THE SURGERY EXACT SEQUENCE REVISITED

ERIK KJEAR PEDERSEN

ABSTRACT. The purpose of this paper is to discuss the four-periodicity
of the topological surgery exact sequence from the point of view of
controlled surgery.

Consider the classical surgery exact sequence [7], for determining the
topological structure set for a given n-dimensional Poincaré duality space
X

= Lpy1(ZmX) — S(X) — [X,G/ Top] — L,(Zm X).

This is a sequence of groups and homomorphisms except in the bottom of
the sequence where interpretations are needed. The term [X, G/ Top] needs
a specific lift of X — BG to X — B Top and it measures the variations in
this lift. The map S(X) — [X, G/ Top] compares the lift of X — B Top
given by a homotopy equivalence M — X to the one chosen above. The
map L,+1(Zm (X)) — S(X) is given as an action on a basepoint, so a
specific manifold structure has to be chosen on X to define the map. Ex-
actness of the sequence is in terms of based sets. One way to resolve these
problems was given in Quinn’s and Nicas’ theses [3, 4]. The solution was to
exhibit G/ Top with a different infinite loop space structure and it turned
out one could obtain a sequence of groups and homomorphisms. This solu-
tion is somewhat complicated involving a complicated definition of spectra
to get to the very definition of the surgery exact sequence. It also provides
a group structure on the structure set, that is not easily understood.

This issue is of some importance because of the applications. The Borel
conjecture states that when X is a K (m, 1) i. e. a space for which all higher
homotopy groups vanish, then the structure set contains at most one point.
In other words, given a homotopy equivalence of K (m,1)- manifolds, it is
homotopic to a homeomorphism. Farrell and Jones [1] confirm the Borel
conjecture in many cases. The method however is always to prove that the
higher structure sets are trivial

S(X xDLa(X xDY) =0, I>1.
Farrell and Jones then use four periodicity to conclude S(X) = 0. The
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argument using Sullivan’s characteristic variety theorem. The main purpose
of this note is to show how one can avoid using this four-periodicity.

We thus indicate a relatively direct proof that the structure set of a
topological manifold M is precisely one point when S(M x D* d(M x
D*%)) = 0, using controlled techniques. This provides a different path to
establishing S(X) = 0 in the Farrell-Jones situation above.

Consider a compact topological manifold M without boundary, and a
proper degree one map from a manifold pair

(W,0W) — (M x [0,1), M x 0)

which is a homotopy equivalence on the boundary OW — M x 0. We
will call this map a continuously controlled homotopy equivalence if it is
a proper homotopy equivalence of pairs, and the tracks of the homotopies
become arbitrarily small when we approach 1, i. e. when the second coordi-
nate is close to 1. The precise definition of “small” is that for every point x
in M x 1 and for every neighborhood U of = in M x I there exists a neigh-
borhood V' so that if the track of the homotopy at some point intersects V'
non trivially, then it is entirely contained in U.

We may now ask the question: Is it possible to do proper surgery to
obtain a controlled homotopy equivalence of pairs? Using the techniques
in [2] one sees it is possible to set up a surgery theory to determine this
question, if we are able to construct an additive category with involution,
which determines when a map is a continuously controlled homotopy equiv-
alence. For the moment we shall assume such a category does exist, and
we will give its definition later. Let us call such a category B, and proceed
to describe how it can be used to obtain our goal.

Theorem 1. Let M be a topological manifold of dimension n > 5 Then
there is a map

S(M x D', d(M x D')) — Ly 1141(B)

which is an isomorphism when [ > 1. When I =0, an element goes to zero
if and only if the homotopy equivalence is h-cobordant to a homeomorphism.

Note that in the case I = 0, the function is from a pointed set to an
abelian group.

Corollary 2. If S(M x D* (M x D*)) =0 then S(M) =0

Proof. Assume N — M is an element in S(M). The surgery obstruction
lies in L,,+1(B). But surgery groups are obviously 4-periodic, so L, +1(B) =
L, +5(B) which is 0. We thus know that the homotopy equivalence is h-
cobordant to a homeomorphism, and the element is 0 in the structure set.

O

Proof of Theorem. We start out giving the proof in the case when [ = 0
as follows. Consider an element in the structure set, i. e. a homotopy



THE SURGERY EXACT SEQUENCE REVISITED 3

equivalence of compact manifolds
¢:N—-M
Letting 1 be a homotopy inverse to ¢ we get a diagram

VN X [071) Hq/}*(VN) X [Oal)

| i

Nx[0,1) —2 s v < [0,1)

Notice there is no choice in the bundle map, since ¢ is a homotopy equiv-
alence. This may be considered a controlled surgery problem. The point
is that even though ¢ is a homotopy equivalence, it is not continuously
controlled. The tracks of the homotopy do not get small near 1. We now
obtain an element in L, 1 (B) by following the procedures in [2], first doing
surgery below the mid-dimension, and finally getting forms and formations
defining the surgery obstruction. The arguments in [2] adopt precisely to
this situation. If the surgery obstruction vanishes, we do surgery relative
to the boundary N — M x 0 to obtain a continuously controlled homotopy
equivalence
(LW, N) — (M x [0,1), M x 0).

