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Introduction 

Starting with the end of the seventeenth century, one of the most interesting 
directions in mathematics (attracting the attention as J. Bernoulli, Euler, 
Jacobi, Legendre, Abel, among others) has been the study of integrals of the 
form 

A,(7) = T; $, J 
where w is an algebraic function of z. Such integrals are now called abelian. 

Let us examine the simplest instance of an abelian integral, one where w 
is defined by the polynomial equation 

w2 =2+pz+q, 

where the polynomial on the right hand side has no multiple roots. In this case 
the function A, is called an elliptic integral. The value of A, is determined 
up to mvl + nus, where ~1 and u2 are complex numbers, and m and n are 
integers. The set of linear combinations my +nv2 forms a lattice H c Cc, and 
so to each elliptic integral A, we can associate the torus C/H. 

On the other hand, equation (1) defines a curve in the affine plane C2 = 
{(z, w)}. Let us complete C? to the projective plane P2 = lF’2(C) by the 
addition of the “line at infinity”, and let us also complete the curve defined 
by equation (1). The result will be a nonsingular closed curve E c lP2 (which 
can also be viewed as a Riemann surface). Such a curve is called an elliptic 

curve. 

It is a remarkable fact that the curve E and the torus C/H are isomorphic 
Riemann surfaces. The isomorphism can be given explicitly as follows. 

Let p(z) be the Weierstrass function associated to the lattice H c C!. 

*=$+ c 1 -- 
hEH,h#O (z -l2h)2 (2$ . I 

It is known that p(z) is a doubly periodic meromorphic function with the 
period lattice H. Further, the function p(z) and its derivative p’(z) are related 
as follows: 

(d)” = 4v3 - g2k3 - 93, (2) 

for certain constants gs and gs which depend on the lattice H. Therefore, 

the mapping 2 + (dz),d(~)) is a meromorphic function of C/H onto the 
compactification E’ c IP2 of the curve defined by equation (2) in the affine 
plane. It turns out that this mapping is an isomorphism, and furthermore, the 
projective curves E and E’ are isomorphic! 

Let us explain this phenomenon in a more invariant fashion. The projection 
(z, w) + z of the affine curve defined by the equation (1) gives a double 
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covering 7r : E + p’, branched over the three roots ~1, ~2,~s of the polynomial 
z3 + pa + q and the point 00. 

The differential w = dz/2w, restricted to E is a holomorphic l-form (and 
there is only one such form on an elliptic curve, up to multiplication by con- 
stants). Viewed as a C” manifold, the elliptic curve E is homeomorphic to the 
product of two circles S1 x S1, and hence the first homology group Hr (E, Z) 
is isomorphic to Z @ Z. Let the generators of Hr (E, Z) be yr and 72. The 

lattice H is the same as the lattice {m ST1 w + n. ST2 w} . Indeed, the elliptic 

integral A, is determined up to numbers of the form sl J&, where 1 is 

a closed path in e\{ zl, ~2, zs}. On the other hand 

where y is the closed path in E covering 1 twice. 
The integrals s w are called periods of the curve E. The lattice H is called 

the period lattice. ?‘h e d’ rscussion above indicates that the curve E is uniquely 
determined by its period lattice. 

This theory can be extended from elliptic curves (curves of genus 1) to 
curves of higher genus, and even to higher dimensional varieties. 

Let X be a compact Riemann surface of genus g (which is the same as a 
nonsingular complex projective curve of genus 9). It is well known that all 
Riemann surfaces of genus g are topologically the same, being homeomorphic 
to the sphere with g handles. They may differ, however, when viewed as 
complex analytic manifolds. In his treatise on abelian functions (see de Rham 
[1955]), Riemann constructed surfaces (complex curves) of genus g by cutting 
and pasting in the complex plane. When doing this he was concerned about 
the periods of abelian integrals over various closed paths. Riemann called those 
periods (there are 3g - 3) mod&. These are continuous complex parameters 
which determine the complex structure on a curve of genus g. 

One of the main goals of the present survey is to introduce the reader to 
the ideas involved in obtaining these kinds of parametrizations for algebraic 
varieties. Let us explain this in greater detail. 

On a Riemann surface X of genus g there are exactly g holomorphic l- 
forms linearly independent over @. Denote the space of holomorphic l-forms 
on X by H1lO, and choose a basis w = (WI,. . . , wg) for H1>‘. Also choose a 
basis y = (71,. . , ~2~) for the first homology group HI (X, Z) E E2g. Then 
the numbers 

f2ij = Wi 

s Yj 

are called the periods of X. They form the period matrix R = (0,j). This 
matrix obviously depends on the choice of bases for H1>’ and Hl(X, Z). It 
turns out (see Chapter 3, Section l), that the periods uniquely determine the 
curve X. More precisely, let X and X’ be two curves of genus g. Suppose 
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w and w’ are bases for the spaces of holomorphic differentials on X and X’, 
respectively, and y and y’ be are bases for Hr (X, Z) and Hi (X’, Z) such that 
there are equalities 

(%.“lj)X = (rh;)X~ 

between the intersection numbers of y and 7’. Then, if the period matrices 
of X and X’ with respect to the chosen bases are the same, then the curves 
themselves are isomorphic. This is the classical theorem of Torelli. 

Now, let X be a non-singular complex manifold of dimension d > 1. The 
complex structure on X allows us to decompose any complex-valued C” 
differential n-form w into a sum 

p+q=n 

of components of type (p, Q). A form of type (p, q) can be written as 

wP,q = 
c hl,Jdai, A . . . A dZip A d.Zjl A . . . A dzj,. 

(I,J)=(il,...,ip,jl,...,jq) 

If X is a projective variety (and hence a Kahler manifold; see Chapter 1, 
Section 7) , then this decomposition transfers to cohomology: 

H”(X,a-J = @ IPq, HfJ~Q = iPIP. 

p+q=n 
(3) 

This is the famous Hodge decomposition (Hodge structure of weight n on 
Hn(X), see Chapter 2, Section 1). It allows us to define the periods of a 
variety X analogously to those for a curve. Namely, let Xe be some fixed 
non-singular projective variety, and H = Hn(Xu, Z). Let X be some other 
projective variety, diffeomorphic to Xe, and having the same Hodge numbers 
hP>Q = dim Hp?q(Xs). Fix a Z-module isomorphism 

q5 : H”(X, Z) 21 H. 

This isomorphism transfers the Hodge structure (3) from H”(X, C) onto Hc = 
H @Q @. We obtain the Hodge filtration 

(0) = Fn+’ c Fn c . . . c F” = Hc 

of the space Hc, where 

FP = Hn’O @ . . . @ HP+-‘, Fn+’ = (0). 

This filtration is determined by the variety X up to a GL(H, Z) action, due 
to the freedom in the choice of the map 4. The set of filtrations of a linear 
space Hc by subspaces FP of a fixed dimension fP is classified by the points 
of the complex projective variety (the fZag manifold) F = F(fn, . . . , f’; Hc). 
The simplest flag manifold is the Grassmanian G(k, n) of k-dimensional linear 
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subspaces in c”. The conditions which must be satisfied by the subspaces 
HP>Q forming a Hodge structure (see Chapter 2, Section 1) define a complex 
submanifold D of F, which is known as the classifying space or the space of 
period matrices. 

This terminology is easily explained. Let hP)q = dim HPJ. Further, let the 
basis of HP>Q be {wjpYq}, for j = 1, . . . , hp,q, and let the basis modulo torsion 
ofH,(X,Z)beyr,... , Yb. Consider the matrix whose rows are 

IjpJ= (s,,qq )...) kb,p.q). 

This is the period matrix of X. There is some freedom in the choice of the basis 
elements UP”, but, in any event, the Hodge structure is determined uniquely 
if the basis’of H is fixed, and in general the Hodge structure is determined up 
to the action of the group r of automorphisms of the Z-module H. Thus, if 
{Xi}, i E A is a family of complex manifolds diffeomorphic to Xs and whose 
Hodge numbers are the same, we can define the period mapping 

We see that we can associate to each manifold X a point of the classifying 
space D, defined up to the action of a certain discrete group. One of the 
fundamental issues considered in the present survey is the inverse problem - 
to what extent can we reconstruct a complex manifold X from the point in 
classifying space. This issue is addressed by a number of theorems of Torelli 
type (see Chapter 2, Section 5 for further details). 

A positive result of Torelli type allows us, generally speaking, to construct 
a complete set of continuous invariants, uniquely specifying a manifold with 
the given set of discrete invariants. Let us look at the simplest example - that 
of an elliptic curve E. The two-dimensional vector space Hc = H’ (E, C) is 
equipped with the non-degenerate pairing 

(I*>rl) = / PA 77. 
E 

Restricting this pairing to H = H1 (E, Z) gives a bilinear form 

dual to the intersection form of l-cycles on E. We can, furthermore, pick a 
basis in H, so that 

0 -1 
QH= 1 o . 

( > 

Hc is also equipped with the Hodge decomposition 

where w is a non-zero holomorphic differential on E. It is easy to see that 
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J-i(w,w) > 0, 

and so in the chosen basis w = (o, ,6), where 

dqpa - a& > 0. (4 

The form w is determined up to constant multiple. If we pick w = (A, l), then 
condition (4.) means that ImX > 0, and so the space of period matrices D is 
simply the complex upper half-plane: 

D = {z E Cc IImz > 0). 

Now let us consider the family of elliptic curves 

EA=C/{ZX+Z}, XED 

This family contains all the isomorphism classes of elliptic curves, and two 
curves Ex and ELI are isomorphic if and only if 

UX + b A’ = - 
cX+d’ 

where 
( > 

; 1 E SLZ(Z). 

Thus, the set of isomorphism classes of elliptic curves is in one-to-one cor- 
respondence with the points of the the set A = r\D. The period mapping 

@:A+r\D 

is then the identity mapping. Indeed, the differential dz defines a holomorphic 
l-form in each EA. 

If yi , “(z is the basis of Hi (Ex, Z) generated by the elements A, 1 generating 
the lattice {ZX + Z} then the periods are simply 

The existence of Hodge structures on the cohomology of non-singular pro- 
jective varieties gives a lot of topological information (see Chapter 1, Section 
7). However, it is often necessary to study singular and non-compact vari- 
eties, which lack a classical Hodge structure. Nonetheless, Hodge structures 
can be generalized to those situations also. These are the so-called mixed 
Hodge structures, invented by Deligne in 1971. We will define mixed Hodge 
structures precisely in Chapter 4, Section 1, but now we shall give the simplest 
example leading to the concept of a mixed Hodge structure. 

Let X be a complete algebraic curve with singularities. Let S be the set 
of singularities on X and for simplicity let us assume that all points of S 
are simple singularities, with distinct tangents. The singularities of X can be 
resolved by a normalization 7r : X + X. Then, for each point s E S the 
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pre-image n-l (s) consists of two points zr and 3~2, and outside the singular 
set the morphism 

7r:x\,-‘(s)+x\s 

is an isomorphism. 

Fig. 1 

For a locally constant sheaf CX on X we have the exact sequence 

0 --+ cx + 7r*cx -+ cs + 0, 

which induces a cohomology exact sequence 

0 -+ HO(X, Cs) + Hl(X,Cx) -+ HyX,?T*C~) + 0 
Ill Ill 

HO(S, Cs) W(X, C,) 

This sequence makes it clear that H1(X, C ) x is equipped with the filtration 
0 C H’(S, Cs) = WO C H1 (X, Cx) = Wr. The factors of this filtration 
are equipped with Hodge structures in a canonical way - WO with a Hodge 
structure of weight 0, and WI/W, with a Hodge structure of weight 1, induced 
by the inclusion of WI /WO into H1 (X, CX). 

Even though mixed Hodge structures have been introduced quite recently, 
they helped solve a number of difficult problems in algebraic geometry - the 
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problem of invariant cycles (see Chapter 4, Section 3) and the description 
of degenerate fibers of families of of algebraic varieties being but two of the 
examples. More beautiful and interesting results will surely come. 

Here is a brief summary of the rest of this survey. 
In the first Chapter we attempt to give a brief survey of classical results 

and ideas of algebraic geometry and the theory of complex manifolds, neces- 
sary for the understanding of the main body of the survey. In particular, the 
first three sections give the definitions of classical algebraic and complex ana- 
lytic geometry and give the results GAGA (Ge’ometrie alge’brique et ge’ome’trie 
analytiqzce) on the comparison of algebraic and complex analytic manifolds. 

In Sections 4, 5, and 6 we recall some complex analytic analogues of some 
standard differential-geometric constructions (bundles, metrics, connections). 

Section 7 is devoted to classical Hodge theory. 
Sections 8, 9, and 10 contain further standard material of classical algebraic 

geometry (divisors and line bundles, characteristic classes, extension formu- 
las, Kodaira’s vanishing theorem, Lefschetz’ theorem on hyperplane section, 
monodromy, Lefschetz families). 

Chapter 2 covers fundamental concepts and basic facts to do with the 
period mapping, to wit: 

Section 1 introduces the classifying space D of polarized Hodge structures 
and explains the correspondence between this classifying space and a polar- 
ized algebraic variety. We study in some depth examples of classifying spaces 
associated to algebraic curves, abelian varieties and Kahler surfaces. We also 
define certain naturally arising sheaves on D. 

In Section 2 we introduce the complex tori of Griffiths and Weil associated 
to a polarized Hodge structure. We also define the Abel-Jacobi mapping, and 
study in detail the special case of the Albanese mapping. 

In Section 3 we define the period mapping for projective families of complex 
manifolds. We show that this mapping is holomorphic and horizontal. 

In Section 4 we introduce the concept of variation of Hodge structure, which 
is a generalization of the period mapping. 

In Section 5 we study four kinds of Torelli problems for algebraic vari- 
eties. We study the infinitesimal Torelli problem in detail, and give Griffiths’ 
criterion for its solvability. 

In Section 6 we study infinitesimal variation of Hodge structure and explain 
its connection with the global Torelli problem. 

In Chapter 3 we study some especially interesting concrete results having 
to do with the period mapping and Torelli-type results. 

In Section 1 we construct the classifying space of Hodge structures for 
smooth projective curves. We prove the infinitesimal Torelli theorem for non- 
hyperelliptic curves and we sketch the proof of the global Torelli theorem for 
curves. 

In Section 2 we sketch the proof of the global Torelli theorem for a cubic 
threefold. 
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In Section 3 we study the period mapping for K3 surfaces. We prove the 
infinitesimal Torelli theorem. We construct the modular space of marked K3 
surfaces. We also sketch the proof of the global Torelli theorem for K3 surfaces. 
We study elliptic pencil, and we sketch the proof of the global Torelli theorem 
for them. 

In Section 4 we study hypersurfaces in pn. We prove the local Torelli the- 
orem, and sketch the proof of the global Torelli theorem for a large class of 
hypersurfaces. 

Chapter 4 is devoted to mixed Hodge structures and their applications. 
Section 1 gives the basic definitions and survey the fundamental properties 

of mixed Hodge structures. 
Sections 2 and 3 are devoted to the proof of Deligne’s theorem on the exis- 

tence of mixed Hodge structures on the cohomology of an arbitrary complex 
algebraic variety in the two special cases: for varieties with normal crossings 
and for non-singular incomplete varieties. 

Section 4 gives a sketch of the proof of the invariant cycle theorem. 
Section 5 computes Hodge structure on the cohomology of smooth hyper- 

surfaces in Y. 
Finally, in Section 5 we give a quick survey of some further developments of 

the theory of mixed Hodge structures, to wit, the period mapping for mixed 
Hodge structures, and mixed Hodge structures on the homotopy groups of 
algebraic varieties. 

In Chapter 5 we study the theory of degenerations of families of algebraic 
varieties. 

Section 1 contains the basic concepts of the theory of degenerations. 
Section 2 gives the definition of the limiting mixed Hodge structure on the 

cohomology of the degenerate fiber (introduced by Schmid). 
In Section 3 we construct the exact sequence of Clemens-Schmid, relating 

the cohomology of degenerate and non-degenerate fibers of a one-parameter 
family of Kahler manifolds. 

Sections 4 and 5 are devoted to the applications of the Clemens-Schmid 
exact sequence to the degenerations of curves and surfaces. 

In Section 6 we study the degeneration of K3 surfaces. We conclude that 
the period mapping is an epimorphism for K3 surfaces. 

In conclusion, a few words about the prerequisites necessary to understand 
this survey. Aside from the standard university courses in algebra and differen- 
tial geometry it helps to be familiar with the basic concepts of algebraic topol- 
ogy (Poincare duality, intersection theory), homological algebra, sheaf theory 
(sheaf cohomology and hypercohomology, spectral sequences - see references 
Cartan-Eilenberg [1956], Godement [1958], Grothendieck [1957], Griffiths- 

Harris [1978]), theory of Lie groups and Lie algebras (see Serre [1965]), and 
Riemannian geometry (Postnikov [1971]). 

We have tried to either define or give a reference for all the terms and results 
used in this survey, in an attempt to keep it as self-contained as possible. 
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Chapter I 
Classical Hodge Theory 

$1. Algebraic Varieties 

Let us recall some definitions of algebraic geometry. 

1.1. Let C” = { - ( z - ~1,. . . , z,)]zi E C} be the n-dimensional affine space 
over the complex numbers. An algebraic set in CY is a set of the form 

V(f1,. . . ,fm) = {z E CIfl(Z) = . . . = fm(z) = 0). 

where fi(z) lie in the ring C[z] = @[zr , . . . , zn] of polynomials in n variables 
over @. An algebraic set of the form V(fl) is a hyperszlrface in C?, assuming 
that fr(z) is not a constant. 

It is clear that if f(z) lies in the ideal I = (fr, . . . , fm) of C[z] generated 

by fib),... ,fm(z) then f(a) = 0 for all a E V(fl,.. . ,fm). Thus, to each 
algebraic set V = V(fi, . . . , fm) we can associate an ideal I(V) c C[z], defined 

by 
I(V) = {f E C[z]lf(u) = 0,a E V}. 

The ideal I(V) is a finitely generated ideal, and so by Hilbert’s Nullstel- 
lensatz (Van der Waerden [1971]) I(V) = dm,, where fi = {f E 
@[z]]f” E J for some Ic E N} is the radical of J. 

The ring C[V] = C[z]/I(V) is the ring of regular functions over the alge- 
braic set V. This ring coincides with the ring of functions on V which are 
restrictions of polynomials over CF. 

1.2. It is easy to see that the union of any finite number of algebraic sets 
and the intersection of any number of algebraic sets is again an algebraic 
set, and so the collection of algebraic sets in (I? satisfies the axioms of the 
collection of closed sets of some topology. This is the so-called Zariski topology. 
The Zariski topology in Cm induces a topology on algebraic sets V C (I?, and 
this is also called the Zariski topology. The neighborhood basis of the Zariski 
topology on V is the set of open sets of the form Ufl,,,,,fk = {u E Vlfi(a) # 

O,...,fk(U) #O,fl,...,fk E @[VI). 

Let VI c C” and VZ c CY be two algebraic sets. A map f : VI + VZ 
is called a regular mapping or a morphism if there exists a set of m regular 
functions fl,. . . , fm E CIVl] such that f(u) = (fi(a), . . . , fm(a)) for all a E 
VI. Obviously a regular mapping is continuous with respect to the Zariski 
topology. It is also easy to check that defining a regular mapping f : VI + Vz 
is equivalent to defining a homomorphism of rings f * : @[VI ] + C[V=], which 
transforms the coordinate functions zi E C(Vz] into fi E C[Vl]. 

Two algebraic sets VI and V, are called isomorphic if there exists a regular 
mapping f : VI -+ Vz which possesses a regular inverse f-’ : Vs + VI. 
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Alternatively, VI and VZ are isomorphic whenever the rings @[VI] and C[V2] 
are isomorphic. 

Evidently, for any algebraic set V, the ring of regular functions @[V] is 
a finitely generated (over c) algebra. Conversely, if a commutative ring K 
is a finitely generated algebra over @ without nilpotent elements, then K is 
isomorphic to C[V] for some algebraic set V. Indeed, if zi , . . . , z, are generators 
of K, then K Y c[.zi , . . . , zn]/l, where I is the ideal of relations. Thus, K N 
C[V], where V = {z E P]f(z) = 0, f E I}. In other words, the category 
of algebraic sets is equivalent to that of finitely generated algebras over @ 
without nilpotent elements. 

1.3. A product of algebraic sets V c P and W c cc” is the set 

v x w = {(Zl,. . . ,zn+m) E @ n+mI(Z1,... ,&) E V,(&+1,...,&+,) E W). 

It is easy to check that V x W is an algebraic set, and if fi(zi , . . . , z,), 1 5 
i 5 k are generators of I(V) and gj(zi, . . . , z,), 1 5 j 5 s are gener- 
ators of I(W), then V x W is defined by the equations fi(zi, . . . , z,) = 

0,9j(GL+1, . . . , &+rrJ = 0. 

1.4. An algebraic set V is called irreducible if I(V) is a prime ideal. An 
algebraic set V is irreducible if V cannot be represented as a union of closed 
subsets VI U Vz such that V # VI, V # VZ, VI # VZ. It can be shown (Shafare- 
vich [1972]) that every algebraic set is a union of a finite number of irreducible 
algebraic sets. 

If V is an irreducible algebraic set, then C[V] is an integral domain. De- 
note the field of quotients of @[VI by C(V). This field is called the field of 
rational functions over V, and the transcendence degree of C(V) over @. is the 
dimension of V, and is denoted by dimV. Elements of C(V) can be repre- 
sented as fractions f(z)/g(z) where f(z), g(z) E c(z) and g(z) doesn’t vanish 
on all of V. Thus the elements of C(V) can be viewed as functions defined on 
a Zariski-open subset of V. 

For each point a E V of an irreducible algebraic set V we define the local 
ring OV,, C C(V) : 

0 V,a = 
{ 

$ E @.(V)(f,g E C[V],g(a) # 0 
1 

. 

The maximal ideal rnv+ C (3,, is 

mv,a = 
{ 

5 E W)lf,9 E Wl,f(a) =0,9(a) #O}. 

In general, for any point a of an arbitrary (not necessarily irreducible) alge- 
braic set V we can also define the local ring as a ring of formal fractions: 

0 V,a = 
{ 

$9 E @[Vl,9(a) #O}. 
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with the usual arithmetic operations. Two fractions fi/gi and fz/gz are 
considered equal if there exists a function h E C[V], h(u) # 0 such that 

w192 - f291) = 0. 

The local rings Ov,, are the stalks of a sheaf of rings 0” over V, de- 
fined as follows. The sections of the sheaf 0” over an open set U c V are 
fractions f/g, f, g E C[V], such that for every a E U there exists a fraction 
fa/ga, ga(a) # 0, which is equal to f/g at a. That is, there exists a function 
h, E C[V], h,(a) # 0, such that 

ha(fga - fag) = 0. 

This sheaf of rings 0” is called the structure sheaf, and its sections over 
an open set U are called functions regular over U. Hilbert’s Nullstellensatz 
implies that the ring of global sections of 0~ coincides with C[V]. 

1.5. To each point a = (al,. . . , a,) E V C CY we associate a linear space 
called the tangent space TV,,. The tangent space Tv,~ is defined to be the 
subspace of C?’ , defined by the system of equations 

for all f E I(V). It can be shown that dim Tv,~ > dim V for an irreducible V, 
and furthermore there is a non-empty Zariski-open subset U c V, such that 
dim TV ,a = dimV for all a E U. This set U is defined to be the set of a E V 

where the rank of the matrix ( > g is maximal (where I(V) = (fi, . . . , fm)). 
Let Vi be an irreducible component of an algebraic set V. The points a E Vi 

for which dimTv,, = dim Vi are called non-singular (or smooth) points of V. 
The tangent space Tv,~ can be defined an yet another way, as the dual space 

of the C-linear space mv,a / m$,,. Indeed, for every function h = f @)/h(z) E 
OV,, define the differential 

d,h = f: E(Zi - ui)- 
i=l dzi 

This differential satisfies the conditions 

and 

d,(hl + hz) = d,hl + d,hz (1) 

da(hh2) = h(a)d,hz + hz(a)d,hl. (2) 

Since d,(c) = 0 for c a constant function, the differential d, is actually de- 
termined by its values on mv,a. For every h E mv,a d,h determines a linear 
function d,h : Tv,~ + C.. From equation (2) it follows that d,h = 0 for any 
h E m$),. Thus d, defines a mapping d, : mv,a/m$,,a + T;,a. This map is 
easily checked to be an isomorphism. 
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Let V E cc”. Consider an algebraic set TV E c2” = Cn x c defined by the 
equations 

fh,...&) =o, 

for f E I(V).’ Let x be the projection map rr : TV -+ V, where ~(zr, . . . , ~2,) = 
(a,... , z,). Evidently I = V and r-l(u) = Tv,~ for any a E V. Thus TV 
fibers over V, with fibers being just the tangent spaces at the points a E V. 
The algebraic set TV is the tangent bundle to V. 

1.6. Algebraic Varieties The concept of algebraic variety is central to alge- 
braic geometry, and there are several ways to define this. The most general 
approach is that of Grothendieck (see Shafarevich [1972], Hartshorne [1977]), 
where an algebraic variety is defined to be a reduced separable scheme of fi- 
nite type over a field /r. Since we will not need such generality, we will follow 
A. Weil, and define an algebraic variety to be a ringed space, glued together 
from algebraic sets. Recall that a ringed space is an ordered pair (X, c?~), 
where X is a topological space and 0~ is a sheaf of rings. A morphism of 
ringed spaces f : (X, 0~) + (Y, 0 y ) is a continuous map f : X + Y together 
with a family of ring homomorphisms f; : Oy]U + OxIf-l(U) for all open 
sets U c Y, which agree on intersections of open sets. 

An afine variety is a ringed space (V, 0~) where V is an algebraic set 
and 0~ is its structure sheaf. Note that for an affine variety V, the open sets 
(which are a neighborhood basis in the Zariski topology) of the form 

Uf = {z E W(z) # 01, 
where f is a function regular on V are affine varieties. Indeed, if V c P, 
then Uf is isomorphic to the algebraic set in C*+’ defined by the equa- 
tions z,+if(zr,. . .,z,) = 1 and fi(zi,.. . ,z,) = 0, where fi(z) E I(V) c 

@[.a,.-.,&]. 

Definition. A ringed space (X, OX) is an algebraic variety if X can be cov- 
ered by a finite number of open everywhere-dense sets Vi, so that (Vi, OX [Vi) 
are isomorphic to affine varieties and X is separable: the image of X under 
the diagonal embedding A = (id, id) : X -+ X x X is closed in X x X. (The 
definition of a product of afline algebraic sets can be naturally extended to 
ringed spaces). 

Example Projective space P”. Let P” be the set of all the lines through 
the origin in Cn+‘. Let us give p” the structure of an algebraic variety. To 
do this, note that a line 1 c U?i is uniquely determined by a point u = 
(uo,... , u,) E I, u # 0. The points u and XU = (Au,. . . , Xu,) define the same 
line. Thus 
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The coordinates (us, . . . , u,) are the homogeneous coordinates for P”. The 
set Vi of lF’” for which ui # 0 can be naturally identified with Cn by means of 
the mapping & : Vi + Cn : 

h(uo ,..., un)= 
( 

uo i& 
y-y ,..., yy )...) 2 =(z1,..., Z,)E(Cn. 

z z > 

The transition function between Vi and Uj is given by 

c$joqb~‘(z1)...) zn)= ( 21 2. 1 
; )...) $ )...) -g )...)? ) 
3 3 3 3 > 

and all of the functions zk/zj and l/zj are rational functions on cc” = Vi, 
regular on Ui n Uj. This allows us to view p* as an algebraic variety. 

Closed subsets of lPn are sets of the type 

v,, ,...( fr: = {u = (uo,. . . ,un) E Wfi(UO,. . . ,u,) = O,l I i 5 Ic}, 

where fi(uc,. . . , u,) are homogeneous polynomials. The intersection Vfl,...,fE n 
Uj is given in Uj = a? by the equations 

fi (;,...,$,...,“) =fi(ZI ,..., Zj-l,l,Zj+l,..., Zn)=O, 
3 

hence is an affine variety. Thus, closed sets in lP” are algebraic varieties. An 
algebraic variety isomorphic to a closed sub-variety of p” is called a projective 
variety. 

1.7. Let us extend the definition of a field of rational functions from afline 
algebraic sets to general algebraic varieties. First, note that if an affine variety 
V is irreducible and U c V is an open affine sub-variety of V, then U is also 
irreducible, and furthermore, the restriction to U of rational functions defined 
on V is an isomorphism of fields C(U) and C(V). Thus, if VI and Uz are non- 
empty affine open subsets of an irreducible algebraic variety X, then there are 
natural isomorphisms C(Ul ) N (c(Ul fl Uz) 21 @(Uz ). Similarly we can define 
the field of rational functions @(X) on an irreducible algebraic variety X. The 
elements of @(X) are rational functions fu defined on non-empty affine open 
sub-varieties U c X, where fu, = fu, if the restrictions of fu, and of fu, to 
VI fl UZ agree. 

The concept of rational function can be generalized to that of a rational 
mapping between algebraic varieties. A rational mapping 4 : X + Y of alge- 
braic varieties is an equivalence class of pairs (U, &), where U is a non-empty 
open subset of X while 4~ is a morphism from U to Y. Two pairs (U, 4~) 
and (V, 4”) are considered equivalent, if 4~ and 4~ agree on U n V. For any 
rational mapping we can choose a representative (0, &), such that U c 0 for 

any equivalent pair (U, 4~). The open set 0 is called the domain of definition 
of the rational mapping. If 4~ is everywhere dense in Y, then the rational 
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mapping 4 defines an inclusion of fields 4* : (E(Y) C) e(X) (if X and Y are 
irreducible). If $* is an isomorphism, then X and Y are said to be bi-rationally 
isomorphic. In other words, X and Y are birationally isomorphic, if there is 
an open dense subsets UX and Uy, which are isomorphic to one another. 

One of the most important examples of bi-rational isomorphism is the 
monoidal transformation centered on a smooth sub-variety, which can be de- 
fined as follows. Let X be a non-singular algebraic variety, dimX = n,and 
C c X is a non-singular algebraic sub-variety, dim C = n - m. The X can 
be covered by affine neighborhoods uk C X, where C is defined by the equa- 
tions Uk,J = . . = Uk,m = 0, where u&k are regular in uk and uk,J, . . . , uk,,, 
generate the ideal I(C fl uk) in c[uk] (see Shafarevich [1972]). Consider a 
sub-variety UL of uk x lP-’ defined by the equations 

uk,i ’ tj = uk,j . ti, 1 < i,j 2 m, 

where (tl, . . . , tm) are homogeneous coordinates in in P”-’ and let Uk be the 
restriction of the projection map pi : uk x Pm-’ + uk to C. It is easy to see 
that ~-l(z) is isomorphic to P m-1 for every z E C and for II: $ C ail(z) is a 
single point, so 6 defines an isomorphism between UL \ u-i(C) and uk \ C.It 
is also easy to check that the variety UL C uk x Pm-’ doesn’t depend on 
the choice of the equations defining the subvariety C in uk. Therefore, the 
varieties Vi can be glued together into a single variety X’, and thus to obtain 
a morphism g : X’ + X, such that o-‘(z) = Pm-’ for every 5 E C and 
(T : X’ \ a-l(C) -+ X \ C is an isomorphism. The resulting map g is called 
the monoidal transformation of the variety X centered on C. 

Let I$ : X --+ Y be a rational mapping of non-singular algebraic varieties. 
Then, according to a theorem of Hironaka [1964], we can resolve the points 
where 4 is undefined by a sequence of monoidal transformations with non- 
singular centers. That is, there is a commutative diagram in which g is a 
composition of monoidal transformations with non-singular centers, while 4’ 
is a morphism. 

X’ 

$2. Complex Manifolds 

2.1. Let us equip C” with a topology whose neighborhood basis consists of 
polydisks AZ,, , of radius e = (ei, . . . , E,), centered at a E P : 

A;,, = {z E C”IIzi - ai1 < ei}. 

We will refer to the topology defined above as the complex topology. 
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Recall that a complex-valued function f(z), defined in some neighborhood 
U, of a E Cc”, is called analytic (or holomorphic) at a if there exists a polydisk 
A:,, c U,, in which f can be represented as a convergent power series: 

f(z) = c GY(z - ay, 

where Q = ((~1,. . . ,a,) E Zn, and (Z - u)~ = (zi - a~)~* . . . (z, - an)on. 
Denote by O,,, the subring of the ring of formal power series C[[z - a]] 

at a, consisting of those f E C[[z - ]] a w ic converge in some neighborhood h h 
U(,) of a E C?. It can be checked that O,,, is a Noetherian local ring with 
unique factorization. The unique maximal ideal of c?,,, consists of the analytic 
functions vanishing at a. The ring O,,, is called the ring of germs of analytic 
functions at a. 

2.2. A subset V c C” is called analytic, if for any a E V there exists a 
neighborhood U, such that V fl U, coincides with a zero set of a finite set of 
functions analytic at a. In particular, every algebraic set V c C,, is analytic. 

Let f be a function defined on an analytic set V. We say that f is analytic at 
a E V, if there exists a neighborhood U, E V, where f is a restriction to V of a 
function F E O,,,. Just as we did for algebraic sets, we can define a local ring 
Ov,, of germs of functions on V analytic at a. That is, c3~,~ = O,,,/I,(V), 
where la(V) is the ideal of functions in O,,, which vanish on V on some 
neighborhood of a. The rings &,, can be glued into a sheaf 0~ of functions 
holomorphic on V. The sections of 0~ over an open set U c V are functions 
analytic at every point a E U. 

A continuous mapping 4 : VI + Vz of analytic sets is called a holomorphic 
mapping if for every point a E VI and every function f analytic at $(a), the 
function C$ o f is analytic at a. The holomorphic map 4 : VI + Vz is an 
isomorphism if there exists a holomorphic inverse 4-l. 

The tangent space Tv,~ to V c P at a is defined by the equations 

g !$a,(% - ai) = O, 

analogously to the algebraic situation. Also analogously, Tv,~ N (mv+/mc,,,)*, 
where mv,a is the maximal ideal of the ring OV,,. Just as in the algebraic 
situation, the tangent spaces Tv,~ can be glued together to mke the tangent 
bundle TV c C22” , and there exists a projection map x : TV + V, such that 
+(a) = TV,,. 

A holomorphic mapping 4 : VI -+ b’s,, 4(a) = b E Vi?, induces a map &+ : 
TvYa -+ TV,b as follows. By definition, 4 induces 4’ : &,,b -+ &,,,, such that 
4*(f) = $0 f. It is easy to see that 4*(mV2,b) C rnvl+ and f(m$Z,b) C m$l,a. 

Therefore, we can define a map 
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4J* : mV2,b/m&b + mVl,a/m$l,a~ 

the dual to which is the sought after C#J* : Tv~,~ + TvZ,b. In particular, if VI is 
an analytic subset of an analytic set V, then for any a E VI there is a natural 
inclusion Tvl ,+, c Tv,~. 

2.3. Just ‘as in the algebraic situation, an analytic set V is called irreducible, 
if V cannot be represented as a union of two non-empty closed subsets VI and 
VZ, such that & # V and VI # VZ. 

An analytic set V is called irreducible at a E V if la(V) is a prime ideal, or 
equivalently (3v,, has no zero divisors. Irreducibility of V at a means that for a 
sufficiently small neighborhood U, of a, the analytic set V n U, is irreducible. 
Unlike the algebraic case, irreducible analytic sets may have points where 
they are reducible. For example, the set V E C2 defined by the equation 
y2 = x2 + x3 is irreducible, and yet, at the point (0,O) V is reducible, since 

&qy = 1 + E i G - 1) . . J!” - (n - 1)) xn 

n=l 

is an analytic function at the origin, and hence in a small neighborhood of the 
origin, V has two irreducible branches, given by the equations y-x- = 0, 
and y + xm = 0 respectively. 

Let V be an irreducible analytic set. A point a E V is called a regular point if 
dim Tv,~ = minzEv dim TV,*. Regular points form a dense open subset of V. By 
definition, the dimension of an irreducible analytic set V is dim V = dim TV,,, 
where a is a regular point of V. 

2.4. If an analytic set V is irreducible at a, then the elements of the fraction 
field of the ring c3~,~ are called meromorphic fractions. For each meromorphic 
fraction h there exists a neighborhood U, C V and functions f and g, holo- 
morphic in U,, such that h = 5. In general, the fraction $ is a meromorphic 
fraction at a E V if g is not a zero divisor in c?~,,. 

A meromorphic function on an analytic set V is a collection { (Ui, $) }, 

where Ui is an open covering of V, fi and gi are functions holomorphic in Vi, gi 
is not a zero divisor in Ov), for any point a E Vi and in UinUj figj = fjgi. The 
set of meromorphic functions on V possesses natural operations of addition 
and multiplication. If V is irreducible, then the set M(V) of meromorphic 
functions on V is a field. Note that a rational function on an algebraic set V 
is meromorphic, if V is viewed as an analytic set. 

2.5. A complex space is a ringed Hausdorff space (X,0x), for each point 
a of which there is a neighborhood U, E X, isomorphic to an analytic set 

K, ha). 
The definitions of holomorphic functions, tangent space, etc, can be used 

unchanged for complex spaces (since these definitions are all local). 
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A connected complex space all of whose points are regular is called a 
cornplea: manifold. By the implicit function theorem (see, eg, Gunning-Rossi 
[1965]) it is easy to show that each point in a complex manifold X has a 
neighborhood isomorphic to a neighborhood of the origin in C?; that is, there 
exist neighborhoods U, c X and Ue C cc” and a bi-holomorphic mapping 
& : U, q Us. The preimages q& o zi of coordinate functions zi , . . . , z, in U? 
will be called local coordinates at a E X, and the neighborhood U, will be 
called a a coordinate neighborhood, or a chart. 

One of the most important examples of complex manifolds is the complex 
projective space P&,, which is defined exactly as in the algebraic case, to wit: 

q& = {(Zl,...,Zn+l)E @ "+'\{o}}/{(zl,...,~,+l) 

- (~~1,...,~~,+1),~#0}. 

Note that P& is a compact manifold, since P& is the image of a compact 
manifold S2n+1 = { (zi , . . . , z,+r ) E (c”+r ] Cy=‘,’ zix = 1) under a continuous 
map (which is the restriction of the projection map C!“+l \{O} + P& defined 
above). 

$3. A Comparison Between Algebraic Varieties and 
Analytic Spaces 

3.1. To every algebraic variety X over the complex field C we can associate 
a complex space X,,. To wit, since polynomials are analytic functions, each 
algebraic set V can be viewed as a subset of C.” , with Zariski topology replaced 
by the complex topology. This induces an inclusion of the ring of regular 
functions on the algebraic set V into the ring of analytic functions on V,,, 
while rational functions on V can be viewed as meromorphic functions on V,,. 
By definition, an algebraic variety X is glued together from affine varieties 
Vi, with rational transition functions, regular on the intersections Vi f~ Uj. 
Therefore, those same Vi, regarded as analytic sets, can be glued together 
into a complex space X,, using the same transition functions (the space X,, 
is Hausdorff because X is). In other words, X,, is obtained from the algebraic 
variety X by replacing the Zariski topology on X by the complex topology, 
and by enlarging the rings CJX,~ to (3~,~,~. Note that the identity map id,, : 
X,, + X is a ringed space morphism. 

The correspondence between the algebraic variety X and the complex space 
X,, can be extended to regular mappings - it is not hard to show that the 
map fan : -L, + Km, obtained from a regular map f : X -+ Y as fan = 
idi: o f o id,, is a holomorphic map. 

It can be shown (see Serre [1956]) that the variety X is connected in the 
Zariski topology if and only if X,, is connected; X is irreducible if and only if 
X,, is irreducible; dim X = dim X,,; X is nonsingular if and only if X,, is a 
complex manifold; X,, is compact if and only if X is a complete variety, that 
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is, for every variety Y, the projection map pa : X x Y + X is sends closed 
sets to closed sets. 

Comparing the definitions of a rational function (see $1) on an algebraic 
variety and of a meromorphic function (see $2) on a complex space Y, it is 
seen that if Y = X,,, then every rational function f on X can be viewed 
as a meromorphic function on X,,, and if X is irreducible, then there is an 
inclusion of fields @.(X) c M(X,,). In general, of course, e(X) # M(X,,). 
However, if X is a complete variety, then C(C) = M(X,,). This claim easily 
follows from the following theorem: 

Theorem (Siegel [1955]). Let Y be a compact complex manifold. Then the 
field of meromorphic functions M(Y) is finitely generated over C and the 
transcendence degree of M(Y) over C is no greater than dim Y. 

3.2. The correspondence between an algebraic variety X and the complex 
space X,, can be extended to coherent sheaves. Recall (see, eg, Hartshorne 
[1977]), that a coherent sheaf F is locally defined as the cokernel of a morphism 
of free sheaves: OF -% 0; -+ F + 0. Therefore, to each coherent sheaf F on 
an algebraic variety X we can associate a coherent sheaf F,,. Indeed, over 
an affine subset U c X, the morphism a is defined by a matrix of sections 
of the sheaf 0~. The entries of this matrix can be viewed as sections of the 
sheaf OUT,, , since pi induces a map (Y,, : c?,m, + O&. Therefore, F,, can 
be locally defined over U,, as the cokernel of cr,,. Put another way, the 
sheaf F,, is isomorphic to the sheaf (id,,)-‘F gid,;tOx 0x,,, = idI,F, where 
id,, : X,, + X is the pointwise identity mapping. 

This way of associating to a sheaf F on X the sheaf F,, allows us to define 
natural homomorphisms of cohomology groups (see Serre [1956]). 

ik : H”(X, F) + Hk(Xan, F,,). 

In general ik is not an isomorphism. However, as was shown by Serre [1956], 
for projective varieties (later generalized by Grothendieck [1971] to complete 
varieties), the homomorphisms il, are indeed isomorphisms. 

One consequence of Serre’s result is the following 

Theorem (Chow). Every closed complex space in IF’:, corresponds to an 
algebraic variety in P”. 

3.3. The correspondence between an algebraic variety X and an analytic 
space X,, and between coherent sheaves F on X and F,, on X,, leads to 
the following questions: 

1) If X,, and Yan are isomorphic, are the varieties X and Y likewise iso- 
morphic? 

2) Is every coherent sheaf on X,, isomorphic to F,, for some coherent sheaf 
F on the algebraic variety X? 
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3) If F’ and F” are coherent sheaves on X, such that FL, = F&, are F’ and 
F” isomorphic? 

The first of these questions is a special case of a more general question: 

1’) Let g : X,, + Y,, be a holomorphic mapping. Does there exists a regular 
mapping f : X -+ Y, such that g = fan. 

As one might expect, the answers to these questions are in general negative 
(for counterexamples see Hartshorne [1977] and Shafarevich [1972]). However, 
already in the case of complete varieties the answers are affirmative ([Serre 
19561, [Grothendieck 1971]), and this allows us to use techniques of complex 
analysis to study algebraic varieties. 

3.4. The following question arises naturally: when does a complex space 
come from an algebraic variety? In general, it would appear that. it is not 
possible to give non-trivial necessary and sufficient conditions, and therefore 
we will only consider the question when the complex space Y is a compact 
complex manifold, and in this case, if Y does indeed come from an algebraic 
variety, we will simply say that Y is an algebraic variety. 

When dim@ Y = 1 (that is, Y is a compact Riemann surface), the above 
question is answered by 

Theorem (Riemann). Every compact complex manifold Y with dime Y = 1, 
is is a projective algebraic variety. 

One of the many ways to prove this theorem can be found in Chapter 1, 

§7. 
According to Siegel’s theorem, in order for a compact complex manifold to 

be algebraic, it is necessary for the transcendence degree over Cc of the field 
of meromorphic functions M(Y) to be equal to dimY. It turns out that if 
dim Y = 2, then this condition is also sufficient, by the following 

Theorem (Kodaira [1954]). E uer compact complex manifold of dimension y  

2 with two algebraically independent meromorphic functions is a projective 

algebraic variety. 

It should be noted that Kodaira’s theorem is false for singular surfaces. 
Examples of non-algebraic compact complex manifolds of dimension 2 will be 
given in Chapter 1, $7. 

In dimension 2 3 the coincidence of the dimension of the manifold with 
the transcendence degree of the field of meromorphic functions is already 
insufficient to guarantee that the manifold is algebraic. However the following 
holds: 

Theorem (‘Chow’s Lemma”, Moishezon [1966]). Let Y be a compact com- 
plex manifold, such that the transcendence degree of the field of meromorphic 
functions M(Y) is equal to dimY. Then there exists a projective algebraic va- 
riety Y and a bi-meromorphic holomorphic mapping n : Y + Y, which. is a 
composition of monoidal transformations with nonsingular centers. 
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The above theorem shows that if the transcendence degree of the field of 
meromorphic functions of a compact complex manifold is maximal, then such 
a manifold is not too different from a projective variety. 

Using monoidal transformations with nonsingular centers, examples can 
be constructed of compact manifolds which, while possessing a maximal num- 
ber of meromorphic functions, are either not algebraic, or algebraic but not 
projective. These examples are constructed by Hironaka [1960]. 

Example. An algebraic variety which is not projective. Let X be an arbi- 
trary complete algebraic variety with dimX = 3 (e. g. X = p”). Choose two 
non-singular curves (one-dimensional sub-varieties) Cr and C’s on X, inter- 
secting transversely in two points P and Q. The variety X can be covered by 
two open sets X\P and X\Q. In each of the sets X\P and X\Q perform two 
monoidal transformations; in X\P - first a monoidal transformations cen- 
tered on Ci , and then one centered in the proper preimage of the curve Cs. 
Perform the corresponding transformations in X\Q with the roles of Ci and 
C, reversed. Since the curves Ci and C’s do not intersect on X\(P U Q), the 
monoidal transformations centered on Ci and (2’2 can be performed in any 
order, and will result in the same variety. Therefore, the varieties obtained in 
the course of monoidal transformations from X\P and X\Q, respectively, can 
be glued together into a single algebraic variety X, together with a morphism 
n:X+X. 

Fig. 2 

The variety X is not projective. To explain why that is true, denote by 
Li = r-l (x) the preimage over a general point z E Ci , and by L2 the preimage 
over a general point of the curve Cs (L1 N B1, L2 21 P1). Let us see what 
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happens above P and Q. The preimage over Q consists of two curves L’, and 
Li (the curve L: appears after the first monoidal transformion on X\P,and L;’ 
after the second). It is easy to see that the curves L’,’ and Lz are homologous, 
and also that Li + Ly and L1 are homologous. Analogously, there are two 
curves Lh and Ly sitting over P in X, and Ly is homologous to L1 and 
Lh + Ly is homologous to Ls. From the conditions 

L:’ N Lz, 

L:‘+Li -L1, 

L; N L1, 

L; + L; N L2 

it follows that Li + Lb - 0. This, however, is impossible if X is a projective 
variety. Indeed, Hz@‘“, Z) = ZL, where L is a homology class of a projective 
line in P”, and every curve C c P” is homologous to dL, d > 0, where d 
is the degree of C, equal to the number of intersections of C with a generic 
hyperplane in lF. In particular, a curve in lF is not homologous to zero if its 
degree is greater than zero, hence L’, + LL cannot be null homologous in X if 
X is a projective variety. 

Example. Non-algebraic manifold with a maximal number of meromorphic 
functions. This is constructed analogously to the previous example. In a com- 
plete algebraic variety take a curve C with only one singular point P. Assume 
that this singular point is of the simplest possible kind, that is in a suffi- 
ciently small analytic neighborhood U C X,, of P, the curve C becomes 
reducible and falls apart into two nonsingular branches Ci and Cx, which in- 
tersect transversely. Perform a monoidal transformation of X\P centered at 
C, and on U perform two monoidal transformations, the first centered at Ci 
and the second centered at the proper preimage of Cz. It is easy to see that 
these transformations over U\P give rise to the same variety, along which the 
varieties obtained via monoidal transformations of X,,\P and of U may be 
glued. We will thus obtain a compact manifold X and a holomorphic mapping 
7r : x + x,,. It is easy to see that rr* is an isomorphism between the fields 
M(X) and M(X). 

Let us show that X can not be an algebraic variety. Denote by L = 7r-l (ST) 
the preimage over a general point x E C II X\P, L1 - the preimage over a 
general point x E Ci c U, L2 - the preimage over a general point x E Cz c U, 
and by (L’ U L”) the preimage over the point P (L’ is obtained after the 
first monoidal transformation in U, etc.) Then, evidently, L1 N L2 N L and 
Lz N L”, L1 - L’ + L”. Consequently2 L’ - 0. This, however, is impossible if 
X is an algebraic variety. Indeed, if X is algebraic, then every point Q E X 
lies in some afline neighborhood W c X. On an afline variety, there exists 
an algebraic surface S, passing through any given point, and not containing a 
given curve. Choose such a surface S passing through some point Q c L’ c 2, 
and denote by S the closure of the surface S in X. Then the homology classes 
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Fig. 3 

(S) and (L’) have a non-zero intersection number, which means that L’ was 
not null-homologous. 

3.5. At this point we should mention a sufficient condition, under which 
any compact complex manifold with a maximal number of algebraically inde- 
pendent meromorphic functions is an algebraic (and even projective) variety. 
Such a condition (see Moishezon [1966]) is the existence on X of a Kahler 
metric, which will be defined in Chapter 1, $7. 

$4. Complex Manifolds as C” Manifolds 

If we ignore the complex structure, an n-dimensional complex manifold 
X can be viewed as a 2n-dimensional differentiable manifold. This viewpoint 
allows us to transfer all of the differential-geometric constructions onto com- 
plex manifolds, as described in the following two sections. All of the necessary 
background from differential geometry can be found in Postnikov [1971] and 
de Rham [1955]. 

4.1. Tangent and Cotangent Bundles. Let 21, . . . , Z, be local coordinates in 
a neighborhood of a point x in a complex manifold X, where .zj = x~j + iyj, 
i = fl. Forgetting about the complex structure, we see that the functions 
~1,. . . ,x,, yr, . . . , yn are real local coordinates on the C” manifold X. Let 
TX@) and T*X(R) be the tangent and cotangent bundles of X (as a C” 
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manifold) respectively, and let TX = TX@) @ @ and T*X = T*X(IR) @ @ be 
their complexifications. The bundle TX(R) can be identified with the image 
of TX@) under the inclusion TX(R) C) TX, defined by the natural inclusion 
R L) Cc. Analogously, T*X(R) can be included into T*X. 

The differentials dzi,. . . ,dz,,dyi,. . . ,dy, form a basis of T,*X(IR), and 
thus the forms dz sis of T*X. Let &, = dy + a&, and Gp. = dx, - idy, form a b:- 

. . . , =, & be the basis of T,X dual to the basis 
dq, . . . . &&&. . .:dzn : n 

j&=:(&--i&). 

&=i(&+i&). 

The space T,X decomposes into a direct sum 

where Ti”, is generated over @ by the vectors &, . . . , &, while T$‘, is gen- 

erated by ’ a =,...,&. 

Tx,s = (mx,z /m&f, 

It is easy to see that the space TL$, is isomorphic to 

since differentiation & preserves holomorphic func- 
P 

tions. The space Ti,t is called the holomorphic tangent space (see §2). Since 
T,X = T,X(R) @ @, complex conjugation z -+ t- can be extended to complex 

conjugation on T,X, and it is easy to see that & = &, hence T?: = T$,i. 

Furthermore, 

rl = 7, 

for a vector 71 E T,X, if and only if n E T,X(R). Therefore, any vector 
71 E T,X(R) can be represented as 

and the natural projection T,X + T;,t defines an R-linear isomorphism 

T,X(IR) 2: T;p, : 

4.2. Orientability of a Complex Manifold. Recall that an n-dimensional real 
vector space V is called oriented when an orientation has been picked on the 
one-dimensional vector space AnV. A locally trivial vector bundle f : E + X 
is called orientable if orientations w, can be chosen on all the fibers E, in such 
a way that for the trivializations f-‘(U) 2~ U x V over sufficiently small open 
sets U c X all the orientations w, define the same orientation on V. Finally, 
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an orientation of a differentiable manifold M is an orientation of its tangent 
bundle. 

It is easy to see that in order for an n-dimensional differentiable manifold 
to be orientable, it is sufficient for there to be a cover of M by open sets 
U, and local coordinates x,,i, . . . , x,,, on each U,, such that the n-forms 
dx,,l A . . . A dx,,, differ at each point of U, n Uo by a positive multiple. 

Theorem. ,A complex manifold X is an oriented Cm manifold. 

Indeed, let ~1,. . . , z, and wi, . . . , w, be two choices of complex local coor- 
dinates in a neighborhood of a point x E X. Then 

dwj = 2 zdzk. 
k=l 

Thus, dw,A.. .l\dw, = JdzlA.. .Adz,, where J = det 
( > 
2 is the Jacobian 

of the transition map from the z to the w coordinates. Let zj = xj + iyj 
and Wk = Uk + iuk. Then dxl A . . . A dx,, A dyl A . . . A dy, = (i/2)ndzl A 

. . A dz, A dZi A . . . A d?,. Therefore dul A . . . A du, A dq A . . . A dv, = 

JTdxl A.. , A x, A dyl A.. . A dy,. But J’J = ] J12 > 0 and hence X is an 
oriented manifold. 

4.3. Denote by &$ the sheaf of complex differential k-forms on the manifold 
X. The local sections of the sheaf &$ are given by the forms 

4 = C $I,JdXi, A . . . A dxi, A dyj, A . . . A dyj,-,, 

I,J 

where 41, J are complex-valued C” functions, while I = {il, . . . , iP}, J = 

Cl,. . . , jk--p}, 0 5 P 2 k. 

The exterior differentiation operator d, which acts separately on real and 
imaginary parts, can be extended to a differentiation operator d : &g + Ei+‘. 

By Poincare’s Lemma, the sequence of sheaves 

0 + cx --+ E0 4 El 4 X x . . . 4E” 4 x . . . 

is exact, that is, locally, every closed form w (o!~ = 0) is exact (w = d4). 

The sheaves &g are fine sheaves (Godement [1958]), since the manifold 
X has a smooth partition of unity. The cohomology groups HP(X,Eg) = 0 
for p > 0, and so (de Rham’s theorem) the following relationship between 
cohomology groups holds: 

Hk (x cx ) N Ker[d : H”(X, &$) + HOW, fit1 )I 
> 

Im[d : HO(X,E$-‘) -+ HO(X,&:)] ’ 

that is, the k-th cohomology group of X with complex coefficients is isomor- 
phic to the quotient of the space of closed k forms on X by the space of exact 
k forms. 
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The decompositions TX = T+’ @ T?’ and TX* = Tie* @ T$“* induce 
decompositions of k-forms into forms of type (p, 4) 

rg = @ Ety. 
p+q=k 

If we use the notation dzl = dzi, A. . .Adzip, where I = {il, . . . , iP}, 111 = p, 
then the sheaves E$” over X are locally generated by the forms dzl A &J, 
11) = p, ]JI = q. Note that the sheaves &gq are also fine. 

It is easy to see that the differential of the form $ = ~lIl=p,lJI=9 4r,JdzI A 

&J E &gq is given by 

also d$ E Ec+l’q cI3 Egq+‘. Let Up,, : &;+“” + &$” be the natural projection 
operator. Define 

8 . EP>Q + p+“” 
. x 7 

a : &PA + &pl+l 
X 

by setting d = I7,+i,, o d and ?? = I7,,,+i o d. Then d = d + 8. Furthermore, 

d2 + 88 + 38 + a2 = d2 = 0. Comparing types of the various forms, we get 

Denote L?$ = Ker[a : Ego + &%‘I. The sheaves 62% are called the sheaves of 
holomorphic differential p-forms on X. It is easy to see that the sequence 

oj~xjn~Sn:,~...~n~S... 

is the resolution of the constant sheaf CX , while the sequences 

0 -+ RP -+ EP10 3 X x ... 
3&p% . . . 

are fine resolvents of the sheaf L’;. Hence (Dolbeault ‘s Theorem) 

fP(X, L?;, = 
Ker[a : H”(X, E$“) + H”(X, Egq+l)] 

Im[8 : H”(X, &$“-‘) + H”(X, Egq)] ’ 

and there exists a spectral sequence (the hypercohomology spectral sequence) 
with the term 

J3pq = P(X, .n$) = fP(X), 

which converges to Hp?q(X, C) (Godement [1958]). 
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$5. Connections on Holomorphic Vector Bundles 

One of the central concepts of differential geometry is that of an affine 
connection, which makes it possible to define the concept of parallel trans- 
lation on vector bundles. In this section we extend the concept of an affine 
connection into the complex setting. 

5.1. The generalization of the concept of a vector bundle to the complex 
setting is the concept of a holomorphic vector bundle. 

Definition. A holomorphic mapping 7r : E + X is called a holomorphic 
vector bundle of rank n if 

1) There exists an open cover {Ua} of the manifold X and biholomorphic 

mappings & : a? x u, + +(&), such that the following diagram 
commutes: 

The mappings qb& are called trivializations. 
2) For every fiber E, = 7~’ (z) 21 CY over a point z E U, n U, the mapping 

hap(x) = da 0 4,‘(x) : cc” + Cc”, defined by the trivializations & and 
$0, is a C-linear map. 

Note that if a basis for C” is defined, then the trivializations & and $0 
define a non-singular matrix h,p = q& o dp’ of order n, whose entries are 
functions holomorphic on U, n Up (transition functions). Evidently, 

VXEU,~U~, h,pohp,=id, 

Vx E U, II Up n U,, ha0 o hp, o h,, = id. 
(3) 

It is easy to see that if we have an open cover {Ua} and matrices of holo- 
morphic functions h,p defined at every point of U, n Uo, then there exists 
a holomorphic vector bundle E + X with transition functions {hap}. The 
operations of direct sum, tensor product, exterior product, and so on, can 
be extended without change to holomorphic vector bundles. For example, if 
E + X is a holomorphic vector bundle, then the vector bundle E* -+ X with 
fibers Ed = (E,)* = H omc (E, , C) is called the dual vector bundle. Further 
more, if the transition functions for E are given by the matrices hap, those 
for E* are given by gao = hijt. 

A holomorphic section of a holomorphic vector bundle n : E + X over an 
open set U c X is a holomorphic mapping f : U + E, such that r(f(x)) E x. 
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If f and g are two sections of the bundle U over U, then their sum h(z) = 
f(z) + g(z) can be defined in the obvious way, and therefore holomorphic 
sections form a sheaf Ox(E). The sheaf Ox(E) is locally trivial (that is, it is 
locally isomorphic to 13;). Conversely, every locally trivial sheaf of rank n is 
isomorphic to the sheaf of sections of a holomorphic vector bundle of rank n. 
In the sequel we will occasionally not distinguish between holomorphic vector 
bundles and their sheaves of sections. 

Denote by &F(E) the sheaf of E-valued (p, q)-forms on X. If for a suffi- 
ciently small open set U c X we choose a holomorphic basis (21,. . . , In} of 
the bundle (that is, we are given a trivialization 4~ : cc” x U -+ r-l(U)), 
then the sections of the sheaf &$‘+r are the forms 

where qk E &?‘]u. 
There is an important distinction between holomorphic vector bundles and 

C” vector bundles. While there is no natural differentiation operator d defined 
on the sections of a C” vector bundle, for holomorphic vector bundles the 
differentiation operator 3 : &gq + &?‘+l induces a well-defined operator 

23: &y(E) + Egq+yE). 

It is clear that the kernel of the operator 

coincides with the sheaf Ox(E) of holomorphic sections of E. 
Let 7r : E + X be a holomorphic vector bundle, trivial over the open set U. 

It is clear that there are several choices of a trivialization 4 : F x U -+ r-‘(U) 
over U. It can be seen that if 1c, : Cc” x U + r-‘(U) is another trivialization, 
then $o$-~ = A(z), where A(s) is a nonsingular over U matrix of holomorphic 
functions, that is, A(z) E H”(U, GL(n, OX]~)). Therefore, if {hLYo} and {h&} 
are two sets of transition functions defining the bundle E -+ X, then 

%a = &(4&d+$1(4. (4) 

In particular if E -+ X is a line bundle (a bundle of rank one), then E is 
given by an open covering {Ua} of X, and a set of non-vanishing in U, n Up 
holomorphic (on U, n Up) functions, which satisfy relations (3) 

haphpa = 1, 
haghp,h,, z 1. 

The relations (3) define a Tech cocycle (see Godement [1958]) on X, with 
coefficients in the sheaf of invertible holomorphic functions 0:. Condition 
(4) for the line bundle E + X shows that for two collections of transition 
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functions {hao} and {hha} of two trivializations of this bundle, we can find 

a collection of functions fa E H”(Va, 0: Iv-), such that 

In other words, cocycles {hap} and h& differ by a coboundary. Therefore, line 
bundles over X are in one-to-one correspondence with elements of H1 (X, 0;). 
It is easy to check that the group operation in H1 (X, 0%) corresponds to 
tensor product of line bundles. The group Hi(X, 0:) is called the Picard 
group of the manifold X, and denoted by PicX. 

5.2. The analogue to the concept of a Euclidean vector bundle is that of a 
Hermitian vector bundle. 

Definition A holomorphic vector bundle 7r : E + X is called a Hermitian 
vector bundle, if each fiber E, is equipped with a Hermitian scalar product, 
which depends smoothly on x E X. 

Smoothness of the scalar product means that if we choose a basis {ei(x)}, 
over an open set U c X, smoothly depending on x E U (in other words 
we choose a C” trivialization 4~ : c x U + r-‘(U)), then the functions 
hij(x) = (ei(x),ej(x)) are of class C”. 

A basis {ei}, smoothly dependent on x, in a Hermitian bundle E over 
U c X is called unitary if 

(ei(x),ej(x)) =&j, 

where Sij is Kronecker’s symbol. 
Using the Gram-Schmidt orthogonalization process, we can always pick a 

unitary basis in an open set U, such that E is trivial over U. 
Let E + X be a Hermitian vector bundle. Then an Hermitian scalar 

product on E + X induces a hermitian product on the dual vector bun- 
dle E* -+ X. Indeed, let {ei, . . . , e,} be a unitary basis of E over U c X, 
and let {e;,... , e;} be the dual basis in E*, that is, (ei, ej*) = &j. Then an 
Hermitian scalar product can be defined in E* by setting (er, e;) = &j. 

5.3. 

Definition. A connection D on a holomorphic vector bundle E + X is a 
mapping 

D : E;(E) -+ E:,(E) = E:, C@(E) 

satisfying the Leibnitz product rule 

D(foa)=df@a++Da 

for all smooth sections CY E Ho (U, &; (E) 1 u) of the bundle E over an open set 
U C X and for all smooth functions f. 
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If there is a trivialization q5 : UF x U + x-l (U) of the bundle K : E + X 
(which is to say, a basis {ei(x)} is chosen for E over U) then the connection 
D is determined by a matrix 0 = (0,j) of one-forms: 

Dei = C Oijej. 

The matrix 0 is called the connection matrix. It can be seen that 8 together 
with the choice of a basis {ei} determines the connection D. Indeed, if (Y = 
C aiei, then 

DCX = C dai @ ei + C aiDei = C(daj + C ai@ij) @ ej. 
j i 

Thus, if {e:} is another basis such that e’(x) = g(x)e(x), then 

eel = dg, g-1 + ge,g-? 

The decomposition of l-forms into those of types (1,0) and (0,l) defines 
a decomposition Ei (E) = E?‘(E) @ &zl (E), and thus the connection D 
decomposes into a sum D = D’ + D”, corresponding to the forms of different 
types. 

Using the Leibnitz product rule, the connection D can be extended to 
mappings 

D : &$ + ,5$+‘(E), 

by setting 

D(~J @ $J) = d4 @ + + (-Uk$ A W, 

where q5 E H”(U,8$lu), 1c, E H’(U,&$(E)IU) and E;(E) is the sheaf of 
E-valued lc forms on X. 

A simple computation shows that 

0’ : E;(E) + r;(E) 

is an ,$--linear operator, that is, D2(fa) = fD2(a), for C” functions f. 
Put another way, D2 : &g(E) -+ E;(E) is induced by the bundle mapping 
E -+ A2T’E 8 E. 

If {ei} is a basis for E over U, then 

D2ei = C Oij @ ej, 

where 0, = (Oij) is a matrix of 2-forms. This matrix is called the curvature 
matrix of D with respect to the basis {ei}. 

If e’ = g(e) is another basis, then 

@,I = gag-? 

Computing: 
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D2ei = D(C eij ~3 ej) = C doi, @ ej - Cj, k(& A e,,..) 8 ej 
j 

leads to the matrix equation 

0, =d8,-o,/\e,. 

The above is known as Cartan’s structure equation. 

5.4. Just as in differential geometry a Riemannian metric determines a 
unique Riemannian connection, so on an Hermitian bundle there is a unique 
connection which agrees with the Hermitian scalar product and with the com- 
plex structure. More precisely, the following lemma holds (see, eg, Griffiths- 
Harris [1978]). 

Lemma. Let E -+ X be an Hermitian bundle. Then there exists a unique 
connection D on E (the so-called metric connection) satisfying the following 
conditions: 

1) D” = 8; 
2) d(a,/?) = (Da,P) + ((~,d/3), where ( , ) is the Hermitian product on E. 

Condition 2) of the lemma is equivalent to saying that the Hermitian scalar 
product is invariant under parallel translation. 

