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Real singularities and open-book decompositions
of the 3-sphere (∗)

Anne Pichon (1) and José Seade (2)

ABSTRACT. — We study the topology of the real analytic germs f :
(C2, 0) −→ (C, 0) defined by f(z1, z2) = zp

1z2 + zq
2z1. Such a germ gives

rise to a Milnor fibration f
|f | : S3\L −→ S1, where L denotes the link of f .

We describe topologically this fibration, computing the genus of the fiber
and the monodromy. This implies that f is not topologically equivalent
to an holomorphic germ, whereas its link L is isotopic to the link of the
complex singularity z1z2(zp+1

1 + zq+1
2 ).

RÉSUMÉ. — Nous étudions la topologie des germes analytiques réels f :
(C2, 0) −→ (C, 0) définis par f(z1, z2) = zp

1z2 +zq
2z1. Un tel germe donne

lieu à une fibration à la Milnor f
|f | : S3 \L −→ S1, L désignant l’entrelacs

de f . On décrit topologiquement cette fibration en calculant le genre de
la fibre et la monodromie. Ceci implique que f n’est pas topologiquement
équivalent à un germe holomorphe, alors que son entrelacs L est isotope
à l’entrelacs de la singularité complexe z1z2(zp+1

1 + zq+1
2 ).

Introduction

The study of the topology of isolated complex singularities is closely
related to knot theory, and this relation has been long studied by many
authors, as for example in [Br], [Mi1], [Du], [EN], [LMW], and many more.
The links (knots) that one gets in this way are called algebraic links. By the
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work of Milnor [Mi1], these are fibered links and they give rise to open-book
decompositions on the odd-dimensional spheres. More precisely, if

f : (Cn, 0) → (C, 0) ,

is an analytic germ with an isolated critical point at 0 ∈ C
n, let

L = f−1(0) ∩ S
2n−1
ε be the link of the singularity, where S

2n−1
ε denotes

a sufficiently small (2n− 1)-sphere with radius ε centered at 0 in C
n. Then

the map
f

|f | : S
2n−1
ε \ L → S

1

is a C∞ locally trivial fibration which defines an open-book decomposition
of S

2n−1
ε with binding L. These open-book decompositions have been used

for many interesting problems in geometry and topology, as for instance
in [La], where Lawson used them to construct a new class of non-singular
foliations on the spheres, thus making a break-through in foliations theory.
(We refer to [Ra, Ro, Wi], or to Section 1 below, for details about open-book
decompositions.) Milnor also proved the following fibration theorem, thus
showing that not only the complex analytic germs carry such a beautiful
geometric structure: some real singularities do too.

Theorem. — ([Mi1], 11.2) Let f : (U ⊂ R
n+k, 0) −→ (Rk, 0) be the

germ of a real analytic function whose jacobian matrix has rank k on an
open neighbourhood of 0 in R

n+k, except perhaps at 0. Let S
n+k−1
ε be a

small sphere in R
n+k, centered at 0, let L = f−1(0)∩ S

n+k−1
ε and let N(L)

be a small tubular neighbourhood of L in S
n+k−1
ε . Then there exists a C∞

locally trivial fibration S
n+k−1
ε \N(L) −→ S

k−1.

There are two “problems” regarding this theorem. Firstly, it is not easy
to construct explicit examples of real singularities satisfying these hypothe-
sis; and secondly, they do not necessarily yield to open-book decompositions,
because the behaviour of the “pages” (i.e the fibers) near the binding can
not be controlled in general. Interesting results regarding this last point
have been obtained by [Jq, NR], see also [RSV]. The constructions of [S1]
and [S2] provide infinite families of such real analytic functions. In [S2], it
is proved that the real analytic maps f : R

2n ∼= Cn −→ R
2 ∼= C defined by

f(z1, ..., zn) = λ1z
a1
1 · zσ1 + ...+ λnz

an
n · zσn

,

satisfy Milnor’s condition when the ai are integers � 2, the λi are non-zero
complex numbers and {σ1, ..., σn} is any permutation of the set {1, ..., n}.
Moreover, it is proved in that article that for these singularities, the map

f
‖f‖ : S

2n−1
ε \ L → S

1 defines an open-book decomposition of the sphere
S

2n−1
ε with binding L. The purpose of this work is to determine, in the
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case n = 2, the topology of these open-book decompositions on S
3
ε , i.e. the

isotopy class of the binding L, the homeomorphism class of the fibers and
the monodromy of the fibration. Since n = 2, there are only two types of
such singularities, these are :

i) λ1z
p
1 · z1 + λ2z

q
2 · z2 ;

ii) λ1z
p
1 · z2 + λ2z

q
2 · z1.

In the first case, it is shown in [RSV] that the homeomorphism defined on
the complement of the two axis in C

2 by :

(z1, z2) 
→ (|z1|
2

p−1 z1, |z2|
2

q−1 z2) ,

extends to a homeomorphism of C
2 and provides a topological equivalence

between the singularity zp
1 · z1 + zq

2 · z2 and the Pham-Brieskorn singularity
zp−1
1 +zq−1

2 . Hence the topology of these singularities is well understood via
complex geometry. Thus we only consider here singularities of the type

f(z1, z2) = λ1z
p
1z2 + λ2z

q
2z1 .

If p and q are both � 2, then we know from [S2, p. 330] that the S
1-action

on C
2 given by:

(eit, (z1, z2)) 
→ (eis1tz1, e
is2tz2) ,

where s1 = 1+q
pq−1 and s2 = 1+p

pq−1 , leaves invariant the real analytic, 2-
dimensional singular surface V p,q = {λ1z

p
1z2 + λ2z

q
2z1 = 0 }. This action

also leaves invariant the unit sphere S
3 ⊂ C

2, thus giving a Seifert decom-
position of the 3-sphere, with the Hopf link S

3 ∩ ({z1z2 = 0}) as the two
exceptional fibres. Both of these are components of the link,

L = V p,q ∩ S
3 ,

which is a union of Seifert fibres, so it is a Seifert link. In fact these are the
links of type 5 in the classification of Seifert links in [EN; 7.3]. These links
can also be obtained via complex singularities: they are isotopic to the links
in S

3 determined by
z1z2(z

p+1
1 + zq+1

2 ) = 0 .

