if it is isotropic over its completions at the "places" of F. 

A straightforward consequence of this deep theorem is a local- 

global comparison of the above type, where the functor W of a 

ring A, W(A), is a stable Grothendieck group on isometry classes 

of quadratic forms over A: 

(0.1) : There is an injection W(F) ~ nW(F~) where F is a 

global field and F~ is its completion at the place 

(or prime, possibly infinite) qp . 

There are two observations to be made here. First, if ~ is a 

finite prime, F is an algebraic number field and A is the ring 

of integers in F, then W(F~) _~ W(A/~) . A/I ? is a finite field, so 

W(A/~) is easy to compute. Second, even though the components 

W(F~) _~ W(A/~) of (0.i) give a classical, tractable list of 

invariants for elements of W(F) . (0. i) does not reveal which 

elements of ~W(F~) arise from global forms. That is, (0.i) does 

*Partially supported by NSF Grant MPS 71-03442. 
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not compute W(F), even in the simple case F = ~. It turns out that 

if F = ~, all finite collections of local invariants are realized, 

so that W(~) ~W(Z/pZ) + W(E) . Since W(~) ~ Z ~ W(~) (via the 
P 

signature), this fact may be expressed through a split exact sequence 

[MH, IV.2. i] 

(0.2) W(Z): : W(~) . ~ [W (Z/pZ) 
P 

which amounts to the desired computation. 

generalizes to (see [MH, IV.3.4]) 

It turns out that (0.2) 

(0.3) W(A); :W(F) J H W(A/m) :: ~/ 2 
finite 

where ~ is the ideal class group of A. Taking into account 

Quillen's localization sequence for algebraic Ki-groups (for low 

dimensions [S,8.4]) and the fact that there exists a comparable 

sequence of Witt groups Wi, it is reasonable to expect that (0.3) 

extends to a "long exact" sequence. Theorem (2.1) of this paper 

exhibits the localization sequence for Witt groups. 

The above remarks are hindsight since (2.1) was first proved 

(in the special case where A is the integral group ring of a 

finite group) using surgery theory; the algebraic constructions in 

this paper are thus geometrically "realizable". Further, in the 

applications of (2.1) (or (0.3)) one calculates W~ (A) (or W(A)) from 
1 

knowledge of the rest of the exact sequence. Max Karoubi [K] has 

independently produced a part of this exact sequence (2.1), but 

some of his arguments required conditions on the ring A in (2.1) 

(e.g., 1/2 E A or A Dedekind), which made the applications I had in 

mind inaccessible. Theorem (2.1) contains strong (but removeable) 

restrictions on the localized ring B, but is general enough to 
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make calculations of Witt groups and surgery obstruction groups. 

These could not appear here due to space limitations and will be 

in another paper (see [P2] ). Andrew Ranicki has also announced a 

version of (2.1) in [R']. 

I have followed the definitions and notational conventions of 

Bass' foundational paper [B] as closely as possible. In an effort 

to make the paper self-contained, w integrates into a summary of 

background material from [B] the basic definitions and facts con- 

cerning quadratic forms in the category of torsion modules with 

short free resolution. A statement of the main theorem (2.1) and 

a summary of the rest of the paper is the content of w 

Proposition (1.17) and the idea of an "integral lattice" 

((i.i0),(3.1)) are the basic tools in the proof of (2.1). I am 

aware that (2.1) can be proved much more generally, but it seemed 

that in making the most general formulation the paper would be too 

long and technical and that the prominence of these two ideas would 

be obscured. 

Notational Conventions 

+ means 

[ . 1  ,, 

(.) ,, 

direct sum 

1 - 1 homomorphism 

onto homomorphism 

bibliographical reference to * 

reference to (*) in this paper. 

If M. and N. are modules, and f..: M. ~ N. are module homo- 
J. j ~ j  i j 

morphisms, 1 <__ i < n, 1 < j <__ m, then the matrix (fji) denotes the 

obvious homomorphism M 1 + M 2 +...+ M n ~ N 1 + N 2 +...+ N m. 
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1 
w The category ~F; basic definitions and results 

for quadratic forms 

(1.1) The localization. Let A be a ring-with-involution containing 

I, where the involution is denoted " ": a + b = a + b, ab = ba, 

T = i, for all a,b E A. All A-modules will be right A-modules unless 

otherwise specified. Let Z c A be a central multiplicative subset 

containing 1 such that Z contains no zero-divisors (as = 0 

a = 0, a E A, s E ~), s = s for all s E ~, and the ring of quotients 

B = A is an Artin, semi-simple, A-injective ring containing 1/2. 

Thus the localization map L: A + B is an injection of rings-with- 

involution and - | B is exact. All A-modules considered in this 

paper, with the exception of B and B/A, will be finitely generated. 

Let V be a two-sided A-module (in practice, V = A,B, or B/A) 

and M an A-module. If ~ denotes HomA(M,V) then ~ is in a natural 

way a left A-module, but is always taken to be a right A-module by 

setting (fa) (m) = af(m) for a E A, f ~ ~, and m ~ M. If h: M ~ N 

is an A-module homomorphism, there is a natural homomorphism 

h*- ~. = M and = h; make the same V" N$ ~ If V = A, then set M~ h~ we 

conventions for B-modules M and set M~ = M, h~ = h. A homomorphism 

~: F ~ G between free A-modules (B-modules) with chosen bases will 

be identified (when convenient) with its matrix, also denoted ~; 

conversely, any matrix ~ will be identified with a homomorphism 

of free modules. If we write F = A n (F = B n) we mean F has a 

chosen basis. The induced homomorphism ~: G + F has matrix 

[B,I.2.7], the conjugate transpose of the matrix ~. If V = B/A, 

set H = M ~ and h~ = h ~, where M is an A-module and h: M ~ N an 

A-module homomorphism. 
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(1.2) T-torsion. An element m in the A-module M is said to be 

Z-torsion or a torsion element if there is s E Z such that ms = 0. 

Since Z is central, the subset tM ~ M consisting of torsion elements 

is an A-submodule, the torsion submodule. M is called a torsion 

module or torsion if tM = M. A standard argument [c, 0.6.1] shows 

that the sequence 

(1.3) tM~----~M j M | B 

is exact. Hence M is a torsion module if and only if M | B = 0. 

Let ~ be the category of torsion modules having short free 

resolution; hence S E ~ if S | B = 0 and there is an exact sequence 

A n~ An-~s. Here is a fundamental proposition. 

(1.4) Proposition: If M is a torsion module with short free 

resolution F~ G ~M, there is a natural isomorphism 

k: Ext~(M,A) ~ M ~ 

and hence an exact sequence G~ F ~M ~. 

Proof: From the short free resolution, we obtain the exact sequence 

~: ~ : F J' ~ EXtAI(M,A) 

since G is A-free and tM = M implies M = 0. Identifying Ext~(M,A) 

with coke), define k as follows. Let f E F. The bottom hori- 

zontal map can be defined to make the following diagram commute 

because B is A-injective 

f 
F ~A 

~ (~ -1) 
G )B . 
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The map f(~-l) is unique because ~ @ B is an isomorphism. 

and x E ExtAI(M, A) -= cok(~) define k by the formula 

(1.5) k(x) (m) = r.f(~ -I) (j-l(m)) 

where r: B ~ B/A is the quotient map, j'(f) = x,and j-l(m) 

is any element for which j(j-l(m)) = m. Thus, 

(1.6) ~(f) (m) = r-f(~-l) (j-l(m)). 

If m EM 

E G 

Details are left to the reader. 

The following is well-known: 

(1.7) Proposition: Let (R) (An~ A n aS) and (R') (Am~'A m j' = -- ~ S) 

1 
be short free resolutions of S ~ ~D F. Then there are non-negative 

integers k, ~ with n + k = m + s and automorphisms ~ ,~': A m+~ A m+~ 

such that ~(~ + Ik) = (~' + IL) ~' and (J,0k) = (j',0s where 

An+k (j,0 k) : -~ S is j on the first n factors and zero on the 

rest; (j',0) is defined analogously. 

(1.8) Examples: (a) Let ~ be a finite group, A = Z[,], B = ~[,], 

-i 
Engg = 7ngg , ng E Z or ~, g E n. (b) Let B be a number field 

with Z 2 c_. Gal (B/Q) furnishing the involution (or B could have 

trivial involution), and A = the ring of integers. More generally, 

B could be a semi-simple algebra-with-involution, 1/2 E B, and 

A any order taken to itself by the involution. (c) Let 

= tll,.., n I] .... = t -1, B = @(tl, ..,tn). A T[tl, ,tn,t , induced by ~i 1 " 

(d) Making (c) more exotic, let ~ be a Bieberbach group. This 

means there is an extension 7n~ ~ -~ n, where Z n is free abelian, 

normal and maximal abelian in ~, and n is finite. ~ is "classi- 

fied" by @ E H 2(,,;z n) where ~n has a ~-action arising from the 
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extension. From 8 construct, by extension of coefficients, 

8' E H2(n; ~(tl,-..,tn)') determining a division ring B such 

that Z[{] imbeds in B as a localization. 

