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Abstract. The purpose of this paper is to discuss the four-periodicity

of the topological surgery exact sequence from the point of view of

controlled surgery.

Consider the classical surgery exact sequence [7], for determining the
topological structure set for a given n-dimensional Poincaré duality space
X

. . .→ Ln+1(Zπ1X) → S(X) → [X,G/Top] → Ln(Zπ1X).

This is a sequence of groups and homomorphisms except in the bottom of
the sequence where interpretations are needed. The term [X,G/Top] needs
a specific lift of X → BG to X → B Top and it measures the variations in
this lift. The map S(X) → [X,G/Top] compares the lift of X → B Top
given by a homotopy equivalence M → X to the one chosen above. The
map Ln+1(Zπ1(X)) → S(X) is given as an action on a basepoint, so a
specific manifold structure has to be chosen on X to define the map. Ex-
actness of the sequence is in terms of based sets. One way to resolve these
problems was given in Quinn’s and Nicas’ theses [3, 4]. The solution was to
exhibit G/Top with a different infinite loop space structure and it turned
out one could obtain a sequence of groups and homomorphisms. This solu-
tion is somewhat complicated involving a complicated definition of spectra
to get to the very definition of the surgery exact sequence. It also provides
a group structure on the structure set, that is not easily understood.

This issue is of some importance because of the applications. The Borel
conjecture states that when X is a K(π, 1) i. e. a space for which all higher
homotopy groups vanish, then the structure set contains at most one point.
In other words, given a homotopy equivalence of K(π, 1)- manifolds, it is
homotopic to a homeomorphism. Farrell and Jones [1] confirm the Borel
conjecture in many cases. The method however is always to prove that the
higher structure sets are trivial

S(X ×Dl, ∂(X ×Dl)) = 0, l ≥ 1.

Farrell and Jones then use four periodicity to conclude S(X) = 0. The
four periodicity of the topological surgery exact sequence is a complicated
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argument using Sullivan’s characteristic variety theorem. The main purpose
of this note is to show how one can avoid using this four-periodicity.

We thus indicate a relatively direct proof that the structure set of a
topological manifold M is precisely one point when S(M × D4, ∂(M ×
D4)) = 0, using controlled techniques. This provides a different path to
establishing S(X) = 0 in the Farrell-Jones situation above.

Consider a compact topological manifold M without boundary, and a
proper degree one map from a manifold pair

(W,∂W ) → (M × [0, 1),M × 0)

which is a homotopy equivalence on the boundary ∂W → M × 0. We
will call this map a continuously controlled homotopy equivalence if it is
a proper homotopy equivalence of pairs, and the tracks of the homotopies
become arbitrarily small when we approach 1, i. e. when the second coordi-
nate is close to 1. The precise definition of “small” is that for every point x
in M × 1 and for every neighborhood U of x in M × I there exists a neigh-
borhood V so that if the track of the homotopy at some point intersects V
non trivially, then it is entirely contained in U .

We may now ask the question: Is it possible to do proper surgery to
obtain a controlled homotopy equivalence of pairs? Using the techniques
in [2] one sees it is possible to set up a surgery theory to determine this
question, if we are able to construct an additive category with involution,
which determines when a map is a continuously controlled homotopy equiv-
alence. For the moment we shall assume such a category does exist, and
we will give its definition later. Let us call such a category B, and proceed
to describe how it can be used to obtain our goal.

Theorem 1. Let M be a topological manifold of dimension n ≥ 5 Then
there is a map

S(M ×Dl, ∂(M ×Dl)) → Ln+l+1(B)

which is an isomorphism when l ≥ 1. When l = 0, an element goes to zero
if and only if the homotopy equivalence is h-cobordant to a homeomorphism.

Note that in the case l = 0, the function is from a pointed set to an
abelian group.

Corollary 2. If S(M ×D4, ∂(M ×D4)) = 0 then S(M) = 0

Proof. Assume N → M is an element in S(M). The surgery obstruction
lies in Ln+1(B). But surgery groups are obviously 4-periodic, so Ln+1(B) =
Ln+5(B) which is 0. We thus know that the homotopy equivalence is h-
cobordant to a homeomorphism, and the element is 0 in the structure set.

�

Proof of Theorem. We start out giving the proof in the case when l = 0
as follows. Consider an element in the structure set, i. e. a homotopy
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equivalence of compact manifolds

φ : N →M

Letting ψ be a homotopy inverse to φ we get a diagram

νN × [0, 1)

��

// ψ∗(νN )× [0, 1)

��
N × [0, 1)

φ×1 // M × [0, 1)

Notice there is no choice in the bundle map, since φ is a homotopy equiv-
alence. This may be considered a controlled surgery problem. The point
is that even though φ is a homotopy equivalence, it is not continuously
controlled. The tracks of the homotopy do not get small near 1. We now
obtain an element in Ln+1(B) by following the procedures in [2], first doing
surgery below the mid-dimension, and finally getting forms and formations
defining the surgery obstruction. The arguments in [2] adopt precisely to
this situation. If the surgery obstruction vanishes, we do surgery relative
to the boundary N →M ×0 to obtain a continuously controlled homotopy
equivalence