So it is natural to ask whether the corresponding Milnor fibrations, and the
open-book decompositions on S

3, are equivalent in some sense. We show
that this is not the case. In fact we prove (Theorem 1.3) :

1) The open-book fibration provided by f(z1, z2) = λ1z
p
1z2 + λ2z

q
2z1

induces the “negative” orientation around two components of the link. More
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precisely, the map f
‖f‖ has degree −1 restricted to small meridians of two

components of L and degree +1 for the other components. (Whereas these
degrees are all +1 in the holomorphic case.)

2) If we let k = gcd(p+1, q+1) be the greatest common divisor, p′ = p+1
k

and q′ = q+1
k , then the genus of the fibres of f

‖f‖ is 1
2k(kp

′q′−p′− q′−1) =
1
2 (pq− 1− k). (Whereas it equals 1

2k(kp
′q′ + p′ + q′ + 1) in the holomorphic

case.)

3) The monodromy is periodic of order kp′q′ − p′ − q′ = 1
k (pq − 1).

(Whereas in the holomorphic case, it is periodic of order kp′q′ + p′ + q′ .)

This implies (Corollary 3.2) that for each angle θ ∈ [0, π[, the antipodal
fibers f−1(eiθ) and f−1(ei(θ+π)) are glued together along their common
boundary L, forming an oriented surface of genus pq diffeomorphic to the
set of points where the real line field (zq

2 , z
p
1) is tangent to S

3.

To obtain these results, we first compute a “topological” resolution π :
X → C

2 of the singularity {λ1z
p
1z2+λ2z

q
2z1 = 0 } via the usual technique for

studying complex plane curves, i.e. by performing appropriate blow-ups to
get a resolution of the singularity (Sections 2 and 3). The additional problem
we have to face is that, since the singularities in question are only real
analytic, we have to make a ”trick” to transform them by a homeomorphism,
in some step of the resolution process, in order to get a “divisor” with normal
crossings. In this way we obtain a topological resolution of f , and then a
plumbing description of the isotopy class of its link L . Therefore, using the
plumbing calculus of [Ne1] we obtain a description of the link L as a Seifert
link in S

3. Moreover, the study of the behaviour of f ◦π near the branches of
the strict transform of f by π enables us to compute explicitely the degrees
of the fibration restricted to small meridians of the components of L and
establish statement 1).

To obtain 2) and 3) we use a generalization of the method of [Pi]
described in Section 1. The idea is that, since L is a Seifert link, the
fibres of the open book fibration f

‖f‖ are horizontal in the sense of [Wa],
i.e. up to isotopy, they are transversal to the Seifert fibres (except in the
special cases treated “by hand” in Section 4). Therefore the monodromy of
the fibration f

‖f‖ is represented by the first return h : F → F of the Seifert

fibres on a fibre F of f
‖f‖ . This implies that the monodromy is periodic,

thus completely classified by the so-called Nielsen graph G(h) (Section 1).
Moreover, G(h) is completely determined by the data previously computed,
namely the Seifert graph of the link L and the degrees of f

‖f‖ around the
components of L (Proposition 1.2).
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In particular, the order N of the monodromy is determined by the
Nielsen graph. The projection map p : F → F/h to the space of orbits
of h is a N -sheeted cyclic cover over the sphere S

2 with holes (as many as
the number of components in the link), ramified at two points, correspond-
ing to the exceptional Seifert fibres. The indices of ramification are encoded
in the Nielsen graph. Thus, it is easy to determine the genus of the pages
using Hurwitz formula.

In Section 1, we present some results about the classification of horizontal
open-book fibrations, restricting the discussion to Seifert links instead of the
more general Waldhausen links considered in [Pi]. In section 2 we discuss
one particular example among the above real singularities, which illustrates
the proof of the result in the general case, given in section 3. Section 4
discusses two special cases of the above singularities, which do not fit within
the general framework, thus completing the study of the topology of these
singularities, and the corresponding Milnor fibrations, when n = 2.

The results of section 3 below, together with [Pi], show that the open-
book decompositions on S3 given by Theorem 3.1 are topologically equiva-
lent to those defined by the singularities:

f̂(z1, z2) = z̄1z̄2(z
p+1
1 + zq+1

2 ) .

We notice that this map f̂ is a product of the form f̂ = ḡ ·φ, where g and φ
are both holomorphic maps in C

2 with an isolated critical point at 0 ∈ C
2

and with no common branch. More generally, one can study the singulariies
of this type f̂ = ḡ · φ . This is done in [Pi2].

1. Seifert links and horizontal fibrations

In this section M is a compact oriented 3-dimensional manifold. In the
following sections, we use these results taking M to be the sphere S

3.

A link in M means a disjoint, finite union of circles embedded in M . If
M is a Seifert manifold, a Seifert link L in M is a union of Seifert fibres of
some Seifert fibration of M , c.f. [EN; Chapter II]. In the sequel, we avoid
considering Seifert links whose complement in M is a solid torus or a product
torus × [0, 1]. These degenerate cases do not appear among the links of
singularities considered in this paper, except in the special cases of Section
4, which are treated ”by hand”.