(1.9) The settin~ for quadratic forms: We will recall from [B] 

the context and definitions of unitary K-theory. Many of our defi- 

nitions will be stated only for A-modules, but when they make sense�9 

they are understood to apply to B-modules as well. Let (A,A,A) 

be a unitary ring with involution ([B,I.4.1]) where we require 

special values for A and A- Thus, A is a ring-with-involution 

(i.I), ~ = ~ i, and A = S (A).. = [a + ~a I a E A]. If ~ E Mn(A), 

the set of (nxn)-matrices over A, ~ denotes its conjugate trans- 

pose, thus making Mn(A ) a ring-with-involution. Set 

S ~  = Sk(Sn(A)) = [e ~ Sn(A) I e = ~, eii E S (A)]. If 

1/2 E A, S A(A) = [a E A I a = ka]. 

(1.10) Forms: If M,N are A-modules and V = A or V = B/A, a function 

g: N X M ~ V is a sesquilinear for m if it is biadditive and satisfies 

g(na,mb) = ag(n,m)b, for all a,b ~ A, n E N, m E M. If L ~ N 

we define its orthogonal complement, L_. ~ to be [m E M I g(L,m) = 0}. 

The natural form ( , )M: ~ X M ~ V, defined by (f,m) M = f(m), 

where f E ~, m E M, is a sesquilinear form. If h: M ~ N is a 

homomorphism, (h~f,m>M = (f,hm)N. ([B,I.2.1].) A sesquilinear 

form g: N • M ~ V is nonsingular if the ad~oints 

(l.ll) 

d: N )~ �9 
g 

dg: M )~ , 

(gd(n),m> = g(n,m) 

(dg(m)�9 = g(n�9 

are isomorphisms. If N = M is A-free with basis [el�9 �9 the 
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map dg: A n ~ (An)*v has matrix (g(ei,ej)) ([B,I.2.7]). We sometimes 

use the matrix (g(ei,ej)) to denote dg; on the other hand gd is 

more convenient for some purposes since no .... appears in its 

definition. From the natural form we obtain the adjoint map 

= d< , >M: M ~ (~)~. M is called V-reflexive if ~ is an 

isomorphism. If M is A-projective (B-projective) then it is 

(B-reflexive) ; if M E ~F I, then by (1.4) it is B/A- A-reflexive 

reflexive. If M and N are V-reflexive then [B,I.2.4] we need 

only verify one of the conditions (l.ll) for nonsingularity. 

B n An A-submodule L c is a lattice if the inclusion induces 

B n B n B n L ~ B _~ B n. If g: • ~ B is sesquilinear and L c is a 

lattice, then L inherits a sesquilinear form gL: L • L ~ B. The 

dual lattice L__' = {x ~ B n I g(x,L) c__ A]. If g is nonsingular, 

then the induced sesquilinear form ~: L' • L ~ A is nonsingular 

and there is a natural identification of L' with ~.. If L is 

A-free with basis [el,...,en] then there is a "dual basis" 

[e[,...,en*] such that ~(e*,ej) = 6ij. If L has a basis, it will 

be assumed L' has the dual basis. 

(1.12) h-Forms: If a sesquilinear form g: M • M ~ V satisfies 

g(m,m') = kg(m',m), for all m,m' E M, it is called A-hermitian. It 

is even ~-hermitian if, in addition, g(m,m) E S (A), for all m E M. 

If M is free and V = A, g is even if and only if dg s S (A n ) �9 

Now let r: B + B/A and r'-4. B + B/S~(A) be the projections. 

(l.12a) If V = A, M is A-free and q: M ~ A/S_~(A) is a function, 

the triple (M,g,q) is a ~-form if g: M • M ~ A is ~-hermitian and 

for all m,m' E M, a E A, 
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(i) q(ma) = aq(m) a 

(ii) q(m+m') - q(m) - q(m') = r' g(mjm') -A 

(iii) q(m) + Aq(m') = r'Ag(m,m). 

K c M is totally isotropic if g I K x K _= 0 = q I K. F0k(A) denotes 

the set of isometry classes of nonsingular A-forms (M,g,q) where 

A (A) is an abelian semigroup under ortho- M is free of even rank; F 0 

qonal smm. denoted "I". We define k-forms (Bn, g,q) in a similar way. 

Remark: Given A-hermitian ~: M X M ~ A, M projective, the condition 

"g(m,m) 6 S A (A) for all m E M" guarantees the existence of a function 

q with the properties above [B,I.3.4]. In our definition we require 

a specific choice of q. The reader should compare (l.12(a)) with 

the setting of [B,I,4.4]. If 1/2 E A, g determines q. 

1 
(l.12b) : If V = B/A, M E ~b F, ~: M • M + B/A is A-hermitian, and 

~: M ~ B/SA(A) is a function, the triple (M,~,#) is called a ~-form 

if for all m,m' E M, a E A 

(i) #(ma) = a#(m) a 

(ii) #(m+m') - ~(m) - #(m') = ~(m,m') + ~(m',m) 

(the right-hand side is well-defined in B/SA(A)) 

(iii) r%(m) = ~(m,m) 

K c_ M is called totally isotropic if ~ I K X K _-- 0 =- # I K. F~ 0(B/A) 

denotes the set of isometry classes of nonsingular k-forms (M,~,%), 

A (B/A) is an abelian semigroup under the operation of M E~DFI; F 0 

orthogonal sum, denoted "." 

Remark: (i) We have defined "k-form" in two quite different ways; 

the context makes clear which of (l.12a) or (l.12b) we mean and 
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in any case we always use Latin characters f,g,h,q,p, etc. in 

(M,gjq) for (l.12a), and Greek characters in [l.12b). (ii) We 

are unable to show that an intrinsic condition like "~(m,m) E Sk(B/A)" 

allows us to conclude the existence of # as an analogous condition 

does in the category of projectives (remark after (l.12a)). This 

1 analogous is what keeps us from a neat formalism for k-forms over ~F 

to that in [B,I.4.4] for projectives; (1.17) and (1.18) might be 

thought of as a substitute. 

k(B), and ~(B/A) : (~) Let P be A-free. The (1.13) W (A), W 0 W 0 

k-form (P + P'gh'qh ) is hyperbolic, and is denoted ~{(P) if P 

and P are totally isotopic and gh I ~ • P is the natural form. 

I(A) by the subgroup The quotient of the Grothendieck group on F 0 

generated by ~(An), n E Z+, is denoted W~(A), the Witt group. We 

k(B) similarly. define W 0 

1 The ~-form ~(S) = (S + S~,~h,~ h) is (~) Let S E ~F" 

hyperbolic if S and S ~ are totally isotropic and ~h I S^ x S is 

the natural form. If T s ~, (T,~,#) is a k-form, and K c T, 

1 
K E ~F' is a totally isotropic submodule, (T,~,#) is a kernel and K 

a subkernel if the induced sesquilinear form (T/K) • K ~ B/A is 

nonsingular. Clearly ~(S) is a kernel with subkernels S and S A . 

W~(B/A) is the Grothendieck group on F~(B/A) modulo the subgroup 

generated by kernels. 

% 

(1.14) Before we define the W~-functors, we make constructions 

(1.17) and (1.18) fundamental to this paper. 

(1.15) Lemma [C2,1.4] : Let (S,~,#) be a k-form. For each t E S 

there is b E B such that r'b = #(t) and b = ~ b, where 
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r': B ~ B/S (A). 

Proof: By (1.12b(i)) %(-t) = #(t) and by (l.12b(ii))#(t+(-t)) -~(t) 

- #(-t) = -(~(t,t) + k~(t,t)) so 2#(t) = ~(t,t) + ~(t,t). Hence 

if b,b' E B are such that r'b = #(t) and rb' = ~(t,t), r: B ~ B/A, 

then 2b = b' + Ab' + c, c ~ Sk(A). Hence b = i/2(b' + Ab') + 1/2c 

sob= A~. 

(1.16) Corollary: $(t) = A~(t) for each t E S. 

With (S,~,%) as above and A n~ A n ~S a resolution of S, 

let [el,...,en] be a basis for A n and choose (by (1.15)) ~ik E B, 

1 <__ i,k ~ n, such that ~(Jei,Jek) = r7ik, %(Jei) = r'~i i and 

7ik = A~ki" We use ~ = (Tik) E Mn(B) to define in the obvious way 

a ~-hermitian form, also denoted T, 

A n A n T: X JB. 

is called a covering of (S,~,~) with respect to the resolution 

A n~ A n ~S. This gives part (a) of 

1 
(1.17) Proposition: Given a A-form (S,~,#), S E ~, and any resolu- 

tion A n~ A n ~S, we may find a A-hermitian form ~: A n x A n ~ B such 

that if r: B + B/A and r': B ~ B/S~(A) are the projections and 

m,m' E An, 

(a) 

and 

(b) If 

~'T E M  
n 

(j(m),j(m')) = r7(m,m') 

#(j(m)) = r'T(m,m). 