It should be noted that the metric connection with respect to a holomorphic 
basis {ei} is given by a matrix 8 of (1,0) forms, by condition 1) of the lemma. If 
the basis {ei} is unitary (that is, ei depends smoothly on x and (ei, ej) = c&j), 
then - 

0 = d(ei,ej) = 6ij + Bij, 

so the connection matrix 19 is skew-Hermitian with respect to a unitary basis. 
The curvature matrix 0 of an Hermitian holomorphic vector bundle is an 

Hermitian matrix of (1,1) forms. Indeed, since D” = 3, then D”2 = 0, and 
hence O”12 = 0. But with respect to a unitary basis {e}, the matrix ee is 
skew-Hermitian, hence 0 = de - 0 A 0 is also skew-Hermitian. Therefore, 

@4 = -t@v = 0 

Let D be the metric connection on an Hermitian bundle E -+ X. It defines 
a metric connection D* on the dual vector bundle E*, which can be defined 
by requiring that 

d(O,T) = (D~,T) + (a, D*T), 

for sections (T E HO(U,&i(E)) and r E HO(U,&$(E*)), over an open set U in 
X. In particular, if {ei} is a basis of the bundle E over U and {ef} is the dual 
basis of E*, and 6 and 8* are the corresponding connection matrices, then 

O=d(ei,ej*) =Oij+8j*i, 

hence 
l9 = -tee. (5) 
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$6. Hermitian Manifolds 

The complex analogue of Riemannian manifolds are Hermitian manifolds. 

6.1. A complex manifold X is called a Hermitian manifold, if its holomor- 
phic tangent bundle Tie has the structure of a Hermitian bundle. 

It should be noted that, just like in the real setting, every complex manifold 
X can be made Hermitian. Indeed, locally there always exists a Hermitian 
structure, since locally X is isomorphic to a neighborhood of 0 in CY. Using 
a smooth partition of unity, these local Hermitian structure can be always 
assembled into a Hermitian structure on all of X. 

A hermitian scalar product on T?,t is induced by the pairing 

which depends smoothly on X. In local coordinates a Hermitian scalar product 
is given as 

ds2 = C hij(z)dzi @ dZj, 

id 

and ds2, as above, is hermitian, when hij(z) = hji(z). 

The real and imaginary parts of the Hermitian scalar product (.,y) de- 
termine, respectively, a Euclidean scalar product and a skew-symmetric 2- 
form on the vector space T;,:. Therefore, under the natural isomorphism 

TX@) q Tie, the Hermitian metric ds2 induces the Riemannian metric 

Reds2 : T,X(R) ~3 T,X(lR) -+ IR 

on X. The skew-symmetric form 

Imds2 : T,X(R) C%Q TzX(IR) + II8 

defines a differential 2-form 0 = - f Im ds2, which we will call the associated 
form of a Hermitian metric. 

By the Gram-Schmidt orthogonalization process, we can find forms 
‘lo ;;r:.io;2 E 7,x, such that the Hermitian metric can be locally written in 

ds2 = C $j CQ &. 

j 

Let & = oj + ipj. Then 

Hence, the Riemannian metric can be written as 
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while the associated form can be written as 

Thus, the metric ds2 = C $j 8 6 can be recovered from the associated 
form R = +j A j. Specifically, a given real (1,1) form 

0 = ; c h,,(z)dz, A a,, 

this defines a Hermitian metric 

ds2 = c h,,(z)dz, @ dZ, 

whenever the Hermitian matrix H(z) = (hpp(z)) is positive definite. The real 
(1,1) forms R = i C hpq(z)dz, A&, for which the matrix H(z) = (hpq(z)) is 
positive definite are called positive forms. 

Finally, note that if R is the form associated to a Hermitian metric ds2, 
then 

;fln = (al A p1) A.. . A (a, A Pn) 

is the volume form dV on the Riemannian manifold X with the metric Re ds2. 

6.2. Let X be a Hermitian manifold. Then the Hermitian metric ds2 = 
C hijdzi @ dZj defines a metric connection D on the holomorphic tangent 
bundle T?’ and also, by duality, a metric connection D* on T$‘*. 

For a coordinate neighborhood U c X choose a unitary basis C/Q,. . . , &, E 
T1”* such that ds2 = C $j @I $j. A simple computation shows the following X 

Lemma. There exists a unique matrix of l-forms ($ij), such that 

I) c$+q=o, 
2) ddj = xi $ij A $j + Ti, where Ti are (2,O) forms. 

The above lemma gives an effective means to compute the connection ma- 
trix. Namely, let IJ = (VI,. . . , v,) be a basis of T;’ dual to 4 = ($1,. . . , &) 
and let 0 be the connection matrix of D with respect to the basis v, while 
8’ be the matrix of the connection D* with respect to the basis 4. Setting 
4 = 4’ + qb”, where 4’ is the (1,0) component of the l-form 4, the condition 
D*” = 8 implies that 19,” = 4”. But then 

since 4+9 = 0 and 0+%3* = 0, since the matrix of a metric connection is skew- 
Hermitian with respect to a unitary basis. By equation (5) from the previous 
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section, it follows that 0 = -0 ‘* Consequently, the connection matrix of a . 
holomorphic tangent bundle satisfies 

e = -“f$. 

Thus, computing the external differentials d$i of a unitary basis of 5”fi”* allows 
us to find the matrices 0 and 8* of the connections in holomorphic tangent 
and cotangent bundles, respectively. 

The vector 7 = (71,. . . , T,), defined in the lemma above is called the tor- 
sion. 

6.3. The Hermitian metric ds2 = C $i B 5i defines a Hermitian scalar 
product (4(z), v(z)) in the fiber over the point z of the sheaf &; = @p,q &gq, 

such that the basis vectors $1 /\sJ = 4il A. . . r\+ip Ajl A. . . Aqjq are mutually 

orthogonal, and their lengths 1141 A qJll = 2p+q. If X is compact, then this 
Hermitian product gives rise to a global Hermitian product ( , ) on the set of 
sections H”(X, &2) of the sheaf &g : 

and thus turns H’(X, &g) into a pre-Hilbert space. 
Let T : E;r -+ &g be a c-linear operator. The operator T’ is called adjoint 

to T if (Tt$,+) = (qS,T’$). The operator T is called real, if it sends real- 
valued forms onto real-valued forms. We will say that T has type (r, s) if 
T(Egq) c E$+r,q+s. 

In order to compute adjoints we will make extensive use of the operator 
(the I-Iodge * operator) 

* : &P/ + &-Pm, 

defined by the requirement 

(4(z), rl(z)W = $(z) A *v(z), 

for all 4, r] E EC”,. If ds2 = & @ qi, then for the form 17 = c ~1,541 A sJ, we 

have 
*q = l y+q--n c VIJh A -& 

IIl=p,l JI=q 

whereI= {l,... , n}\I and the sign + is used when $1 A$J Ah/\& = P. 

It can be checked that 
* * ?j = (-1)“Q 

for a k-form q. 
It should be noted that the operator * comes from linear algebra. Namely, 

let V be an oriented n-dimensional Euclidean space. Then we can define an 
operator * : A” V + AnvP V, with the following properties. If w = ~1 A. . . Au, 
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is a monomial multivector, then *w is a monomial multivector *w = upup+1 A 
. . . A v,, such that 

1) The vector spaces spanned by the sets {vi,. . . , vP} and {zlp+i, . . . , v,} are 
orthogonal complements to each other; 

2) The (n - p)-dimensional volume of the parallelopiped 17 * w, spanned by 

{Vp+l, . . . , v,} is equal to the p dimensional volume of the parallelopiped 
IlW. 

3) w A *w > 0, with the orientation chosen for V. 

Let 6 be adjoint to the exterior differentiation operator d. For a Ic form w 
we have 

= J [d(w A q) + (-1)“~ A * *-l d * v] 
X 

= (-l)“(w, * -‘d*q) = -(w,*d*q). 

Thus, S = - * d * . Since d2 = 0, h2 = 0, also. 
Analogously, it can be shown that the operators S’ and S”, adjoint to d and 

?? are 6’ = - * d*, b” = - * &, and hence are operators of types (- 1,0) and 
(0, -l), respectively. 

6.4. The self-adjoint operator A = (d + S)2 = d6 + Sd is called the Laplace 
operator (or the Luplacian). A form w is called harmonic, if it is in the kernel 
of the Laplacian, that is Aw = 0. 

It should be noted that under the usual Hermitian metric ds2 = cj”=, d.q 8 

dF,onP,A=C~cl(&+&), so A coincides with the standard Laplace 

operator. The operator A’is an Elliptic operator (see de Rham [1955]). 
Using the commutation relations Ad = dA, A6 = &A, A* = *A, it can 

be shown that w E H’(X,E;) is harmonic if and only if dw = 6w = 0. In 
particular, every harmonic form is closed. 

Denote by xi the space of harmonic forms on X; by 3c2 = dH’(X, &$), 

the space of exact forms, and by 3ts = 6H”(X, &i). The following lemma can 
be easily checked: 

Lemma. 311, Ifl2, and T?& are mutually orthogonal, and if w I ‘Hi, i = 
1,2,3, then w = 0. 

The lemma, in particularly, implies that a harmonic form is not exact, since 
Y-t1 I 3t2. Therefore, xi is contained in the space H*(X, C), isomorphic by 
de Rham’s theorem to the quotient of the space of closed forms by the space 
of exact forms. 

Let X be compact. It is known (de Rham [1955]) that in that case the 
spaces Hk(X, C) are finite-dimensional. Therefore, the space 3ci is also finite- 
dimensional. The finite dimensionality of 3ti allows us to define the harmonic 
projection operator 
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H : H’(X,&;) + x1, 

such that (4, $) = (Hg5, $) f or all $ E 311. This uniquely defines H. 
By the theory of compact self-adjoint operators in Hilbert space (de Rham 

[1955]), it can be shown that on a compact Hermitian manifold the equation 

for a prescribed form $ has a solution w if and only if 4 I 3tr (de Rham 
[1955]). This implies that there exists a unique operator G (the Green-de Rham 
operator) satisfying the following conditions: 

i) For every w E H’(X,&;) 

Hw+AGw=w. 

ii) (Gw, 4) = 0 for every 4 E 3-11. 

It can be easily checked that H and G commute with any operator which 
commutes with A. In particular, H and G commute with A, d, 6, and *. Also, 
and the lemma above imply that 

H”(X,E;c) = 3-11~ 3tz @ 7-l~. 

Let w be a closed form. Then 

w = Hw + dbGw + SdGw = Hw + dGGw + GGdw = Hw + dGGw. 

This implies the following: 

Theorem. On a compact Hermitian manifold X every closed form w is 
cohomologous to the harmonic form Hw, and so 

H*(X,C) 21 x1. 

6.5. The theory of harmonic forms for the operator A, = %” + 8’3 is 
constructed analogously. With the notation 

?lplq = Ker[A, : H”(X,&gq) -+ H”(X,E$q)], 

it can be shown (see, eg., [Chern 19551) that for a compact manifold, the spaces 
‘Wq are finite-dimensional, and the following operators exist: the harmonic 
projection operator HA- : H’(X,E?‘) + ‘W’~Q and the Green’s operator G : 

H”(X,E$q) + H”(X,&iq). Th ese operators satisfy the following conditions: 

i) For every form $ E H”(X,Egq) and $ E ‘?-W, 

(4, $1 = (HA&+ $1; 

ii) For every w E H”(X, &gq) 



38 Vik. S. Kulikov, P. F. Kurchanov 

w = HA~W + A&‘w; 

iii) For every II, E Y?!J’lq and w E H”(X, &2”) 

(Gw,$J) = 0. 

These conditions imply that 

H’(X, &gq) = %p>q @ 8H”(X, &cq-‘) @ S”H’(X, E$“+‘), (f-5) 

and all of the summands are mutually orthogonal. It thus follows that every 
&closed (p, q) form is &cohomologous to a form in ‘MPJ. Applying the de- 
composition (6) to Dolbeault’s isomorphism (see $4.3) we obtain the following 
expression for the space of 8-harmonic (p, q)-forms: 

‘HpTq = Hq(X, 0:). 

A simple check reveals that A, and * commute. Thus, the operator * 
induces the Kodaira-Serre isomorphism, or Kodaira-Serre duality 

* : RP+l + xn-P,n-q. 

In particular, 3t”y” 21 CdV, where dV = *l is the volume form of the Hermitian 
metric. 

6.6. Every compact complex manifold has many different Hermitian met- 
rics. For a general Hermitian manifold the operators A and A, are completely 
unrelated. However, if the Hermitian metric in question is also a Kiihler met- 
ric, which means that it satisfies 

dL? = 0, 

where R is the (1, 1)-form associated to the metric, then A = 243. The 

coincidence of harmonic and &harmonic forms has many very interesting and 
non-trivial cohomological consequences, which are studied in the next section. 

5 7. KBhler Manifolds 

7.1. 

Definition. A complex manifold X is called a KGhihler manifold, if it pos- 
sesses a Kahler metric, which is a Hermitian metric ds2, such that the associ- 
ated (1, 1)-form fl is closed: d0 = 0. 

Let us give a few more equivalent definitions of a Kahler manifold. We 
will say that a metric ds2 has Ic-th order contact with the Hermitian metric 
Cd.zj @&j on C”, if in a neighborhood of every point zo E X, there exist 
holomorphic local coordinates zi, . . . , z,, such that 
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ds2 = c(Sij + g&))dai A dZj, 

where gij have a zero of order k at 20. It turns out (see, eg., Griffiths-Harris 
[1978]) that a Hermitian metric on X is Kahler if and only if it has second 
order contact with the Hermitian metric on cc”. 

Here is a second equivalent definition. In Section 6.2 we defined the torsion 
vector of (2,0)-forms 7 = (~1,. . . , 7,) of a metric connection on the tangent 
bundle of a Hermitian manifold. It turns out (Griffiths-Harris [1978]) that a 
Hermitian metric is Kahler if and only if r = 0. 

It should be pointed out immediately that the (1, 1)-form R associated to 
a Kahler metric on a compact complex manifold X cannot be exact, since 
0” = n!dV is a nonzero class in H2n(X, C). Thus 0” defines a nonzero class 
in all the even-dimensional cohomologies H2”(X,Q, k 5 n. 

7.2. One of the most important examples of Kahler manifolds is the projec- 
tive space pn. Let (tie : . . . : un) be homogeneous coordinates in pn. Consider 
the differential (1,l) form 

in the neighborhood {~.j # 0). S ince in the open set {uj # 0, ~1 # 0) 

I I 
2 

&log 2 = 0, 

the forms 0, and Q coincide in that neighborhood and thus they define a 
form 0 globally on P”. This form is closed since 

d@ = a2?? - 82 = 0. 

Let z. = 3 

0). The: U” ’ 
j = l,..., n be nonhomogeneous coordinates in Ue = {us # 

1 

0 = iddlog 

where 
d2H 

w - 
Tt8 = dZi$iZ, ’ 

H = log(1 + c ]zj]“). 

Evidently, (w~,~) is a Hermitian matrix. A fairly simple calculation shows that 
(w,,,) is a positive-definite matrix. Therefore, 0 defines a Kahler metric on 
pn. This is the so-called Fubini-Study metric. 

It is easy to see that a non-singular projective variety X C Bn with the 
induced metric is also a Kahler manifold. 
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7.3. Let X be a compact Kahler manifold and R the (1, 1)-form associated 
to the Kahler metric. Denote by L : Eg + E&‘” the operator induced by R : 

L(4) = n A f$. / 

The operator L is a real operator of type’ 11, l), since R is a real (1, l)- / 
form. Since dR = 0, dL = Ld. Let A be the adjoint operator of L. Local 
computations show that 

[A, L] = AL - LA = &n - r)l&-, 
r=O 

where 17, : &g --+ &k is the projection. Let 

(7) 
i 

17 = gn - ?-)I&. 
r=o 

It can be checked that 

[UT, L] = -2L, 03) 
[II, A] = 211. (9) 

Let C be the linear operator acting on (p,q)-forms by Cw = ip-Qw. It can 
easily be checked that C commutes with the operators *, L, and A. In addition, 
local computation lead to the following relations: 

[A,d] = -C-%C, 

[L, 61 = C-‘dC, 

c-1f5c = i(S’ - b”), 

-C-‘dC = (a -a). 

It follows that A is an operator of type (0,O) commuting with C, L, A, and 
17 p,q, and so 

A = 2As = 2A8. 

As a corollary we get a decomposition of the space of harmonic forms 

3t; = @ wq, (10) 
p+q=r 

NPTQ = gic6. (11) 

In particular, the spaces of holomorphic forms 31Py” = H”(X, @‘) consist of 
harmonic forms for any Kahler metric. Hence, holomorphic forms on a K5hler 
manifold are closed. 

We should point out the fundamental importance of the decomposition 
given by equations (10) and (11). In general, of course, every form 4 E Ei 
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decomposes into a sum 4 = C CJWJ of its (p, q) components. But on an arbi- 
trary complex manifold this decomposition doesn’t work on the cohomological 
level. For a Kahler manifold, on the other hand, it makes sense to talk of the 
decomposition of cohomology into (p,q) types. Indeed, let Hp>q(X) be the 
quotient of the space of closed (p, q) forms on X over the space of exact (p, q) 
forms. Then, since A commutes with L?p,q, the harmonic projection operator 
H also commutes with 17,,, (see Section 6.4). Therefore, if w is a closed (p, q) 
form, then w = Hw + d6Gw, where Hw is also of type (p, q). In other words, 
every closed (p, q)-form is cohomologous to a harmonic (p, q)-form. Therefore, 

Finally, combining the decompositions (10) and (11) with the isomorphism 
HT(X, C) 2~ 3t;, we obtain the famous 

Hodge Decomposition. On a compact Kahler manifold X there is the fol- 
lowing decomposition of cohomology with complex coefficients 

H”(X,@) = @ Hplq(X), 
p+q=k 

satisfying the additional relation 

Hp3q(X) = HPtq(X). 

The dimensions /W = dim Hpyq(X) are called the Hodge numbers. 
It is noteworthy that in the proof of Hodge decomposition for cohomology 

of a Kahler manifold X the Kahler metric was used in a central way. On 
the other hand, the spaces Hpl’J(X) do not depend on the metric - different 
Kahler metrics lead to the same Hodge decomposition. 

Hodge decomposition connects k-th Betti numbers bk = dim H” (X, IR) with 
Hodge numbers: 

bk = c hplq. 
p+q=k 

As a consequence of the equality h P+r = hqJ’, it follows that odd Betti numbers 
of a Kihler manifold are even 

b 2r+1 = 
2 2 hP>2r+l-P. 

p=o 

In addition, recall that the even Betti numbers of a Kihler manifold are pos- 
itive 

for 0 5 r 5 n, since the form Qr defines a non-zero class in H2T(X, R), and 
hence h’*’ > 0. 
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Yet another consequence of the existence of a Kahler metric on X is the 
assertion that if Y c X is a closed complex submanifold of X, then Y is not 
null-homologous in X. Indeed, the restriction of the K%hler metric ds2 to Y 
turns Y into a Kahler manifold, and the associated (1,1) form of the induced 
metric coincides with 01~. Thus 

J fldimY # 0. 
Y 

7.4. It should be noted that not every compact complex manifold can be 
equipped with a Kahler metric. An example is Hopf’s manifold, constructed 
as follows: 

Fix X E c, X # 0, and let r be the group acting on C’\(O), generated by 
the transformation 

(Zl, z2) + (h, Xt2). 

It is easy to see that the quotient space M = {@\{O}}/r has a complex 
structure induced by the complex structure on U?\(O). Furthermore, M is 
homeomorphic to S2 x S1, since (C2 \{O} is homeomorphic to S2 x Iw under the 

map 
(a, 22) -+ 4%) 7-J2), 

where T E Iw, ]zL~]~ + [usI2 = 1. It follows that bl(M) = 1 and so M is not a 
Kahler manifold. 

7.5. The Lefschetz decomposition of the cohomology of a complex K&ler 
manifold. Let U = (c(L, A, Z7) be the Lie algebra of linear operators on 7-11, 
generated over @. by operators L, A, and 17, with multiplication given by 
[A,B] = AB - BA. The commutation relations (7), (8), and (9) show that U 
is isomorphic to the algebra sZ2 of complex 2 x 2 matrices with trace 0 and 
the multiplication [A, B] = Al? - BA. Indeed, 5Z2 is generated over Cc by the 
matrices 

It is not hard to check that [X, Z] = 7rIT, [7r, Z] = -21, [w, X] = 2X. Therefore, the 
identification of X, 1, and 7~ with A, L, and 17 defines an isomorphism between 
sZs and U. This isomorphism makes ‘Hi an s/s-module. 

As is well known (Serre [1965]) every finite dimensional 5/s module is totally 
reducible - it can be represented as direct sum of irreducible submodules. 

(Recall that a module is called irreducible if it contains no proper non-trivial 
submodules.) 

Let V be an irreducible sZ2 module. Call a vector 21 E V primitive, if 2, is 
an eigenvector of 7r and Xv = 0. The commutation relations imply that if 21 
is an eigenvector of 7r, then Xv and Iv are likewise eigenvectors. Thus, since 
Xnfl = 0, (where n = dim V) primitive vectors always exist. 
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Let w be a primitive vector and pick k so that 1” = w # 0, while l”+lv = 0. It 
can be seen that the space vk generated by vectors v, Iv,. . . , 1”~ is an invariant 
s/z-module, dime vk = lc + 1 and rrv = kv. 

Now let us apply the above construction to the &-module 3ti. Let w E ?ii 
be a primitive form, that is AU = 0 and 

17w = -&n - p)&w = kw. 
p=o 

Then w is a homogeneous form of degree p = n - k > 0. Furthermore k + 1 is 
the dimension of the space spanned by {w, Lw, . . . , L”w}, so k 2 0, Lkw # 0, 
and L”+‘w = 0. The converse is also true - if a harmonic n - k form w satisfies 
the condition L”w # 0, and Lk+l w = 0, then w is primitive. Therefore, if we 
define primitive cohomology as 

P”-“(X) = Ker[L”+l : H+“(X) + H”+k+2(X)] 

= Kern n HnVk(X), 

we get the the Lefschetz decomposition 

Hrn (X, cc) = @ L”Pm-yX). 
k 

The discussion above implies the hard Lefschetz theorem for compact Kahler 
manifolds, stating that the mappings Lk : Hnpk(X) --+ Hn+k(X) are isomor- 
phisms. 

The hard Lefschetz theorem has the following geometric interpretation. 
Let X c lF be a non-singular projective variety. Let ds2 be the Pubini-Study 
metric on lP* (see sec. 7.2). Let R be the (1,l) form associated to this met- 
ric. It defines a non-trivial class [n] E H2(IV). It can be shown (see, eg, 
Griffiths-Harris [1978]) that [fl] is Poincare dual to the homology class (H) 
of a hypersurfaces H c P”, (H) E Hz,-2(lF’n). Therefore, on X c pn the 
associated (1, 1)-form 6)~ of the induced Kahler metric is Poincare dual to 
the homology class (E) of the hyperplane section E = X n H. Therefore, by 
duality, the strong Lefschetz theorem can be given the following dual formu- 
lation. The operation of intersection with an n - k-plane pm-k c P” defines 
an isomorphism 

&+k(x,c) “qk &-k(x c) 7 . 
It should be noted that Poincare duality identifies the primitive cohomologies 
P”-“(X) with th e subgroup of (n - k) cycles not intersecting the hyperplane 
section E, or, in other words, with the image of the map 

f&x-k(X\E) + &-k(X). 

The cycles in this subgroup are called finite cycles, since H can be identified 
with the hyperplane at infinity of F. 
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The Lefschetz decomposition leads to the following inequalities, which must 
be satisfied by the Betti numbers of a Kahler manifold X : 

b,(X) 2 b--2(X) 

for T 5 dim X. Together with Kodaira-Serre duality this means that the even 
(odd) Betti numbers are “hill shaped” (see diagram). 

Note that the Lefschetz decomposition agrees with the Hodge decomposi- 
tion. That is, if we set 

P”>“(X) = P”+qx) r-l HP+J(X), 

then 
Pk(X) = @ P”+J(X), 

p+q=k 

P”>“(X) = PPl”(X). 

On the other hand, since L is a real operator, then there is an analogous 
Lefschetz decomposition on H*(X, ll3) L) H*(X, C) : 

H”(X, R) = @ L”Pm-yX, IIt), 
k 

where P’(X, Iw) is the space of real primitive harmonic r-forms. 

7.6. Hodge-Riemann bilinear relations. Consider the bilinear pairing 

Q : H”-“(X) @ H+“(X) + cc, 

given by 

Since the form R is real, Q is a positive bilinear pairing. If n - k E 0 mod 2, 
then Q is a symmetric bilinear pairing, while if n - k is odd, Q is a skew- 
symmetric bilinear pairing. The value Q($, $) on homogeneous forms 4 and 
$J is not zero only if 4 A $J A 6’” is a form of type (n, n), hence 

if either p # s or q # T. 

Q(Hplq, HTTs) = 0, (12) 

It can be shown that for w E PPlQ(X) the following inequalities hold (see 
Griffiths-Harris [1978]) 

iP-Q(-l)(n-P-9)(n-P-9-1)/2Q(W,g) > 0 
7 

which, together with (12) are known as Hodge-Riemann bilinear relations. 
Hodge-Riemann bilinear relations together with Lefschetz decomposition 

imply that Q : H”(X) @ Hk(X) + Cc is a non-degenerate bilinear form, since 
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7.7. Let X be a compact Kahler manifold of even (complex) dimension, 
dim@ X = 2m. Hodge-Riemann bilinear relations allow us to compute the 
index I(X) of the manifold X, equal to the signature of the non-degenerate 
quadratic form on H2”(X, R), determined as 

for 4, $ E H2” (X, R). Indeed, 

H2m(X,C) = @ LkP2(“-“l(X) = $p+q<2m,p+qE0 mod 2L”-(p+q)‘2Pp+q(X) - 

and Hodge-Riemann bilinear relations assert that for p+q even, the symmetric 
form 

iP-q(_1)(2m-P-q)(2m-P-q-l)/2Q 

is positive definite on the real space 

(P”(X) @ P”(X)) n Hp+q(X IR) , . 

Therefore, 
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I(X) = c 
iP-q (_ l)(P+q)(P+q-I)/2 dim pP>q 

p+qsO mod 2,p+q<2m 

= x(-l)” dim Pp,q. 

Lefschetz decomposition and Kodaira-Serre duality together imply the follow- 
ing theorem. 

Index Theorem. 

I(X) = c (-l)PhP+r. 
p+q-0 mod 2 

In the case of a compact Kahler surface X (dim@ X = 2), we have I(X) = 
2(/x2>’ + 1) - hlyl. The number h 210 = dimHO(X, Q$) is called the geometric 
genus of the surface X. 

Let n+ be the number of positive squares of and n- the number of negative 
squares of the bilinear form (., .) on H2(X, R) for the surface X. Then 

n+ - n- = 2(h2y0 + 1) - hl,l, 

n+ + n- = 2h2,’ + h’>‘, 

hence n+ = 2h210 + 1. 

7.8. A compact Kahler manifold X is called a Hedge manifold if the (l,l)- 
form 0 associated to the metric is integral, that is, R lies in the image of the 
homomorphism 

j, : H2(X,Z) + H2(X,R), 

induced by the inclusion j : Z L) R. 
Note that IID” is a Hodge manifold, since dim H2(pn, C) = 1, and so the 

form R associated to the Fubini-Study metric is proportional to an integral 
form. 

For an inclusion of manifolds i : Y L) X we have a commutative diagram, 

H2(X,Z) L H2(Y,Z) 

where i* is induced by restriction of forms defined on X to Y. Therefore, a 
closed non-singular submanifold of a Hodge manifold is a Hodge manifold 
(with the induced metric). In particular, every non-singular projective variety 
is a Hodge manifold. Kodaira proved (Kodaira [1954]) that the converse is also 
true, that is, any Hodge manifold can be embedded into a projective space. 
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The above implies, in particular, that every compact non-singular curve 
(dim@ X = 1) is an algebraic variety. Indeed, every Hermitian metric on X is 
Kahler , since there are no differential S-forms on X, and so the (1,1) form 0 
associated with the metric is closed. Furthermore, dim H2(X, ll%) = 1 and so 
the class of the form 0 in H2(X, R) is a multiple of an integral class. 

It should be further remarked that for a Hodge manifold, both the Lefschetz 
decomposition and the quadratic form Q are defined over Z. 

7.9. To conclude this section we will give an example of a Kahler manifold 
which is not a Hodge manifold. In order to do this, consider a discrete subgroup 
(lattice) r of p generated by 2n vectors linearly independent over R. Let T = 

Cn/r be the quotient complex torus. The complex structure on cc” induces a 
complex structure on T and gives it the structure of a Kahler manifold, whose 
Kahler metric is induced by an arbitrary hermitian metric hijdzi @I &j with 
constant coefficients on cc”. 

Conversely, given a Kahler metric ds2 = C hij(z)dzi @ d~i on the torus 
T, we can integrate the coefficients of this metric over T to obtain a Kahler 
metric with constant coefficients C hijd.zi @ &j, where 

hi, = 
s 

hj (z)dV, 
T 

where dV is a translation-invariant volume form, resealed so that the volume 
of T is 1. Since the integration is over the torus T and over a 2-cycle, it can 
be shown that if the metric we started with was a Hodge metric, then so is 
the metric obtained by integration. 

Fix a metric ds2 with constant coefficients on the complex torus T = 

cc” /r. This metric induces a positive definitive Hermitian form H(x, y) = 

ReH(z,y) + iIm(z,y) on cc”. Linear algebra tells us that the Hermitian 
form H(x, y) is uniquely determined by a skew-symmetric R-bilinear form 
n = Im H(x, y) on UY, and Re H(x, y) = n(iz, y). From here, it is a short leap 
to obtaining necessary and sufficient conditions on the bilinear form 0(x, y) 
for the metric ds2 to be Hodge. 

RiemannFrobenius conditions. The torus T = c/r is a Hodge manifold 
if and only if there exists a real-valued R-bilinear form 0 on Cc”, such that 

1) The form G’(ix, y) is symmetric and positive-definite. 

2) L?(cY,/?) is a rational number for any CY,~ E r. 

Note that the second of the Riemann-Frobenius conditions is equivalent 
to saying that the (1, 1)-form associated with the metric ds2 is rational, and 
hence some multiple of it is integral. 

The Riemann-Frobenius conditions can be easily used to give an example of 
a Kahler non-Hodge manifold. Consider the lattice r in (c2 generated by the 
vectors ei = (l,O), es = (i,O), ea = (rr&rr), e4 = (&,i). We will show that 
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the torus C2 /I’ is not a Hodge manifold. In order to do this, let I : C? + U? 
be the EL-linear transformation, given by multiplication by i = a, 

I(Zl, 4 = (iq, kg). 

It can be easily seen that if C2 is regarded as a vector space over R with 
the basis (ei, e2, es, ed), then I is given by the matrix 

Ix(; jl :” $. 

By the Riemann-F’robenius conditions, in order for C2 /r to be a Hodge mani- 
fold, it is necessary and sufficient that there exist a skew-symmetric l&bilinear 
form R(s, y) on C2, such that R(lz, y) is symmetric and positive definite. 
Suppose that 0 is defined over the basis (ei , es, es, e4) by the skew-symmetric 
matrix 

fl=(i !f -; i). 

The second of the Riemann-Frobenius conditions implies that a, b, c, d, e, f are 
rational numbers, while the first condition implies that tIf2 is a symmetric and 
positive matrix. 

A direct computation shows that 

-a 0 d e 

90 = 
0 -a -b -c 

-7r(aJZ+c) -7r(aJZ+e) * * (13) 

* * * * 

Since tI.L’ is supposed to be symmetric, it follows that 

d = -x(ah + c), 

b = n(aJZ + e). 

Since a, b, . . . , f are rational, (13) implies that a = b = c = d = e = 0, hence 
tIL? cannot be a positive-definite matrix, since its first two rows are zero. 
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$8. Line Bundles and Divisors 

8.1. Let X be a compact complex manifold, dim@ X = n.A complex sub- 
space V c X with dim@ V = n - 1 will be called a hypersurface of X. 

Definition. A divisor D on X is formal linear combination 

of irreducible hypersurfaces of X, ri E Z. 
A divisor D = C riVi is called e$ective (D 2 0) if all the ri 2 0. 

Recall that the local rings OX,~ are unique factorization domains (see 
Gunning-Rossi [1965]). Therefore, for any irreducible hypersurface V in X, 
the ideal 1%(V) of functions holomorphic at z and vanishing on V is princi- 
pal, that is, generated by a single element over OX,~. Let f be the generator 
of Iz(V). It can be then be shown (see Gunning-Rossi [1965]) that f is a 
generator of IL(V) for all points 2’ in a certain neighborhood U of x. This 
function f (more precisely f = 0) is usually called the local equation of V in 
a neighborhood of x. 

Let g be a holomorphic function in some neighborhood of x and let V be 
a hypersurface. Choose a local equation f for V at x. Then 

g = fkh, 

where the function h (holomorphic at x) doesn’t vanish along V. Evidently, 
the exponent k does not depend on the choice of the local equation f for V, 
and it can be shown that it does not change as we move from x to another 
point on V. Thus, the order ordv(g) of the function g along V is well defined: 
ordv(g) = k. It is easy to see that 

ordv(gm) = or& (a) + ordv (a). 

Let f be a meromorphic function on V. If f is locally represented as f = 8, 
where g and h are holomorphic, we can define 

ordv(f) = ordv(g) - ordv(h) 

as the order of f along the irreducible hypersurface V. We say that f has a 
zero of order k on V, if ordv( f) = k > 0 and that f has a pole of order k on 
V if ordv(f) = -k < 0. 

Definition. A divisor (f) of a meromorphic function f is a divisor 

(f) = c ordv(f )V. 
V 

The divisors of meromorphic functions are called ptincipal. 
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8.2. Denote by M> the multiplicative sheaf of meromorphic functions on 
X which are not identically 0, and by 05, the subsheaf of M> of nowhere 
vanishing holomorphic functions. It is easy to see that a divisor D on X 
corresponds to a global section of the quotient sheaf M>/O>. Indeed, a 
section {fey} of the sheaf M>/CJ> is a collection of meromorphic functions 
fa, defined on open sets U,, UU, = X, where 

Thus, 

ordv(fJ = ordv(fp) 

for every hypersurface V, and hence {fo} defines a divisor 

D = xordv(fa)V 
V 

where for each V, we choose the Q: in such a way that U, rl V # 0. Conversely, 
given a divisor D = C riK we can choose a covering {U=} in such a way 
that in each U, the hypersurface Vi has local equation fi. We can then set 
fa = ni f? E H’(U,,M>Iv,), which d fi e nes a global section of the sheaf 
M>-0:. The functions fa are called the local equations of the divisor D. It 
is therefore seen that 

DivX E H”(X, M>/O>), 

where Div X is the group of divisors on X. The quotient group ClX = 
Div X/P(X), h w ere P(X) is the subgroup of principal divisors on X is called 
the divisor class group and two divisors are usually said to be linearly equiv- 
alent (written D1 - Dz) if DI - 02 = (f) is a divisor of a meromorphic 
function. 

The set IDI c DivX of all effective divisors, linearly equivalent to the 
divisor D is called the complete linear system of the divisor D. 

8.3. Let us establish the relationship between the divisor class group ClX 
and the group PicX of line bundles on X (see §5). 

Let D be a divisor on X. Choose local equations {fa} for D, where {Ua} is 
an open covering of X. Then we define golo = fa/fp E H”(UafW~, 0; Iu,~~,). 
It can be easily checked that 

Thus, the functions gap are the transition functions of a certain line bundle, 
called the line bundle associated to the divisor D and denoted by [D]. It can 
be seen that the line bundle [D] is independent of the choice of local equations 
of the divisor [D]. It can be further seen that 

[DI +D2]= [Dll@ P21, 
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and furthermore, the line bundle [D] is trivial if and only if D is a principal 
divisor. Thus, there is a well-defined morphism 

[]:ClX+PicX. 

This monomorphism has the following cohomological interpretation. Con- 
sider the exact sequence of sheaves 

i 
o-o;,- M;, -vi MTy/C’;r - 0. 

This sequence induces a cohomology exact sequence 

H”(X, Mk) -k H”(X, M>/O;) -5 H’(X, 0;). 

It can be checked that in terms of the identifications 

DivX = H’(X, M>/O>), 

Pit X = Hr (X, 0:) 

we have j,j = (f) f or any meromorphic function f and 6D = [D] for every 
divisor D on X. 

8.4. Consider the image of the homomorphism [ ] : Cl X -+ PicX. Let 
L --+ X be a holomorphic line bundle, with the associated sheaf Ox(L) of holo- 
morphic sections. We can also consider the sheaf 0~ (L) @ M x of meromorphic 
sections of L. Note that a meromorphic section s E H’(X, Ox(L) @ Mx) of 
the bundle L is defined by a collection s, E H”(Ucy, Mxlu,) of meromorphic 
functions satisfying sa = gaoso, where {Ua} is a sufficiently fine covering of 
X and {golo} are the transition functions of the bundle L with respect to this 
covering. Hence, if s is a meromorphic section of L, we can define a divisor 

(s) = ~ordv(s,)V, 
V 

where for every V we choose an index Q so that U, rl V # 0. Evidently, 
[(s)] = L for a meromorphic section s of L if s # 0. In addition, if sr and 
sz, (ss # 0) are two meromorphic sections of L, their quotient si/ss defines 
a meromorphic function. 

The above implies that a line bundle L lies in the image of the monomor- 
phism [ ] : ClX + PicX if and only if the line bundle L has a non-vanishing 
meromorphic section. It can be shown (Gunning-Rossi [1965]) , that if X is a 
complete algebraic variety, then every line bundle has a non-zero meromorphic 
section, or 

[]:ClX+PicX 

is an isomorphism. In other words, every line bundle on a complete algebraic 
variety is associated to a divisor class on X. 
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8.5. Chern Classes of Line Bundles. Consider the following exact sequence 
of sheaves on X : 

0 
j 

~Z-----cOX 
exp 

- 0: - 0, 

where exp(f) = e2rrif for f E H”(U, 0~ 1~). This exact sequence induces a 
cohomology exact sequence 

b H1 (X, Z) k Hl(X, Ox) = 

(14) 
expf IP(X,O>) L H2(X, Z) k N2(X, Ox) - 

Let L E Pit X = H1 (X, 0;). The first Chern class cr (L) of the line bundle 
L is the class bL E H2(X,Z). By a change of coefficients, the Chern class 
cl(L) can be viewed as an element of H2(X, R) or of H2 (X, C). To compute 
cl (L), let us make L a Hermitian bundle. This can be done as follows. Choose 
a sufficiently fine covering {Ucy} of X by simply-connected open sets, and 
let {hop} be the transition functions of L corresponding to this covering. 
Choose real C” functions a, in U,, so that aa Ihap I2 = ag in U, fl Up. Such 
a collection of functions exists, since the sheaf &$(I@ of germs of positive C” 
functions on X is a fine sheaf. Therefore, H’(X, E$(lQ) = 0 and hence the 
one-dimensional cocycle Ihag12 is null-cohomologous, which guarantees the 
existence of the desired collection of functions {a,}. 

The functions a, define a Hermitian scalar product on on L, since over 
U, II Up we have 

aolu,zl, = apupQ, 

where ucl(ua) is the fiber coordinate of the trivial over U, (or over Uo) line 
bundle L. 

A direct computation shows that for the metric connection D in this Her- 
mitian bundle L, the connection in the neighborhood U, has the form 

8 = dloga,, 

while the curvature form is 

0 = dBloga,. 

By computing the boundary homomorphism S in (14) on one hand, and of 
the explicit form of the de Rham isomorphism on the other, leads us to the 
following 

Proposition. For any line bundle L on a compact complex manifold X 

where 0 is the curvature form of the metric connection on L. 
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In particular, the Chern class of a line bundle L can be represented by a 
differential form of type (l,l). 

If X = lF and V = lF’+’ is a hyperplane, then a direct computation (see, 
Griffiths-Harris [1978]) that the Chern class ci([lF’“-‘1) coincides with the 
cohomology class of the (1, 1)-form associated with the F’ubini-Study metric. 

Let V be a hypersurface of X. The linear functional & 4 on H2”-2(X, Z) 
defines a homology class (V) E Hs+z(X, Z). The Poincare dual class 7~ E 
H2(X, C) is called the fundamental class of the hypersurface V. Define the 
fundamental class TD E H2(X, cc> of a divisor D = c riVi as 

TD = c rgrv;. 
Using Stokes’ theorem it is not too hard to obtain the following (see Griffiths- 
Harris [1978]). 

Theorem. If L = [D] f or some divisor D on a compact complex manifold 
x, then cl(L) = nD. 

In the exact sequence (14) the morphism j : H2(X, Z) -+ H2(X, OX) can 
be represented as a composition 

H2K z) ---. H2(X$) -% H2(X, 0%) = H’(X, (3x). 

If X is a compact Kahler manifold, it can be shown that the morphism 
o coincides with the projection 170,~ onto the space of harmonic (0,2)-forms, 
and hence the kernel of Q: contains the cocycles of Hf,l(Z) C H2(X, Z) which 
can be represented by closed (1, I)-forms. Since the Chern classes cl(L) E 
H2 (X, c) are represented by (1, 1)-forms, by exactness of the sequence (14) 
we get 

Theorem. On a compact Klihler manifold the set of Chern classes coincides 
with H,2,, (Z). 

8.6. The adjunction formula. Let V be a non-singular hypersurface of a 
compact complex manifold X. The quotient line bundle 

NV = TxlvlTv 

(where TX = TX lVo and TV = T>’ are holomorphic tangent bundles on X and 
on V) is called the normal bundle, and the bundle NC dual to NV is called the 
co-normal bundle. The dual bundle NC is a subbundle of Tg ( V, and consists 
of all the cotangent vectors on X vanishing on TV C TX 1~. 

Let fa E H”(Ua,c3x) b e a local equation for V. Since fa E 0 on V fl U,, 
dfol defines a section of the conormal bundle N$ over VnU,. Since V is a non- 
singular submanifold, dfa is never zero on VfW,. Furthermore, the line bundle 
[V] is given by transition functions {hap = fa/fo} and on U, II Uo rl U, rl V 

dfa = d(h,pfo) = f&xp + hxpdfp = hapdfp. 
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Consequently, the sections dfa E H1 (U, fl V, 0~ (NC)) define a global nowhere 
vanishing section of the bundle [NC] @ [V]lv. Thus, NC @ [V]lv is a trivial 
bundle and 

N; = [-V]lv. (15) 

One of the most important line bundles on X, dim X = n is the canonical 
bundle 

Kx = ANT&. 

Holomorphic sections of the canonical bundle are holomorphic forms of the 
highest degree, that is, 0x(Kx) = 0%. To compute the canonical bundle 
Kv of a non-singular hypersurface V of a complex manifold X, there is the 
following adjunction formula: 

Kv = (Kx 8 [Vllv). 

This formula is derived from the exact sequence 

0 + N; + Tl;lv -+ T; -+ 0, 

from which, by an elementary argument, follows 

(AnT;)IV N /YIT; @NC, 

which, combined with (15) gives the adjunction formula. 

$9. The Kodaira Vanishing Theorem 

In the study of the geometry of complex manifolds, we frequently need 
to know whether certain cohomology groups are trivial. In this section we 
will describe certain sufficient conditions for the groups H’J(X, P(E)) to be 
trivial, where E is some line bundle on a compact Kahler manifold. One 
corollary will be the Lefschetz theorem on hyperplane sections. 

9.1. 

Definition. A line bundle E + X is called positive if there exists a Her- 

mitian metric with the curvature form 0, such that the (1, 1)-form 90 is 
positive. The line bundle E is called negative if the dual bundle E* is positive. 

The following lemma shows that a line bundle E is positive if and only if 
its Chern class ci (E) E Hz (X, C) is represented by a positive 2-form. 

Lemma. For any real closed (1,1)-f or-m w of class cl(E) E H2 (X, C) there 
exists a metric connection on the line bundle E with curvature form 0 = 

GW. 
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Indeed, let IsI2 be a metric on E. As we saw in section 8, if #J : U x C + EU 
is the trivialization of E over an open set U, then the metric lsl2 is given by 
a positive function a~ : 

(sl2 = U~S~3U, 

while the curvature form and Chern class are given by formulas 

0 = %logau, 

s(E) = J--r [ 1 -p E H2(X, C). 
For another metric 1s’12 on E with the curvature form 0’ we have 1~‘1~/ls1~ = 
ef, where f is a real C* function. Therefore 

and the lemma follows from the &!-lemma below. 

Lemma “%%lemma.” Let X is a Klihler manifold and w is a closed (p, q)- 
form. Then the following statements are equivalent: 

1) There exists a 41 such that w = d&, 
2) There exists a 42 such that w = &#9, 
3) There exists a 43 such that w = 843, 
4) There exists a X such that w = 8% 

In addition, if p = q and the form w is real, then X can be chosen so that 
the form &iX is also real. 

The proof of the d%lemma can be found in Griffiths-Harris [1978]. 

9.2. As noted in the last section, the Chern class of a line bundle [P”-‘1 on 
P” is the class of the (1,1) form fl associated with the Fubini-Study metric. 
If X L) IP is a non-singular projective variety, then the line bundle [V] on 
X, where V = X nP+1 is a hyperplane section, is also a positive line bundle. 
Indeed, cl(V) = j*cl(P-I), where j : X -+ P” is the inclusion map, while, 
on the other hand, the form j* 52 is the associated (1, 1)-form of the metric 
on X induced by the F’ubini-Study metric on P”. Thus, cl(V) is the class of 
a positive (1, 1)-form. 

It can be shown that the converse is also true: 

Theorem (Kodaira [1954]). If E as a positive line bundle on the compact 
complex manifold X, then there exists an inclusion j : X + BN, such that 
E@ln = [V] for some integer n, where V is a hyperplane section of X in BN. 

9.3. Let us study the cohomology groups W(X, P(E)) for a positive line 
bundle E + X on a compact KBhler manifold X. This study is conducted by 
the same methods as used in the Hodge theory of complex manifolds (as in 
$6 and $7). Let us outline the major points. 
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First, for the sheaf of E-valued holomorphic p-forms on X L’%(E) we have 
the fine resolution 

0 - flp (E) - X &c”(E) B &PJ 23 
X - . . . 

Since the sheaves &gq are fine, it follows that 

Hq(X, L’s(E)) = Hgq(E), 

where Hgq(E) is the quotient of the space of a-closed C” differential (p, q)- 

forms with values in E by the subspace of a-exact forms of the same type. 
Furthermore, suppose that Hermitian metrics are defined on both the holo- 

morphic line bundle E and on X. These metrics induce Hermitian scalar 
products in all the hermitian powers of the tangent and cotangent bundles 
and their tensor products with E and E*. In particular, if {&} is a unitary 
basis in TG over some neighborhood U C X, while {ek} is a unitary basis for 
E, then for any sections 

ticz) = & c tiI,J,k(z)$I A $J @ ek 
. . 

I,J,k 

of the sheaf E$q(E)I~ we can define 

(dz)>+(z)) = z c ~I,J,&,J,k, 
. . 

I,J,k 

and we can define the scalar product 

(777 $1 = &r), %+)bw 

where dV is the volume form on X. 
We can also define the exterior product 

,, : &g”(E) 8 f$‘d (E*) + f;+P’,q+d, 

be setting 
(7 c3 s) A (7’ c3 s’) = (s, s’)q A 7)‘. 

Just as in Hodge theory (see $6) we can define the * operator, by setting 

*E : &gq(E) + &;-p+-q(E*), 

satisfying 
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for all n,q!~ E H”(X,Ecq(E)). L ocally, the operator *E works as follows. Let 
{ek} and {e;} be the dual unitary bases for E and E* over U. Then for the 
form 

define 

where * is the ordinary * on &%q, introduced in $6. 
As before, the operator *E allows us to compute adjoint operators. In par- 

ticular, a* = - *E&E is adjoint to 3, meaning that for all 4 E H”(X, E%q-l) 
and 1c, E H”(X,&~“(E)) 

@A $1 = (4, a*+). 

Finally, we can define the a-Laplacian 

A = dd* + 8*8 : E;‘“(E) + &gq(E), 

and we call an E-valued form 4 harmonic if A4 = 0. Denote by ‘W’J(E) = 
KerA the space of harmonic E-valued (p,q)-forms. It can be shown (see 
Griffiths-Harris [1978]) that ?P’(E) is a finite-dimensional space. 

Furthermore, if H is the orthogonal projection H”(X, &Q”(E)) + Wq(E), 
then there exists an operator G : H”(X, Ecq(E)) + H”(X, EGq(E)) such that 

G(?F(E)) = 0, Id = H + AG, and [G,3] = [G,??*] = 0. That implies that 

Htq(E) = 7-lpi”(E) 

and hence the operator * induces an isomorphism 

HQ(X, O;(E)) 21 Hn-Q(X, fi?;-p(E*)). 

In particular, when p = 0 we obtain the isomorphism 

Hq(X, Ox(E)) N fTq(X, Ox(E* @ Kx)), 

known as the Kodaira-Serre duality. 
Now, suppose the line bundle E is positive. Then, by Kodaira’s theorem, 

Emn = [VI, where V is the divisor of a hyperplane section of X under some 
inclusion X C) PN. Let R be the form associated to the Kahler metric on X, 
and let 0 be the curvature form of the metric connection. We can define an 
operator 

by setting 

L : Igq(E) + &;+lyq+l(E), 

L(qc3s) = RArl@s, 

and we have the operator 0 = -&L. 
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Let D = D’ + 8 be the metric connection on E. Then the operator 0 can 
be interpreted as 

07 = D2y 

Therefore, 0 = D2 = BD’ + D’a. 
Let A = L* be the adjoint operator of L. It can be checked that 

and that 

for all 17 E H”(X, &g”(E)). Let 77 E Wq(E). Then an = 0. Furthermore, 
0~ = ~D’Q and 

=2- 
(( 

aA - qD’*) D’,,,) 

= (D’*D’r],$ 

= (D’s D’v) 2 0, 

since @AD’v,q) = (AD’~,~*Q) = 0. 
A similar computation shows that 

21/3(0A77,77) = -(D’*q, D’*$ 5 0. 

The last two inequalities together show that 

2d3([A @Iv, d 2 0. 

On the other hand, 0 - -21rJ-7. Thus 

267([A, @Iv, d = 47C, Llrl, 77) = 47r(n - P - d(rl, 77) 10. 

This implies that W’J(E) = 0, if p + q > n, and we get 

Kodaira vanishing theorem. Let E be a positive line bundle over a compact 
complex manifold X. Then 

Hq(X, 0$(E)) = 0 

forp+q > 72. 

By Kodaira-Serre duality, we see that 

Hq(X, RP(E)) = 0 

for p + q < n for a negative line bundle E + X. 
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9.4. Lefschetz theorem on Hyperplane Sections. Kodaira’s vanishing theo- 
rem gives a way to prove Lefschetz’ famous theorem, relating the cohomology 
of a non-singular projective variety with the cohomology of a non-singular hy- 
perplane section. 

Let X be a non-singular projective variety, dimX = n, and let V c X be 
a non-singular hyperplane section. 

Lefschetz Theorem. The mapping 

HQ(X, Q -+ HP(V, Q 

induced by the inclusion j : V L) X is an isomorphism for q 5 n - 2 and is 
an inclusion for q = n - 1. 

Evidently, it is enough to prove this theorem for cohomology with complex 
coefficients. The cohomologies H” (X, C) (and correspondingly H’” (V, C)) can 
be decomposed into a sum of Hodge (p, q)-spaces (see $7) 

H”(X,C) = @ fP(X), 
p+q=k 

where Hp>q(X) 21 Hq(X, 0%). It is, therefore, sufficient to show that the 
mapping 

is an isomorphism for p + q 5 n - 2 and a monomorphism for p + q = n - 1. 
To show this, decompose the restriction 0% + 0; as a composition 

Obviously, the kernel of Q is the sheaf of holomorphic p-forms vanishing on 
V. Therefore, the mapping a is part of the following sheaf exact sequence: 

0 - RP (-V) X - 0; z fig” - 0. (16) 

The map ,0 is also a part of a sheaf exact sequence. Indeed, for every point 
x E V, we have 

0 + NC,, + T;,, + T;), -+ 0, 

where NC is the co-normal bundle. By taking exterior powers, obtain the 
exact sequence 

0 -+ N;, 8 rip-IT’ v,z + A\“T$,+ + /I~T;,~ + 0. 

Therefore, there is a sheaf exact sequence 

o- qy(-V) - ng, P 0; - o., (17) 

since N; = [-VII”. 
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The line bundle [-VI is negative on X and so its restriction [-VII” is also 
negative. Thus, by Kodaira’s vanishing theorem 

H9(X, fq-V)) = 0, p + q < 71, 

Hq(X,n;(-V)) = 0, p+q < n- 1. 

Writing down the cohomology long exact sequences corresponding to the 
short exact sequences (16) and (17), we get the isomorphisms 

for p + q < n - 2, while for p + q = n - 1 we see that a* and /I* are injections. 
Thus the Lefschetz theorem is proved. 

By duality, we obtain that the mappings 

Hk (v, Q) -+ Hk (x, Q) 

for a hyperplane section V of X are isomorphisms for k < n - 1 and onto for 
k=n-1. 

By the hard Lefschetz theorem (see 57) Hn+k(X,Q) 21 Hn--k(X,Q). In 
addition, by Lefschetz decomposition, every non-primitive n-cycle can be ob- 
tained as an intersection of a cycle of dimension > n with a hyperplane section. 
Thus, the Lefschetz hyperplane theorem together with various other results of 
Lefschetz show that the only “new” cohomology, beyond that of a hyperplane 
section, is primitive cohomology in the middle dimension. This allows one to 
study the topology of an algebraic variety X inductively, reducing cohomo- 
logical questions about X to those of its hyperplane sections. This induction 
is usually effected by way of Lefschetz sheaves, described in the next section. 

$10. Monodromy 

10.1. In this section we will define the monodromy transform, and also 
describe certain classical constructions and results having to do with this 
transform. These results are important in the study of families of complex 
manifolds, and in the study of their degenerations (see Chapter 2 53, Chapter 

5, §l). 
First, let us introduce some topological preliminaries. Let X, Y, B be topo- 

logical spaces, and f : X -+ Y- a continuous map. The triple (X, Y; f) will 
be called a locally trivial fibration with fiber B, if for any point yc E Y there 
exists a neighborhood U c Y and a homeomorphism Y, such that the diagram 

f-W 
u 

*BxU 
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commutes. Here 7rr~ is the natural projection of the product B x U onto the 
second factor. The homeomorphism u is called the local trivialization of the 
fibration. 

In the current work, locally trivial fibrations will usually arise as follows: 
Let f : X + S be a smooth surjective holomorphic mapping of complex 

manifolds with compact fibers (a smooth surjective proper morphism (see 
Hartshorne [1977]). S ince the morphism f is smooth (the differential df has 
maximal rank at each point z E X), all the fibers of f are non-singular 
compact complex analytic submanifolds of X. Fix some fiber B = f-‘(so) 
of f. Then, it can be shown that (see, eg, Wells [1973]) that (X,S; f) is a 
locally trivial fibration with fiber B. The trivialization Y can be chosen to be 
a diffeomorphism of the C” manifolds f-‘(U) and B x U. 

In the situation described above, the triple (X, S; f) is called a smooth fam- 
ily of complex analytic manifolds and the fiber f-‘(s) over s E S is denoted 
as X,. 

10.2. Any locally trivial fibration (X, Y; f) satisfies the covering homotopy 
aziom (see Rokhlin-Fuks [1977]). Namely, for any homotopy 

yt:K+Y, tE[O,l], 

of a simplicial complex K and any continuous mapping 0s : K + X, such 
that f o /3e = 70, there exists a homotopy 

,dt : K + X, t E [0, 11, 

extending ,& and such that f o bt = yt. 
The homotopy ,& is called the covering homotopy for yt. 
In the sequel we will only consider the situation where the fiber B of a 

locally trivial fibration (X, Y; f) is a simplicial complex and the base Y is 
path-connected. Consider the arc 

Y : [O, 11 -+ y, Y(O) = Yo, Y(l) = Yl. 

This curve defines a homotopy yt : B -+ Y, defined by the condition yt (b) = 
y(t) for any b E B. Let ,& be a homeomorphism between B and f-‘(ye). 
Then there exists a homotopy ,& : B -+ X, covering yt and extending PO. The 
mapping 

P : P(Yo) + f-YYlL 

defined by the formula 

is a homotopy equivalence of fibers. From the covering homotopy axiom it can 
be deduced that the homotopy class of the mapping p depends only on the 
homotopy type of the arc y, joining ys and yi in Y. The mapping ,u, defined 
up to homotopy equivalence, is called the monodromy transformation of the 
fiber f-‘(~0) into the fiber f-l(yi), defined by the curve y. 
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Fix a point yc E Y. By associating to the elements of the fundamental 
group ~1 (Y; ye) the monodromies of the fiber f-l (ye), we obtain a well-defined 
homomorphism of the group ~1 (Y; ye) into the group of homotopy classes of 
homotopy equivalences of the fiber f-l(ys). The image of the fundamental 
group under this homomorphism is called the monodromy group of the fiber 

f -Y?/o). 
Let ,Q : B + B be a continuous map. The homotopy class of p defines 

endomorphisms of the homology and cohomology groups of the simplicial 
complex B. Thus, the monodromy transformation defines a homomorphism 
of ~1 (Y; yo) into the group of isomorphisms of the Z-module H,(f-l(yo), Z) 
and into the group of isomorphisms of the Z-algebra H*(f-l(yo),Z). The 
image of rri (Y; yc) under these homomorphisms will sometimes also be called 
the monodromy groups. 

One of the simplest examples of the above, consider the n-sheeted covering 
f : A* + S*, f(z) = s = zn of c omplex unit disks punctured at the origin. 
The fiber of this locally trivial fibration is the space B consisting of n isolated 

points. Let se E S*, &,, . . . , z,; zk = zi exp( e) be the preimages of SO 
in A*, let y be a curve winding once counterclockwise around the origin in S*. 
Each of the points zk uniquely defines a continuous branch of of the function 
z = fi, which gets multiplied by F after each rotation around the origin. 
In this case, therefore, the monodromy transform is a cyclic permutation 

Zl + z2 -+ . . . -+ z, + Zl 

of the preimages. 

10.3. The Picard-Lefschetz transformation. Consider a proper surjective 
morphism f : X + S of a complex-analytic manifold onto the disk S = {z E 
C!1121 < 1). Set 

S’ = s\o, x* = x\f-l(o), 

and assume that the restriction of the morphism f to X* is smooth. Then, 
the triple (X’, S*; f) is a locally trivial fibration, and there is a representation 
of the fundamental group ni(S*; se), se E S* on the space H*(X,,, Q). 

The group ~1 (S*, so) is isomorphic to Z and is generated by a rotation y 
around 0 in the positive direction. This generator gives rise to the isomorphism 

T : H*(Xs,,Q -+ H*(Xs,,Q, 

which belongs to the monodromy group. The isomorphism T is called the 
Picard-Lefschetz transformation of the family f. For further discussion of the 
general properties of this transformation see Chapter 5, 51. Right now we will 
describe it in one important special case. 

10.4. Vanishing cycles. Suppose that in the situation as in sec. 10.3, x0 E 
f -’ (0) is an isolated singularity of the mapping f. We call this singularity 
simple (or non-degenerate quadratic) if in some choice of holomorphic local 
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coordinates, z = (zs, . . . , z,) on X in a neighborhood of the point 20 = 
(0,. . . , 0), the mapping f has the form 

f(z) = zo” + . . . + z:. 

Here dim X, = n, dim X = n + 1. 
Consider the case where the mapping f has a unique simple singularity 20. 

Consider a sufficiently small ball 

Be = {zllzo12 + . . . + 1z,12 < E) 

in X. Then, for s sufficiently close to 0, s E S, the manifold V, = B, n X, has 
the homotopy type of a 2n-dimensional sphere (see Milnor [1968]). Consider 
the cohomology group with compact supports H,“(V,, Z), that is, integral 
cohomology classes represented by a closed n-form vanishing outside some 
compact set in Vs. Then H,” (Vs , Z) 21 Z . There is a natural inclusion 

The image S of the generator of the group Hp(V,, Z) under this mapping is 
called a vanishing cycle. It is determined up to multiplication by -1. 

The action of the Picard-Lefschetz transform on an element w E H”(X,) 
can be described as follows using vanishing cycles (see Arnold-Varchenko- 
Gusein-Zade, [1984]): 

T(w) = w + E(W, 6)6; 

E= 
{ 

1, if n 3 2,3(mod4); 
- 1, otherwise. 

T(b) = 6,& ~t~e~w;;~(mow7 . 
{ ’ 

Here ( , ) is the intersection form on H”(X,, Z), extended to a bilinear form 
on 

Hyx,) = H”(X,, Z) c3z cc. 

The formulas above are known as Picard-Lefschetz formulas. It should be 
noted that for k # n T acts on Hk(Xs) by identity. 

Consider, for example, the mapping 

s = f(Zl,Zp,) = z; +z,2 

in a neighborhood of the origin (0,O) E a?. For small s # 0 the manifold V, is 
homeomorphic to the hyperboloid of one sheet (fig. 5), while VO is a cone. The 
“core” cycle 6 is contracted to a point as s + 0 -that is the vanishing cycle in 
the cohomology of Vs. The meridian w is sent by T (using the Picard-Lefschetz 
formulas) to the cycle 

Tw=w-(w,6)6=w+6. 
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In other words, w is “twisted” once around the axis of the hyperboloid. 

Fig. 5 

10.5. Lefschetz families (Deligne [1974b]) C onsider a non-singular projec- 
tive variety X c PN of dimension n. Let L c ltPN be an N - 2-plane. Then 
the set of hyperplanes {H,} in PN passing through L is parametrized by a 
projective line P1 in the dual space (pN)* 21 PN. 

The N - 2-plane L C PN can always be chosen so that the following 
conditions hold: 

(1) 

(2) 

(3) 

L and X intersect transversally, that is Y = X II L is a nonsingular 
sub-variety of X. 
There exists a finite subset 

such that for s 6 S the hyperplane H, intersects X transversally, and 
hence the variety X, = X n H, is non-singular. 
For sj E S, the variety X, has a single simple (non-degenerate quadratic) 
singularity Tj E Y fl X,. 

The family of manifolds {X,}, s E P1 will then be called a Lefscheta pencil. 
We should explain why the plane L in BN can be chosen so as to satisfy 

conditions (l)-(3). Condition (1) is, evidently, satisfied for a generic 2-plane 
L C PN. This follows from Bertini’s theorem (see Griffiths-Harris [1978]), 
which says that a generic hyperplane section of a non-singular projective va- 
riety is non-singular. 

Consider the set 2 c Xx (pN)* consisting of the pairs (2, H), where z E X, 
H C PN is a hyperplane tangent to X at Z, that is, 

(TX), c (THL. 
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It is easy to see that 2 is a non-singular projective variety of dimension 
N - 1. Consider the projection 7r : X x (lPN)* --+ (lPN)*. The image ~(2) of 
Z under this projection is called the variety dual to X, and denoted by X*. 
Of course, the projective variety X* C (lPN)* is, in general, singular. Clearly 
dim X* 5 N - 1. If dimX* is strictly smaller than N - 1, then a generic line 
IP1 c (PN)* does not intersect X*, and points (2) and (3) are trivial. Suppose 
now that dimX* = N - 1. In that case it can be shown that the the mapping 

7r:z-+x* 

is generically one-sheeted (that is, a generic hyperplane in PN tangent to X 
is only tangent to X at one point). Further, if (2, H) is a generic point of 2, 
then H n X has a simple singularity at z. 

Consider the subset XT c X*, consisting of those hyperplanes H c PN 
for which the variety X n H has either more than one simple singularity, or a 
non-simple singularity. Evidently, XT is closed, and from the previous claims 
it follows that XT has codimension at least 2 in (PN)*. Thus, a generic line 
P1 c (PN)* intersects X* transversally and does not intersect XT, so satisfies 
conditions (2) and (3). 

Now, consider the Lefschetz pencil generated by a 2-plane. L c PN. Asso- 
ciate to each element z E X, z $ L an element s E lP1 corresponding to the 
unique hyperplane passing through z and L. This gives a rational mapping 

Let X be the variety obtained from X by a monoidal transformation cen- 
tered at Y (see Chapter 1, §l), and let 7r be the natural projection of X onto 
X. Then there is a commutative diagram 

x 

x - lP 
4 

where f is a morphism. The fiber f-‘(s) off over any point s E P1 is isomor- 
phic to the corresponding hyperplane section X, = X n H, of the variety X. 
Identifying X, with f-l(s), note that the morphism f is smooth at all points 
z E X, except the points ~j E f-l (sj), sj E S. 

Fix a point se $! S and a set of disjoint disks D, c lF”, centered on the 
points si E S. Choose points si E Di, S: # si, and fix curves 

,Bj : [O, l] + P1, ,bj(O) = SO, /!?j(l) = S>, 

not containing any points of S. Consider an element rj of rrr (P1\{S}; SO), 
generated by the loop below: First, go from SO to s> along the curve ,Bj, then 
go around sj in Dj in the positive direction, then return to se along @j. 
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The elements rj, j = l,..., k generate ri(P’\{S};se). Restricting f to 
the disk Dj, we get for each j a vanishing cycle Sj in H*(X,;, Z). Using the 
monodromy transformation generated by the curve /3j to identify the groups 
H”(X,;, Z) and Hn(Xsj, Z) we get the element Sj E Hn(X,,, Z). 