Given a Seifert link L, the uniqueness theorem of Waldhausen ([Wa] or
[Ja; Theorem VI. 18]), implies that there exists a unique Seifert fibration
of M , up to isotopy, for which L is union of Seifert fibres, and the isotopy
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class of L is characterized by the Seifert graph G(M,L) constructed as
follows. The graph G(M,L) has a single vertex. For each component of L
(respectively for each exceptional Seifert fibre which is not a component
of L), one attaches to the vertex an arrow (respectively a stalk), whose
extremity is weighted by the corresponding pair (α, β) of normalized Seifert
invariants (0 � β < α). These integers satisfy the equation αa + βb = 0 in
H1(N,Z), where N is a small tubular neighbourhood of the component of
the link (or of the corresponding exceptional fibre), saturated with Seifert
fibres, b is an oriented Seifert fibre on ∂N and a is an oriented curve on
∂N such that the intersection a · b is +1 on ∂N oriented as the boundary
of N . The vertex of the graph is endowed with the two numbers g and
e0, which denote respectively the genus of the base and the rational Euler
number e0 of the Seifert fibration. This number e0 has important geometric
properties and it has been used by several authors. For instance, it is noticed
in [Ne2] that a Seifert manifold is the link of a surface singularity if and
only if its rational Euler number e0 is negative. To define e0 we first recall
that if E is an oriented S

1-bundle over an oriented 2-dimensional, compact,
connected, manifold B, then its usual Euler class is the primary (i.e. non-
automatically zero) obstruction for constructing a section of E. This class
lives in H2(B; Z) and it becomes a number when we evaluate it on the
orientation class of B. If B has non-empty boundary, then H2(B; Z) ∼= 0, so
the bundle is trivial. However, if we fix a choice of a trivialization of E over
∂B, i.e. a section of τ : ∂B → E, then one has an Euler class of E relative
to τ , e(E; τ) ∈ H2(B, ∂B; Z) ∼= Z; evaluating e(E; τ) on the orientation
cycle of the pair (B, ∂B) we obtain an integer, which is by definition, the
Euler number of E relative to τ . Now, given an oriented Seifert fibration
π : M → B on a 3-manifold M , let us remove from B small, pairwise
disjoint, open discs around the points corresponding to the special fibers,
and denote by B0 what is left. Let E be π−1(B0), which is M minus a union
of open solid tori. This is an S

1-bundle over B0. On each boundary torus Ti,
one can choose a unique (up to isotopy) oriented curve a which intersects
each Seifert fiber in exactly one point and satisfies that m = α[a] + β[b],
where m is a meridian of Ti, (α, β) are the corresponding reduced Seifert
invariants, and [b] is the homology class represented by one Seifert fiber.
This curve a determines a section of E|Ti

. Doing this for each boundary
torus we obtain a section of E over ∂B0. The Euler number e = e(M) of the
Seifert fibration π : M → B is defined to be the Euler number of E relative
to the given trivialization over ∂B0. Then the rational Euler number of the
Seifert fibration, which is the weight of the vertex in the Seifert graph, is
defined by:

e0 = e −
d∑

i=1

βi

αi
.

– 250 –



Real singularities and opten-book decompositions of the 3-sphere

For example, figure 1 represents the Seifert graph of the torus link (2, 3)
obtained from the complex singularity z2

1 + z3
2 . We notice that, by [Ne1],

the data of the Seifert graph is equivalent to that of the resolution graph
of the singularity z2

1 + z3
2 , which describes the complement of L in S3 as

the 3-manifold obtained by a plumbing process. We refer to [Ne1] for more
details and for the relation between the Seifert graph and the plumbing (or
resolution) graph.

Fig. 1

Let L be a link in a 3-dimensional compact oriented manifold M . An
open-book fibration of L is a C∞ locally trivial fibration Φ : M \ L −→ S

1

which equips M with an open-book decomposition with binding L. In other
words, for each component K of the link L, there exists an open tubular
neighbourhood N(K) of K in M \ (L \ K)) and a homeomorphism τ :
S

1 × D
2 −→ N(K) such that for all (t, z) ∈ S

1 × D
2 one has:

(Φ ◦ τ)(t, z) =
z

|z| .

In this case the fibres of Φ are called the pages; each page is a 2-dimensional
open surface whose closure in M is a compact surface with boundary L.
The link L is called the binding of the open-book. In the sequel, all the
open-book fibrations considered have connected pages.

If (M,L) is a Seifert link and if one has an open-book fibration Φ of L,
then such a fibration is said to be horizontal if the fibres of Φ are transverse
to the Seifert fibres, which are circles. According to [Wa], this transversality
is automatically realized, up to isotopy, except in the degenerated cases
avoided at the begining of this Section.

Now, let Φ : M \ L −→ S
1 be an open-book fibration of the link L ∈ M

and let K be a component of L. Let us choose an orientation −→
K of K.

Let D be a meridian disk of N(K) oriented so that one has intersection
D · −→K = +1 in M , and let us equip its boundary m with the induced
orientation. One denotes by ε(−→K) ∈ {−1,+1} the degree of the restriction
of Φ to the oriented meridian −→m. Note that if −−→

K denotes K equipped with
the opposite orientation , then ε(−−→

K) = −ε(−→K).
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If L is a Seifert link and if Φ is horizontal, then there exist two natural
orientations of the link L. The first one, denoted by −→

L flow is obtained as
follows: as the Seifert fibres of M\L are transversal to the fibres of Φ, one can
orient each Seifert fibre b by a flow which lifts, via Φ, the unit tangent vector
field of S

1 = {z ∈ S; |z| = 1} compatible with the complex orientation. As
the base of the Seifert fibration is orientable, this orientation −→

b flow is the
same for each Seifert fibre b of M \ L and extends to an orientation −→

L flow

of L as union of Seifert fibres.

Let us now equip a fibre F of Φ with its natural orientation, that is
F.
−→
b flow = +1. Then the second natural orientation of L, denoted by

−→
L bound, is the orientation of L as boundary of F .

It follows from the definitions that ε(−→K bound) = +1 for each component
K of L, while ε(−→Kflow) can be ±1. In [Pi], only the open-book fibrations
such that −→

L bound = −→
L flow, i.e. ε(−→Kflow) = +1, are studied.

1.1. Definition

Two horizontal fibrations Φ : M \ L −→ S
1 and Φ′ : M ′ \ L′ −→ S

1

are topologically equivalent if there exist orientation preserving homeomor-
phisms H : (M,L) −→ (M ′, L′) and ρ : S

1 −→ S
1 such that:

1) ρ ◦ Φ = Φ′ ◦H|(M\L); and,

2) For each component K of L, ε(−→Kflow) = ε(
−−−→
H(K)flow).