A n A n T also denotes the matrix of ~ : • ~ B, then 

(A), ~ E S A (A) and the diagram 
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A n 

J 

T -  
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d 

, E n 

~, T ^ 

Proof (of (b)): Consider the sesquilinear form g: A n X A n + B where 

g(m,n) = T(~ (m),n), m,n ( An- Since r.g(m,n) = r.~(~ (m),n) = 

(j~ (m),n) and j# = 0 , g takes values in A. We claim d = ~.d ; 
g 

~T- : A n ~ (~ij) this gives E Mn(A) since the matrix of d + (An), * is 
7 

by (l.10). Let m,n E An: (~d~(m))(n) = <~d (m),n>B n = <dT(m),~(n)>Bn 

= ~ (~ (n),m) = d (m)(n), which verifies the claim. Similarly, if we 
g 

A n A n consider the k-hermitian form f: x ~ A, where f{m,n) = 

T(~ (m),# (n)) we find its matrix is DT~ ; it is in Sk(A n ) because 

r'f(m,m) = r'~(~(m),~(m)) = ~(j~(m)) = 0. Finally, let m E An, 

t E S, and j-l(t) E An any element of A n such that j(j-l(t)) = t. 

[~(~dT - -l(j-1 = r<d (m),j-l(t)) Then (m)) } (t) = r<~d (m) ,~ (t)) > n , n 
B B 

= rT(j-l(t),m) = ~(t, jm) = d (jm) (t) . This completes the proof. 

The following "converse" is left to the reader. 

Proposition: Let S E I~F have short free resolution A n~ A n -~ S (1.18) 

A n A n and let ~: x ~ B be a ~-hermitian form such that ~ E Mn(A) 

and~ E SA(An). Then the equations of (l.17a) define a ~-form 

(s,~, ~). 

(1.19) The unitary group ~n(A): The set of isometries of the 

hyperbolic ~-form ~A n) = (A n +An, gh,qh ) (1.13) form a group, 

U~n(A), whose elements ~ may be written ([B, II.4.1.2]) 
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a = ( ) 6 GL2n(A) 
6 

where 

(1.20) : 

(i) u,~,y,6 E Mn(A) 

(ii) 6u + k~ = In, the (nxn) identity matrix 

(iii) 56, ~u E S_~(An) ((1.9) for S_L(An)). 

If ~ E U n(A) as above and a' = ( , ) set 

| 

a 0 p" 0 

0 =' 0 ~' 

0 7' 0 8' 

E U ~ 2 (m+n) (A) . 

If 12 = (0 1 ) E U n' we obtain a sequence of stabilization homomor- 

phisms U2~n(A ) ~ U2~(n+l ) (A), a ~ o - 12. Letting n ~ - we obtain 

U A (A), whose abelianization is denoted KUIk(A). 

(1.21) : Here are some special elements of U2An(A). 

~i 01 2 k w ~ = w ~ (a) w = (~ 0 ) E U (A); n n-i ~ Wl" 

(b) The homomorphism H: GLn'(A) ~ U A (A) sends ~ E GL (A) 
2n n 

to H(~) = (u 0 ) . This stabilizes to H: GL(A) ~ UA(A) whose 
0 ~-i 

k (A) is abelianization is a homomorphism H l- K 1 (A) ~ KU~I (A) . W 1 

the cokernel of H I. 
I 0 n ) 

(c) Let ~,~ E S_~(An) and set X+(D) = (D I n 

I 0 
n k2 X_(7) = ( I ) E U n(A). If (Z) denotes the smallest subgroup 

n 
containing Z, then ([B, II.5.2,IT.4.1.3]) 

(1.22) KUkI(A) = U~(A)/({X+(D)'X_ (~) I D,~ E S_~(An), n E ~'+}) 
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(1.23) W~(A)=U ~ (A)/<[X+(D),X (T),H(s) I p,TES_k(A n ),uEGLn(A),n$Z+]>. 

(1.24) The matrices s,7 (1.20) define an injective map (~,~): A n + 

A n + ~n, whose image has a complementary summand equal to 

im((~,6): ~n + A n + ~n). The relation Qu E S k(An) in (1.20) is 

equivalent to the condition that gh and qh annihilate im(s,y). 

Indeed, let a sesquilinear form [ , ]: A n • A n + A be defined by 

(1.25) [x,y] = gh(~(x),s(y)) , x,y E An. 

so Ms E S k(An) if and only if [ , ] Then [ �9 ]d = Ms, is an even 

(-k)-hermitian form. But gh(im(u,y)) m 0 if and only if 

gh(N(x),s(y)) + gh(~ (x),~(y)) = 0 for all x,y; and qh(im(~,7)) -= 0 

if and only if qh(~(x) + ~(x)) = gh(s(x),~(x)) E S_k(A). The 

condition ~6 E S_k(A n) may be interpreted analogously. 

In a similar way the condition 6s + A~ = I n (l.20(ii)) means 

that im(u,N) + im(~,6) = A n + ~n and that the form induced by gh 

~n A n on ~n X An--identified with im((~,~) : ~ + ~n) x 

A n A n im((~,~) : ~ + ~n)__ is the natural form (i.i0). 

(1.26): Using the remarks in (1.25), suppose conversely that a 

split injection (u,7) : A n ~ A n + ~n is given, with totally isotropic 

image. Then [B,I.3.10] shows we may find (~,6) : ~n ~ A n + ~n such 

that im(~,6) is totally isotropic, im(s,7) + im(~,6) = An + ~n, 

and im(~,6) • im(u,N) has induced on it the natural form. By (1.25), 

this means 

= ( ) E U2 An(A) . 
7 6 

In fact it is easy to show that (u,M) determines the class of ~ in 
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W~(A). In this setting stabilization of a, addition of w~, the 

right action of X+(p), X_(7) and H(r (1.21) on translate, 

respectively, to 

(1.27) : 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(u,7) ~ 12 = (u + 1 A, ~ + 0A). 

(a,~) ~ ~k 1 = (a + 0A, ~ + ~IA) . 

~,~)x+(~) = (~ + ~,~). 

(~,~)x_(~) = (~,~ +~). 

(~,~)H(r = (~,,~-l). 

The operations of (1.27) (i), (iii), (iv), (v) generate an equiva- 

lence relation on split injections (u,M) with totally isotropic 

image, having a group of equivalence classes equal to W~(A). 

(See [R).) 

% 

(1.28) Wl(B/A) : The purpose of the remarks in (1.24) and (1.26) 

1 
was to motivate the following definitions. Suppose H,K E 9' 

~(H) = (H + H^,~h,#h ) is the hyperbolic A-form and 4: K + H + H* is 

an injection with totally isotropic image. Then if ~ = (~,C), 

~- K ~ H, ~- K ~ H ̂ , define a (-~)-hermitian form [ , ] : K • K ~ B/A 

for k,k' ~ K by 

(1.29) [k,k'] = ~h (~(k)'~(k')) (compare (1.25)) . 

(1.30) Definition: A ~-formation is a 4-tuple (K,H,A,~) where K 

1 
and H E ~, A: K ~ H + H ̂  is an injection whose image is a subkernel 

of ~(H) and (K, [ , ], ~) is a (-A)-form, where [ , ] is given 

Fkl(B/A) denote the set of isomorphism classes of by (1.29) Let i 

),-formations (isomorphisms induced by isomorphisms of K and H 
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and ~). F~(B/A) is an abelian semigroup in the preserving 

obvious way, with zero element the A-formation where K = H = 0, (the 

"zero formation"). 

(1.31) Remarks: (a) [ , ]d-~ ~C. Indeed, if k,k' ~ K, then 

{~^C(k)] (k') = <~^~(k),k')x = (c(k),|(k'))K = ~h~(C(k),~(k')) 

= [[ , ]d(k)](k'). (b_.) The (-~)-form (K,[ , ],~)corresponds by 

(a), (1.24), and (1.25) to the condition ~ E S_A(An) (1.20). We 

have required additionally in (1.30) a choice x of splitting, 

corresponding to a choice of splitting for ~ (or a choice of q-form 

for [ , ] of (1.25)--c.f. Remark (l.12a).) Thus ~: K ~ B/S_~(A) 

is extra structure and is comparable to Sharpe's idea of the "split 

unitary group" ([Sh, 83]). 

(1.32) Operations on F~I(B/A). Let 8 = (K,H,A,~) E F~I(B/A) be 

given and let E denote the short exact sequence of elements of 

1 
~F" (E) = (J~ H I ~ H). We define a k-formation ~E @ = (KI,HI,AI,X I) 

as follows. Let K 1 be the pullback in the diagram 

(1.33) 

Jl 
J~ ;K~ ....... ~ K 

1 ' 1 = i g I 
i 

j 
J'~ ; H 1 ;: H 

Define ~l = J~Jl' and Xl = ~Jl" Then one verifies that if 

41 = (~i,~I) , then SE 8 = (KI,HI,~I,~I) is a ~-formation, well-defined 

up to isomorphism by 8 and the isomorphism class of (E). In 

a similar way, given (E) = (L + H~ ~ H ̂ ) let K 1 be the pullback in 
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L) ) K ~K 

= i C1 C 
P 

L~ ~ H. ~ ~ H ~ 
I 

and set ~I = ~*'~'~i" Xl = ~i and A 1 = ({I, CI ) . Then 

Ea8 = (K1,H1,AI,Xl) is a k-formation. 

(_b) If (H,~0,#) is a (-A)-form, let x_(H,~0,#)G = (K,H,A',x') 

where 4' = (~,C + %'~) and x' = ~ + #'~. If (H*,~,#) is a 

(-k)-form, let x+(H',~,#)8 = (K,H,A',x') where 4' = (~ + %'C,C) 

and ~' = ~ ~ #'C" 

(1.34) Definition: W~I(B/A ) is the semigroup F~(B/A) modulo the 

equivalence relation, ~, generated by the following four operations 

(notation as in (1.32 (a)(b)): 

(i) 8 ~ UES, (E) = (J ~ H I ~ H). 