The space 

generated by the elements Sj is called the space of vanishing cycles. 

Let Tj be the automorphism of Hn(X,,, , Q) corresponding to the element 
35 E ~1 (IF’“\(S); so). The following statements hold: 

(1) The action of the element Tj on w E H”(X,, , Q) is given by the formula 

Tj(w) = W f (W,dj)hj. 

The sign is determined by the Picard-Lefschetz formula. 
(2) The subspace E c H”(X,, , Q) is invariant under the action of the mon- 

odromy group. In particular, this implies that E does not depend on the 
choice of the discs Vj, the points s>, and the paths pj. 

(3) The action of 7~1 (P1\{S}; SO) by conjugation on the Sj is transitive (up to 
sign). 

(4) The subspace of of elements of H”(X,, , Q) fixed by the monodromy group 
action coincides with the orthogonal subspace to E under the intersection 
pairing (for more about this space see Ch 4, $4). 

(5) The action of the monodromy group on E/(E n El) is absolutely irre- 
ducible . 

This theory can be generalized to algebraic varieties over arbitrary fields 
of definition (see Deligne [1974b]). 

Chapter 2 
Periods of Integrals on Algebraic Varieties 

In this Chapter we introduce the basic concepts and definitions having to 
do with the period mapping for algebraic varieties. The majority of the results 
described are due to P. Griffiths. 

5 1. Classifying Space 

1.1. In Chapter 1 we defined the Hodge structure on the cohomology of a 
compact Kghler manifold. In particular, the cohomology of every non-singular 
projective variety is equipped with a Hodge structure. This structure allows 
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one to get a collection of analytic invariants of the variety in question. In the 
sequel we will address the question of the extent to which these invariants 
determine the variety. Our immediate task is to formally describe the prop- 
erties of Hodge structures on the cohomology of an algebraic variety, and to 
construct a manifold parametrizing these structures. This manifold will be 
called the classifying space or the space of period matrices. The points of the 
classifying space will be the invariants of algebraic varieties. 

Let Hz be a free Z-module, H = He = Ha 8 @, its complexification. Fix a 
natural number n. For all integers p 2 0, q 2 0, such that p + q = n, pick a 
complex linear subspace HP>Q c H. 

Definition . The data {Hz, HPlQ} is called a Hodge structure of weight n if 
the following conditions are satisfied: 

H = @ HP+J, HP,Q = m. 

p+q=n 

(1) 

If X is a compact K5hler manifold, 

HZ = H”(X,Z)/(torsion), HC = HZ ~3 Cc 21 Hn(X,C), 

and HPlq is the cohomology of type (p, q) in the Hodge decomposition, then 
{Hz, HP>‘J} is a Hodge structure of weight n (see Chapter 1, 57). 

For the purpose of classifying projective algebraic varieties the set of all 
Hodge structure of weight n on Hz is too big. We can reduce it greatly by 
taking into consideration the Hodge-Riemann bilinear relations (see Chapter 

1, §7). 
Let Q : Hz x Hz + Z be a non-degenerate bilinear form. Extend Q to a 

bilinear form on H. 

Definition. The data {Hz, H P+r, Q} is called a polarized Hodge structure of 
weight n if {Hz, HPlq} is a Hodge structure of weight n, and the following 
relationships are satisfied: 

&(A 1cI) = (-lYQ(k $1; 

(y!~, 4) = 0, for 1c, E Hplq, C#J E Hp’lq’, p # q’; (2) 

(d?)p-qQ($,$) > 0, for 1c, E Hp,q, v+l~ # 0. 

Let {HZ, HpTq} be a Hodge structure of weight n. By setting 

FP = HPy” @ *+l . . . @ HPWP 
> F = (0) 

we obtain the decreasing Hodge filtration 

0 = Fn+’ c F” c . . . c F” = H. (3) 

Condition (1) implies that for p = 0, 1, . . . , n + 1 there is a decomposition 
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H = FP @ Fn-~+l. 
(4) 

If {Hz, Hp,‘J, Q} is a polarized Hodge structure, then (2) easily implies that 

Q(Fp, Fn-P+l) = 0, 

QP34~) > 0, 
(5) 

where C is the VVeyl operator on H, defined in Chapter 1, $4. 
Conversely, suppose we are given a module Hz and a filtration defined by 

(3) on H = Hc. Then, if that filtration satisfies (4), by setting 

HP19 = FP n Fn-P, 

we can reconstruct the Hodge structure {Hz, HP>Q} defining (3). If, in addi- 
tion, there is a bilinear form Q on Hz, which, when extended to H, satisfies 
conditions (5), then {Hz, HPlq, Q} is a polarized Hodge structure of weight n. 

1.2. The primary interesting example of a polarized Hodge structure is 
obtained as follows. Let X be a nonsingular complex algebraic variety of 
dimension d, w a closed differential form of type (1,1) on X, corresponding to 
a polarization. This means that the cohomology class [w] equals rcr (L) where 
T > 0 is rational and cr (L) is the Chern class of a positive line bundle on X. 
In particular, [w] is a rational class. 

The pair (X, w) will be called a polarized algebraic variety. Two such va- 
rieties (X’,w’) and (X”, w”) will be considered isomorphic, if there exists 
an isomorphism 4 : X’ + X” of algebraic varieties X’ and X”, such that 
f#? ([w”]) = (~[w’], for some positive rational Q. 

Consider a polarized algebraic variety (X, w). The form w defines a Kahler 
metric on X, and hence a Hodge decomposition on the cohomology H”(X, C). 
Let P”(X,c), P”(X,Q) b e p rimitive cohomology corresponding to the Kahler 
form w (Chapter 1, $7.5). and set 

Hz = H”(X, Z) rl P”(X, Q); 

HpTq = HPyq(X, C) n P*(X, C); 

&(A $1 = WY+’ s, 4 A @ A wk; 
(f-3) 

4,1c, E P”(X,C), Ic = dim@X - 2n. 

Clearly, the data {Hz,, H Plq, Q} specifies a polarized Hodge structure of 
weight n. The conditions in (2) are just the Hodge-Riemann relations (see 
Chapter 1, $7.6). 

1.3. TO each polarized Hodge structure we can associate the Hedge num- 
bers 

hP>Q = dime HPJ, fP = &mc FP = hnpo + . . . + hpTn-P. 

Evidently 
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hP,q = hq,P, 
> 

c hppq = rank H . id1 
p+q=n 

w(Qd = c (-l)qhPTq, 
p+q=O mod 2 

69 

(7) 

where sgn(Qn) is the signature of the quadratic form Q on Hw = Hz @I IR. For 
a polarized Hodge structure (6) the last relation is the Hodge Index theorem 
(Chapter 1, $7.7). 

Definition. Suppose we are given 

(1) A natural number n; 
(2) A free Z-module H; 
(3) A nondegenerate bilinear form Q : Hz @ Hz -+ Z, satisfying the condition 

&(A $1 = (-l)“Q(+, $1; 
(4) For all integers p 2 0, q > 0, integers hP$q satisfying conditions (7). 

We say that the classifying space with data (l)-(4) is the set D of all polar- 
ized Hodge structures {Hz, H P+r, Q} of weight n with given Hodge numbers 
hP>q. 

1.4. Consider the set F = (f’, . . . , f”; H) of filtrations (3) of the space H 
by subspaces FP of fixed dimensions fP = Cyzl hp,j. In order to introduce 
a complex structure on .T, first, for each pair of natural numbers lc 5 m we 
define the Grassmann manifold (Grassmanian) G(lc, m) (see Griffiths-Harris 
[1978]). 

The points of G(k,m) are in one-to-one correspondence with the set of 
k-dimensional linear subspaces in cc”. The complex structure on G(lc, m) is 
introduced as follows: Let W c UY be a k-dimensional linear subspace, then 
we can choose linear coordinates zj in U?” such that 

w = {(Xl,... ,x,)EuY~x1=...=x,-k=0}. 

For every matrix 

a! = 

( 

a11 . . . alk 

. . . . . . . . . . . . . . . . . . . . . . 

a(,-k)l . . . a(m-k)k 

define a linear subspace W, by the system 

Xj = (YijX,-k+j, 1 5 i 5 m - k. 
j=l 

Then U = {Wa} c G(k, ) m is a neighborhood of the point W E G(k,m), 
and we can use the numbers aij as holomorphic coordinates on U. It can be 
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checked that with these coordinates, G(k,m) has the structure of a compact 
complex manifold of dimension k(m - Ic). 

It should be noted that the simplest example of a Grassmanian was studied 
in Chapter 1 $1 - that is the complex projective space P” = G(l,n + 1). 

In addition to the notation G(k,m) we will use G(lc, V) to denote the 
Grassmanian of k-dimensional linear subspace of an m-dimensional complex 
vector space K 

Consider the filtration (3). For every p, 1 5 p 5 n, we can associate it with 
the point FP in the Grassmanian G(fp, H). This gives an inclusion 

p=l 

The image of F under this inclusion is a compact complex manifold in 

I$-+ G(P, HI. Th e set F with this complex structure is called the flag man- 

1.5. Let us introduce the structure of a flag manifold on the classifying space 
D. The set D is obviously included in an obvious way into the flag manifold 
F = (f’ , . . , f”; H) (where fP = CTIt Wj). Consider the subset fi E .T, 
consisting of the filtrations satisfying the first of the Hodge-Riemann relations 
(5). fi is an algebraic subset of FT. The space b is called the dual classifying 
space. The group G@ = Aut(H, Q) of linear automorphisms of H preserving 
Q acts on F as a group of analytic automorphisms, and leaves fi invariant. 
It can be shown that the action of G on D is transitive. That implies that fi 
is non-singular. Filtrations satisfying (4) and the second of the conditions (5) 
form an open subset of 3. Therefore, D C D is a non-singular open complex 
submanifold. Consider the subgroup Gn = Aut(Hn, Q) c G@. It can be shown 
(see Griffiths [1968]) that Gn acts transitively on D, and D = GwjK, where 
K is a compact subgroup of Gn, stabilizing a point of D. In turn, D N G@/B, 
for some parabolic subgroup B c G@, and furthermore K = Gw f~ B. The 
subgroup Gz c Gn of Z-linear automorphisms of the module HZ, preserving 
Q acts on D by analytic automorphisms. In the future, we will be interested 
in the spaces r\D, where r c Gz is a subgroup. 

1.6. As our first example, let us describe the classifying space of a non- 
singular projective curve X of genus g > 0. Consider the Hodge structure of 
weight 1 on H1 (X, Z). In that case, 

H1(X, Z) = P1(X, Z) = Hz, rankz Hz = 29, 

Hc = H1(X, c) = H’>O @ HOll, /$O = h”yl = g. 

For any two closed differential l-forms $,1c, E Hc we have 

Q(Ati) = @J, 



Periods of Integrals and Hodge Structures 71 

It is known (see Griffiths-Harris [1978]) that Q is dual to the intersection form 
on l-cycles on X. Thus, there exists a basis ~1, . . . ,179, ~1, . . . , ,u9 of H1 (X, Z), 
such that the skew-symmetric bilinear form Q has a matrix of the form 

where Eg is the unit g x g matrix. 
Now fix a free Z-module H with basis ~1,. . . , qg, ~1,. . . , pg and a bilinear 

form Q given by the matrix (8) in that basis. Let us construct the classifying 
space D of polarized Hodge structures of weight 1 with the data HZ, Q. 

Let wl,...,wg be a basis of H1~‘. This can be normalized by setting 
$(wj) = &j, where $,... ,r$,&, . . . ,pz is the basis of (HZ)*, dual to the 
basisvi ,..., qg,pi ,..., pg ofHz. Then, 

b-b,... ,wg) = (771,...,77g,cL1,...,clg)t~, 

where R = (E,]Z), with 2 a complex g x g matrix. The matrix 2 is uniquely 
determined by the subspace H17’ c Hc. Set .A’ = X + fly, where X and 
Y are real matrices. The matrices of the bilinear form Q]H~,o and of the 
Hermitian form &i&(o,~)]H1,0, respectively, have the forms 

By conditions (2), it follows that 2 is symmetric and Y = Im 2 is positive 
definite. Thus, D is the set of complex matrices 2 E M(g, Cc), such that %’ = 2 
and Im Z > 0; in other words, D is the Siegel ha&lane Hg. 

The group Gz in this case is the group Sp(g, Z), or the group of matrices 

AB 
Y = c D E GWg,% (+) 

such that 

It is easy to see that y acts on Z E D by 

(iig -0”). 
the transformation rule 

y(Z) = (AZ + B)(CZ + 0)-l. 

When g = 1, where X is an elliptic curve, the manifold Hg is the complex 
upper halfplane H = {Z E Cc] Im z > 0). The group Gz in this case is simply 
the group SL(2,Z), acting on H by linear-fractional transformations. It is 
well-known that the set of isomorphism classes of complex elliptic curves is 
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in one-to-one correspondence with the quotient Gz\H. This corresponence is 
given by the absolute invariant of the elliptic curve The case g = 1 is discussed 
in greater detail in Chapter 3, $1.2. 

1.7. Now, let us construct the classifying space corresponding to Hodge 
structures on the first cohomology of a polarized abelian variety. For more 
information on abelian varieties, see Mumford [1968]. 

Let H c C be a lattice of rank 29. The complex torus 

X=C?/H 

is called an abelian variety if there exists a holomorphic embedding 

The embedding 4 induces on X the structure of a polarized abelian variety 
(X, w). Here, just as in Section 1.2, w is a (1, 1)-form on X, representing an 
integral cohomology class [w] = $* (ci (OPT (1))). 

The simplest (but extremely important) example of an abelian variety is 
a a one-dimensional abelian variety, or an elliptic curve (see Chapter 3, set 
1.2). In that case H is an arbitrary lattice of rank 2 in C. The complex torus 
E = C/H is always algebraic. It can be embedded into P2 as a non-singular 
curve of degree 3. In general the lattice H must satisfy certain additional 
conditions (the Riemann-Frobenius conditions, see Ch 1, 57) in order for O/H 
to be an abelian variety. 

Let ei,..., e, be a basis of H, viewed as a free Z-module, and xi,. . . , xzg 
be the real coordinates on (cs with respect to this basis. Then the differential 
forms 

dxi, A . . . A dxj, 

form a basis of the free Z-module H”(X, Z). In particular, dxl, . . . , dxzg is a 
basis of H1 (X, Z). The lattice H can be identified with the module HI (X, Z), 
by associating to each element e E H, the homology class of the curve {te}, 
0 5 t 5 1. Under this identification, dxl, . . . , dxgg are dual basis in H1 (X, Z) 
and HI (X, Z), respectively. 

The form w can be written as 

Tii dxi A dxi , 

cl 

where R = (rii) is a skew-symmetric non-singular matrix. The integrality of 
the form w means that rii E Z. 

Every skew-symmetric non-singular integral bilinear form on a Z-module 
of rank 2g can be represented in some basis as (the Smith normal form) 

R=(; -;), A=(: ‘:: I), 
... 9 
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where 6i E Z, 6i > 0, 6i16i+l. The collection of numbers 

6 = (61, . . . , J29) 

is an invariant of the form. 
This means that we can pick a basis el, . . . , ez9 of H, such that in the 

corresponding real coordinates, the form w can be written as 

w= 6jdxi A dxg+j. (9) 
j=l 

The collection of numbers 6 shall be called the poZatization type of w. In 
particular, if 61 = . . . = 6, = 1, then we say that (X,w) is a principally 
polarized abelian variety. 

Pick a basis of H as above. It is then easy to show that the vectors 
6,‘el,. . . ,6;‘e, are a complex basis of Cc 9. Consider complex coordinates 

21,.-e, zg corresponding to this basis. If in those coordinates the vectors ek, 
k= l,... ,2g, are written as 

ek=(hky.v.7~gk)7 

then the matrix R = (Xij) has the form 

Q = (44, w-0 

where 2 = (zij) is a complex g x g matrix. 
Let us demonstrate that w is a (1,1) form representing a positive coho- 

mology class, if and only if 2 is a symmetric matrix with positive-definite 
imaginary part Y = Im 2. 

Observe first, that the differential forms dzl, . . . , dz, form a basis of the 
subspace 

H1>’ c Hc = Hl(X,C). 

Let Q be a bilinear form on Hc, defined by the polarization w using formulas 
(6). Then 

Q(dzi, dzj) = [b[(-Zij + Zji), 

Q(dzi, dFj) = (61(-zij + Zjji), 

where 161 = S1 . . . 6,. Indeed, it follows directly from (6) that 

Q(dxi,dxj) = $lc? 
when Ii - jl # g; 

+5ibsf1, 
when j = i + g; 
when i = j + g. 

It is enough to observe that 

dZk = GkdXk + eZkjdXg+j. 
j=l 

(11) 
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Applying (2) get that 2 = ‘2, Y > 0. 
LetusfixafreeZmoduleH~ofrank2gwithbasisrll,...,r],,~l,...,~,. 

Let Q : Hz x Hz + Z be a form, which, in this basis looks like 

Let 2 be a complex matrix, such that ‘2 = 2, and ImZ > 0. Let H1lo c 

Hc = Hz @ C be the subspace with basis WI,. . . , wg, where 

9 

wk = dkr]k + ~zk.+g- 

j=l 

This construction uniquely defines a polarized Hodge structure {HZ, HPJ, Q} 
of weight 1. Different matrices 2 evidently define different Hodge structures. 
As was shown above, any Hodge structure associated to a polarized abelian 
variety (X, w) with polarization of type 6 can be obtained by this means. 

It has thus been shown that the classifying space D defined by the data 
D associated with a polarized abelian variety (X, w) of dimension g with 
polarization of type S is the Siegel upper halfspace Hg. 

The role of the group Gz is played by the group Sp(6, Z) of matrices y = 

E GL(rg, Z) satisfying the condition 

The element y acts on the matrix 2 E Hg by the rule 

y(Z) = (AZ + BA)(A-lCZ + A-lDA)-‘. 

Let 2 E Hg be a matrix and let 6 be a type of polarization. Form a matrix 0 
according to the formula (10) and let us examine the column vectors e, E C? 
of this matrix. If H is a lattice with basis ei, . . . , ez9, then X = 0 /H is 
a complex torus. Take the real coordinates $1, . . . , xsg corresponding to the 
basis {ej} on 0 and define w by the formula (9). From equation (10) and the 
properties of the matrix 2 E Hg it follows immediately that w is a (1, 1)-form 
on X representing a positive integral cohomology class. Therefore, (X, w) is a 
polarized abelian variety of dimension g with polarization of type 6. 

Let (X’, w’) and (X”, w”) be polarized abelian varieties constructed over 
two different elements Z’, 2” E H. It can be easily shown that (X’, w’) and 
(X”,w”) are isomorphic if and only if 2’ = $Z”), y E Sp(6,Z). Thus, the 
points of the complex manifold 

~4 = SP(& z)\H, 

are in one to one correspondence with the equivalence classes of pairs (X, w), 
where X is an abelian variety of type g and w is a polarization of type 6. 
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The space M is called the moduli space of abelian varieties of dimension g 
with polarization of type 6 (see Chapter 2, $5). 

Let us study the case of principal polarization in greater detail. In that case 
the pair (D, Gz) coincides with the corresponding pair constructed starting 
with a projective curve of genus g (see 1.6). Let E be such a curve; it defines 
an element 2 E Hg defined up to the action of Sp(g,Z). Since Sp(g,Z)\H, 
is the moduli space of principally polarized abelian varieties of dimension g, 
there is a one to one correspondence between projective curves E and princi- 
pally polarized abelian varieties (J(E), w). This abelian variety is called the 
Jacobian variety, or the Jacobian of the curve E. Recall, that every polariza- 
tion w on an abelian variety defines a line bundle L, such that cl(L) = [w]. 
The line bundle L is defined up to a shift by an element of the torus X. If 6 
is the polarization type of w, then dim H’(X, L) = [6] (Mumford [1968]). In 
particular, if w is a principal polarization, it corresponds to a unique divisor 
0 defined up to a shift, and in the special case of a Jacobian of a curve, there 
is a unique, up to shifts, divisor 0, known as the divisor of the polarization. 

It should be emphasized that the possibility of reconstructing a polarized 
abelian variety from the polarized Hodge structure on its one-dimensional 
cohomology is the most important result established in 1.7. 

1.8. Let (X, w) be a polarized algebraic surface (that is, dim@X = 2). As 
an example, let us study the classifying space D constructed from the data 
(6) obtained from (X, w). In this case 

Hw = P2(X, IQ, HC=HR@C=P2(X,C). 

If the subspace H2yo E Hc and the bilinear form Q are given, then the whole 

Hodge structure on He is uniquely defined, since H”12 = g210, while H131 is 
the orthogonal complement to H”y2 @ H210 in the space Hc with respect to 
Q. Let h = halo(X), k = h’ll(X) - 1. Th en, there exists R-subspaces W and 
S, of dimensions 2h and k respectively, that 

H2>’ @ Hos2 - W @Cc - 7 H”’ - S @ @ - > Hw = W $ S. 

As equations (2) show, the form Q is positive definite on H’>l and negative 
definite on H2>0 @ H 2,0. Choose a basis wi , . . . , Wh of the space H2,‘, such that 
Q (wi, wj) = -6i.j. We can also choose an R-basis G, . . . , <k for S, such that 
Q(Cii,Cjj> = 4,. N ow, set qj = $(wj + i~j) and pj = -in(wj - ~j). Then, 

expressed in terms of the basis 71,. . . , qh, ~1,. . . , ph, <I,. . . , & the matrix Q 
of Q has the form 

where El is the 1 x 1 identity matrix. Let Gn = 0(2h, k) be the group of (real) 
transformations of HR preserving the form Q. Then Gw acts transitively o,” 
D. Indeed, for any other Hodge structure {%q} on Hc, choose elements [ii, 

$,pi analogous to <i,vi,pi and set T(<i) = 2, T(qi) = 5ji, and T(pi) = j&. 
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Then T is in Gw and T maps the Hodge structure {Hp,‘J} into {&‘~‘J}. Fix 
a Hodge structure Hilo c II@ and set K = {T E GR~TSO = Se}. Then, 

since T is a real transformation, it follows that T(%?i’“) = piSo, and so T 
fixes H,21° @ fQ2. That, in turn, means that K = U(H) x O(k), where U(h) 
is unitary and O(k) is orthogonal. Finally, the classifying space D may be 
represented as D = K\Gw. 

1.9. Recall that a complex structure on a variety F is introduced by embed- 
ding it into a product of Grassmanians n G(fp; I-I). Denote this embedding 
by q5, that is: 

qb=n@‘:D-fiG(fp,H). 
p=l 

Let us also recall the following explicit description of the tangent bundle of a 
Grassmanian (see Griffiths-Harris [1978]). 

Let W E G(fp,F) b e an jr’-plane. There exists a natural isomorphism 
between the tangent space Tw of the Grassmanian G(fp, F) at W and 
Hom(W, F/W). Th is isomorphism is described as follows. Let C E Tw. Choose 
a holomorphic curve {WT} E G(fp, F), such that WO = W and c is the tan- 
gent vector to {Wt} corresponding do the differentiation $. For any vector 
w E Wo it is possible to choose a vector field w(t) E Wt which depends 
holomorphically on t, and such that w(0) = w. Then, the homomorphism 
C E Hom(W, F/W) is define by setting 

C(w) = Fjt=o mod W. 

Let d E D be a point and let (Fn, . . . , F1) be the corresponding flag. We 
obtain an induced map on the tangent spaces 

qb* : Td L) 6 Hom(HP, F”/Fp). 
p=l 

Define the horizontal subspace Th,d C Td to be the subspace consisting of 
vectors C such that 

$*(I) E 5 Hom(FP, Fp-‘/Fp). 
p=l 

The tangent plane field Th,d is called the horizontal subbundle Th(D) of the 
tangent bundle T (0). 

1.10. On the Grassmanian G(fp, H) there is a canonically defined sheaf FP 
of rank fP - the so-called tautological sheaf. This is the sheaf of sections of 
the bundle 

E = {(qh) E G(fp,H) x Hlh E x} 
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over G(fp, H) ( see Griffiths-Harris [1978]), the fibers of which over the points 
of the Grassmanian are the fp-subspaces of H defining them. 

The sheaves 3P = (@‘p)*& on D thus define a filtration 

Fc.F~-~c...c~=H@O~ 

of the constant sheaf H @ 0,. Define the Hodge sheaves on D by setting 

Thus defined, ?P’ is a locally free sheaf of 00 modules of rank hplq, and 
there is the C” decomposition 

It is easy to see that the form (fl)p-q&(0, S) defines a Gn-invariant hermi- 
tian form on ‘WQ. Since there exists an embedding 

T(D) c 6 Hom(FP”@, . . . , @Zp*n-p, 3tp1,np+1 cl3 . . . @ 3COJy 
p=l 

and a Gw invariant form on ?W for all p, q, we thus obtain a Gn invariant 
metric on T(D). It can be shown that this metric is generated by the Killing 
form on the Lie algebra gn of Gn. 

Definition. The holomorphic bundles .Ti, constructed above, on the classi- 
fying space D are called Hodge canonical bundles 

$2. Complex Tori 

2.0 The primary purpose of this section is to describe the approaches to 
classifying polarized projective varieties (X, w) using polarized Hodge struc- 
tures on their cohomology. Let E = {Hz,, Hp,q, Q} be a Hodge structure, 
defined by formulas (6) starting with the pair (X,w). Consider the classify- 
ing space of polarized Hodge structures with the same data as E. The pair 
(X, w) defines a point d E D, defined up to the action of the group Gz. It is 
interesting to understand to what extent can the pair be reconstructed from 
d. In the preceding section this question was solved for abelian varieties. In 
general, the variety Gz\D has a rather complicated structure, however when 
the weight of & is odd there is a good method to distinguish points of Gz\D, 

as follows. To each Hodge structure E E D of odd weight corresponds a pair 

a pair (J(f), 4, w h ere J(E) is a certain complex torus (the so-called Grifiths 
torus) and n is a (1, 1)-form on J(E), representing an integral cohomology 
class. The form n does not, in general, correspond to a polarization, and the 
torus J(E) is not necessarily an abelian variety. The pair (J(&),r]) will be 
called the pseudo-polarized torus corresponding to E. It turns out that the 
following theorem holds (see Griffiths [1968]): 
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Theorem. Polarized Hodge structures El and &z belong to the same orbit of 
the group Gz if and only if the corresponding pseudo-polarized Grifiths tori 
are isomorphic. 

2.1. GriBths tori. Consider a polarized Hodge structure & = {HZ,, HT~Q, Q} 
of odd weight 2p- 1. Decompose the vector space Hc as a direct sum HI @Hz, 
where H1 = @?IIHneipi 

Z-O HZ = ??I. Let i be the projection operator mapping 
He onto Hz. Then E A i(Hz) is a discrete subgroup of rank 2 dime Hz, 
Consider the complex torus Hz/E. 

Define a form N on Hz as follows: 

Conditions (2) and the oddness of n imply that 31 is a Hermitian form on Hz 
of signature (si, ss), where 

[??I 
Sl = c ’ 

hP--1--2j,P+2i ss = dim@ Hz - ~1. 
j=l 

For some choice of holomorphic coordinates (21,. . . , zk) on H, lc = dim Hz, 
the form X can be written as 

k 

X(z’, z”) = c qz;Z”j, 

j=l 

where z’ = (zi,. . . ,zl,), z” = (zy,. . . , zi), cj = f 1, where the number of 
positive .sj is equal to si. 

Consider the differential form n of type (1,l) on Hz written in the same 
coordinates as 

q- 

v = 2 j=l 
Ejdzj ~&j. 

We will also use q to denote the induced (1,1) form on the torus Hz/E. Let 
us show that r] represents an integral 2-dimensional cohomology class. 

Consider two elements z’ and z” in E. Let yZ~,Z~~ be the two-dimensional 
cycle generating by the following map of the square 27 = [0, l] x [0, l] into 
H2/E : 

(t, r) + tz’ + rz”. 

All of the elements of the second homology group of the torus H2/E are 
representable by cycles of this form. However, 

= -~sjIrn(z~Z~) = -ImZ(z’,z”). 
j=l 
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It is thus sufficient to show that Im31(z’,z”) E Z for any z’,z” E E. Let 
z’ = i(qb), z” = i($), for 4, II, E Hz. Then 4 = z’ + YZ’ and $ = z” + F”. Since 
n is odd and since Q(z’, Z”) = 0, for z’, z” E Hz, we get 

- Im%(z’, z”) = q-l( z’, z”) - 31(2”, z’)] 

= q[-2aQ( z’, 2’) + 2J--rQ(z”, Z”)] 

= Q(z',F") + Q(z', z") = Q(qJ$) E Z. 

The pair J(E) = (Hz/E,v) will be called the pseudo-polarized Grifiths 

torus corresponding to the polarized Hodge structure E. 
The form 71 represents a positive cohomology class if and only if sg = 0. 

In this case the Griffiths torus is a polarized abelian variety (see 1.7). If the 
form Q on HZ is unimodular, that is, with respect to some Z-basis the matrix 
corresponding to Q has determinant fl, then J(E) is a principally polarized 
abelian variety. 

In general, however, the Griffiths torus J(I) is not even necessarily alge- 
braic. 

2.2. Now, consider a polarized variety (X, w) of dimension d, and for odd 
n construct a polarized Hodge structure E of weight n, as in Section 1.2. 
The corresponding pseudo-polarized torus J”(X) = J(E) is called the nth 
intermediate Grifiths Jacobian of the variety X. 

If d = n, J”(X) is called the middle Jacobian of the variety X. The in- 
tersection form of n-dimensional cycles on the n-dimensional variety X is 
unimodular (see Griffiths-Harris [1978]), and so, if s2 = 0, the canonically 
defined polarization of J”(X) is principal. 

There is another way to describe the complex structure on Jn(X). Consider 
the Grifiths operator 

CG = c (J--i)=np,q, 
p+q=n 

where 17p,q is the projection onto HPlq. It is not hard to see that CG is a real 
operator, and C& = -1. Th us, this operator defines a complex structure on 
H”(X, R). It can be shown that 

Jn(X) N H”(X, lR)/Hn(X, Z), 

as a complex torus. 
Now, we can use the isomorphism 

8 : Hn(X, R) + Hzd-n(X, R), 

which associates a cycle y = 0(w) to a form w, which is defined by the equation 
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J J 17= VA\. 

(̂ X 

It is clear that the restriction of 8 to Hn(X, Z) is an isomorphism, so 

H”(X, Z) N H2d--n(X,Z)/(tor). 

Therefore we can also say that 

where the complex structure on Hz~-~(X, R) is transferred to Hn(X, R) by 
8. 

Let dimX = d. In that case the Griffiths torus J2d-1(X) is an abelian 
variety, since in this case si = h d-lld = dim Hz. This variety is called the 
Albanese variety and denoted by Alb(X). Using Serre duality, obtain 

Alb(X) = Hd-11d(X)/H2d-‘(X,Z) N H”(X, .n’)*/H’(X, Z). 

Let us give an explicit description of the Albanese variety. Let wi, . . . , Wh be 
a basis of the space H1lo of holomorphic l-forms on X and let 71,. . . , Y2h be 
generators of Hi (X, Z) modulo torsion. In the dual space (H1yO)* to H1!‘, pick 
abasisni ,..., nh,dualtowi ,... , Wh, and using this basis fix an isomorphism 
between (Hl,O)* and C!. Then the map 

is a natural inclusion of Hi(X, Z) into the space Ch 2~ (H1lO)*. Thus, the 
Albanese variety is the complex torus 

Alb(X) N Ch/A, 

where A c Ch is the lattice of rank 2h, which is the image of Hi (X, Z) under 
the map described above. 

The complex torus J(X) is called the Picam! variety of the algebraic variety 
X, and is denoted by Pit’(X). Using Serre duality, it can be shown that 
Alb(X) and Pit’(X) are dual abelian varieties (see Mumford [1965]). It is 
also not hard to see that 

Pic’(Alb(X)) = Pit’(X), 

Alb(Pic’(X)) = Alb(X). 

If X is a nonsingular algebraic curve, then its only intermediate Jacobian 
J1(X) = Alb(X) = Pit’(X) is the Jacobian variety, or the Jacobian of the 
curve (see Section 1.7). 

2.3. A choice of a basepoint x0 E X defines the holomorphic Albanese 
mapping, as follows: 
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81 m : X -+ Alb(X), a:-+ (l:wl,...,l:wh) mod17. 

This mapping has already been used in the introduction to establish the iso- 
morphism of two different definitions of an elliptic curve. It can be seen from 
the construction that the induced maps 

CL* : Hl(X,Z)/(tor) + Hl(Alb(X),Z) 

and 
p* : H’(Alb(X), 0’) + H”(X, 0’) 

are isomorphisms. 
For any variety X such that dimX = d, denote by ChE(X) the set of 

algebraic cycles of real codimension p on X which are algebraically equivalent 
to 0. In particular, Chid(X) is the set of O-cycles, that is to say, formal sums 
of the form 

c niyi; yi E X, C ni = 0. 

The Albanese mapping evidently depends on the choice of basepoint x0, 
but it induces a basepoint-independent map 

0 : Chid(X) + Alb(X). 

The map 0 is defined as follows. Let y = Cniyi E Chid(X). Then, after 
choosing the basepoint x0, let 

0,, (Y> = C niP(Yi). 

If 21 is another point of X, then 

%0(Y) -0x,(Y) = (JWl,...,/7Wh) E 17, 
Y 

where y is a one-cycle on X. Thus, 0,, does not depend on xc and defines the 
map 0. 

The generalization of the Albanese map to an arbitrary intermediate Jaco- 
bian Jn(X) is the Abel-Jacobi mapping which is a homomorphism 

0 : Ch;+‘(X) + J”(X). 

In order to define it, let us represent the Jacobian J”(X) as 

J”(X) = H2d-n@-, @/H2d--n(X, z), 

as described above. 
Let 6 E Ch,“+‘(X) b e an (2d - n - 1)-cycle. Then, 6 = dy, where y is a 

(2d - n)-chain on X. The chain y gives a linear functional 

w--b w 
s 7 
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on H2d-“(X, R), and hence defines an element 7 of the space H2d-n(X, R). 
Let yr be any other chain, for which 6 = dr. Then a(~ - 71) = 0, and 
“J - x E H2dpn(X, Z). Now, set 

S(S) = 7 mod Hzd.+(X, Z), 

which is well-defined. 
Suppose that a subset S c Ch,“+r is equipped with the structure of an 

algebraic variety. Suppose further, that there exists an algebraic cycle 3 E 
S x X of real codimension n + 1, such that any cycle s E S can be obtained 
as the intersection of 3 with the fiber {s} x X, where this fiber is viewed as 
naturally identified with X itself. In that case we say that S is an algebraic 
subvariety of Ch,“+’ (X). 

One example of the above situation is the set F of all lines on the cubic 
hypersurface X in P4. This set has a natural inclusion into the Grassmanian 
G(2,5), thereby forming a nonsingular complete algebraic surface (see Chapter 
3, $2.) - the so-called Fano surface. 

Amazingly, the following proposition holds (see Lieberman [1968] for proof): 

Proposition. On algebraic subvarieties of Ch,“+’ the Abel-Jacobi mapping 
is regular. 

2.4. Weil tori. Along with the Griffiths torus, we can associate another 
complex torus to a Hodge structure E - the Weil torus I(X). Consider the 
decomposition Hc = HI @ Hz, where HI = Hnpl,l CB Hne3p3 @ . . . @ H”sn, 
H2 = HI (it is assumed that n is odd). Let j be the projection of Hc onto 
HI, E = j(HZ). The complex torus HI/E with the polarization given by the 
Hermitian form B = 2(fl)nQ(4,$) is then the Weil torus I(E). It can be 
checked using (2) that I(E) is always an abelian variety, since the form B is 
always positive-definite. 

Let (X,w) be a polarized algebraic variety of dimension d, E- the Hodge 
structure (6), then F(X) = I(&) is called the n-the intermediate Weil Jaco- 

bian of the variety X. The torus In(X) can also be viewed as the quotient 
Hn(X, R)/Hn (X, Z), but the complex structure is given by the Weil operator 

c = c (~)p-“Hp,,. 
p+q=n 

2.5. Let D be the classifying space of Hodge structures of odd weight n 
corresponding to some data. To each point & E D we can associate the two 
tori J(E) and I(&). Note that all points lying in an orbit of the Gz action 
get isomorphic tori. Evidently, the Griffiths tori vary holomorphically with 
respect to the variation of the point E E D. From Griffiths’ theorem (see 
set 3.3) it follows that as the varieties {X,}, s E S vary holomorphically, so 
do the intermediate Griffiths Jacobians J”(X). This is not so for the Weil 
tori - a counterexample can be constructed as follows. Let Ex be the elliptic 
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curve c/(%X + Z}. If z is a holomorphic coordinate on UZ, then WX = dz is a 
holomorphic differential on EA. Set 

s = {(&,~2,~3>}, xs = f&l X ~52 X Exs. 

3 

wa = 
c 

WA* A WA; 

i=l 

be the polarization on X,, and &s the polarized Hodge structure of weight 3 
associated with the pair (X,, w,). A direct computation (see Griffiths [1968]) 
shows that I(&~) does not vary holomorphically with s E S. 

2.6. The complex tori defined above have found interesting applications in 
algebraic geometry. One of the most interesting such applications is the proof 
of the non-rationality of the cubic threefold (see Clemens-Griffiths [1972]). 
The cubic threefold X is a nonsingular hypersurface of degree 3 in P4. It is 
easy to show that X is a unirational variety, that is, there exists a rational 

map 
q5:B3+X 

of the projective space lP3 onto X. For a long time the following problem 
of Liiroth remained open: are there unirational, but not rational algebraic 
varieties? In dimension 2 such varieties do not exist. The non-rationality of 
the cubic threefold X gave one of the currently known solutions to Liiroth’s 
problem. 

Let us briefly describe the idea of the proof. Let X be an arbitrary projec- 
tive three-fold, for which there is a Hodge decomposition of type 

P(X) = H2J CD H112. 

Hypersurfaces of P4 of degree not exceeding 4 are known to have this property. 
In this case the tori of Griffiths and of Weil in dimension 3 coincide, and 
are a principally polarized abelian variety (J3(X), n). It can be shown that 
(J3 (X), 17) has a unique decomposition as a product 

V3(W,d = (A,‘11 x . . . x (Jk,%) 

of simple principally polarized tori. Let (Jc, nc) be the product of all of the 
tori which are Jacobians of curves, (JG,~G) the product of all of the other 
tori. 

The polarized torus ( JG, 7~) is called the Grifiths component of the variety 
X. 

If the Griffiths component of a variety X is non-trivial, then X is not 
rational (see Clemens-Griffiths [1972]). 

This is easy to explain. For P3 the middle Jacobian is trivial. Let X -+ 
X be the morphism inverse to a monoidal transformation centered at some 
nonsingular curve E c X. Then it is easy to show that 
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where (J(E), 71~) is the polarized Jacobian of some curve E. From this it can 
be deduced that the middle Jacobian of a rational variety is a product of 
Jacobians of curves. 

Clemens-Griffiths [1972] show that for the cubic threefold the Griffiths 
component is non-trivial. This is an extremely deep fact, the proof of which 
uses the rich geometry of the cubic threefold. 

53. The Period Mapping 

3.0. In Section 1.2 it was shown that the Hodge decomposition on the 
n-dimensional cohomology of a polarized algebraic variety (X, 0) defines a 
certain polarized Hodge structure {Hz, Hp+r, Q} of weight n. Let us construct 
the classifying space (the space of period matrices) D using the data corre- 
sponding to 8. The point & E D is called the classifying point, or the period, 
of the polarized variety (X,w). In this section we will investigate how the 
periods of an algebraic variety vary with respect to “analytic deformations.” 
It will be shown that for families {(X,, w,)}, s E S, of varieties parametrized 
by points of a complex manifold S, the periods vary holomorphically with 
respect to the parameter value s E S. Now, for some more precise definitions. 

3.1. Consider a smooth morphism f : X + S of complex manifolds with 
connected compact fibers X, = f-‘(s), s E S. We will say that {X,} is a 
complex-analytic family of complex manifolds with connected base S. 

First, note that the dimensions of all the manifolds X, are the same. In the 
future we will denote dim X, by d. Furthermore, the fibration f is C” locally 
trivial, that is for every point SO E S there exists a neighborhood U such that 
the diagram (14) commutes, 

f-w 
Y 

wxxu 

A/Y’ 

u 

(14) 

where X = X,,, 7ru is the canonical projection and Y is a diffeomorphism. 
The diffeomorphism Y is called the trivialization of the fibration E over U. 

Fix a trivialization Y. Then for every s E U we have a diffeomorphism 

ys = (7rx 0 VlXJl : x + x,. 

Here 7rx is the natural projection of X x U onto X. The isomorphism 

ys* : H*(X,, 2%) N H*(X, Z) 
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already does not depend on the choice of the trivialization (see Chapter 1, 
Section 10). 

Note that the isomorphism r,* can be considered fixed for all s E S, but 
its choice is only determined up to the action of the monodromy group r, on 
H*(X, Z) (see Chapter 1, Section 10). 

Consider the function 

hPYq(s) = dime Hq(X,, fip) 

on the base S. It is known (see Steenbrink [1974]) that hP,Q is upper semi- 

continuous on S, that is, for any SO E S there is a neighborhood V, such that 
hJ’>q(s) 5 hpy’J(so), for all s E V. Since all of the fibers are diffeomorphic, it 
follows that dim H”(X,, C) is constant on S. Suppose that the manifolds X, 
are Kahler for all s E S. then 

c hp>q(s) = dim Hn(X,,C), 

p+q=n 

and so the functions hplq(s) = hplq are all constants. We will call these con- 
stants the Hedge numbers of the family of Kahler manifolds {X,}. 

3.2. Suppose that the morphism f is part of a commutative diagram 

c bPNXS 

x\;/ ’ 

(15) 
rs 

S 

where i is an embedding and x8 is the natural projection. In this case it is said 
that {X,} is a smooth projective family of Kihler manifolds over the base S. 
This actually means that we have a family of manifolds embedded into PN 
and parametrized by the manifold S. 

If 7r is the natural projection of PN x S onto PN, then the restriction 7r o i to 
the fiber X, defines an embedding into P N. In particular, all of the manifolds 
X, are actually algebraic varieties. The restriction to X, of the canonical 
sheaf C~,IV( 1) defines a positive line bundle L, on X,. its characteristic class 
w, allows us to use formulas (6) to define a polarized Hodge structure 

{(Kz)s, (HP>‘), Qsl, 

associated with (X,, w,). 
Fixing SO E S, set 

Hz = (Hz),, , (HpYq),, , Q = Qs,, hpTq = dim HpYq’. 

Let us construct the classifying space D corresponding do the data Hi, 

Q, { hpvq}. Since the class w, is a restriction of a class from H2(lPN, Z) to 
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H2 (X,, Z), it follows that yz (w,) = w,, . Note also that r,* maps the forms Qs 
and Qs, into one another, since those forms are defined topologically, once the 
class w, is chosen. Therefore, yz restricts to an isomorphism between (Ha), 
and Hz, such that (y:)*(Q) = Qs. In particular, the monodromy group is a 
subgroup r, of the group Gz = Aut(Hz, Q). Fix a subgroup I’ c Gz contain- 
ing r,. Extending yz linearly to (H)s = Hn(X,, C), get a polarized Hodge 
structure 

This structure is determined by the r, orbit of the point s E S. Thus, we get 
a mapping 

Ir :S+rjD. (16) 

Definition. The mapping @r is called the period mapping of the smooth 
projective family {X,}. 

3.3. 

Theorem 1. (Griffiths) 

1. The mapping @pr is holomorphic. 
2. The mapping @r has the local lifting property, that is for each point SO E S 

there exists a neighborhood U c S and a holomorphic map &J, such that 
the diagram 

commutes. Here X is the canonical projection map. 
3. The mapping & in the above diagram is horizontal, that is, its differential 

(&J)* maps the tangent space T, at each point s E U into a horizontal 

subspace Th,qs)) c T&Cs, (see set 1.9). 

The proof of Theorem 1, based on results of Kuranishi, was given by Grif- 
fiths [1968]. Despite the fact that the statement of the theorem sounds very 
plausible, the theorem is far from trivial. A second proof, due to Grothendieck, 
is based on theorems on direct images of sheaves (see the survey Griffiths 
[1970]). We will make a few remarks a propos the proof of the theorem. 

First, note that the statement of the theorem is local, so it is enough to 
prove it for a polydisk S. From the triviality of the monodromy group in that 
case, and from the construction of the period mapping it follows that @ can 
be lifted to a map 

&:S+D. 

Consider the map 
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V : D -+ WP,H), 
defined in Section 1.9. The complex structure on D is introduced using the 
embedding q5 = II@‘. 

Consider the composition XP = qY o 3. This can be described explicitly 
as follows. Let {Fp} be the Hodge filtration on the n-dimensional primitive 
cohomology of the space X = X,, . Consider the basis Fp consisting of primi- 
tive harmonic differential forms wi , . . . , wfp on X. Suppose that Wk is of type 
(rk, lk). Set 

qk(s) = 7; o fl;k’zk o (‘-/,-‘)*(wk), 

where n2s is the projection map onto the subspace HP*“(XS) of the space 
H”(X,). The forms qk(s) are C” (with respect to s) primitive harmonic 
forms on X, such that qk(se) = Wk. Let FP(s) be the subspace generated by 
the set {vk(s)} in H = P”(X). Th en, the mapping XP associates to each s E S 
a subspace Fp(s) E G(fp, H). 

To prove that XP is holomorphic, it is sufficient to consider the case where 
S is a one-dimensional disk, and to show that 

&k(S)ls=s. E FP. 

Indeed, from the definition of the tangent space to the Grassmanian (Section 
1.9) it follows that in that case 

x:(g) = 0. 

To show claim (3) of Theorem 1, it is enough to show that 

;~k(s)l.=s, E Fp-‘. 

Indeed, in that case 

AZ(&) E Hom(Fp, Fp-‘/Fp), 

To conclude this section, let us note that the holomorphicity theorem (The- 
orem 1) is valid also in the following more general setting. Let {X,}, s E U 
be a complex analytic family of compact Kahler manifolds over the polydisk 
U, and w, is the Kahler form on X,. 

Suppose that the family {X,} is C”-t rivial, and the trivialization is fixed. 
Also fix the center SO of the polydisk U. 

Suppose now that w, depends smoothly on s, or, more precisely, the form 
yz(wg) depends smoothly on s as a form on X = X,,. Consider the Hodge fil- 
tration {F,“} on H, = H”(X,), defined by the K5hler form w,. If we associate 
to each point s E S the subspace Fp(s) = y,*(Ff) of the space H = Hn(X), 
we obtain a mapping 
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Xp : U + G(fp, H), 

defined in some neighborhood of SO. 

Proposition. The mapping yp is holomorphic. 

The proof can be found in Griffiths [1968]. 

$4. Variation of Hodge Structures 

4.1. Consider a smooth complex manifold S and a subgroup r c Gz. Sup- 
pose that we are given a map @ : S + r\D, satisfying the conditions: 

1. qS is holomorphic, 
2. @ is locally liftable, 
3. @ is horizontal. Then the map @ is called a variation of Hedge structures 

(vHs). An important example of vHs is given by Theorem 1. 
Consider the universal cover S of the manifold S. Conditions (1) and (2) 

are equivalent to the existence of a holomorphic mapping @ which makes the 
diagram 

I I 
I-1 x 

@ 
S - r\D 

(17) 

commute. Here ~1 and X are canonical projections. Define a representation 
p : rr(S,ss) + r, having the property that $(yS) = p(y)&(S), for all y E 
nr(S, so), Is) E S. By factoring S x Hz by the action of 7rr(S, SO) obtain a 
locally constant sheaf 3cz of free abelian groups on S. The sheaves &*(3P) 
are invariant with respect to the ~1 (S, se) action, and hence define locally free 
sheaves 3: on S. This also defines a filtration 

3,” c . . . c3;ce=3cs 

of the locally constant sheaf 8s = Xg, @ OS. Setting ‘?-L~q = 3:/3;” makes 
Xpq into a locally free sheaf of rank hP?Q. There is also a C” decomposition 

7l.y = Itl;7” @ . . . e3 3t$“, 

with xP,,q = ZQ,’ , and there is a C” decomposition 

35 = ?t;,O &3 . . . @3 3-I;-‘? 

The bilinear form Q on Hz, invariant with respect to Gz defines a bilinear 
form Qs : ?-Ls x ?ts -+ OS, satisfying conditions (2), where HPlq is the fiber 
of 3c:’ at any fixed point SO E S. 
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Exterior differentiation in 0s and the equality 3ts = 3tz @ 0s defines a 
locally integrable connection (see Chapter 1, Section 5), the so-called Gauss 
- Manin connection, 

V:?ifls-U-ifls@~~. 

Conversely, the choice of data {S, 7&, {.7+:, Qs, V}}, satisfying the conditions 
above allows one to reconstruct the vHs which produced that data. 

4.2. Call the map Cp : S + r\D an extended variation of Hodge structure, if 
there exists an open everywhere dense set S’ c S, such that pi]s~ : S’ + I’\D 

is vHs. It can be shown that in this situation the image p(ri (S, so)) E r does 
not depend on the choice of S’. This image is called the monodromy group of 
the extended vHs. 

$5. Torelli Theorems 

5.1. R. Torelli [1914] showed that the jacobian variety of an algebraic curve 
determines the curve. That is, the algebraic curve X is uniquely determined 
by its polarized Hodge structure on H1 (X, Cc), which is to say its image under 
the period mapping. The questions regarding the degree to which the periods 
of a variety determine the variety are usually called Torelli problems. There 
are four types of Torelli problems: 

1. infinitesimal, 
2. global, 
3. local, 
4. global generalized, (or weak global). 

Our immediate goal is to explain the formulation of these problems. First, 
some definitions. 

5.2. The Kodaira-Spencer Mapping. Let f : A’ -+ S be a smooth family of 
complex manifolds over a complex manifold base S, let SO be some point of 

S, X = X,, = f-‘(so). S UC a h f amily is called a deformation of the complex 
manifold X. 

Let us denote by TX the tangent bundle of the manifold X, and by T,, 

the tangent space to S at the point SO. Consider the exact sequence of fiber 
bundles on X : 

0 + TX -+ Txlx -+ Nlxlx + 0. 

Here N]xlx is the normal bundle of the submanifold X c A’. 
The map df defines an isomorphism of the fibers of the bundle Nxlx at 

all points x E X and the space T,, . Therefore, any element < E T,, defines a 
global section t E H’(X, Nxl,). Consider the coboundary homomorphism 

~3 : HOW, Nx,,) + H’(X,Tx). 
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Setting p(C) = 6(t), we obtain the linear Kodaira-Spencer mapping 

p : T,, + Hl(X,Tx). 

Let us give an explicit description of this mapping. Without loss of generality 
we can consider just the case dim S = 1. Denote the base coordinate by s, in 

that case $ls=sO is the basis vector of the space T,,. 
Consider the atlas {Ua}, which covers a neighborhood of the fiber X = 

X,, E X. On each of the sets U, pick complex coordinates of the form 

Then 

(z~;s) = (zi ,..., zz;s), d=dimX. 

(Xa;s) =Fap(F&,...,q$;S), 

for some choice of transition functions FLB. The differentiation ($) oI defines 
on X n U, a section of the sheaf Txlx. Since on U, II Uo II X the differentials 

(8, and (9, d e fi ne the same element in Nx~x, then the difference 

is a correct definition of the section of the sheaf TX over U,nUpnX. Evidently 

on U, n U, n X, and 

t ap = -tpc, 

t,p + tgy + t,, = 0 

on U, n Uo n U, n X. Thus the collection of sections {tap} forms a 1-cocycle. 
The element of H1 (X, TX) defined by this cocycle is then the image of the 
differential & E T, under the map p. 

Call a deformation X + S trivial, if there exists a holomorphic diffeomor- 
phism v which makes the following diagram commute. 

X 
v 

*xxs 

Here 7r, is the natural projection of the product X x S onto the second mul- 
tiplicand. The deformation is called ZocaIly trivial if this diagram commutes 
for some neighborhood of a point SO in S. 

It is clear that the construction of p gives a trivial map for a trivial de- 
formation. The converse is not, in general, true. Indeed, let q5 : P + S be a 
base change, q5(ps) = SO. Consider the induced family X x, P + P. Then the 
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Kodaira-Spencer mapping p’ : TpO + H1 (X, T,) of this family is related with 
p by the relation 

p’ = p o dqi 

Now, take any family over the unit disk S with non-isomorphic fibers, and 
after making the base change s = p2, obtain a nontrivial deformation of the 
manifold X over P with a trivial Kodaira-Spencer mapping. 

On the other hand, the following result holds (F’rolicher-Nijenhuis [1957]). 

Let X be a compact complex manifold for which H1 (X, TX) = 0, f : X + S 
a deformation of X. Then there exists a neighborhood U of the point SO E S, 
such that all of the fibers X,, s E U are isomorphic as complex manifolds. 

It should be noted that there are locally non-trivial deformations all of 
whose fibers are isomorphic (for example with fiber P’.) 

The elements of the group H1 (T, T ) x are called infinitesimal deformations 
of a manifold X. If Hl(X,Tx) = 0, we say that the manifold X is rigid. 

5.3. Universal families. Consider the deformation 

f :x+s 

of a complex manifold X = f-l (SO). 
Call the deformation f complete if any other deformation of X is obtained 

from f by a local change of base. More precisely, let 

be an arbitrary deformation of the same manifold X = $-‘(PO), then there 
exists a neighborhood U c P of the point po and a holomorphic map r : P + 
S, r(po) = SO, that the family 4 defined over U is isomorphic to the induced 
family X xs U + U. If the differential (dr)po is uniquely defined, then the 
family f is called wersal. If the germ of the map f is defined uniquely as well, 
the f is called universal. 

A deformation is called effective if the corresponding Kodaira-Spencer map- 
ping is a monomorphism. Clearly, an effective complete deformation is versal. 

If there is a complete versa1 deformation for a manifold X, then such a 
deformation is called the Kuranishi family of this manifold. The questions of 
existence of such families were studied by Kuranishi [1962]. The simplest and 
most concrete example of this subject is the following (Kodaira-Nirenberg- 
Spencer [1958]). 

Let X be a compact complex manifold, for which H2(X, TX) = 0. Then 
there exists a complete deformation f : X + S of X over some polydisk S, 
for which the Kodaira-Spencer mapping is an isomorphism. 

The role of the cohomology group H2(X,Tx) in this theorem can be 
explained as follows. Consider a non-trivial infinitesimal deformation h E 
Hl(X,Tx) of the manifold X and let us attempt to construct a deforma- 
tion f : X + S of X over the disk S, for which p( $) = h. 

In the notation of Section 5.2. let 
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Fap(s) = fZfl+ sf&y + s2f& + . . . 

The tensor f$ defines a cocycle generating h. In order for F,p to be transition 
functions, it must be true that 

F ap o Fp7 - F,-, = 0. 

Let us expand the left-hand side into a power series with respect to s; the 
coefficient of s2 then defines a 2-cocycle on X with coefficients in TX, which 
gives rise to an element hl E H2(X, TX), called the first obstruction. It can 
be shown that hl depends on h only. The coefficient of s2 can be nullified by 
a choice of f$ if and only if hl = 0. 

Trying to make the coefficients of higher powers of s equal to 0, we will 
obtain second, third, etc, obstructions in H2(X, TX). 

If H2(X, TX) # 0 it is useful consider the deformations of X over arbitrary 
(not necessarily nonsingular) bases. Let S be an analytic space (see Chapter 1, 
Section 2). Suppose that the topological space X = X x S has the structure of 
an analytic space, so that the natural projection f : X + S is a morphism of 
analytic spaces, and the analytic structure on X induces an analytic structure 
on each fiber X, = f P-1 (s), so that X N X,, . Such a morphism f will be called 
a deformation of the manifold X over the base S. Obviously this restricts to 
the old definition when S is nonsingular. 

Kuranishi [1962, 19651 constructed for each complex manifold X such a 
deformation 

f :x+s 

over an analytic set X, X N f-‘(so), that any other deformation 4 : F --+ T, 

+-l (to) N X can be locally obtain from f by a base change rr : T + S, 
r(te) = SO. The differential (drr)t, is then uniquely determined. 

The deformation f is called the versa1 Kuranishi deformation. The ana- 
lytic set S is constructed as follows. First, an analytic map of affine complex 
varieties 

y : H1(X,Tx) + H2(X,Tx) 

is defined, so that S = r-l(O), SO = 0. 
This map is such that y(O) = 0, (dy)o = 0. The second differential of y 

coincides with the map h -+ hl, which associates the first obstruction to an 
infinitesimal deformation h E Hl(X,T,). It is clear that if H2(X,Tx) = 0, 
then S = Hl(X,Tx). It can be shown that if the function dim H’(X,, Txs) is 
constant in some neighborhood of 0 E S, then Kuranishi’s versa1 deformation 
is actually universal. 

5.4. Modnli Space. The problem of classification of spaces (complex, al- 
gebraic, etc) is usually approached as follows. First the set of all the spaces 
under consideration is divided into a countable set of classes, by considering 
a certain number of discrete invariant, such as dimension, rank of various 
homology and cohomology groups, and so on. These discrete invariants are 
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chosen in such a way, that the spaces of the same class are described up to iso- 
morphism by a collection of continuous complex parameters - “moduli.” The 
term “moduli” was introduced by Riemann, who showed that a nonsingular 
complex projective curve of genus g 2 2 can be specified by 3g - 3 complex 
parameters. 

Let X be a complex manifold. The manifolds that can result from X as the 
moduli change have to correspond to different complex structures on the Coo 
manifold X. The complex structures must change continuously with respect 
to the moduli. 

Consider the space m of all complex structures on the manifold X. The 
construction of the moduli space for X corresponds to equipping M with a 
complex structure. It is, of course, preferable that the resulting complex space 
(or manifold) 9JI be well-behaved with respect to the deformations of X. 

Suppose that there exists a smooth family 

of complex manifolds with base m, that for every m E m the preimage f-l(m) 
is isomorphic to the manifold parametrized by m. Furthermore, if 4 : F + S 
is any deformation of X, then there exists a unique morphism 7r : S -+ m, 
such that the family 4 is isomorphic to the induced family. 

If the manifold M has the properties described above, then it is called the 
fine moduli space of the manifold X. 

Unfortunately, such a space exists rather infrequently. For example, it is 
impossible to construct it for curves of a fixed genus g. Indeed, there exist 
examples of locally nontrivial families of curves, all fibers of which are iso- 
morphic. If 4 : F -+ 5’ is such a family, then the corresponding morphism 7r 
must send 5’ into a single point m E W, which contradicts the nontriviality 
of the family 4. 

For this reason, the conditions on M are usually weakened. Namely, the 
usual requirement is that for any deformation 4 : F -+ S of X there exists 
a morphism 7r : S + 337 that for every point s E S the manifold $-l(s) 
is isomorphic to the manifold corresponding to the point n(s) E m. Such a 
manifold 332 is called the coarse mod& space of X. 

The definitions of coarse and fine moduli spaces for an algebraic variety X 
are analogous. In that case 332 is the space of all algebraic structures on a C” 
manifold X, and all of the morphisms involved are algebraic. 

As an example, consider a nonsingular projective curve X of genus g. The 
set m, of complex structures on the smooth manifold X is then the same as 
the space of algebraic structures on this manifold. Mumford [1965] obtained 
the following result: 

For g 2 2 the set ?JJ& can be endowed with the structure of a quasiprojective 
algebraic variety of dimension 3g - 3. This structure makes ?JJ$ into the coarse 
moduli space parametrizing the nonsingular projective curves of genus g. 

It should be noted that Mumford’s result is valid not only over @, but over 
any algebraically closed field of definition. 
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If g = 0, then the space mg is a single point, corresponding to P’. If g = 1, 
then 337, is isomorphic to the affine line A1 (see Section 1.2 of Chapter 3 for 
more details). 

Sometimes it is convenient to study not all complex (or algebraic) structures 
on X, but only those corresponding to some special type. This gives rise to 
different moduli spaces, for example the space of hyperelliptic curves of genus 

9. 
Another common moduli space is the moduli space of polarized algebraic 

varieties. Let (X, w) be a polarized algebraic variety. Then for all n the vari- 
ety (X,w) defines a polarized Hodge structure of weight n, according to the 
formulas (6). The sets of data corresponding to these structures for different 
choices of n are usually chosen to be the collection of discrete invariants, as 
discussed above. As the set M consider the set of such structures (X,G) of 
a polarized algebraic variety on a smooth manifold X, which give the polar- 
ized Hodge structure with the same data as (X, w). Suppose that we have 
succeeded in endowing M with the structure of an algebraic variety. Let 

be any algebraic deformation of (X,w). Then 4 is an algebraic deformation 
of X = 4-l (so). In addition, in each fiber $-r(s) we have a positive integral 
cohomology class of type (1, 1)) invariant with respect to the monodromy 
action (see Chapter 1, sec. 10, and Chapter 4, Section 4), and furthermore, 

(P(So),“so) 2 (X,w). s uppose that fora every such deformation there exists 
a morphism 7r : S + %R, such that for every point s E S the pair (4-l (s),w,) 
corresponds to the point r(s) E M. In this case we say that !7JI is the (coarse) 
moduli space of polarized algebraic varieties corresponding to (X, w). 

In Chapter 3, sec. 3 we discuss the example of constructing a moduli space 
for K3 surfaces. 

5.5. Infinitesimal Torelli theorem. Suppose that a compact Kahler manifold 
X admits a universal Kuranishi family 

f :x-+s 

with a nonsingular base S N H1 (X, TX), X = f-l (SO). Suppose further that 
on each fiber X,, s E S, we have a Kahler form w,, smoothly dependent on s 
(see the end of Section 3.3). Then, by virtue of the simply-connectedness of 
S there is a well-defined holomorphic map 

X = IlAP : S + HG(fp, H). 

Here XP is the mapping defined in Section 3.3. We will call X the period 
mapping of an unpolarized Kuranishi family. 

It is said that an infinitesimal Torelli theorem holds for a Kahler manifold 
X, if X is an isomorphic embedding of some neighborhood of a point se E S 
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into nG(fp,H). This is equivalent to saying that the differential (dX),, is 
injective. 

Suppose that the Kahler form w on the fiber X = f-l (so) defines a positive 
integral class cohomology class. Consider a submanifold S, c S on which w 
has type (l,l). The restriction of the family f to S, is the universal family of 
the polarized algebraic variety (X, w). This means that any other deformation 
4 : F -+ T of a polarized algebraic variety (X, w), (X,w) = #I-’ (see 
Section 5.4) is locally obtained from f by a unique change of base r : T + S,,,, 
7r(to) = so. 

Suppose pi is the period mapping (16) (h ere r = (1)) for the family f over 
S,. If QT is the period mapping for T, then we have a (locally) commutative 
diagram 

We say that for the infinitesimal Torelli theorem holds for a polarized algebraic 
variety (X, w), if @ is a local embedding. This is the same as saying that the 
differentials d@ and dX are injective on (Tsow)so. 

Let us describe a criterion that ensures that the infinitesimal Torelli theo- 
rem holds for a polarized abelian variety (X, w). This criterium was obtained 
by Griffiths [1968]. 

Recall that the tangent space TA(~~) to nG(fp,H) at the point X(ss) is 
isomorphic to $ Hom(FP, H/F’). By the results of item 3 of Theorem 1, it 
follows that X*(T,,) lies in the subspace $ Hom(H+-PyP, H’+P-‘+‘+‘) of the 
space $ Hom(FP, H/F’). The bilinear mapping 

TX x Rp-’ X 

defines a pairing 

H1(X,Tx) x Hn-P>P +, H’+P---l>P+l. 

This pairing defines a homomorphism 

E : H1(X, TX) + @ Hom(Hn-plP, H”-p-l~p+l). 

Suppose H1(X, TX& is the subspace of those elements < E H1(X, TX) for 
which <Aw = 0. It can be observed that if ~1 E H~(X,TX)~, X E pn-Plp, then 
p x X E P+P-‘J’+‘. Thus, there is a homomorphism 

EO : H1(X, Tx)~ + @ Hom(Pn--PlP, P”-P-‘J’+‘). 

Griffiths [1968] proved that 
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(d%, = Eo 0 P, 

where p is the Kodaira-Spencer mapping for the family f over S,. 
Since for effective families the map p is a monomorphism, the infinitesimal 

Torelli theorem follows from the injectivity of ~0. Occasionally it is more 
convenient to check that the infinitesimal Torelli theorem holds by using the 
surjectivity of the map 

n 
n 

djp - 
P,PB~~--n+r'+W-p--l + Hd-l(x,fll @'d),, 

(19) 

dual to ~0. 

5.6. Local, global, and generalized Torelli theorems. Let m be the mod- 
uli space of the polarized algebraic variety (X,w), while D is the classifying 
space of polarized Hodge structures of weight n associated to (X, w). Since, by 
definition, the points of 9JI parametrize the polarized varieties which give rise 
to the Hodge structures parametrized by the points of D, there is a natural 
mapping 

11, : !M + Gz\D. (20) 

Suppose that $ is an extended variation of Hodge structures (see Section 4.2.) 

Definition. The global Torelli theorem holds for the moduli space 332 if II, is 
an embedding of closed points of !?.R into the set of closed points of Gz\D. 

