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(Communicated by Martin Lorenz)

Abstract. Let g be a finite-dimensional complex Lie algebra, and let U(g)

be its universal enveloping algebra. We prove that if Û(g), the Arens-Michael
envelope of U(g) is stably flat over U(g) (i.e., if the canonical homomorphism

U(g) → Û(g) is a localization in the sense of Taylor (1972), then g is solvable.
To this end, given a cocommutative Hopf algebra H and an H-module algebra
A, we explicitly describe the Arens-Michael envelope of the smash product
A#H as an “analytic smash product” of their completions w.r.t. certain fam-

ilies of seminorms.

The Arens-Michael envelope of a complex associative algebra A is defined as the
completion of A w.r.t. the family of all submultiplicative seminorms on A. This
notion (under a different name) was introduced by Taylor [15], and the terminology
“Arens-Michael envelope” is due to Helemskii [5]. An important example is the
polynomial algebra C[t1, . . . , tn] whose Arens-Michael envelope is isomorphic to the
algebra O(Cn) of entire functions endowed with the compact-open topology. Thus
the Arens-Michael envelope of a noncommutative finitely generated algebra can be
viewed as an “algebra of noncommutative entire functions” (cf. [16, 17]).

Given an algebra A, it is natural to ask to what extent homological properties
of its Arens-Michael envelope Â (considered as a topological algebra) are related to
those of A. To handle this problem, it is convenient to use the notion of localization.
Roughly speaking, a topological algebra homomorphism A → B is a localization
if it identifies the category of topological B-modules with a full subcategory of
the category of topological A-modules, and if the homological relations between
B-modules do not change when the modules are considered as A-modules. Local-
izations were introduced by Taylor [16] in connection with the functional calculus
problem for several commuting Banach space operators. A purely algebraic coun-
terpart of this notion was studied by Neeman and Ranicki [10]. (Note that their
terminology differs from Taylor’s terminology; namely, a homomorphism A → B is
a localization in Taylor’s sense precisely when B is stably flat over A in the sense
of Neeman and Ranicki.)

Thus a natural question is whether or not Â is stably flat over A. Taylor [16]
proved that this is the case for A = C[t1, . . . , tn] and for A = Fn, the free algebra
on n generators. In the case where A = U(g), the universal enveloping algebra of a
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complex Lie algebra g, Dosiev [3] proved that Û(g) is stably flat over U(g) provided
g is metabelian. In [11] we extended this result to the case where g admits a positive
grading. On the other hand, Taylor [16] showed that Û(g) is not stably flat over
U(g) if g is semisimple. Here we generalize this result and show that Û(g) can be
stably flat over U(g) only when g is solvable.

Our approach is based on a notion of an “analytic smash product”, which is a
continuous version of the corresponding algebraic notion [14]. To prove the above-
mentioned result, we first show that for each cocommutative Hopf algebra H and
each H-module algebra A the Arens-Michael envelope of the (algebraic) smash
product A#H is isomorphic to the analytic smash product of Ĥ and the completion
of A w.r.t. a certain family of seminorms determined by the action of H.

Remark. A. Dosiev has kindly informed the author that he proved the stable flatness
of the Arens-Michael envelope Û(g) over U(g) under the condition that g is a
nilpotent Lie algebra with normal growth. Roughly speaking, g has normal growth
if for each embedding of g into a Banach algebra, norms of powers of elements from
[g, g] decrease sufficiently rapidly. The class of Lie algebras with normal growth
contains all metabelian Lie algebras, but it is not clear how this class is related to
that of positively graded Lie algebras.

1. Preliminaries

We shall work over the complex numbers C. All associative algebras and algebra
homomorphisms are assumed to be unital.

By a topological algebra we mean a topological vector space A together with the
structure of an associative algebra such that the multiplication map A× A → A is
separately continuous. A complete, Hausdorff, locally convex topological algebra
with jointly continuous multiplication is called a ⊗̂-algebra (see [15, 4]). If A is
a ⊗̂-algebra, then the multiplication A × A → A extends to a linear continuous
map from the completed projective tensor product A ⊗̂A to A. In other words, a
⊗̂-algebra is just an algebra in the tensor category (LCS, ⊗̂) of complete Hausdorff
locally convex spaces. The latter observation can be used to define ⊗̂-coalgebras,
⊗̂-bialgebras, and Hopf ⊗̂-algebras; see, e.g., [1].