(ii) 0 ~ Ea0, (E) = (L ~ H I . 

(iii) % ~ x_(H,~,#)0, (H,~,#) a (-k)-form. 

(iv) 0 ~ x+(H,~,#)0, (H^,~,%) a (-k)-form. 

(1.35) Remark: W~I(B/A) is an abelian semigroup. The main theorem 

(2.1) implies it is a group, but we have no direct proof of this. 

The notation has been chosen so that the operations of (1.34) 

correspond to the following operations on a E U2An(A) (see (1.27)) 

(i) a ~ 12m I 0. 

k 
(ii) a ~ W2m i a. 

(iii) G ~ X_(p)u, p E S_k( An ). 

(iv) u ~ X+(T)u, 7 E S A( An ) �9 

It is customary to call W]~(A)/<Wn, n E T+> the Wall group, Lh(A). 
k 
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is essentially a Wall group, not a Witt group. 

w The main theorem 

(2. i) Theorem: Let A 

quotients as in (i.I). 

abelian groups, k = +I, 

be a ring-with-involution, B a ring of 

Then there is a long exact sequence of 

, , Wl~ (B) 

The proof of this theorem occupies the rest of this paper. 

We first define ~ and ~0 k (83,4) and prove exactness of the last 

five terms (w Then we define ~k 1 and s (w and prove exact- 

ness of the first five terms (w The maps ~6~i, i = 0, I, are 

induced by tensoring with B ("change of rings," [B, 1.6.3]). 

The theorem implies WkI(B/A) is a group (cf. (1.35)). 

~3 ~0k: W0k(B) ~ Wk0(B/A) 

(3.1) : This homomorphism is classical for example (l.8b). It is 

easily shown that, when A is the ring of integers in a number 

field B, =~0 is essentially the direct s~n over all primes ~ c A 

of the "second residue class map, denoted ~2 in [L], #2 in ~qH](~Ji(0.3)) 

Let a k-form (Bn, g,q) be given (since 1/2 E B, g determines 

q, but we keep it in the notation for completeness). Find an 

"integral" lattice L c Bn; i.e., find L _~ A n such that g (L x L) c__ A, 

q(L) c A/S k (A) (clear denominators in a matrix representation for 
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g). If L' denotes the dual lattice (1.10), then L ~ L' and if S 

denotes L'/L, S E .~F 1. We construct a non-singular ~-form (S,~,%) 

as follows. Since g(L' • L) = g(L • L') ~ A and q(L) ~ A/S_k(A) , 

gL' = giL' defines a k-form (S,~,%) (l.12b) 

(3.2) 
~: (L'/L) • (L'/L) ~ B/A, 

,~: L'/L ~B/Sk(A), 

~(jz,j~') = rg(~,~') 

%(j%) = r'g(%,%) 

where S = L'/L, j: L' ~ L'/L, r: B ~ B/A, r': B ~ B/Sk(A), and 

~,L' E L'. That d is injective follows from the definition of dual 

lattice. To see it is surjective, if f ~ S ̂  = (L'/L) A there is 

E (L')~ such that r~(~) = fj(P), ~ E L'. Since g is nonsingular, 

there is ~ E Bn such that d(y) = ~. Since ~(L) c__ A and 
g 

~(L) = g(y,L), we have y E L'. By definition d(j~) = f. Thus 

an isomorphism, so (S,~,%) is nonsingular. Let L~A(B,g,q;L) d is 
u 

(B,g,q;L) denote the isometry class of (S,I~,#) E F~(B/A) and ~0 

its class in W_ k (B/A). 
0 

k n 
(3.3) Proposition: ~o(B ,g,q;L) depends only on the class of 

k (B) (B,g,q) in W 0 . 

Proof: To show independence of ~0k(Bn, g,q;L) from L, it suffices 

to show ~0k(Bn, g,q;L) = ~0k(Bn, g,q;I) where I c L, since any two 

integral lattices L and M contain a common sublattice I. From 

I c__ L we obtain 

I c L c L' ~ I'. 

If L0~(Bn, g,q;I) = (T,~I,#I) and K = L/I then K E ~, K c__ T and 

is totally isotropic. By definition of dual lattice, K I = L'/I 

and under the identification K• = (L'/I)/(L/I) _~ L'/L we have 

K 
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~i I (KI/K) • (KI/K) = ~ and %i I (K'/K) = #. Hence to show 

~0 k(Bn'g'q;L) = ~0 k(Bn, g,q;I) it suffices to prove the following lemma. 

(3.4) Lemma: Let a nonsingular k-form (T,~,~r) be given, T E -~F I. 

Suppose there is K E ~, K c. T, and K is totally isotropic. Then 

if S = Kl/K,the naturally induced k-form (S,~',#') equals (T,~,#) 

in WOk (B/A) , provided (S,~ ',% ') is nonsingular. 

% 

Proof: (S,~',%') ') ' = 0 , (S, (-~ , (-#) ) 0 in W (B/A) (the diagonal 

submodule is a subkernel) so it suffices to show (T,~,%) 

= 0 in W0k(B/A ) . Hence it suffices to take (s, (~'), (-~')) K K 1 

in the following sublemma. 

k(B/A) and K 1 c S totally isotropic (3.5): Suppose given (S,~,~) E F 0 

such that the induced sesquilinear form (S/KII) • K 1 ~ B/A is 

nonsingular and the induced k-form (KII/KI,~I,#I) is nonsingular 

and is a kernel. Then (S,~,#) is a kernel (see (l.13b)). 

Proof: Let K 2 be a subkernel for (Kll/Kl,~l,%l). Let J' be the 

pullback in 

~__ P j. ~K i I 

I 
i 

~ ) K I" .~ Elk/E 1 

and let J be its image in Kll ~ S; it is easy to see J is 

totally isotropic. Further, the diagram shows that Kl~/J m 

(Kll/K1)/K 2 ~ K2". The sequence of injections J ~ KI~ ~ S gives 

rise to the short exact sequence of cokernels 

Kll KIt ^ K 2~ --~ /J: ; S/J :: S/ _~ K 1 , 
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which by construction is HomA(-,B/A ) of the exact sequence K 1 ~ J ~ ~. 

This shows S/J ~ J* so the induced form (S/J) • J ~ B/A is nonsin- 

gular. Hence J is a subkernel. 

Continuing the proof of (3.3), suppose (Bn, g,q) is isometric 

to (Bnig',q'). Then there is an automorphism ~: B n ~ B n such that 

= ~dg,~. _ B n dg If L c is integral with respect to g, then I = ~(L) 

is integral with respect to g' and ~(I') = L'. It follows easily 

Using we may take that L (Bn, g,q;L) = L 0 k(Bn, g',q' ;I). 
~(B n) 

this 

to be represented by ~(A n) | B and clearly ~(~(A n) | B) = 0 (we 

may find a lattice L = A n + ~n with L = L'). This completes the 

proof of (3.3) and shows we have a well-defined homomorphism 

+ 

w '~0 k" WA0(B/A) -~ Wlk- (A) 

(4.1): Let a nonsingular ~-form (S,~,#) be given. Choose a short 

free resolution for S, (R) = (A n~ A n ~ S) and let (R ~) = 

(An~ An ~S*) be the dual resolution (1.4). Choose a k-hermitian 

A n A n form ~: • ~ B satisfying the conditions of (1.17). Hence for 

A n A n m,m' E A n , and ~ also denoting the matrix of T: • ~ B, 

(4.2) 

~(j(m),j(m')) = rT(m,m'), 

#(j(m)) = riT(m,m) 

~ E Sn(A) , ~Ta ( S (A n ) 

N _ An 
J'~T = d -j: ~ S'. 

r- B )B/A 

r'- B , B/S k(A) 

Setting M = ~u, we have ~u = ~Te ~ Sk(An); further, we claim 

A n A n ~n (~,~): ~ + is a split injection with totally isotropic 
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image. Once we verify this the discussion of (1.26) shows how to 

construct 

(4.3) G = [, E U (A) 

6 

which, as an element of WIk(A), depends only on the pair (~,7). 

Since u is injective, (u,~) is injective. We will show that 

t(cok(e,N)), the torsion submodule of cok(u,7), is zero and conclude 

that cok(u,7) is free. Hence (u,7) is a split injection. Suppose 

(e,f) E A n + ~n and (u(m),7(m)) = (e,f) s = (es,fs), for some m E M, 

s E Z. Since ~ = 7u, we get u(m) = es and 7u(m) = fs; hence 

7(e) = f. If e E is(u)�9 then j(e) ~ 0 so d j(e) = ~7(e) # 0 

since d is bijective. But T (e) = f E ~n and ~ is the zero map. 