Definition. Let (X,w) be a polarized algebraic variety, while [X] is the 
corresponding point of m. We say that the local Torelli theorem holds for 
(X,w), if the differential d$ of $ defines an inclusion of the tangent space 

T[XI into TQ([xI)- 

Definition. The generalized global (or weak global) Torelli theorem holds 
for the moduli space m if there exists an open Zariski dense subset M’ c M, 
such that $]!JP is an embedding into the set of closed points. 

In other words, a global Torelli theorem must hold for a generic point of 
M. 

Together with problems addressed by Torelli-type theorems, it is also in- 
teresting to consider the questions of surjectivity of the period mapping $. 
Sometimes a simple dimension count allows one to obtain a negative answer 
(for example, for algebraic curves). In general, however, this is a rather subtle 
problem - a solution for K3 surfaces, obtained in Kulikov [1977b] is described 
in Chapter 3, Section 3. 

5.7. Let us note the difference between the infinitesimal and the local Torelli 
theorems. Let 4 : X -+ S be the Kuranishi family of a variety X, while S, c S 
is a smooth submanifold described in Section 5.5. Then the neighborhood U 
of a point se E S is not always locally isomorphic to a neighborhood V c 9Jl 
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of a point [X] corresponding to a polarized variety (X, w) in the moduli space. 
It can happen that V is locally isomorphic to U/r, where r is some group of 
locally analytic automorphisms of U. Examples of this sort are discussed in 
Sections 1.3 and 3.7 of Chapter 3. 

96. Infinitesimal Variation of Hodge Structures 

Definition 6.1. An infinitesimal variation of Hodge structures (ivHs) of 
weight n is a collection of data 

V = {Hz,Hpl*,Q,T,~), 

where {Hz, HP,*, Q} is a polarized Hodge structure of weight n, T is a finite- 
dimensional complex vector space, and 6 is a linear map 

S : 5 Sp : T + 6 Hom(Hpl*, Hp-17q+1, 
p=l p=l 

satisfying the conditions 

1 &4@3~,(52) = &4(~2)4&), 

2 Q(S(W, 77) + Q($J, S(E)v) = 0, ti E HP,*, rl E Hq+l>p-‘. 
The concept of ivHs was introduced in Carlson-Griffiths [1980] and was 

studied in detail in a series of papers by Griffiths and others (Carlson-Green- 
Griffiths-Harris [1983], Cattani-Kaplan [1985], Griffiths [1983a]), and has al- 
ready been found useful in questions having to do with global Torelli problems. 
In Section 4 of Chapter 3 we give a sketch of a weak global Torelli theorem, 
which was obtained by Donagi [1983] for a large class of hypersurfaces, and 
where the concept of ivHs was used to great advantage. 

6.2. The main example of ivHs of concern to us here is obtained as fol- 
lows. Let X + S is a family of polarized algebraic varieties (see Section 3.2). 
Then, to each point SO E 5’ we can associate a polarized Hodge structure 
{Hz,,Hpl*,Q} of weight n on P”(X,,,C), as in Section 1.2. We can also in- 
troduce a complex vector space T = (Ts)~~ of dimension k = dim S. Let 

be the period mapping associated to our family, as in Section 3.2. By Theorem 
1 of Section 3, in a certain neighborhood U c S of the point SO the mapping 
@r can be lifted to a holomorphic map 
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Then the differential (&)* sends T to a horizontal subspace Th,do (see setion 
1.7) of the tangent space Tdo(G) to D at the point u$ = &~(se). There is a 
canonical isomorphism 

Th,d,, E 5 Hom(Hp+r, Hp-l>q+l) 
p=l 

(see Section 1.7), and thus we obtain a linear mapping 

6 = (C&J)* : T + 6 Hom(HP1q, Hp-l,q+l). 
p=l 

To obtain properties (1) and (2) from the definition of ivHs, let I, &, & be 
the images of E, &, & in H1(XsO, TX,,) under the Kodaira-Spencer mapping 

(see Section 5.2). Then S(&)$, for II, E HPJ is the image of the pair (ii,@) 
under the natural pairing 

Hl(X,,,T) x Hq(Xso, Op) + Hq+1(Xso,f2p-1), 

generated by the convolution 

T x RP + Op-‘. 

Property (1) is then apparent. 
To show (2), note that 6(t) can be viewed as differentiation in the coho- 

mology algebra H* (X,, , C) with respect to the wedge product. Then, since 
< E H1(X,o,Txso)w (see Section 5.2), it follows that 6(<)w = 0. There- 
fore the one-parameter group of automorphisms {exp(6(@)} of the algebra 
H* (X,, , Cc) preserves w, and hence leaves the form Q on Hn(Xso , Z) invariant. 
Condition (2) is just a differential way to express this invariance. 

6.3. Consider an arbitrary complex analytic manifold Y, and a locally free 
sheaf 3 of rank m on Y. Fix a natural number lc < m. Define a manifold 
Gy(IC, 3), called the grassmanization of the sheaf 3 on Y. The manifold 
Gy (k, 3) is a fiber bundle 

7~ : Gy(k, 3) + Y, 

each fiber 7r-l (y) of which is isomorphic to the Grassmanian G(lc, 3y). In 
order to introduce a complex structure on Gy (k, 3), consider a neighborhood 
U, c Y of an arbitrary point y E Y, such that the sheaf 3 is trivial in that 
neighborhood. We can treat 3lUy as the sheaf of sections of a trivial bundle 
U, x Cm. In an obvious way we can fix a bijection 

fy : U, x G(lc,m) 21 T-‘(U,). 

The bijections f, are compatible on the intersections of the neighborhoods 
U,, and define a complex structure on Gy (lc, 3). 
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6.4. Let us return again to the setting of Section 6.2. Let Go(k) = 

Go(hTh(D)), h w ere D is the classifying space associated to the fiber X,,, 
where k = dim S, Th (D) is the horizontal sheaf (see Section 1.7) over D. 
Suppose that for a generic point SO of the manifold S the tangent map 
(@v)* is injective. Then, by mapping generic points se E S to the subspace 
(@v)*T c Th,d,,(D) of dimension Ic we obtain an almost everywhere defined 
holomorphic map 

8 : S -+ Go(k). 

An obvious but useful remark is that if the map & is a bijection in a generic 
point, then so is Qir. Indeed, any map of complex manifolds which is locally 
an injection, and for which a generic point of the image has only one preimage 
is an embedding on an open everywhere dense set. 

Let ?33 be the moduli space of a class of algebraic varieties (see Section 5.4), 
$J the map given by equation (20). Then the above can be rephrased into the 
following general principle: 

Suppose that for a generic point m E ?J.R an ivHs associated with X, 
determines X,. Then the genetic global Torelli theorem holds for M. 

6.5. Consider the example of a nonsingular projective curve X of genus g. 
Let T = H’(X, TX) be the tangent space to 332, at the point [Xl. Consider 
the ivHs associated to the point [X] of the moduli space 1M,. Here, the map 

6 : T + Hom(Hll’, HoY1) 

has a dual 
S* : Sym2 HIYo --+ T* = H’(X,K?‘), 

where Sym” is the Ic-th symmetric power of the vector space, and KX is the 
canonical bundle over X. 

Note that H’>O = H”(X, Kx). Therefore, the definition of 6* above is 
equivalent to the natural map 

6* : Sym2 H’(X, Kx) + H”(X, K$). 

Thus, there is a naturally defined subspace 

Ker 6* c Sym2 H’(X, Kx). 

Let Pg-’ be the projectivization [H’(X, Kx)]*, and X’ c PgV1 is the canon- 
ical curve, that is, the image of X under the mapping given by the complete 
linear system ] Kx 1. Then Ker 6* is identified with the set of quadrics on Pg-’ 
passing through the canonical curve X’. However, it is known that a generic 
canonical curve of genus g > 5 is the intersection of quadrics passing through it 
(Griffiths-Harris [1978]). Thus, we have established a generic Torelli theorem 
for curves of genus g 2 5. 
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Chapter 3. 
Torelli Theorems 

In this Chapter we describe the main concrete results currently known 
concerning theorems of Torelli type (see Chapter 2, Section 5). Our goal is to 
demonstrate the main ideas of the proofs of this kind of results, and so we will 
often omit the technical details, referring the reader to the original papers. 

5 1. Algebraic Curves 

1.1. In this section we will briefly outline the main results having to do 
with the period mappings for algebraic curves. A more complete exposition 
can be found in Griffiths-Harris [1978]. 

We will be looking at nonsingular irreducible projective curves over the 
field C. Let X be such a curve. Then the Hodge structure on iY1(X) has the 
form 

P(X) = H1>O @ HOJ, 

where H1)’ is the space of one-dimensional holomorphic differential forms on 
X, while H”ll = H1,O. The sheaf wi of holomorphic l-forms on X is the 
canonical sheaf. The corresponding divisor class - the canonical class - will 
be denoted by Kx. The genus g = g(X) of the curve X is the number 

g = dirn@Hl,’ = dimH’(X,Kx). 

Let D = Cf=, r~(zi), 1zi E Z, zi E X a divisor on X. The degree of the divisor 
is the number 

degD=ni+...+nr,. 

The Riemann-Roth theorem states that 

dimH’(X,D)-dimH’(X,Kx-D)=degD+l-g. 

This implies, in particular, that 

degKx =2g-2. 

The complete linear system ] KX ] for g 2 2 is defined by the map 

i:x-w-‘, 

called the canonical map. If wi , . . . , wg form a basis of holomorphic l-forms on 
X, x a local coordinate in some neighborhood of x0 E X, then the canonical 
mapping is given in that neighborhood explicitly as 

x--) Wl(X) 

( 

wg (xl 
--jy...:x . 

1 
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Since the map i is defined by a complete linear system, then its image i(X), 
the so-called canonical curve, does not lie in any proper linear subspace Pg-l. 
This means that for k < g - 1 a generic set of k points of the canonical curve 
is linearly independent in P - 9 ‘, that is, it does not lie in a linear subspace of 
dimension k - 2. 

Call the curve X hyperelliptic if there exists a double cover X + pl. If the 
curve is hyperelliptic, than its canonical map i is a double cover of i(X). If 
X isnot hyperelliptic, than for g > 2, the canonical map is an embedding (it 
should be noted thatall curves of genus 2 are hyperelliptic). 

1.2. Let %JZ, be a coarse moduli space of curves of genus g 2 2 (see Chapter 
2, Section 5). 

Recall that !7Jl, is a quasiprojective (possibly singular) algebraic variety 
of dimension 3g - 3. The closed points of m, parametrize the isomorphism 
classes of nonsingular projective curves of genus g. Furthermore, for any flat 
algebraic family {X, } , s E S of curves of genus g there exists a morphism 
7r : S --+ !,?J$, such that for any closed point s E S the curve X, belongs to the 
class parametrized by the point 7rs E 332,. 

The existence of such a variety m, was proved by Mumford [1965]. 
Deligne and Mumford [1969] proved the irreducibility of the moduli space 

m,. For g = 1 the coarse moduli space can be described as follows. Any curve 
of genus 1 (an elliptic curve) can be embedded into p2. After an appropriate 
choice of homogeneous coordinates (Z : y : z) in P2 its equation can be written 
in the form 

ZY 2 = 423 - 92x22 - g3-t3. 

The discriminant of the right-hand side 

is then different from 0. The number 

j = j(x) = Ps2g;/A 

is called the j invariant of the elliptic curve X. The curves Xi and X2 are 
isomorphic if and only if j(Xi) = j(X2). 

Conversely, for any je E @ there exists an elliptic curve X, such that 

j(X) = jo. 
Thus, the coarse moduli space fill for elliptic curves is nothing but the affine 

line A1 = @. 
If {X,}, s E S is a flat family of elliptic curves, than the mapping K is 

given by the formula 
n(s) = j(X). 

We already know (see Introduction and Chapter 2, Section 1) that an 
elliptic curve is a quotient of @. modulo the lattice 17 = {Zei + Zez}. We can 
assume that the basis of 17 consists of the numbers 1 and X, ImX > 0. Curves 
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corresponding to the lattices Z + ZXi and iZ + ZXa are isomorphic if and only 

if Xi = a& + b/c& + d; where 
( ) 

E i E SL(2,Z). Thus, L-J&, can be viewed 

as the manifold SL(2,Z)\H, where H = H1 is the complex upper halfplane, 
and the group SL(2, Z) acts on H by fractional linear transformations. It can 
be seen that SL(2,Z)\H N A’. The equivalence of these two descriptions of 
moduli space are established as follows. 

Define the following functions of z E H. 

a(z) = 60 c (mz + q4, 
(m,n)Ez2\{wJ) 

93(z) = 140 c (mz + n)-$ 

(%n)Ez*\{o,ol 

j(z) = 2”32(g2(z))3/((g2(z))3 - 27k/3(z))2). 

The function j(z) is called the modular invariant. For zi, zs E H the equality 
j(zi) = j(zs) holds if and only if zi and z2 are equivalent with respect to the 
SL(2, Z) action on H. If X E H, then the elliptic curve X = e/{Z + ZX} has 
j invariant j(X) which is equal to j(X). 

1.3. Recall (see Chapter 2, Section 1.6) that the classifying space of Hodge 
structures of weight 1 for a nonsingular projective curve g is the Siegel half- 
plane of genus g, denoted by Hg. This is the set of complex square matrices 
Z = X + iY, which are symmetric (“2 = 2, and with positive-definite imag- 
inary part: Y > 0. The complex structure on Hg is induced by the natural 
complex structures on the space of complex g x g matrices. The group Gz (see 
Chapter 2, $1.) is in this case the group Sp(g, Z) of integral 2g x 2g matrices 

AB 
Y= CD. c+> 

such that 

for 

rA”y = A 

The element of the group Ga acts on the matrix 2 E Hg by the formula 

y(Z) = (AZ + B)(CZ + D)-l. 

In Chapter 2, §5 we have defined a natural period mapping on the moduli 
space !JJ&, denoted by 

On the variety reg M, of nonsingular points of 9& the mapping $J~ is an 
extended variation of Hodge structures (see Chapter 2, Section 4). 
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Note that for g = 1, as we just showed, the map ti9 is an isomorphism. In 
general, it will be shown that ti9 restricted to the set of closed points is an 
embedding (Torelli theorem, Section 1.4). 

As in Chapter 2, Section 2, we can associated a Griffiths complex torus J(Z) 
with principal polarization w to each element 2 E Hg. The two polarized 
tori corresponding to two points 21, 2s E Hg are isomorphic if and only if 
21 E Gz(Zz). Thus, the polarized tori are in correspondence to the points of 
the quotient space Gz\H,. 

Let X be a curve of genus g, and let [X] E !DI, be the corresponding point 
in the moduli space. Let 2 = qs ([Xl). Then the polarized torus corresponding 
to the point Z E Hg is called the Jacobian of the curve X and denoted by 
J(X) (see Chapter 2, Sections 1.7 and 2.2). 

Let A be an abelian variety of dimension g with polarization w of the type 

( 
61 . . . 0 

6= 
i . . . ; 
0 . . . 6, 1 

(see Chapter 2, Section 1.7), and let L be the line bundle on A corresponding 
to this polarization. Then, from the general theory of abelian varieties (see 
Mumford [1968]), it follows that L is defined uniquely, up to translation by 
a E A. Also, 

dimH’(X,L) =&...6,. 

In particular, for a principal polarization, this dimension equals 1. Hence, 
the polarization of the Jacobian defines a unique, up to translation, divisor 0 
on J(X), called the theta-divisor. The pair (J(X), 0) will also be called the 
polarized Jacobian of the curve X. 

1.4. Let 71,. . . , ~2~ be a basis of the integral homology of the curve X, 
while We,..., wg is the basis of the holomorphic l-forms. We have a lattice 
17 c Cg with basis er , . . . , ezg, where 

k4 = (s,,wl>...,s,,wg). 

The complex torus J(X) is then identified with Cg /II. Fix a point 20 E X, 
and consider the holomorphic Albanese mapping (see Chapter 2, Section 2) 
p : X -+ J(X) given by the formula 

WY) = (&...>pg). 

Let S(k)X is the k-th symmetric power of the curve X, that is, the quotient 
of the product of k copies of X by the standard action of the permutation 
group on k letters. If (21,. . . , rk) E Sck)X, xi E X, let 
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Pk(a,.‘.,Q) =cL(zl)+...+P(Q). 

Then the following theorem holds (see Griffiths-Harris [1978]): 

Theorem (Abel) Let X1, . . . , Xk, pl, . . ,pk be points on X. Then the divi- 

sor C:=,(G) - (pi) is linearly equivalent to 0 on X if and only if 

pk(zl,... ,zk) = pk(Pl,...,Pk). 

If wk = ,&(S(k)X), then Abel’s theorem implies that the points of wk 
parametrize the equivalence classes of divisors of degree lc on X. Thus the 
fibers of pk are projective spaces. 

Let .zj be the local parameter at the point xj E X, and let nij = T. 

Then for a generic point (xi,. . . ,zk) E S(‘“)X, the differential dpk has, in 
coordinates zr, . . . , zk the form 

Here, TJ(x) is naturally identified with U. If i : X -+ lW1 is the canonical 
mapping (see Section 1.1) , then it follows from the explicit description of i 
that dpk is degenerate if and only if the points i(xi), . . , i(xk) of the canonical 
curve i(x) c IF-’ lie in a (k - 2)-dimensional linear subspace. This is not so 
for a generic set of of k < g points in X. Thus, for lc 5 g the map pLs is 
bijective in a neighborhood of a generic point. In particular, setting k = g - 1 
get a divisor IV,-, c J(X). 

Theorem (Riemann) The divisors 8 and W,-1 on J(X) coincide up to a 
translation by an element of J(X). 

Note that the divisor of the polarization 0 is determined by the Hodge 
structure on X, while the divisor IV,-, is closely related to the geometry of 
X. The remarkable result above gives us the main approach to the proof of 
the Torelli theorem for curves. 

It will be necessary to describe the set of nonsingular points of the divisor 
IV,-, (see Griffiths-Harris [1978]). Let D = Cflir(xi) be a divisor on X, 

w = /+1(x1,. . , x9-i) the corresponding point of Mg-i. Call the divisor D 
regular if dim D = 0, or, in other words, dim H’(X, D) = 1. Then, the point 
w E IV,-, is nonsingular if and only if the divisor D is regular. 

The geometric formulation of the criterion above is as follows. Let i : X + 
IV1 be the canonical mapping. Let X be a non-hyperelliptic curve, g > 2. 
Let us identify the curve X with its image i(X) c P-l. 

The point w E W,-r is nonsingular if and only if there exists a unique 
hyperplane H in PP1, such that D & H n i(X). 

Indeed, by the Riemann-Roth theorem, in that case 

dim IDI = dim ]l(x - DI, 



Periods of Integrals and Hodge Structures 105 

while the elements of the linear system (Kx -DI admit a natural interpretation 
as hyperplanes in IF’g-1 passing through D. 

1.5. We will need another general construction having to do with abelian 
varieties. Let A be an abelian variety of dimension g, V c A a subvariety 
of dimension k < g, and reg(V) the set of regular points of V. By parallel 
translation, let us identify all of the tangent spaces T, at points a E A with the 
tangent space To at the identity element of A. The correspondence between 
a point u E reg(V) and the tangent space (TV) c To to V at ‘u defines a 
holomorphic mapping 

iv :ws(V) + G(kg), 

called the Gauss mapping of the subvariety V. Note that iv is invariant under 
the translations of V by the elements a E A. 

Suppose now that A = J(X), Pg-1 = P(To) 21 G(l,g). Consider the map 
i = i,cx) o (Y, where 0: is the Albanese mapping. Then i is the canonical 
mapping, which follows from an explicit description of the canonical mapping 
and the mapping cr. 

1.6. Torelli theorem. In Chapter 2, Section 5 it was shown that the in- 
finitesimal Torelli theorem fails for curves. More precisely, let f : X + S be 
the universal Kuranishi family of the curve X 21 f-‘(so) over a polydisk S 
and let X : 5’ -+ Hg be the corresponding holomorphic period mapping (see 
Chapter 2, Section 5.5). Then the differential d is degenerate at the point SO in 
case of hyperelliptic curves of genus g > 2. This is related to the observation 
that the neighborhood of the point [X] in the moduli space m, is analytically 
isomorphic to the quotient of S by an action of an involution (Chapter 2, Sec- 
tion 5). This makes it even more remarkable that the global Torelli theorem 
holds for the moduli space 1171, (see Chapter 2, Section 5.6). This theorem was 
first obtained by Torelli [1914]. A modern proof was given by Andreotti [1958]. 
A complete proof of the theorem with a detailed exposition of the necessary 
theory of algebraic curves and their jacobians can be found in GriffithssHarris 
[1978]. 

Theorem 1.1. (Global Torelli Theorem). Let X1 and X2 be two nonsin- 

gular projective curves of genus g. Then if their Jacobians are isomorphic as 

polarized abelian varieties, the curves are isomorphic. 

It is clear that Theorem 1.1 implies injectivity on the set of closed points 
of the period mapping 

$9 : mm, -+ WHg, 

(see Section 1.2). Indeed, the elements of Hg which belong to the same orbit 
of the group Gz correspond to isomorphic Griffiths tori. 
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1.7. We will give a proof of Torelli’s theorem while omitting some technical 
details. 

First, suppose that X is a non-hyperelliptic curve. Let us show that X may 
be reconstructed from the polarized jacobian (J(X), 0). 

By Riemann’s theorem, @ = IV,-, up to a translation by z E J(X). Con- 
sider the translation-invariant Gauss map 

iw : reg(W,-1) t G(g - 1,g) N @‘(TO))*. 

Here, To is the tangent space to J(X) at the identity element, @‘(To)* is the 
dual projective space to the projectivization lP(Ts) cv Pg-‘. In other words, 
@(TO))* is the space of hyperplanes in P(Te). 

From the explicit form of the differential dpk it follows that the point 

w = clg-l(%..., ~~-1) is nonsingular on IV,-, if and only if the points 

i(Xl),.. ., i(z,-i) of the canonical curve C = i(X) c lP-1 generate a unique 
hyperplane (see Section 1.4). This hyperplane is then the image of w under 
the Gauss map iw. Since each hyperplane intersects the canonical curve in a 
finite set of points (generally in deg Kx = 2g - 2 points), the mapping iw is 
finite-to-one, and its degree at a generic point is equal to (z-<T) 

Consider the set B of branch points of the mapping iw, which is the set 
of images of points w E reg(W,-1) where diw is degenerate. Let ?? be the 
closure of the set B in (P(Te))*. 

Lemma. The set B is dual to the canonical cur-we C E IP(To) : 

B=C*. 

Recall that if Y c lF’N is a closed algebraic subvariety, then the dual sub- 
variety Y* c (lPN)* is the set of hyperplanes H E lPN tangent to Y in at least 
one point. By the main theorem of projective duality 

(Y*)* = Y. 

Hence, the lemma implies that 

c = (77)‘. 

Since B is determined by the pair (J(X), O), Torelli’s theorem follows. 
Let us give a sketch of the proof of the lemma. Let H E (P-l)* be a 

hyperplane. It intersects C in 2g - 2 points, counting multiplicity. Consider 
the various divisors of degree g - 1 corresponding to sums of points in this 
set. If all of these divisors determine points in reg(W,-1) then we say that the 
hyperplane H is in general position. Let V c (llQ-‘)* be the set of hyperplanes 
which are not in general position. 

Denote by B1 the set of hyperplanes H c (Pg-l)*\V, which intersect the 
canonical curve transversely everywhere, except at one point, where the in- 
tersection has multiplicity 2. Then 
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c* n ((P-‘)*\v) c I&, 
where Bi is the closure of Bi in (P-l)*. 

Let H E Bi, and let I be the double point of the intersection of H 
with C = i(X). Let ~2,. . . , zg-i be points of X, such that I E H, and 
in the set xi,... ) z~-~ all of the points are distinct. Let ~1,. . , q-1 be lo- 
cal coordinates on X in the neighborhood of the points ~1,. , ~~-1. Then 
Zl,..., zg-1 can be chosen as local coordinates in a neighborhood of the point 
z = (Xl,. . . ) 2Jg-l) E s (g-l)X and also as local coordinates on W,-i in the 
neighborhood of the point w = ~~-1 (X). Note that the point w is nonsingular, 
since H $ V. Then, 

iw(w) = H, 

and since H is tangent to i(X) at the point i(zi), evidently 

-g&(w) = 0. 
1 

Thus, diw is degenerate at the point w and H E B. 
To summarize, so far we have shown that B1 c B, and so 

C’ l-l ((iT@)‘\V) c B. 

On the other hand, let H be any hyperplane in P-l intersecting C in 2g - 2 
distinct points. Let ~1,. . . , zg-i E X be some set of distinct points, for 
which i(zj) E H and let ~1,. . . ,zg-i be the local coordinates in the neigh- 
borhoods of the points Xi, . . , ~~-1 respectively. Since the intersection of 
H with C is transverse at I, . . . , i(zg-i), it follows that ~1,. . , zg-i are 
holomorphic functions on (Pg-‘)* in some neighborhood of H. Henceforth, 
ifw = pg-r(2i,..., ~~-1) is nonsingular, then the map i, has an inverse in 
a neighborhood of w and so the differential di, is nondegenerate. We have 
shown that 

BcC’. 

The irreducibility of C’ now finishes the proof of the lemma, and of Torelli’s 
theorem for non-hyperelliptic curves. If the curve X is hyperelliptic, almost 
the same argument goes through. In this case, the canonical map i : X -+ F-l 
is a double cover of a nonsingular rational canonical curve C = i(X) branched 
in 2g + 2 points. The set B in this case is precisely the set of hyperplanes H C 

Pg-’ which are either tangent to the canonical curve C or pass through one 
of the branch points of the canonical map i. Thus, in this case, B C (P-l)* 
is the union of the set C* with the set of hyperplanes of the form 

p* = {H E (Pg-‘)*(p E H}, 

where p is a branch point of the canonical mapping. 
It follows that in this case we can reconstruct the curve C and 2g + 2 

branch points on it. But there is only one hyperelliptic curve which covers 
a fixed rational curve with fixed branch points. This finishes the proof of 
Theorem 1.1. 
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52. The Cubic Threefold 

2.1. In this section we will be studying the nonsingular complex hypersur- 
face X of degree 3 in four-dimensional projective space P4 -the cubic threefold. 

The study of cubic hypersurface of projective space has always been very in- 
teresting for a large circle of mathematicians, and has yet to be completed. 
One of the key questions posed in this research is the question of the ratio- 
nality of these hypersurfaces. Let us recall that a variety is called rational, if 
it is birationally isomorphic to the projective space of the same dimension. 
The cubic curve in p2 (an elliptic curve) is the first example of a non-rational 
algebraic curve. The cubic hypersurface in P3 - the cubic surface (see Section 
2.3) turns out to be a rational variety. It has long been known that the cubic 
threefold is unirational, that is, there is a rational covering P3 -+ X. The 
question of rationality had long remained open, before being resolved nega- 
tively by Clemens and Griffiths (see Clemens-Griffiths [1972], see also Chater 
2, Section 2.6). In addition to the previously discovered unirationality result 
this gave one of the presently known negative solutions to the Liiroth problem 
in dimension 3. The question of the rationality of a generic cubic fourfold (see 
Section 4.9) remains open at the time of this writing (1988). 

In the current section we will summarize the basic ideas of the proof of the 
global Torelli theorem for cubits. This theorem was obtained by Clemens and 
Griffiths [1972] and by Tyurin [1971]. 

2.2. Let X be a cubic threefold. The Hodge structure of weight 3 on H3 (X) 
has the form (see Chapter 4, Section 5): 

H3(X) = H2J + fc2, 

where dimH2,1 = h2T1 = 5. Thus, for the cubic threefold, the polarized Grif- 
fiths torus coincides with the Weil torus (see Chapter 2, $2) and is a five- 
dimensional principally polarized abelian variety ( J3 (X), w) (see Chapter 2, 
Section 1.7). Since w is a principal polarization, it defines a unique (up to 
translation) divisor 0 on J3(X) ( see Section 1.3) - the divisor of the polar- 

ization. The pair (J3(X), 0) will also be called the polarized middle Jacobian 

of X. The main result described in this section is the following. 

Theorem 2.1. (The global Torelli theorem). The nonsingular cubic threefold 

X is uniquely determined by its polarized middle Jacobian (J(X), 0). 

A complete proof of theorem 2.1 can be found in Tyurin [1971] or in 
Clemens-Griffiths [1972]. 

The proof of theorem 2.1 is in large part the same as the proof of the 
Torelli theorem for curves (theorem 1.1). First, consider the Gauss mapping 
(see Section 1.5): 

i0 : reg(O) -+ @(To))* = (P”)* 

on the abelian variety J = J”(X). Let B be the set of branch points of ie on 
(p4)*, that is, the set consisting of the images of the points z E reg(O) where 



Periods of Integrals and Hodge Structures 109 

the differential &Q is degenerate. Denote by B the closure of B in (lP’4)*. The 
projective space (p4)* is the set of hyperplanes in P4. It turns out that it can 
be assumed that the cubic X is embedded into p4 in such a way that the 
following proposition holds. 

Proposition 2.2. The variety X* C (IP4)*, dual to X, coincides with B (see 

Section 1.7). 

Since the pair (J(X), 0) d e t ermines B up to projective isomorphism, The- 
orem 2.1 follows from Proposition 2.2, since 

x N (By 

The remainder of this section is devoted to the description of the main 
concepts and results leading to Proposition 2.2. These results use the rich 
geometry of the cubic threefold. 

2.3. First, let us recall some basic properties of cubic hypersurfaces in p3 
- cubic surfaces. A detailed exposition of the theory of these surfaces can be 
found in Griffith+Harris [1978]. 

A nonsingular cubic surface is a rational algebraic surface. It can be ob- 
tained from the projective plane Y2 by blowing up (see Chapter 1, Section 1) 
along six points not all contained in a conic. Such a surface contains exactly 
27 projective lines. These consist of, firstly, the six curves obtained by the 
blowing up along the six points, secondly the 15 proper transforms of the 
lines joining pairs of the blown-up points, and finally the 6 proper transforms 
of the six conic sections passing through quintuples of the blown-up points. 

The description above shows that any line 1 on a nonsingular cubic surface 
intersects exactly 10 others, and its self-intersection index is 

(1,Z) = -1. 

2.4. The lines in p4 are in one-to-one correspondence with the points of 
the Grassmanian G(2,5). Consider the set F(X) of lines 1 lying on the cubic 
three-fold X c p4. We can write 4 local equations defining F(X) E G(2,5). 
Hence, F(X) is a subvariety of the Grassmanian, and dimF(X) > 2. Consider 
a nonsingular hyperplane section S c X, containing the line 1. Then S is a 
cubic surface, and (Z,l)s = -1. 

Let Xi c X2 be a pair of complex manifolds, and let Txl and TX, be 
the corresponding tangent spaces. Then TX, is naturally included into the 
restriction Tx2(X1 of Txz. The quotient bundle Tx,\X1/Txl is called the 
normal bundle of Xi in X2 and is denoted by Nx”,l , or Nx,/x,. The sheaf of 
sections of the normal bundles is called the normal sheaf. 

Recall that if X1 is a divisor in an algebraic variety X2 then the sheaf of 
sections of NGi . is isomorphic to the restriction to Xi of the sheaf 0x,(Xi) 
(see Griffiths-Harris [1978]). 
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Now, if Nh and Nk are the normal sheaves of the line 1 in S and in X 
respectively, while Ns is the normal sheaf of S in X, then 

N& = CJ(-I), N; = us(s) = ~p(l)ls. 

Hence, there is an exact sequence 

0 + 01(-1) -+ Ni + Q(1) t 0 

of sheaves on 1 N p’. Consequently, 

H1(l, Ni) = 0, dimH’(1, Ni) = 2. 

Deformation theory now implies that F = F(X) is a non-singular surface, 
called the Fano surface of the cubic X. The geometry of this surface plays an 
important role in the study of the cubic threefold. 

We will need some properties of the Fano surface of a cubic threefold. Most 
of these properties were discovered by Fano [1904], while a modern exposition 
can be found in Altman-Kleiman [1977]. 

2.5. Let V z C5 be the constant fiber bundle over the Grassmanian G = 
G(2,5). Define the tautological subbundle r c V as follows: the fiber of r 
above a point in the Grassmanian is exactly the two-dimensional subspace 
parametrized by that point. Looking at the dual bundles, we get an exact 
sequence 

v* -+ I-* + 0 

of bundles over G. The bundle r* is called the antitautological bundle. The 
images of five linearly independent sections of the constant bundle V* are a 
basis of the space HO(G, 7’). The natural map 

H”(G, T*) A H’(Gq*) + H”(G, ANT*) 

is an isomorphism. The vector bundle ANT* defines a Plucker embedding i of 
the Grassmanian into pg. Let us identify G with its image in IID’. 

Recall that a morphism of a variety Y into the Grassmanian G(m,n) is 
equivalent to an m-dimensional vector bundle E over Y together with n global 
sections of E generating E over each point. The subspace L C H”(Y, E) 
generated by these global sections defines a morphism of Y into G(m,n) 
uniquely (up to automorphisms of the Grassmanian). 

The standard embedding 

X : F c) G(2,5) 

is defined by the bundle r*]~ and by the images of five linearly independent 
global sections of r* under the restriction map 

r : H’(G,r*) + H’(F,T*(~). 
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It turns out that r is an isomorphism. 
Let R be the bundle associated with the sheaf of holomorphic l-forms on 

F. The following proposition (see Altman-Kleiman [1977]) is quite important: 

Proposition 2.3. The sheaves 0 and r*[~ are isomorphic. 

The above proposition implies that 

dim H”(F, fi?) = 5; 

KF = /-i27*1~; 

dimH’(F, KF) = 10. 

Furthermore, the standard embedding X can be defined by the bundle R and 
fiveof its linearly independent global sections, to wit a basis ~1,. . . , wg of the 
space of holomorphic l-forms on F. 

2.6. Fix a point x0 in k and consider the Albanese mapping a : F + Alb(F) 
(see Section 2 of Chapter 3). If WI,. . . , ws form a basis of the space of global 
holomorphic l-forms on F while yi, . . . , yrs are a basis of H1 (F, Z), then 

where II is the lattice in c generated by 

&= (liw17...7S,,W5), i=l,...,lO. 

Here Alb(F) is identified with c5 /n, where the tangent space TO to Alb(F) at 
the point (0,. . . ,O) mod 17 is naturally identified with C5. Let xi, 22 be local 
coordinates in a neighborhood of a point x E F, wj = aidxl + /3idxz. Consider 
the Gauss mapping (see Section 1.9) iA on the subvariety a(F) C Alb(F). 
Then iA o a(x) is a two-dimensional subspace L c d generated by the vectors 
(ai,. . , CQ) and (pi,. . . , p5). Thus the map 

iA o a : F(X) -+ G(2,5) 

coincides with the map induced by the two-dimensional vector bundle R and 
its global sections ~1,. . . , ws. By virtue of Proposition 2.3, iA o a coincides 
with the standard inclusion X up to an automorphism of G(2,5). 

2.7. Let 0 be the Abel-Jacobi mapping (see Section 2, Chapter 2) for one- 
dimensional algebraic cycles on X algebraically equivalent to 0. Fixing a line 
lo c X and setting @s(Z) = S(Z - lo) get the holomorphic map 

00 : F(X) -+ J3(X), 

which we will call the Abel-Jacobi mapping for F. 
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From the universality of the Albanese mapping it follows that there ex- 
ists a unique morphism b of abelian varieties, such that the diagram below 
commutes. 

F(X) 
00 

* J3W 

Alb(F) 

Consider the Gauss mapping 

iF : reg(0o(F)) -+ G(2,5). 

Here G(2,5) is the set of two-dimensional subspaces in the tangent space 
(TJ)~ to J at 0. If we can show that b is an isogeny, that is to say, the tangent 
mapping db is an isomorphism, it will follow that iA o a and in o 80 give the 
same embedding of F into G up to automorphism of G. Using previous results, 
we obtain 

Proposition 2.4. The map 

iFo&:F+G 

coincides with the standard embedding of the Fano surface F into G. 

2.8. Let us sketch the proof of the fact that b is an isogeny. Consider the 
variety P(X) c F(X) x p4 consisting of pairs (z,Z) for which z E 1. Then 
P(X) = PF(r*) is the projectivization of the antitautological bundle on F. 

The projections onto F(X) and onto P4 give maps 

~1 : P(X) -+ F(X), ~2 : P(X) + X. 

One can check that 7rz is a finite morphism of degree 6. 
To show that b is an isogeny, it is enough to show that the map 

b, : Hi(Alb(F),Z) + H1(J,Z) 

is injective. The module Hi (Alb(F), Z) can be naturally identified with the 
lattice n c (c5, and hence with Hl(F(X),Z). Fix this identification. Anal- 
ogously, identify Hi (J, Z) with Hs(X, Z). We will thus think of b, as a map 
from Hl(F(X),Z) to H3(X,Z). Th e map b, is not hard to describe. Let 
y E Hl(F,Z), ;U the cycle representing y, rl’(;U) the complete preimage of 
the cycle ;V in P(X). Then b,(y) is the homology class corresponding to the 
cycle 7rz (~1~ (y)). Th e map b, is called the cylindrical mapping. 

Let 1 c X be a line. Consider the set Fl c F(X), consisting of the lines 
11 C X for which 1 n 11 # 8, 1 # Ii. It can be shown that for a generic line 
1 c X, the set Fl is a smooth curve on the surface F. Let X be the blow up of 
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X along the curve 1. Then T : i% + P2 is a conic bundle, that is, the preimage 
of each point is a curve of degree 2. Consider the curve C c P2 consisting of 
the points whose preimages under K are degenerate. This curve is called the 
discriminant curve of the bundle n. Let z E C. Then, 7r-l (z) = 11 U 12, where 
11, 12 are lines on X such that Ii n 12 # 8 and lj n 1 # 8, j = 1,2. This defines 
a map 

which for a generic line 1 is an unbranched covering of degree 2. The natural 
involution i : FL -+ Fl corresponding to this covering interchanges the lines 11 
and 12 in each fiber. The degree of C c p2 is 5. Indeed, consider the generic 
line m E p2. Let H c P4 be the hyperplane generated by the lines m and 
1, S = H% be the cubic surface. The lines on X intersecting 1 are precisely 
the preimages of the intersections of m and C. Since on a non-singular cubic 
surface each line intersects precisely 10 others, while (Y is a two-fold covering, 
it follows that degC = 5. It is easy to compute that g(C) = 6, g(Fi) = 11. 

The divisor Fi c F is ample. Indeed, if Ii, 12,/s E X are three lines on the 
same 2-plane in P4 then FL, + Fl, + F13 is a very ample divisor on F by virtue 
of being the restriction to F of the very ample divisor on G(2,5) generated by 
the lines in P4 having non-empty intersection with a fixed 2-plane. Therefore, 
by the Lefschetz theorem, the natural map 

je : Hl(4,z) -+ Hl(F,Z) 

induced by the inclusion j : Fl it F is surjective (see Chapter 1, Section 
9). Denote the map b, o j, by @. Let yi, 7s E HI (FL, Z). A straightforward 
computation produces the following equation for the intersection indices of 
cycles. 

Lemma 2.5. 

@(n) . @hz)).f = -(n . Y2)F, + (i*y1 yc!)F[. 

Here (0. l )~, (0. 0)~~ are intersection indices of three-dimensional cycles 

on X and one-dimensional cycles on Fi respectively, while i, is the involution 
on HI (FL, Z) generated by i. 

Let HI (Fl, 74) = H’ @ H” be the decomposition of the Z-module HI (FL, ;Z) 
into the direct sum of invariant (H’) and anti-invariant (H”) homologies, with 
respect to the action of i,. Then H’ N Hl(C, Z), rankz H’ = 2g(C) = 12, 
rank H” = 22 - 12 = 10. Therefore, rankz(Im @) = 10. Since the dimensions 
of Alb(F) and J3(X) coincide, we get the injectivity of the cylindrical map 
b,, which shows that b is an isogeny. 

2.9. Let 11 and 22 be lines on X. Setting 81,-i (11, Zs) = 0(1i - 12) we obtain 
a holomorphic map 

011,12 : F(X) x F(X) + J”(X). 
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The main fact used in the proof of theorem 2.1 is the following analogue of 
Riemann’s theorem (see Section 1). 

Theorem 2.6. The image of the map &,-I coincides, up to shift, with the 

polarization divisor 0. 

The proof of this theorem will be omitted, and can be found in Clemens- 
Griffiths [1972] or Tyurin [1987]. 

Let the point CO be @~i,-~)(Zi, 1s). Suppose that (Ii, /2) E F(X) x F(X), 
while Ii f? 12 = 0. Let us determine i@(C). 

The tangent space T to F x F at the point (1i,1s) is a direct sum Tl @ Tz, 

where Ti is the tangent space to the surface F at the point li. Evidently, ia is 
a hyperplane of P4 = P((Tl)o) g enerated by the images of Tl and Tz, which 
are the lines i~(00(Zl)) and iF(00(/2)). P ro osi ion 2.4 implies that i@(C) is p ‘t’ 
a hyperplane (1 i 2 in p4 generated by 11 and 1s. Assume that 11 n 1s = p E ,1 ) 
X, and neither 11 nor 1s is a double line on X. Then, it follows from local 
considerations (see Tyurin [1971], Artin-Mumford [1972]) that the map ie 
can be extended to the point @(i,-i)(Zi, Zs) by continuity. The image is the 
hyperplane tangent to the cubic X at the point p. 

2.10. Now let’s prove (omitting some details) Proposition 2.2, which implies 
the Torelli theorem for the cubic threefold. 

Proposition 2.7. The branching divisor B of the map ie coincides with the 

subvariety X’ E (P4)* of tangent hyperplanes to the cubic X. 

The variety X* is irreducible, and thus, by Theorem 2.6, it is enough to 
show that X* is the branching divisor of the map X = ie o @(i,-i). Let 11 and 
1s be skew lines on the cubic, and let H = (Ii, 12) be the hyperplane spanned 
by them. Let Y = Xfi be the section of X by H. Then Y is a cubic surface, 
and if Y is non-singular, then by Section 2.2 there are 27 lines on Y, forming a 
standard configuration. Thus, the point X((11,Zz)) has 2716 preimages under 
X. These preimages are pairs (11, /a) disjoint from lines on Y. If Y is a singular 
surface, then Y can be obtained by blowing up six points on IID’ all lying on one 
quadric, with the subsequent contraction of the quadric (see Griffiths-Harris 
[1978]). It is easy to see that such a surface has 21 x 20 ordered pairs of lines, 
which is fewer than on the nonsingular surface. Therefore, H E (P4)* belongs 
to the branch divisor of X if and only if Y is a singular surface, hence H is 
tangent to X. 
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53. K3 Surfaces and Elliptic Pencils 

3.1. Most of this section is devoted to the exposition of the main ideas of 
the classical work of Piatetsky-Shapiro-Shafarevich [1971], where they obtain 
a global Torelli theorem of K3 surfaces. In the last part of this section we 
give a sketch of the proof of the generic Torelli theorem for elliptic pencils, as 
obtained by K. Chakiris. 

A detailed exposition of the theory of K3 surfaces can be found in Shafare- 
vich et al [1965]. The same paper contains the proof of the holomorphicity 
of the period mapping for K3 surfaces and an infinitesimal Torelli theorem 
for K3 surfaces. These results are due to G. I. Tyurina. They were substan- 
tially used by Shafarevich et al [1965] to obtain a global Torelli theorem 
for marked K3 surfaces. In actuality, much more is obtained by Piatetsky- 
Shapiro-Shafarevich [1971] - they give a complete description of the auto- 
morphisms of K3 surfaces. This description can be expressed in terms of lin- 
ear algebra. The work of Piatetsky-Shapiro-Shafarevich [1971] gave rise to a 
substantial body of work on K3 surfaces and Enriques surfaces. The result 
described in Section 3.7 also owes its existence to the synthesis of the ideas 
of Piatetsky-Shapiro-Shafarevich [1971] with the results (Kulikov [1977a]) of 
one of the authors of the present survey concerning the modification of de- 
generations. Note that the paper Kulikov [1977b] finished the study of the 
period mapping for K3 surfaces, by showing it to be surjective (see Chapter 
5, Section 6). Let us briefly describe the main properties of K3 surfaces, while 
referring to Shafarevich et al [1965] for details. 

A K3 surface is a compact complex manifold, of complex dimension two, 
for which H1(X, Z) = 0, and for which there is a unique nonvanishing holo- 
morphic 2-form. 

In this section, we shall treat projective (hence algebraic) K3 surfaces. The 
canonical class Kx of such a surface X is trivial, and the geometric genus 

p, = dim H’(X, 0;) = h2,’ 

equals 1. From the simple connectivity it follows that 

hl” = dimH’(X, 0;) = 0. 

Noether’s formula (see Griffiths-Harris [1978]) says that 

KS + x = 12(1+ hl>’ + h2,‘). 

It follows that the Euler characteristic x of such a surface equals 24. Conse- 
quently, the Hodge structure of weight 2 on H2(X) has the form 

H2(X) = H210 + H1ll + H0,2, 

where dim H2>’ = dim Ho,2 = 1, dim H1>’ = 20. 
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The group H2(X, Z) is torsion-free, and hence is isomorphic to Z22. From 
the Hodge-Riemann bilinear relations (see Chapter 2, Section 1) it follows 
that the intersection form (, ) extended to a bilinear form on 

H2(X,R) =H2(X,iz)@‘ZR 

has signature (3,19). 
The Riemann-Roth formula for a divisor D on X has the form 

dim H’(X, D) + d imH2(X, -D) = D2/2 + 2 + dim H1(X, D). 

For an effective divisor D this formula simplifies to 

dim H’(X, D) = D2/2 + 2. 

For the arithmetic genus p,(C) of a curve C c X we have 

p,(C) = c2/2 + 1. 

This implies that C2 2 -2, with equality exactly for nonsingular algebraic 
curves C C X. 

The first example of a K3 surface is a nonsingular hypersurface of degree 4 
in P3 (a quartic surface). Let us give a crude count of the number of moduli 
(see Chapter 2, Section 5.4) of such hypersurfaces. The dimension of the space 
of homogeneous forms on four symbols of degree 4 is 35. The dimension of the 
group GL(2, c) acting on that space is 16. The orbits of the action correspond 
to isomorphic quartic surfaces. Thus, the dimension of the moduli space ought 
to be 35 - 16 = 19. We will see that this is true in general (see Section 3.5). 

To understand the results of this section it is important to keep the follow- 
ing example in mind. Let A be a two-dimensional abelian variety, and let T 
be the involution on A, defined in terms of the group structure on A as 

T(X) = --5. 

The involution T has exactly 16 fixed points ~ these are points of order 2 and 
the identity. Let g be the group { 1,~). Th e complex analytic space A/g is a 
normal algebraic variety with 16 simple singularities (see Chapter 1, Section 
6.3). Resolving each of these singularities by a a-process, we get a nonsingular 
algebraic surface A. It can be shown that A is a K3 surface. This is the so-called 
Kummer surface. There are 16 nonsingular rational curves on the Kummer 
surface, attached instead of the singularities of A/g. 

If the initial abelian variety A contains an elliptic curve (or, equivalently, 
admits a morphism onto an elliptic curve), then the corresponding surface A 
is called a special Kummer surface. 

3.2. In this section we will verify the infinitesimal Torelli theorem for K3 
surfaces. This result, together with the holomorphicity of the period mapping 
for K3 surfaces was first obtained by G. N. Tyurina in Shafarevich et al [1965]. 
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Let X be an arbitrary compact complex manifold of dimension n, such that 
the canonical bundle Kx = Qi is trivial. Consider a holomorphic form Q, of 
type (n, 0) on X. We can choose local coordinates xi,. . . , x, in a neighborhood 
U of any point of X, so that 

q. = @dxl A . . . A dx,, 

where @ is a non-vanishing holomorphic function on U. Then the mapping 

2Aidxl A.. . A d;i A.. . A dx, + f k(-l)“+“Ai& 
i=l i=l 

defines an isomorphism between the bundles 6’Q-’ and TX on X. The inverse 
isomorphism &,O : TX + 6’g-l is induced by the convolution of vector fields 
with the form ~0. The bundle isomorphism $+,0 induces an isomorphism 

cPk : H”(X,Tx) + H”(X, f2;-‘) 

on cohomology. 
Now, let X be a K3 surface. Then H2,‘(X) = {Qo}, where 70 is the unique 

holomorphic (2,0) form on X. From the above discussion it follows that the 
convolution TX x ~0 + 0; defines a non-degenerate pairing 

H’(X, TX) x H2yo + H’)l. 

Let X be an algebraic surface and let L be a positive line bundle on X 
with w = cl (L). Since w is the class corresponding to an algebraic cycle on X, 
and is thus a class of type (1, l), it follows that 70 A w = 0 and H2,’ = P2,‘. 
Hence, it follows that the pairing 

H1(X, T,), x P2,’ + P’,’ 

is non-degenerate. 
We will use Griffiths’ criterion (Chapter 2, Section 5.4) to see that the 

infinitesimal Torelli theorem holds for K3 surfaces. 
In particular, let X 3 S be a family of polarized K3 surfaces over the 

base S. This means that for each point s E S the variety X, = $-l(s) is a 
K3 surface with a polarization w,, so that ra(ws) = w, where w is a fixed 
polarization on X = X,, (see the notation of Chapter 2, Section 3). Suppose 
that the family is effectively parametrized, that is, for each s E S the Kodaira- 
Spencer mapping 

P: V’s), + ffl(Xs,TxJ 

is injective (see Chapter 2, Section 5). Let D be the classifying space of Hodge 
structures of weight 2, associated with the pair (X, w), as in Chapter 2, Section 
1. This defines a period mapping 
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The choice of a representative de E D of the image de of the point so under 
the period mapping defines a local holomorphic lifting 

of the map @ The infinitesimal Torelli theorem guarantees that @x0 is a local 
embedding in the Zariski topology. 

3.3. In this section we will describe the classifying space of Hodge structures 
of weight 2 associated with the polarized K3 surface (X,w) (see Chapter 2, 
Section 1). 

First, let us give some useful definitions. An Euclidean lattice is a free Z 
module of finite rank, with a non-degenerate pairing (, ) with values in Z. The 
Euclidean lattice E is called vnimodular if the Gram determinant is equal to 
fl. The lattice is called even if (x:,x) = 0 mod 2 for all 5 E E. 

Consider the Z-module 

Hx = H2(X, Z) cv zz2. 

The non-degenerate symmetric pairing (, ) defined by the intersection of cycles 
on X defines a Euclidean lattice structure on Hx. This lattice is even and 
unimodular. In addition, the signature of the form (, ) on Hx C% IR is (3,19). 
As shown in Serre [1970], there exists a unique (up to isomorphism) Euclidean 
lattice with these properties. Denote this lattice by L. 

Let 4 : Hx + L be an isomorphism of Euclidean lattices, and let 1 be the 
image of the homology class c E Hx Poincare-dual to the polarization class 
w. The classifying space which we are attempting to construct is uniquely 
determined by the vector 1 E L. Hence we will denote it (the classifying 
space) by D(Z). 

Having fixed the isomorphism $, we will not distinguish the lattices Hx 
and L. Consider the dual lattice L* = Hom(L, Z). Since the pairing (,) on L is 
unimodular, there is an isomorphism v : L -+ L*, such that v(r)(s) = (T, s) for 
any T, s E L. This isomorphism allows us to transfer the bilinear form from 
L to L*. Let H* c L’ be the free submodule generated by those elements 
f E L’ for which f(Z) = 0. 

The module L* is uniquely identified with H2(X, Z), and the primitive 
cohomology classes correspond to the elements of the module H*. Let Q be 
the restriction of the inner product on L* to H*. The pair (H*, Q) and the 
numbers h2,0 = h”12 = 1, and h ‘J = 19 define a classifying space of Hodge 
structures of weight 2. 

Note that the Hodge structures in question are uniquely reconstructible 
from the subspace H 210 = {@we} C H* @@. The conditions (2) of Chapter 2 
are equivalent to saying that 

Q(wo,wo) = 0, Q(wo,Qo) > 0. (1) 

Thus, D(Z) is an open subset of a quadric hypersurface in P2’. It can be 
shown that D(1) is a disjoint union of two isomorphic complex manifolds. 
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Each of these manifolds is a symmetric domain in @lg. The group Gi of IR- 
linear transformations L’ @JR preserving the inner product and the hyperplane 
H* @ lR acts transitively on D(Z). 

3.4. We will say that a marked K3 surface is an ordered triple (X, 4, <), 
where X is a K3 surface, 4 : HX + L is an isomorphism of Euclidean lattices, 
and < E HX is a class representing a very ample divisor on X with C++(C) = 1. 

An isomorphism of marked surfaces (X, q$<) and (X’, qY, <‘) is an isomor- 
phism f : X -+ X’ of the underlying surfaces which sends C/I to 4’ and < to 

C’. 
To each marked surface X = (X, 4, I) we can associate a well-defined point 

CD(X) E D(1) as follows. Let r]e be a holomorphic differential of type (2,0) on 
X. The map 

Y+ 770 
s Y 

is an element of ws E L” @ @ = H-omZ(Hx, C) satisfying the conditions (1) 
and such that-us(Z) = 0. Then G(X) E D(Z) is a subspace {@we} c H’ 18 @. 
The point Q(X) will be called the period of the marked surface X. 

The aim of this section is to sketch the proof of the following proposition: 

Global Torelli theorem for K3 surfaces. A marked K3 surface is determined 
by its periods. 

3.5 An important role in the proof of the global Torelli theorem is played 
by the existence of a “good” moduli space for marked K3 surfaces. We will 
not give the details of the construction of such a moduli space (see Piatetsky- 
Shapiro-Shafarevich [1971]), but we will give the main steps and some com- 
ments. 

A family of marked K3 surfaces is a smooth family of projective varieties 

f :x+s 

over a complex-analytic base S, such that each fiber X, = f-‘(s) has the 
structure 

of a marked K3 surface, and such that 4s and 5‘s vary smoothly with s as 
follows. For any si and s2 in the same connected component of S, and any 
path y joining them, let p be the monodromy transformation from X,, to X,, 
induced by y. Then 

PU, : Hxsl + Hx,, 

is the induced isomorphism on homology, and the condition that $s and (; 
vary smoothly is simply the condition that (XsI,4s1, &) be isomorphic to 

(Xs, = 4 O A> PL,VCN as marked K3 surfaces. 
In particular, by definition, he action of each element of the monodromy 

group on the homology of the fiber X, is generated by some automorphism 
of the K3 surface X,. 
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Fix an integer n 2 3. The main result consists of the existence of a family 
of marked K3 surfaces 

f:X+!JX,, 

satisfying the following conditions: 
(1) The family f is effectively parametrized, that is, the Kodaira-Spencer 

mapping (see Chapter 2, Section 5) is injective at each point m E !lX,. 
(2) Let X = (X,4,<) b e a marked K3 surface, and let C c X be a very 

ample divisor defining C, and such that the complete linear system ICI defines 
an embedding X + lY‘. Then there exists a unique element m E 9X,, such 
that the fiber X, = $-l(m) is isomorphic to X as a marked K3 surface. 

(3) The dimension of 9J& is 19. 
The variety E& will be called the mod& space of marked K3 surfaces in 

JP. 
In Section 3.4 we have defined the period Q(X) E D(Z) of a marked K3 sur- 

face X. By associating the periods to the fibers of f, we obtain a holomorphic 
(see Chapter 2, Section 3) period mapping 

@ : !n, + D(l). 

The infinitesimal Torelli theorem, together with property (1) imply that @ is 
a local embedding. 

Comparing the dimensions of the moduli space 311, and D(Z), we get that 

Proposition 3.1. The period mapping @ of the mod& space !3&, of marked 
KS’ surfaces into the classifying space of polarized Hodge structures D(Z) is a 
local isomorphism. 

Let us make some comments regarding the construction of the space f)32,. 
The main technical problem is to prove that the set of K3 surfaces in p” 
embedded into 1ID” by a complete linear system of some very ample divisor is 
parametrized by some nonsingular algebraic variety M. Given that, let S c M 
be a subset parametrizing surfaces X, admitting the structure of a marked 
K3 surfaces X, = (X,, 4, <) where < is the class of a hyperplane section in lPn. 
It can be shown that S is a connected component of M. Hence, we get some 
projective family (see Chapter 2, Section 3) 

of K3 surfaces. The fiber of this family over a point s E S will be denoted by 
XS. 

Let Xi = (Xi, $1, (‘I), X2 = (X2, $2, &) be two marked K3 surfaces, let 
Ci c Xi be very ample divisors corresponding to <i and realizing the em- 
bedding of Xi into ItDn. Note that if Xi and X2 are isomorphic, then the 
isomorphism should be realizable by a projective transformation of l?“. This 
is so, because the mapping u : Xi -+ X2 inducing the isomorphism between 
Xi and X2 sends [r to &. 
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Now, let us construct an unramified covering v : S’ --+ S, such that each 
fiber Y-‘(S) corresponds to the set of isomorphisms of the lattices Hx, and L 
sending & to 1. Let r be the group of automorphisms of L fixing 1. The mon- 
odromy action of ~1 (S, s) preserves the hyperplane class &, and by choosing 
an identification (Hx,, &) E (L, 1) we get a homomorphism 7rs(S, s) + r. 
Now, consider the family r’ : F’ --+ S’, obtained from 7r by the base change 
V. This means that F’ is a fiber product .F xs S’ relative to the morphisms 7r 
and u. 

The projective group G = PGL( n acts on F and on S via its action ) 
on F. This action commutes with 7r. Let us define the action of G on S’ 
which commutes with V. Let y E G, s’ E S’, v(s’) = s. Then the element s’ 
is defined by the choice of the isomorphism 4s : Hx, -+ L. The element y 
defines by the surface isomorphism uy : X, -+ X,(,1. Consider an isomorphism 

ti : H-q(,) + L, for which $s = 4 o (a,),. Then the pair (y(s), 4) uniquely 
determines the point y(s’) E S’. Hence, the action of the group G on F, S, 
S’ agrees with the morphisms n and V, and thus the action on F’ = .F xs S’ 
agrees with the morphism 7r’. 

Let us now define the varieties X and 311, to be, respectively, the quotients 
F/G and S/G. It can be shown that these quotients exist in the category 
of complex analytic spaces. In addition, it is shown by Piatetsky-Shapiro- 
Shafarevich [1971] that every automorphism of a K3 surface X acting trivially 
on Hx is trivial. It follows that the group G acts on S’ and F” without fixed 
points, and so X and m, are complex manifolds. 

3.6. In this section we give a sketch of the proof of the global Torelli theorem 
for marked K3 surfaces (Section 3.4). 

Let Y c !.E, be the subset parametrizing the special Kummer surfaces (see 
Section 3.1). Let us consider the period mapping 

s? : M, + D(Z), 

and let 2 = Q(Y). The set 2 has the following properties: 
(1) 2 is everywhere dense in D (1). 
(2) pi-’ (z) is a single point for any z E 2. 
The main part of the proof of the global Torelli theorem consists of demon- 

strating properties (1) and (2). Let us first deduce the theorem from these 
properties. 

Let d E D(Z) be a point such that there are at least two points ml and mz in 
the preimage @-l(d). By proposition 3.1, the map @ is a local isomorphism, 
and, consequently, there are non-intersecting neighborhoods Vi and Uz of 
ml and m2 respectively, which are isomorphically mapped onto the same 
neighborhood U of the point d E D(1). But in that case, each z E Z’nU would 
have at least two preimages, and thus Z n U = 8. This contradicts the density 
of 2 in D(1). 

In the remaining part of this section we will try to explain the derivation 
of properties (1) and (2) of the set 2. We will need some definitions. 
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For any nonsingular algebraic surface X, let us define Sx as the group 
of equivalence classes of divisors with respect to algebraic equivalence. It is 
known that if X is a K3 surface, then SX 2 Pit X is a finitely generated group 
without torsion. The intersection index makes Sx into a Euclidean lattice. We 
will also use SX to denote the sublattice generated by SX in the homology 
group HX = Hz (X, 7,). 

Let a E 5’~. Let SXI E 5’~ be a sublattice generated by elements b such 
that (b, b) = -2, (b, a) = 0. We will denote the quotient lattice Sx~/{za} by 
5’~ (a). The Euclidean lattice structure on Sx induces one on SX (a). 

Consider the morphism ~1 : A -+ E of the two-dimensional abelian variety 
A onto an elliptic curve E. Let r be an involution of A (of the form z + (-z) 
and le_t r. be the induced involution on E. Let C = E/{ 1, T} N P2, and let 
X = A be the special Kummer surface obtained by resolving the singularities 
of the complex analytic space A/{ 1, r}. The morphism ~1 induces a morphism 
7rs : X --+ C, all of whose non-singular fibers are curves of genus 1. There are 
four singular fibers of 7rs, corresponding to double points on E. Each such 
fiber is reducible. It consists of a double curve 210 generated by the fiber of 
~1 and also of the four curves Zi, i = 1, . . ,4 which are the preimages of the 
singular points on A/{ 1, r}. We have 

(Zi, Zi) = -2, i = 0,. . . ,4; 

(Zi,Zj) = 0, 15 i,j 5 4, i # j; (2) 

(Zo,Zi) = 1, i = 1,...,4. 

Let a E SX be the element generated by the fiber of the morphism 7r2, 
then a = 210 + Zi + 1s + Zs + Z4. Evidently, (a, Zi) = 0, i = 0,. . . ,4. Let Gq 
be the Euclidean lattice which is isomorphic as a %-module to the quotient 
(@~zo~Zi)/~a, with the pairing defined by (2). It can be checked that Gd is 
well-defined. 

Let b E SX be such that (b, b) = -2. Then, either b or -b is effective. 
Indeed, let b be generated by a divisor D. Then, by the Riemann-Roth theorem 
(Section 3.1) 

dim H’(X, 6x(D)) + H’(X, 0x(-D) 2 $ + 2 = 1. 

If, in addition, (b, a) = 0, then b is a sum of components of the fibers of 7r2, 
since an effective divisor must have a non-empty intersection with some fiber 
of 7rs. It follows that if a is an element in SX generated by a fiber of 7r2, then, 
for a special Kummer surface 

Theorem 3.1. A K3 surface X is a special Kummer surface if and only if 
SX contains an eZement a such that (a,a) = 0, the class of a contains an 

irreducible divisor and Sx(a) = (G4)4. 



Periods of Integrals and Hodge Structures 123 

The discussion above has almost proved the necessity part of Theorem 3.1. 
Let us sketch the proof of sufficiency. Let D be an irreducible divisor of class a. 
Then, by the Riemann-Roth theorem for X, recalling that Kx = 0, it follows 
that 

dimH’(X, Ox(D)) 2 2. 

Thus, a certain subsystem of the linear system IDI defines a morphism 7r : 
X + pl. By Bertini’s theorem, the generic fiber of rr is non-singular. By the 
adjunction theorem, the genus of the generic fiber is iD(D + Kx) + 1 = 1. 
Thus, 7r is a fibration with fiber an elliptic curve. It can be shown that if the 
divisor S is such that S2 = -2, So = 0, then S is an irreducible component 
of a fiber of 7r. The structure of possible reducible fibers of 7r is well-known 
(see Kodaira [1960]). F rom the classification, it follows that in order of the 
group Sx(a) to be isomorphic to (G4)4 it is necessary and sufficient for the 
morphism 7r to have exactly 4 reducible fibers. Each of these fibers contains 
a rational double curve 210, and also 4 rational curves Zi, i = 1, . . . ,4. Their 
mutual intersection indices are given by formulas (2). There are no singular 
fibers of 7r, other than the reducible ones. This follows from the well-known 
formula 

X=kXi 

i=l 

for the Euler characteristic X of an elliptic surface (see GriffithssHarris [1978]). 
Here xi is the Euler characteristic of the degenerate fiber Di, and the summa- 
tion is over the degenerate fibers. Since x = 24, and Xi = 6 for each reducible 
fiber, it follows that all other fibers have Xi = 0. This means that the other 
fibers are either non-singular or multiple, and it can be easily shown that 
there are no multiple fibers. 

Consider a double cover X : C + P’, ramified over points over which 7r has 
reducible fibers, let A be the normalization of the surface X XPI C, and let 
7r : A t C be the natural projection map. All fibers of 7r are now smooth 
elliptic curves. It is then possible to introduce a group structure on C in such 
a way that the morphism X coincides with the quotient with respect to the 
automorphism group generated by the reflection x -+ -x. This involution can 
be extended to an involution 0 of the variety A. Evidently, X can be obtained 
by a minimal resolution of singularities of the surface A/B. The regular (2,0)- 
form on X defines a regular non-zero 2-form on A, and thus p,(A) > 0. Now 

theorem 3.1 is reduced to the following statement. 

Lemma 3.2. Let C be an elliptic curue, A a smooth surface with p,(A) # 0, 

and YT~ : A -+ C a morphism, all fibers of which are elliptic curves. Then A 

is an abelian variety. 
Furthermore, suppose that there is an involution 0 on A, such that On1 = 

-n-l, and p, (X’) # 0 for th e variety X’ = A/9. Then it is possible to introduce 

a group law on A, so that 0 assumes the form 13x = -x. 
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The proof of the lemma is based on the fact that the family ~1 of elliptic 
curves without singular and multiple fibers always becomes trivial after an 
unramified base change ~1 : C’ + C. Thus, A = Al/r, where A’ = C’ xc A, 
A’ = B x C’, where B is an elliptic curve and r is some finite group of 
automorphisms of A’. All automorphisms y E r have the form 

7Uh 4 = (Mb), c’ + ey). 

