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MORSE-NOVIKOV NUMBER FOR KNOTS AND LINKS

C. WEBER, A. PAJITNOV, L. RUDOLPH,

ABSTRACT. The Morse-Novikov number MA (L) of a link L C S? is defined as the
minimal possible number of critical points of a Morse mapping S® \ L — S! of a
special type. Some properties of this invariant are studied: a lower estimate for it
is obtained in terms of the Novikov numbers of L, which, in turn, are shown to be
related to the classical invariants of links; the sharpness of the estimates obtained is
discussed. It is proved that the Morse—Novikov number is subadditive with respect
to the connected sum of knots. A conjecture is stated.

§1. INTRODUCTION

Let K C S® be a tame knot, and let Cx = S3\ K. We recall that K is fibered if there
is a fibration ¢: Cx — S behaving “nicely” in a neighborhood of K.

The fibered knots form a large and natural class. For example, all algebraic knots
are fibered [Mil]. The fibration ¢: Cx — S provides supplementary invariants, which
help to calculate the basic invariants of a fibered knot [Du]. A similar notion can be
introduced for oriented links.

Consider an arbitrary link L C S3. It is always possible to construct a Morse map
¢: Cp = S3\ L — S* behaving “nicely” in a neighborhood of L. If L is not fibered, then
necessarily ¢ has critical points. The study of such maps and related invariants of the
link is our aim in the present paper.

The simplest invariant of the link I arising in this way 1s the Morse-Novikov number
MN (L) of L defined as the minimal possible number of critical points of such a Morse
map. This invariant can be studied with the help of the Morse—Novikov theory of maps
to the circle. Originated with S. P. Novikov’s paper [No], this theory has been developing
in the past 20 years.

An important tool in the Morse—Novikov theory is the Nowvikov inequalities, which
are an analog of the classical Morse inequalities and give lower estimates for the Morse—
Novikov number in terms of the Nowvikov numbers. This allows us to prove that there
are knots with an arbitrarily large Morse-Novikov number (see Proposition 6.1).

Since the Novikov numbers provide only a lower bound for the Morse-Novikov num-
ber, this bound may fail to be optimal. Indeed, we give examples of knots for which the
Novikov homology groups (as well as the Novikov numbers) vanish, while the Morse-
Novikov number does not (see §5). Thus, purely homological lower bounds are insuffi-
cient, and to obtain further information on the Morse—Novikov number we need other
methods.

We prove that for each oriented link L there exist Morse maps Cr, — S' having only
critical points of indices 1 and 2, and that MMN(L) is equal to the minimal possible
number of critical points of such a Morse map.
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The next step consists in using natural geometric operations on links, such as con-
nected sum, and in investigating the behavior of the Morse-Novikov number under such
operations. As a first result (see Proposition 6.2), we prove that

MN (K #K5) < MN (K1) + MN(Ks),

where # is the operation of connected sum of oriented knots (see [Ro, p. 40]). Although
our method is simple, it is new apparently. Given two Morse functions defined on the
complements of two knots K7 and Ks, respectively, we explicitly construct a circle-valued
Morse function on the complement of K14 Ko (see §6). In the case of fibered knots, the
converse 18 also true: if the knot Ky # K is fibered, then both Ky and K5 are also fibered
[Ga]. Thus, it is natural to pose the following question (M. Boileau, C. Weber):

Is it true that MN (K1 #Ks) = MN(Ky) + MN(K3)?

Our results bear witness to the positive answer.

Terminology and notation. Throughout the paper, we work in the C®-category.
Thus, the functions, maps, curves, etc. are assumed to be of class C'*° if the contrary is
not stated explicitly.

A Seifert surface is an oriented compact 2-submanifold of $3 with no closed compo-
nents. The boundary L = 85 of a Seifert surface S is an oriented link; S is called a
Seifert surface for L.

The 3-sphere 5% = R3U {co} is endowed with the orientation induced from the stan-
dard orientation of R3. If L is an oriented link, then the link with the opposite orientation
is denoted by —L. Similarly, if S is a Seifert surface, then the Seifert surface with the
opposite orientation is denoted by —S.