Recall that a seminorm ‖ · ‖ on an algebra A is called submultiplicative if ‖ab‖ ≤
‖a‖‖b‖ for all a, b ∈ A. This means precisely that the corresponding unit ball
U = {a ∈ A : ‖a‖ ≤ 1} is idempotent, i.e., satisfies U2 ⊂ U . A topological
algebra A is said to be locally m-convex if its topology can be defined by a family
of submultiplicative seminorms. Note that the multiplication in a locally m-convex
algebra is jointly continuous. An Arens-Michael algebra is a complete, Hausdorff,
locally m-convex algebra.

The following useful lemma is due to Mitiagin, Rolewicz, and Żelazko [9].

Lemma 1.1. Let A be a locally convex algebra with topology generated by a family
{‖ · ‖ν : ν ∈ Λ} of seminorms. Suppose that for each ν ∈ Λ there exist µ ∈ Λ and
C > 0 such that ‖a1 · · · an‖ν ≤ Cn‖a1‖µ · · · ‖an‖µ for each a1, . . . , an ∈ A. Then A
is locally m-convex.

Corollary 1.2. Let A be a locally convex algebra with topology generated by a family
{‖ · ‖ν : ν ∈ Λ} of seminorms. Suppose that for each ν ∈ Λ there exist µ ∈ Λ and
C > 0 such that ‖ab‖ν ≤ C‖a‖µ‖b‖ν for each a, b ∈ A. Then A is locally m-convex.



ARENS-MICHAEL ENVELOPING ALGEBRAS 2623

We shall use the latter corollary in the following geometric form.

Corollary 1.3. Let A be a locally convex algebra. Suppose that A has a base U of
absolutely convex 0-neighborhoods with the property that for each V ∈ U there exist
U ∈ U and C > 0 such that UV ⊂ CV . Then A is locally m-convex.

Let A be a topological algebra. A pair (Â, ιA) consisting of an Arens-Michael
algebra Â and a continuous homomorphism ιA : A → Â is called the Arens-Michael
envelope of A [15, 5] if for each Arens-Michael algebra B and for each continuous
homomorphism ϕ : A → B there exists a unique continuous homomorphism ϕ̂ : Â →
B making the following diagram commutative:

Â
ϕ̂ ����� B

A

ιA

��

ϕ

����������

In the above situation, we say that ϕ̂ extends ϕ (though ιA is not injective in
general; see [5] or [11] for details).

Recall (see [15] and [5, Chap. V]) that the Arens-Michael envelope of a topo-
logical algebra A always exists and can be obtained as the completion1 of A w.r.t.
the family of all continuous submultiplicative seminorms on A. This implies, in
particular, that ιA : A → Â has dense range. Clearly, the Arens-Michael envelope
is unique in the obvious sense.

Each associative algebra A becomes a topological algebra w.r.t. the finest lo-
cally convex topology. The Arens-Michael envelope, Â, of the resulting topological
algebra will be referred to as the Arens-Michael envelope of A. That is, Â is the
completion of A w.r.t. the family of all submultiplicative seminorms. Thus a neigh-
borhood base at 0 for the topology on A inherited from Â consists of all absorbing,
idempotent, absolutely convex subsets.

Here is a basic example: the Arens-Michael envelope of the polynomial algebra
C[t1, . . . , tn] is topologically isomorphic to the algebra O(Cn) of entire functions
endowed with the compact-open topology [15]. For other examples, see [15, 16, 5,
11].

Let g be a finite-dimensional complex Lie algebra. We may define the Arens-
Michael enveloping algebra of g as a pair (Û(g), ιg) consisting of an Arens-Michael
algebra Û(g) and a Lie algebra homomorphism ιg : g → Û(g) such that for each
Arens-Michael algebra B and for each Lie algebra homomorphism ϕ : g → B there
exists a unique ⊗̂-algebra homomorphism ϕ̂ : Û(g) → B such that ϕ̂ιg = ϕ. Clearly,
Û(g) is nothing but the Arens-Michael envelope of U(g), the universal enveloping
algebra of g.

If H is a bialgebra (resp., a Hopf algebra), then it is easy to show that the
Arens-Michael envelope Ĥ is a ⊗̂-bialgebra (resp., a Hopf ⊗̂-algebra) in a natural
way (for details, see [11]).