Here, h,(b) = ay(b) + f7, where a7 is an automorphism of B as an abelian 
variety, and f, is an element of B. It can be seen that if a7 is non-trivial, then 
y acts non-trivially on a holomorphic 2-form on B x C’. Since H’(A, 02) = 
HO(A’, f12)r, and p,(A) # 0, that is impossible. Hence, y is generated by 
translations, so A is also an abelian variety. The second part of the lemma 
can be also established in a straightforward fashion, after transferring the 
automorphism 0 to C’ xc A and using the fact that 8 leaves invariant a 
holomorphic 2-form on A’. 

Note that the statement of theorem 3.1 can be strengthened, by omitting 
the requirement that class a contain an irreducible curve. Thus, the period 
G(X) of a marked surface X = (X, 4, <) allows us to determine whether or 
not it is a special Kummer surface. 

Indeed, let the period be a subspace @WO c H’ @ @, using the notation of 
Section 3.4. Then, using the isomorphisms 4 : HX + L and u : L c L* we 
can assume that the group SX c Hx is the set of elements X E L for which 
(we, X) = 0. Indeed, in that case X is an integral (1, 1)-cycle, which is algebraic 
by Hodge’s theorem. 

Thus, it is a matter of linear algebra to show that the set Z c D(Z) of 
Hodge structures is everywhere dense. In fact, it can even be shown that that 
the set of Hodge structures of special Kummer surfaces with rank(Sx) = 20 
is everywhere dense. 

Now, let X = (X,$,i) and X/ = (X’, @, I’) be two marked K3 surfaces, 
where X’ is a special Kummer surface. Suppose that these two surfaces have 
same period Q. c H* @ @. If we could show that under these assumptions 
X N Xl then it will be shown that Q-‘(z) contains a single point for any 
z E Z and the proof of the Torelli theorem will be finished. 

Consider an isomorphism ti : HX t HXJ such that 4’ o 11, = 4. Evidently, 

ti(Sx) = SXf . Indeed, in the notation of Section 3.3, the class a E HX is 
an element of SX if and only if ~($(a)) is orthogonal to &JO. Furthermore, 
11, maps effective cycles to effective cycles. To show this, consider a class a E 
HX generated by an irreducible curve D c X. Then, by the Riemann-Roth 
theorem on X’ 

dim H’(X’, +(a)) + dim H’(X’, $(--a)) > T + 2. 

But by the adjunction formula, $‘(a) = a2 = D2 > -2. Hence, either $(a) 
or $(-a) is effective. On the other hand, 
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(@(u). C’) = (!b(a).$(C)) = (4 > 0, 

and so the cycle g(u) is effective. 
Let a E SX be the cycle generated by an irreducible divisor, such that 

(aa) = 0 and ,9x(a) = (G4)4. Th en, from the above discussion it follows that 
$(a) has analogous properties, and hence by Theorem 3.1, the surface X’ is 
a special Kummer surface. 

Let A be a two-dimensional abelian variety, let X be the special Kummer 
surface generated by A and let 7r : A + X be the corresponding rational map. 
Then 

where the module IIx is generated by the classes li, i = 1,. . . ,16, correspond- 
ing to the curves obtained by resolving the singularities of A/O. Furthermore, 
n,(Hz(A, Z)) is the orthogonal complement to 17~ in Hx. The map 7r* is 
injective. The following statement holds. 

Lemma 3.3. Any automorphism of the lattice HX which restricts to the 

identity on the orthogonal complement to IIx and which transposes vectors li, 

i = l,..., 16 and fixing at least one of these vectors, is in fact the identity on 

Hx. 

Let us return to the problem at hand. It is easy to see that qQ(17x) = 
IIx,, since the classes li are exactly those components of the fiber that have 
multiplicity 1. 

Suppose that the special Kummer surfaces X and X’ are obtained from the 
abelian varieties A and A’ respectively. Let ~1 : A -+ X, 7r2 : A’ + X’ be the 
corresponding rational maps. Then $[(K~)+(H~(A, Z))] = (T~)+(H~(A’, Z)), 

thus we can assume that we are given an isomorphism between Hz(A,Z) 

and H2(A’, Z) which, evidently, preserves periods. This isomorphism is always 
induced by an isomorphism X : A -+ A’ of complex tori. That is so, because a 
2 x 4 matrix of rank 2 is determined by its 2 x 2 minors up to multiplication 
by a non-degenerate 2 x 2 matrix. Since a translation by an element x E A 

induces the identity automorphism of the group H2 (A, Z), the map X can be 
picked in such a way that 0 E A gets mapped to a prescribed element a’ E A’. 

Let 1 be the homology class on X obtained by resolving the singularity at 
some 2-torsion point a’ E A. Pick X in such a way that X(0) = a’. It can be 
seen that there exists an isomorphism Q : X -+ X’, such that the diagram 
below commutes. 

x 
A - A’ 

c rl + x - X’ 
The isomorphism A, : Hx + Hx~ agrees with $ on (ni), (Hz (A, Z)) and maps 
IIx to 17~) while preserving effective cycles, and also coincides with q!~ on the 
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class 1. Thus, by Lemma 3.3, X, coincides with 4. This concludes the proof 
of the isomorphism of the marked surfaces X and Xl and thus of the Torelli 
theorem. 

3.7. The generic global Torelli theorem (see Chapter 3, Section 5) for elliptic 
pencils was proved by K. Chakiris [1984], using the ideas of Piatetsky-Shapiro- 
Shafarevich [1971]. In this section we shall formulate this result, and give the 
basic ideas of the proof. 

Let II, : V -+ @ be a morphism of a non-singular surface V satisfying the 
following conditions. 
(1) For a generic point z E lF” the fiber $-l(x) is an elliptic curve. 
(2) There exists a section r : p1 + V of the morphism $ (in particular $ has 

no multiple fibers). This section defines the divisor U = r(P’) c V. 
(3) V is simply connected. 

item(4) ps(V) = n > 0. 

Then the triple (V, U, $) is called an elliptic pencil of genus n. The number 
n will stay fixed in this section. Isomorphism of elliptic pencils is defined in the 
obvious way. Elliptic pencils occupy an important position in the classification 
of algebraic surfaces (see Shafarevich et al [1965], Griffiths-Harris [1978]). 
Together with two-dimensional abelian varieties and K3 surfaces they form 
almost the whole set of algebraic surfaces with Kodaira dimension equal to 0. 

Chakiris [1984] constructs the following objects: 
(1) The quasiprojective variety m, dim(m = 10n + 8, the closed points 

of which are in one-to-one correspondence with the isomorphism classes of 
elliptic families of genus 72. 

(2) A classifying space D of polarized Hodge structures of weight 2, and a 
discrete group r of its automorphisms. 

There is a regular map @ : m -+ r\D, which is an extended variation of 
Hodge structures (see Chapter 2, Section 4). 

Theorem 3.2. There exists an open everywhere dense set 1331’ C 332 on which 

the map Sp is injective. 

3.8 Note that in order to prove Theorem 3.2 it is sufficient to find at least 
one point % E 331 having the following properties. 

(A) The map @ is a local Zariski embedding at z (that is, d@ is injective on 

WY.). 
(B) @-l@(X)) = {x}. 
(C) There exists a neighborhood U of the point Q(x) such that @]m-l(u~ is a 

proper morphism. 
First, let us describe the classifying space D. Let $J : V + P1 be an ellip- 

tic pencil, U a section, C,, a fiber. Consider the sublattice Hv c H2(V, Z) 

consisting of the classes y such that r.C, = y.U = 0. Note that Hv is a 
unimodular lattice, and it can be computed that the intersection form con- 
tinued to Hv @ lR has 2n positive and 10n + 8 negative eigenvalues. There 
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is exactly one isomorphism class (see Serre [1970]) of Euclidean lattices with 
this property. Denote this lattice by H, and the inner product by Q. Then D 
is the classifying space of polarized Hodge structures of weight 2 with data 
(H, Q, hpJ), where h2>’ = n, hl>’ = 1On + 8. 

3.9. The main role in the proof of Theorem 3.2 is played by special elliptic 
pencils ~ the analogue of the special Kummer surfaces. Let Ci be an elliptic 
curve,.let p E Ci be a point, and let y : C, -+ P1 be a double cover ramified 
at 2(n + 1) points. Then C, is a hyperelliptic curve of genus n. Let r1 be 
an involution of Ci such that q(p) = p, and let 7, be the involution of C, 
transposing the points in the fibers of y. Let G be the group of transformations 
of Ci x C, generated by T = (71,~~). Let V be the smooth surface obtained as 
a result of minimal resolution of singularities of the complex space Ci x C,/G. 
The projection of Ci x C, onto Ci defines a morphism II, : V + pi, with a 
section generated by the divisor {p} x C, C Ci x C,. It can be observed that 
V is an elliptic pencil of genus n. The triple (V, U, $) obtained in this way is 
called a special elliptic pencil. 

Evidently, if $ : V + P1 is a special elliptic pencil, then the morphism $ 
has 2(n + 1) reducible fibers, each of which has the same structure as in the 
case of special Kummer surfaces. For an arbitrary elliptic pencil V, denote by 
Lv the submodule of Hv generated by effective algebraic cycles y such that 
y2 = -2, y . C, = y. U = 0. For the special elliptic pencil, it is easy to see 
that LV 2: (G4) ( 2 n+l) (the lattice Gd is defined in Section 3.6). 

The element z E 332, satisfying conditions (A), (B), and (C) can be chosen 
in such a way that the corresponding surface V, is a special elliptic pencil. 
The following result necessary for establishing condition (B) is the following. 

Lemma 3.4. The elliptic pencil V of genus n is special if and only if 

Lv N (Gq)2(n+1). 

The proof of Lemma 3.4 is almost word-for-word the same as the proof of 
Theorem 3.1 of Section 3.6. 

The gist of Lemma 3.4 is that the image @J(X) of an element z E 332 contains 
enough information to determine whether or not the corresponding V, is a 
special elliptic surface. Indeed, Lvx is isomorphic to the submodule of those 
elements in L which are orthogonal to H2po c H @ @. 

It is not shown in Chakiris [1984] that the special elliptic pencil V, is 
uniquely determined by its image G(x) in D/r. This is proved, however, for 
a sufficiently generic elliptic pencil. 

3.10. Property (A) uses the work of K. I. Kii [1978], who develops some 
conditions that guarantee that the infinitesimal Torelli theorem holds. 
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Let 4 : V + Y1 be an elliptic pencil, and let p : 0 + N be a Kuranishi 
family generated by the surface V. This means that p is a smooth morphism 
of complex manifolds such that p-l(~) = V, 

dimN = dim@H1(V,Tv) = llnf8, 

and the family is effectively parametrized. Consider the submanifold No c N, 
corresponding to those elliptic pencils for which the divisor of the section 
U remains effective. It can be shown that dimNo = 10n + 8, and Ns is a 
nonsingular submanifold. Let pe : 00 --+ NO is the restriction of the morphism 
p to 00 = p-l(Nc). Assuming that NO is simply-connected we can lift the 
period mapping to a holomorphic mapping 

&:NotD. 

From the results of Kii [1978] it follows that 00 is a Zariski local embedding. 
However, this is not quite what we need. The problem is that if z E 332 is 
a special elliptic pencil, then the neighborhood U c !JX of x is not locally 
isomorphic to No, but rather there exists a discrete group r,, such that U is 
locally isomorphic to No/~~. Let us describe some automorphisms in lY,. 

Let I c V, be the curve obtained by resolving one of the singularities of 
Ci x C,/g, and let Ni c NO be the submanifold of codimension 1, where the 
class of the divisor I remains effective. Consider this divisor over each point 
zi E Ni. The union of all these is a submanifold S of 0 of codimension 2. 
This is a P1 bundle over Ni. Construct a cr-process over 00 with center in S. 
The preimage S of the manifold S with respect to this a-process is a conic 
bundle over NO. Contracting all of these tonics toilines in another direction, 
we obtain a new family pb : 0’ + NO, which is a bi-rational modification of 
00. Note, however, that for every point n E NO we have (p;)-‘(n) Y pi’(n). 
By the universality of the family (30 + NO it follows that the new family 
is obtained by means of a base change 71 : NO --+ NO, 7-1 (no) = no. Clearly, 

v, = K,(z). Thus, all of the rl are contained in r,. Furthermore, No is acted 
upon by the standard involution of the pencil 11, : V + P’, generated by the 
section. This is an involution, which acts on the generic fiber by an involution 
of the elliptic curve +-l(u) fixing the point U n $-l(u). 

For a generic special elliptical family one can get around these difficulties. 

3.11. Finally, the most subtle point in the proof of Theorem 3.2 is the 
establishment of property (C). It is not hard to see that the Hodge structure 
on a generic special elliptic pencil does not split; that is, there is not a pair of 
subspaces 

Fl,Fz c H@i, Fl # (01, Fz # (01, 

such that 
H2yo = (H2po n (Fl @ C)) e+ (H2so n (F2 @ C)). 

Let z E !JR, with V, a special elliptic pencil for which the Hodge structure 
does not split. We check property (C) for such an element z. The main idea is 
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roughly as follows. Consider a semistable completion ijri of m - this means that 
n\!JJI is a divisor with normal intersections and such that the monodromy 
(see Chapter 5, Section 1) action on the cohomology H2(Vv, Z) of a generic 
surface V,, y E !JJI has finite order. Let Q(z) = #(z’) for z’ E !@?\!E We want 
to show that this is impossible. Consider the complex disk S p {.z E c]]z] < 1) 
centered at SO, and such that S c % and S n (%\fm) = SO. We obtain a de- 
generation 7r : D -+ 5’ of elliptic pencils over S (see Chapter 5, Section 1). 
After a base change, we can assume that the monodromy action is trivial on 
the two-dimensional cohomology of the generic fiber, and that the degener- 
ation is semistable. Instead of the degeneration of elliptic pencils, it will be 
more convenient to study the degeneration ii : fi -+ S of Weierstrass pencils 
obtained by contracting all of the components of the fibers having trivial in- 
tersection with the divisor U, of the section. All of the fibers ?-l(s), s # se 
are normal surfaces with, at worst, simple singularities. The fiber r-l(s) can 
be the union of a collection of irreducible components VI,. . . , VP. Call those 
Vi for which p,(Vi) > 0 marked. From the triviality of the monodromy action, 
it follows that P 

CPi7(V;) = 72, 
i=l 

(see Chapter 5, Section 5). However, if there were several marked components, 
the limiting Hodge structure would split. But since the limiting structure is 
the same as that on V,, this cannot be. Now, all we need is 

Theorem 3.3. Let p : Y -+ D be a semistable (see Chapter 5, Section 1) 

degeneration of Weierstrass families with trivial monodromy. Let the central 

fiber have a single marked component. Then there exists a base change D’ + 

D, such that the degeneration D’ XD Y + D’ is D’-birationally equivalent to 

a degeneration, whose central fiber is a surface having at worst double point 

singularities. 

The proof of the above statement is the most difficult place in Chakiris 
[1984]. 

$4. Hypersurfaces 

4.1 In this section we describe two results on smooth projective hypersur- 
faces. These are the infinitesimal Torelli theorem (see Chapter 2, Section 5) 
obtained by P. Griffiths [1969] and the generic global Torelli theorem obtained 
by Donagi [1983]. In Section 4.9 we briefly describe the global Torelli theorem 
for four-dimensional cubits, proved by Voisin [1986]. 

In Chapter 4, Section 5 of this survey we compute the Hodge structure on 
the cohomology of a nonsingular projective hypersurface. We shall describe 
the necessary facts here; more details can be found in Griffiths [1969]. 

Let X c pnfl be a nonsingular hypersurface of degree d, defined by the 
equation 



130 Vik. S. Kulikov, P. F. Kurchanov 

f(xo,... ,%+1) =o. 

Set V = H”(pn+l,C?(l)) and let S = @~!“=,S(“)V be a graded symmetric 
algebra of the vector space V. The homogeneous component S(k)(V) of this 
algebra will be also denoted by Sk. Consider the homogeneous ideal Jf in S, 
generated by homogeneous polynomials 

af af 
ax0 ’ . . . ’ dxn+l . 

This is the so-called Jacobian ideal of the polynomial f. 
The ring Rf = S/Jf is a graded algebra. Denote its homogeneous com- 

ponent of degree a by RF. Then Ry = S”/ Jf”, where JT is the homogeneous 
component of the ideal Jf of degree a. 

We will be interested in the Hodge structure on the primitive cohomology 
of dimension n of the variety X 

P”(X) = F” > F1 > . . . > Fn > Fn+’ = (0). 

Theorem 4.1. There exists a natural isomorphism, which depends holomor- 
phically on f 

A, : R”P ti Fa/Fa+l, 

where t, = (n - a + 1)d - (n + 2). 

Let us describe the structure of this isomorphism. The Poincare residue 
operator Res, defines an isomorphism (see Chapter 4, Section 3) 

Res : Hn+r (P+‘\x) + H”(X). 

Any class in Hn+’ (E?+l \X) can be represented by a holomorphic differential 

AL? 
(y=- 

f n+1 ’ 

where 

n = C(-l)ix,dxo A.. . A d;i A.. . A dx,+r. 
i=O 

Above, A is a polynomial such that dega = 0, that is, degA = d(n+ 1) - (n+ 
2). Furthermore, Resa E F” if and only if (Y has a pole along X of order no 
greater than n-a + 1 (thus f a divides A). This defines a map Res, : St I-+ Fa. 
The proof of Theorem 4.1 is then reduced to establishing that 

Res-’ (Fa+‘) = J>. 

4.2. We will need to understand the ring Rf better. Let fo, . . . , fn+l be 
homogeneous polynomials without common zeros in Yn+‘, I = (fo, . . . , fn+l) 
is the ideal generated by these polynomials in S, and let R = S/I. 



Periods of Integrals and Hodge Structures 131 

The elements fi form a regular sequence (see Griffiths-Harris [1978]), 
that is, for every i, the element fi+i is not a zero-divisor in the ring 

s/(.fo,.fl,...,fn+l). 

Consider a basis ea, ei, . , en+1 of the vector space V*. For every Ic = 
1,2,. . . , n + 1 we obtain an S-linear map 

k-l 

by setting 

ak(ej, A...Aejk) =~(-l)Ylfj~ejl Aey A...Aej,. 
v=l 

It is easily checked that d&i& = 0, and so we obtain a complex 

a 
O+S@Ann+lV* n+l . . . 

al . 
sc3v* - S -R-+0, 

called the Koszul complex of the collection (fo, . . , fn+i). Since the sequence 
{fi} is regular, the Koszul complex is exact (see Griffiths-Harris [1978]). 

The grading on the ring S induces a grading 

R = R” CB R1 @ . . . 

of the ring R. From the exactness of the Koszul complex it follows that dim R” 
depends only on a and the degrees di = deg fi. Indeed, dim R” can be com- 
puted as the alternating sum of the dimensions of the graded components of 
the free modules S x A~V*. Set 

n+l 

u = C(di - 1); 
i=l 

then the following holds 

Lemma 4.1. 

(1) The homogeneous components R” of the ring R vanish for a > u. 
(2) dim R” = 1. 
(5’) The pairing R” x R”-” + R”, induced by the multiplication in the ring 

R is nondegenerate for a = 0, 1, . . . , CJ. 

The preceding lemma is an easy consequence of the following result, due to 
Macaulay [1916]. Let 6,. . . , &+i be a basis of V, and let % be the maximal 
ideal (<a,. , &+I) of the ring S. Then, with notation as above we have 

Lemma 4.2. (Macaulay’s theorem). Denote by Al the subring of polynomi- 
als in S such that 

-4%’ C (fo,. . . > fn+l). 
Then, 
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Al = (fo, . . , fn+l) + i?P-‘. 

In particular, for a + b 5 g the pairing R” x Rb -+ Ra+b is non&generate 

on each component. 

4.3. Every element g E Sd defines a hypersurface X, = {g = 0) of degree 
d in lY+l. Let U c Sd be an open dense set of points g for which X, is 
non-singular. The group G = PGL(n) acts naturally on Sd and on U. 

Let f E U, then the linear subspace Sd can be identified with the tangent 
space (Tu)f to U at the point f. Let (TG)~ be the tangent space to the orbit 
Gf at the point f. Then 

cTG)f c cTU)f. 

Lemma 4.3. (TG)f = Jf”. 

Proof. The group G is locally generated by one parameter subgroups gij (t), 

where 
gij(t)xk = xk, k # i, gij(t)zi =zi + tx. 3’ 

It can be seen that 

that is, (TG)~ coincides with the component Jy of the ideal Jf. Note that by 

Section 4.3 dim Jf does not depend on f E U. 

It is possible to introduce the structure of a quasi-projective algebraic va- 
riety on the quotient space m = U/G (see Mumford [1965]). The variety flJz 
is the moduli space of nonsingular hypersurfaces. Its closed points correspond 
precisely to the isomorphism classes of hypersurfaces of degree d. 

For deg f 2 3, n > 2 the automorphism group of a nonsingular hypersurface 
X of degree d in p W’ is finite. This follows from the fact that there are no 
global non-vanishing vector fields on X, that is, H’(X,Tx) = 0. Moreover, 
the automorphism group of a generic hypersurface is trivial. In this case the 
point [f] E m is nonsingular, and the tangent space to m at this point is 
naturally isomorphic to the quotient Rf = S”/Ij. 

Consider the projective family 

of hypersurfaces of degree d in lYfl. Here the set 2 c U x IP+l is the set of 
pairs (g,x), g E U, x = (x0,. . . ,xn+r) E pn+‘, such that g(xs,. . . ,xn+r) = 0. 
The G actions on X and U are compatible. Pick a neighborhood Go of the 
identity in G, small enough to contain no non-trivial automorphisms of X. 
Let Uo be a sufficiently small neighborhood of the point_ f, A!c, = 7r-l (Uo). 
The subset Go c G defines an equivalence relation on X0 and on Uo, fl 2: 
f~, if fr = y(fz), y E Go. The quotient spaces X and S (of X0 and Uo, 
respectively) with respect to this equivalence relation have natural complex 
manifold structures. 
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We obtain a smooth family 

p:x+s 

of complex manifolds. The sheaf Op=+l(l) defines a polarization on each of 
the fibers of p. The resulting family /3 is the universal family for the polarized 
variety (X, ci(O,~+1(1)],)) (see Chapter 2, Section 5.5). 

Pick a simply-connected neighborhood of the point [f] E S corresponding 
to f E U. Let 

&:V+D 

be some lifting of the period mapping of the polarized family p (see Chapter 
2, Sections 3 and 5). 

Theorem (Infinitesimal Torelli theorem). The mapping @V is a local em- 

bedding if 

(1) d > 2, n # 2; 

(2) d > 3,n = 2. 

There is another formulation of this theorem (Griffiths [1969]). Consider 
the lifting 

@u : UC, -+ D 

of the period mapping of the projective family K : 2 + U. Here, Us is a 
simply-connected neighborhood of f E U. Then the alternative formulation 
has the form: 

If the differential d@u of &J vanishes on the tangent vector C E (Tu)f, 
then C is contained in the tangent space of the G-orbit of f. 

Indeed, the tangent space (Ts)[fl is naturally identified with (Tu)p/(Tc)f Y 

R$ 

4.4. Let us prove the theorem formulated in the previous section. Let do = 

@v([fl), and let 
2, : T[f] + Tdo 

be the differential of the map @V at the point [f]. Let us show that this 
differential is nondegenerate under the hypotheses of the theorem. Let us 
recall (Chapter 2, Section I) that there exists an embedding 

T& L) 6 Hom(F, F”/Fp). 
p=l 

By Theorem 1 of Chapter 2 

Im w c 6 Hom(Fp/F’+‘, Fp-’ /Fp). 
p=l 

Thus, we have a mapping 
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21 = @VP : T[f] e 6 Hom(Fp,FP+l, FqFp). 

p=l 

The spaces Fp/Fp+l and Fp-l/Fp can be identified, thanks to theorem 

4.1, with the homogeneous components Rf and Rp-’ = RF+d of the ring 

Rf. Furthermore, as previously observed, T[~J can be identified with R$. 

Lemma 4.4. The map 

up : T[fl + Hom(Fp/Fp+‘, Fppl/Fp), 

with the identifications indicated above, is induced by the multiplication 

in the ring Rf . 

Proof. Let g E Sd, A E Stp, and ?j, z are images of g and A in Rd z 
Tifl and Rtp N Fp/Fp+’ respectively. To compute w,@)(Z) it is sufficient to 
differentiate the form 

A0 
Wt = 

(f + tgp-p 

with respect to t at t = 0. Up to multiplication by a scalar we obtain the form 
gAO/ f n+2--p. 

Now it is a simple matter to finish the proof of the main theorem. Using 
the notation of Lemma 4.1 we have cr = (n + 2)(d - 2). Let t, = mint,,20 t,, 

then for n and d satisfying the hypotheses of the theorem it is not hard to 
check that 

d + t, 5 u. 

But this implies that the pairing 

Rd x Rta + Rta.-1 = Rta+d 

is nondegenerate, hence the map 

V, : T[fl + Hom(Fa/Fa+‘, Fa-‘/Fa) 

is injective. 

4.5. Now let us consider the period mapping 

defined in Chapter 2, Section 5. The following is proved by Donagi [1983]: 

Theorem 4.2. (The generic Torelli theorem for hypersurfaces). The map 
@ is injective at a generic point, with the possible exception of the following 
cases 



Periods of Integrals and Hodge Structures 135 

(0) n = 2, d = 3; 
(1) d divides n + 2; 
(2) d = 4, n = 4m or d = 6, n = 6m + 1. 

The result is known to be false in the case (0) and open in cases (1) and 
(2). We will not give a complete proof, but rather will give the basic idea and 
examine some special cases. 

4.6. Consider the infinitesimal variation of Hodge structures associated to 
the period mapping @ (see Chapter 2, Section 6). It is enough to show that 
ivHs at a generic point [f] E ?M allows us to reconstruct the hypersurface Xf 
(see Chapter 2, Sections 6 and 4). 

The period mapping brings out the interaction of two kinds of structures 
on the cohomology P”(X, (tZ) : 

(a) algebraic - the filtration on the space P”(X) and the inner product on 
that space satisfying certain conditions. 

(b) transcendental - the lattice P”(X, Z) C P”(X). 
It turns out that in order to prove Theorem 4.2 is it sufficient to use the 

algebraic structure alone. More precisely, the ivHs allows us to reconstruct a 
filtration and a bilinear form on P”(X), which, in turn, allow us to determine 
the hypersurface uniquely. 

In order to formulate the main idea, we will need one more statement about 
the bilinear form induced by the A-product on P”(X) obtained by Carlson- 
Griffiths [1980]. 

Lemma 4.5. Let us identify the space F”/F”+l with the homogeneous com- 
ponents R> of the ring Rf , just as in Theorem 4.1. Then the bilinear form 

F”JF”+l x Fn-a/Fn-a+l + H2n(X), 

generated by the A-product, is naturally identified with the ring multiplication 

Now, suppose that we are given an ivHs at some point [X] E 9& associated 
with the period mapping @, just as in Chapter 2, Section 6.2. In view of the 
Lemmas 4.4 and 4.5, it can be assumed that for integer values ti = (i + 1)d - 
(n + 2), 0 5 i 5 n, and also for the number d we have vector spaces Wt’ and 
Wd and bilinear maps 

vi : Wd x Wt’-d + wti, 

Qi:Wti xW~-~;+C, o=(d-2)(n+2). 
(3) 

It is known that there exists a homogeneous polynomial f E Scd)V, such 
that the spaces Wt’ and Wd are isomorphic to the components Ry and Rf 
of the graded ring Rf . This isomorphism sends the bilinear forms (3) into the 
ring products in Rf 
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It turns out that in some cases these conditions uniquely determine a homo- 
geneous polynomial f up to a projective coordinate transformation in P+l. 
This approach was first used by Carlson-Griffiths [1980] and further developed 
by R. Donagi [1983] to prove Theorem 4.2. 

4.7. To reconstruct the hypersurface X from the ivHs at the point [X] E 332, 
an important role is played by the followingi 

Lemma 4.6. If  f ,  g E Scd)V have the same Jacobian ideal J, then the poly- 

nomials f and g are the same up to a projective transformation of IP+l. 

The proof of Lemma 4.6 is based on the following statement (see Donagi 
[1983]). Let G be a Lie group, acting on a variety T, U c Y be a connected, 
locally closed subset, such that 
(a) for each z E U, (Tu), C (TG,)~, that is, U is tangent at each point to 

the G-orbit of the point. 
(b) dim@(TG, )% does not depend on z E U. 

Then U is contained in an orbit of G. 
Let us apply this statement to Y = S’(d)V, G = GL(V*), ?f? = {tf +(1-t)g}, 

t E @. Identify the tangent space to Y with S’cd)V, then by Lemma 4.3 

(TGf)f = J; = Jg”, (TsT)I = f  -g E Jd, 

thus (a) holds for any Zariski-open subset U c r. Furthermore, elt z = 
t f  + (1 - t)g. Then 

(TG~)~ = J,” c J; + Jg” = Jd, 

thus the function dim@(TGz)z is semicontinuous on u and achieves its maxi- 
mum at points f  and g. Thus, there exists a Zariski-open subset VI E U, such 
that f ,  g E VI and 

(TG~L = (TG~L, 

for any z E U. Thus, (b) also holds for U. 

4.8. We will give the proof of Theorem 4.2 in some very simple special cases. 
The main ideas of the required constructions come from Carlson-Griffiths 
[1980]. 

Let t be the smallest non-negative number among ti = (i + l)d - (n + 2). 
From the hypothesis of the theorem it can be claimed that 1 5 t 5 d - 1. 
However, we will study only the case 

t<d-1; 

2t > d- 1. 
(4) 

Lemma 4.7. Suppose the conditions (4) hold and the isomorphism 

At : Rt + Wt 
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can be uniquely reconstructed from the conditions (3). Then the Jacobian ideal 
Jf can also be uniquely reconstructed. 

Before starting the proof of this lemma, note that the condition t < d - 1 
implies that Rt = R; = S(t)V does not depend on f. Fixing the isomorphism 

At is essentially equivalent to equipping Wt with a polynomial structure, i.e., 
an isomorphism S(t)W IX Wt. 

Let us prove Lemma 4.7. By repeatedly applying the maps (3) we get a 

map 
wt x Wd x . . x Wd + W”-t. 

Combining this map with polarization, obtain a multilinear map 

WtxWtxWdX...XWd+WdXW’T-t+@) 

which generates a bilinear map 

s2w x SP(Wd) --+ c. 

The pairing above defines a linear map 

q!J : s2wt + [sp(Wd)]*. 

We know that for all a = ti, d there are isomorphisms 

A, : R; N W”, 

compatible with the bilinear maps (3). Composing 4 on the left with the 
known isomorphism At and the unknown isomorphism Ad get a map 

$ : S2(S@)V) = S2Rt + [Sp(R;)]*. 

Since II, must be induced by the ring product in Rf, this map can be composed 
with the multiplication map 

p : S2(S(W) + S2% 

and by lemma 4.2 
$-l(O) = P-~(J~~). 

Thus, J2t = p(Ker $) is uniquely reconstructible, and by Macaulay’s theorem 
Jd-’ c SdvlV can also be reconstructed uniquely (we used the hypothesis 
2t 2 d - 1). Since Jdpl generates J the lemma is proved. 

Corollary. Theorem 4.2 is true for cubits of dimension n = 3m. 

Indeed, in this case d = 3, t = 1, and any two isomorphisms SIV = V and 
W1 are equivalent up to a projective transformation of IIpn+‘. We will describe 
some other simple cases where the isomorphism At is uniquely reconstructed 
ip to a projective transformation V. Recall that V = H’(B”+l, O(l)), thus 
P(V) = Bn+‘. Consider the Veronese embedding 
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s : P(V) N s c P(SV), 

defined by the complete linear system (C?p(“)(t)I. The following statement is 
self-evident. 

Lemma 4.8. 

(1) Ker(p) is a quadric system in P(StV) containing the Veronese variety S; 
(2) S is a basis set of the system Ker(p); 

(31 Kerbu) . 9 as enerated by quadrics of rank 4. 

Recall that p : S2(StV) -+ S2tV is the multiplication map. 
Let W be a vector space, X : StV Eli W an isomorphism which we would 

like to reconstruct up to an isomorphism of V. This isomorphism will be called 
the polynomial structure on W. 

Lemma 4.9. A polynomial structure on W is defined by a linear subspace 

A,(Ker(p)) c S2W 

or by the image X,(S) c P(W) of the Veronese mapping. 

To prove the lemma, note that we can assume that X,(S) c P(W) is known. 
Indeed, if we know X,(Ker(p)), then X,(S) can be reconstructed as the basis 
set of the quadric system. Fix some isomorphism 

p : P(V) -+ T = X,(S). 

Consider the isomorphisms 

W = Ho@=(W), O(1)) & H”(T, OT(l))p* + H’@‘(V), O(t)) = StV. 

The isomorphism q is given, since the embedding T C IF’(W) is defined. The 
composition map is the sought-after isomorphism A, determined up to auto- 
morphism. 

Corollary. Theorem 4.2 is holds when d = 2n + 3, n 2 2. 

Proof. In order to reconstruct the subspace 

(&)*(Ker(p)) c S2Wt, 

we shall use the map 4 : S2Wt -+ [SP(Wd)]* as in the proof of Lemma 4.7. 
Let K4 c S2Wt be the set of quadrics of rank 4. Then, if X c P(V) is a 

sufficiently general hypersurface, it can be shown that 

(k)*(Ker(p)) = L[Ker($) n&l, 

where ,C(U) is the vector space spanned by the set U. Indeed, the last assertion 
is equivalent to saying that 

Ker(p) = L[Ker($) rl $1, 
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where $ is the map used in the proof of Lemma 4.7, and Ki c S2(R”) is the 
set of quadrics of rank 4. In this case the inclusion in one of the direction is 
proved in Lemma 4.8. Since for d = 2n + 3 

p(Ker($)) = J2t = JdP1, 

the reverse inclusion is equivalent to saying that 

/1(K;) n Jd-’ = (0). 

For a generic homogeneous polynomial f E ,‘IT(~)V this follows from a simple 
dimension count. 

4.9. In this section X is a nonsingular complex hypersurface of degree 3 
in p5 - a four-dimensional cubic. This case is not covered by the theorem of 
Donagi considered above. Nonetheless, Voisin [1986] succeeded in obtaining 
an even stronger result than Donagi’s in that case - a global Torelli theorem. 

Consider the free Z-module H = H4(X,Z). Let Q : H x H + Z be the 
intersection form. Then, H is a unimodular Euclidean lattice (see Section 3.3). 
Let h be the cohomology class in H2(X, Z) generated by a hyperplane section 
of the cubic in p5. Then the primitive cohomology classes in H4(X) are those 
elements 7 for which v . h2 = 0. 

The Hodge structure on H4(X) = H @ @ has the form 

Hc zz H3v1 + H2,2 + H1,3, 

where dim H3>l = dim H1>3 = 1, dim H2>2 = 21. 

It follows that specifying a polarized Hodge structure is equivalent to spec- 
ifying a one-dimensional subspace UJn c Hc, defined by an n such that 

rl.rl=O, q.h2=0, q.q>O. 

Therefore, D is a 20-dimensional complex manifold. We saw in Section 
4.3 that the tangent space to the moduli space 9JI of nonsingular complex 
hyperplanes of degree d at a generic point [f] is naturally identified with R$. A 
simple computation shows that for the four-dimensional cubic, the dimension 
of m is 20. The coincidence between the dimensions of D and of m is one of 
the reasons why Donagi’s method fails in this case - the ivHs gives us no new 
information. 

The global Torelli theorem is obtained by Voisin [1986] in the following 
form. 

Theorem. Let X, X’ be two non-singular cubic fourfolds and let 

i : H4(X, Z) + H4(X’, Z) 

be an isometry of Euclidean lattices preserving the class h2 and inducing an 

isomorphism on Hodge structures 
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i @ c : H4(X, C) + H4(X’, C). 

Then there exists an isomorphism I : X’ + X of the hypersurfaces, such 

that i = I*. 

In conclusion, let us note that the extremely interesting question of the 
rationality of the generic cubic fourfold remains open. There are examples of 
nonsingular rational cubits in P 5, for example, the cubits containing two non- 
intersecting planes L1 and Lz (an 18-dimensional family in moduli space). 
Indeed, consider the points 21 and 22 on the planes L1 and La. Construct a 
line between them. This line will, in general, contain another intersection with 
X. The map (xi, x2) ti x3 defines a birational isomorphism between P2 x p2 
and X. There are no known examples of irrational cubits. 

$5. Counterexamples to Torelli Theorems 

5.1. In the preceding sections of this Chapter we saw some of the theorems 
of Torelli type proved to date. The proof of each one of these theorems, as 
we have observed, is based on a deep understanding of the geometry of the 
objects in question. This is not surprising, since if a point in the classifying 
space uniquely determines an algebraic variety, then all of the properties of the 
variety must somehow be contained in that point. This is most clearly seen in 
the classical case of the Torelli theorem for algebraic curves (Section l), which 
gives an explicit method for the reconstruction of the curve by its image in the 
classifying space (more precisely, by the Griffiths torus, the Jacobian of the 
curve). It should be noted that a large number of the properties of algebraic 
curves can be easily obtained from the properties of the embedding of the curve 
into its Jacobian - an object intimately connected with the appropriate point 
in classifying space. The remarkable work of Piatetsky-Shapiro-Shafarevich 
[1971], which contains the proof of the global Torelli theorem for K3 surfaces 
(Section 3) has helped us to get a whole new understanding of these objects. 
It gave rise to a whole field of study of automorphisms of K3 surfaces and 
Enriques surfaces. The proofs of future Torelli theorems are surely expected 
to give us new insights. 

On the other hand, at present it is not at all clear how wide the class of 
varieties is for which we have any right to expect Torelli theorems to hold. 
The one thing that is clear, is that they certainly do not always hold. In this 
section we will examine some known counterexamples. 

5.2. There is a large collection of counterexamples to the infinitesimal 
Torelli theorem. The simplest and most interesting one of these is in the 
case of projective curves. This example is even more interesting since in this 
case the global Torelli theorem holds (see Section l)! 
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Let X be a non-singular projective curve of genus g > I (see Section 
1). Since dim X = 1, H2(X, TX) = 0, and so there exists a universal Ku- 
ranishi family f : X -+ S of the curve X 21 f-‘(so) (see Chapter 2, Sec- 
tion 5.3). This family has a nonsingular base S, dim S = dim@ H1 (X, TX) = 
dim H2(X, 2Kx) = 3g - 3. By Griffiths’ criterion (Chapter 2, Section 5.5) in 

order to check whether the infinitesimal Torelli theorem holds, we can check 
the surjectivity of the map 

p : HO(X, .n;, c3 HO(X, 0;) t HO(X, S20:,). 

Consider the canonical map 

i : x + F-l 

(see Section 1.1). If ,u is an epimorphism, the preimages of the quadrics in 
If@-’ form a complete linear system 2Kx on X. If X is a hyperelliptic curve 
of genus g > 3, then this is not so. For example, if g = 3, the dimension 
of the space of quadrics H”(IP2, o(2)) in P2 is equal to 3. The dimension of 
H2(X, 2K,) is also equal to 3. However, if i(X) c P2 is a quadric, then an 
the element of H”)B2, Q(2)) defining i(X) evidently vanishes on X. If, on the 
other hand, X is not hyperelliptic, then p is an epimorphism. This is the 
classical theorem of Noether-Castelnuovo (Griffiths-Harris [1978]). 

Thus, the infinitesimal Torelli theorem holds for non-hyperelliptic curves, 
and does not hold for hyperelliptic curves of genus g > 2. This can be explained 
as follows. The base S of the Kuranishi family, isomorphic to the 3g - 3- 
dimensional polydisk, is not isomorphic, in general, to a neighborhood U of 
the point [X] of the moduli space m, (see Chapter 2, Section 5.4; Chapter 3, 
Section 1) corresponding to the curve X. 

For a general hyperelliptic curve of genus g > 2, the neighborhood U is 
locally isomorphic to the,quotient of S by the involution corresponding to the 
canonical involution of the curve X. More precisely, U has the local structure 
of c2g-l x ((E-2/(Z/2iZ)), h w ere the group Z/22 acts on Oe2 by multiplying 
all of the coordinates by -1. The subvariety (E2gP1 of S corresponds to the 
hyperelliptic curves. The differential of the period mapping is injective on the 
subspace V c (Ts)~~ generated by this subvariety, and vanishes on a subspace 
of dimension g - 2. 

5.3. There are also counterexamples to the infinitesimal Torelli theorem 
for certain surfaces of general type (Kynev [1977], Catanese [1979], Todorov 
[1980]). For th ese surfaces the global Torelli theorem also fails (Catanese 
[1980], Chakiris [1980]). L e us describe some of these results in greater detail. t 

We will be studying a non-singular projective variety X of dimension 2 (a 
surface), satisfying the following conditions: 
(1) X is simply connected, that is H1 (X, Z) = 0. 
(2) The geometric genus p, = dim@ H”(X, 0%) of X equals 1. 
(3) The canonical class Kx is ample, and KS = 1. From Noether’s formula 

(Griffith+Harris [1978]) for surfaces 
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&(Kf + x) = 1 - p + p*o 

it follows that the Euler characteristic X of X equals 23. The Hodge 
structure of weight 2 on H2(X) thus has the form 

where dim H2ro = dim H”y2 = 1, dim H1)’ = 19. 
Let w = cl (Kx); then the classifying space D of Hodge structures of weight 

2, corresponding to the polarized variety (X, w) is constructed as follows. Let 
H = H2(X,Z) N Z21, and let Ic E H be the class corresponding to the 
polarization w. Let Q be the bilinear form on H (see Chapter 2, Section 1) 
corresponding to the intersection form. The Hodge structure on Hc = H@C is 
defined by choosing a non-zero element C E H 2,0 Since the cycle k is algebraic, . 
and since [ corresponds to a (2,O) form, it follows that 
(a) Q(<, Ic) = 0. The Hodge-Riemann bilinear relations (see Chapter 2, Sec- 

tion 1) give us further 

(b) &CC, 0 = 0; 
(cl QK,<, > 0. 

These constraints define an open set D on a quadric in P1’. Thus, D is an 
l&dimensional complex manifold. 

Furthermore, the Kuranishi family of any such surface has a nonsingular 
base of dimension dim Hl(X,Tx) = 18 (this is so since H2(X,Z’x) = 0, 
Todorov [ 19801). 

Any such surface can be realized as the complete intersection of two smooth 
hypersurfaces in the weighted projective space IF’4(1, 2,2,3,3) (see Todorov 
[1980]). This proves the existence of a coarse moduli space ?M of such surfaces 
(see Chapter 2, Section 5.4). The space !JJI is a connected quasi-projective 
variety of dimension 18. 

Consider the period mapping 

f :!JJl+r\D 

(see Chapter 2, Section 5). Chakiris [1980] shows that for certain points 
d E r\D, the preimage f-‘(d) has positive dimension. This gives a coun- 
terexample to the global Torelli theorem. 

The idea of the proof is as follows. Construct a smooth family 4 : X -+ S 
of surfaces over the polydisk S satisfying the following conditions: 
(1) For any s E S the surface X, satisfies conditions (a)-(c). 
(2) dims = 15. 
(3) For sr, sz E S, sr # ~2, the surfaces X,, and X,, are not birationally 

isomorphic. 
(4) There exist five linearly independent elements kr , . . . , k5 E H2(X,, Z) 

corresponding to algebraic cycles on X, for all s E S. 
Here we use the identification of the groups H2(X,, Z) for all fibers X, by 

monodromy, and the simple-connectivity of S. 
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Condition (3) guarantees that the natural embedding of 5’ into the moduli 
space 332 is an embedding on the set of closed points. The composed embedding 
of S into I’\D, which coincides with the image of the image under the period 
map of the family of polarized varieties (X,, cl (Kx,)) has image of dimension 
at most 14. Indeed, since the cycles hj are algebraic, it follows that hj E H1ll 
(see Chapter 1, §8), and so by the HodgeRiemann relations we see that 

Q([,hj)=O, j=l,..., 5. 

These conditions limit the possible dimension of the image to 14. 

Chapter 4. 
Mixed Hodge Structures 

$1. Definition of Mixed Hodge Structures 

In Chapter 1 it was shown that the cohomology of Kahler manifolds (and 
thus also projective varieties) comes equipped with Hodge structure. With 
the help of Chow’s lemma (see Chapter 1, $3) the existence of Hodge struc- 
ture on the cohomology of projective varieties can be extended to the case 
of nonsingular complete algebraic varieties. However, if X is an incomplete, 
or non-smooth variety, then one cannot say anything about the existence of 
Hodge structure of weight n on the cohomology group Hn(X, C). For exam- 
ple, if X = @l \{O} is the punctured line, then dim H’(X) = 1, and thus there 
is no Hodge structure on H1 (X). 

In order to understand this phenomenon better, let us study the following 
example. 

1.1. Example. Let the curve X consist of two components Xi and X2, in- 
tersecting transversally in two points Qi and Qs. In addition, assume that the - 
curves Xi are incomplete, and are obtained from complete curves Xi by re- 
moving a collection of points Pi, . . . , PN. Since the cohomology group H1 (X) 
is dual to the homology group Hi (X), let us study Hi(X) for simplicity. The 
elements of the group Hi(X) are of three kinds. The first kind are the loops 
cri around the punctures Pi. The second kind are the elements /3j, which came - 
from Hi (Xi). These elements are determined only modulo elements of the first 
kind. Finally, the remaining elements in Hi(X) can be represented modulo 
elements of the first two kinds by a combinatorial cycle y : first we travel from 
Qi to Qs along some path in Xi, and then return from Q2 to Qi along a path 
in X2. 

This reasoning suggests that there may be a filtration on H1(X) of the 
form 
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Fig. 6 

0 c WO c WI c Wz = H1(X) 

such that the factors Wi/Wi-, come from the cohomology of smooth complete 
varieties, and thus it might be possible to introduce Hodge structure on the 
quotients Wi/Wi-1. 

1.2. The Hodge structure defined in Chapter 2, Section 1 shall be called 
the pure Hodge structure. 

A morphism of pure Hodge structures of type (p, q) is a Q-linear mapping 
I$ : HI -+ Hz such that 

$(H,‘,“) c H;+p3s+q, 

where Hi = CI&-+~=~~ HI)’ are the Hodge decompositions. 
A morphism of pure Hodge structures of type (p, q) is a strict morphism, 

that is 
4(H;+) = 4(H1) n H;+p3s+q. 

A morphism of pure Hodge structures of type (2,Z) will be called a morphism 
of weight 21. On the level of Hodge filtrations a morphism of pure Hodge 
structures of weight 21 satisfies the condition 

4w !L F;+z 

and is also strict, that is 

c,h(F,p) = c#I(HI) C-IF;+‘. 

It is not too hard to check the following lemma. 

Lemma. The lcernel, the cokernel and the image of a morphism of pure 
Hodge structures are pure Hodge structures. 
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1.3. A mixed Hodge structure on a finite-dimensional vector space HQ con- 
sists, by definition, of the following: 
(i) An increasing (weight) filtration W on HQ, 
(ii) A decreasing filtration (also called the Hodge filtration) F on H = HQ@C, 

satisfying the following condition: the filtration F induces a pure Hedge 

structure of weight n on Grr H = IV, @ @/IV+1 @C. More precisely, the 
elements of the filtration FP Grr H on Grr H, induced by the filtration 
F are 

FP Grr H = (FP n W, ~3 @ + Wn-l 18 C)/Wnwl %I @. 

It should be noted that the concept of a pure Hodge structure is a special 
case of the concept of a mixed Hodge structure. Indeed, if there exists a pure 
Hodge structure of weight n, defined by the filtration F on a space H, then 
the filtrations W and F define a mixed Hodge structure on H by setting 

0 = W,-1 c W, = H. 

In the sequel, whenever we study several spaces with mixed Hodge struc- 
tures, then the elements of the filtrations W and F on each of these spaces H 
will be denoted, correspondingly by WiH and FPH. In addition, whenever it 
is clear from context, the spaces Wi @ C will also be denoted by W. 

1.4. 

Definition. A morphism of mixed Hodge structures of weight 21 is a Q 
linear map $ : HI + Hz of spaces equipped with Hodge structures, which is 
compatible with the filtrations, that is 

cWQ’,fh) 2 Wp+zH2, 

q5(FPH1) c: Fp+“H2. 

Note that if C$ : HI -+ Hz is a morphism of mixed Hodge structures of 
weight 21, then the induced map 

c+& : Gr: HI + GrK+21 Hz 

is a morphism of pure Hodge structures of weight 21. 

1.5. Let (H, W, F) be a mixed Hodge structure. Then W,H and H/W,H, 
together with the filtrations induced by the filtrations W and F are mixed 
Hodge structures, and the natural maps i : W, c) H and j : H + H/W,H 
are morphisms of mixed Hodge structures of weight 0. 

1.6. If HI and H2 are mixed Hodge structures, then, by equipping HI @ H2 
with filtrations 
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and 
F”(Hlc3 Hz) = c FjH, ~3 FjH2, 

i+j>n 

we turn Hi C3 Hz into a space with a mixed Hodge structure. Note that 

Gr,W(Hl @J Hz) = @ (Cry HI 8 Gry Hz). 
i+j=n 

1.7. The field of rational numbers Q, viewed as a @vector-space, can be 
equipped with a mixed Hodge structure, denoted by Q(n). The weight fil- 
tration on Q(n) consists of W-z+1 = 0 and W-zn = Q, while the Hodge 
filtration is F-” = @, and F- n+l = 0 This is a pure Hodge structure, and 
H = Q(n) @ C = H-n,-n. 

1.8. Let (H, W, F) be a mixed Hodge structure. Let H(n) = H @ Q(n). 
On H(n) the elements of the weight filtration are W&(n) = Wp+anH, while 
the elements of the Hodge filtration are FpH(n) = FP+nH. The identity map 
id : H(n) + H is a morphism of mixed Hodge structures of weight 2n. 

1.9. The dual space HQ - ” - Hom(HQ,Q) can be equipped with the mixed 
Hodge structure 

WpHV = {x E H+(y) = 0,Vy E W-p-lH}, 

and 
FpHV = {x E H+(y) = 0,Vy E F1-pH}. 

1.10. If there are mixed Hodge structures on HI and H2 then we can also 
introduce a mixed Hodge structure on Hom(Hi, H2) = Hom(Hi, Q) ~3 Hz. It 
is easily checked that 

FP(Hom(Hi, Hz)) = (4 E Hom(Hi, H2)14(FiH1) c Fi+PH2,V’i}, 

and 

W,(Hom(Hl,H2)) = (4 E Hom(H1,H2)I$(WjH1) E Wj+2qH2,Vj}. 

1.11. An extremely important and remarkable aspect of the theory of mixed 
Hodge structures is the fact that the compatibility of a morphism of mixed 
Hodge structures with the filtrations implies its strict compatibility, that is 
the following holds: 
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Proposition (Deligne [1972]). Let 4 : HI -+ Hz be a morphism of mixed 

Hodge structures of weight 21. Then $ is a strict morphism, that is 

4(WpHl) = &+21H2 n 4(Hl), 

and 
4(FPH1) = Fp+‘Hz n 4(H1). 

The proof of this proposition is based on the observation that although a 
space with a mixed Hodge structure does not admit a decomposition into a 
direct sum of (p, q) components, as is the case for pure Hodge structures, if 
we set 

P = (FP n IV,,,) n (Fq n VP+, + C FP-i n wp+q-i-l), 
i>l 

the following holds: 

Lemma (Griffiths-Schmid [1975]) 

1. IP,Q s IqJ’ mod W,+,-2, 

2. wm = cBp+q<m Ip,q, 

3’. FP = @&>, eq Ii,q, - 
4. The projection W, + Gr: H isomorphically maps IP,Q with m = p + q 

onto the Hodge subspace (Gr: H)P>Q. 

5. If  4 : HI -+ Hz is a morphism of mixed Hodge structures of weight 21, 

then $(IPJHl) 2 IP+‘3q+1H2. 

1.12. Using the proposition and the lemma above, it is easy to obtain the 
following proposition: 

Proposition. Let C$ : HI + H2 be a morphism of mixed Hodge structures of 

weight 21. Then, the induced weight filtrations and Hodge filtrations on Ker C$ 
and Coker ~+3 define mixed Hodge structures. 

Corollary. Let 

O+H1%H$H2+0 

be an exact sequence of morphisms of mixed Hodge structures, with (Y of weight 

21 and p of weight 2r. Then the induced sequence 

0 --+ Grr,, HI + Grr H -+ Grr++,, HZ -+ 0 

is exact. 

Proof. To prove the corollary, it is enough to check the exactness of the 
sequence 

0 e W,-zH1 4 W,H 3 W,+2TH2 --+ 0. 
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Obviously, a! : W,-zlHi -+ W,H is an inclusion. The epimorphicity of b 
follows from the strictness of the morphism ,B : 

P(wq = wn+2,ff2 n P(H) = wn+232, 

since p is an epimorphism. It remains to check the exactness at the middle 
term: 

C~U(W,-~~HI) = cw(H1) n W,H = Kerp 0 W,H = Ker 6. 

1.13. The importance of the concept of mixed Hodge structures introduced 
above is explained by the following theorem of Deligne: 

Theorem (Deligne). Let X be an algebraic variety defined over @. Then 

the cohomology groups H”(X, C) can be equipped with a natural mixed Hodge 

structure. If  f  : X + Y is a morphism of algebraic varieties, then 

f* : HnK Q 3 HYX, Q 

is a morphism of mixed Hodge structures of weight 0. 

Furthermore, Deligne’s mixed Hodge structure possesses a number of nice 
properties even aside from functoriality. To wit, the mixed Hodge structure 
coincides with the classical Hodge structure for complete smooth varieties, 
and it is compatible with algebraic constructions: duality, Kiinneth formulas, 
and so on. The essence of of the theory of mixed Hodge structures lies in the 
observation that while the cohomology classes of an arbitrary algebraic variety 
have different weights, nontheless cohomology classes with different weights 
do not interact, and can always be separated. 

The proof of Deligne’s theorem uses heavily the machinery of spectral se- 
quences, used to compute,the cohomology (see Cartan-Eilenberg [1956], Gode- 
ment [1958], Grothendieck [1957]). Roughly speaking, the construction of the 
mixed Hodge structure on the cohomology of an arbitrary algebraic variety 
X can be described as follows. The variety X is represented as the sum or 
difference of certain nonsingular complete varieties, and the corresponding 
operations are performed at the chain-complex level. The weight filtration W 
and the Hodge filtration F arise at the chain level already. 

In the next two sections we will sketch the proof of Deligne’s theorem in 
two cases important for applications - if X has normal crossings and is and 
complete and if X is smooth but not complete. This will also give some idea 
of the methods used in the proof of Deligne’s theorem. 
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§2. Mixed Hodge Structure on the Cohomology of a 
Complete Variety with Normal Crossings 

2.1. 

Definition. A complex manifold V is called a manifold with normal crooss- 
ings of dimension n if for each x E V there exists a neighborhood U, which 
can be realized as the union of coordinate hyperplanes in (f? : 

Let us try to understand the structure of the cohomology of manifolds with 
normal crossings by looking at two very simple examples. 

In the first example V consists of two smooth components, each a projective 
variety: V = VI U V,. In this case we have a resolution for the locally constant 
sheaf Cv : 

O*@v *+v, @G+ ++G,“V, -0, 

which induces the Mayer- Vietoris long exact sequence on cohomology: 

- Hk-l(Vl l-l&) yk-l. H”(V) arc H”(vJ CB H”(V2) h 
Pk + Hk(vl n v2) --Z- 

The morphism Bk in this sequence looks as follows: 

where the morphisms ij : H”(Vj) --+ H”(Vl nV ) 2 are induced by the inclusions 
ij : VI n Vz + V. 

From the Mayer-Vietoris sequence it is clear that there is a filtration 

0 c wk-1 c wk = H’(V) 

on H”(V), where w&i = ImYk+l N CokerPk-1. Since the varieties VI, V2, 
and VI n V2 are projective, there are pure Hodge structures of weight k on 
H”(Vl) @ Hk(V2) and on H”(Vl n Vz). Furthermore, it is easy to see that the 
morphism bk, thanks to its geometric origins, is a morphism of pure Hodge 
structures. Therefore, there is a pure Hodge structure of weight k - 1 on 
wk-1 = Coker&i. Further, wkIwk-1 N Imak N Ker Pk. Again, since Pk 
is a morphism of pure Hodge structures, there is a pure Hodge structure of 
weight k on Ker pk. Thus we see that there is a natural mixed Hodge structure 
on H”(V). 

Another, analogous, example is one where V is a one-dimensional variety 
with normal crossings. Let us decompose V into irreducible components: V = 
Vl u . . . U VN. Let all of the Vi be irreducible complete curves. Denote the 
intersection of components Vi and Vj by Pij = Vi n Vj. 
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Just as in the previous example, the exact sequence 

induces a Mayer-Vietoris sequence 

0 + HO(V) 2 myvq -E @HO(Pq) J-e P(V) 2 w+(Vi) -+ 0, 
and we see that there is a filtration 

on H1 (V), with WO = Im y. The quotient WI/W0 21 @I$' (I$) is equipped 

with a pure Hodge structure of weight 1, induced by pure Hoc&e structures 

on H1(Vi) = H1~o(V.) cE ITo>’ ( see Chapter 1, Section 7). Let us note, for 
future reference, that 

dimWl/Wo = 2cp,(V,), 
i=l 

where p, (Vi) is the genus of the curve Vi. 
The space WO also has a natural geometric interpretation. Indeed, let I’(V) 

be the dual graph of V, defined as follows. To each curve Vi we associate a 
vertex pi E F(V), and for each point Pij an edge pij of the graph r(V), 
joining the vertices vi and wj. Then, the beginning segment of the Mayer- 
Vietoris sequence 

0 + HO(V) + @3JP(V~) + @i<jHO(P& 

can be interpreted as follows. The space Ho(V) = @C, where the sum is over 
all of the connected components of the graph T(V), 

@Ho(~) E @ C, @HO(Pij) = @ C 
viEr(V) P*j ErCV) 

and, moreover, the morphism /3 becomes a combinatorial differential 

@(Cl,... ,CN) = (dij) 

where r&j = ci - cj, where i < j. Therefore, the space Wo = Im y = Coker /3 is 
naturally identified with the cohomology group H’(T(V)) of the graph T(V), 
and, in particular, 

dim WO = dim H1 (T(V)). 

2.2. Consider the general case. Let V = VI U . . U VN, where Vi are irre- 
ducible components of a complete algebraic variety with normal crossings V. 
In the future we will assume, in order to simplify the exposition, that each 
component Vi is a smooth variety. It should only be noted that if the Vi are 
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not smooth, then they can be replaced by their normalizations, since Vi, in 

turn, have normal crossings, and the procedure can be iterated. 

Let K,-,ib = vi, n . . n Vi,, and let V(“) = ui, <,,,< ik Vi, ,..., ik, k > 1, 

be the disjoint union taken over all the nondecreasing sequences ii,. . . , ik, 
1 < ii 2 . . . < N. Let ak : V(“) -+ V be the natural mapping, and let 
Sj : V(“) + V(k-l) be the mapping which has the structure of an inclusion 

Kl,...,ik L) vi1 f - l . . .  U vij-l fl Vi2,+1 n . . . n Vi, 

Consider the sheaves of C” differential m-forms Ev”(&, on If(“). Each of 
the sheaves Erckl can be decomposed into a direct sum of sheaves &Fckl = 
G+,+~=~&$!~) of forms of type (p, 4). The differentiation of forms d : &FCk, + 

& F($t can also be decomposed as a sum d = d + 8, where 

d : E;;,, t &gkyq, 

and 
3 : I?$, + &PA+1 

V(k) . 

The sheaves &Vmo define a bi-complex 

flPJP = (%+l)*qk), z&q 2 0, 

with differentials Dr : UPJ -+ UP+‘)Q (01 is the differentiation of forms) and 
DZ : W’,q -+ .W’IQ+~, where 02 is defined as 

q+l 
D2 = x(-l)“+$, 

j=l 

thus Dz is a combinatorial differential. 
Let (U’, D1 + 02) be the total complex of the bicomplex (U”, D1, Dz) : 

2.3. The constant sheaf @V is contained in U” = (ai),&i(,,. It should be 
noted that the sheaves &$,+l, are fine. Prom this and from the Poincare 
Lemma we have: 

Lemma (de Rham theorem for varieties with normal crossings). The se- 
quence 

o-+cv -+!d* 

is an acyclic resolution, and thus 

Hm(V, @) = H”(A’, D), 

where Hm(A*, D) is the cohomology of the complex of sections 
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(A’ = H’(V,U), D = D1 + D2). 

2.4. Our goal is to define a mixed Hodge structure on H” (V, (C) by defining 
two filtrations W and F on Hm(V, C) = H”(A, D). It turns out that these fil- 
trations can be introduced already at the level of the bicomplex (Ap>q, D1, Dz). 
Set 

(3) 

(4) 

where F”(A’+‘) is the usual Hodge filtration on the differential r-forms of the 
n - s-dimensional manifold, defined by the decomposition of the forms into 

(P, 4) types. 
The filtration @ induces a decreasing filtration @ on Hm(V, C). Define an 

increasing filtration W on H”(V, C), by setting W, = Em-p. 

Theorem 1. The filtrations W and F introduced above induce a mixed 
Hodge structure on H*(V, C). 

The remainder of this section will be devoted to proving this theorem and 
some of its consequences. 

2.5. Consider the spectral sequence associated with the decreasing filtration 
w (see Godement [1958]) 

j+‘= @@A”” 
T SLP 

of the bi-complex A”. The graded module @ Grr Hm(V, C) associated with 
the weight filtration W is isomorphic to the EL term of this spectral sequence. 
We need to show that the filtration F induces a pure Hodge structure of weight 
pon E&. 

2.6. The differential D1 : A’,” + Ar+l+ coincides with the differentiation 
of r-forms. Therefore, 

E ;,’ = H’(V(‘+l), 9, (5) 

since 0 ++ (as+i)+C”(9+l) c) U ‘T’ is a fine resolution of the sheaf (qs+l)+Cv(s+l). 
Note that on each term Es” = H’(V(“+l), C) there is a pure Hodge structure, 
since V(s+l) is a nonsingular projective variety, and, furthermore, this Hodge 
structure is defined by the filtration F. 

The differential dl : El’T + E:“+l is induced by the combinatorial differen- 

tial Dz = CT:: (-1) P+jc3Tj*, that is, dl coincides up to sign with the morphism 

H’(V(“+l),C) + H’(V( sf2), C) induced by the embedding V(“+2) L) V(‘+l). 
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By Lemma 1.2, the filtration F induces a pure Hodge structure of weight r 
on Ei”. 

In order to prove Theorem 1, it is enough to show that the spectral sequence 
collapses at the E2 term. Then 

Ei” = Ez = Grr IzP+~(V, C), 

that is, the filtrations W and F induce a mixed Hodge structure on each 
IP(V, C). 

2.7. In order to show that the spectral sequence collapses at the E2 term 
it is enough to show that the map 

is an epimorphism. The element z E E,““-’ is represented by a harmonic 
(m-r)-form w, E Hmpr(V cr+‘), C), such that DOW,. = 0 in IIP-‘(V(~+~), C), 
that is, Dzw, is an exact form on V(T+2). T o s h ow the required epimorphicity, 
it is enough to show that the form w, can be extended to a point w = w, + 
w,+1 +. . . + w,, such that Dw = 0, where wj E WjA.. 

By Hodge’s theorem, the harmonic form w, E Hm-‘(V(r+l),C) can be 

uniquely decomposed into the (p, q)-harmonic components 

w, = c wP,q 
P 

p+q=m-T 

Since di is a morphism of Hodge structures, and DOW,. = 0, it follows that 
D2(w$‘TQ) = 0. Th us, it is enough to extend each of the (p, q)-components 
of w, to a closed form. Let us apply the &lemma (Chapter 1, Section 9) 
to the exact form Dzwf,q. According to the 83 lemma, Dz(w,P)q) = d&.+l, 
where yT+i is a (p - 1, q - 1) form on V(‘+2). Set wF$‘Fi = dy,+i. A direct 

computation shows that D(w,P+J+w,P~~~) = Dz(wF$l). Moreover, Dz(wf’$l) 

is a d-closed form on V(‘+2) and, in addition, Dz(wf$‘ltp1l = Dz(dy,+l) = 

d(D27r+1), thus D2(4’$‘3 is a d-coboundary. Thus, we can again apply the 

da-lemma to the form D~(wfYitp[~) to find a form wF’&’ on V(‘f3) such that 

D(w,P,~ + w;?it”l’ + w;‘$,“,~) = D2(w;f;“) 

and such that D~(wF:I;~Q~~ )is again d-closed and is a d-coboundary. Repeating 
this reasoning q times, we finally get a D-closed form 

w= 2 
wP,q--i 

r+i J 
i=O 

the existence of which implies the collapsing of the spectral sequence (5) at 
the E2 term. This completes the proof of Theorem 1. 
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2.8. Let us mention a few consequences, which follow immediately from 
Theorem 1 and its proof. 

Corollary 1. Mixed Hodge structures on the cohomology of varieties with 
normal crossings are functorial, that is, if f : X + Y is a morphism of 

varieties with normal crossings, then 

f* : Hm(Y,Q + Hm(X,Q 

is a morphism of mixed Hodge structures of weight 0. 

Corollary 2. Let V be a variety with normal crossings. Then the weight 
filtration on H”(V,Q) has the form 

wo c . . . c W, = H”(V,Q). 