Let L C S be a link. A Morse map f: Cr — S' is said to be reqular if each
component L; of L has a neighborhood framed as S1 x D? and such that L; &~ S x 0
and the restriction f|: ST x (D?\ {0}) — St is given by (z,y) — y/|yl.

If f is a Morse map of a manifold to R or to S*, then we denote by m,(f) the number
of critical points of f of index p.

Below, only (co)homology groups with integral coefficients are used.

The layout of the paper. In §2, we discuss the Novikov numbers of knots and links.
The Novikov inequalities give a lower estimate for the number of critical points of a
regular Morse map f: C — S* in terms of the Novikov numbers of L (see Proposition 2.1
and Corollary 2.2). We relate the Novikov homology of the complement to the classical
invariants of links.

In §3, we prove that there exists a minimal Morse function on the complement of any
link L (see Theorem 3.3). Such a Morse function has only critical points of indices 1 and
2. In §4, we discuss the relationship between Morse functions on the complement of a link
and free Seifert surfaces. §5 contains examples. In §6, we prove that the Morse—Novikov
number is subadditive with respect to the connected sum of knots.

Acknowledgements. We thank the referees for many valuable comments and sugges-
tions. We are grateful to M. Boileau for valuable discussions. A. Pajitnov and L. Rudolph
thank the Geneva University for warm hospitality. A part of this work was done during
A. Pajitnov’s visit to the Oxford University (the fall of 1998), which was supported by
the EPRSC grant GR/M98159. A. Pajitnov thanks the Oxford University for warm
hospitality during this visit.

The Novikov homology for the complements of knots in S® was first studied by
A. Lazarev [La]. In particular, he obtained an analog of our Theorem 2.4 for the case of
knots.
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§2. NOVIKOV HOMOLOGY AND LOWER BOUNDS FOR THE MORSE—NOVIKOV NUMBER

Notation. Let L be an oriented link. Since the ambient space S® is oriented, so are the
normal fibration and the normal circle bundle of L. For each component L; of L, there
is a unique element p; € H1(Cp) represented by any oriented fiber of the normal circle
bundle of L;. There is a unique cohomology class &7 € H'(Cr) such that for each i we
have £r(p;) = 1. We let C; — Cp be an infinite cyclic covering associated with this
cohomology class.

Let A = Z[t,t=Y] and A = Z[[t]][t"}]. We recall that A is a principal ideal domain.
The homology H*(C’_L) 1s a A-module. We denote H*(C’_L) QA A by ff*(L) and put
EZ(L) =rky fIZ(L) Let 4;(L) be the torsion number of fAIZ'(L), i.e., the minimal number
of K—generators of the torsion submodule of fAIZ(L)

Proposition 2.1. If f: C; — S' is a reqular Morse function representing the cohomol-
ogy class &, then

(1) mi(f) > bi(L) + G(L) + Gio1 (L)

The proof is a straightforward generalization of the proof of the Novikov inequalities
[No] for closed manifolds (see [F] or [P1]). O

Relations among Novikov numbers. The numbers EZ(L) and q;(L) satisfy some
algebraic relations.

1) Ho(L) = 0.

Indeed, HO(C_L) =~ 7, and the element ¢ € A acts as the identity; in other words,
1—t =0, and we have Hy (C'_L) QA A = 0 because 1 — ¢ is invertible in A. Therefore,

(2) bo(L) = qo(L) = 0.

(3) bi(L) = bs—i(~L),
(4) Gi(L) = Gs-i—1(~L).

For the proof, see [P, §3]. The arguments there pertain to the case of closed manifolds,
but can easily be generalized to the present case because the Novikov homology of the
boundary of the tubular neighborhood of I vanishes.

3) Obviously, from (4) and (2) it follows that

() g2(L) = 0.

4) Finally, we observe that x(L) = x(Cr) = 0.