Thus ~(m') = e, for some m' E A n and >(m')s = Tu(m')s = fs, so 

N(m') = f. Thus (e,f) E im(~,M). Denote J = im(u,7), let 

h: (A n + ~n) • (A n + ~n) ~ A denote the hyperbolic ~-hermitian 

form and let g: J • ((A n + ~n)/j) ~ A denote the induced sesquilinear 

form. We have the exact sequence J~ A n + ~n J (A n + ~n)/j, and 

the commutative diagram 

J> (u,~) = i ~ A n + ~n 

g - h 

(A n + ~n)/j 5 > A ~n 

Since h is nonsingular, d is injective; clearly d ~ B is an 
g g 

isomorphism so cOk(gd) is torsion (1.2). But cok(i) is torsion-free, 

so gd is an isomorphism. Thus cok(~,~) = (A n + ~n)/j ~ ~ ~ ~n is 

free~ so J is a summand of A n + ~n as desired. 
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We denote I (S,~,#;R,~) = o ~ U (A) (4.3) and let ~0(S,~,#;R,~) 

w[ be the class of ~ in (A). 

% 

(4.4) Proposition: s is independent of the choices of 

R and ~. 

A n A n Proof: Suppose first that T'- • ~ B also satisfies (4.2) with 

respect to the resolution (R), so that D = T - ~' E S (A n ) . Then 

if I0(S,~,~;R,~') = ( . ), we have ~ = u' and (a,7) = (a,~a) 
7 

= (u,7'~ + pu) = (u,T'~' + p~') = (~',N' + ~')" Hence 

(S,~,~;R,~') �9 I0~(S,~,,~R,,) = X+(~)I0~(S,~,,;R,,') so ~0 ~(s,~,~;R,,) = n 0 

Stabilizing (R) = (An~ A n -~ S) to (R + ~) = (An+k;~+Ik;A n+k ~S) 

k ~(S,~,~;R,T) ~ I2k (stabilization we get I (S,~,#;R + Ik, , ~ Ok) = I 0 

(1.19)) where Ok: A k • A k ~ B is the zero form. If (R') = 

~' A m (A m ~+ ~S) is another resolution for S, then by (1.7) there are 

An+k An+k integers k, ~ with n + k = m + ~ and automorphisms ~,~': 

' A m+~ A m+L ~ B is defined such that (~' + I~)~ = ~ (u + lk). If T': • 

by T'(m,m') = (~ . Ok)~-l(m),~-l(m')) we have conditions (4.2) with 

,',~' + Ig replacing T,u and T' = ~-i(7 + Ok)~ -I- Thus, if Ok: A k~ A k 

is the zero map, (u + Ik, ~ + Ok) = (u + Ik, (7 + O k ) (u + I k)) 

= ( -l(u, + i ) , C7, ) ~-l(u, + I )~')) = ( -I(~, + I~)~',~7'~') 

Hence if ~": A m X A m ~ B is any covering where 7' = 9'(u' + I ). 

of (S,~,#) with respect to (R') (i.e., satisfying (4.2)), 

I 0~(S,~,#;R,~) ~ I2k = IoA(S,~,$;R + I k,T ~ O k ) 

= H(D-I) I0(S,~,#;R ' + I~,T')H~') 

= H~-I)x+(7 ' - (7" I O~))Ik0(S,~,#;R' + I~,T" + 0 )H~') 

= H(~-I)x+(T ' - (T" I O )) (Ik0(S,~,%;R',~") i I2z)H(~'). This 

completes the proof. 
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k(S #;R,7) E U2~n(A) p E S (A n ) and (4.5) Corollary: Given I 0 ,~, - , 

~' E GLn(A), we may find (R,T') and (R",T") satisfying (4.2) sucb 

that I0~(S,~,#;R",,")H(~ ') = I0k(S,,,#;R,,) = X_(P)I0k(S,~,#;R,7'). 

Proof: This follows from the proof of (4.4). 

(4.6) : 

that if (S,~,,) = 0 in W0(B/A), then s (S,~,#) = 0. 

(S,~,%) I (U,~',%') = (V,~",$") where (U,~',#') and 

% 

TO complete the construction of ~, it remains only to show 

Thus we assume 

(V,~",~") are 

kernels. The following lemma suffices. 

Then ~0(S,~,#) = 0. (4.7) Lemm_~a: Let (S,~,#) be a kernel. 

1 
Proof: By assumption there is K E ~ F such that K is totally 

isotropic and there is a short exact sequence K~ S ~S/K ~ K ~. 

A n~ An 3~K is a short free resolution for K, then (1.4) we have 

~n~ ~n ~K . and consequently a short free resolution (R) for S: 

:;S + S ̂ ) (R) = (An + An; (O ~I` An + ~n 

If 

~n A n where 8: ~ is a homomorphism. We claim there is 

T: (A n + ~n) • (A n + ~n) ~ B satisfying (4.2) with matrix 

T = 

Since ~IK • K ~ 0 and, under the identification S/K ~ K', ~I (S/K) X K 

is the natural form, ( , >K' it suffices to show that r<x,~-ly> n 
B 

= <~(x),j(y)>K where x,y E A n and r: B ~ B/A. But this follows 

directly from the definition (1.6) of ~. So ~ has the form 

claimed. Thus 
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-1 
where ~ = ~ 8 + v~. 

(see 1.20--w~ is not in U2~(A)) 

I 0 (S,~, # : hl 

n  nr~ 

Consider the element w ~ 0 1 i = (k 0 ) E GL 2 (A) 

and the element T 4 q U4k (A). 

represents zero in W[~(A) and introduced by Sharpe in [Sh]. Then T 4 

i ~iI 0 0 ), 
= ; set T ~ = T ~ .~ (4. I0) T4 0 0 4n " " T4 

0 (n terms) 

Thus, 

T k L ~ (S,~,~;R,~) 
4n 0 

o ~ 

The upper left-hand (2n X 2n) block is invertible so by [B, II.2.5(b)], 

(4.11) has the form X_(MI)H(u)X+(M2), hence represents zero in 

WIA (A) . 

85 Exactness of the last five terms of (2.1) 

(5.1) Proposition: The following sequence of groups and homomor- 

phisms is exact, where ~+k is induced by @ B: 
1 

~ c ~  ~ ~,-~ 4 .~.vA~ ~ - '~-~ 
W 0 ~ W 0 ~ , WIk(A) 1 ~" Wlk- (B). 
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A A Proof: (a) Exactness at W (B). It is clear that ~76 0 = 0. Let 

(Bn,g,q) be given with L0~(Bn, g,qTL) A (U,~,~) = (V,~,~) in F~0(B/A) 

(notation as in (3.1)) where (U,~,#) and (V,~',%') are kernel 

A-forms. We need the following lemma. 

1 
(5.2) Lemma: Let (U,~,#) be a kernel k-form, U E ~F" Then 

there is a hyperbolic A-form (Bn, g,q) and an integral lattice L c B n 

A(Bn, g,q;L) = (U,~,#) such that L 0 

Proof: In (4.7) we showed there was a resolution R of U and 

a covering 7 of (U,~,#) (4.2) so that 

Io~ (U,~, ~, :R,T) = 
o ~" . , .  

0 AI n 8 

Hence Iok (U,~, # IR, T) H (-~ I AIn 
0 ) = 

n 
I 0 
n 6' 
0 I 

n 

A t j  I )  t E SA(An) = I0(U,~,#;R ~ , for some choice of R , ' by (4.5) . 

By definition this implies there is a k-form B = (L,g,q), 

L = A n • ~n where g has matrix (-~_~ ~) such that 

-n B n ~n e | B = (B n + B ,g~qB ) has integral lattice equal to L c + 

-n 
Thus L (B n + B ,gB,qBTL) = (S,~,%). The matrix for e above 

-n 
implies (B n + B ,gB,qB) is hyperbolic, so the proof of (5.2) is 

complete. 

Returning to exactness, (5.2) allows us to assume 

n 
L0(B ,g,q;L) = (V,~,#) = a kernel A-form. We thus have a 
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resolution L~ L' ~V and ~ = gl L' covering (V,~,#) as in (4.2). 

By (5.2) again, we have a hyperbolic k-form (Bn,h,p), an integral 

B n lattice I c with corresponding resolution I ~ I' k_~ V, and a 

covering 8" I' x I' ~ B (8 = hII') of (V,~,#) satisfying (4.2). 

Let P be the pullback [(x,y) E L' • I' I j(x) = k(y)], 

P ..... ~I' 
J 
i 

I k 
I 

Clearly P is stably free. Define f in a ~-form (P,f,s) by 

setting f((x,y), (x',y')) = ,(x,x') - 8(y,y') where (x,y),(x',y') E P. 

This f is clearly k-hermitian and, since T and 8 each cover 

(S,~,#), f takes values in A and f((x,y),(x,y)) E Sk(A), for all 

(x,y) G P. To define s, take P to be free with basis [el,...,en], 

f(ei,e i) = a i + ka i E S (A), a i E A. Define s(e i) -= a i mod S k(A), 

and extend to s= P ~ A/S_k(A) using the conditions (l.12a). 

By definition of P, there are split exact sequences 

i 1 
L~ P hi', il(x) = (x,0) 

and i2 

I, P ,L', i2(Y) = (0,y). 

Clearly f(L X I) , 0 - f(I • L) from which we obtain induced forms 

L x (P/I) )A and I X (P/L) :A . 

Identifying P/I with L' and P/L with I' these become the nonsingular 

forms pairing a lattice with its dual lattice. It is easy to verify 

that this implies f is nonsingular. But since 
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(il+i2)~ 
(L + I) | B ) P | B is an isomorphism the construction of 

f shows (P | B, f | B, s | B) is isometric to (Bn, g,q) I (Bn,h,P). 