Corollary 3. Let f : V + X be a morphism of a variety with normal 
crossings into a nonsingular complete algebraic variety. Then 

W,-, Hn(V, Q) fl Im f* = 0. 

Corollary 4. Let V = UE, Vi be a variety with normal crossings, such that 

Kl,...,ik = 0 when s 2 d. Then 

Wn-dHn(V) = 0. 

Corollary 5. Let X be a smooth projective variety of dimension d + 1, and 
let V be an ample divisor on X with normal crossings (hence a variety with 
normal crossings) Then W,-lH”(V, Q) = 0, for n < d. 

Indeed, by Lefschetz’ theorem (Chapter 1, $9) the maps Hn(X,Q) -+ 
Hn(V, Q) induced by the inclusions V L) X are isomorphisms for n < d. 
By corollary 1, these isomorphisms are morphisms of the mixed Hodge struc- 
tures of weight 0. Thus, for n < d the mixed Hodge structure on Hn(V,Q) 
the mixed Hodge structure is pure. 

Definition. The polyhedron n(V) of a variety with normal crossings V = 

&K, dim& = d is the polyhedron whose vertices correspond to the 
irreducible components Vi of the variety V. The vertices Vi,, . . . , Vi,, form 
a (k - 1)-simplex if Vil,,,.,ik # 0. 

Corollary 6. Let V be a variety with normal crossings. then 

WoH”W Q) = Hm(n(V), Q). 

Indeed, the spectral sequence defined in Section 2.5 collapses at the Ez 
term, and by definition of the mixed Hodge structure on Hm(V, Q) 

WoH”(V, Q) = E,m)‘. 



Periods of Integrals and Hodge Structures 155 

The terms ET” are, by definition, the m-dimensional cohomology of the com- 
plex {E~lo,dr}, with E,“” 21 H”(V(m+l),Q), and where di coincides with 
the combinatorial differential D2. But H”(V(“+l),Q) E @H”(V~l,,..,~,,,+l,Q), 
where the sum is over all of the m-dimensional simplices of the polyhedron 
II(V). Thus, E,m)’ N H”(If(V),Q). 

2.9. To conclude this section, we will study the structure of the weight 
spaces on the cohomology of a variety with normal crossings V = Ug, Vi in 
the case dime Vi = 2, that is, for surfaces. Let Cij = Vi n Vj be the double 
curves of the variety V. Then: 

(a) WoH”(V/) = Hm(nT(V)), 
(b) H’(V)=Wr>Wo>Oand 

Gry H’(V) = Ker 

( 

6 Hi(K) s @Hl(Cij) 

) 

) 
i=l i<j 

(c) H2(V) = Ws > Wr > IV0 > 0, and 

Gry H2(V) = Coker 

[ 

&H’(K) 9 @Hr(Cij) 1 , 
i=l i<j 

Grr H2(V) = Ker 

[ 

6 H2(&) 4 $ H2(Cij) , ’ 
i=l i<j 1 

Gry H2(V) = Hi” @ Hi’l @ Ht’2 

where Hi12 = TfTi” and Hilo = @El H2)‘(x). 
Indeed, the spectral sequence (5) has the form 

A 

@ H4(K) 

4 @H3(W 

@H’(x) 2 $H’(Cij) + 0 
i<j 

i<j i<j<k 
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where Pijk = Vi fl Vj fl Vk are the triple points of the divisor V. The claims 
(a), (b), and (c) follow immediately from the computation Eixq = E&q = 
Grr HP+“(V) and it should be noted that 02 is a morphism of pure Hedge 
structures of weight 0, and H2(Cij = H’,‘(C’ij), since Cij are curves and thus 

carry no holomorphic 2-form. Thus 

6 H2’“(~) C Ker[@H2(K) S @H2(Cij)] = Gr? H2(V). 
i=l 

$3. Cohomology of Smooth Varieties 

Let X be a smooth complex algebraic variety of dimension d. In this section 
we will sketch the proof of the following theorem. 

Theorem 2. The cohomology Hm(X, Q) can be naturally equipped with a 
functorial mixed Hodge structure. 

The proof of this theorem implies 

Corollary 1. The weight filtration on the cohomology Hm(X,Q) of a 
smooth variety X has the form 

O=W,-,cW,c...cW,,=H”(X,Q). 

Corollary 2. Let j : X L) 7 be the smooth compactification of a variety 
X. Then 

j*(H”(X, Q) = WmH”(X, Q). 

3.1. A proper compactification of a variety X is an open embedding j : 
X L) x into a complete smooth algebraic variety X, such that x\X = 

V = Ur=, Vi is a divisor with normal crossings (that is, V is a variety 
with normal crossings). According to Hironaka’s theorem (Hironaka [1964]), 
a proper compactification always exists. Just as in the previous section, let 

If(“) = Uil<...ik vi, (..., i,, for lc 2 1, V(O) = V, and let ak : T/c”) + x be the 
natural inclusions. 

3.2. For the constant sheaf Cx we have the resolution 

Thus, 
H’(X, C) = H‘(X, Ok), 

where H’(X, K’) denotes the hypercohomology of the complex of sheaves 
{K‘, d} (Grothendieck [1957], Godement [1958]). 
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The sheaves Q$ are j*-acyclic, that is, R’JJ,(fl$) = 0 for q > 0. Indeed, any 
point x E x has a neighborhood U isomorphic to the polydisk Ad where the 
divisor V is defined by the equation zi . . .‘zk = 0. Then UnX N A*k x AdPk, 
where A* = A\(O). The manifold A*’ x AdPk is Stein, and so by Cartan’s 
Theorem B (see Gunning-Rossi [1965]), it follows that HQ(X n U, 0%) = 0. 

From the j,-acyclicity of the sheaves 0% it follows (Godement [1958]) that 

H’(X,C) E H~(~,j,f-l,). 

The sheaves j*@ are too big for the computation of H’ (X, c), and as we 
shall see below, it will be enough to deal with sheaves of holomorphic forms 
on X with poles of first order along V. 

Let the divisor V be defined by equations zi . . . . ..zk = 0 in the neighborhood 
U c x, where the Zi are local coordinates in U. 

3.3. 

Definition. The sheaf 

.n$(log V) = /Y(Q$(log V)) 

is called the sheaf of holomorphic n-forms on x with logarithmic poles along V, 
where fig is the locally free C?rmodule, generated over U by the differentials 

dzl dzk 
-, dZk+l, . . , d.Zk. 

Zl ” ’ ” zk 

In other words, the sections of the sheaf 0s(log V) in the neighborhood U 
are n-forms 

wfj+! 
ZI ’ 

where w is a holomorphic form on U, I = {il, . . . , iP} c (1,. . . , Ic} and 

dzI -= dzi,/\...Adrip 
ZI Zil Zi, ’ 

It is easily checked that the definition of the sheaf E-(log V) does not depend 
on the. choice of the equation defining the divisor v? 

Let IF (log V) = fl$(log V) 630, EF. 
We have 

f22 c 0$(log V) c j, n;, 

and 
&” c E”(logV) c j*&$“. 

Clearly, the differentials d, d and 8 send forms with logarithmic poles into 
forms with logarithmic poles. Thus, by Dolbeault’s theorem, the bicomplex 
{&~(logX),d,B} . is a fine resolution of the complex {0$(log V), d}. 
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Let us introduce increasing filtrations W on the sheaves O+(log V), by 
setting 

W&?$(log V) = O$(log V) A 0%“) 

an similarly on &g(logV). Clearly, d(Wk) =C Wk, and a(Wk) c Wk. Thus, 

the following complex {Wk/Wk-i, d} is well defined: 

(0 k+ W&+(logV) t3 W~~~i(logv)/W~-i++‘(logv) 4 . . .} 

and, analogously, the complexes 

{W$(log V)lW--lE~(log V), d} 

and 

3.4. PoincarC Residue. In the neighborhood U of every point x E V there 
is a map 

R1 : Wl(Ho(U, O$(logV))) H H”(U n V@), f?;,lf), 

which maps the form w A 2 to 

R’(w A 2) = (27d3)(‘)wlvil,,,,,;, , 

where 111 = 1 for 1 = {ii,. . . ,il}. 
It can be checked that this map does not depend on the choice of the local 

defining equation of the divisor V and is well-defined on the intersection of 
neighborhoods. Thus, there is a well-defined sheaf map 

R’ : Wl fl$(log X) -+ 0;;;) 

which we will call the Poincare’ residue map. 

We can analogously define 

R1 : Wl&y(logV) -+ E;;“,‘“, 

and 

Lemma 1. 

(1) R1(Wlpl) = 0; 
(2) R1 commutes with the differentials d, d, and 8. 

Let us recall that two complexes {K., d} and {L’, d} are called quasi- 
isomorphic, if t_here is exists a morphism of complexes 4 : K’ + L. inducing 
isomorphisms & : H,“(K’) + Hz(L’), where 

H,“(K’) = Ker[d : K” + Kn+‘]/ Im[d : K”-l + K”]. 
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The following lemma is an easy consequence of Poincare’s lemma (see Nick- 
erson [1958]). 

Lemma 2. The maps 

R1 : {W~&~(logV)/W~-i&$(logV),a} + {&,,f;‘,a}, 

R1 : {W~&~(logV)/W~-lE~(logV),d} -+ {&,,f,,d] 

are quasi-isomorphisms. 

The complexes j, 0, and O&.(log V) are evidently isomorphic in sufficiently 

small neighborhoods of points z E j(X). Let us look near points II: E V c 7. 

Choose a neighborhood U of 2, which is isomorphic to the polydisk Ad, where 
U n X = Aek x AdPk. Then U n X is homotopy equivalent to the torus 
Tk(S1)k, therefore Hn(X n U,UJ) = H”(T”,UZ) = A”Hl(T”,C) = r\“(@Zk). 
Furthermore, H1 (XnU, C) has a canonical basis over Z, consisting of the forms 
,$ = 1 h 1 < i < k. Thus, in the neighborhood U, the complex j,O, is 

nn&i 2; ’ - - 

quasi-isomorphic to the complex /\‘C(& , . . . ,&) with the trivial differential. 
Let 

(Y : A’C(<, ) . . . > tk) + H”(U, f+(logv/)) 

be an embedding of the complexes in the neighborhood U. Let us show that 
cry* is an isomorphism on cohomology. For this purpose, let us introduce a 
filtration W, on A’@(& , . . . , &), 

is clear that 
analogous to the filtration on J&JlogV). It 

a(iFp) c Wp(U, O$logV)) = IV,. 

Consider the commutative diagram 

where p is also the Poincare residue (P(c&) = c). It is easy to see that ,/3 
is an isomorphism on cohomology by Poincare lemma, and RP is also an 
isomorphism by Lemma 2. Thus czp is also an isomorphism. By induction on 
p, we get quasi-isomorphisms 

Qp : w, + w,. 

For p = k we obtain a quasi-isomorphism of complexes A’@([l,. . . , <k) and 
H’(U, O+(log V)). Thus, we have proved 
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Lemma 3. The complexes {j+ 0,) d} and C&(log V), d} are quasi-isomorphic. 

Corollary. H’(X, C) = H’(X, O+(log V)). 

As was noted above, the bicomplex E&(logV) is a fine resolution of the 

complex O+( log V). The complex &$( log V) is the full complex associated 

with E$(log V), and so the fineness of the sheaves &$log V) we get the fol- 
lowing de Rham theorem: 

Theorem. EP(X, C) = H,“(H’(y, &$(log V))). In other words, the coho- 

mology classes of a smooth algebraic variety X are represented by closed forms 

on fi; with logarithmic singularities along V modulo exact forms of the same 

kind. 

3.5. Now we are set to impose a mixed Hodge structure on Hn(X, Q). The 
weight filtration W on Hn(X, C) will be induced by the filtration Wl&$(log V) 

(where the indices have to be changed). Set 

Wk+nHn(X, C) = Hd”(HO(X, W,E$(log V))). (6) 

Using the Poincare residue, it can be shown that the weight filtration is defined 
over Q. 

The Hodge filtration is induced by the filtration 

FP&$(log V) = @ &g-i (log V). 

i2P 
(7) 

The remaining part of this section is devoted to showing that the filtrations 
defined in (6) and (7) induced a mixed Hodge structure on H”(X, C). 

To compute IIF(H”(x, E+(log V))) 1 e us use the spectral sequence defined t 
by the decreasing filtration 

w-l = W&$logV). 

The El term of this spectral sequence is equal to 

JqPA = f&P+P(~-P/~-P+l), 
(8) 

where.W-P = Ilo@, W-P). 

Lemma 4. The Hodge filtration (7) induces a pure Hodge structure of weight 

p + q on H~p+q(W-P/W--P+l). 

Proof. Applying Lemma 2 from Section 3.4 we obtain 

H;,(H’(X, W&#VL-l&$)) 2~ Hi-“(V@), &“(l,). (9) 

The sheaves Wl&$(log V) are fine. Therefore, from the sheaf exact sequence 

0 * VV-rE$(log V) t-+ W~&$(log V) I+ Wl&$(log V)/VV-&(log V) I-+ 0 
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we get that 

HO@, W&$-(log v)/W&~&$-(log V)) ” 
HO@, W&$(log V)) 

- 
HO(X, Q&$(log V)) . 

Applying (9) we get that 

E,p,q = ff;p+q W-P 
( I 

W-P+~),H~-~P(V(P) c) 
7 . 

Let WF’” = Ho@, WlEy(logV)). Then, 

F’(W-p/W-p+l) = 

The Poincark residue agrees with the Hodge filtration: 

RP : FT(W-p/Wp+~) -+ F’-pHo(V(p),EV(pq), 

and the filtration FqH’(V(p) , &v(r) ) defines a pure Hedge structure on 

161 

(10) 

H’ (V(P), C). It follows that the isomorphism (10) is a morphism of pure Hodge 
structures of weight -2, and so the lemma is proved. 

3.6. The Gysin mapping. The Poincark residue identifies the El terms of 
the spectral sequence with the cohomology of the varieties V(P) : 

RP : ETpjq = H-p+q(Wp/Wp-l) < Hq-2p(V(p),C). 

It turns out that under this identification that differential dl : El + El 
coincides with the Gysin map. Let us recall the definition. 

Let Y be a Kghler manifold, dim@ Y = d+l and let j : D L) Y be a smooth 
submanifold of codimension 1. The inclusion j induces a map on homology: 

A :H2d--n(D) -+H2d--n(Y). (11) 

On the other hand, on Y (and similarly on 0) there is a non-degenerate 
pairing 

(., .) : Hn(Y) x H2d+2-“(Y) + C, 

such that for 4 E Hn(Y) and ti E H2d+2-n(Y) 

This pairing defines the Poincark duality isomorphism 

TY :H2d+2--n(Y) + Hn(Y). 

The map 
y : Hn(D) + H”+“(Y), 
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dual to the map (11) (by virtue of Poincare duality) is called the Gysin map 
y=7ry .j* .7r;l. 

Note that the Gysin map y : H”(D) -+ W+‘(Y) is a morphism of Hodge 
structures of weight (l,l). Indeed, H,(X) = Hm(X)” and so for a Kahler 
manifold X H,(X) comes equipped with a pure Hodge structure of weight 
-m (see Section 1.7). The morphism (11) is a morphism of Hodge structures 
of type (0,O) with respect to this Hodge structure. It is easy to check that 
the Poincare duality isomorphism TX : H=J~-~(X) + Hn(X) is type (k,lc) 
morphism of Hodge structures for a &dimensional X. It follows that y = 
7ry .j* .lr;l is a morphism of Hodge structures of type (1, l), as a composition 
of morphisms of Hodge structures of types (d + 1, d + l), (0, 0), and (-d, -d), 
respectively. 

Let us study the Gysin map on the level of forms. Let [D] be a line bundle 
corresponding with the divisor D (see Chapter 1, Section 5) and pick an 
Hermitian metric ] . ] on [D]. Let L be a section of the sheaf 0~ (D), whose 
zero-set coincides with D. Set 

and 

1 

71= 2743 
pdlog 1512 

Q = --&%log ]s]? 

The form (Y is a (1, 1)-form on Y, representing the Chern class cl[D] of the 
line bundle [D] ( see Chapter 1, Section 5). 

In a neighborhood U of a point x E Y the divisor D can be given by the 
equation z1 = 0. In this neighborhood 

1 dzl 
rl= ----+DP, 

274i 21 

where p is some C” form of type (l,O). 
Let w be a closed form on D, degw = p. Let us extend w to a C” form I;r 

on Y, so that L;llD = w, and set 

T(w) = d(3 A 7) = d5 A 77 f Lz, A a. 

Since w is a closed form on D, the Poincare residue R’(y(w)) = 0. Therefore, 

‘y(w) E W*p+2 = Ker[R1 : &;‘2(log D) --+ &&“I. 

The sheaves W: are fine. By applying a version of Poincare lemma (see Nick- 
erson [1958]), it can be shown that the sequence of sheaves 

o-+cy -#,“4w,‘4... 

is exact. Thus 

Lemma 5. Hg(HO(Y, IV;)) = H”(Y, C). 
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Using this lemma, we can show that y(w) = H,*(H’(Y, IV;)) equals, up to 
sign, the image of the form w E Hip2 (D) under the Gysin map. To do this, 
it is sufficient to show that for any closed form w on Y 

J 'u(w) A 4 = zt J w A f#x 
Y D 

To prove the above equality, consider a tube T, of radius E around the divisor 
D. By Stokes’ theorem 

J ‘y(w) A 4 = - lim J t--to m, wAqA$=f J w A 4, 
Y D 

since lim E+e J;“” f(eeie)&3 = f(0) for any C” function f. 

Lemma 6. dl : El + El coincides with the Gysin map. 

Proof. The class I$ E EFplq = H-P+q(W,/W,-1) can be represented by 
form 4 E W &~p+q(log V), px 

such that d4 = 0 in Wp/Wp-1, that is, 

RPdg5 = dRp4 = 0. 

Thus, d$ E Wpel. 
By definition of the differential dl in the spectral sequence, the class dl$ 

equals the class d4 in Wp-1/Wp-2, that is dl$ = Rp-‘d4, in view of the 
identification Ef” = HQ-2P(V(P), C). 

Let ~1 = vi, A . A vi,, where Q, = ha log I% I 2 is the form defined 

above for the divisor D = Vi,, on X. It is not hard to check that for the form 

II, = 41 A rlr 
R’%)I”I = 4IlVI. 

Simple computations show that if 

4= c ~IAw, 

lIl=p 

represents the class 4 E Erp,’ (where El p,q is identified with H’JM2P(V(P), C)), 

then the differential dl gives 

Rp-1d4vi,,..,,i,~1 = f C(d$i, ,___, i,-1 A ~j f &I,..., i,-l,j A aj). 

Thus, dl coincides up to sign with the Gysin map. The lemma is proved. 

Since the Gysin map is a morphism of Hodge structures, so dl : El t El 
is a morphism of pure Hodge structures of type (l,l). Thus, the terms ET’,’ 
of the spectral sequence are equipped with a pure Hodge structure of weight 

P+ 4. 

Lemma 7. The spectral sequence (8) collapses in the E2 term, that is, d2 = 
d3 = . . . =O. 
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The proof of this lemma uses the same arguments as were used in Section 
2.7 to show an analogous result for a variety with normal crossings. 

3.7. To complete the proof of Theorem 2, we need to check the independence 
of the definition of the mixed Hodge structure on H’(X, C) from the choice of 
the proper compactification and to check the functoriality of the definition. 

First, let us note that if a morphism f : X + Y of smooth varieties is 
extended to a morphism 7 : x + y of the proper compactifications, then the 
induced map 

f* : &;‘l(log(Y\Y)) t &“(log(X\X)) 

agrees with the weight and Hodge filtrations, and so f* : Hk(Y, C) -+ 
H”(X,C) is a morphism of mixed Hodge structures. Thus, the definition 
of the mixed Hodge structure on H’(X,C) is functorial. In particular, if 
X = Y and f : X + Y is the identity morphism, then the isomorphism 
f* : H”(Y,C) + H”(X,C) is an isomorphism of Hodge structures. 

To show the independence of the definition of the Hodge structure on 
H’(X,C) on the choice of compactification, it is enough to note that if 

i : X L) ?? is another proper compactification, then by Hironaka’s theo- 

rem, the varieties ?? and F are dominated by a third proper compactification 
k : X L) X, so that the diagram below commutes (Hironaka [1964]): 

3.8. As was previously noted (see Section 3.5) the Hodge filtration on 
H’(X, C) is induced by the Hodge filtration 

FPE$(log V) = @ &$+‘(log V). 
i>P 

Furthermore, the bicomplex E”(log V) with the Hodge filtration is a fine res- 
olution of the complex L’+(logV) with the ‘%tupid” filtration 

FPO$logV) = {. . . + 0 -+ .n$(log V) + OF’ (log V) -+ . .}. 

Therefore, the “stupid” filtration on O$(log V) also induces a Hodge filtration 
on 

H.(X, C) = H’(X, L+(log V)). 

The term *Wf’>” of the spectral sequence associated with this filtration has 
the form 
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FEpq = Hq(X, O$(log V)) * W+Q(x, Q. 

The following theorem is shown by Deligne [1972]. 

Theorem 3. The spectral sequence (12) collapses at the El term. 

(12) 

54. The Invariant Subspace Theorem 

4.1 Consider the following situation: let f : X + S be a smooth projective 
morphism of smooth complex algebraic varieties. In addition, suppose that S 
is connected. Fix an s E S and a fiber f-‘(s) = X, = V. 

As a mapping of C” manifolds, the morphism f is a locally trivial fibration 
with fibers diffeomorphic to V. Therefore, the fundamental group ~1 (S, s) acts 
on cohomology H”(X,, Q). In particular, for each fiber there is a xl-invariant 
subspace 

H”(Xs,Q))“’ - H”(X,,Ql. 

Since f is a C” locally trivial fibration, the choice of trivialization of the map 
f over sufficiently small open set U c S identifies the spaces H”(X,, Q)xl 
for various s in U. Therefore, these invariant subspaces can be glued together 
into a constant sheaf I”. This sheaf can be described as follows. Let R”f*Q 
be the sheaf associated to the presheaf which associates to a an open set U in 
S the group H”(f-l(U),(Q). Then I” coincides with the constant sheaf on S 
with the fiber H”(S, R”f,Q). Indeed, the global section h of the sheaf R”f*Q 
defines in each fiber a local section h, E (R”f*Q))s, invariant under the action 
of 7r1, and conversely. 

For each point s E S we have an isomorphism 

4s : H’(S, Rnf&) 2i Hn(X,, Qrl, 

and the space Hn(X,, Q))“’ is a subspace of Hn(X,, Q) equipped with a pure 
Hodge structure of weight n, since X, is a smooth projective variety. 

Theorem 4. 

(1) The invariant subspace Hn(X1, Q))K1 in H”(X,, Q) has a Hodge substruc- 
ture. 

(2) The Hodge structure on H”(S, Rnf,Q) obtained by means of an isomor- 
phism $s does not depend on s. 

(3) If x is a smooth compactification of a variety X, then the composition 
of morphisms 

Hn(F, Q) + Hn(X, Q) -+ H’(S, R”f,Q) = In 

is surjective. 

Proof. For a smooth compactification x we have the commutative diagram 
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where i,; X, -+ X and 5, : X, -+ X are natural inclusions. 
By Theorem 2, the cohomology H”(X, Q) have a functorial mixed Hodge 

structure (H”(X, Q), W, F) and 

WJP(X, Q) = Im(W(X, Q) + Hn(X, 0)). 

In addition, H”(X, Q) and Hn(X,, Q) also have a pure Hodge structure of 
weight n and all of the arrows in the diagram are morphisms of the mixed 
Hodge structures. From the strictness of the morphisms of the mixed Hodge 
structures, it follows that 

Imbz = Imiz. (13) 

Consider the Leruy spectral sequence (Godement [1958]) with the term 

Epq = HQ(S, RPf*Q) =+ Hp+Q(x, Q). 

It turns out that the following theorem is true (Deligne [1972]). 

Theorem. The Leray spectral sequence for a smooth projective morphism 
f  : X + S of smooth algebraic varieties collapses in the term 

Epq = HQ(S, RPf*Q). 

The proof of this theorem is based on the hard Lefschetz theorem (Chapter 
1, Section 7). 

From the collapsing of the Leray spectral sequence at the E2 term it follows 
that the canonical mapping 

j : lP(X,Q) + HO(S,R”f*Q) 

is surjective. In addition, the map 

iz : H”(X,Q) -+ H”(X,,Q) 

can be decomposed as follows: 

i; : H”(X,Q) + HO(S,Pf*Q) 3 Hn(X,,Q))X’ 9 H”(Xs,Q). 

On the other hand, iz is a morphism of mixed Hodge structures. Therefore, 

H”(Xs, Q)“’ , as an image of a Hodge structure, is a Hodge substructure in 
Hn(X,, Q), which proves (1). 
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We can introduce a Hodge structure on H”(S, Rnf,Q), as a quotient struc- 
ture on H”(X, Q). This quotient structure is independent of s, which proves 
(2). Part (3) now follows from equation (13). 

In homological terms, Theorem 4 can formulated as follows. We say that a 
cycle c on X is vanishing (globally), if it is null-homologous in x. For example, 
a cycle of the form c - g*c, where g E ~1 (S, s), is vanishing. Theorem 4 claims 
that the converse is true; that is, the space of vanishing cycles is generated by 
cycles of the form c - g*c. 

4.2. Using Theorem 4, Deligne [1972] reached the following conclusion 
about the semi-simplicity of the monodromy action. 

Complete Reducibility. The monodromy representation on H” (X,) is com- 
pletely reducible. 

In other words, the theorem claims that for any 7ri-invariant subspace V c 

H’(X,) there exists a 7ri-invariant W c H”(X,), complementary to V. The 
idea of the proof is to check this first for V = Hk(Xs)Xl. On H”(X,) we have 
the Hodge bilinear form (see Chapter 1, Section 7), and we can set W = VI. 
From theorem 4 it follows that V is equipped with a Hodge structure, and 
this Hodge structure is a Hodge substructure of that on Hk(Xs). It follows 
that the Hodge bilinear form on V is non-degenerate and V fl W = 0. The 
general case is reduced to this case by formal manipulation. 

4.3. As a corollary of Theorem 4 we see that if a section w of the sheaf In is 
of type (p, q) (as an element of Hn(X,, C)) at some point s, then it has type 
(p, q) everywhere. 

In particular, let D1 be a divisor in the fiber X,, and let ~(0~) = 
w1 E H’(X,, Z) is the Chern class of this divisor. Then w, has type (1,l) 
(see Chapter 1, Section 8). If w, is invariant under the monodromy action 
7ri(S,s) + Aut(H2(X,)), th en it is produced by some class w E H2(X, Q), 
also of type (1, l), according to Theorem 4. Therefore, (Chapter 1, Section 
8), a rational multiple of w is the Chern class of a divisor D on x, such that 
D n X, is homologous to nD, for some n. In particular, if the base S is simply 
connected, then every divisor D, on X, is produced (up to rational homology) 
by a global divisor on x. 

4.4. Let us formulate another consequence of Theorem 4, having to do with 
the period mapping. Let the algebraic variety S be simply connected, then 
the Hodge structure on H”(X,, Q) is constant (not dependent on s.) If in this 
case the local Torelli theorem holds for the fibers X, (see Chapter 2, Section 
5), then the morphism f : X + S is a locally trivial family in the complex 
topology. In particular, if f : X -+ C’ is a smooth family of varieties for 
which the local Torelli theorem holds, then this family is locally constant in 
the complex topology. A similar statement holds when S = C1 \{O}. Indeed, 
in this case the monodromy is local in character (it comes from going around 
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0), and hence is quasi-unipotent, according to Landman’s theorem (Chapter 
5, Section 1.3). Replacing @’ \{O} by an unramified covering, we can assume 
that monodromy is unipotent. On the other hand, the global monodromy is 
semi-simple, and hence trivial. This implies that a non-trivial fibration over 
P1 of varieties for which the local Torelli theorem holds have at least three 
degenerate fibers. 

$5. Hodge Structure on the Cohomology of Smooth 
Hypersurfaces 

5.1. Let X be smooth hypersurface of degree N in complex projective space 
I!?” = lF’. In this section, using the existence of a mixed Hodge structure on 
cohomology Hi(U,Q of the affine variety U = If’\X, we will compute the 
Hodge numbers hP)Q = dim W’)Q(X). 

The hypercohomology exact sequence induced by the exact sequence 

where Res is the Poincare residue map, is an exact sequence of morphisms of 
mixed Hodge structures: 

. . -+ Hm-2 4 Hm(P) 5 Hm(U) 9 Hm-l(X) 3 Hm+‘(P) -+ . . . , (14) 

where i' is induced by the inclusion i : U + P, y is the Gysin homomorphism 
(see Section 3.6) and R es is a morphism of mixed Hodge structures of weight 
-2 (see Section 3.4). 

According to the weak Lefschetz theorem, for m < n - 1 the maps 

j* : Hm(P) + Hm(X) 

are isomorphisms, where j; X L) IF’ is the natural inclusion. By duality, 

y : H”(X) -+ Hm+“(lP) 

are also isomorphisms of Hodge structures for m > n - 1 and epimorphisms 
for m = n - 1, and, as is well known, for k < n, H2k(lP,C) = H”l”(IP), and 
H2”-l(P, 9 = 0. Thus, by Poincare duality, it is sufficient to compute the 
Hodge structure on HP-‘. 

5.2. First of all, let us note that in the exact sequence (14), 

i* : Hn(lF’) -+ H”(U) 

is the zero map. Indeed, if n is odd, Hn(P) = 0, while if n is even, then by 
duality it is sufficient to show that i* : H,(U) -+ H,(P) is the zero map. The 
space H,(P) is generated by the homology class of P”j2 L) lF. Suppose that 
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for Q E H,(U) we have i,(a) = k[P”/2]. C onsider the intersection of i,(a) 
with a plane section of X of dimension n/2. We have 0 = k . deg X, so k = 0. 

Thus, we have the exact sequence 

0 + H”(U) 3 H-l(x) 4 Hn+l(P) t . . . . (15) 

Using the Gysin map, it is easy to show that Ker[HnV1 (X) + H”+‘(P)] 
coincides with the primitive cohomology P-l (X, c) of the variety X Thus, 

P”-‘(x) = P(U)(l), (16) 

since the Gysin map is a morphism of mixed Hodge structures of weight 2. 

5.3. Let us compute the mixed Hodge structure on H”(U). From (15) it 
follows that the Hodge structure on H”(U) is a pure structure of weight n + 1. 

As we saw in Section 3.8, the Hodge filtration F on H’(U,C) is induced by 
the “stupid” filtration on the logarithmic de Rham complex &(log X) and is 
the limit filtration in the collapsing spectral sequence 

Erlq = Hq(P, Q;(logX)) + Hp+q(U, C). 

Therefore, 
FPH”(U)/FP+lH”(U) N H”-p(P, .n;(logX)). 

It remains to compute the dimension of the cohomology HQ(P, flL(logX)), 
which is equal to hp)n-P+l (V). 

5.4. In order to compute Hq(P, $(logX)) consider the sequence of sheaves 

where L$(mX) denotes the sheaf of holomorphic i-forms on U which have 
poles of at most m-th order along X. It turns out that the sequence (17) is 
exact. Indeed, let x1,. . . , z,, z be local coordinates on P, such that z = 0 is 
the local equation of the divisor X. For k > 0 the local section of the sheaf 
ai+’ (( k + 1)X)/$?” (kX) can be written as 

w = @P+k-l(z) A ds + Gp+k(Z) 

zlc+1 Zk+2’ 

where 4p+k-i and $p+k are holomorphic forms, depending on zl,. . . , .z,-~. 

Thus, the image dw E L$+“+‘((k + Z)X)/f@“+‘((k + 1)X) is 

dw = (~P+"+I ck + yf~;* A d, 

Thus, the exact forms are those that can be written as $$, but these are 
also the closed forms. It remains to check the exactness of the sequence (17) 
in the Q:(X) term. We have 
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d 
0 

g = z + (-l)‘+‘$ A dx E (-I)P+‘$ A dx E fl;++X)/~;+l(~). 

Thus, $ E Ker d if and only if 4 = $J A dx, hence $ = w A % E fii(log x). 

5.5. Let us use Bott’s theorem (Hartshorne [1977]) to compute 
HQ(lP, f2;(kP1)) = W(P, L?;(k)). 

Theorem (Bott). HQ(P, o:(k)) = 0 for q > 0 and k > 0. 

By examining the cohomology exact sequence associated with the exact 
sequence of sheaves 

0 + fg(k) -+ Lg(k + 1) + 6$(k + 1)/0;(k) + 0, 

we obtain the following corollary from Bott’s theorem: 

Corollary. 

(1) Hi(P, L$+“((k + l)X)/L?;+k(kX)) = 0 for i > 0, 

(2) 

fP(P, p flp+w + 1)X) ) = HO(P, fg+“((k + 1)X)) 

.n;+” (ICX) Hop, fg+“(kx)) 

for lc > 0, 
(J) HPP, QP(l%X)) coincides with the q-th cohomology of the complex 

{H’(P, L’;+“((k + l)X))/H”(F’, .n;+“(kX)),d}. 

Thus in the case of interest, where p + q = n, we have 

frP(P, fl$(log X)) = 
Ho@, fW(n -P + 1)X)) 

HO(P, flg((n - p)X)) + dHO(P, f$-‘((n - p)X)) ’ 

We now have to compute the bases of Ho@, Qg(kX)) and of H”(P, OF-‘(ICX)) 
and to compute the differential d on H”(P, a:-‘(ICX)). 

5.6. The basis of H’(P, fig(kX)). Let 20,. . . , z,, be homogeneous coordi- 
nates in P, and let X be defined by the homogeneous equation f (2) = 0 of 
degree N. 

The projective space IP” is covered by affine charts Vi = {z E IP’]zi # 0) YZ 

en, i = O,l,..., n, with the coordinates 
( 
2,. . . , y, . . ,2 

> 
. Denote the 

coordinates in Us by x1 = E;, . . . ,x, = k, and the coordinates in Ur by 
y1 = $...,yn = 2. Then the section of “tKe sheaf flF(IcX) over Us can be 
written in the form 

where 

w= c Tdx, 
Q 

9O(Xl,~. .,x7x) = 
f(ZO,.‘.,Z,) 

ZO” 

= f(l,Xl,...,X,) =o 

(18) 
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is the equation of X in Uo, where (Y = ((~1,. . , a,) E ZT and xa = xal . . :xEn 
and dx = dxl A.. . A dx,. This form w is in H”(p, L$(kX)) if w has no poles 
over the points of the hyperplane section zo = 0 (that is, on F’\Uo). Thus, we 
need to move into the chart VI and see: under what conditions on Q is y1 not 
in the denominator of the expression of w in the local coordinates ~1, . . . , yin. 

We have x1 = y;’ and xi = yiyll for i > 1, thus dzl = -yT2dy1 and 
dxl = yc’dyi - yiyL2dy1. In addition, 

go(y) - f(z) - fCz) 5 N 
20” ( 1 Zl” zo 

= 91(Y)YIN, 

where gl(y) = 0 is the equation of X in the chart Ul. Substituting all of this 
into (18), we get 

kN 

w= 
c G-xYl 

-aly;z . . . y;“y,“2-“‘-Q” JLyl -“-‘dyl A.. . A dy,, 
a 1 

which simplifies to: 

c 
& w= GYYl 

kN-al-...--a,-n--lY;z.. .y,*n-. 

a d(Y) 

It follows that w has no poles over the hyperplane section zo = 0 if and only 
if, for all non-zero c, 

SN-lal-n-120, 

where ILY[ = Cyzl 3 cu~.Setting~+l=((~~+l,...,~~+l),wefinallyseethat 
the forms 

xQ dx w -- 
“-d(x) ’ 

Q E z;, IQ + 11 < kN 

are a basis of the space H’(lF’, Q~(kX)). 

5.7. Basis for HO(lF’, L?F-‘(kx)). Let dPi = dxl A . . . A dTi A . . . A dx,. 
Then one can write a section of the sheaf .n,“-‘(kX) in the form 

C c,,i$dSi. 
a,i 

A computation, quite similar to the one above, to find the conditions for the 
regularity of this form at infinity (that is, over lF’\Uo) lead to the following 
basis for the space Ho@, K2F-l (ICX)) : 
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5.8. Computation of the differential. We need to compute 

d : ITOp, q-l (kX)) + HO(P, L?$( (k + 1)X)). 

Omitting elements of Ho@‘, flg(rCX)), we have 

x” &Jo =-k-- - k+l ax. dxi A dzi 
90 2 

= (-l)“kggdx 

= (-l)‘kEw,, 

(19) 

and 

2 c(-l)jxjdZj z -k&dgo A (x(-l)jxr A dZj) 
90 

(20) 
= -$$- @x$)dx. 

5.9. Let, us recall that the computations of the bases for HO(IF’, 6$(,4X)) and 
H”(P, 0,“-‘(lcx)) and of the differential d was needed for the computation of 
the Hodge numbers IV(X). On the other hand, it is known (see Chapter 2, 
Section 3), that the Hodge numbers are invariant under smooth deformation. 
We can thus take X in IP is given by the equation 

zo” + . . + z,” = 0, 

and compute the Hodge numbers for this particular variety X. 
Wehavego=l+C~I=lx~andCx. 3 2 = Ngo - N. From equations (19) 

3 
and (20) we get that 

d(q,i) = (-l)ilCNxr-l~a, 

d(Ta) E -kNw,. 

We see that the basis of the space 

H’(P, L’,“((k + l)X))/H”(lP, .n,(rCX)) + dH”(P, .n;-‘(kX)) 

consists of the forms w,, where (Y = ((~1,. . . , a,) satisfy the following condi- 
tions: 

5.9.1 0 5 cY( 2 N - 2, i = 1,. . . ,72. 

5.9.2. kN < Ia + 11 < (k + l)N. 
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5.10. Collecting the results of Sections 5.2-5.9, we finally see that for 
p+q = n - 1 the Hodge numbers of the primitive part PnP1 of the cohomology 
HnW1 (X, c) of a smooth hypersurface X in IF’* of degree N are equal to 

hE>’ = card{0 E Z”lqN < IpI < (q + l)N, 0 < pi < N) 

~ the number of integer points in the hypercube [l,N - lln lying strictly 
between the hyperplanes Cy=“=, /?i = qN and Cy=“=, /3i = (q + l)N. 

Let b,“-’ = dim P-l(X) for a smooth hypersurface X of degree N’in P”. 
Then 

b,“-’ = c %1q(x), 
p+q=n-1 

and is equal to the number of the integer points of the hypercube [l, N - lln 
not contained in the hyperplanes ]p] = kN. Note that projection onto one of 
the coordinate hyperplanes establishes a one-to-one correspondence between 
the integer points of the hypercube [l, N - lln lying on the hyperplanes I/?] = 
kN and the integer points of the hypercube [l, N - l]+’ not lying on the 
hyperplanes of this same type. Thus, we have a recurrence of the form 

b,“-’ + b;-’ = [N - lln. 

For small n we have 

b; = N - 1, b; = (N - 1)2 - (N - 1). 

In general, an inductive argument shows that 

b,“-’ = (N-l)“-(N-l)“-l+. . .+(-l)“-l(N-1) = y[(N-l)“-(-1)“]. 

5.11. Let us compute the geometric genus p,(X) = dimH’(X, fig-‘) of a 
smooth hypersurface of degree N in P”. From Section 5.10 we know that 

Pg(W = ho ,-13’(X) = card{P E FE”],& > 0,O < ID] < N}. 

Thus, 

N-l N-l 

J+(X) = c card{/3 E W]],8] = k} = c card{a E Zn]ai > 0, lo] = k - n}. 
k=l k=l 

In particular, pg(X) = 0 for N 2 n. 

The summands card{E iZn]cri < 0, IQ] = 1) are equal to the number of 
monomials of degree 1 in n variables, and it is easy to check that 

card{E Zn(ai 2 0, IQ] = 1) = (“‘t-1). 

Thus, for N > n 
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Table 

N 2 3 4 5 6 7 

h 3,O ( VN ) 0 0 0 1 5 15 

h 291 ( VN ) 0 5 30 101 255 379 

or, finally, for N > 12, 

Pg(X) = 

5.12. Let us compute the Hodge numbers of smooth hypersurfaces of degree 
N in P” for some specific values of n and N. 

5.12.1. The genus of a plane curve of degree N. 

g = h’30 = 
= (N - l)(N - 2) 

2 

5.12..2. Surfaces SN of degree N in IF”. 

b; = (N - 1)(N2 - 3 + 3), 

h2,O = ho,2 = (N - l)(N - 2)(N - 3) 
6 

> 

/$,I = b2 _ C&2,0 = cN - 1)(2N2 - 4N + 3, 
0 0 3 

Table 

) 

5.12.3. Threefold of degree N in P4. 

b;=b3=(N-1)(N3-4N2+6N-4), 

h310 = h”13 = $(N - l)(N - 2)(N - 3)(N - 4), 

h211 = h1’2 = ib3 - h310 = $(N - l)(llN3 _ 3CJN2 + 46N _ 24). 
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5.12.4. Quadrics in l?‘. Here N = 2, and so the cube [l, N - 11” consists of 
the single point (1,. . . , l), and if n is even then bt-’ = 0, while if n = 2k + 1, 
then bg” = ht’k = 1. 

5.13. Hodge numbers of complete intersections. Consider k non-singular 
hypersurfaces Xcal), . . . , Xc”“) of degrees al, . . . , ak in lPv+lc. If these hyper- 
surfaces are in general position, then the complete intersection X(ar , . . . , ah) = 

X(“‘) r-l . . . n Xc”“) is a non-singular projective variety. Hodge numbers of a 
complete intersection, just as in the case of a single hypersurface, depend only 
on the numbers N and al,. . . , ak, since Hodge numbers do not change under 
holomorphic deformation. 

There is also a beautiful formula of Hirzebruch (Hirzebruch [1966]), relating 
the Hodge numbers of complete intersections. In order to state it here, we will 
need the following notation. For an arbitrary coherent sheaf F on X let 

x’(X, F) = x(X, F @ f$& 

where 

X(X, F) = e(-l)q dim Hq(X, F) 
q=o 

is the Euler characteristic of the sheaf F. Introduce the formal polynomials 

xv(X, F) = c x(X, F)yp 
Pa 

In the special case where F = 0~ is the structure sheaf on X, 

xyw, 0x1 = c x(X, f%)YP 
P20 

= c (-l)qypdimHq(X, 0%) 

PAZ0 

= c (-l)“yphp>q. 
P48J 

Hirzebruch Signature Formula. Let XN = X(ar , . . . , ak) be a complete 
intersection in lP+’ and let Ox(m) = 0~ (l)@m, where OX (1) is the sheaf 
associated with the hyperplane section on XN. Then 

(1+ xy)rn-1 k 
2 &/(XN, Odm)bN+” = (1 _ Zp+l n 

(1+ xy)ai(l - Z)a; 

N=O 
i=l (1 + Zy)ai + y(l - .z)ai 

Hirzebruch’s formula follows from the proof of the Riemann-Roth formula 
(see Hirzebruch [1966]). 

We are interested in the numbers h p)q = dim HQ(X, n$-), and so we should 
set m = 0. Then 
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cc k (1+ Zy)ai - (1 - Z)@ 

N=O 
(1+ $1 - z) g (1+ zy)@ + y(l - z)a; . 

This formula, together with the Lefschetz theorem on hyperplane section (see 
Chapter 1, Section 9) allows us to compute Hodge numbers of complete in- 
tersections. 

$6. Further Development of the Theory of Mixed Hodge 
Structures 

In recent years, the theory of mixed Hodge structures continues developing 
explosively. In this section we will briefly indicate some of the directions of 
this development. 

6.1. Variation of mixed Hodge structures with a graded polarization. 

Definition. A variation of mixed Hodge structures is an ordered quadruple 
(S, Hz, w, F), consisting of a local system Hz of free Z-modules of finite rank 
over a connected complex manifold S, and two filtrations: a decreasing filtra- 
tion W on Hz by primitive local subsystems and an increasing filtration F by 
holomorphic subbundles of the holomorphic bundle Ho = Hz @ 0s satisfying 
the following the conditions: 

(1) For each point s E S, the fiber (Hz, II’, F)(s) is a mixed Hodge structure 
(see Chapter 4, Section 1). 

(2) The Gauss-Manin connection V on Ho corresponding to the local system 
Hz (see Chapter 2, Section 4) satisfies the condition 

VFPHo c f& @ F*-lH 0 

for all p. 

Suppose that we have a collection Q = {Ok} of locally constant (-l)“- 
symmetric Qvalued bilinear forms on 

Grr HQ = W’k @ Q/Wk-, 8 Q, 

such that for all k and for all s E S, the form Qk defines a polarization in the 
fiber (Grr Hz)(s), that is, 

Qk((F* Gr!? HO)(S), (F - k *+l Grr Ho)(s)) = 0 

for all p, and 

Qk(CU, Gi;l) > 0 

for all the non-zero u E (Grr Ho)(s), where C is the Weil operator on 
Grr Ho defined by the filtration F (see Chapter 1, Section 6). Under these 
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assumption, the variation (S, Hz, W, F) is called variation of mixed Hodge 
structures with a graded polarization. In Section 1 of Chapter 2 we defined 
a classifying space for polarized Hodge structures. This definition can be ex- 
tended to the case of mixed Hodge structures with a graded polarization. To 
wit, let (Hz(O), W, F, Q) be the fiber of the variation of mixed Hodge struc- 
tures with graded polarization over the point 0 E S. Let .sP = dim FHc(O) 
and let ji = dim FP Grr H@(O). Just as in Chapter 2, let 

F = {F E Flag(Hc; . . . , f p, . .) ] dim FP Grr He(O) = fi Vp, k} 

be the flag space, and let 

Xk : F -+ .?=k = Flag(Gry H@(O);. . . ,f,“, . . .) 

be the map sending FHc(O) to F Grr H@(O). 
The polarization Q allows us to define spaces 

& = {FE &$&(Fp,Fk-p+l) = O,vp}, 

Dk = {F E i?klQk(Cu,E) > 0,Vu E Grr Hc(O),u # O}. 

Set ri = nk x;’ (fiii,) e F, and D = nk 7ri’(Dk) C D. 
Let us introduce maps ii : D + n, fi)k, which sends F to (. . . , rk(F), . .) 

and x : D -+ n, Dk, which is the restriction of 5 to D. 
On the space F there is an action by the group 

Let 

GLw II@(O) = {g E GLHc(O)lgWk = Wk VJk}. 

G@ = {g E GLw HuJ(O)I Grr g preserves Qk for all k}, 

Gw = {g E Gck/I-lwKO = Ilw(O)>, 
Gz = {h E GcIgHdO) = fM0)). 

Let G be the group 

where Gc = G& . GE is the decomposition of Gc into the unipotent radical 
G& and the semistable part GE. 

Just as in Chapter 2, it can be shown (see Saito-ShimizuUsui [1987], Siegel 
[1955]) that G acts transitively on D, Gz acts properly discontinuously on D, 
and 5 : fi + n, fi)k is a homogeneous algebraic vector bundle relative to the 
action of the group G@. In the tangent space TD we can define a holomorphic 
subbundle of Tih of horizontal vectors, and (Siegel [1955]) Tzh agrees under 

the ir action with the horizontal subbundle CBT& on n, fik. 
For a variation of mixed Hodge structures with graded polarization 

(S, Hz, W, F, Q) we can define a mixed period mapping 
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where r = Im(7ri (S, 0) + Gz). This map @ is compatible with respect to n 
with the period mappings 

defined by the variations of polarized Hodge structures 
(S, Grr HZ, F Grr Ho, Qk) for all k, where rk = Grr r. 

It can be shown (Saito-Shimizu-Usui [1987], Siegel [1955]) that the map 
@ has a locally horizontal lift, since this is so for the period maps @k (see 
Chapter 2, Section 3). 

6.2. Deformation of a smooth pair. A smooth family of a pair is a quadruple 
(Itt, y, f, S), consisting of a connected complex manifold S, a proper smooth 
morphism f : % + S of a complex manifold 3t and a divisor with normal 
crossings y = lJYi in 3t, such that the intersections Yi, fl . . . n yi, are smooth 
manifolds on S for all of the choices ii, . ..,‘&k. 

Let X be a compact complex manifold and let Y be a divisor with normal 
crossings in X. Let 

Tx(-1ogY) = (0 E Tx]Oly c Iv}, 

where 1~ is a sheaf of ideals of the divisor Y in X. It can be shown (Kashiwara 
[1985]), that there exists a semi-universal family of deformations of the pair 
(X, Y) (analogous to the Kuranishi family, see Chapter 2, Section 5); further- 
more, TX (- log Y) coincides with the sheaf of infinitesimal automorphisms of 
the pair (X, Y). The cohomology Hl(Tx(- logy)) coincides with the set of 
infinitesimal deformations of the pair (X, Y), and Hz (TX (- log Y)) coincides 
with the space of obstructions. 

Just as in the classical case, for the smooth family of the pair (Z, Y, f, S) 
we can define the Kodaira-Spencer mapping 

ps : T,(s) -+ H1(GtJ-logY.d, 

where ‘& = f-‘(s) is the fiber over the point s E S (analogous to Ys). 

6.3. The period mapping for the smooth family of a pair. Let (3c, y, f, S) 
be a smooth family of a pair, and let f be a projective morphism. Let us 
define,the period mapping for this family. It can be shown ( Saito-Shimizu- 
Usui [1987], Siegel [1955], see also Chapter 4, Section 2) that the cohomology 
spectral sequences of the relative logarithmic de Rham complex n;(log y), 
defined by the weight filtration and the Hodge filtration F, collapse, respec- 
tively in the wE2 = WE, and FEN = FE,. Thus, we have a variation 
of mixed Hodge structures with graded polarization (S, R;(f), W[n], F, Q), 

where R;(j) denotes the the sheaf R”f*f,Z,\y modulo torsion, and (W[n]k)z 

denotes the primitive part of the sheaf (w[n]k)Q fl R,“(f). For the variation 

6% R;(j), W4, F, Q) we also have the period mapping of mixed Hodge struc- 
tures’ 
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@: S -+ r\D. 

Let 3 be the local lifting of @ at s. Then ( Saito-Shimizu-Usui [1987]) the 
diagram (compare Chapter 2, $5) 

Ts(s) d@: T;‘@(S)) c T&8(S)) 

P 

is commutative up to sign (where 

so = Hom(WQ) ( H”-p(~~~((logY,)),H~-P+l(R~~l(logY,)))). 
Using this diagram, we can obtain an infinitesimal mixed Torelli theorem 

(see Chapter 2) for various classes of smooth pairs. Let us mention one such 
result, due to Griffiths [1983b] and Green [1984]. Let (X,Y) be a smooth 
pair, dim X > 2, and Y be a very ample divisor on X. Let Ox(l) = Ox(Y) 
and let D1 (OX (l), OX (1)) be the sheaf of first-order differential operators on 
the sections of the sheaf Ox (1). Let A C X x X be the diagonal and let 
pi : A + X be the projection maps. We have the following: 

Theorem (Green [1984], Griffiths [1983b]). Let Y be a smooth subvariety 

ojX such that 

Hq(Aq-lD1(O~(l),O~(l))(-q)) = 0 

for 1 < q 5 n - 1 and, furthermore, 

Hl(la @pp;Kx(l) C3p~Kz(n - 1)) = 0, 

where Kx is the canonical sheaf on X and Kx (m) = Kx 18 0~ (- l)@m. Then 

the map 

E, : Hl(Tx(-logy)) --+ Hom(H”(~~(logY)),H’(R~-2)) 

is an inclusion. 

There are also several results (Donagi [1983], Saito [1986], Green [1984]) 
having to do with the generic Torelli theorem. Here is one: 

Theorem (Green [1984]). Let X be a smooth projective variety of dimension 

n > 2, the canonical class of which is very ample, and let L be a suficiently 

ample sheaf on X. Then the period mapping 

@ n+l : IL&/ Aut(X, L) -+ Gn+l,z\Dn+~ 

has degree one over its image, where lLlreg is the set of smooth elements of 

the linear system ILI. 
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6.4. Mixed Hodge structures on homotopy groups. The methods used by 
Deligne to introduce mixed Hodge structures on the cohomology of algebraic 
varieties can in certain cases be used successfully to introduce such structures 
on the homotopy groups of algebraic varieties. This has to do with the fact 
that the real homotopy groups 

7rn(X, q = 7rn(X) c&z R (n > 0) 

of a C” manifold X can be obtained by certain formal algebraic construction 
from the de Rham complex of these manifolds. Let us briefly describe some 
aspects of this theory. For a more detailed introduction the reader is referred 
to the survey Deligne- Griffiths-Morgan-Sullivan [1975]. 

Let A be a graded differential algebra over a field K. This means that 

and multiplication satisfies 

x . y = (-l)%J . x,x E d’,y E A’. 

In addition, the algebra A has a differential, that is, a map d : A + A 
satisfying the conditions 

(1) d2 = 0; 

(2) d(d”) c dktl; 
(3) d(x . y) = dx . y  + (-1)“~. dy,x E A”. 

To any graded differential algebra we can associated the graded differential 
algebra of cohomology groups 

k>O 

equipped with the zero differential. We will call a graded differential algebra 
connected if A0 z K, and simply-connected, if it is connected and H1(d) = 

(01. 
For a simply-connected graded differential algebra A we can define the 

augmentation ideal 

A(d) = &>sdk 

and the space of indecomposable elements 

I(d) = A(d)/A(d) . A(d). 

The differential d is called decomposable, if for any element x E A 

dx E A(d 

Let V be a vector space, and let n be a natural number. The free algebra 
A,(V) over V is defined to be the polynomial algebra generated by V for even 
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n, and the exterior algebra over n if n is odd. The grading will be chosen in 
such a way that the elements of the generating space are elements of weight 
72. 

An elementary extension of a graded differential algebra A is a graded 
differential algebra of the form 23 = A @ A,(V), if the differentials do and du 

of the algebras satisfy the conditions 

d&t = dd; dB(V) c A. 

It is clear that da is decomposable if and only if dd is decomposable and 

da(V) c A(d)A(d). 
A graded differential algebra M is called minima& if it can be represented 

as an increasing union of graded differential subalgebras: 

Mo=KcM~cMac... c UMi=M, 
i>O 

where each extension Mi C Mi+l is elementary and dM is decomposable. 
A triple (A, M, p), where A and M are graded differential algebras and 

p : M -+ A is a morphism of graded differential algebras is called a minimal 

model of the graded differential algebra A if 

(1) M is minimal; 
(2) p induces an isomorphism of cohomology algebras. 

It turns out that any simply connected graded differential algebra A has a 
minimal model, defined up to isomorphism. 

Let us now look at the topological applications of these constructions. Let 
X be a C”-manifold, and 

P(X) 4&l(X) 4 . . . 

its de Rham complex E(X). The de Rham complex is obviously a graded dif- 
ferential algebra. Let X be simply connected, then E(X) is a simply-connected 
graded differential algebra. Let (E, M, p) be its minimal model. 

Consider, for i > 2, the space 

ci = (I(M)i 

conjugate to the space of the indecomposable elements of weight i. On the 
graded space - 

C==@Li 
i=2 

we can naturally define a graded Lie algebra structure: 

[.c,Cll c Gfl-1. 

This structure is defined by the map dual to the map 

d: 1(d) -+ I(d) ~3 I(d). 
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It is a remarkable fact that for n 2 2 there are isomorphisms 

cn N 7rn(X) I& R = 7rn(X, R). 

These isomorphisms can be chosen in such a way that the bracket [ , ] on C 
coincides with the Whitehead product 

GL(X)@GL(X) + ~n+m-l(X) 

on homotopy groups. 
These results, due, to the most part, to D. Sullivan, were applied by John 

Morgan [1978] to compute mixed Hodge structures on homotopy groups. 
First, let us note (Deligne- Griffiths-Morgan-Sullivan [1975]) that if X is 

a Kahler manifold, then the minimal model of the de Rham complex E(X) 
of X is the minimal model of its cohomology complex H*(X). Indeed, for a 
Kahler manifold there is an inclusion of graded differential algebras 

H*(X) 3 E*(X), 

since Hn(X) is just the set of harmonic forms on X, and exterior products of 
harmonic forms on a Kahler manifolds are harmonic forms. The inclusion 4 
defines an isomorphism on cohomology. Thus, if we take a minimal model of 
the algebra H*(X), we, by definition, obtain a minimal model for the de Rham 
complex. The filtrations defining a Hodge structure on the algebra H*(X) can 
be formally transferred to the minimal model, thereby defining a mixed Hodge 
structure on M and hence on the groups 7rn(X) 8,~ Q. 

In general, if X is a non-singular algebraic variety over @, X can be em- 
bedded into a compact Kahler manifold as the complement to a divisor with 
normal crossings. The weight filtration and the Hodge filtration on differen- 
tial forms with logarithmic singularities also induce certain filtrations on the 
minimal model of the complex E(X), which leads to the appearance of mixed 
Hodge structures on the homotopy groups of the variety X. 

An analogous approach can be applied to the fundamental group of an 
algebraic variety X, see the details in the references cited above. We will 
merely formulate some of the results. 

Theorem (Morgan [1978]). Let X be a non-singular complex algebraic ua- 

riety with ~1 (X) = 0. Then there exists a natural finite mixed Hodge structure 
on m(X) @z Q. The Whitehead product 

is a morphism of mixed Hodge structures. 

Recall that if X is simply connected, then for any two points x, y E X the 
groups 7rn(X, x) and 7rn(X, y) are naturally isomorphic. It turns out that this 
isomorphism is an isomorphism of mixed Hodge structures. 
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Now consider a non-simply-connected algebraic variety X with a basepoint 
z E X. Let Zni(X, CC) be the group ring of the group x1(X, CC) and let I c 
Zri(X, x) be the augmentation ideal, that is, the kernel of the natural map 

Z7rl(X, x) -+ z. 

Theorem (Morgan [1978], Hain [1987]). Let X be a non-singular algebraic 

variety, and let x E X. Then for any s > 0, there is a natural mixed Hodge 

structure on the Z-module Zrl(X, x)/P+l. The structures thus defined are 

functorial with respect to morphisms of varieties with basepoints. 

Chapter 5 
Degenerations of Algebraic Varieties 

5 1. Degenerations of Manifolds 

1.1. Let 7r : X + A be a proper map of a KBhler manifold X onto the unit 
disk A = {t E Clltl < l}, such that the fibers Xt = r-‘(t) are nonsingular 
compact complex manifolds for every t # 0. We will call such a map 7r a 
degeneration, and the fiber Xs = ~~(0) will be called the degenerate fiber. 

Let us call a map $ : Y + A a mod$ication of a degeneration r if there 
exists a bimeromorphic map f : X -+ Y, biholomorphic outside the degenerate 
fibers, and such that the diagram below commutes. 

A 

According to Hironaka’s theorem (Hartshorne [1977]), every map can be 
modified into a degeneration such that the degenerate fiber Xc is a divisor 
with normal crossings, that is, the map 7r in a neighborhood of each point 
x E Xe is defined by equations 

a2 a,+1 
xcp’ .x2 . . . .x,+1 = 4 CLi E Z,ai > 0, 

wherexi,..., x,+1 is a local coordinate system in a neighborhood of the point 
x. The degeneration is called semistable if ai 5 1 in equation (1) above. In 
other words, the degeneration is semistable, if the degenerate fiber is a reduced 
divisor with normal crossings. 

When studying many aspects of degenerations of manifolds, it is often 
enough to restrict ones attention to semistable degenerations. However, not 



184 Vik. S. Kulikov, P. F. Kurchanov 

every degeneration can be modified into a semistable one. Nonetheless, there is 
the following theorem (Mumford, Kempf et al [1973]), which makes it possible 
to reduce any degeneration to a semistable one after a change of base. 

Let o : A + A be a holomorphic self-map of the disk A, such that o(0) = 0. 
Starting with a degeneration n : X + A, we can construct a new degeneration 
TIT, = PrA : X, = X xA A -+ A, obtained from the degeneration 7r by way of 
the change of base cy : A + A : 

A- A 

The semistable reduction theorem. Let n : X --+ A be a degeneration. 
Then there exists a base change (Y : A -+ A (defined as t ++ t”, for some 
Ic E N) and a semistable degeneration$ : Y -+ A, which is a modification of 
the degeneration ra : X, + A. Furthermore, the modification f : Y -+ X, is 
a composition of blowings-up and blowings-down of nonsingular submanifolds 
of the degenerate fibers. 

1.2. Topology of semistable degenerations. Let us start the study of 
semistable degenerations with the study of degenerations of curves. For each 
p E X of a semistable degeneration of curves 7r : X + A we can choose a 
neighborhood U and local coordinates x and y so that U ? (1x1 < 2, ]y] < 2}, 
and the map 7r can be written (after a linear change of coordinates) as either 

4X:,Y) = x, (1) 

or 
4X,Y) = XY, (2) 

where in the second case the point p is a singularity of the degenerate fiber 
X0. Set U+ = Xt n U. 

In the first case the fiber Ut and the degenerate fiber UO have the same 
structure. We actually have an isomorphism ct : Ut + UO, defined by (t, y) + 

(OYY).. 
In the second case let Uz = {y = 0) and U, = {z = 0). Then Uo = {xy = 

0} = Uz U U, and U, n U, = p. The fiber r/l = {cry = 1) can also be covered 
by two charts Ul,v = (1x1 5 l} and Ul,, = {Iyl < 1). Define py : Ul,uY + U, 

and px : Ul,, + Uz by setting py(x, y) = JO, y) and pz(x, y) = (x:,0).-Let 

oz = p,(Ul,,) and oy = ~,(UI,,) and let XJ, = pz(U~,2 n VI,,), and XJ, = 
+(Ul,, n Ur,,). It is easy to see that fiz is the annulus (1 < Ix] < 2) and 
Ug = (1 < ]y] < 2) while aoz = {]y] = 1) is the boundary of I?, and similarly 

soy is the boundary of 0,). Furthermore, the fiber UI can be obtained from 
0, and r/, by gluing them along their boundaries 80, and 8ay. 
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Let f : (1 5 It] < 2} + {]z] < 2) be the map defined by the formula 
f(t) = (It] - 1)t. The map f contracts the boundary {It] = 1) to 0, and 
outside the boundary f is a bijective map from the annulus (1 < It] < 2) onto 
the punctured disk (0 < ]z] < 2). Thus, the maps f o pZ and f o py define a 

map cl : Ui + Ire (where Ui is viewed as i?, glued with 0,). The map cl is 

bijective over all points other than p, and cl’(p) N S1 = {Iv] = l} = 8aZ. 
Using standard partition of unity arguments, we can combine the local 

maps cl : Vi + Ue into a global map cl : Xi + Xe, which is bijective 
outside the singularities of the fiber Xg, and if p is a singularity of Xe, then 
c;l(p) E 9. 

The construction above can be generalized to arbitrary dimension. Specif- 
ically, for a fiber Xt of a semistable degeneration K : X + A there exists 
a map ct : Xt + Xc, such that ct is bijective outside the fiber Xe, and for 
singularities p 

Ct -l = (Sl)“, 

if p lies in the intersection of precisely k + 1 different components of the 
degenerate fiber X0. Furthermore, the map ct : X, + Xe can be obtained 
as the restriction of the map c : X + Xe onto Q, where c is a deformation 
retract of X onto Xe, compatible with the radial retraction A -+ (0) (see 
Clemens [1977]). This is the so-called Clemens mapping. 

1.3. Let K* : X* t A* be the restriction of the map 7r onto the punctured 
disk A* = A\O. The restriction r * is a smooth proper morphism. Therefore, 
we are in the situation described in Chapter 1, Section 10, and thus we have 
the monodromy map T : H”(Xt) + H”(Xt) on the cohomology of a fixed 
fiber Xt. This map is generated by the R-action on X, which lifts the rotation 
of A by the angle 2~4. 

We should note that the Clemens mapping c : X -+ Xs can be constructed 
so as to commute with the above-mentioned Iw action of X. Thus the mon- 
odromy T acts on the sheaf RQct* Z, and on the Leray spectral sequence cor- 
responding to the map ct : Xt + Xs (Deligne [1972]) 

E2p,q = Hq(X,,, Rqct*Z} + HP+q(Xt,Z). 

This allows us to deduce the theorem on the quasi-unipotence of the mon- 
odromy action: 

Theorem (Landman, see Griffiths [1970]). Let K : X -+ A be a degenera- 
tion, and let T : Hm(Xt) + Hm(Xt) be the Picard-Lefschetz transformation. 
Then 

(1) T is quasi-unipotent with nilpotence index m, that is, there exists a k > 0, 
such that 

(T” - id)m+l = 0. 

(2) If r is a semistable degeneration, then T is unipotent, that is, k = 1. 
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The idea of the proof of this theorem is as follows. Consider the fiber of 
the sheaf Rqct,Q at the point p E Xn. Suppose that in the neighborhood of 
this point the fiber Xe is defined by the equation 

zy . zp.. . . . z, - a, - 0 ) 

where we are assuming that the fiber Xe is a divisor with normal crossings. 
Let a=gcd(ar,... , a,) and let brar + . . + bray = a. In the neighborhood of 
the point p the rotation of the disk A by angle 4 can be locally lifted to the 
transformation of the neighborhood by the map 

(Zl,... 
ibl$ 6-d 

, ZT, G-+1,. . ., z,+I) + (exp(--- ~1,. . . ,exp(-- 
a ) a ) 

,&-+1>..., Zn+l)). 