Consequently, for every cellular decomposition of the pair (S \ Int T(L),dT(L)) we
have Y (—1)'n; = 0, where n; is the number of the i-dimensional cells. Therefore,
the Euler characteristic of the chain complex Ci (C'_L) of free A-modules vanishes; which
implies in turn that

(6) bi(L) = ba(L).

Thus, all the numbers EZ', ¢; are determined by two of them: 31 = Ez and q;. By the
preceding remarks, the Novikov inequalities for links in .S® have the following final form.
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Corollary 2.2. my (f) > by(L) + Gu(L); ma(f) > bi(L) + qu(L). O

As a K—module, the homology ff*(L) admits a decomposition into a direct sum of
cyclic modules. The module Hy(L) is related to the classical polynomials of knots and
links. To establish this relationship, first we need a bit of algebra.

A-modules. Let M be a finitely generated A-module with a free finitely-generated re-
solvent. We consider the following exact sequence:

(7) n2r—M—o,

where Fy = A™ and F; &~ A". Tt is assumed that m < n. The ideals E (D) generated by
the (m — s) x (m — s)-subdeterminants of D are invariants of M. We denote by a,(M)
the GCD of all elements of the ideal E;(D). (In general, as(M) ¢ E;(D).)

We consider the completion M = M ®4 A, the corresponding exact sequence
(which is exact by the right exactness of tensor product), and the invariants Es(f)) and
as(M). The key observation here is that

(9) as(M) = a,(M).
This is an immediate consequence of the following lemma.
Lemma 2.3. For a,b € A, we have GCDy(a,b) = GCDj(a,b).

Proof. Let o = GCD(a,b), and let A € A be any element dividing both a and b in A. We

show that « is divisible by A in A.

It suffices to consider the case where a,b € Z[t], and a and b are coprime in Z[t], so that
aP+bQ =neZ. If X € Z[[t]] divides both a and b, then A|ln. We write Ay = k, where
k € Z and pu € Z[[t]]. The element A is not divisible by an integer, and we may assume
that the same is true for g. Then Ay must be equal to 1, because otherwise reduction
modulo any prime divisor of k leads to a contradiction. Therefore, A is invertible in A
and divides every element in A a

Since A is a principal ideal domain, the module M is isomorphic to the following sum
of cyclic modules:(1)
(10) M~ K/%K, where v; = s /as11.
s=0
In particular, ys41|vs for every s.

Novikov numbers. From now on, M= Hl(C’_L). The corresponding element «, will
be called the sth link polynomial. The next theorem, which directly follows from the
preceding arguments, provides computation of the Novikov numbers El(L) and ¢1(L) in
terms of these link polynomials.

Theorem 2.4. 1. The Novikov number Zl(L) 15 equal to the number of the polynomials
as that are equal to zero.

2. The Novikov number q1(L) is equal to the number of the vy, that are nonzero and
nonmonic. |

The case of knots. It turns out that for a knot K we always have Ei(K) = 0. For
the first time, this was observed by A. Lazarev in [La]; for the proof, it suffices to note
that the module H(Ck) has a square matrix presentation; since the determinant of the
matrix is the Alexander polynomial of the knot, 1t does not vanish.

(Y)With the conventions 0/0 = 0 and oy, = 1.



MORSE-NOVIKOV NUMBER AND KNOTS 5

§3. MINIMAL MORSE FUNCTIONS

Let M be a closed manifold. A Morse map f: M — S! is said to be minimal if for
each k the number my(f) is minimal on the class of all Morse functions homotopic to f.
(Cf. the parallel definition [Sh, Definition 1.11] for real-valued Morse functions.)

Even in the case of real-valued Morse functions, minimal Morse functions do not
always exist [Sh]. The problem is that, in general, the Morse numbers my(f) cannot be
minimized for all indices k& simultaneously. In this section we show that in the case where
M = ('t minimal Morse functions do exist.

(Since the manifold C is not compact, the definition of a minimal Morse function
should be modified slightly. We say that a Morse function f: Cr — S' is minimal if it
is regular and its Morse numbers m;(f) are minimal possible among all regular functions
homotopic to f.)