(B) Since (Bn,h,p) is hyperbolic ~0~((P,f,s)) = (Bn,g,q) in W 0 . 

(b) Given (Bn, g,q) representing an element of W0~(B) , let 

L c B n be an integral lattice and let Lok(Bn, g,q;L) = (S,~,#). Then 

(R) = (L~ L' ~ S) gives a resolution and T: L' • L' ~ B covers the 

~-form (S,~,#) as in (4.2), T = glL' X L'. 

has basis {ei] , we give L' the basis [ei* ] 

it is easily verified that Tu = I so that 
n 

Xo~(S,~,#;R,,) = ( ) = a. 
I 6 n 

Since n is even (l.13a) we may multiply a on the left by T2~ n as 

in (4.11) to see that ~ represents zero in Wlk (A). Thus 

~(B,g,q) = 0. 

k (B/A) , a resolution Now suppose given (S,~,$) E F 0 

A 2n A 2n (R) = (A 2n~ A 2n -~S), and a covering ~- • ~ B of (S,~,#) 

X(S,~,#;R,T) = a E U4kn(A) and ~ represents zero (4.2) such that I 0 

in WIk(A ). By [Sh, 5.5,5.6] there exist p,~l,T 2 E Sk(A2n), 

a 6 GL2n(A) such that 

= x_ (,1) T~X_ (,2) H (~) X§ (;), 

where T4~ n is defined in (4.10}. (Sharpe works in the "unitary 

Steinberg group", but his matrix calculations show that the above 

_ ~X+ (-~) H (s -1) T2 ,)* . 
form is valid.) Hence X (-TI) = T4nX_(T2 ) = (ki2n 

Right multiplication by X+(-~) does not change the first coltm%n 

of (2n • 2n) blocks in ~ while left multiplication by X_(-T 1) and 

right multiplication by H(u -I) are realized by changes in R and 

Recalling that if L 

satisfying g(ei*,e.)j = 6ij, 
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~2 
X 6) . 

T ( 4 . 5 ) .  H e n c e  t h e r e  a r e  R ' ,  T '  s o  t h a t  I (S,~o,#;R',,r') = ( k i 2 n  

As we saw i n  t h e  p r o o f  o f  ( 5 . 2 ) ,  t h i s  m e a n s  ( S , ~ , # )  i s  i n  t h e  i m a g e  

of L~ 0 . 

(5.3) Remark: In proving that k k = 0, we needed n even in the 
0~0 

A-form (Bn,g,q). This is the only place we will use this condition. 

If k = i, it is unnecessary: if n is odd we may add ~(B) to 

(Bn,g,q), observe that [I] . [-i] . (Bn, g,q) _~ ~(B) ~ (Bn,g,q) 

(where [hi denotes the unary form on B with matrix (b)), that 

[i] is sent to zero by ~0A~ and that [-i] • [Bn,g,q] is a k-form 

on B n+l, n + 1 even. If k = -i and B has simple component acted 

upon trivially by the involution (e.g., B = ~w, w finite), then 

each (Bn, g,q) has n even. The author does not know whether the 

assumption that n be even is necessary in general. 

(c) Exactness at WIk(A ) . If (S,~,#) E F0k(B/A), choose 

(~ 
(R) = (An~ An -~S) and ~ as usual so that I0(S,~,#;R,~) = 7 6) 

Since ~ | B is invertible, we may apply [B.II.2.5b] to conclude 

~(o) = o. 

Next suppose a E U-k(A) is such that ~l~(a) = 0 in WIk(B). By 
2n 

= (cz ~) stabilizing (if necessary) we may assume n is even. If a 7 ' 

we showed in iP3, 3.8] that Is] = 0 in WIA(B) implies there is 

7 E Sk(Bn) such that 7 + Ta E GLn(B); moreover, T is required to 

be the adjoint of the orthogonal sum of a k-form nonsingular on 

a(ker 7) with the zero form on some complement of a(ker 7) in An. 

Replacing ~ by aTa, where aTa E S k ( An ) , a E ~, the k-form aTa 

still has the above mentioned properties. Hence we may find 
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T 6 S k( An ) such that ~ + 7a E GLn(B). If a' = T2~nX_(T)a and 

a' ~' ~, = ~, -i 
' ' and = ( , ) then is a unit in Mn(B). Taking ~ 7 

= a' in (1.18) we obtain a k-form (S,~,%) for which (by definition-- 

see (4.2)) 

where (R) = 

X(S,~,#;R,~) = a', I 0 

(A n ~ A n -~S) �9 This completes the proof of (5.1). 

k (B) -' X (B/A) ~6 ~k 1 : W 1 W 1 

= (~ ~ u k (6.1)" Let a E (B) be given; we want to construct an 
6 ) 2n 

k (B/A). We may find v,~ E M (A) invertible as element (K,H,~,x) E F 1 n ' 

elements of Mn(B), such that ~v, 7v, ~, 6~ E Mn(A)" Let 

(6.2) o'(v,1])  = ( ) ,  o" 
7v 6~ 

and consider the sequence of injections, 

'(~,~) = ( __ __) 

(6.3) A n + ~n.~ ~(v,~) : A n + ~n ~' (v,~). A n + ~n. 

Denote the terms of (6.3) L,I,L', respectively, keeping in mind. 

that each has a basis (it turns out below that L' is the dual lattice 

to L). We can thus consider the sequence of lattices in B n + ~, 

(6.4) _ _ B n L c I c L' c + ~n, 

where I | B ~ B n + ~n is the identity. Hence it makes sense to 

endow I = A n + ~n with the hyperbolic structure (l.13a) so that I QB= 

~(A n) | B ~ ~(B n) is the identity. L and L' inherit k-hermitian 

forms h L and hL, using the injections a(v,~) and a'(u,~); h L, may 
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take values in B. Calculation using the relations (1.20) defining 

as an element of U~n(B ) shows that h L has matrix (~ ~v k~) and hL, 

0 x (~) -1 
has matrix ( ), where inverses are taken in GL (B). 

(~v) -i 0 n 

It follows that L and L' are dual lattices in ~(Bn). If 

D: A n + En ~ A n + ~n denotes the adjoint of the hyperbolic k-form 

on A n + ~n, another calculation shows 

(6.5) ~(~,~)D = D~' (~,~) 

and 
~ 0 

(6.6) ~' (~,~)a(~,~) = ( ) �9 
0 ~ 

(see [B,II.I.2]) 

(6.7) Construction of Kj H and 

0 ~ (~) -i 
= ( 

in (KjH.A.K) : Taking 

~(H) 

induces an injection 4: K ~ H + H A = L'/L. 

) ( = the matrix of hL,: L' • L' ~ B) and 
(~) - i  o 

'(u,~)a(v,~) in (1.18) we obtain the hyperbolic form 

= (H + H^,~h,#h) , H = cok(~). If K denotes I/L, a'(v,~) 

Explicitly, if 

A = (~,C), ~: K ~ H, C: K ~ H A, then the diagrams 

(6.8) I = A n + ~n (6~,k~)> and A n = A n ~n 

K - ~ ~H K 

~n 

commute. 

(6.9) Lemma- Im(~) c H + H A is a subkernel (l.13b). 

Proof: To see im(~) is totally isotropic, observe that the 
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k-hermitian form hL, convering ~(H) (in the sense of (1.17)I is 

A-valued and even (in fact hyperbolic) on I; hence, by construction, 

the forms ~h and #h restricted to the image of I/L = K are identically 

zero in B/A and B/Sk(A ) . It remains to verify that the sesquilinear 

form g= ((H + H*)/K) • K ~ B/A induced by ~h is nonsingular, where 

K m im(&). There is a commutative diagram of exact sequences 

cok(~(u,~))> >cok(a(~,~)G' (~,~)) 

L = 
,H +H" 

1 = [ 
K~ ~ ,H +H ~ 

~*. (~h) d 

cok (a' (9,~)) 

^ 

~ K  

d 
g 

.~. (H + H')IK 

where c is an isomorphism from (6.51 and (1.4). &^.~h)d is a 

surjection by co~utativity, so d is an isomorphism. 
g 

(6.10) _C~176 of x: K ~ B/S_~(A)- To construct and study the 

(-~)-form (K, [ , ],x) (1.30) we need an explicit expression for 

[ , ]: K X K + B/A, where [k,~] = ~0h(~(k),|(~)). Let k,L E K and 

x,y E An + ~n, with JK(X) = k, JK(y) = ~ (6.8); let x = x I + x2, 

Y Yl + Y2' xl'Yl E An ~n. = , x2,Y 2 E Then by construction and (6.8), 

if r: B ~ B/A is the projection, 

(6.11) [k,~] = ~h (~(k)'~(~)) = rhL,(kvU(Xl)+U~(x 2),6~(yI )+A~(y2 )) - 

Expanding the term on the right, we find that if T: (A n + ~n) 

X (A n + ~n) ~ B is the sesquilinear form with matrix 

(6.12) ~ = 
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then [k,~] = rT(x,y), where r,k,~,x,y are as above. (T is not 

k-hermitian, so does not fit into the context of (1.17). But 

0 I 
+ kT = (ki n O n ) E M2n(A) which is sufficient for 7 to induce 

the (-k)-hermitian form [ , ] : K x K ~ B/A using the first equation 

of (1.17a).) 