Notice that these conditions imply that H(−→L flow) =
−→
L′

flow, i.e. that for
each component K of L, the orientation that the flow obtained via Φ induces
on K corresponds to the orientation on H(K) given by the flow obtained via
Φ′. We remark that the Lemma 4.5 of [Pi] extends easily to the situation we
consider here and provides a classification of horizontal fibrations of Seifert
links where the ε(−→Kflow) are not necessarily +1. In fact, [Pi] deals with
Waldhausen links, but in the present paper, only Seifert links appear. Thus
condition 1 can be replaced by:

1’) The fibres of Φ and Φ′ are diffeomorphic and their monodromies are
conjugated in the mapping-class group of the fibre.

Let (M,L) be a Seifert link and let Φ : M \ L −→ S
1 be a horizontal

fibration with connected fibre F := Φ−1(t), considered as an oriented sur-
face in M with boundary L. The diffeomorphism h : F −→ F defined by
the first return map on F of the Seifert fibres, oriented by the flow, is a
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periodic representative of the monodromy of Φ. Then the monodromy of
Φ is classified, up to conjugation, by the Nielsen graph G(h) of h, which is
a complete invariant defined in [Pi] from the work of Nielsen [Ni]. Let us
recall briefly the construction of this graph. Given an oriented suface F and
an orientation-preserving periodic diffeomorphism τ : F −→ F with order
N , the projection p : F −→ O onto the space of orbits of τ , is a N -sheeted
cyclic cover, branched over a finite number of points P1, . . . , Pd′ , called the
exceptional orbits. Let D1, . . . , Dd′ be disjoint open discs in O such that
Pi ∈ Di for all i = 1, . . . , d′; let us set Ci = ∂Di for all i = 1, . . . , d′, and
Ǒ = O \

∐d′

i=1 Di. Denote also by Ci, i = d′ + 1, . . . , d′ + d, the boundary
components of O. To each exceptional orbit Pi, i = 1, . . . , d′, and to each
boundary component Ci, i = d′ + 1, . . . , d′ + d, of O one associates a triple
(mi, λi, σi) defined as follows. Let us endow O and Ǒ with the orientations
induced, via p, from that on F , and let us equip each Ci, i = 1, . . . , d′ + d,
with the orientation opposite to that of the boundary of Ǒ. The integer
mi is the number of connected components of p−1(Ci); then define λi by
λimi = N , and σi is the integer modulo λi defined by ρ([Ci]) = miσi,
where ρ : H1(Ǒ,Z) −→ Z/NZ is the homomorphism associated to the N -
sheeted cyclic cover p|p−1(Ǒ). Then the Nielsen graph G(τ) consists of a single
vertex, weighted by the genus go of the quotient surface O and by N , to
which d′ stalks and d boundary-stalks are attached, representing respectively
the exceptional orbits and the boundary components of O. The extremity
of each stalk or boundary-stalk is equipped with the corresponding triple
(mi, λi, σi).

Let Φ : M \ L −→ S
1 be a horizontal fibration, with connected fibre F ,

of a Seifert link (M,L), and let h : F → F be the periodic representative of
the monodromy of Φ obtained by the first return on F of the Seifert fibres.
The following is an extension of ([Pi], Lemme 4.4) that follows immediately
from the arguments used to prove that lemma in [Pi]. It asserts that the
Nielsen graph of Φ is determined by the Seifert invariants of (M,L) and by
the weights ε(−→Kflow).

1.2. Proposition

i) If L =
∐d

i=1 Ki and if G(M,L) is the graph represented on figure 2,
with εi = ε(−→Kiflow), then the order of h is given by

N = − 1
e0

d∑
i=1

εi
αi

,

ii) The points in the orbits space F/h that correspond to the exceptional
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orbits are the intersection points of the fiber F with the exceptional fibres
of the Seifert fibration. Moreover, the exceptional orbit corresponding to the
exceptional Seifert indexed by i carries the triple (N/αi, αi, βi).

iii) The boundary component of F/h corresponding to the component
Ki of L carries the triple (1, N, σi), where σi, modulo N , is given by the
equality:

αiσi −Nβi + εi = 0 .

The Nielsen graph G(h) is the graph on the right in figure 2.

Fig. 2

In particular the projection π : F → F/h provides a description of the
fibre F as a N -sheeted cyclic cover over the surface with genus g, branched
over d′ points with branching indices αi, i = 1, . . . , d′ and N for the d re-
maining points. Thus we know the topology of the fiber F : it has d boundary
components and its genus is obtained from the Hurwitz formula :

gF =
1
2

(
2Ng + (N − 1)(d− 2) +Nd′ −

d′∑
i=1

N

α′
i

)
(1.3)

2. An Example

As a motivation for the following section, we study here the topology of
the singularity

f(z1, z2) = z3
2 · z1 + z5

1 · z2 .

Following the method used for studying the topology of complex plane
curves (see for instance [EN, LMW]), let us try to describe the topology
of the link L by performing a composition π : X −→ C

2 of a finite number
of blow-ups of points, starting with the blow-up of the origin in C

2. We will
see that we need to consider also a homeomorphism θ in such a way that the
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total transform (f ◦ π)−1(0) has normal crossings. One then identifies the
3-sphere S3

ε with the boundary of a small semi-algebraic tubular neighbour-
hood W of the exceptional divisor E = π−1(0) and L with the intersection
of the strict transform of f with the boundary ∂W of W .

Let π1 : X1 → C
2 be the blow-up of 0C2 and set Ψ1 = f ◦ π1. In the

first coordinate chart of X1, i.e. over C
2 \{z2 = 0}, the blow-up is given by:

z1 
→ z1z2 and z2 
→ z2 . The exceptional divisor E1 has equation z2 = 0
and one has:

Ψ1(z1, z2) = (f◦π1)(z1, z2) = f(z1z2, z2) = z3
2z1z2+z5

1z
5
2z2 = z3

2z2(z1+z5
1z

2
2).