Let A be a ⊗̂-algebra. A left A-⊗̂-module is a complete Hausdorff locally convex
space X together with the structure of a left unital A-module such that the map
A × X → X, (a, x) �→ a · x is jointly continuous. As above, this means precisely

1Here we follow the convention that the completion of a non-Hausdorff locally convex space E

is defined to be the completion of the corresponding Hausdorff space E/{0}.
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that X is a left A-module in (LCS, ⊗̂). If X and Y are left A-⊗̂-modules, then the
vector space of all (continuous) A-module morphisms from X to Y is denoted by
Ah(X, Y ). Left A-⊗̂-modules and their (continuous) morphisms form a category
denoted by A-mod. Right A-⊗̂-modules, A-⊗̂-bimodules, and their morphisms
are defined similarly. The corresponding categories are denoted by mod-A and
A-mod-A, respectively.

If X is a right A-⊗̂-module and Y is a left A-⊗̂-module, then their A-module
tensor product X ⊗̂A Y is defined to be the completion of the quotient (X ⊗̂Y )/N ,
where N ⊂ X ⊗̂Y is the closed linear span of all elements of the form x·a⊗y−x⊗a·y
(x ∈ X, y ∈ Y , a ∈ A)2. As in pure algebra, the A-module tensor product can be
characterized by a certain universal property (see [4] for details).

A morphism σ : X → Y of left A-⊗̂-modules is said to be an admissible epimor-
phism if there exists a linear continuous map τ : Y → X such that στ = 1Y , i.e.,
if σ is a retraction when considered in the category of topological vector spaces. A
chain complex X• = (Xn, dn) of left A-⊗̂-modules is called admissible if it splits as
a complex of topological vector spaces. Equivalently, X• is admissible if each dn is
an admissible epimorphism of Xn+1 onto Ker dn−1 ⊂ Xn.

An A-module P ∈ A-mod is called projective if for each admissible epimorphism
X → Y in A-mod the induced map Ah(P, X) → Ah(P, Y ) is surjective. Given a left
A-⊗̂-module X, a projective resolution of X is a chain complex P• = (Pn, dn)n≥0

consisting of projective left A-⊗̂-modules Pn together with a morphism ε : P0 → X
such that the augmented sequence

0 ←− X
ε←− P0

d0←− · · · ←− Pn
dn←− Pn+1 ←− · · ·

is an admissible complex. The category A-mod has enough projectives, i.e., each
A-⊗̂-module has a projective resolution [4]. Therefore one can define the derived
functors Ext and Tor following the general patterns of relative homological algebra.
For details, see [4].

Similar definitions apply to right A-⊗̂-modules and to A-⊗̂-bimodules. A pro-
jective resolution of A considered as a ⊗̂-bimodule over itself is called a projective
bimodule resolution of A.

Let A and B be ⊗̂-algebras and θ : A → B a continuous homomorphism. Fol-
lowing Taylor [16], we say that θ is a localization if the following conditions are
satisfied:

(i) There exists a projective bimodule resolution P• → A → 0 of A such that
the complex

B ⊗̂
A

P• ⊗̂
A

B → B ⊗̂
A

A ⊗̂
A

B ∼= B ⊗̂
A

B → 0

is admissible.
(ii) The map B ⊗̂A B → B, b1 ⊗ b2 �→ b1b2 is a topological isomorphism.

In this situation, we say (following Neeman and Ranicki [10]) that B is stably flat
over A.

The following observation is due to Taylor [16].

2To avoid confusion, we note that this definition of X ⊗̂A Y (due to Rieffel [12] and Helemskii

[4]) is different from that given by Kiehl and Verdier [6] and Taylor [15]. More precisely, X ⊗̂A Y
is the completion of the Kiehl-Verdier-Taylor tensor product.
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Proposition 1.4. Let A → B be a localization. Then for each M ∈ mod-B and
each N ∈ B-mod there are natural isomorphisms

TorA
n (M, N) ∼= TorB

n (M, N) (n ≥ 0).

For later reference, let us recall a standard notation from the theory of topological
vector spaces. Let E and F be locally convex spaces. For each 0-neighborhood
U ⊂ E and each 0-neighborhood V ⊂ F let Γ(U ⊗V ) denote the absolutely convex
hull of the set

U ⊗V = {u ⊗ v : u ∈ U, v ∈ V } ⊂ E ⊗F.

Then all sets of the form Γ(U ⊗V ) form a base of 0-neighborhoods for the projective
tensor product topology on E ⊗F .