The monodromy T is induced by the rotation by 27r, and since this is the trivial 
action, so is the action of Ta on (R*ct*Q&, . It follows that T”, where Ic = gcd 
of the multiplicities of the components of the divisor Xa acts trivially on the 
Ez term of the Leray spectral sequence for ct. Therefore, Tk acts trivially on 
E,, and thus T” acts unipotently on H”(Xt). 

1.4. Let consider degenerations of curves in greater detail. Let K : X + A 
be a degeneration, whose general fiber Xt is a complete curve of genus g. For 
different t, the corresponding fibers X, are homologous to each other, and do 
not intersect. Thus, the self-intersection index vanishes: 

(X,“)x = 0. 

Let us write the degenerate fiber as Xe = EriCi, where Ci are the irre- 
ducible components. We can assume that none of the components Ci are ex- 
ceptional curves of the first kind, that is, such that Ci N lF”, and (Cf)x = -1. 
By Castelnuovo’s blowing-down criterion (Moishezon [1966]), these curves can 
we blown down to points by monoidal transformations (see Chapter 1, Section 

1). 
There are certain topological conditions which must be satisfied by the 

components Ci. Firstly, the intersection matrix ((Ci, C~)X) is negative semi- 
definite, and 

(C SiCi, C SiCi))X = 0 

if and only if the divisor C siCi is a multiple of the degenerate fiber Xi. This 
follows from the Hodge index theorem (see Chapter 1, Section 7). 

Furthermore, it is known that the arithmetic genus pa(C) of an irreducible 
curve C on the surface X is 

p 
a 

(c) = (C>KX)X + 03x 

2 
+1>0, 

where KX is the canonical class of the nonsingular surface X. In particular, 
since Xt and X0 are homologous and (X:)x = 0, 
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Cri(Ci,KX) =2g-2. 

If we denote the arithmetic genus of the curve Ci by pi,, we get the following 
relation between the self-intersection indices (C~)X and the genera pi. 

cri[2pi - (CF)x - 21 = 29 - 2 

It turns out (see Moishezon [1965]) that the converse is also true, that is, 
if we are given a collection of data (A < ri,pi, g), where A is a negative- 
semidefinite matrix, A = (aij), of order n, T are positive integers, and pi and 
g are non-negative integers, 1 5 i < n, satisfying the relations 

rtAr = 0, 

then there exists a degeneration of curves of genus g with degenerate fiber 
Xe = C TiCi, such that (Ci, Cj)x = aij and p,(Ci) = pi. 

The conditions above allow us to describe the types of degenerations of 
curves. In particular, it is not hard to show that if 7r is a degeneration of 
rational curves (g = 0), then it’s trivial: Xe is a non-singular rational curve 
(recall that we have assumed the absence of exceptional curves of the first 
kind in the degenerate fiber). 

The degenerate fibers of the degenerations of elliptic curves were first de- 
scribed by Kodaira [1960]. These fall into the following categories: 

type Js is a non-singular elliptic curve; types ,1i and II are rational curves 
with one singularity of order 2, locally defined by the equation x2 + y2 = 0 
(type Ji) or x2 + y3 = 0, (type II); the degenerate fiber of type III consists of 
two non-singular rational curves, tangent in one poin; type IV consists of three 
nonsingular rational curves, intersecting in one point; all of the remaining 
types are divisors with normal crossings, and consists of nonsingular rational 
curves Ci with (Cf)x = -2. Figure 7 shows the degenerate fibers of these 
types (each line represents an irreducible component Ci of the divisor Xu, 
while the integers are the multiplicities ri). 

All of the possible types of degenerate fibers have been also described for 
degenerations of curves of genus 2 (see Namikawa-Ueno [1973], Ogg [1966]). 
In this case there are already around a hundred possible types. 

In Section 4 we shall consider the connections between the type of the 
degenerate fiber and monodromy. 
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$2. The Limit Hodge Structure 

Schmid [1973] in the K6hler situation and Steenbrink [1974] in the algebraic 
situation introduced mixed Hodge structure on the cohomology H*(X,) of the 
fiber XL of a degeneration. Here, we shall briefly describe Schmid’s approach 
to the construction of the limit mixed Hodge structures. 
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2.1. The limit Hodge filtration F,. Let r : X + A be a degeneration 
of Kahler manifolds. Looking at pure Hodge structures on the cohomology 
Hm(Xt) of the fibers Xt, t # 0, we have the period mapping 

r : A* + D/r, 

where D is the corresponding space of Hodge structures, while r is a certain 
discrete group. Let 

exp(27ri.) : U = {z E C] Im z > 0} + A* 

is the universal covering of the punctured disk A*, t = exp(27riz). Let ii : 
X -+ U be the lifting of the family 7r* : X’A* to U, where X’ = 7r-‘(A*). 
The period mapping T can be lifted to the map. 

@ 
U-D 

It is clear that 
qz + 1) = TV(z), 

where T is the Picard-Lefschetz transformation. Using the theorems of Mum- 
ford and Landman, we can assume that T is unipotent. Let 

N = 1ogT = T-id - 
(T - id)2 + 

2 . . . + (-1) 
m+l 0” - 4” 

m ’ 

and let 

where 6 = exp(-zN)@(z). It can be checked that &(z + 1) = 4(z). Thus, the 
map & induces the map $ : A* -+ fi, where $(t) = & (& log t) . 

Schmid [1973] h s owed that the map $ can be continued to a map 1c, : A -+ 
D. The filtration corresponding to G(O) E D is the limit Hodge filtration F,. 

2.2. The liit weight filtration IV”. The limit filtration W” is defined 
using the monodromy T, acting on Hz = Hm(Xt). By Landman’s theorem, 
N = 1ogT is a nilpotent map: Nm+’ = 0. 

Proposition. Let H be a linear space, and let N : N + H be a nilpotent 

map (N m+l = 0). Then th ere exists a natural filtration 

0 c W,, c . . . c W2, = H, 

satisfying the conditions 
(1) N(Wk) = wk-2, 
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(2) N(Wk) = ImN fl Wk-2, 
(3) N : GrK+k H + GrEPk H is an isomorphism, 
(4) N” : H + H is th e zero map if and only if Wm-k = 0. 

The filtration above is constructed as follows. Let W. = Im Nm, and let 
Wzm-l = Ker B”. Then, if for some k < m we already have 

0 C wo C . C wk-1 C wzm-k C . . . C wz, = H, 

satisfying 
Nm-‘+’ (wzm-k) c wk-1, 

then we can set 

wk/wk-1 = Im(Nm-kl~,,,,-k~~~-l) 

and 
WZm-k-l/Wk-1 = Ker(N”-kI~Zm--k~~k--l) 

and define wk and W2m-k-1 as the corresponding preimages of the spaces 
wk/wk-1 and Wsm-k-i/Wk-i under the map H + H/Wk-1. It can be 
checked that wk C W&,-k-i and that Nm-k(W2m-k-i) C wk. Therefore, 
the inductive hypothesis holds, and we can continue the construction of the 
filtration W. 

Let us apply this proposition to N : H”(Xt) --+ H”(Xt), and let us denote 
the resulting filtration by 

c w,- c . . . c w,- = Hz 21 H”(Xt). 

It turns out that the following theorem holds: 

Theorem (Schmid [1973]). 
(1) (Hz, F,, W”) is a mixed Hodge structure. 
(2) N : Hz + Hz is a morphism of Hodge structures of weight -2. 

The complete proof of this theorem turns out to be quite technical and 
cumbersome, and so we will omit it. 

In the next section we will show the relationship between this limit Hodge 
structure and the Hodge structure of the degenerate fiber. 

$3. The Clemens-Schmid Exact Sequence 

In this section we describe the construction of the Clemens-Schmid exact 
sequence, which connects the cohomology with complex coefficients of the 
degenerate and non-degenerate fibers of a Kahler degeneration of manifolds. 

3.1. Let rr : X --+ A be a semistable degeneration of n-dimensional complex 
manifolds. By shrinking A = {t E Ccl ItI < 1) we can assume that rr is defined 
over a neighborhood of the closed disk 2. Let x = r-‘(a), 8X = x-l(aA), 
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where dA = S1 = {ItI = 1). F ix a fiber i : XL L) aX over the point t = 1 = 
exp(2kO). We thereby obtain a triple of spaces (x, dX, X,). Topologically, 
the Clemens-Schmid exact sequence is obtained from the exact sequences of 
the pairs (ax, X,) and (x, 8X). 

3.2. The Wang exact sequence. The circle S1 can be viewed as the segment 
I = [0, l] with ends identified: 

exp(27G) : I -+ 9, 

and the pair (ax, X,) can be viewed as the quotient of the pair (X, x I, Xt x 

{Ol’-JXt x {ll), h w ere Xt x (0) and Xi x {I} are identified by the monodromy 

T:Xt x (0) +Xt x (1). 

We have an isomorphism of relative cohomology groups 

fryax, x,) 7 ryxt x I, x, x (0) u xt x (1)). 

From the exact cohomology sequence of the pair (Xt x I, X, x (0) U Xi{ 1)) 
we see can compute Hm (Xt x I, X, x (0) UXt x { 1)) by means of the sequence: 

H”(Xt) (‘) - H"(X,)@H"(Xt) - H”+‘(Xt x I) - 

Hm+’ (X,) 

The map i* coincides with the diagonal inclusion a -+ (a, a), which implies 
that d is an epimorphism and, consequently 

H”+l(xt x r,x, x (0) uxt x (1)) ” H”(Xt). 

Under this identification, the morphism d is the same as the subtraction mor- 
phism “-” : IP(Xt) @ II” -+ II”( where ” - ” : (a, b) + a - b. 

The map of exact sequences 



192 Vik. S. Kulikov, P. F. Kurchanov 

- Hrn(L3X) - H”(Xt) - , ,(~~,~) ‘(,, ““:xJt~ + H”+‘(w ----) 

0 - H”(Xt) ----) H”(Xt) 63 H”(Xt) L H”(Xt) -0 

associated with the map of pairs 

(Xt xi,xt x {0}u&u{1})+ (8X,X,), 

identifies the map d : Hm(Xt) + H “+‘(dX,Xt) E Hm(Xt) with the map 
id - T. Replacing id - T with T - id and T - id by 

N=logT=(T-id)- 
(T - id)2 + 

2 . . . 

does not change either the kernel or the image, and hence preserves the ex- 

actness of the sequence, since T - id = exp(logT) - id = 1ogT + e + . . 
(we use the fact that 7r is a semistable degeneration and (T - id)“Lf’ = 0). 

After replacing id - T by N in the exact sequence of the pair (8X,X,) we 
get the Wang exact sequence 

5 Hm(Xt) % Hm(Xt) 4 H”+‘(dX) 5 H”+l(Xt) -+ 

3.3. The exact sequence of the pair (x, 8X) 

+ Hm-‘(8X) + H”(;iS,dX) r, Hm(X) s Hm(dX) -s 

can be transformed with the help of 

(a) Lefschetz duality (Dold [1972]) 

Lef : H”(X,dX) N Hzn+sem(X), 

where 2n + 2 = dimn X and 
(b) the deformation retraction isomorphisms 

Hm(X) g Hm(Xo) 

and 

H 2n+2-m(y) 2 H2n+2-m(Xo), 

where c : x + X0 is the Clemens map of the space X to the degenerate 
map X0. The restriction of c to dX will also be denoted by i : dX -+ X0, 
while the restriction of c to X, will be denoted by ct : X, + X0. 

We get the exact sequence 

5 H+‘(dX) + H2n+2--m(XO) -% Hm(Xo) 3 Hm(dX) -+, (2) 
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3.4. The Clemens-S&mid sequence. The Wang sequence and (2) share 
terms Hm(dX). Let us braid these sequences together using the shared terms 
P(dX) : 

/\ /\ 

_ _ _ _ _. _ .“_ - - --t fp-l(Xt) N_ p-1(&) - - - - -Icl- - -c H*n+z...(m+l)(Xo) - H”+‘(Xo) 

so that the sequences of the form 

/‘\-FL 
are exact. Adding dashed arrows u and 11, we obtained two sequences in the 
upper and lower lines (they are similar, though in one of them m is always 
even and in the other, m is always odd): 

The above sequence is the aforementioned Clemens-Schmid exact sequence, 
where the maps are as follows: 

(1) N = log7 = (5” - id) - w + . . . , where T is the monodromy map, 
(2) p is the composition 

p : H2,+2-,(X0) 2 H2n+2-Tm LefN -+ fP(X,dX) r, WyX) E H”(Xo), 

(3) u = c; : P(Xo) + fP(Xt), 
(4) II, is the composition 

a 
11, : IP(Xt) 4 H”+l(dX) + H m+2(X, ax) 

7 l&-&q 9’ H2n--m(Xo), 

and it can be checked that 

11, = (ct)*P : Hrn(Xt) 5 ff2n--m(Z) @I* Hz,-,(X0), 
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where P is Poincark duality map. 

3.5. As we had already noted, the Clemens-Schmid sequence is obtained by 
the braiding of the two exact sequences of pairs (8X,X,) and (x, 8X). It is 
easy to braid in two more strands, consisting of the exact sequence of the pair 
(x,X,) and the exact sequence of the triple (x,8X,X,) : 

+,Hrn(X, ax) -+ Hm(W,Xt) + H”(dX,Xt) + H”+‘)(X,dX) + . 

We obtain the commutative diagram 

where every sequence that looks like 

is exact. 
The diagram (3) can be constructed starting with any triple (x, dX, X,). 

It is clear that the upper and lower lines of (3) are complexes (that is, d2 = 0. 
These sequences are not necessarily exact. 

3.6. It is not hard to show (by chasing arrows) that if one of the lines in 
the sequence (3) is exact in some term, then the other line is also exact in the 
corresponding term (one lying directly above or below, as the case may be). 

3.7. The question of the exactness of the Clemens-Schmid sequence in the 
term 

A Hrn(Xt) 3 

is called the problem of the local invariance of cycles. If 4 E Hm(Xt) is an 
invariant cycle (that is, T(4) = $) then does there exists a class 4 E Hm(X), 
whose restriction to X, coincides with 4. In general, this is not so, as is shown 
by the surface family of Hopf (Clemens [1977]). 

Using the theory of mixed Hodge structures Deligne [1972] and Steenbrink 
[1974] for algebraic varieties, and Clemens and Griffiths in the Kahler situation 



Periods of Integrals and Hodge Structures 195 

Clemens-Griffiths [1972] have shown that the problem of invariant cycles has 
a positive solution in these cases. 

3.8. Let us show that the exactness of the Clemens-Schmid sequence can be 
reduced to the problem of local invariance of cycles, that is, to the exactness 
of the sequence at the term preceding the map N. 

By Section 3,6, exactness in the term preceding N implies exactness at the 
term preceding p. By 3.6 the exactness in the term preceding v follows from 
the exactness at the term preceding $, which is also the term after N. To 
show the exactness in the term preceding $, let’s note that the map v = c; is 
dual to II, = (c,),P, and the segment 

+ H”(Xt) 5 H”(Xt) 3 H”+2(X,aX) + 

of the Clemens-Schmid sequence is dual to the segment 

-+ H”“-“(x) 3 H2-yXt) 3 H2”-yXt) 4, 

the exactness of which follows from the positive solution to the problem of 
local invariance of cycles. 

3.9. In the sequel, suppose that X is a Kahler manifold.. In this case all of 
the terms of the Clemens-Schmid sequence can be equipped with mixed Hodge 
structures. On the term Hm(Xt) we consider the limit Hodge structure, and 
on the term H”(Xa) the mixed Hodge structure introduced in Chapter 4, 
Section 2 (recall that we are assuming throughout that 7r : X -+ A is a 
semistable degeneration). On the terms H,(Xe) We can introduce mixed 
Hodge structures on the terms H,(Xe) by duality (Chapter 4, Section 1.7), 
using the fact that H,(Xo) = Hm(Xo)“, and the fact that we have already 
introduced a mixed Hodge structure on H”(Xo). 

Theorem. Let 7r : X + A be a semistable Kiihler degeneration. Then the 

Clemens-Schmid sequence is an exact sequence of morphisms of mixed Hodge 

structures. The maps p, u, N, and II, are morphisms of weights 2n + 2, 0, -2n 

respectively. 

A complete proof of this theorem is contained in Clemens [1977] and Steen- 
brink [1974] and is quite technical and complicated, so we shall omit it. We 
should note again that to show the exactness of the Clemens-Schmid sequence 
it is enough to show the local invariant cycle theorem. 

In addition, let us note that Steenbrink [1974] has introduced a mixed 
Hodge structure on the terms of the Wang exact sequence (the structure on 
Hm(Xt) is the limit Hodge structure). This turns the Wang exact sequence 
into an exact sequence of mixed Hodge structure morphisms. 
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$4. An Application of the Clemens-Schmid Exact Sequence 
to the Degeneration of Curves 

4.1. Let rr : V + D be a degeneration of curves of genus g, that is, Vt = 
r/r-1 (t) is a non-singular compact complex curve for t # 0, dim H”(C, fib,) = g. 
By the Mumford stable reduction theorem we can assume (after a base change 
t = sN) that VO = T -’ (0) = Cr U . . . U C, is a divisor with normal crossings in 
V, Ci are non-singular curves of genus g(Ci) = gi. Let Dv, = lJicj(Ci n Cj) 
be the set of double points of the divisor Vo, and let there be d such double 
points. 

4.2. The mixed Hodge structure on H1(Vo) is defined by the spectral se- 
quence 

Ey>q = Hq(V$‘+‘),@) =+ Hp+q(Vo), 

which, in this case, turns into the Mayer-Vietoris exact sequence 

0 + H”(Vo) + &j H”(Ci) 3 @ Ho(P) + H1(Vo) + 6 H1(Ci) -+ 0. 
i=l P-K, i=l 

The weight filtration %’ on H1(Vo) has the form 

H1(Vi,)=‘%O%Vo>O 

and 
“w. = Cokerdr = H’(F), 

where r = II is the dual graph of the curve Vi = Cl + . . + C, (see 
Chapter 4, Section 2), and 

Gry H1(Vo) = ‘%VI/%VO = @ H’(Ci) 
i=l 

Since the Euler characteristic of the graph r is 

e(r) = 1 - h’(r) = r - d, 

it follows that 
dim~c=h’(r)=d--r+l. 

We get the following formula for h’ (VO) = dim H1 (VO) : 

hl(Vo) = 2&i + hi(T). 
i=l 

4.3. The weight filtration W’ on Hl(Vo) has the weights 

Hl(Vo) = W; > I?, > 0. 
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4.4. For the limit mixed Hodge structure on H1(Xt) we have (see Section 
2.2) 

H1 = H1(Xt) = W, > WI > W. > 0. 

On Ws there is a pure Hodge structure of weight 0, that is, We = Hi” (recall 
that HP>‘J is the subspace of (p, q) forms in Hodge decomposition (see Chapter 
2, Section l), and since N is a morphism of weight -2, 

N : W2/Wl 2 W. = H,o>’ 

it follows that Wz/lVi = Hill. 
By definition of mixed Hodge structure, Wi/We is the space with pure 

Hodge structure of weight 1. Therefore, 

Wl/Wo = H;)’ @H,0”. 

Let w = dim Wo. We have dim H1 (X,) = 29. In addition 

dim H1(Xt) = c dim Wi/Wi-i. 

Therefore 
2g = 2w + dim Wi/Wo. (5) 

Note that the monodromy T is trivial (or, equivalently, N = 0) on H1(Xt) 
if and only if WO = 0. Indeed, N(Wl) = 0 and N : W, /WI -? W, is an 
isomorphism, therefore N = 0 on H1(Xt) if and only if WO = 0. 

4.5. In the case of curve degeneration, the maps p, u, N, and $ in the 
Clemens-Schmid exact sequence have weights 4,0, -2, and -2 respectively, 
and the (odd) sequence itself has the form: 
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0 - Hl(&) -2-+ Hl(vt) 
N 

- fm) 
ti 

- Hl(Vo) - 0 

“wl w2 w2 - W’ 0 

u 

\ 

u u u 

QfO w 

\ 

Wl - WL, 

u u u u 

0 

‘\ 

wo wo - 0 

u u 

\ 
0 0 

From the strictness of the morphisms of mixed Hodge structures we get 

owl ” zpwo) = wo, TV, 21 zqw,) = WI. 

This implies that 

w = dim Wo = dim WWO = h’(r). 

Applying (4) and (5) we see that 

dimWI/Wo = 2kgi. 
i=l 

One consequence is the following 

Theorem. The monodromy T is trivial on H1 (&) for a Kiihler degeneration 

of curves if and only if H’(r) = 0, that is, the graph r is a tree. In that case 

$7 = c;=, gi. 
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$5. An Application of the Clemens-Schmid Exact Sequence 
to Surface Degenerations. The Relationship Between the 

Numerical Invariants of the Fibers Xt and X0. 

Let 7r : X -+ n be a semistable Kahler degeneration of surfaces. Let Xc = 
VI + . . . + V, be the degenerate fiber, let DxO = {C} be the set of double 
curves, let r be the set (and also the number) of triple points of the fiber Xe 
(see Chapter 4, Section 2.9). 

5.1. The Clemens-Schmid exact sequences for surface degenerations have 
the form 

0 -+ HO(Xt) 3 H4(Xo) 4 H2(Xo) -G H2(Xt) 

3 H2(Xt) 3 H2(Xo) Y H4(Xo) 4 H4(Xt) + 0 

and 

0 + Hl(X0) 4 Hl(X,) $ Hl(Xt) 3 H3(Xo) 

Y H3(Xo) 4 H3(Xt) 3 H3(Xt) 3 Hl(Xo) -+ 0. 

The morphisms p, v, $, and N are morphisms of mixed Hodge structures of 
weights 6, 0, -4, and -2, respectively. 

In Chapter 4, Section 2 we computed the weight filtration on Hm(Xo). Let 
us introduce the notation 

lchi = dimKer 6 Hi(%) 
j=l 

and 

ckhi = dim Coker 6 Hi(Q) 

j=l 

and finally 

-+ 

@Hi(C) = dimGrqW Hi(Xo), 

c 

@ Hi(C) = dim Gr” Hi+’ (X0), 

C 

hz(Xt) = dim Hi(X,). 

As usual, p,(Xt) = dim H’(Xi, 0%;) is the geometric genus of the surface Xt. 

Theorem (Kulikov, Vik. S. and Kulikov, V. S. [1981], Persson [1977]). Let 
T : X t A be a semistable Kiihler degeneration of surfaces, then 
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hl(Xt) = 

h2(Xt) = 

P&G) = 

In addition, 

Vik. S. Kulikov, P. F. Kurchanov 

~h’(W --p(C) +2hl(7r) +ckhl, (f-3) 
i=l c 

~h2(~)+3h2(17)-h1(17)-d-r+1, (7) 
i=l 

-&(l/,) + h2(II) + ; ckh’ 
i=l 

(8) 

dimWoH1(Xt) = dim%VH’(Xo) = hl(II), (9) 

dimWlH2(Xt) = dimq/T/;H2(XO)/WWOH2(Xo) = ckh’, (10) 

dimWoH”(Xt) = dim%VH2(XO) = h2(II), (11) 

ckh2 = h’ (II), (12) 

where r is the number of components, d is the number of double curves of the 

fiber X0, 17 = 17(X0) is the polyhedron of the degeneration. 

We will prove one of these formulas (formula (8)) to demonstrate how much 
information can be obtained from the strictness of mixed Hodge structures. 

Consider the even Clemens-Schmid sequence 
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0 c-) HO(Xt) Jk H4(Xo) -2 H2(Xo) 2 H2(Xt) NL H2(Xt) -2 Hz(X0) I-+ 

ff3C2 
w2 w4 w4 - wo 

o- 

U 

- w-1 

U 

- w-2 

U 

-0 

wo 
\ 

wo 

u u 

\ 

0 0 

Comparing the weights and the types of morphisms, we get the sequences 

N 
o- HO(Xt) -k l&(X0) Ji s/v, -5 w, - wo - 0 

u u 

u u 

o-wo-Iv,-0 

From the strictness of the morphisms of mixed Hodge structures, it fol- 
lows that these sequences are exact. This implies formulas (10) and (1)) since 
dim”WuH2(Xe) = h2(17) by virtue of Chapter 4, Section 2.9. 

From the exactness of the sequences (13) it follows that the sequence 
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0 -+ HO(Xt) -k H4(Xo) y wgw~ A w2/w, N -wo-+o 

is exact also (note that %V~~%‘i = ‘HZ70 @ oHi)1 @ oH,$2, W2/Wl = Hz,’ @ 
Ht’l @ Hi,2, and WO = H$ ). 

Each term of the sequence (14) is a space with a pure Hodge structure. 
By definition of the dual Hodge structure, there exists a pure Hodge struc- 
ture of weight -4 on Hd(Xo) = H4(Xo)“, and also H4(Xo) = HI:,-’ since 
H4(Xo) = @H4(Vi). On H4(Vi there is only one non-trivial Hodge summand 
H212 of type (2,2). Therefore, Ker v = Imp c oHi’1 and the morphism v is 
an inclusion on OHi” @ oH$2. Since Im v = Ker N > Hilo @ Hg?‘, it follows 
that v : ‘Hi” 2 Hz” and v : “H20v2 -? Hi’2 are isomorphisms. By Chapter 4, 
Section 2.9 

dim Hi” = dimoHi,o = OPT. (15) 
i=l 

We want to compute p,(Xt) = h29’(Xt). Using the connection between the 
Hodge decomposition and the Hodge filtration, we have 

p,(Xt) = dimF2H2(Xt), 

where it can be considered (see Section 2.1) that F is the limit Hodge filtration: 

H2(Xt) = F” > F1 > F2 > F3 = 0. 

Setting 
F; = Fi n W,/F” II Wk-l, 

and 

P,(Xt) = f4” + f3” + fi”. 

Above we used the observation that f; = f2 = 0, since the filtration induces 
r9 

a pure Hodge structure of weight lc on Grk = Wk/Wk-1, and so fl = 0 for 

i > k. 
On Grr the filtration F induces a pure Hodge structure of weight 4, and 

so Grr = Fi @ Fz. But Fi = 0, since F3 = 0. Therefore, 

fi = dim W4/W3 = dim WO = h2(17), 

since N2 : W4/W3 7 WO is an isomorphism. 
On Gry the filtration F induces a pure Hodge structure of weight 3. As 

above, since F3, we see that Grr = ?$. Therefore, F: = F: n Ft = Hill. In 

addition, Grr = Fz @ Fi = Hi’l @ ai”, and so, by formula (lo), 

fz = idimWs/W2 = idimWr/Wo = i&h’, 
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since N : Ws/Wz q Wl/Wo is an isomorphism. 
Equation (15) implies that 

which finally proves formula (8). 

5.2. 

Theorem. Let rr : X t A be a semistable Kiihler degeneration of surfaces, 
then: 
(1) The monodromy T = id on H1(Xt) if and only if h'(n) = 0. 
(2) The monodromy T has unipotency index 1 on H2 (X,) (that is, (T - id)2 = 

0 if and only if H2(Il) = 0. 
(3) The monodromy T = id on H2(Xt) if and only if H2(Ll) = 0 and ckh’ = 

0. 

Proof. It is clear that (T - id)k = 0 if and only if N” = 0. 
(1) The morphism N : Wa/Wl + Wo is an isomorphism on the space 

H’(Xt), and so N = 0 if and only if Wc = 0, that is, when dim Wo = 
h1(17) = 0. 

(2) On H2(Xt) we have N2 : Wd/Ws < Wo and N2(W3) = 0. Therefore, 
N2 = 0 if and only if Wo = 0, that is, dim Wa = h2(17) = 0. 

(3) Since N2 : W4/W3 5 Wo and N : W3/Wa 7 WI/W0 areisomorphisms, 
it follows that N = 0 on H2(Xt) if and only if Wl/Wc = 0 and Wo = 0. But 
by equation (lo), dim WI/W0 = ckh’ . 

5.3. The algebraic Euler characteristic x(Xt). Let X(V) = ho(&) - 
h’(Ov) + h2(0v) = p, - q + 1 be the Euler characteristic of the structure 
sheaf 0” of the algebraic surface V. 

Theorem. Let T : X + A be a semistable Kiihler degeneration of surfaces, 
Xa = VI + . . . + V,, then 

x(X,) = 2x(K) - Cx(C) + 7-. 
i=l c 

Proof. It is known (Mumford [1966]) that the Euler characteristic of a flat 
coherent sheaf is constant. In particular, X(Xt) = X(X0). For the structure 
sheaf 0~~ there is the resolution 

0 -+ Ox0 + (Ul)*Qm 3 @2)*0”(z) -% . . . 

and the theorem follows from the additivity of the Euler characteristic (note 
that the Euler characteristic of a point is 1.) 
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5.4. The intersection index of the canonical class. Let K be the canonical 
class on X (see Chapter 1, Section 8), let Kt be the canonical class of a non- 
singular fiber Xt and let Ki be the canonical class of the component Vi of a 
degenerate fiber Xa = VI + . . . + V, of a semistable degeneration of surfaces. 

If D E Pit X, and V is a component of a fiber, then let DV = i*(D) = D. V, 
where i : V C) X is the natural inclusion. For D, D’ E PicX, the intersection 
index D . D’ V is defined, and D . D’ . V = Dv . Dt is the intersection index 
on V. The fibers Xi and Xe are linearly equivalent (homologous), and so 

D.D’.X,=D.D’.Xo=cDv~.Dt:, 
i=l 

(W 

and, in addition, Vi - -(VI + . . . + c + . . .Vr), hence 

Klv, = -vi. cr/;. (17) 
j=l 

By the adjunction formula (Chapter 1, Section S), for the surface V c X, the 
canonical class satisfies K(V) = (K + V) . V, and, in particular, 

Kt = K . Xt = Kx, ) Ki = (K + V~)V, . 

By the adjunction formula for curves, we have 

(1% 

(Ki . C), = deg K(C) - (C”), = 2(g(C) - 1) - (C”), , (19) 

where (C2)vi is the intersection index of the double curve C on the surface 
Vi . 

Lemma. Let C = Vi n Vj be a double curve of a semistable degeneration of 
surfaces, then 

(C”), + (C2)vj = -Tc, (20) 

where Tc is the number of triple points of the fiber Xo incident to C. 

Proof. Note that C is a union of non-singular curves, since X0 is a divisor 
with normal crossings. We have Vi . Vj . Xo = 0, since X0 N Xt. On the other 
hand, 

= VivjVi + KVjvj + Tc = (C2), + (C”), + Tc. 

The next theorem follows from equations (16)-(20): 

Theorem (Persson [1977]). Let T : X + A be a semistable degeneration of 
surfaces, then 
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(K;)x, = -&vi + 8 c(g(C) - 1) + 97. 
i=l c 

5.5. The topological Euler characteristic e(X,). Let 

e(V) = x%o(-l)ibi = 2 - 2h1 + h2 be the topological Euler characteristic of 
the Kghler surface V, where bi = hi is the i-th Betti number. For a curve C, the 
topological Euler characteristic satisfies e(C) = 2 - h1 = 2 - 2g(C) = 2x(C). 

From Noether’s formula (see Shafarevich et al [1965]) for a surface, we have 

W2) + e(V) 
x(V) = 12 7 

and from Theorems 5.3 and 5.4 we get the following formula for e(Xt): 

Theorem. Let r : X + A be a semistable Kiihler degeneration of surfaces, 
then 

e(Xt) = 2 e(Vi) - 2 C e(C) + 37. 
i=l C 

$6. The Epimorphicity of the Period Mapping for K3 
Surfaces 

In this section we will show that the period mapping for K3 surfaces is 
onto. In order to do that, we will need to study semistable degenerations of 
K3 surfaces. 

6.1. Let n : X -+ A be a semistable Kahler degeneration of K3 surfaces; 
the generic fiber Xt has the following properties: p,(Xt) = 1, q(Xt) = 0, and 
the canonical class Kx is trivial. The canonical class Kx of the degeneration 
is not, in general, trivial. However, there is the following: 

Theorem (Kulikov [1977a, 19801). L e r be a semistable Kiihler degenera- t 
tion of K5’ surfaces. Then, there exists a reconstruction r’ : X’ + A of the 
degeneration r, such that 
1. I? is a semistable degeneration, 
2. Kj, is trivial. 

The proof of this theorem is based on a thorough study of the degenerate 
fibers of semistable degenerations of K3, by constructing the birational au- 
tomorphisms of the threefold X. In essence, this theorem shows that every 
semistable degeneration of K3 surfaces is obtained from a semistable degener- 
ation with trivial canonical class by the following sequence of transformations. 
At every step, the space X is covered by open sets, and in each open sets we 
construct some blowings-up (monoidal transformations, see Chapter 1, Section 
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l), centered at points or (possibly singular) curves, and some blowings-down. 
These blowings-up and blowing+down are constructed in such a way that in 
the end we can reglue the open sets into a singular non-singular variety, and 
obtain a semistable degeneration of K3 surfaces. 

In the sequel we will suppose that 7r is a semistable degeneration of K3 
surfaces, and that Kx is trivial. In the sequel, we will describe the possible 
types of degenerate fibers and their relationship with monodromy. 

6.2. For degenerations of K3 surfaces, formulas (8) and (9) of theorem 5.1 
imply that 

wqxo)) = 0, (21) 

and 

kPg(ri) + h2(17(Xo)) + ; ckh’ = 1. 
i= 

(22) 

Let Cij = Vi II Vj, where Vi are the components of the degenerate fiber Xc. 
From formulas (18) and (17) and the triviality of the canonical class Kx, it 
follows that 

Ki = - CCi,j. 
j#i 

Theorem (Kulikov [1977a]). Let rr : X + A be a semistable Klihler degen- 
eration of K3 surfaces, such that Kx is trivial. Then the degenerate fiber Xo 
can be one of the following three types: 
1. Xo = VI is a non-singular K3 surface. 
2. x, = Vl + . . . + V,, r > 1, VI and V, are rational surfaces, while Vi are 

ruled elliptic surfaces for 1 < i < r. The double curves C~,Z,. . . ,15’~-1,~ 
are elliptic curves, and the polyhedron II has the form 

o-o-. . .-o-o 
K vz K-l v, 

3. Xo = VI + . . . + V,, r > 1, with all K rational surfaces, and all the 
double curves Cij rational. The polyhedron II is a triangulation of 
s2. 

These three types of degenerations are distinguished via the monodromy 
action T on H2(Xt, Z) : 
1. T=id; 
2. (T - id) # 0, (T - id)2 = 0; 
3. (T - id)2 # 0, (T - id)3 = 0. 

Proof. Case 1 is the case when Xe has a single component. 
Let r >. 1. Then the canonical class Ki = - Cifj Ci,j is anti-effective, 

and thus (Shafarevich et al [1965]) all of the Vi are ruled surfaces. Consider a 
double curve Cij on Vi. We have 

2g(Cij) -2 = (Ki +Cij,Cij)~ = - C (Cik,Cij)V, = -Tc;,; 
k#i,j 
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where Tcij is the number of triple points of the fiber Xs lying on the curve 
Cij. Since Tc;, > 0 and g(Cij) > 0, there are two possibilities: 

(R) g(Cij) = 0 and Tcij = 2, so that Cij is a rational curve, and there are 
exactly two triple points on Cij. 

(E) g(Cij = 1, and there are no triple points on Cij, that is, Cij is an 
elliptic curve, and C’ij does not intersect any other double curves. 

In the case (R) we see that Cij intersects some other double curve, which 
must also be rational, and which also contains two triple points of Xo. 

Thus, every Vi is a ruled surface, and the set of double curvers on Vi consists 
of a disjoint union of a finite union of elliptic curves, and a finite number of 
cycles of rational curves. 

Let V = Vi, be one of the components, let 4 : V + v be the morphism 
onto the minimal model v (Shafarevich et al [1965]) (4 is the composition 
of monoidal transformations centered at points), and let L be an exceptional 
curve of first type on V, that is, L Y P’, and (L2)v = -1, and L is blown down 
to a point by the morphism 4. Then (L, Kv)” = -1, SO (L, Cjfio Cioj)v = 1. 
Thus, either L intersects just one of the connected components of the divisor 
C CiOj or L coincides with one of the CiO,j. It follows that the number of 
connected components of the divisor C &CiOj equals the number of connected 
components of the divisor C Ci, ,j , since Kv = $* Kv. It can be checked that 
the reduced divisor 

on the ruled surface v either consists of one connected component, or of two, 
and in the last situation, 7 is a ruled elliptic surface, and 

C 4*Ci,j = Cl + C2, 

where Ci and C2 are elliptic curves. Furthermore, if the divisor c &Ci,j is 
connected, then either &Ci,,j are rational curves, and v a rational surface, or 
C $*Ci,j = C . is an elliptic curve while v is either a rational or ruled elliptic 
surface. 

Therefore, the following are possible: 
(a) Vi is a rational surface, and Cizj Cij is a cycle of rational curves; 
(b) V is a rational or a ruled elliptic surface, and Cifj Cij = C is a single 

elliptic curve. 
(c) V is a ruled elliptic surface and C Cij = Ci + C’s consists of two disjoint 

elliptic curves. 
There are two possibilities for the fiber X0. 

Case 1. One of the Vi is of type (a). Then the double curves on the com- 
ponents adjacent to Vi also contain triple points, and thus the adjacent com- 
ponents also are of type (a). Since X0 is connected, it follows that all Vi are 
rational surfaces, and their double curves form a cycles. Therefore, the poly- 
hedron n(Xe) is a triangulation of some compact surface without boundary 
(there are precisely two triple points of X0 on each double curves). 
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Since the Vi are rational surfaces and Cij are rational curves, we know that 
p,(Vi) = 0, ckh’ = 0 (since h’(Cij) = 0). Formulas (21) and (22) tell us that 

~“(~(xo)) = 1, hl(LT(Xo)) = 0,h2(17(Xo)) = 1. 

There is only one surface with such properties - the sphere S2. Thus, in this 
case the degenerate fiber falls into type 3 in the statement of the theorem. 

Case 2. All the Vi have type (b) or (c). Then X0 has no triple points, 
and thus n(Xs) is one-dimensional, and h2(17(Xe)) = 0. By formula (al), 

wwo)) = 0, and so the graph n(X 0 is a tree, and since each component ) . 
Vi has at most two double curves, n(Xs) must be a simple path 

o-o-. .-o-o 
vi vz K-l K 

Applying Theorem 5.3 to the case X(Xt) = 2, we see that in this case 

ox = 2, 
i=l 

since r = 0, and X(C) = 0 for an elliptic curve C. For a ruled elliptic surface 
Vi the Euler characteristic X(K) is 0, while for a rational surface X(V;) = 1. 
Therefore, there are exactly two rational Vi, and the rest are elliptic. Since 
there is only one double curve on a rational Vi (type (c)), it follows that the 
endpoints VI and VT are the rational surfaces, and so Xe falls into type 2 of 
the theorem. 

The connection between the type of the degenerate fiber and the mon- 
odromy immediately follows from Theorem 5.2, and Theorem 6.2 is proved. 

6.3. Let us give some examples of degenerations of K3 surfaces of types 
2 and 3 of Theorem 6.2. As we know, a nonsingular hypersurface X4 c P3 
defined by a homogeneous equation F4(20 : . . . : 24) = 0 of degree 4 is a K3 
surface (see Chapter 4, Section 5). Take two non-singular quadrics Qi, Q2 E 
lP3, intersecting each other and X4 along smooth curves. It is easy to see that 
Qi and Qs intersect along an elliptic curve. Let F~(xo : . . . : 24) = 0 and 
F;‘(zo: . . . : 1c4) = 0 be the equations of the quadrics Qi and Qs. Then, these 
quadrics and X4 define a rational map 

After resolving the singularities of this map by monoidal transformations cen- 
tered at X4 II Qi and X4 fl QZ we get a regular map 

generic fiber of which is a K3 surface. The degenerate fiber, coming from 
the quadrics will, evidently, consists of two rational surfaces - the proper 
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preimages of the quadrics under the resolution of points of indefiniteness of 
the mapping f. Since these rational surfaces intersect along an elliptic curve, 
we have a degeneration of type 2 of Theorem 6.2. 

To get a degeneration of the third type, instead of two quadrics, take four 
planes in general position. 

6.4. Let us show how theorems 6.1 and 6.2 imply that the period mapping 
is onto for K3 surfaces. In the notation of Chapter 3, Section 3, let D(Z) be 
the space of periods of marked K3 surfaces. By the global Torelli theorem, 
there is an effectively parametrized family 7r : F + S of marked K3 surfaces, 
such that dim,!? = 19, the period mapping @ : S + D(Z) is one-to-one, and 
Q(S) is an open everywhere dense set in D(Z). 

Theorem (Kulikov [1977b]). F or every point x E D(1) there exists a marked 
KS’ surface & = (V,, $,E) of type 1, such that @(Vz) = x. The class < E 
Hz(V,, Z) corresponds to an ample modulo “l-2 curves” divisor class on V,. 

A divisor D on V is called ample modulo “-2 curves” if for some positive 
integer n, the linear system InDl defines a morphism f : V -+ pdimInDI, 
satisfying the following conditions: 
1. f(V) is a normal surface in Pdim lnDl with the simplest rational singular- 

ities, 
2. f : V\f-‘(x1 U . . . U xk) + f(V)\{xl, . . . , xk} is an isomorphism, where 

xi, . , xk are singularities of f(v), 

3. f-‘(xi U . . . U zk) = Ur=, &, where Li are “-2 curves”, that is, Li are 
rational curves, and (Lq)v = -2. 

Proof. Let F = 0~ (1) be a very ample sheaf, corresponding to the class 
< E H2(V, Z) for some ma.rked K3 surface V. Let P(k) = azk2 + alk + a0 = 
x(&(k)) be the Hilbert polynomial, and let ‘?? + G be the Hilbert scheme 
with Hilbert polynomial P(lc) (Hartshorne [1977]). The fibers of this scheme 
are K3 surfaces of type 1 over an open set in A?. Thus, we have a family of 
nonsingular marked K3 surfaces, which shall denote by f : 3t -+ M, where M 
is some quasi-projective variety. For this family we have the period mapping 

QjM : M + D(l)/fi, (23) 

where rl is an arithmetic group of transformations of L 2~ Hv preserving the 
intersection form and leaving the vector 1 invariant (see Chapter 3, Section 3). 
From the global Torelli theorem we know that @M(M) is everywhere dense in 
D(Z)/ri. Let 
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be the compactification of the family Y-l + M, such that g and %? are projec- 
tive varieties, and ?i\?i and a\M are divisors with normal crossings (this is 
always possible by Hironaka’s theorem). Now we can use a theorem of Bore1 
[1972]. 

Theorem. Let D be a bounded symmetric domain and let M\M be a diusor 
with normal crossings. Then the period map @ : M + Dfr can be contin- 
ued to a holomorphic map 3 : u + D/r, where Dfr is the Baily-Bore1 
compactijication of the space D/T (Baily-Bore1 119661). 

Note. The Baily-Bore1 compactification is constructed as follows. Let Ko 
be the canonical sheaf on D. The r-invariant sections s E H”(D, Kg”) induce 
sections s E H’(D/I’, KBn). It can be shown that the ring 

is finitely generated, while the map 

D/r -+ Proj (~HO(D/rK’?) 

is an inclusion. In other words, for a sufficiently large n, the sections in 
H’(D/r, Kgn) define an inclusion 

D/r + pdimH”(D/~,K@‘“)-1 
7 

whose image is an open subset of some projective variety D/r. 

Let us apply Borel’s theorem to the period mapping (23). Let 3 : u + 
D(l)/& be the continuation to m of the period mapping @M : M + D(l)/rl. 
Since ?i? and D(Z)/I’ l are compact and GM(M) is everywhere dense in 0(1)/I’, 
we know that 3 : a + D(Z)/rl is onto. 

Let 3 be the image of a point z under the map D(Z) -+ D(Z)/rl. Pick an 

arbitrary curve i : S L) ?@ passing through a point J E s-l(,) E % and 
such that S is not contained in M\M. Let j : S + 3 be the resolution of 
singularities, and let y E j-‘(y). Let X + S be the preimage of the family 
% + % under the map i o j : 2 + B. The period map @s : S + D(l)/ri 
coincides with the composition @ o i o j, and @s(y) = 1. 

Let n = {ItI < 1) c S be a sufficiently small neighborhood of the point y, 
and let rr : X + A be the restriction of the family F + S to A. From the 
condition Qs(y) = Z E D(Z)/rl it is easy to see that the monodromy group of 
the family 7r* : X* -+ A*, acting on Hz(V, Z) is finite. Thus, after passing to a 
finite cover if necessary, we can use Mumford’s semistable reduction theorem, 
and assume that 7r : X + A is a semistable degeneration of K3 surfaces, 
and T = id. According to theorem 6.1, we can modify the degeneration 7r : 
X --+ A into a degeneration rr’ : X’ -+ A with trivial canonical class, without 
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changing the monodromy. Applying Theorem 6.2 we see that the degeneration 

’ : X’ + A has no degenerate fibers, since T = id. Thus, Xl, is a non- 

ingular K3 surface. The period of the surface Xh coincides with x E D(Z). 

Thus, it is enough to show that the class co = d-‘(Z) is the class of an ample 

modulo “-2 curves” divisor. To this end, note that the polarizing classes & 

on the fibers X, are invariant cycles. Thus, by the invariant cycle theorem 

(see Chapter 4, Section 4) some multiple n& is carried by a global divisor 

77 E H4(X, Z) for t # 0. Thus co = ;qXC,, where ?j is the proper image of the 

divisor rl under the reconstruction. We then know that (<i)x:, = (@)x; > 0. 

Thus (see Griffiths-Harris [1978]) some multiple of the divisor [u defines a 

birational morphism &; XL + & (XA) C PN. If the morphism $sO blows an 

irreducible curve C c XA down to a point, then (lo, C)X:, < 0. In addition, 

cc, Kx;,)x;, = 0, since Kxl = 0. On the other hand, the arithmetic genus 

ga(C) of an irreducible cur;e C is non-negative, and equals 

(C2)x, + (GKx;,)x;, + 1 
2 

Therefore, (C”)x;l 2 -2, and thus (C”),; = -2, and so ga(C) = 0, thus C is 

a “-2 curve.” 

Comments on the bibliography 

1. The best introduction to the concept of algebraic variety is Shafarevich [1972], 
which also contains a brief historical survey of algebraic geometry. For a more exten- 
sive introduction to complex algebraic geometry we suggest Griffiths-Harris [1978]. 
The methods of modern algebraic geometry over arbitrary ground fields are ex- 
plained in Hartshorne [1977]. The theory of analytic functions of several complex 
variables and the theory of analytic sets can be found in Gunning-Rossi [1965]. A 
good basic introduction to the theory of complex manifolds is Wells [1973], The clas- 
sical theory of Hermitian and Kahler manifolds is treated in Chern [1957], Griffiths 
Harris [1978], and Wells [1973]. A comparison between algebraic and analytic cate- 
gories can be found in Serre [1956]. 

2. The concept of periods of integrals as analytic parameters which determine a 
complex manifold goes back to Riemann’s paper “Theory of abelian functions”. The 
first proof of Torelli’s theorem for curves was given in Torelli [1914]; a modern proof 
is given in Andreotti [1958]. 

The explosive developement of the theory of periods of integrals and their ap- 
plication to Torelli-type theorems began with Griffith [1968] and [1969]. Griffiths 
[1968] introduces the concepts of the space of period matrices and the period map- 
ping and proves the that the period mapping is holomorphic and horizontal. The 
conditions for the infinitesimal Torelli theorem to hold obtained by Griffiths [1968] 
provided the impetus for an extensive literature on the subject. The remarkable 
paper Griffiths [1969] studies the period mapping for hypersurfaces, and proves a 
local Torelli theorem. A relatively complete survey of the key results on the period 
mapping can be found in Griffiths [1970] and Griffiths-Schmid [1975]. Griffiths tori 
are introduced in Griffiths [1968]. Their comparison with Weil tori is undertaken in 
that same paper. 
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The theorems on the existence of global deformations of complex manifolds are 
contained in Kodaira-Nirenberg-Spencer [1958], K uranishi [1962, 19651. A rigorous 
formulation of the theory of moduli spaces is contained in Mumford [1965]. Various 
questions having to do with infinitesimal variations of Hodge structure are discussed 
in Carlson-Griffiths [1980], CarlsonGreenGriffithsHarris [1983], GriffithssHarris 
[1983] and Griffiths [1983a]. 

3. There is a good exposition of the theory of Jacobians of algebraic curves in 
Griffiths-Harris [1978], which also contains a complete proof of Torelli’s theorem for 
curves. The most spectacular papers proving global Torelli theorems are Piatetski- 
Shapiro-Shafarevich [1971], Andreotti [1958] and Clemens-Griffiths [1972]. These 
papers largely determined the later progress of the theory. Counterexamples to 
Torelli theorems can be found in Chakiris [1980], Kynev [1977], Todorov [1980], 
Griffiths [1984]. 

4. The theory of mixed Hodge structures owes its existence to the work of Pierre 
Deligne ([1971], [1972], [1974b]). This theory was applied to the theorem on invariant 
local cycles in Deligne [1972]. 

The limit mixed Hodge structure on the cohomology of a degenerate fiber was 
introduced and studied in Schmid [1973] and Steenbrink [1974]. Clemens [1977] 
constructs the Clemens-Schmid sequence, introduces the mixed Hodge structures 
on its members, and proves its exactness in the case of Klhler degenerations. A 
general survey of the theory of mixed Hodge structures can be found in Griffiths 
[1984] and Griffiths-Schmid [1975]. 

The generalizations of the concepts of the variation of Hodge structures, period 
mapping and Torelli theorem to the case of mixed Hodge structures can be found in 
Cattani-Kaplan [1985], CattaniLKaplan-Schmid [1987a], Cattani-Kaplan-Schmid 
[1987b], Griffiths [1983a, 1983131, K as rwara [1985], Kashiwara [1986], Kashiwara- h‘ 
Kawai [1987], Saito [1986], Shimizu [1985], Usui [1983]. A brief survey is presented 
in Saito-ShimizuUsui [1987]. 

The mixed Hodge structure on homotopy groups is introduced in Morgan [1978]. 
This is based on the theory of D. Sullivan, a survey of which can be found in 
Deligne- Griffiths-Morgan-Sullivan [1975]. A somewhat different approach, based on 
the theory of iterated integrals is presented in Hain [1987]. 

5. Degenerations of algebraic varieties were first studied systematically in the 
classical work Kodaira [1960]. That paper considered the degenerations of elliptic 
curves in conjunction with the problem of classifying compact complex manifolds. 
Degenerations of curves of degree 2 were considered in Namikawa-Ueno [1973] and 
Ogg [1966]. 

A considerable advance in the study of degeneration of surfaces was provided by 
Kulikov [1977], where the degenerations of K3 surfaces were investigated. A survey 
of the results on the degeneration of surfaces is contained in Friedman-Morrison 
[1983] and Persson [1977]. 

As a first introduction to the local degeneration theory we suggest Milnor’s 
book [1968]. The retraction of the degenerate fiber onto a non-degenerate one (the 
Clemens map) is constructed by Clemens [1977]. A survey of the main results on 
the connection of topological characteristics of the degenerate and non-degenerate 
fibers of algebraic surfaces can be found in Kulikov [1981] and Persson [1977]. 
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Introduction 

The current article is a continuation of the survey “Riemann Surfaces and 
Algebraic Curves” of Volume 23 of the current series. The results presented 
here are also classical, although completely rigorous proofs have been ob- 
tained only recently. The analytical aspects of the theory of Jacobians, theta- 
functions, and their applications to the equations of mathematical physics can 
be found in the survey “Integrable systems I” of volume 4 of the present series 
(by Dubrovin, Krichever, and Novikov). 

3 1. Applications 

Here we discuss some remarkable recent applications of the theory of alge- 
braic curves. We show that the class of theta functions of complex algebraic 
curves (more precisely, of their period matrices) is quite sufficient to solve 
several important problems. Throughout this section, the ground field Ic is 
assumed to have characteristic 0. 

1.1. Theory of BurnchaU-Chaundy-Krichever. There is a natural bijective 
correspondence between the following sets of data: 

Data A. A complete irreducible curve C over k, p a nonsingular k point of 
C, a tangent vector II at p, and a torsion-free sheaf 3 over C of rank 1 with 
P(3) = P(3) = 0. 

Data B. A commutative subring R c k[[x]][d/dz] with k c R, and such 
that there exist two operators A, B E R of the form 

A= (&)m+.,(,, ($)m-‘+...+.,(x), 

B= (&)n+bl(:r) (g)n-l+...+h,.(r) 

with (m, n) = 1. Two such subrings RI, R2 c k[[x]][d/dz] will be identified if 

RI = u(z) . Rz . u(x)-l, 

where the formal powerseries U(X) E k[[x]], u(0) # 0, is viewed as the operator 
corresponding to multiplication by U(X). 

Let us examine the correspondence between data A and data B most im- 
portant for applications. In order to do this, construct a deformation 3* of 
the sheaf 3 over C xk k[[z]] and a differential operator 

v : 7 + 3”(P), 
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such that 

(a) V(as) = aVs + Es for all a E 0~ @,k k[[~]], s E F*; 

(b) Vs = t + (a section of 3*), where z is a local parameter at p with g = ‘u. 
For lc = Cc, the desired sheaf 3* is easily described analytically. Let U be a 

neighborhood of p, where z is a local coordinate. Then 7 is taken to be equal 
to 3 @ 0~ over U x c and on (C - p) x @. These sheaves are glued together 
over (U - p) x (E by multiplying by the transition function exp(z/z). On the 
sections of 3* over (C - p) x @ the operator V is defined to be the partial 
differentiation operator &. This can be extended to the required differential 
operator from 7 to 3*(p) , since 

and on the sections of 3* over U x @ this operator will be the linear differential 
operator & + 5. In order to implement this construction in general, the func- 
tion exp(x/z) must be replaced by a formal power series in Z. Analogously, 
we define operators 

v : 3*&J) + 3*((1+ 1)p). 

From the hypotheses on 3 it follows that hi(C xk k[[z]], 3*) = 0 for i = 0,l. 
By the exact sequence of restriction it follows that H”(C xk k[[~]], 3*(p)) is a 
free Ic[[z]] module of rank 1. Denote its generator by SO, and correspondingly 
let 

sl = &I E H”(c xk k[[2-4,3*((l + 1)p)). 

By construction, sl = ss/z’+(higher order terms). Thus, the sections se,. . . , .sl 
form a k[[z]]-b asis of H”(C xk k[[~]],3*((I + 1)~)). Set R = T(C -p,c?c). 

For every a E R, such that a = a/z1 + (higher order terms), use E H”(C xk 
rC[[z]], 3*((l + l)p)), and thus 

l-l 

( 

l-l 

as0 = asl + -&(Z)SI = cd + Cu&)Vi so. 

i=O i=O ) 

Mapping a to the differential operator 

we obtain an inclusion of R into Ic[[z]][d/&]. It is not hard to check that this 
is a homomorphism, and its image is a commutative ring isomorphic to R. 
Under the transformation sending SO to ‘ALSO (with ~(0) # 0), the inclusion 
D is transformed into the inclusion 

a + u(z) . D(u) . u(x)-‘. 

In a more explicit description of the above correspondence for a nonsingular 
curve C of genus g, the sheaf 3 is defined by a (general) ineffective divisor D 
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of degree g - 1 (compare the beginning of Section 1.2). The section so in that 
case is a Baker-Akhiezer function, which can be represented in terms of the 
Riemann theta-function of the curve C (see Shiota [1983]). 

Data A can be reconstructed from Data B using the spectral properties of 
the operators in the subring D(R) identified with R. This is done by consid- 
ering the space of formal power series f(x) = Cuixi with coefficients ai in 
extensions K > Ic, which are eigenvectors for all a E R : 

D(a).f = Wa1.f. 

Note that the homomorphisms 

X:R+K 

a -+ A(a) 

are K-points of C - p. 

Proposition. There is a natural isomorphism of the space of eigenvectors 

{f E K[[z]]lD(a)f = A(a)f for all a E R} 

and the space 

where 3q/mq3q is the fiber of 3 over the K-point q corresponding to the 
homomorphism X : R -+ K; the field K is viewed as a X-module. 

Indeed, every homomorphism ‘p : 3q/m3q -+ K defines a unique homo- 
morphism 

3q 

U 
y$&&=F(C-p,3)+K. 

z=o 

In turn, the homomorphism cp can be uniquely extended to an R[[z]]-linear 

map 

where 

P* : 5 sl~[[41 = r((C -P) x ~[[41,3*) + K[Ml 
I=0 

On the other hand, such a homomorphism cp* is determined by a single value 

f(x) = cp*(so) : 

By R-linearity, 
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cp*(uso) = qa)f*so 

for all a E R, that is, if aso = (Cui(z)Vi) so, then 

- that is, f is a X-eigenvector. The correspondence ‘p ++ f establishes the 
required isomorphism. 

Finally, C - p = Spec R, where the point p corresponds to the valuation 
a + ord, a = deg D(u). The eigenspaces associated to each point of C - p 

form a bundle. The sheaf F over C - p is a sheaf of regular, fiberwise linear 
functions on this bundle. An example is the sheaf of functions f + f(‘) (0). 
Furthermore, f -+ f(‘)(O) E r(C,F((1 + l)p)), and for m > 0 such functions 
(with 1 < m) generate F((m + 1)~). M oreover, as found by Burnchall and 
Chaundy and rediscovered by Krichever, the Data B always correspond to 
some choice of Data A. This dictionary is extended to the case of sheaves of 
rank d and commutative rings of differential operators of degree divisible by d 

in by Mumford [1978]. A somewhat different version of Data A and B is given 
in Shiota [1983]. 

1.2. Deformation of Commuting Differential Operators. In this section we 
assume k = @, unless explicitely stated otherwise. In Data A, fix a curve C, 
a smooth point p E C, a tangent vector w at p, and also a local parameter 
z, as in the last section. Then, varying the sheaf F does not change the ring 
R = r(C - p, c3~), but does change the embedding D and its image ~ the 
subring D(R) c @[[x]][d/dx]. By the Riemann-Roth formula, the hypotheses 
on .?= (when the curve C is irreducible) imply that 3 is an invertible sheaf of 
degree g - 1, where g is the genus of C. Let us recall that every torsion-free 
sheaf of rank 1 is invertible in the neighborhood of the regular points of C. 
Therefore, in this case, the sheaf F can be identified (up to isomorphism) 
with a point of the Jacobian variety Picg-’ C, and furthermore F 4 0 (where 
0 is the canonical polarization divisor) by virtue of the hypothesis h’(F) = 
0. For a singular curve C, the l-parameter deformations of Y’ are given by 
tensor products F @ FL, where Ft E J(C) = Pit’ C is a deformation on the 
Jacobian with Fe = 0~ = 0 E J(C). Thus, the deformation of the sheaf on 
the Jacobian corresponds to the deformation of the embedded subring D,(R) 

in C[[x]][d/dx], called the Jacobian flow. Considering the ring R fixed, we 
indicate the evolution law of the Jacobian how by 

Dt : R c) @[[xl] i . 
[ I 

This evolution law is described fairly simply as follows: 

Theorem (Mumford [1978]). The d f  e ormation of any pair of operators 

a, b E R satisfies a Lax-type equation 
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where [ , ] is the commutator, n is the degree of b, 1 2 1 is an arbitrary integer, 

and (Dt(b)“l”)+ E @[[x]][d/dx] is th e sum of terms of non-negative degree of 
the pseudo-differential operator Dt (b)‘/“, which is the operator D,(b) raised 

to the l/n-th power. 

Example. Consider the operator A = ($)” + u(x) of degree two. It can 
be checked directly that 

+ u”(X) - u(x)2 
8 

-’ + 6a(x)u’(x) - u”‘(x) 

16 

and so 

AS/~ = ($)” I 3u;) (;) 1 3uk(x) ; u”(x)fg3u(x)2 (&)-‘+... 

and 

[A, (A3i2)+] = +u”‘(x) + 6u(x)u’(x)). 

Therefore, if D(u) = D(b) = A, then the Jacobian flow 

At= -$ ‘+a(t,x) ( > 0) 

satisfies the Korteweg-de Vries (KdV) equation 

dU 

at= 

after resealing of the coefficients. Thus, Jacobian flows give explicit solutions 
to this equation. On the other hand, in order to construct the flow (l), one 
must have a function a E R = r(C -p, 0~) with a pole of second order at p. 

Thus, we should take a hyperelliptic curve C and a Weierstrass point p on it. 
Then there exists a function a E R with a pole of second order at p, and by 
choosing the section SO (see Section 1.1) appropriately, 

2 

+ u(x). 

Thus the flows on hyperelliptic Jacobians define l-parameter families of op- 
erators 
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where a(t, z) satisfy the KdV equation. For a smooth curve C such solutions 
were found by McKean and Van Moerbeke [1975], and Dubrovin, Matve’ev 
and Novikov [1976]. For singular hyperelliptic curves 

y2 = ~cf(~)” 

these solutions are known as Kay-Moses [1956] solitons, while for unicursal 
curves 

g =22n+l 

they are known as the rational solitons of @Airault-McKeanMoser [1977]. 

1.3. Kadomtsev-Petviashvili Equations. In the proof of the theorem of the 
last section it is natural to extend the inclusions Dt to an inclusion of the 
field of rational functions on the curve C into the ring of pseudo-differential 
operators: 

Dt : @(C) L) P,D{z}. 

With an appropriate choice of the section se, the element l/z corresponds to 
the pseudo-differential operator Lt = Dt(l/z) E $ + 9-, where !P- is the 
space of pseudo-differential operators of degree < -1. Such an operator Lt 
depends solely on ?=t ~ the commutative ring Rt = Dt(R) can be reconstructed 
uniquely. 

Proposition (Shiota [1983].) 

Rt = {A E Wdl [ f-1 I [A, &I = 0) . 

This means that the Jacobian flows Rt of this type are completely deter- 
mined by the deformations of the operators Lt. To determine the evolution of 
L completely as a function of F, choose a set of complex variables ti, . . . , tN 
and, instead of the sheaf F @ 0~ on C & @[[z]], let us consider the sheaf 
F @ 0,~ on U x cN and (C - p) x cN glued on (U - p) x cN by multiplica- 

tion by the function exp C,“=, tj2-j . 
( > 

The deformation F* of this sheaf on 

cxcq[G t1,. . . , TV]] is obtained b y f ormally replacing ti by ti +x. The depen- 
dence of the inclusion Dtl,...,tN and its image Dtl,,,,,tN (R) is again described by 
a Lax equation for the operator L = L&l,. . . , tN) E & +!V @c[[t, , . . . , TV]] : 

T&L = [(Ln)+, 4, n= l,...,N. 
12 

Evidently, the form of this system does not depend on N. For this reason, 
people usually consider an infinite chain of variables ti , t2, . . . , and the system 
of equations 

-P&L = [CL”)+, Ll 12 
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controlling the evolution of the operator L = L(tl, ta, . . .) E & + @‘- @ 

C[[tl, tz, . . .]] is th en called the Kadomtsev-Petviashvili hierarchy, or, shorter, 
the KP hierarchy. 

Remark-Example. To study differential equations on functions, associate 

to the operator L(tl, tz, . . .) a complex-valued function r(tl, t2, . . .). The corre- 
sponding equations for r, written using Hirota’s bilinear differential operator 

can be found in Shiota [1983]. In particular, for the function 

T(tl, t2, h,O, . .) = exp(Q(tl, t2, h)P(tlal + ha2 + km + C), 

where 19(u) = 6(u,Z) is R’ iemann’s theta function, ai E 0, Q(tl, t2, t3) is a 

quadratic form, and ( is a parameter in @ s, the first of the equations of the 

KP hierarchy is equivalent to the system 

( 

CF.@ 
-$+3$-4- 

1 2 
at at +cqjp +Q 

1 3 
‘1 ) 0 [i] (2$k,i.2z) = 0 

for all 6 E (0, 1)s. Th e constants cl and cg depend on Q as follows: if 

Q(tl,h,t3) = & Qijtitj, Qij = Qji, 
i,j=l 

then 

cl = 24Qll, ~2 = 48Q:, + 12Q22 - 16913, 

where Q may be chosen so that Qlj = Qjl = 0 for all j, and, in particular, 
cl = 0. As will become clear later, this is almost enough to determine the 

period matrices (I, 2) of Jacobians of curves (see Section 4.5). 

1.4. Finite Dimensional Solutions of the KP Hierarchy. For sufficiently large 
N (2 2g + l), the dimension of the image L(tl, . . . , tN) becomes equal to g 
- the genus of C, (arithmetic genus for a singular curve C). This property 
of finite-dimensionality characterizes Jacobian flows. In general, an operator 
L E & + W is called finite-dimensional if the linear map 

c d Cndt, + [c cn(Ln)+, L] 
has finite rank, called the dimension of L. If L is a function of t = (t1,t2,.. .) 
and satisfies the KP hierarchy, dL(t) coincides with the tangent map to 
the map L : t -+ L(t) at the point t, where we make the identifications 
TtP = T&O0 = P, and TLct) $ + Ik- = 9-. It turns out that the finite- 
dimensionality of the operator and its dimension are independent of t. There- 
fore a solution L(t) is called finite-dimensional if it is finite-dimensional for 
some t. It is known that every finite-dimensional solution is meromorphic on 
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P , and the associated function r is entire. If the solution L is g-dimensional, 
then the map dL (meromorphic in t) factors through C”/KL N 0 : 

Therefore, the space of effective parameters 

TL = (C"/KL)/~ 

is a complex abelian Lie group, where 
- - - - 

r = {y E C=” /KL IdL(y) = dL(0) } = {dL(t + y) = dL(t), for all t E P’} 

is a discrete subgroup of C” /KL. If TL is compact, then the operator L is is 
called compact and the corresponding solution is called quasi-periodic. 