In the total transform Ψ1(z1, z2) = 0, the factor z3
2z2 corresponds to the

equation of E1 := {z2 = 0}, while (z1 + z5
1z

2
2) = 0 is the equation of a

smooth branch S1 of the strict transform of f , namely the complex curve
with equation z1 = 0.

In the second chart of X1, i.e. over C
2 \ {z1 = 0}, the blow-up is given

by z1 
→ z1 and z2 
→ z1z2; E1 has equation z1 = 0 and

(f ◦ π1)(z1, z2) = z3
1z

3
2z1 + z5

1z1z2 = z3
1z1(z3

2 + z2
1z2) .

We notice that z3
2 + z2

1z2 = 0 is the equation of a singular real surface S,
so we have to resolve this singularity.

One branch of S as equation z2 = 0. Unfortunately, the presence of both
z2 and z2 in the equation of S does not allow one to factorize neither z2
nor z2. Therefore it is useless trying to separate the branch z2 = 0 from the
other branches of S by performing additional blow-ups. Indeed, let us try
an additional blow-up π′ : X ′ → X. In the second chart we have,

(Ψ1 ◦ π′)(z1, z2) = Ψ1(z1, z1z2) = z5
1z1(z3

2z1 + z1z2) ,

and the factor (z3
2z1+z1z2) still involves z2 and z2 with the same exponents

as before, so this singularity can not be resolved by blow-ups.

Thus we start again with the term z3
2 + z2

1z2, defining S, and we make
a trick: we compose π1 with a orientation-preserving homeomorphism θ :
X1 → X1 in order to replace S by a complex plane curve. So we start with
the term (z3

2 + z2
1z2) and we write it as z2(

(
z2

|z2|
1
2

)4 + z2
1); now define the

map θ : X1 → X1 by:
θ(z1, z2) = (z1,

z2

|z2|
1
2
)

in the second chart. This is well defined away from the two complex lines
transverse to E1 with equations z2 = 0 and z2 = ∞ and it extends in the
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obvious way to a homeomorphism from X1 to X1. This homeomorphism
coincides with the identity map on the two lines and it is a diffeomorphism
on their complement. In the second chart, the inverse map is θ−1(z1, z2) =
(z1, z2|z2|), and the image of S by θ has equation:

z2|z2|(z24 + z1
2) = 0 ,

or equivalently z2(z24 + z1
2) = 0 . The term z2

4 + z1
2 defines a complex

analytic plane curve, which can be resolved by a finite sequence of blow-
ups of points in the usual way. Let π2 : X2 −→ X1 be the blow-up of the
point (z1, z2) = (0, 0) of X1. In the second chart, the exceptional divisor
E2 = π−1

2 (0, 0) has equation z1 = 0 and the strict transform of θ(S) by π2

has equation:
z2 |z2| (z2

1z
4
2 + 1) = 0 .

The factor z2 corresponds to a smooth branch S2 of the strict transform
of f by f ◦ π1 ◦ θ−1 ◦ π2. The term z2

1z
4
2 + 1 = 0 does not intersect the

exceptional divisor, so it has no contribution for the topology of L. In the
first chart E2 has equation z2 = 0 and the strict transform of θ(S) by π2

has equation
z2

2 + z1
2 = 0 ,

which corresponds to the equation of two transverse smooth complex curves
S3 and S4, which are separated by performing the blow-up π3 : X3 → X2

of their common point.

Therefore, if we let π = π3◦π2◦θ◦π1, then the total transform (f◦π)−1(0)
has normal crossings and the strict transform π−1(f−1(0) \ {0}) consists of
the four smooth curves Si, i = 1, . . . , 4. The configuration of the divisor
(f ◦π)−1(0) is represented on figure 3, each irreducible compact component
Ej being weighted by its self intersection in X.

Let us now identify π−1(S3
ε) with a small tubular neighborhood W of

π−1(0) in X obtained by a plumbing process. The link L = f−1(0) ∩ S
3
ε is,

up to isotopy, the intersection of S1 ∪S2 ∪S3 ∪S4 with the boundary of W .
Therefore L has four components Ki = Si∩∂W, i = 1, . . . , 4, and its isotopy
class is encoded in the dual plumbing graph Γ of the divisor (f ◦ π)−1(0),
also represented on figure 3. As this graph has a single rupture vertex (i.e. a
vertex with more than three incident edges or arrows), then the link L is a
Seifert link, as we already known from [S2]. By using the plumbing calculus
of [Ne1], one computes from Γ the Seifert graph G(S3, L), also represented
on figure 3.

Before computing the degrees ε(−→Kiflow), let us introduce some defini-
tions and make some remarks.
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Let C be an irreducible component of the total transform (f ◦ π)−1(0).
As in [LMW; 1.3.2], define a curvette of C as a smooth complex curve in X
intersecting transversally C at a smooth point of (f ◦ π)−1(0). One defines
the multiplicity m(C) of f along C as the degree of the restriction of f to
a curvette of C.

Remember that in a neighbourhood of S1 in X, f ◦ π has the following
local expression :

(f ◦ π)(z1, z2) = (f ◦ π1)(z1, z2) = z3
2z2(z1 + z5

1z
2
2) ,

where z2 = 0 is the equation of E1 and where z1 + z5
1z

2
2 = 0 is that of

S1. Therefore m(E1) is the degree of the map z2 
→ z3
2z2, that is m(E1) =

3 − 1 = +2, and m(S1) is the degree of z1 
→ z1, so m(S1) = −1. Similarly,
m(S2) = −1, and m(S3) = m(S4) = +1 as S3 and S4 appear through
holomorphic factors in the local expression of f ◦ π.