2. Algebraic and analytic smash products

Let H be a bialgebra. Recall that an H-module algebra is an algebra A endowed
with the structure of a left H-module such that the product A⊗A → A and the
unit map C → A are H-module morphisms. For example, if g is a Lie algebra acting
on A by derivations, then the action g × A → A extends to a map U(g) × A → A
making A into a U(g)-module algebra. Similarly, if G is a group acting on A
by automorphisms, then A becomes a CG-module algebra, where CG denotes the
group algebra of G.

Given an H-module algebra A, the smash product algebra A #H is defined as
follows (see, e.g., [14]). As a vector space, A #H is equal to A⊗H. To define
multiplication, denote by µH,A : H ⊗A → A the action of H on A, and define
τ : H ⊗A → A⊗H as the composition

(1) H ⊗A
∆H⊗1A−−−−−→ H ⊗H ⊗A

1H⊗cH,A−−−−−−→ H ⊗A⊗H
µH,A⊗1H−−−−−−→ A⊗H

(here cH,A denotes the flip H ⊗A → A⊗H). Then the map

(2) (A⊗H)⊗(A⊗H) 1A⊗τ⊗1H−−−−−−−→ A⊗A⊗H ⊗H
µA⊗µH−−−−−→ A⊗H

is an associative multiplication on A⊗H. The resulting algebra is denoted by
A #H and is called the smash product of A with H. For later reference, note that
the maps i1 : A → A #H, i1(a) = a ⊗ 1 and i2 : H → A #H, i2(h) = 1 ⊗ h are
algebra homomorphisms.

Similar definitions apply in the ⊗̂-algebra case. Namely, if H is a ⊗̂-bialgebra,
then an H-⊗̂-module algebra is a ⊗̂-algebra A together with the structure of a left
H-⊗̂-module such that the product A ⊗̂A → A and the unit map C → A are H-
module morphisms. We define the analytic smash product A #̂ H to be A ⊗̂H as a
locally convex space. By replacing ⊗ by ⊗̂ in (1) and (2), we obtain a multiplication
on A #̂H making it into a ⊗̂-algebra.

Example 2.1. Let A be a Banach algebra, and let G be a discrete group acting
on A by isometric automorphisms. Then A #̂ �1(G) is isomorphic to the covariance
algebra �1A(G) introduced by Doplicher, Kastler, and Robinson [2] in a more general
setting of locally compact groups.

For numerous related constructions and references, see [13].

Let E be a vector space, and let T be a set of linear operators on E.
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Definition 2.1. We say that a seminorm ‖ · ‖ on E is T -stable if for each T ∈ T
there exists C > 0 such that ‖Tx‖ ≤ C‖x‖ for each x ∈ E. A subset U ⊂ E is said
to be T -stable if for each T ∈ T there exists C > 0 such that T (U) ⊂ CU .

Clearly, a seminorm ‖·‖ is T -stable if and only if the unit ball {x ∈ E : ‖x‖ ≤ 1}
is T -stable.

If E is a left module over an associative algebra B, then we say that a seminorm
‖·‖ on E (resp. a subset U ⊂ E) is B-stable if it is stable w.r.t. the set of operators
{x �→ b · x : b ∈ B}. Similar definitions apply in the case where E is a left module
over a Lie algebra g or a left module over a group G. Note that if a subset M ⊂ B
generates B as an algebra, then a seminorm ‖ · ‖ on E is B-stable if and only if
it is M -stable. In particular, a seminorm on a g-module (resp., on a G-module) is
U(g)-stable (resp., CG-stable) if and only if it is g-stable (resp., G-stable).

Definition 2.2. Let H be a bialgebra and A an H-module algebra. We define
the H-completion Ã to be the completion of A w.r.t. the family of all H-stable,
submultiplicative seminorms.

It is immediate from the definition that Ã is an Arens-Michael algebra.

Proposition 2.1. Let H be a bialgebra and A an H-module algebra. Then the
action of H on A uniquely extends to an action of Ĥ on Ã, so that Ã becomes
an Ĥ-⊗̂-module algebra. Moreover, the smash product Ã #̂ Ĥ is an Arens-Michael
algebra.

Proof. Let us endow H and A with the topologies inherited from Ĥ and Ã, re-
spectively. In order to prove the first assertion, it suffices to show that the action
H × A → A is jointly continuous. Let ‖ · ‖ be an H-stable, submultiplicative
seminorm on A. For each h ∈ H, set ‖h‖′ = sup{‖h · a‖ : ‖a‖ ≤ 1}. Since ‖ · ‖
is H-stable, it follows that ‖ · ‖′ is a well-defined seminorm on H. We obviously
have ‖h1h2‖′ ≤ ‖h1‖′‖h2‖′ for all h1, h2 ∈ H, and ‖h · a‖ ≤ ‖h‖′‖a‖ for each
h ∈ H, a ∈ A. Hence the action H × A → A is jointly continuous, so it uniquely
extends to a jointly continuous bilinear map Ĥ × Ã → Ã. Since the canonical
image of H (resp., A) is dense in Ĥ (resp., in Ã), it follows that Ã becomes an
Ĥ-⊗̂-module algebra.