Consider the map ;W — M x [0,1). The continuous control condition
easily implies, that if we compose with the projection to M, oW — M,
we get a tame end. Using Quinn’s end theorem [5] we may add a boundary
M , to ;W and extend the map to M, to get a map of triples

(LW N, M) — (M x [0,1], M x 0, M x 1)

The map M; — M can be perturbed by a small homotopy to the compo-
sition
My - My x(l—¢)>MxI—->M

where the first map is given by collaring the boundary, the second is the
restriction of the map above, and the third map is the projection. The
map M; — M is thus an arbitrarily small homotopy equivalence, hence
a cell-like map. Using Siebenmann’s approximation theorem [6] it can be
moved by an arbitrarily small homotopy to a homeomorphism. The triple
(W; N, Mj) is now an h-cobordism so the element in the structure set
was the trivial element.

When [ > 0 the structure set has elements W — M x D' which are home-
omorphisms on the boundary. We have a group structure on the structure
set in this case, by gluing elements along a piece of the boundary. The
map we have described above becomes a homomorphism, because the way
we obtain an element in the L-group is by doing surgery below the mid-
dimension. When we have glued two elements as above, we can do the
surgery below the mid-dimension on the pieces individually, and the chain
complex of the result will just be the sum of the two chain complexes. The
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argument we gave for the case [ = 0 did not prove the map was a monomor-
phism, since we do not have a group structure in that case. Carried over
to the I > 0 case however, it does prove the map is a monomorphism. To
see the map is an epimorphism we use Wall’s realization argument. The
argument is the same for all [ > 0, so let us assume [ = 1. We start with
the identity map

M x[0,1) - M x [0,1)

and an element in L, 2(B) where n is the dimension of M. If n is even, this
element is given by an intersection form. We embed a system of trivial [5]-
dimensional spheres in M X [0, 1) corresponding to a basis of the object in B
defining the element, increasingly smaller as we approach 1. We now follow
Wall’s realization procedure. First cross with I, then change the embedding
of the spheres cross I so that the intersections mirror the intersections given
by the element in L-group. At the end of this process we have a differently
embedded system of spheres at level 1 in I, and after doing surgery on
this system of spheres we get a map at level one which is a chain homotopy
equivalence when measured in B, hence a continuously controlled homotopy
equivalence. We now proceed as in the [ = 0 case to put an end on the
manifold. Using a small collar of the added end, we have a homeomorphism
at the 1-level, and the trace of the surgery is easily seen to have the given
surgery obstruction. When n is odd, we follow Wall’s procedure for odd
dimensional realization, and proceed as above. O

We finish off by giving a description of the categories B above. Let E
be a free I'-space and R a ring with involution. For the application above
choose Z with the trivial involution. The category BY(E x [0,1], E x 1; R)
has objects based free R-modules with a free I'-action on the basis, together
with a proper reference map from the basis to £'x [0, 1). This means that we
can think of an object A as a direct sum of finitely generated free based R-
modules A, being generated by the basis-elements mapping to z € Ex[0, 1).
The properness condition ensures that A, is finitely generated and that the
set {z € E x [0,1)| Ay # 0} is locally finite in E x [0,1).

The objects are free RI'-modules in an obvious way. As morphisms we
allow RI’-module morphisms ¢ that satisfy a continuous control condition
near 1: Write ¢ = {¢y} where ¢ : A — B, A = ®A,, and B = ©B,,
¢y + Az — By so ¢y is precisely the component of ¢ mapping the summand
A, to By. The control condition now states: For every z € E x 1 and for
every neighborhood U of z in E x [0, 1] there must exist a neighborhood
V of z in E x [0,1] so that ¢j must be the zero homomorphism if z € V'
andy ¢ U ory €V and x ¢ U. Visually if we draw an arrow from z to y
whenever ¢y is nonzero, the arrows have to become small as we approach
points in E x 1.

Now let B = B™(M x [0,1], M x 1;Z), where © = 7 (M). It is relatively
easy to see that we can test whether a proper map f: W — M x [0,1) is a
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controlled homotopy equivalence as follows: First we check some conditions
on the fundamental group of W, that small loops near 1 bounding a disc in
W also bound a small disk, and that all elements in w1 (W) can be realized
by small loops near 1. Secondly we triangulate W and M x [0,1) in such
a way that all simplexes become small near 1. We may then think of the
chain complex of the universal cover as a chain complex in . This is done
by associating to each simplex in M x [0,1) its barycenter, and to each
simplex in W the image of its barycenter. Then f will be a controlled
homotopy equivalence if and only if f4 is a chain homotopy equivalence in
the category B. The argument is a variant of the standard argument giving
algebraic conditions for homotopy equivalence.
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