Now, one remarks that, as in the usual resolution of complex plane
curves, the multiplicity of a compact irreducible component of the divisor
created by the blow-up of a point P is the sum of the multiplicities of the
components of the total transform passing through P . Therefore m(E2) =
m(E1) + m(S2) + m(S3) + m(S4) = 3, and m(E3) = m(E1) + m(E2) +
m(S3) +m(S4) = 7.

At this step, we can compute already the order of the periodic mono-
dromy h of f

‖f‖ . Indeed, by definition, the periodic monodromy is the diffeo-

morphism of first return of a Seifert fibre of on a fibre of f◦π
‖f◦π‖ . Therefore,

its degree is equal, up to sign, to the degree of f◦π
‖f◦π‖ restricted to a regular

Seifert fibre of (S3, L) disjoint from L. But one of the main ideas of the
plumbing calculus is that a regular Seifert fibre of (S3, L) is, up to isotopy,
the intersection with ∂W of a curvette γ of the rupture component of the
exceptional divisor (i.e. that which corresponds to the rupture vertex of the
dual resolution graph). Then the order N of h is, up to sign, the degree of
the restriction of f to a curvette γ of E3, i.e. N = m(E3) = 7.

Let us now compute the degree ε(−→K1flow). Remember again that in a
neighbourhood of S1,

(f ◦ π)(z1, z2) = z3
2z2(z1 + z5

1z
2
2) .

In this local chart, W = {(z1, z2) ; |z2| � η}, where η << 1. Thus,

K1 = S1 ∩ ∂W = {(z1, z2) ; z1 = 0, |z2| = η}.

Let −→
K1C be the knot K1 oriented as the boundary of the complex curve

S1 ∩W . Let us compute first ε(−→K1C). By definition, it is the degree of the
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restriction of (f ◦ π)/|f ◦ π| to a small meridian of K1, which is nothing
but the degree of the restriction of f ◦ π to a curvette of S1. Therefore
ε(−→K1C) = m(S1) = −1.

Let us now compare the orientations −→
K1C and −→

K1flow. Let γ be a
curvette of E3 and let us orient the Seifert fibre b = ∂W ∩ γ as the bound-
ary of the complex curve W ∩ γ. As m(E3) = 7 is positive, −→b C = −→

b flow.
Moreover, by plumbing calculus, one knows that the orientation of −→K1C as
a Seifert fibre is comppatible with that of −→b C. Therefore, −→K1C = −→

K1flow,
and then, ε(−→K1flow) = m(S1) = −1.

Similarly, ε(−→K2flow) = m(S2) = −1; ε(−→K3flow) = m(S3) = +1 and
ε(−→K4flow) = m(S4) = +1.

Using the Proposition of Section 1, one computes the Nielsen graph
G(h) of the monodromy of f

‖f‖ from the Seifert graph G(S3, L) and from the

degrees ε(−→Kiflow), i = 1, . . . , 4. This is represented on figure 3. In particular,
one can recover that the order of the monodromy is 7 from the formula i)
of Proposition 1.2.

Fig. 3

3. The general case

The arguments of the previous section generalize to the following result:

3.1. Theorem

Let f : (C2, 0) −→ (C, 0) be the real analytic germ defined by

f(z1, z2) = zp
1z2 + zq

2z1,

with p and q integers, p � q � 2. Then:
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i) The link L = f−1(0) ∩ S
3 is a Seifert link with k + 2 components,

where k = gcd(p + 1, q + 1). Two of these components are the Hopf link
({z1z2 = 0}) ∩ S3, while the others are a torus link of type (p+ 1, q + 1).

ii) The degree ε(−→Kflow) equals −1 for the two components of the Hopf
link, and +1 for each of the k remaining components.

iii) The monodromy of the fibration f
‖f‖ : S

3 \ L −→ S1 has a periodic
representative h whose order is N = kp′q′ − p′ − q′ = 1

k (pq − 1), where
p′ = p+1

k and q′ = q+1
k .

iv) Each fiber Fθ = ( f
‖f‖ )−1(eiθ) has genus 1

2k(N −1) = 1
2 (pq−1−k).

v) The plumbing graph of (S3, L), the Seifert graph G(S3, L) and the
Nielsen graph of h are represented on figure 4, where p′σ1 − Nβ1 − 1 = 0
and q′σ2 −Nβ2 − 1 = 0.

We remark that we stated the theorem above considering the unit sphere
S

3 ⊂ C
2 for simplicity, but one can replace this by any sphere centered at 0,

of arbitrary positive radius, by [S2; Proposition 2.1]. Also, that same result
gives us an explicit representative of the monodromy of this fibration: this
is given by the map (z1, z2) 
→ (e

2πi(q+1)
pq−1 z1 , e

2πi(p+1)
pq−1 z2).

Fig. 4

Proof. — Let π1 : X1 → C
2 be the blow-up of 0C2 . In the first chart,

C2 \ {z2 = 0}, one has:

(f ◦ π1)(z1, z2) = f(z1z2, z2) = zq
2z2(z1 + zp

1z
p−q
2 ) ,

and z1 + zp
1z

p−q
2 = 0 is the equation of a smooth branch S1 of the strict

transform of f , namely the complex curve with equation z1 = 0. Its multi-
plicity is the degree of the map z1 
→ z1, then m(S1) = −1. In the second
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chart one has,

(f ◦ π1)(z1, z2) = zq
1z1 (zq

2 + zp−q
1 z2) ,

and, just as in Section 2, it is useless to keep making additional blow-ups
to resolve the singularity:

S = {zq
2 + zp−q

1 z2 = 0 } ,

due to the presence of both z2 and z2 in the equation. Thus we make the
same trick we did before. Let us write

zq
1z1 (zq

2 + zp−q
1 z2) = zq

1z1z2

(
(

z2

|z2|
2

q+1
)q+1 + zp−q

1

)
.