Let k E K, x = x I + x 2 ~ A n + ~n, JK(X ) = k. Define 

(6.13) K(k) = r'T(x,x) - qh(x) 

= r'hL.{kMV(Xl) + ~9(x 2),8~(x I) + k~(x2)) - qh(x) 

where r'- B ~ B/S(A), ~(A n) = (A n + ~n = i,gh, qh), 

qh (x) E A/S_k (A) c B/S_k (A) . Clearly x (k) . r7 (x,x) mod A and 

rT(x,x) = [k,k] by (6.11).so 1.12 b(iii) is satisfied; it is routine 

to verify the rest of (l.12b) so [K, [ , ] ,~) is a(-k~-form. Now 

de fine 

(6.14) Llk(~;v,~) 

as constructed in (6.7), (6.10), 

denote its class in Wl~(B/A ) . 

(6.15) Proposition: ~l (~; v, ~) 

w~ (B). 

= (K ,H ,A ,x )  E F~(B/A)  

and (6.13), and let ~(a;v,~) 

depends only on the class of a in 

Proof- We need to show independence of ~l(a;v,~) from the choices 

(~ 
made in its construction. Denote o = 7 6)" 

(i) Choice of w~. Given v E Mn(A)�9 invertible as an element 

of Mn(B) �9 there is ~' E Mn(A) and s E Z such that ~ ~' = v'v = sl n- 

~1 )' (a ;v ,~7 ] ' )  �9 Hence it suffices to show that ~ (~;vv',~) = ~ (~;v,~) = ~I 

But it is easy to verify that if (E) = (cok(~') ~ cok(~uv') -~ 

co~(~,, )  = H ) ,  t h ~  (1 .32)  L~ (~ ;~ ,~ ' ,~ )  = aEI~(o; ,~,~1) .  
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Similarly, L~(u;9,~') = E~Llk(a;u,~) if 

(E) = (cok(~') ~ cok(~') ~ cok(~) = H*). Thus we have 

~i: U2~n(B) ~ Wk 1(B/A). 

(ii) Stabilizin~ ~. Clearly L~l(O,~,~) = L~l(O . I2;u + Il�9 ~ § I1). 

Hence ~i: Uk (B) ~ WIk(B/A). 

(iii) It remains to show that ~[(o;v,~) = ~l(aE;9',~ ') for 

each E E X = <[H(r I r E GLn(B),D,T E S_k(Bn),n E Z+]) 

(see 1.23). 

First let E = H(r Choose ~,~ E Mn(A), invertible in Mn(B) 

such that r eel, 7r ~-i , ~-I~ and 6~-I~ are in Mn(A). Then 

_ so __ 

Next if E = X_(D), D E S_k(Bn), choose a' E Z so that if 

a = a'a', then ua 2 2 �9 7a , ~a, 6a, pa E Mn(A). Then 

[~ ) = pal + (~a) (pa) ~a] 

We claim that Llk(oX_(~); a2In, aIn ) = M_(~,%)L~l(~;a2In,aI n), where 

(H,~,$) is induced as in (i.18) where we take ~ = a3In, ~ = k;a -2 

Since [~X_(~) ] (a2In,aIn) = [uH(a2)X_(a4~) ] (In, aI n) this is a special 

case of the following lemma, where ~ = a2In , ~ = aIn, P = a~. 

(6.16) Lemma: Let ~ E U2~n(B), u,~ E Mn(A), invertible in Mn(B) as 

usual, and let P: A n ~ ~n be such that P~9 E S_k ( An ) and the k-form 

(H,~,%) is induced as in (1.18) for ~ = ~ and T = TH = k(~)-iP" 

Then Lk l(oH(~)x_(~P)�9 = X_~,#)L~I(a;~,~)" 

Proof: We have 
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(6.17) {~H(~)X (~P) ] (In,~) = 

~ 1 = ~(v,~)- 
Denote ~H(u)X_(~P) = 8. Then a calculation shows 

(6.18) 

where 

8'(In,~)8(In,~) = ( ) = a'(9,~)~(u,~) 
-0 ~ 

8'(In,~ ~) = __ 

I 
n 

P 

0] 
I n 

Denote by L and L' the lattices L' and L' obtained for a(v,~) in 

(6.4) and by L@, L'8 the lattices constructed for 8(In,~). Let 

Ta and ~8 be the corresponding sesquilinear forms (6.12). From 

(6.17) and (6.18) we obtain (using the same I for a and 8) the 

following commutative diagram where the top two horizontal maps are 

isometries 

(6.19) 

L = A n + ~n 

a'  (~, 11) 

1".' = A n  + .~n 

:nl ~ An+An=L 8 

In,9~) 

:n] ~ A n  + ~ n  = 1 , '  
A 

IH . ~ H + H ~. 

I = A n + ~n 
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If L~l(8;In,~) =(K',H,~',~') then (6.19) shows that im(Lu) = ira(L0) 

C_. I SO that K = K' and, using (6.8) and the bottom horizontal 

composite in (6.18), that A' = (~,d .~ + ~). 

Now let us compute x'. Let k E K, x = x 1 

JK(Xl + x2) = k. By definition (6.13) 

+ X 2 E An + ~n 

n m 

x'(k) = r'hL. (k(Nu+6~P) (x I) + (ug+~P) (x2),6~(Xl) + k~(x2)) - qh(x) 
8 

= r'Ts(x,x ) - qh(x). 

Since 

h L , 
G 

= hL,, r'T@(x,x) = r'hL,(~7~(Xl) + u~(x2),6~(x I) + k~(x2)) 
G o 

+ r 'hL,  (~.PC'6"~(Xl) + k~'~'(x2) ) ,'6"~'(Xl) + ) ,"~'(x2)) �9 
a 

m 

Denoting 6~(Xl) + k~ (x 2) = z, the last expression is 

(x,x) + r'(~Pz, (~)-iz)B n = r'~ (x,x) + r'(~(~)-iPz,Z>B n rnTo O 

= r'7 (x,x) + r'TH(Z,Z) , since k(~)-iP = T H by assumption. By (6.8) 
G 

and the definition of T H and #, the last expression is 

r'T (x,x) + #(~(k)). This completes the proof of (6.16) since, 

from above, ,'(k) = r'~8(x,x) - qh(x) = r'Ta(x,x) - qh(x) + #(~(k)) 

= x(k) + #(~(k)). 

Returning finally to the proof of (6.15), an argument similar 

to that just given shows Lkl(OX+(p);aIn, a2In) = X+(~,#)Lkl(o;aIn, a2In ) 

for suitable a E Z and (-A)-form (H,~, ~). This completes the proof 

of (6.15) and shows we have a well-defined map ~ : W (B) ~ 9~ 1 

which is easily seen to be a homomorphism. 

For w we will need the following proposition, which "reverses" 

(6.15) .  
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(6 .20)  Proposition: Let Lk l (O;v ,~  } = 8 ~ 9'  i n  F~I(B/A) , for some 

2~ (B). Then there is a nonnegative integer r, ~ EU n 

D E <[X+(p),X_(T),H(r I ,,7 E S_k(Bn), r E GLn(B), n E Z+]>, and 

v',~' E Mn+r (A) such that 

L~((s ~ I2r)D;v',~') = 9'. 

i 
Proof: Suppose 8' = aES, where E is the extension (E) = (J~ H -~H). 

By construction we have a resolution A n ~ An ~H. We need to find 

~: A n~+ A n , cok ~) ~ J, such that the sequence of cokernels, 

is isomorphic ~o the extension E. Then it is clear that 

8' = L~(o;~,~); actually, we work stably. Precisely, let 

A m~l A m ~H' be any resolution of H' and let 

of j and i in 

(6.21) 

F be the pullback 

~3 

i~ 2 i 

m ~i Cm J XH' >A 

Then F is stably free 2 so we may assume it is free, F ~ A m . Since 

cok(~2) ~ H, by (1.7) there are integers k, ~ with m + ~ = n + k 

Am+~ An+k i~)h -I and automorphisms k,h: ~ such that k(~2 + = (~v) 

+ I k. Then we have the commutative diagram 
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An+k ~ h (~ 3+Iz ) ) An+k 

n k~ k(~l+I~) ,An+ k 

H 

~J 

~H' 

1 
~ H  

where the right vertical extension is isomorphic to E. Denoting 

= h~3 + I ), we find 8' = ~E 8 = L~l((S I I2~);(~ + Ik)~,~ + Ik)" 

A similar argument applies in the cases ~E 8 ' = 8, 8' = Ea8 and 

E~8 ' = 8. 

To complete the proof of (6.20)suppose 8' = X_(~,#)8 and 

Lkl(U;~,u) = @. Construct P: A n ~ ~n so that if in (1.17) we take 

= ~ and 7 = k(~)-l~, the (-k)-form (H,~,#) is produced. Let 

Q = j~P. Then Q E S_k(A n) and by (6.16) Llk(aH(9)X_(Q)tIn,~ ~) 

= X_(~,#)L~I(~;u,~) = 8' A similar argument applies in case 

8' = X+(~,%)8- Since X+(-~,-$)X+~,#)8 = 8, the proof of (6.20) 

is complete. 