(∂1W,N) → (M × [0, 1),M × 0).
Consider the map ∂1W → M × [0, 1). The continuous control condition
easily implies, that if we compose with the projection to M , ∂1W → M ,
we get a tame end. Using Quinn’s end theorem [5] we may add a boundary
M1 , to ∂1W and extend the map to M1, to get a map of triples

(∂1W ;N,M1) → (M × [0, 1],M × 0,M × 1)

The map M1 → M can be perturbed by a small homotopy to the compo-
sition

M1 →M1 × (1− ε) →M × I →M

where the first map is given by collaring the boundary, the second is the
restriction of the map above, and the third map is the projection. The
map M1 → M is thus an arbitrarily small homotopy equivalence, hence
a cell-like map. Using Siebenmann’s approximation theorem [6] it can be
moved by an arbitrarily small homotopy to a homeomorphism. The triple
(∂1W ;N,M1) is now an h-cobordism so the element in the structure set
was the trivial element.

When l > 0 the structure set has elements W →M×Dl which are home-
omorphisms on the boundary. We have a group structure on the structure
set in this case, by gluing elements along a piece of the boundary. The
map we have described above becomes a homomorphism, because the way
we obtain an element in the L-group is by doing surgery below the mid-
dimension. When we have glued two elements as above, we can do the
surgery below the mid-dimension on the pieces individually, and the chain
complex of the result will just be the sum of the two chain complexes. The
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argument we gave for the case l = 0 did not prove the map was a monomor-
phism, since we do not have a group structure in that case. Carried over
to the l > 0 case however, it does prove the map is a monomorphism. To
see the map is an epimorphism we use Wall’s realization argument. The
argument is the same for all l > 0, so let us assume l = 1. We start with
the identity map

M × [0, 1) →M × [0, 1)

and an element in Ln+2(B) where n is the dimension of M . If n is even, this
element is given by an intersection form. We embed a system of trivial [n

2 ]-
dimensional spheres in M× [0, 1) corresponding to a basis of the object in B
defining the element, increasingly smaller as we approach 1. We now follow
Wall’s realization procedure. First cross with I, then change the embedding
of the spheres cross I so that the intersections mirror the intersections given
by the element in L-group. At the end of this process we have a differently
embedded system of spheres at level 1 in I, and after doing surgery on
this system of spheres we get a map at level one which is a chain homotopy
equivalence when measured in B, hence a continuously controlled homotopy
equivalence. We now proceed as in the l = 0 case to put an end on the
manifold. Using a small collar of the added end, we have a homeomorphism
at the 1-level, and the trace of the surgery is easily seen to have the given
surgery obstruction. When n is odd, we follow Wall’s procedure for odd
dimensional realization, and proceed as above. �

We finish off by giving a description of the categories B above. Let E
be a free Γ-space and R a ring with involution. For the application above
choose Z with the trivial involution. The category BΓ(E × [0, 1], E × 1;R)
has objects based free R-modules with a free Γ-action on the basis, together
with a proper reference map from the basis to E×[0, 1). This means that we
can think of an object A as a direct sum of finitely generated free based R-
modulesAx being generated by the basis-elements mapping to x ∈ E×[0, 1).
The properness condition ensures that Ax is finitely generated and that the
set {x ∈ E × [0, 1)|Ax 6= 0} is locally finite in E × [0, 1).

The objects are free RΓ-modules in an obvious way. As morphisms we
allow RΓ-module morphisms φ that satisfy a continuous control condition
near 1: Write φ = {φx

y} where φ : A → B, A = ⊕Ax, and B = ⊕By,
φx

y : Ax → By so φx
y is precisely the component of φ mapping the summand

Ax to By. The control condition now states: For every z ∈ E × 1 and for
every neighborhood U of z in E × [0, 1] there must exist a neighborhood
V of z in E × [0, 1] so that φx

y must be the zero homomorphism if x ∈ V
and y /∈ U or y ∈ V and x /∈ U . Visually if we draw an arrow from x to y
whenever φx

y is nonzero, the arrows have to become small as we approach
points in E × 1.

Now let B = Bπ(M̃ × [0, 1], M̃ × 1; Z), where π = π1(M). It is relatively
easy to see that we can test whether a proper map f : W →M × [0, 1) is a
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controlled homotopy equivalence as follows: First we check some conditions
on the fundamental group of W , that small loops near 1 bounding a disc in
W also bound a small disk, and that all elements in π1(W ) can be realized
by small loops near 1. Secondly we triangulate W and M × [0, 1) in such
a way that all simplexes become small near 1. We may then think of the
chain complex of the universal cover as a chain complex in B. This is done
by associating to each simplex in M̃ × [0, 1) its barycenter, and to each
simplex in W̃ the image of its barycenter. Then f will be a controlled
homotopy equivalence if and only if f# is a chain homotopy equivalence in
the category B. The argument is a variant of the standard argument giving
algebraic conditions for homotopy equivalence.
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