Theorem (Mulase, Shiota [1983]). Every g-dimensional solution L(tl, tz, . . .) 
of the KP hierarchy corresponds to a Jacobian jIow of some curve C of genus 
g and there is an isomorphism 

TL ” J(C) 

of complex Lie groups. In particular, L is quasi-periodic if the curve C is 

non-singular. 

Note. If C is non-singular, TL 2~ J(C) as principally polarized abelian 
varietis, where the polarization on TL is given by the zero divisor of the 
function r (see Shiota [1983]). 

1.5. Solutions of the Toda Lattice. There are other operator variations on 
the theory of Burnchall-Chaundy-Krichever. Let us briefly examine the case 
of finite difference operators discovered by Mumford and Van Moerbeke (see 
Mumford [1978]). F or an arbitrary field k let M&(k) be the ring of finite 
difference operators over Ic, that is, maps A : II?zk + II?,“k, (II?: is the 
set of doubly infinite sequences) defined by the rule 

n+Nz 

Am == c Anmxm for all n E Z. 
m=n-N1 

The minimal interval [Nr , Nz] such that A,, = 0 for m - n $ [Nl, iV2] is 
called the carrier of A. Furthermore, the carrier is called exact if An,n+~l # 0 
and A n,n+jQ # 0 for all n E z. There is a natural bijective correspondence 
between the following sets of data. 
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Data A. 
(a) C is a complete irreducible curve over Ic. 
(b) p, Q are non-singular k points of C. 
(c) F is a torsion-free sheaf of rank 1 on C, such that x(F) = 0, and 

h1 (F(np - nq)) = 0 for all n E Z. 

Data B. A commutative subring R c Mk(lc), with k c R, and such that 
there are A, B E R, with exact carriers [ai, us], [bi, bz] with (ai, bi) = 1 and 
(as, b2) = 1, azbl < al b2. Two subrings RI, R:! c ML(k) are identified if 
there exists an invertible element A = (X,, 6,,), X, E Ic\{O} with 

RI = Ao Rz o A-l. 

This Jacobian flow in this case satisfies the equation 

;W) = &Mb)+ - Dt(b)-,Dt(a)l, 

where ( )+ is the operation of taking the “upper triangular part” of an oper- 
ator, and ( )- is the “lower triangular part”: 

Example. Consider the evolution of n-periodic operators A, that is, oper- 
ators such that An+m,n+l = A,1 for all m, I E Z, with carrier [-l,l]. If 

A= 
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where CyX”=, crj = 0, and Cy=“=, ,& = 0, then oi and pi satisfy the evolution 
equations 

&i = ,Oi, 

pi = e ai-1-a; -e =;--a;+1 
, 

known as the Toda lattice equations, describing the dynamics of n particles on 
a circle, each interacting with the two neighboring particles by an exponential 
force law. The hypotheses on the matrix A = D(u), with the exception of 



230 v. v. Shokurov 

the last normalizations express the following hypotheses on the element a E 

r(C-P-q,a3: 

n-periodicity: np - nq, where N is linear equivalence, and 
exact carrier [- 1, 11: the function a has divisor of poles p + q. 

The solutions corresponding to a rational curve C with m ordinary second- 
order singularities are called m-solitons of the system. 

1.6. Solution of Algebraic Equations Using Theta-Constants. The Babylo- 
nians, the Hindus, and the Chinese knew how to solve quadratic equations by 
the second millenium B.C. In the sixteenth century, formulas for the solution 
of cubits and quartics were found in Italy. These are now known as Cardano’s 
and Ferrari’s formulas. As Abel discovered in 1826, the general equation of 
degree greater than four cannot be solved in radicals. This result played an 
important part in the development of algebra. However, neither Abel’s work, 
nor the more precise results given by Galois theory stopped work on finding 
explicit formulas for the solution of higher degree algebraic equations, us- 
ing special functions other than radicals. For example, in 1858 Hermite and 
Kronecker proved that the equation of degree five could be solved using an 
elliptic modular function of level five. Kronecker’s formula was generalized 
by Klein, and in 1870 Jordan showed that an algebraic equation of arbitrary 
degree could be solved using modular functions. Tomae’s formula (see Mum- 
ford [1983]) shed further light on Jordan’s proof. However, much more con- 
venient is the more recent formula of Umemura, which can be easily deduced 
from Tomae’s formula (see Mumford [1983]). Let f(x) be a complex polyno- 
mial of odd degree 2g + 1 with simple roots 21, . . . , z~,+i . Then the equation 
y2 = f(x) gives a hyperelliptic curve C of degree g. Let (I, 2) be its nor- 
malized period matrix. It is uniquely determined by the choice of a standard 
basis for H1 (C, Z), which, in turn, is completely determined by the ordering 

of the roots if f(x). Thus, the theta constants 6 [j (2) ef 19 [t] (0,Z) are 

completely determined. 
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Umemura’s formula. 

This formula can be used to find the roots of an algebraic equation 

aOxn + alxn--l + . . . + a, = 0, a0 # 0, ai E C, l<i<n. (2) 

Evidently, we can restrict to the case of simple roots (~1, . . . , (Y, # 0,l and # 2 
for even n. Then the right hand side of Umemura’s formula gives the value of 
the root al if 2 is the Siegel matrix of the hyperelliptic curve y2 = f(x) with 

x(x - l)(aoxh + . . . + a,) 

f(x) = {x(x - l)(aezh +...+ a,)(z - 2) E ~~fi111. 

The roots of f(x) are ordered as follows: 

Xl = 0, x2 = 1, xi+2 = ai for odd n 

Xl = 0, x2 = 1, xi+2 = ai, xn+3 = 2 for even n. 

Indeed, in that case 
Xl - x3 
-=23=cQ. 
Xl -x2 

So, to solve equation (2) we need to find the matrix 2, and for that we 
must order the roots. If the exact values of the roots are unknown, to choose 
an ordering it is enough to separate them, that is, to find the regions of @ 
containing exactly one root each. The complex version of Sturm’s theorem 
provides an algorithm to do that. The right hand side of Umemura’s formula 
can thus be effectively used when solving algebraic equations by means of 
theta constants. Note that these constants are none other than Siegel modular 
forms. In comparison with the radicals 

i/;l=exp(iloga) =exp(iRkdx), 

in the formulas above, the exponential function is replaced by Siegel modular 
functions, and the integrals soa $dx are replaced by hyperelliptic integrals 

J(xi/m)dx, (for 0 2 i 5 g - 1) defining the matrix 2. 
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$2. Special Divisors 

As was already explained in the first part of the survey, the study of pro- 
jective embeddings of curves is equivalent to the study of linear systems on 
them. To get more precise results, it is not enough to study some individual 
linear systems or divisors which reveal the general appearance of the curve, 
but rather we must study the configurations of all linear systems or divisors 
of a prescribed type. 

In this section, C will denote a complete nonsingular curve of genus g over 
an arbitrary algebraically closed field k. 

2.1. Varieties of Special Divisors and Linear Systems. We will be interested 
in the following configurations of divisors and linear systems on the curve C : 

is the subset of the d-fold symmetric power Cd, consisting of divisors of degree 
d on C, lying in linear systems of dimension no less than r; 

W,T = WiC d&f {IDI (degD = d,dimlD( 2 r} 

is the subset of the Picard variety Pi@ C consisting of complete linear systems 
of degree d and dimension at least r; 

GL = GZC Ef {g: on C} 

is the set of linear systems on C of degree d and dimension exactly T. The 
connection between Ci and Wi is given by Abel’s mapping 

pd : cd + Pied c; 

to wit 

pd(c;) = w,T. 

The first important fact is that all these configurations are algebraic varieties 
in a natural way. More precisely, Cs and Wi are subvarieties of Cd and Pied C, 
respectively, while Ci with the natural projection onto Wl (for r and d cor- 
responding to special linear systems), is a canonical resolution of singularities 
of the variety Wi. 

Example 1. Cd0 = Gz = Cd. 

Example 2. WiPI = 0 C Picg-’ C is the canonical polarization divisor. 

The first interesting properties of these varieties are their dimensions, the 
number of their connected components, their singularities, and their connec- 
tivity. These questions are at least partly answered by the Brill-Noether theory 
described below. It should be noted right away that the varieties Ci, Wi and 
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GL consisting of nonspecial divisors or linear systems are uninteresting, since 
then Ci = Cd and Wi = Pied C, while GT, -+ Wi = Pied C is a bundle of 
Grassmannians. 

2.2. The Brill-Noether matrix. The Brill-Noether Numbers. The fact that 
Ci and Wi are subvarieties of Cd and Pied C easily follows from the semi- 
continuity of the dimension of the cohomology groups on a family of sheaves 
or divisors. However, in the current situation this can be explained and proved 
by more elementary considerations, which also help explain some of the later 
developments. 

Let D = Cpi be an effective divisor of degree d on C. By the geometric 
interpretation of the RiemannRoch formula, dim ID] 2 T, if and only if the 
dimension of the linear hull of D does not exceed deg D - r - 1. When the 
points pi are distinct, this is equivalent to the inequality 

where WI,... , wg is the basis of the space of regular differentials on C. The 
matrix above is the Brill-Noether matrix. Its definition for a general divisor is 
somewhat more complicated (see Arbarello-Cornalba-Griffiths-Harris[l984]). 
The fact that D E Ci, if and only if the rank of the Brill-Noether matrix does 
not exceed d - r, shows that in a neighborhood of the divisor D the subset 
Ci is the zero set of (d - r + 1) minors. Indeed, 

rank(wi(pj)) = rank(fi(q)), 

where ..~j are local parameters at the points pj and Wi = fi(zj)dzj. Therefore, 
the minors of the above matrix are regular functions in a neighborhood of D 
on Cd, which shows that C$ is a subvariety of Cd. 

The aforementioned determinantal description of the variety Ci allows us to 
get a lower bound on the dimension of its components. Since the components 
Ci are locally defined by the simultaneous vanishing of all of the (d - r + 1) 
minors of a g x d matrix, the codimension does not exceed 

[d - (d - r)][g - (d - r)] = r(g - d + r). 

Therefore: 

Proposition 1. 

1. The dimension of the components of C$ is at least T + p. 
.Z?. The dimension of the components of Wi is at least p. 

Here 
p = p(g, r, d) def g - (r + l)(g - d + r) 
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is the well-known Brill-Noether number. By the above proposition, its role is 
explained by the fact that T + p and p are lower bounds for the dimensions 
of the varieties ~5’: and WJ, respectively (assuming that these varieties are 
non-empty). 

2.3. Existence of Special Divisors. There arises a natural question: assuming 
that p is non-negative, does it follow that Wl and thus Ci and Gi are non- 
empty? 

An affirmative answer is given by the following: 

Existence theorem. (Kleiman, Laksov, Kempf). For d 2 1, T > 0 and 

p = g - (r + l)(g - d + T) 2 0, 

Wi, and thus Ci and Gi, is non-empty. Furthermore, for r > d - g, which 

is equivalent to the inequality p 5 g, each component of Wi, Ci, and Gs has 

dimension at least p, p + T, and p, respectively. 

Fig. 1 illustrates this result: d = 2r is the Clifford straight line and p = 0 

is the curve of Brill-Noether, the vertically dashed region is the region of 
existence of linear systems gi, the non-existence region is undashed. 

Fig. 1 

The proof of the proposition follows directly from the explicit formula for 
the fundamental class of the subvarieties Wi and Ci, computed with the aid 
of Porteous’ formula. 

Proposition. If Wi has expected dimension p, then the fundamental class 

has the form 
T 

w; = a=O (g _ d fr + ~)! @(‘+‘)(g-d+‘) rI 
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Example 1. dim C~-i 2 g - 3 for g 2 4, which can be checked directly. 
The case of a hyperelliptic curve C is self-evident: Cg-r > gi + C,-s and 
dim Cg-i 2 g - 2 for g > 3. A non-hyperelliptic curve can be identified with 
its canonical model C C P-l. It is then enough to show that a general 
effective divisor pi + . . . + pg--3 of degree g - 3 on C can be completed, by 
adding two points, to an effective divisor D of degree g - 1 with dim IDI = 1, 
or, equivalently, with dimn = g - 3. If the (g - 4)-plane pl + . . + pgw3 

intersects C in an additional point or is tangent to C, then there exists a 
point q E C, such that pl + . . . + pg-3 + q = pl + . . . + ~~-3, and the second 
point can be picked arbitrarily. Otherwise, the projection from this plane 
7r : C + P2 is birational, but is not an inclusion, since degr(C) = 2g - 

2 - (g - 3) = g + 1, and g(n(C)) = w > g, for g > 4. Since 7r is not 
an inclusion, then there exist points p and q on C with x(p) = r(q), and 
for them dim pi + . . . + pg--3 + p + q = g - 3. Combining these observations 
with the theorem on general position, it is easy to see that dim Wi-i = g - 3 
for a hyperelliptic curve of genus g > 2, and dim lV~-i = g - 4 for a non- 
hyperelliptic curve of genus g 2 3. 

Example 2. In particular, for a non-hyperelliptic curve C c P3 of genus 4, 
there are two gss which is consistent with the proposition. These linear systems 
are cut out by linear generators of the unique quadric passing through C. 

2.4. Connectedness. As was observed by Fulton and Lazarsfeld, the exis- 
tence theorem essentially follows from the ampleness properties of the complex 
of sheaves which gives Wi as the degeneracy locus. From similar considera- 
tions and using general results such as the theorems of Lefschetz and Bertini, 
it is possible to obtain the following 

Connectedness theorem (Fulton, Lazarsfeld). When d 2 1, r 2 0 and 

p = g - (r + l)(g - d + r) > I 

the variety Wi, and hence the varieties Ci and GL, are connected. 

2.5. Special Curves. The General Case. The existence theorem gives a lower 
bound on the dimension of Wl. A natural question is how sharp is this bound, 
andin particular whether Wi are empty for p < 0. For a generic curve C the 
answer is affirmative. However, there exist curves for which this does not hold, 
the so-called special curves. The possible values of T and d for special linear 
systems gi on a curve of genus g for p < 0 are to be found in the horizontally 
dashed region (“lune”) in Fig. 1. 

Question. The author does not know whether every one of these can be 
realized for complete linear systems, that is, whether for any r and d in the 
“lune” there exists a curve C of genus g with a complete linear system gs. 

Example 1. By definition, there exists a gi on a hyperelliptic curve C, but 
p(g, 1,2) = 2 -g < 0 f or g > 3. Thus, the existence of a ga on a curve of genus 
g 2 3 is not typical, which is easy to verify by counting parameters. 
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Example 2. Analogously, on a trigonal curve there is a gi, but p(g, 1,3) = 
4 - g < 0, for g 2 5. 

Example 9. In order to better understand the meaning of the condition 
p < 0, consider the general question of the existence of a system of type gi. 
The corresponding Brill-Noether number is 

p=2d-g-2. 

On the other hand, the free linear system g; defines a d-sheeted covering 
C + P’ with branching divisor of degree 2d + 2g - 2 by the Hurwitz formula. 
Since the automorphism group of p’ is three-dimensional, a d-sheeted cover 
of IIP’ of genus g depends on d + 2g - 5 parameters. This means that a generic 
curve of genus g has no gi when 

2d$2g-5<3g-3, 

which is equivalent to the inequality p = 2d - g - 2 < 0. 

Example 4. A generic curve of genus 2 4 is not a plane curve, that is, it 
does not admit an embedding into P2. In particular, a generic curve of genus 
6 is not a plane quintic. 

Example 5. Another special kind of curves is important for the discussion 
below. These are the bi-elliptic curves C, characterized by the existence of a 
two-sheeted covering e : C + E onto some elliptic curve . For such curves 
dim Wi > 1. Indeed, 

W4’ > {g; = E+g; 1 g; E G;E} = E*G;E 

and 
GtE = WiE = Pi? E 

by the Riemann-Roth formula. The corresponding Brill-Noether number is 
p = 6 - g 5 0 for g 2 6 and, as is easily checked by counting dimensions, 
a general curve of genus 2 6 is not bi-elliptic. Furthermore, no bi-elliptic 
curve of genus 2 6 is hyperelliptic, and every bi-elliptic curve admits a unique 
covering E : C -+ E of the type prescribed above. This covering is realized on 
the canonical curve C C lP’g-l as a projection with center at 0 E pg-‘, lying 
outside C (Shokurov [1983], [1981]). 

Let us now study general curves. The statement below was formulated by 
Brill and Noether, although it was proved only in 1979 by Griffiths and Harris. 

Dimension theorem. Let C be a general curve of genus g, let d > 1, r > 0, 

andp=g-(r+l)(g-d+r). Then 

(a) Wl is an irreducible (reduced) variety of pure dimension min(p,g) for 

P > 0; 
(b) (Castelnuovo) Gz = Wi is a set of cardinality 
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for p = 0 (compare with the proposition of Section 2.3). 

(c) Wl, Ci, and Gz are empty when p < 0. 

The proof is based on a perturbation method: if the theorem is true for 
some curve of genus g, then it is true for the general curve of genus g. This 
follows essentially from the irreducibility of the moduli space of curves of 
a fixed genus. The difficulties in the proof stem from the fact that all of the 
known examples of curves: hyperelliptic, trigonal, plane, and so on, are special 
for g >> 0. Thus, the original approach was to try to find a curve lying on 
the boundary of moduli space - a general rational curve with double points of 
simplest type, which, regrettably, takes one outside the class of non-singular 
curves. Recently, Lazarsfeld (see also Tyurin [1987]), by using the theory of 
vector bundles on algebraic surfaces, showed that one could take the generic 
curve to be a generic curve in a polarized linear system of a K3 surface, with 
a polarized complete linear system of degree 2g - 2 without multiple curves. 
A generic K3 surface of degree 2g - 2 satisfies this condition. Amazingly, such 
curves do not fill up the moduli space of curves of genus g >> 0, and so are 
not general curves in the sense of Grothendieck. 

2.6. Singularities. In roughly the same fashion one can establish the follow- 
ing: 

Smoothness theorem (Gieseker). Let C be a generic curwe of genus g, d > 1 
and r > 0. Then G’,C is a smooth variety of dimension p. 

Theorem on singularities. Let C be a general curve of genus g, d 2 1, 
r 2 0, and r > d - g, Then 

Sing WiC = W,‘+lC. 

These results will be explained in the next section. 

2.7. Infinitesimal Theory of Special Linear Systems. Let us view a linear 
system L of degree d as a point of the Picard variety Pied C. First, note that 
there are canonical isomorphisms of tangent spaces 

TL(PicdC) = R” = HO(K)“, 

where 65’ is the space of regular differentials on C, while K is the canonical 
divisor on C. The first equality (in the case k = 9 follows from the observation 
that Pied C is a principal homogeneous space of the Jacobian 

J(C) = PicOC = 6?“/A, 
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where 

A= 
{I 

:n+qcEHl(C,Z) 
c 

is a lattice in the complex space 0 “. In particular, the elements of the cotan- 
gent space Tl(Picd C) to Pied C at L can be naturally identified with regular 
differentials. Let us fix a divisor D E L. Then, there is a canonical pairing 

p : IlO @ HO(K - II) + ITO 

f @g+f.g. 

There is the following description of the Zariski tangent space TL(WJ) to W,$ 
at L; it is assumed that IV: is locally defined by the minors of the Brill-Noether 
matrix (see Section 2.2). 

Proposition. 

(a) If L E WJ but L $! WJ+l, and thus T > d - g, then 

TL(W~) = (Imp)‘. 

(b) If L E Wi+‘, then 
TL(WJ) = TL(Picd C). 

In particular, if Wi has the expected dimension p and T > d - g (so that 
p < g), then L is a singular point of Wi. 

To illustrate point (a) of the above proposition, let us use the following 
geometric interpretation, valid for r = 0. 

Example. Let L E W,“\W,‘, so that L = IDI is a linear system consisting 
of one effective divisor D of degree d, and g 2 d. If the curve C is not 
hyperelliptic, then it is canonically embedded into the projectivization 

B(TL(Picd C)) = l?(H’(K)“) = pg-‘. 

The claim is that part (a) of the proposition is equivalent to the equality 

P(TL(W,o)) = 0. 

On the other hand, this equality can be easily reduced to the special case: 
d=l,D=pE(C 

VQ(K”)) = P 

by the relation Wi = WF + . . . + WF, where + denotes addition in the Picard 
group PicC. For k = @, this can be obtained immediately from the analytic 
description of the Abel mapping 

a1 : c + J(C) = R”/fl= C/A, 

al(~) = (.l,:‘ul,...,l:(~~) modA, 
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(where 0” = 0) is th e isomorphism defined by the choice of basis wi , . . . , wg 
in L?. Indeed, Wit = al(C) +pe, and so differentiating al with respect to the 
local coordinate at the point p we obtain the tangent vector proportional to 

h(P), . . . &J&4>. 

Corollaries. 

1. Sing Wj’ = Wd for d < g. 

2. Sing Wiel = Wiel. This is a special case of Riemann’s theorem on sin- 

gularities (see below in Section .2.10), since Wiwl = 0. Therefore, by 

Example I of Section 2.3 it follows that 

3. dim Sing@ = g - 3 for a hyperelliptic curve of genus g > 2 and 

dim Sing 0 = g - 4 for a non-hyperelliptic curve of genus g > 3. 

Part (b) of the proposition is discussed below in Section 2.10 in connection 

with Kempf’s theorem. It implies the following weaker version of the theorem 

on singularities: 

4. I f  dim Wl < g, (and in particular d < g), then 

Sing W,T > Wi+l. 

The full theorem on singularities is equivalent to the following 

Petri-Gieseker theorem. Let C be a general curve of genus g, and let D 

be an effective divisor. Then the pairing 

/L:H’(D)@H’(K-D)+H’(K) 

f@g+ffS 

is injective. 

Indeed, if L E Wi\ WJ’+’ and if p is injective, then by the Riemann-Roth 
formuladimImp=(r+l)(g-d+l),andso 

dim TL (W,T) = dim Im /.J’ = p. 

Thus, p 5 g, dimL Wi = p and L is nonsingular on Wi. The dimension 
theorem falls out of this also. The Petri-Gieseker theorem itself is proved by 
a perturbation method. The versions of the theorems on the tangent spaces 
of Ci and Gz are similar and can be found in Arbarello-Cornalba-Girffiths- 
Harris [1984]. Now we can apply some of the results discussed above. 

2.8. Gauss Mappings. In view of the homogeneity of the Picard variety 
Pied C we have the rational Gauss mapping 

y; w,j dsf wd” - - -+ G(d - 1, Pg-‘), 

L --+ p(TL(Wd)) C lF’(TL(PicC)) = Pg-’ 
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for d 5 g, associating to the system L E Wd the projectivization of the tangent 
d-plane to Wd at L, viewed as an element of the Grassmannian G(d - l, Pg-l). 
Evidently this map is defined on the set Wd\ Sing Wd, which is the same as 
Wd\Wd for d 5 g - 1, by Corollary 1 of the preceding section. Furthermore, 
by the example of Section 2.7, we associate the (d - 1)-plane D to the O- 
dimensional linear system L = IDI. 

Example 1. For d = 1 and g 2 1, the Gauss map y : WI + IF-’ is, in 
essence, just the canonical mapping. More precisely, the composition 

c 
al Y 

- Wl - p-1 

Pit’ C 

is canonical. 

Example ,% The best-known example of the Gauss map is one where 

y : 0 = w,-, - - + (P-l)“. 

It is an essential ingredient of several proofs of the Torelli theorem, due to the 
remarkable geometric properties of this mapping. We give two such for the 
case of a non-hyperelliptic canonical curve C c pgV1. The degree of the Gauss 
map y : 0 + (Pg-‘)” is equal to (“,9_;“) that being the number of collections 
of divisors of degree g - 1 in a general hyperplane section of C. To explain the 
next property of the Gauss map, define a subvariety 

r, = {L E @ IP E Y(L)1 

in 0. If p E C, then l?, is reduced and consists of two irreducible components 
r: and ri’ : the general point of I’; = p + WjP2 is a zero-dimensional system 
L = IDI of an effective divisor D of degree g - 1 containing p, and the general 
point of rl’ = /I(1 - ri is the complementary linear system IE( - D 1. It is also 
easy to show that for g 2 5 

{p E Pg-’ 1 r’ reduced} = C U {a finite set of points}. 

More precisely, for g 2 6 the finite point set (referred to in the formula 
above) for a bi-elliptic curve C contains a single point 0, which is the center 
of the projection onto an elliptic curve (see Example 5 of Section 2.5) and is 
otherwise empty. Thus, a non-hyperelliptic curve of genus 2 5 can be uniquely 
reconstructed from its principally polarized Jacobian , which is a significant 
part of the following fundamental result: 
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Torelli theorem. I f  the Jacobians of the curves C and C’ are isomorphic 

as principally polarized abelian varieties, then the curves C and C’ are iso- 

morphic. 

The details of the above-mentioned approach to the proof of this theorem 
can be found in Arbarello-Cornalba-Griffiths-Harris [1984]. That book also 
has the more traditional approach due to Andreotti, which uses the duality of 
the branching divisor of the Gauss mapping y : 0 -+ (lW1)” to the canonical 
curve C c Pg-’ (see Griffiths-Harris [1978]). 

2.9. Sharper Bounds on Dimensions. The existence theorem tells us only a 
lower bound on the dimension of the components W’i. There are rare cases 
(such as when r = 0) when we have a complete answer: 

dim Wdg = 
d for d 5 g, 

g for d 2 g, 

which follows from the relationship IV: = pd(Cd) by the fact that pd is 
birationalwhen d 5 g and surjective when d 2 g. It is often necessary to have 
an upper bound for the dimension in some less trivial situations. The first 
result in this direction is 

Martens theorem. Let C be a curve of genus g 2 3, 2 5 d 5 g - 1, and 
0 < 2r 5 d. Then 

(a) If  C is not hyperelliptic, then each component of Wl has dimension no 
greater than d - 2r - 1. 

(b) If C is hyperelliptic, then 

W,T = rgi + Wdo_zr 

is an irreducible variety of dimension d - 2r. 

Indeed, by the proposition of Section 2.7, the dimension of any component 
Z C Wl in a generic point L $i! Wi” does not exceed the dimension of 
the Zariski tangent space TL (Wi), which is equal to g - dim Im p1 5 g - l- 
ho(D) - ho (K - D). The last inequality follows from the inequality dim Im ,u > 
ho(D) + ho (K - D) - 1, which holds whenever ho(D) , ho (K - D) 2 1 (compare 
with the lemma of Chapter 2, Section 3.5 of the first part of the survey). Then, 
by the Riemann-Roth formula 

dimZ<degD-2h”(D)+2=d-2r, 

since ho(D) = r + 1 by the choice L = IDI. Just as in the proof of Clifford’s in- 
equality, equality implies hyperellipticity of C, and we can determine the form 
of L = IDI. Martens’ theorem can be viewed as a considerable generalization 
of Corollary 3 of Section 2.7. 
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Note. Clifford’s theorem implies that on a curve of genus g 2 3 there are 
no linear systems g$ with r 5 d < g - 1, and therefore Wi is empty. 

The following sharper version is proved in roughly the same way. 

Mumford’s theorem. Let C be a non-hyperelliptic curve of genus g 2 4, 

for which there are integral r and d such that r 5 d 5 g - 2 and d 2 2r > 0, 

and there exists a component Z C Wi with 

dimZ=d-2r-1. 

Then the curve C is trigonal, bi-elliptic or is a plane quintic (for g = 6). 

In principle, these results can be improved further, but this leads to a 
growing number of exceptions in lower genera (compare with Keem’s theorem 
in Arbarello-Cornalba-Griffiths-Harris [1984]). 

2.10. Tangent Cones. As we have already learned, the point ID] E 0 is 
singular if and only if dim ID] 2 1. Furthermore, the following result holds. 

Riemann’s theorem on singularities. For any effective divisor D of degree 

g - 1 on a curve C of genus g, 

multlDl0 = ho(D) = r + 1, 

and the tangent cone Q1~1(0) to 0 at IDI is given by an (r + l)-form 

det(figj) = 0, 

where fi, . . . , fT+l is a basis of Ho(D), and 91, . . . , gr+l is a basis of H”(K - 
D). For a canonical curve this is equivalent to the geometric statement 

- 
VQIDI(@)) = U D’. 

D’EIDI 

In this geometric reformulation, the theorem can be deduced from the ex- 
ample in Section 2.7 for the case r = 0, and by a limiting argument in general. 
For Ic = @ there is the analytic proof due to Riemann, using the heat equa- 
tion for theta-functions (see ArbarellooCornalba-GriffithsHarris [1984]). For 
a purely algebraic proof see Shokurov [1983]. 

Example. Let C E lPW1 be a non-hyperelliptic canonical curve of genus 
g 2 5. Then a generic singularity IDI E Sing@ is quadratic, and the projec- 
tivization of the tangent cone lP(Qlol(O)) is a quadric of rank 4, swept out by 

- 
(g - 3)-planes D’, D’ E ] DI. Evidently this quadric passes through C. It can be 
checked by a parameter count that such quadrics form a (g - 4)-dimensional 
component of the space of rank 4 quadrics through C. 

In view of this, the following fact is quite remarkable: 
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M. Green’s theorem. The tangent quadratic forms to double points on 
the theta-divisor 0 generate the quadratic ideal Iz(C) of a non-hyperelliptic 

canonical curve C C IF-l. 

Using this and the theorems of Enriques, Babbidge and Petri one can de- 
duce the Torelli theorem for non-hyperelliptic, non-trigonal curves, and curves 
not isomorphic to the plane quintic. A natural generalization of Riemann’s 
theorem on singularities of Wd is 

Kempf’s theorem. Let gi = IDI b ea ozn inWd andd<g-1. Thenthe p . t 

tangent cone QlDl(Wd) is a variety of degree (‘+Fed), whose ideal is gener- 

ated by maximal minors of the matrix (figj) where fi, . . . , fr+l are a basis of 

Ho(D), while 91,. . . ,~~-d+~ are a basis of H”(K - D), or, geometrically, for 

a canonical curve C - 

The last statement implies that p(&IDI(wd)) contains the canonical curve 
C for r 2 1. Since C is linearly normal, we have the equality P(qDI(wd)) = 
IF’g-’ (compare part (b) of the proposition in Section 2.7). A description of 
the tangent cones to Wi can be found in Arbarello-Cornalba-GriffithsHarris 
[1984]. 

$3. Prymians 

In this section we discuss Prymians, associated with double unbranched 
covers of curves. These are principally polarized abelian varieties which play 
an important role in the geometry of higher-dimensional varieties. Unless spec- 
ified otherwise, C is a non-singular curve of genus g over an algebraically closed 
field of characteristic not equal to 2. 

3.1. Unbranched Double Covers. Let us recall that an involution is an au- 
tomorphism of order two. Specifying an unbranched double covering 

7T:C+C 

is equivalent to defining an involution without fixed points 

I:&kC 

permuting its sheets. 

Proposition 1. 

Ker[n* : J(C) + J(c)] = {O,a} 0 E Jz(C) 

class of D + class n* D. 
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where Jz(C) dgf {p E J(C) I2p = 0). 

Proposition 2. The correspondence r + c defines a bijection between the 
set of unbranched double couers n : 6 -+ C and the set 52 (C) - 0 of non-trivial 
points of second order on the Jacobian J(C). 

The covering 7r : C + C corresponding to an element 0 # 0 E Jz(C) is 
given as a map corresponding to the field extension k(C) c ,4(C)(a), where 
(f) = 20 and th e 1 inear equivalence class of D is u. 

Corolhry. A curve C of genus g has 229 - 1 unbranched double covers. 

Note. The reader can learn more about constructing normal coverings of 
curves with abelian automorphism groups, or, equivalently, abelian extensions 
of algebraic function fields of transcendence degree one arising from separable 
isogenies of their generalized Jacobians from Serre [1959]. 

3.2. Prymians and Prym Varieties. Fix a non-singular curve 6’ together 
with an involution I : C + C without fixed points. This involution induces 
an involution of Jacobians 

I* : J(c) + J(6) 

class of D + class of I*D. 

Lemma-Definition. The Prymian of the pair (c, I) is the abelian variety 

Pr(C, I) gf {p - I*p 1 p E J(c)} 

= connected component of 0 in Ker Nm 

where 
Nm : Pick -+ PicC, 

Nm(class of C aipi) = class of c air(pi), 

is the norm induced by the factorization K : 6 -+ C = CfI. 

The inclusion {p - I*p 1 p E J(c)} 2 Ker Nm can be checked directly. The 
desired equality follows by counting parameters, using the relations 

rr* o Nm = id + I* and Nm or* = 2, 

where the 2 is the isogeny of multiplication by 2. Indeed, from these rela- 
tions it follows that Nm is an epimorphism while 7r* 0 Nm is the isogeny of 
multiplication by 2 on the elements of the kernel of id - 1’. It follows that 

dim P,(c, 1) = dim J(6) - dim J(C) = g(c) - g(C). 

By the Hurwitz formula g(C) = 2g(C) - 1, which proves 

Proposition 1. dim Pr(C, I) = g - 1. 
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Evidently, Pr(6’, I) is the “odd” part of J(c) relative to I* because 1* (p - 
I*p) = -p+ I*p, and, by counting parameters, we see that it is the connected 
component of identity. On the other hand, the involution I* : 0, + 0, splits 
the cotangent space 

into the invariant 

and antiinvariant 

0, = {w a regular differential on 6 1 I*w = -w} 

components.Therefore, the last space is canonically isomorphic to the cotan- 
gent space 

T,V(Pr(C, I)) = 05, L E Pr(C, I). 

In particular, the elements of the cotangent space Tl(Pr(C,I)) to Pr(6,l) 
at L are naturally identified with the regular differentials on 6, antiinvariant 
with respect to I*, ~ the Prym differentials. Likewise, for k = @. we get the 
analytic representation of the Prymian: 

Pr(C, I) = (fli)“/fl, 

where A is the lattice given by integration with respect to antiinvariant l- 
cycles (see Arbarello-Cornalba-Griffiths-Harris [1984]). 

Note. There is a natural isomorphism 

where the class D E Jz(C) . is a double point corresponding to the covering 
7T:i?+C. 

The next result shows that Nm-‘(0) has two connected components, and 
gives yet another description of the Prymian. 

Proposition 2. Nm-‘(Kc) C Piczge2 6 consists of two non-intersecting 
components P+ and P-, which are translates of Pr(6, I). More precisely, 

P+ = {L E Pic2g-2 6 1 Nm L 5 Kc and ho(L) even) 

This follows from the conservation of parity of ho(L) on each connected 

component of Nm-‘(Kc). The variety P(6,I) dgf Pf is called the Prym 
variety of the pair (c, 1). It is a principal homogeneous space with respect to 
the natural action of Pr(6,1). 

The concept of the Prymian has been extended in two directions. On the 
one hand, one can allow ordinary double points on 6 and fixed points of the 
involution I : 6’ + c. Despite the fact that the Jacobian J(6) of a singular, 
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and perhaps reducible, connected curve C is not, as a rule, complete, and hence 
not an abelian variety, its odd part - the Prymian - will be an abelian variety 
whenever the involution preserves the singularities and does not transpose the 
branches. On the other hand, one can put more general quadratic constraints 
on I (of the form I2 + al + b = 0) which leads to Prym-Tyurin varieties (see 
Tyurin [1972]). 

3.3. Polarization Divisor. Returning to the previous situation, where C is 
a nonsingular curve with a fixed-point-free involution I, note that the polar- 
ization J(C) induces by restriction a polarization on the Prymian Pr(C, 1). 

Furthermore, this polarization is twice a principal polarization on Pr(C, I). 

When Pr(C, I) is described analytically over k = c, this comes out by explicit 
computation of the intersection form on antiinvariant l-cycles on C. In gen- 
eral, it can be shown that O],,(c I) N 2E for the effective polarization divisor 

0 c J(E), where S is the principal polarization divisor. The reader can find 
out how to compute the degree of polarization of the divisor Z and how to 
show that it is indeed principal in Shokurov [1983] and Mumford [1974]. Here 
we will only note that the divisibility by two follows from Riemann’s theorem 
on singularities. Indeed, we have the following 

Proposition. The canonical polarization divisor 0 c Pic2g-2 C defines the 

canonical polarization divisor 

E = I’@, I) n 0 = {L E P(z;, I) ( ho(L) > 0) 

on P(E, I). 

Since ho(L) is even, the divisor 0 cuts out a divisor on P(C, I) whose 
components all have multiplicity 2 2. That these components have multiplic- 
ity exactly 2 follows from the computation of the degree of polarization (see 
Shokurov [4]). 

For a singular curve C with involution I one can also define a principally 
polarized abelian variety, if the involution preserves ordinary quadratic double 
pgints, preserves their branches, and has no fixed smooth points. Such pairs 
(C, I) are called Beauville pairs (Beauville [1977]). Polarizations can also be 
divided by two to get a principal polarization if there are exactly two smooth 
fixed points of the involution. For a greater nu_mber of fixed smooth points 
or smooth branch points of the projection x : C -+ C the Prymian does not 
have a natural principal polarization. 

Example 1. (Mumford, Dalalian). Let C be a hyperelliptic curve of genus 
g, and let y : C -+ p1 be its hyperelliptic projecticrn with branch points 

Pl,..‘, pzg+2. All of the unbranched double covers r : C t C are constructed 
as follows. The points pi are divided into two non-empty sets with even num- 
bers of elements: {PI,. . . ,p~+2} = I’UI”, card1’ = 2h+2, card1” = 21+2, 
and I’N” = 0, so that h+Z+l = g. These point sets define hyperelliptic curves 
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C’ and C” with projections y’ : C’ + P1 and y” : C” --+ P’, branched over 1’ 
and I” respectively. The curve C is then defined as the desingularization of 
the fiber product C’ xpl C. The curve C is acted upon by the automorphism 
group Z/22x Z/22, which defines a commutative diagram 

i? 

of factorization with respect to the three subgroups of order two. The curve 
C will also be the desingularization of C X~I C” = C’ xpl C”. The claim is 
that 

Pr(C,I) = J’ x J”, 

E zr J’ x 0” + 0’ x J”, 

where J’ and J” are Jacobians of the curves C’ and C” respectively (see 
Mumford 119741). If h = 0 or 1 = 0, then one of these multiplicands disappears, 
and the Prymian becomes the hyperelliptic Jacobian. 

Example 2. (Clemens, Tyurin, Masiewicky, Donagi, and Smith). Now, sup- 
pose that C is a non-hyperelliptic, non-trigonal (canonical) curve of genus 5, 
and let r be the curve of quadrics of rank 4 through C. This last is a possi- 
bly singular quintic in the plane of all quadrics through C. There is a double 
cover r : Sing 0 + r, where 0 is a canonical polarization divisor on Pic4 C. 
The corresponding involution has the form ID] + ]l(c - D]. It turns out that 
(Sing 0, I) is a Beauville pair and that Pr(Sing 0, I) w J(C) as principally po- 
larized abelian varieties. Note that in this case hO(Sing 0, n*M) is odd (where 
M is the divisor of the hyperplane section r). Such coverings are called even, 
since in general, when r is a non-singular plane quintic, this is equivalent to 
the evenness of h”(T, M + 0) of the theta-characteristic of the class M + D, 
where the a-class D is a double point corresponding to the unbranched cover 
r : Sing 0 + r. 

The interest in Prymians is largely due to the fact that they arise as the 
intermediate Jacobians of threefolds of special types. 

Example 3. (Tyurin, Beauville). A bundle of tonics usually means a flat, 
relatively minimal morphism f : V -+ S of a non-singular three-dimensional 
variety V onto a nonsingular algebraic surface S, the general fiber of which is 
a conic ~ an anticanonical model of the projective line P’. There is a curve of 
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degenerations C c S, with ordinary double-point singularities, such that over 
its smooth points, the fiber f-‘(c) separates into a pair of disjoint lines, and 
over the singular points the fiber is one double line (see fig. 2). The lines of 
these fibers are, in general, parametrized by a non-connected curve C, together 
with an involution I which permutes the lines of the degenerate fibers. It turns 
out that (C,I) is a Beauville pair, and that the intermediate Jacobian J(V) 
of the variety V is isomorphic (as a principally polarized abelian variety) to 
Pr(C, I), whenever S is a rational surface. 

V 

fc 

S 

(11 0 
I 

Fig. 2 

Example 4 (Griffiths, Clemens). Consider a nonsingular cubic threefold 
V c P4. Its intermediate Jacobian can also be represented as a Prymian. 
Indeed, the projection of V from a line I c V, after blowing up at 1, becomes a 
bundle of conic sections over P2, without changing the intermediate Jacobian 
V. The curve of degenerations will be a smooth plane quintic r c P2, with 
an odd covering r + r, where r is the curve parametrizing the lines on V 
intersecting 1. 

Prymians also arise as the intermediate Jacobians of the intersection of 
three quadrics in an even-dimensional projective space lF’2n+4 (see Tyurin 
[1972]). In this case the quotient curve C is a discriminant curve, which is 
a plane curve of degree 2n + 5 (compare with Example 2, for n = 0). More 
details on the geometric applications of Prymians can be found in the survey 
of Iskovskikh on higher-dimensional algebraic geometry. Prymians for involu- 
tions with two fixed points play an important role in mathematical physics 
- they can be used to construct explicit solutions of Schroedinger’s equation, 
analogous to Jacobian flows in $1. 
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3.4. Singularities of the Polarization Divisor. The points of the polarization 
divisor E of the Prym variety can, according to the discussion above, be 
identified with odd-dimensional linear systems ID], where D is an effective 
divisor of degree 2g - 2 on C with Nm D N KC. By the Hurwitz formula for 
the canonical divisor, the last condition is the same as the linear equivalence 
D+I*D - KE. Therefore, the pairing ,U of Section 2.7 for IDI E E can be 
written as 

p : Ho(D) 63 H’(I*D) + Ilo = R-. c 

The splitting of L’n,- into the even and odd parts (see Section 3.2) allows us to 
define a skew-symmetric pairing 

[ ] : ASH’ + 0; 

s A t + [s A t] dgf sI*t - u*s. 

In particular, for every basis (fi) of Ho(D) we can define a skew-symmetric 
matrix (wij) with ~~7 = [fi A fj]. W e d enote its Pfaffian by Pf(w%j). Riemann’s 
theorem on singularities immediately gives 

Theorem. 

More precisely, 

rnultIo1 E > h”(D)/2. 

(a) If Pf(w%;) # 0, then the form Pf(w%j) gives the tangent cone to c” at IDI 
of degree 

rnultlD1 Z = h”(D)/2. 

(b) If Pf(w%j) = 0, then 

multlD1 E > h”(D)/2. 

Singularities of type (b) are called Mumford singularities, and their appear- 
ance is connected with a tangency of the canonical polarization divisor 0 as 
it cuts out E from P(E,I) ( see the beginning of Section 3.3). According to 
Welters [1985], these do not exist on a general Prymian. However, as we shall 
see below, they give a substantial contribution to Sing E on special Prymians. 

As a direct consequence of part (a) of the proposition in Section 2.7 we get 

Lemma. Let IDI be a point of the subvariety 

P’ = {IDI E P(e,I) 1 ho(D) 2 r + 1) c P(c,I) 

with ho(D) = r + 1. Then the Zariski tangent space 

is contained in the zero set of forms in lm [[ ] : ASH’ + Q;] . In partic- 

ular, 
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dimlnlPr<g-l-dimIm[]. 

Proposition. dim Sing E < g - 5, that is, all of the components of Sing E 
have dimension 5 g - 5, if and only if the curve C is not hyperelliptic. 

The proof of necessity is based on the following claim: If there is an irre- 
ducible component 2 2 Sing Z of dimension 2 g - 5, then for a general point 
IDI E 2, the following property (P) holds: there exist linearly independent 
s, t E Ho(D) with 

sl’t = tI*s. 

This is equivalent to the relation [s A t] = 0, which holds whenever ho(D) = 2, 
by part (b) of the theorem. If, on the other hand, ho(D) > 4, then, by the 
lemma, dimIm[ ] 5 4, while the subvariety of decomposable forms s A t in 
ASH’ has dimension 2 5. Thus, there is a decomposable non-zero form 
s A t E Ker[ 1. Property (P) can also be written as I’cp = (p, where cp = s/t. 
This means that cp = ~~11) for some rational function II, on C, and so 

where dim JM] 2 1. By Martens’ theorem, the number of parameters of the 
system ]M] does not exceed d - 2, where d = deg M. On the other hand, 

Nm(Cpi) E I& - 2J4 so by Clifford’s theorem, dim [Kc - 2MI 5 g - d - 1. 
Finally, 

dim 2 2 (d - 2) + (g - d - 1) = g - 3, 

and is > g - 4 only for a hyperelliptic curve C. We get sufficiency from 
Example 1 of Section 3.3 and Corollary 3 of Section 2.7. Moreover, when 
dim Sing Z 2 g - 3 the Prymian is decomposable, and equals the sum of two 
hyperelliptic Jacobians. 

Question. Let (A,@) b e a principally polarized abelian variety with 
dim Sing 0 = dim A - 2. Is it then true that it is decomposable, that is, 
representable as a sum of principally polarized varieties of smaller dimension? 

By the same method as above one can prove 

Mumford’s theorem (Mumford [1974]). If C . as a non-hyperelliptic curve of 
genus g 2 5, then dim Sing E = g - 5 precisely when 

(a) the curve C is trigonal, or 
(b) the curve C is bi-elliptic, or 
(c) g = 5 and C has an even theta-characteristic L with ho(L) > 0 and L + o 

even, or 
(d) g = 6 and C has an odd theta-characteristic L with Ho(L) 2 3 and L + CT 

even. 

where IT E J2(C) is a double point corresponding to the covering TT : C + C. 
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A complete list for curves C with ordinary double points, found by Beauville 
[1977], contains more than ten cases. Here is an example: 

(e) C = Ci U Cz where Ci and Cz are connected curves of genus > 1 inter- 
secting in four points. 

Note. The lower bound 

dimSing 2 g - 7 

is due to Welters [1985]. 

3.5. Differences Between Prymians and Jacobians. As one consequence of 
Mumford’s theorem we see that if the curve C has genus g > 5, is not hyperel- 
liptic, is not trigonal, is not bi-elliptic, and is not covered by the special cases 
(c) and (d) of the theorem, then the Prymian is indecomposable, and is not 
the Jacobian of a curve. Indeed, by Corollary 3 of Section 2.7 the Prymian 
can be a Jacobian only if dimSingE > g - 5. In particular, it follows that 
the intermediate Jacobian of a non-singular cubic threefold (see Example 4 of 
Section 3.3) is not the Jacobian of a curve. On the other hand, according to 
Griffiths, the intermediate Jacobian of a three-dimensional rational algebraic 
variety is either itself a Jacobian of a curve, or the sum of such Jacobians (see 
Tyurin [1972]). We thus establish the irrationality of the cubic threefold, first 
established by Clemens and Griffiths in 1972. The cubic threefold is one of the 
first and simplest counterexamples to Liiroth’s problem. A careful analysis of 
the polarization divisor Z shows that the Prymian will not be a Jacobian in 
some cases of Mumford’s theorem. 

Theorem. Pr(C, I) is a Jacobian or the sum of Jacobians of curves, if and 
only if the quotient curve C/I is hyperelliptic, trigonal, or is a plane quintic 

with an even covering r : C + C. 

Sufficiency in the hyperelliptic case and for the plane quintic follows from 
Examples 1 and 2 of Section 3.3. Sufficiency in the trigonal case is given by 

Theorem (Recillas). The Prymian Pr(C, I) of a pair (C, I) with trigonal 

quotient C = 6/I is the Jacobian of a curve with gi. 

Curves possessing a gi are called tetragonal. Let us study a canonical tetrag- 
onal curve S c IlQm2 of genus g - 1. The planes D, D E gi sweep out a three- 
dimensional P2 bundle V --+ P’. Let v be the blowing-up of V in S. Then, as 
is well known, the intermediate Jacobian J(v) will be isomorphic to the Ja- 
cobian J(S) of the curve S being blown-up. On the other hand, v is equipped 
with the natural structure of a conic bundle over a rational ruled surface F, 

(see Fig. 3). The tonics over D passing through the points pi, ~2, ~3, p4 of the 
divisor D = pi + p2 + p4 + p4 E gi upon blowing-up turn into the tonics 

of the bundle V over F,. By construction, the curve of degenerations C is 
trigonal, and according to Example 3 of Section 3.3, Pr(C, I) = J(V) = J(S). 
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Moreover, Recillas checked that the Prymian of any pair (e, I) with a trigo- 
nal quotient curve C arises in this fashion, This is also borne out by counting 
parameters. For special Beauville pairs (C, I) we essentially get one new case, 

where Pr(e:, I) is a Jacobian (see Shokurov [1983], [1981]). From the last result 
we get 

Rationality Criterion. A three-dimensional, relatively minimal conic bun- 

dle V + S over a minimal rational surface S, that is, over S = p2 or F,, is 
rational if and only if its intermediate Jacobian is a Jacobian of a curve, or 
the sum of Jacobians of curves. 

In the process of proof it is found that for such conic bundles, rationality 
implies the relationship ]2Ks + C] = 0, where C is the curve of degenerations 
(Shokurov [1983]). This is generalized by the 

Conjecture. Let V -+ S be a relatively minimal conic section bundle with 

the curve of degenerations C c S. If V is rational, then 

]2Ks + Cl = 0. 

Other formulations of this conjecture and some approaches to the proof are 
discussed by Iskovskikh [ 19871. 

3.6. The Prym Map. Associating to a pair (c, I) the Prymian Pr(E, 1) 
defines the regular Prym map 

Pr:R, -+dg--l, 

where R, is the moduli space of pairs (e, 1) or, equivalently, of the unramified 

covers x : 8 t C onto a curve of genus g, while d,-l is the moduli space of 
principally polarized abelian varieties of dimension g - 1. 

Theorem. The Prym map is 
(a) dominant, with general fiber of dimension 2 1 for g < 5; 
(b) (Donagi, Smith) d ominant, of finite degree 27 for g = 6; 
(c) (Kanev, Friedman, Smith) birational on a proper subvariety of A,-1 for 

9 L 7. 

This was initially proved by studying infinitesimal properties of a special 
fiber of the boundary (Donagi-Smith [1981], Kanev [1982], Friedman-Smith 
[1982]). Part ( c is usually called the generic Torelli theorem for Prym vari- ) 
eties in a generic point. Welters [1987] suggests a technique for reconstructing 

the pair (e, I) from a general Prymian Pr(e, I). It has also been recently es- 
tablished that the Prym map is birational (Friedman-Smith [1986]) and even 
bijective (Debarre [1989]) for the pairs (e, I) corresponding to the intersection 
of three quadrics of odd dimension 2 5. The last fact establishes the Torelli 
theorem for such complete non-singular intersections. Of course, all of these 



II. Algebraic Curves and Their Jacobians 253 

Fig. 3 

facts follow easily from the following conjectural picture of the domain where 
the Prym map is one-to-one. 

Conjecture (Donagi [1981]) The Prym map is bijective on the open subset 

{((?:,I) 1 C = E/I has no g:}. 

More precisely, for two Prymians to coincide, it is necessary and suficient 

for one of the pairs defining them to be obtained from the other by using the 

tetragonal construction, which is possible if the quotient curves have a g:. 

Note. A. Verra found a counterexample, for g(C) = 10. 

$4. Characterizing Jacobians 

Here we discuss some geometric and analytic means of distinguishing Ja- 
cobians of curves among all principally polarized abelian varieties of the same 
dimension. The reader should be able to glean more information from Mum- 
ford’s lectures (Mumford [1975]). 

4.1. The Variety of Jacobians. Like special divisors, special abelian varieties 
- Jacobians - are best studied from a moduli standpoint. Jacobians comprise 
an irreducible quasi-projective variety 

Jg = {J(C) 1 C a nonsingular curve of genus g} 
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in d, - the moduli space of principally polarized abelian varieties of dimension 
g. Its closure Js in -4, is also called the variety of Jacobians. 

Theorem (Hoyt [1963]) The space z consists of Jacobians and direct sums 

of Jacobians (of total dimension g.). 

Corollary 1. Js is a closed subvariety of dz - the subvariety of indecom- 

posable principally polarized abelian varieties. 

Corollary 2. J9 = Ai for g < 3, that is, each indecomposable principally 

polarized abelian variety of dimension 5 3 is a Jacobian of a curve. 

The last Corollary easily follows from the Torelli theorem and the irre- 
ducibility of d, (recently established for every g in positive characteristic) 
by counting dimensions. From the same considerations we see that for g > 4, 
z c A, and Js c A: are proper closed subvarieties. Thus, for g 2 4 Jacobians 
must have special properties which distinguish them among all principally po- 
larized abelian varieties. 

Note. The subvariety of Prymians Pr(R,) C ,A,-i is not closed even in 
A:-,. It can be closed by adding Prymians of Beauville pairs and Wirtinger 
pairs (see Beauville [1977], Donagi-Smith [1981]). 

4.2. The Andreotti-Meyer Subvariety. As we already know, the theta- 
divisor of the Jacobian of a curve of genus g has a singular subvariety of 
dimension 2 g - 4. Andreotti and Mayer, when studying the characteriza- 
tions of Jacobians by this condition introduced the subvariety 

Ng--4 = {(A, 0) 1 dim Sing 0 > g - 4) 

in A,. 

Theorem (Andreotti-Meyer). z is the only irreducible component Ng-4 
containing Jg. 

It should be noted that both 59 and Jg are irreducible and have dimension 
3g - 3 for g 2 2. Therefore it must be shown that the dimension of any 
component JV-~ containing 7 does not exceed 3g - 3. For lc = @, the space 
d, can be replaced by the Siegel halfplane H,, while Ng-4 can be replaced by 
the subspace distinguished by the singularities of the Riemann theta-function. 

where 

Ng-d = (2 E H, 1 dimSingO(2) > g - 4}, 

Sing@(Z) = {U E Cg 1 ?J(u, 2) = 0, and ~(zL, 2) = 9, for all 1 5 i < g}. 
2 

For an arbitrary point 20 E Ng-d with dimSing@ = g - 4 it is not hard 
to check that the tangent vectors C qij(d/dZij) E TzO(Ng-4) satisfy 
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86 
c -(uo, -o&j = 0, dZij 

with ue E Sing O(Ze). It is enough to check that if 20 is the Siegel matrix of a 

sufficiently general (non-hyperelliptic) Jacobian and U, . . . , u (g--2)2g--3) (recall 

that dim A, = w) are dim A, - (39 - 3) sufficiently generic points on 
Sing@(&), then the (g - 2)(g - 3)/2 vectors 

1 5 1 I (9 - 2)(g - 3)/T 

are linearly independent. By the heat equation 

this linear independence is equivalent to the linear independence of (g - 2)(g - 
3)/2 quadrics 

On the other hand, these quadrics &I are the tangent cones to the Riemann 
theta-divisor 0 of the corresponding Jacobian at the points U’ mod A (see 
example of Section 2.10). Thus the result follows from M. Green’s theorem. 
The analogous fact for a general curve is fairly straightforward and used by 
Andreotti and Meyer. For g 2 4 the varieties Ng-d also have non-Jacobian 
components. Examples of (even indistinguishable) abelian varieties in Ng-d - 
& can be constructed in the same way as we constructed Prymians (in the 
discrepancy between Mumford’s theorem and the theorem of Section 3.5). 

Example. Ne c Ad consists of two irreducible subvarieties of codimension 
1: 54 and the closure of 

Ji = {Pr(Z;,I) ( for (z”,I) of type (c) in Mumford’s theorem of Section 3.4) 

(see Beauville [1977]). The theta-divisor of a generic abelian variety in Ji has 
exactly one singular point, while the theta divisor of a generic Jacobian of a 
curve of genus 4 has two (compare with Example 2 of Section 2.3). 

One can also obtain a description of the components of N c A5 by using 
the theory of Prym varieties (see Beauville [1977]). Much less is known about 
the components of Ng-J with g > 6 (see Shokurov [1983], Beauville [1986]). 

4.3. Kummer Varieties. As in Section 3, we will assume in the sequel that 
char lc # 2. Every abelian variety A has the antipodal involution 

-:A-iA 

P+ -P. 
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The quotient variety A/- is called the Kummer variety of the abelian variety 
A. The generic Kummer variety of dimension g has a natural embedding into 
p29-1. 

Theorem. Let A be an indecomposable principally polarized abelian variety 
of dimension g, 0 its Riemann theta-divisor. Then the map 

associated with the complete linear system 1201, corresponds to factoring out 
by the involution -, and so its image is the Kummer variety A/ - . 

By the linear equivalence 2(0+77) - 20 for second order points n E Aa, the 
map ‘p1201 does not depend on the choice of Riemann theta-divisor. Since the 
polarization is principal, dimH’(20) = 29. In the complex situation, for an 
abelian variety A corresponding to a Siegel matrix 2 E H,, the space H0(20) 
is identified with the space LZ of automorphic functions with multipliers pi = 1 
and ,LL~+~ = exp(-2r&i(2ui + Z,,)), 2 5 i 5 g. This space has a standard 
basis of theta functions with characteristics 

02[g](u, 2) = C exp(243 (( 
mEz.g 

m + %, (m + %)Z) + 2(m + t, u))), 

where (T are 0,l vectors of length g. Therefore, the map (~1~~1 can be analyti- 
cally represented as 

umodA-+(...:&[g](u,Z):...). 

These theta functions are even, and thus 41201 factors through the Kummer 
variety A/ -. The complete proof requires further analysis of the linear system 
1264. 

4.4. Reducedness of 0 n (0 + p) and Trisecants. This approach to the 
characterization of Jacobians stems from the following observation of A. Weil 
[1957]. For every p # q E C the intersection 0 n (0 + class of (p - q)) is 
reduced, to wit 

0 n (0 + class of (p - q)) c (0 + class of (p - r)) U (0 + class of (s - q)), 

for any choice of distinct p, q, r, s E C. Indeed, examine the canonical polar- 
ization divisor 0 = Ws-l, to get 

W,-, n (W,-, + class of (p - q)) 

= (W,-2 + class of (p)) U (W,’ - class of (q)) 

C (W,-1 + class of (p - r)) U (W,-1 + class of (s - q)) 

for any r, s E C. For any principally polarized abelian variety (A, 0) this leads 
to conditions 
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(i) There exists a p # 0 E A such that 0 n (0 + p) is reduced. 
(ii) There are nonzero distinct p, Q, r E A such that (scheme-theoretically) 

On(O+p) c (O+q)u(O+r). 

(iii) The Kummer subvariety A/- c P2sP1 (in the indecomposable case) has 
a triple secant - -called a trisecant. 

Condition (i) is an obvious weakening of (ii), while conditions (ii) and 
(iii) are equivalent, which can be checked by reducing them to Fay’s trisecant 
identities (see Mumford [1983]). M ore p recisely, for every s E A with 2s = q+r, 

the points PA, $A(S -p), and $A(s - q) = $A(s - r) lie on the same line 
in P2gM1. Thus, Jacobians satisfy all of the above conditions. 

Theorem (BeauvilleeDebarre [1986]) 
(a) A principally polarized abelian variety (A, 0) satisfying one of the equiu- 

alent conditions (ii) or (iii) satisfies the Andreotti-Meyer condition, that 

is, for such an abelian variety dimSing@ 2 g - 4. 
(b) C on a aon a 2rn 2es membership in Ns-4 modulo a certain irreducible d’t’ (1 pl’ 

component not containing 5s. 

Together with the Andreotti-Meyer theorem this implies 

Corollary. z is the only irreducible component of the subvariety of prin- 

cipally polarized abelian varieties, defined by one of the conditions (i), (ii), or 

(iii). 

So, the existence of a trisecant of A/- implies that A E Ng-d. It is also 
known that abelian varieties in some of the components of Ng-d satisfy (i) 
but not (ii). In conjunction with these observations, there is 

Trisecant conjecture (Beauville [1987]) A n irreducible abelian variety sat- 

isfying (ii) or, equivalently, (iii), is the Jacobian of a curve. 

Before discussing the results leading towards the resolution of this conjec- 
ture, let us make one general observation: 

Note. All of the known characterizations of Jacobians are connected with 
various methods of proof of the Torelli theorem (see Mumford [1975]). For 
example, Section 2.8 uses the property of theta-divisor derived in Example 2, 
which is just an infinitesimal version of condition (ii). 

Jacobians have non-trivial families of trisecants. This gives the first com- 
plete characterization of Jacobians, obtained by Gunning. Complete means 
precise, that is, it does not allow any “parasitic” components, as in theorems 
of Andreotti-Meyer type. 

Theorem (Gunning). An indecomposable principally polarized abelian va- 

riety A is a Jacobian if and only if the subvariety 

C = (2pE AI~PA(P$~~),~PA(P+~~),‘PA(P+Ps) lie on the trisecant A/-} 
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has dimension 2 1 for some pi ,p2,p3 E A. Moreover, in this case C is a 
smooth irreducible curve of genus g = dim A, and A is its Jacobian. 

Gunning then also generalized this result to the case of m-planes intersect- 
ing A/- in at least m + 2 points (see Van der Geer [1985]). However, more 
interesting is the infinitesimal version of Welters, obtain by coalescing the 
points pi. 

Theorem (Gunning-Welters). In the statement of Gunning’s theorem, in- 

stead of the submanifold C, defined by three-point subset {pl,p2,p3} c A, 

consider the submanifolds 

Cy = (2p E A 1 p + Y C 4;‘(l) for some line 1 c P2gw1}, 

where Y C A is an artinian (zero-dimensional) subscheme of length 3. 

Following these results, there followed a whole flood of characterizations of 
the Jacobian (see Arbarello [1986], Beauville [1987]), and including: 

4.5. The Characterization of Novikov-Krichever. Already Mumford (see 
Mumford-Fogarty [1982]) noticed that when the three points p, q, r E A co- 

alesce to 0 in condition (ii) of Section 4.4, the corresponding Fay trisecant 
identity leads to the first of the equations of the KP hierarchy. To understand 
this, let’s restrict to the complex case k = @. and Y = Spec@[E]/(E3) - an 
artinian subscheme containing 0. It is easy to check the following coincidence 
for the second order germ (Cy)z of the curve Cy at 0. 

(CY), = y. 

Moreover, according to Welters, the existence of a third-order germ (Cy)s is 
equivalent to the existence of constant vector fields D1 # 0, D2, 03 on A, and 
of a constant d E @, such that all of the theta-functions Sz[(~](u, 2) satisfy 
the equation 

( 
0; - D1D3 + ;D; + d 

1 
6[a](O, 2) = 0, (2) 

where 2 is the Siegel matrix of the abelian variety A (compare with the system 
of equations in the Note-Example of Section 1.3). By the Gunning-Welters 
theorem the theta functions S~[U](U, 2) of the Jacobian matrix 2 really does 
satisfy equation (2). On the other hand, Dubrovin showed that equations (2) 
are equivalent to the Novikov-Krichever condition: 

There are three vectors al # 0, az, as E 0, such that for every (‘ E 0 the 
function 

u(z, y, t; 2) = & log6(< + zai + ya2 + ta3,Z) 

is the solution of the Kadomtsev-Petviashvili equation 

3uyy = & - 32121, - 2%,,). 
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Thus, we get the result of Krichever that this condition holds for Jacobian ma- 
trices. Based on this, Novikov conjectured that this condition is only satisfied 
by Jacobian matrices. This is indeed so, according to the following result. 

Theorem (Shiota). The Siegel matrix Z E H, of an indecomposable prin- 

cipally polarized abelian variety A = CY (Zg + ZiZg) is a Jacobian if and only 
if all of the theta functions &[(T](u, 2) satisfy equation (2) for some constant 

vector fields D1 # 0, Dz, 03 on A and a constant d E @. 

This result proves not only Novikov’s conjecture, but also that indecom- 
posable abelian varieties for which (Cy)s exists are Jacobians. There are two 
approaches to the proof. The first, due to Shiota [1983], uses the fact that the 
solution of the first KP equation can be extended to a solution of the whole 
KP hierarchy, and the theorem of Section 1.4. Another, more geometric, ap- 
proach of Arbarello-de Concini [1987] uses the ideas of Welters, and basically 
establishes the existence of the curve Cy from the existence of the formal 
third-order germ (Cy)s. 

Note. All of the above characterizations have analogies for the Prymian 
(see Beauville [1986]). F or example, the variety of Prymians Pr(R,+r) C A, 
is the unique irreducible component containing the Prymians in 

Ng--6={(A,O)]dimSingO>g-6}Cd,. 

No characterization of principally polarized Prym-Tyurin varieties is currently 
known. 

4.6. Schottky Relations. Many of the above characterizations of Jacobians 
are easily written as analytic relations on the period matrices. The first such 
relations, written as polynomials in theta-constants were found using Prym 
varieties by Schottky-Jung [1909]. Thereafter, any approach to distinguishing 
Jacobians has been known as the Schottky problem. Even earlier, in 1888, 
Schottky found a non-trivial relation, now known as the Schottky relation, for 
theta-constants of the principally polarized abelian varieties of dimension 4, 
vanishing for Jacobian of curves of genus 4. By counting dimensions, one of 
the components defined by this relation will be the variety of Jacobians 74 
(compare with example of Section 4.2). The following statement was proved 
only quite recently: 

Theorem (Igusa [1981]). Schottky’s relation defines an irreducible subvari- 

ety in -Ad, which thus coincides with z, 
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