(7.1): Let 8 = (K,H,~,x) E F~l(B/A) be given, let (R) = (An~ A n -~H) 

be a short free resolution of H and consider the short exact 

sequence A n + ~n ~+~ A n + ~n J H + H'. Setting P = j-I(K) we have 

the commutative diagram of injections 

A n + ~n ~ + 5 �9 A n + ~n 

P 
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Let L' = the range of u + ~, identify the domain A n + ~n of ~ + 

with its image L c L' And give L(_= A n + ~n) the A-hermitian form 

0 
~u). Then L | B inherits a (hyperbolic) hL: L • L ~ A with matrix (~ 

A-hermitian form and (as the notation already indicates) L' is the 

dual lattice to L in L @ B. Replacing (7.2) we have the sequence 

of lattices 

(7.2) ' L c_. P c L' (compare (6.4)) 

in which h L induces a k-hermitian form g: P X P ~ B and 

hL,: L' X L' + B, the latter having matrix (0 k~-l) 
--i 

0 

(7.3) Proposition: g takes values in A and is nonsingular. 

Proof: The hyperbolic k-form (H + H^,~h,#h) (in the definition of 

8 E FkI(B/A)) is constructed by taking T = hL, and ~ = u + ~ in 

(1.18). Since the image of P under j in H + H" is K, K is 

totally isotropic by assumption, and g = hL, J P • P, .we have 

g (P • P) c__ A. To show g is nonsingular it suffices to show that 

if P' is the dual lattice to P, then P = P'. Since g is A-valued 

on P it suffices to show P' c_. P. If not, let x E P and 

g(P,x) c A. Then j(x) ~ K, but ~h(K~j(x)) =_ 0. This contradicts 

the nonsingularity of ((H + H^)/K) • K ~ B/A induced by ~h (l.13b). 

Hence P = P'. 

(7.4) Corollary: We have the commutative diagram 

P 

p -- 

k A n + ~n 

D 

> A n + X n 
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where k and i are in (7.2), and D = d, ~(A n) 
(gh) 

= (A n + An, gh,q h) �9 

Proof: Left to the reader. 

We have constructed P and g in a proposed k-form (P,g,q). 

To construct q, let il: P ~ A n and i2: P ~ ~n be inclusion P c L' 

= A n + ~n followed by the coordinate projections. Let x E P, 

r: B + B/A, r': B ~ B/S_A(A) and set 

(7.5) q(x) = r'hL, (ilx ,i2x) - ~(j(x)) (compare (6.13)). 

q takes values in A/S_A(A ) since rhL,(ilx,i2x ) = [jx,jx] (see (6.11) 

and the first sentence of the proof of (7.3)). We compute 

r'g(x,x) = r'g(ilx + i2x,ilx + i2x ) = r'hL, (ilx,i2x) 

+ r'khL,(ilx, i2x) = (r'hL,(ilx,i2x)-x(jx)) + k(r'hL(ilx,i2x)-x(j(x)) 

((1.16)) = q(x) + kq(x). The other properties (1.12a) are verified 

0~ ~ (A) similarly so (P,g,q) is a k-form. Set I (8;R) = (P,g,q) E F 0 

and let denote its class in W0 (A). 

k (A) depends only (7.6) Proposition: For 8 E FIk(B/A), ~lk(8;R) E W 0 

on the equivalence class of 8 in WI~ (B/A). 

Proof: (a) Choice Of R, (R) = (An~ A n -mH). If (R') = (A ml A m ~H) 

is another resolution of H then by (1.7) there are integers k 

and ~ with n + k = m + ~ and automorphisms 

kl: A n+k ~ A n+k , k2: A m+~ + A m+~ with 

(7.7) kl(~ + Ik)k 2 = ~ + I~. 

Then if (R + A k) denotes (A n+k ~+Ik A n+k I (o;R + A k) 

= I ~ ( 8 ; R )  • ~ ( A  k) w h i l e  (7 .7 )  i m p l i e s  I I ( 8 ; R  + A k) = I~l(97R ' + A ~) 
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in F~ (A) . 

(b) Choice of 8 within its equivalence class in W~(B/A). 

8 = (K,H,A,x). 

Let 

(i) Let (H,~,$) be a (-k)-form and let X_(D,#)8 = 8' 

i k ~i k (A). Using (i = (K,H,&',x'). We claim I (0';R) = I (e;R) in F 0 17) 

A n A n find ~: • ~ B covering (H,~,#) with respect to (R) = 

(A n~ A n ~H). Then if ~ = ~ and (P',g',q') = Ikl(8';R) we have 

the diagram (compare (6.19)) in which the top two horizontal maps 

are isometries ([B, II.1.2]) 

(7.8) 

An + i' A n ~n 

P~//(7.2) a+~ ~+~ P' 

In 0 ) 

A n + ~n P*=(AP In A n + ~n 

0j 
K~ 5 = ~ H + H ^ ~ H + H ̂  

In (7.8) P = j-I(AK), P' = j-I(&'K). By conlnutativity De(P) = (P'); 

but 0, is an isometry, so I~I(8';R) = Ik(8;R). A similar argument 

shows that IAI(X+(~,#)8;R ) = II~(8;R), for any (-k)-form (H^,~,$). 

A(aES;R ) = ~I(8;R). Let 8' = ~E 8 = (K,H,&,~) where (ii) ~l 

(E) = (J~ H' -~H). Since ~kl(e'TR) is independent of the resolution 

R (part (a)), we assume by the argument of (6.20) that if 

(R) = (A n~ A n -~H), there is ~: An~ A n , cok(~) --~ J, such that the 
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extension cok(~)~+ cok(u~) -~cok(~) is isomorphic to E. Let 

~i ~(~ES; R') Indeed, let (R') = (A n ~ An-~H') ; then I (8;R) = I 1 

L c__ P c L' be the lattices of (7.2) ' associated to 8 and R. Let 

M ~(A n) + ~n A n ~n = C + =- L, and let M' be the dual lattice. Then 

M c P c M' is the chain of lattices associated to aE8 and R' 

M c_ L c__P c L ! C M, and so I~ (aEg ;R') = I~ 1 (8 ;R). Invariance of %~i 

u n d e r  o t h e r  s t a b i l i z a t i o n s  i s  p r o v e d  s i m i l a r l y .  T h i s  c o m p l e t e s  t h e  

proof of (7.6) . 

$8 Exactness of the first five terms of (2.1) 

(8. i) : 

Consequently, WIA(B/A) is a group. 

The following sequence of homomorphisms is exact: 

W 0 

Proof: (a) Exactness at W~I(B ) =~l~l = 0 since if m ~ U2~n(A) we 

take v = ~ = In in the construction of ~l~(~), thus obtaining the 

zero formation. If ~ E U2kn(B) and ~1(~;9,~) = 0 for some (hence any) 

choice of 9,~ E Mn(A), Lkl(~;v, ~) may be converted to the zero 

formation by the operations of (1.34). By (6.20) each operation on 

Lkl(a;v,~ ) is realized by changes in ~, ~ and a within its class 

in W~I(B/A ) . Hence we may find ~' ' ~' ' , ~ and with [a ] = [a] in 

~i ~ ' ''~' 
W (B) such that LI( ~ ;v ) = the zero formation. This easily 

implies 9',~' E GL(A) so a' E U2~ m(A) for some m. 

(b) Exactness at WI(B/A ) The lattice I in (6.4) becomes 

P in (7.2). I has the hyperbolic structure by construction so 

~i~ 1 = 0. Suppose on the other hand that I (8;R) =~(A n) = 
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(A n + An,gh,qh), where 0 • (K,H,~,~) ~ F~(B/A) and (R) = (A n~ A n -~H) 

In the notation of (7.2) there are form-preserving injections 

i -n k 
(L,hL) ~ (A n + A ,gh,qh) ~ (L',hL,) so that under the identification 

L m A n + ~n, i is given by a matrix 

[•' SJ ' ~'' ~' >'' 6 E M (A). 
, n 

By (7.4) in which d now equals D, k has matrix (~, ~ , g ~,) and so 

(7.2) ( [ ~) (~' ~) = (~ 0), (R) = (A n~ A n ~H). Hence 
~ '  ~' ~' ~ 0 ~ 

~(u, -i) + ~( , -i) = in; and (~'~-i) (7'�88 , ~6 E S_~(Bn) �9 Setting 

-i , -i 
= ~'~ �9 7 = 7 (1.2) shows that 

o l 
By definition Lkl(~;~,In) = 0- 

(c) Exactness at WOk (A) 

1 ~ U2kn (B) ' 

In the construction of ~ (7.1), 

the lattice L supports a form h L which becomes hyperbolic after 

tensoring up to B. Since for % = (K,H,A,K) E Fkl(B/A) and R a 

resolution of H, (L,h L) | B ~ Lkl(@;R) @ B is an isometry, 

k g61~l(0) = 0. NOW let (P,g,q) be a k-form, P a free A-module such 

that (P,g,q) | B is isometric to g/(B n) . This implies there is an 

inclusion of L ~_ A n + ~n in P, preserving forms, where L supports 

0 kO ) , for some ~ E Mn(A)- Referring to the a form h L with matrix (u 

construction Ikl, we find e = (K,H,A,x) E Fkl(B/A) such that 

Ikl(8;R) = (P,g,q) where (R) = (A n~ A n ~>H). Details are left to 

the reader. 
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