Furthermore, we show that a minimal Morse function has critical points only of indices
1 and 2. (The latter fact is already suggested by the relations ZO(L) = Eg(L) =qs(L) =

¢2(L) = qo(L) = 0.)

Notation. Let L be an oriented link with pu components and f: Cr, — S! a regular
Morse function. We assume that 1 € S! is a regular value of f. (The general case differs
from this one only by more complicated notation.)

We denote by F: C, — R a lifting of £, and by 7" an open tubular neighborhood of
L such that the restriction of f to the closure of 7" is standard.

Setting X = S3\T, we let X C Cf, be the inverse image of X. Then X is a noncompact
manifold, and the boundary of X is an infinite cyclic covering of the union of y tori, 1.e.,
it is the disjoint union of p copies of S* x R.

Consider the set W = F~1([0,1]). This is a cobordism between two manifolds with
boundary: F~1(0) and F'=1(1). We choose a generator ¢ of the (infinite cyclic) structure
group of the covering so that F(xt) < F(x). The total space Cf of the covering is the
union of the cobordisms W,, =t"W, n € Z.

Lemma 3.1. There exists a regular Morse function g: Cy, — S such that m,(g) <
my(f) for each p and one of the regular level surfaces of g is connected.

Proof. In the above notation, assume that S = F~!(0) is not connected. Let m(f)
denote the total number of critical points of f. We construct a new Morse function fy
such that m,(fo) < m,(f) for each p and either

i) m(fo) < m(f), or

il) m(fo) = m(f), and fo has a regular level surface Sy such that the number of
connected components of Sy is strictly less than that of S.

Successively applying this construction, we prove the lemma.

Proceeding to the construction, we observe that at least one of the two inclusions

W — S —tW

induces a noninjective map in Hy. (Indeed, we recall that C, is connected. Among the
paths in C, joining different connected components of S = F~1(0) we can choose one
intersecting the minimal number of cobordisms W, . Obviously, this minimal number
must be equal to 1.)

Suppose, for instance, that the homomorphism Hy(S) — Ho(1V) has nontrivial ker-
nel. By the standard rearrangement argument (see [Mi2, §4]), we may assume that the
function F': W — [0, 1] is ordered, i.e., there are regular values

l=zap<ap<as<azg<ag=1
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such that for each i all the points of index i of F' are in F~!([a;, iy 41]).

We choose a gradient-like vector field v for f. We require that v behave “nicely” in a
tubular neighborhood T of L. Namely, we recall that we have a framing ®: L x D? = T
of T such that for each # € L the restriction of fo® to the punctured disk z x (D?\ {0})
is given by the formula (z,y) — y/|y|. We require that the vector field w = ®;1(v) on
L x D? be tangent to x x D? for every € L and be given by the formula w(y;,y2) =
(y1,—y2) in the disk  x D? ~ D?. Thus, in particular, the integral curves of v in T'
are meridians. We also require that v satisfy the following transversality condition: the
stable manifold of every critical point 1s transversal to the unstable manifold of any other
critical point.

Consider the following inclusions

F71H0) c F7H([0, 1)) € F7H([0, as]) C W.

The second (fourth) set in this sequence is obtained from the first (third) by attaching
handles of index 0 (respectively, 2 and 3). Therefore, the first and third inclusions
induce monomorphismsin Hg. Thus, the second inclusion homomorphismis not injective,
whence it follows that there i1s a critical point p of index 1 such that the stable manifold
D(p,v) of p with respect to the flow v intersects F~!(a;) at two points lying in two
different connected components of F'~!(«y). There are two possibilities:

1. These two connected components are descended diffeomorphically by the gradient
shift down to F~1(0).

2. One (or both) of them is the intersection of F'~!(«;) with ascending disks of critical
points of index 0.

In the first case, applying the rearrangement procedure, we push the critical point p
downwards to obtain a new Morse function F: W — [0, 1] with the following properties:

1) the vector field v is still a gradient-like vector field for f;

2) the critical point p belongs to the smallest critical level of ﬁ;

3) if € is small, then the regular level surface corresponding to f(p) + ¢ has k—1
connected components (where k is the number of connected components of S).