We now compose π1 with the homeomorphism θ : X1 → X1 defined in the
second chart by

θ(z1, z2) = (z1,
z2

|z2|
2

q+1
),

out of the two complex lines z2 = 0 and z2 = ∞; this extends as the
identity map on these two lines. In the second chart, the inverse map is
θ−1(z1, z2) = (z1, z2|z2|

2
q−1 ), and θ(S) has equation:

z2|z2|
2

q−1 (z2q+1 + z1
p−q) = 0 ,

or equivalently z2(z2q+1 + z1
p−q) = 0 . This is the equation of a complex

plane curve, so it can be resolved by a finite sequence π′ : X −→ X1 of
blow-ups of points by the classical way. As in Section 2, after one blow-
up the term z2 gives rise to a smooth branch S2 transverse to the new
component of the exceptional divisor which has multiplicty m(S2) = −1.
After a finite sequence of additional blow-ups one obtains k := gcd(p + 1,
q + 1) other branches S3, . . . , Sk+2, all transverse to the same component
C of the exceptional divisor. To identify the link in S

3 defined by these k
components of L we observe that in the chart {z1 �= 0} of the blow-up X1,
the equation zq+1

2 + zp−q
1 = 0 is the equation of the strict transform of

the holomorphic curve zq+1
2 + zp+1

1 = 0 , whose link is well known to be a
torus link of type k(p+1

k , q+1
k ), by [Br] (see also [Mi1]). Therefore, identifying

π−1(S3
ε) with a tubular neighborhood W of the divisor π−1(0), the link L

has k+2 components Ki = Si∩∂W , two of them, K1 and K2 consisting the
Hopf link, and the remaining components K3, . . . ,Kk+2 consisting a torus
link of type k(p+1

k , q+1
k ).

This determines the resolution (plumbing) graph of the singularity. Again,
using classical computations of Seifert invariants and the plumbing calculus
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of [Ne1], one obtains from this the Seifert graph G(S3, L): there are two
exceptional Seifert fibres, which are K1 and K2, with Seifert invariants re-
spectively α1 = (p + 1)/k = p′ and α2 = (q + 1)/k = q′. As the ambient
space is the 3-sphere, then the rational Euler class of the Seifert fibration is
e0 = − 1

p′q′ and the two classes β1p
′ and β2q

′ are related by p′β2 + q′β1 = 1
(see [JN] for more details).

As in Section 2, one obtains the weights ε(−→Kiflow), i = 1, . . . , k + 2 by
computing the multiplicities m(Si), i = 1, . . . , k + 2 of the branches of the
strict tranform of f by π. These are ε(−→K1flow) = ε(−→K2flow) = −1, and
ε(−→Kiflow) = +1, i = 3, . . . , k + 2

As in Section 2, we can already compute the order N of the periodic
monodromy of f/|f | by computing the multiplicity of the rupture compo-
nent of the exceptional divisor. In the complex case z1z2(zk+1

1 + zk+1
2 ) this

multiplicity equals kp′q′+p′+q′, the term kp′q′ coming from the k branches
of zk+1

1 + zk+1
2 , and the terms p′ and q′ from the two branches z1 and z2. In

our real case, the computations of the multiplicities following the sequence of
blow-ups are the same as in the complex case, except that the multiplicities
of the branches corresponding to the Hopf link (i.e. the branches z1 and z2)
are counted negatively. Therefore, N = kp′q′ − p′ − q′. Using Section 1, one
obtains the Nielsen graph and the genus of the fiber. In particular, one can
recover the order N of the monodromy from the formula i) of Proposition
1.2. We notice that in this case, the corresponding Seifert decomposition of
the 3-sphere has only two exceptional fibers (the Hopf link), and both of
them are components of L. Hence, in the Nielsen graph of the monodromy,
all the stalks are boundary-stalks. �

In order to state the following result we notice that the function f(z1, z2)
= zp

1z2 + zq
2z1 in Theorem 1 can be regarded as the Hermitian product of

the vector fields ξ = (zq
2 , z

p
1) and ι = (z1, z2).

3.2. Corollary

With the hypothesis and notation of Theorem 3.1, each pair of antipodal
fibers Fθ and Fθ+π is naturally glued together along the link L forming a
smooth real analytic surface Sθ in S

3. The genus of Sθ is p ·q, the Poincaré-
Hopf index at 0 of the vector field ξ , and Sθ is diffeomorphic to the set of
points where the real line field spanned by ξ is tangent to S

3.

Proof. — That the fibers Fθ and Fθ+π are naturally glued together
along the link L forming a smooth real analytic surface Sθ in S

3 is proved
in [S2], where it is also shown that this surface is diffeomorphic to the set
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of points where the real line field spanned by ξ is tangent to S
3. That the

genus of this surface is pq follows from Theorem 1, which says that each
fibre Fθ has genus 1

2 (pq − 1 − k) and it has k + 2 boundary components.
When we glue two such fibers along their boundary to get Sθ, we create
k + 1 handles. Hence the genus of Sθ is:

g(Sθ) = 2g(Fθ) + (k + 1) = p · q ,

as stated. Finally, that this number is the Poincaré-Hopf index of the vector
field ξ follows from the fact that this vector field is holomorphic, so its index
at 0 equals the dimension of the vector space OC2,0/(z

q
2 , z

p
1). �

4. The special cases

In this section we study the special cases when, at least, one of the
two exponents p and q is 1. There are two essentially different possibilities:
p = q = 1, and p > q = 1.

As before, we let π1 : X1 → C
2 be the blow-up of 0C2 and let us

identify S3
ε with the boundary of a small semi-algebraic neighborhood W

of the exceptional divisor E1 = π−1
1 (0) in X1, with equation say |z2| � η,

(0 < η << 1) in the first chart, and |z1| � η in the second chart. Let us
equip ∂W with the Hopf fibration ∂W −→ E1, given by (z1, z2) 
−→ z1 in
the first chart.

a) Consider first the case: f(z1, z2) = λ1z1 · z2 + λ2z2 · z1 . By [RSV],
if |λ1| = |λ2|, then f is not a submersion in a punctured neighborhood
of 0 ∈ C

2 and the corresponding link L = f−1(0) ∩ S
3
ε is not fibered. In

fact, this link is not even a 1-dimensional manifold. Indeed, without lost of
generality, one can assume that λ1 = λ2 = 1; in the first coordinate chart
of X1,

(f ◦ π1)(z1, z2) = f(z1z2, z2) = z2z2(z1 + z1).