In the second case, we observe that there is a v-trajectory joining a critical point of
index 1 with a critical point of index 0, and the standard cancellation argument (see
[Mi2, Theorem 8.1]) gives a Morse function F: W — [0, 1] having two critical points less
than F. In the case where the homomorphism Hy(S) — Ho(tW) is not injective, we
apply the same argument to the function —F. Lemma 3.1 is proved. |

Lemma 3.2. If f has a connected reqular level surface S, then there is a Morse function
g having no critical points of index 0 or 3 and such that S s one of the level surfaces of
g. Purthermore, my(g) < mi(f) and ma(g) < ma(f).

Proof. The cobordism W is necessarily connected (by the Poincaré-Lefschetz duality).
Thus, the standard cancellation procedure provides a Morse function F with mi(F) =
ml(ﬁ) for i > 2, ml(ﬁ) <my(F), and mo(ﬁ) =0.

Applying the same procedure to the Morse function —F'; we get rid of the critical
points of index 3. |

As an easy consequence, we get the existence of minimal Morse functions.

Theorem 3.3. There exists a minimal regular Morse function f: Cr — S*. This Morse
function has critical points of indices 1 and 2 only.

Proof. We take a regular Morse function f: Cp — S' such that min{m;(f), ma(f)}
is minimal possible on the class of all regular Morse functions. Applying Lemmas 3.1
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and 3.2, we obtain a regular Morse function g with

mo(g) =m3(g) =0 and mi(g) = ma(g) < min{mi(f), ma(f)},

which i1s obviously minimal. a

§4. MORSE MAPS AND FREE SEIFERT SURFACES

For a topological space X, we put hi(X) = rk H1(X). A connected Seifert surface
F C S? is said to be free if 1 (S \ F') is a free group (necessarily, with hi(F') generators).

Let N(F) = F x [0,1] be a tubular neighborhood of F. We observe that if F' is
free, then S® \ N(F') is homeomorphic to a handlebody with h;(F) handles. Indeed,
applying the Dehn lemma, we see that the space 5%\ N(F) is homeomorphic to some
handlebody [H, pp. 56-58]. The rank of the first homology group of this handlebody is
easily calculated by the Alexander duality and is equal to hy(F).

We see that F'is a free Seifert surface if and only if 9N (F') induces a Hegaard splitting
of $3.

The minimal genus of a free Seifert surface S with 5 = L is called the free genus of
the link L. In this section, we indicate some relationships between free Seifert surfaces
and Morse functions on the complement of a link.

Here, we consider a special class of Morse functions. A regular Morse function
f: Cp — S is said to be moderate if

1) mo(f) = ms(f) = 0,

2) all critical values corresponding to critical points of the same index coincide,

3) every regular level surface is connected.

An easy application of the results of the preceding section shows that moderate func-
tions always exist.

Let f: Cr — S' be a moderate function, and let #;,8, € S! regular values of f such
that the critical values of index 1 (respectively, 2) are in the interval 161, 62 (respectively,
102, 61]). To simplify notation, we assume that ; = 0 and 3 = 7. We set m = my(f) =
ma(f). Let g1 be the genus of f~1(0) and g2 the genus of f=1(n).

Lemma 4.1. g5 — g1 = m.

Proof. The surface f~!(7) is obtained from f~1(0) by m surgeries of index 1. Therefore,
x(f7H ) = x(F7H0)) — 2m, ie., 2 — 295 = 2 — 291 — 2m. O

Lemma 4.2. The surface f~(7) is a free Seifert surface for L.

Proof. The complement of the tubular neighborhood of f=1(7) is f=1(S*\[r—¢€, 7 +€]).
The complement is obtained from f~1(0) by attaching m handles of index 1 corresponding
to the critical points of f of index 1 and m handles of index 1 corresponding to the critical
points of (—f) of index 1. d

§5. EXAMPLES

5.1. A trivial link Ly with g components. Obviously, El(L) = ZQ(L) = p— 1, and it is also
easy to construct a Morse function Cr — St with mi(f) = ma(f) = p— 1. Thus, in this
case estimates (1) are sharp.

5.2. There are knots for which estimates (1) are not sharp. Here is a family of such
examples. Let K be any nontrivial knot, and let K’ be the nontwisted Whitehead
double of K| as defined, e.g., in [Ro, p. 39].
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FIGURE 1

Since the Alexander polynomial of K is equal to 1, Theorem 2.4 shows that H. (K)=0.
However, K is not fibered. Indeed, the genus of K is equal to 1. On the other hand, the
degree of the Alexander polynomial of a fibered knot equals twice the genus of the knot.

The same argument works if we replace K’ by any nontrivial knot with Alexander
polynomial equal to 1.

It would be of interest to compute the Morse—-Novikov number for these knots.

5.3. In this example, we show that changing the orientation of some of the components
of a link can influence the Morse—Novikov number.

We orient the annulus S* x [—1, 1] arbitrarily and embed it in S? in such a way that the
core of the annulus be unknotted and the linking coefficient of the boundary components
(oriented as the boundary of the annulus) be equal to n. We obtain an oriented link
in S3. (In Figure 1, the reader can visualize the case where n = 2.) The standard
Seifert matrix computation shows that H;(Cr) ~ A/n(1 —t)A, whence gi(L) = 1, so
that MA (L) > 2. (We believe that actually MN (L) = 2.)

Reversing the orientation on one of the two components of the link, we obtain a torus

link, which is fibered (see [Ro, p. 337]).

§6. CONNECTED SUM

One of the possible approaches to the computation of the invariant MN (L) is to study
its behavior with respect to various natural operations on links or knots. The simplest
operation of this type is the connected sum. We note that if L = Li# Lo, then we have
isomorphism

(11) Hy(C) ~ Hi(CL,) & Hi(CL,)

(see [Ro, p. 179]). Therefore, the same is true for the Novikov homology.
Proposition 6.1. There are knots with an arbitrarily large Morse—Novikov number.

Proof. If K 1s a knot with nonmonic Alexander polynomial, then the decomposition of
H1(K) into a sum of cyclic A-modules is nontrivial, whence ¢;(nK) > n, where nK is a
connected sum of n copies of K. a

Proposition 6.2. If K1 and K- are two oriented knots, then

MN (K #K5) < MN (K1) + MN(K).

Proof. Let f;: Cx, — S' be minimal Morse functions. We may assume that both K
and K3 contain the point 0 € S, that in a small disk D(0,¢) both K; and K3 coincide
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with one and the same segment of a straight line, and that the family of level surfaces of
fi in D(0, €) consists of plane half-disks. Let ®: S® — S3 be the diffeomorphism defined
by ®(x) = I(—=), where T is the inversion with respect to the point 0 and the sphere
S(0,¢/2).

The map @ is isotopic to the identity; therefore, the knot K, = ®(K3) is isotopic to
K3. Now, attaching K4 N D(0,¢) to K1 N (53 \ D(0, e)) + 7, we obtain a knot isotopic
to K1# K5, and gluing together the functions f1|D(0,¢) 4+ 7 and f2 0 ®|S3\ D(0,¢), we
obtain a map f: Cx — S' with Morse number equal to the sum of those of f; and f».0

We remark that a similar proposition is true for the case of links.

Another natural operation on links is the Murasugi sum [Ga]. The 4-gon Murasugi
sum is defined for pairs (S1, a1) and (S2, «v2), where the S; are Seifert surfaces and the oy
are patches on them. Instead of reproducing the formal definition, we invite the reader
to look at Figure 2. The surfaces S7 and S are glued together along the patches oy and
ay. The resulting surface i1s denoted by 57 x.S3; it contains a 4-gon o = a1 = as.

To formulate the corresponding conjecture, we let S be a Seifert surface and take
L = 9S. We define MN(S) as the minimal possible number of critical points of a Morse
function Cf, — S having S as a regular level surface.

Conjecture 6.3. Let S =51 %52, Then

(12) MN(Sy * S2) < MN(Sy) + MN(Ss).
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