Then the strict transform of f by π1 has equation z1 + z1 = 0 in this chart,
and by symmetry, z2 + z2 = 0 in the second chart. Therefore it is a real 3-
dimensional manifold transverse to the boundary of W and its intersection
with ∂W is homeomorphic to L. Then L is a real surface embedded in ∂W ,
namely an unknotted torus saturated by Hopf fibres.

If |λ1| �= |λ2| the situation is more interesting. In this case, and in the
case b) below, [RSV] implies that f

‖f‖ gives rise to a Milnor fibration on the
complement of a regular neighbourhood N(L) of L in the 3-sphere, but the
methods used in that article do not describe the behaviour of f

‖f‖ near the
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link L. In particular, it could not be decided in [RSV] whether or not the
map f

‖f‖ defines an open-book decomposition of S
3
ε.

Over the first chart {z2 �= 0} one has, (f◦π1)(z1, z2) = z2z2(λ1z1+λ2z1).
This gives one branch S1 of the strict transform with equation z1 = 0. In
the second chart, one obtains by the same way a second branch S2 with
equation z2 = 0. Therefore the link L is the Hopf link. Moreover, in the first
chart, (

f

‖f‖ ◦ π1

)
(z1, z2) =

λ1z1 + λ2z1

|λ1z1 + λ2z1|
.

Then for α ∈ S1, the inverse image by π1 of the fiber ( f
‖f‖ )−1(α) is an

annulus with boundary L, which is saturated with the fibres of the Hopf
fibration corresponding to arg(z1) = θ, where θ is a constant depending
only on α. Therefore f

‖f‖ is a fibration which gives rise to an open-book
decomposition of S

3 with binding the Hopf link L and whose pages are
annuli.

In the present case, it is not possible to study the monodromy using
Section 1 because the Seifert fibres are not transversal to the fibers of f◦π1

|f◦π1| .

For the same reason, the orientations −→
Kiflow are not defined.

However, take ∂W = {(z1, z2); |z2| = η} (expressed in the first chart),
where η ∈ R

∗ is fixed. Then L = (S1 ∪ S2) ∩ ∂W , and the map

Φ : ∂W \ L −→]0,+∞[×S
1
η

defined by Φ(z1, z2) = (|z1|, z2) is a locally trivial fibration whose fibres are
circles, each of them intersecting transversally each fibre of Φ at a single
point. Therefore the monodromy of f

|f | is the identity map.

Finally, without lost of generality one can assume that |λ2| > |λ1|. Then,
m(S1) = −1, i.e. ε(−→K1C) = −1, and m(S2) = +1, i.e. ε(−→K2C) = +1 if we
endow these knots with orientation as in Section 2.

b) Consider now the case f(z1, z2) = λ1z
p
1z2+λ2z2z1 , p � 2. In this case

[RSV] shows that one has an associated Milnor fibration on the complement
of a tubular neighbourhood N(L) of the link, provided we restrict to spheres
of radius less than |λ2|/|λ1|. Let us describe the behaviour of f

|f | on N(L)
and show that this map indeed gives an open book decomposition of S

3.
For this, we first describe the link of this singularity using blow-ups. In the
first chart of the blow-up X1 one has,

(f ◦ π1)(z1, z2) = z2z2(λ2z1 + λ1z
p
1z

p−1
2 ) ,
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and in the second one,

(f ◦ π1)(z1, z2) = z1z1(λ2z2 + λ1z
p−1
1 z2) .

Then the strict transform of f by π1 has two branches S1 and S2, S1 hav-
ing equation λ2z1 + λ1z

p
1z

p−1
2 = 0 in the first chart, i.e. z1 = 0, and S2,

λ2z2+zp
1z

p−1
1 z2 = 0 in the second chart, i.e. z2 = 0. Let us set K1 = S1∩∂W

and K2 = S2∩∂W . Therefore L = K1∪K2 is the Hopf link. Let us describe
the behaviour of the fibers of f

|f | near the link L.

Let T1 be a small solid torus, regular neighbourhood of L1 in ∂W . Say

T1 = {(z1, z2) | |z1| � η′, |z2| = η} ,

expressed in the first chart, where 0 < η′ << η << 1 and where
λ1η

p−1 < λ2. Let us study the restriction of ( f
‖f‖ ◦ π1) to a meridian disk

D of T1, with equation say z2 = w2, where w2 is fixed on S
1
η. Then, for all

(z1, w2) ∈ D,

(
f

‖f‖ ◦ π1

)
(z1, w2) =

λ2z1 + (λ1w
p−1
2 )zp−1

1

|λ2z1 + (λ1w
p−1
2 )zp−1

1 |

Then for any α ∈ S1 the intersection of ( f
‖f‖ ◦ π1)−1(α) with D is a radial

arc with equation arg(z1) = θ, where θ depends on α and w2. Thus the
restriction of f

‖f‖ ◦ π1 to T1 is the projection of an open-book fibration.
Moreover, as η′ < 1 and λ1η

p−1 < λ2, the degree of f restricted to the
boundary of D is that of z1 
→ λ2z1, then ε(−→K1C) = −1. By the same
arguments, one obtains that the restriction of ( f

‖f‖ ◦ π1) to a small solid
torus T2, regular neighbourhood of L1 in ∂W , is also open-book, and that
ε(−→K2C) = +1. Finally, the degree of f ◦ π1 restricted to a curvette of E1 is
zero. Therefore, the fibres of f

‖f‖ ◦π1 are vertical in the sense of Waldhausen.
This means that each of them is, up to isotopy, union of Seifert fibres. Then
they are annuli and the monodromy of f

‖f‖ is the identity map by the same
arguments as in case a).
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