To prove that Ã #̂ Ĥ is an Arens-Michael algebra, it suffices to show that the
algebraic smash product A #H is locally m-convex w.r.t. the projective tensor
product topology. Recall that a typical 0-neighborhood in A #H has the form
Γ(U ⊗V ), where U ⊂ A and V ⊂ H are absorbing, absolutely convex, idempotent
subsets, and U is H-stable. Given such U and V , define

W = {w ∈ H : w · U ⊂ U}.

It is easy to see that W is absorbing, absolutely convex, and idempotent, so it is
a 0-neighborhood in H. Set V ′ = ∆−1(Γ(W ⊗V )), where ∆: H → H ⊗H is the
comultiplication on H. We claim that

(3) Γ(U ⊗V ′) Γ(U ⊗V ) ⊂ Γ(U ⊗V ).
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Indeed, take u1, u2 ∈ U, v1 ∈ V ′, and v2 ∈ V . Then ∆(v1) ∈ Γ(W ⊗V ). Since
W · U ⊂ U , i.e., µH,A

(
Γ(W ⊗U)

)
⊂ U , it follows that

τ (v1 ⊗ u2) ∈ (µH,A ⊗ 1H)(1H ⊗ cH,A)
(
Γ(W ⊗V ⊗U)

)
= (µH,A ⊗ 1H)

(
Γ(W ⊗U ⊗V )

)
⊂ Γ(U ⊗V ).

Therefore,

(u1 ⊗ v1)(u2 ⊗ v2) = (µA ⊗ µH)(u1 ⊗ τ (v1 ⊗ u2) ⊗ v2)

∈ (µA ⊗ µH)(U ⊗Γ(U ⊗V )⊗V ) ⊂ Γ(U ⊗V ).

This proves (3). Together with Corollary 1.3, this implies that A #H is locally
m-convex, so that Ã #̂ Ĥ is an Arens-Michael algebra. �

Theorem 2.2. Let H be a cocommutative Hopf algebra and A an H-module algebra.
Then the canonical map A #H → Ã #̂ Ĥ extends to a ⊗̂-algebra isomorphism

(A #H)̂ ∼= Ã #̂ Ĥ.

Proof. Let ϕ : A #H → B be a homomorphism to an Arens-Michael algebra B. As
before, we endow A and H with the topologies inherited from Ã and Ĥ, respectively.
Since the canonical image of A #H is dense in Ã #̂ Ĥ , it suffices to show that ϕ is
continuous w.r.t. the projective tensor product topology on A #H.

Define homomorphisms ϕ1 : A → B and ϕ2 : H → B by ϕ1(a) = ϕ(a ⊗ 1) and
ϕ2(h) = ϕ(1 ⊗ h). Then

ϕ(a ⊗ h) = ϕ
(
(a ⊗ 1)(1 ⊗ h)

)
= ϕ1(a)ϕ2(h)

for each a ∈ A, h ∈ H. Therefore we need only prove that ϕ1 and ϕ2 are continuous.
Let ‖ · ‖ be a continuous submultiplicative seminorm on B. Then the seminorms

a �→ ‖a‖′ = ‖ϕ1(a)‖ (a ∈ A) and h �→ ‖h‖′′ = ‖ϕ2(h)‖ (h ∈ H) are submultiplica-
tive. This implies, in particular, that ϕ2 is continuous. To prove the continuity of
ϕ1, we have to show that ‖ · ‖′ is H-stable.

Let h ∈ H be a primitive element. Then for each a ∈ A we have

(1 ⊗ h)(a ⊗ 1) = τ (h ⊗ a) = (µH,A ⊗ 1H)(1H ⊗ cH,A)
(
(h ⊗ 1 + 1 ⊗ h) ⊗ a

)
= (µH,A ⊗ 1H)(h ⊗ a ⊗ 1 + 1 ⊗ a ⊗ h) = h · a ⊗ 1 + a ⊗ h.

Therefore,

‖h · a‖′ = ‖ϕ(h · a ⊗ 1)‖
= ‖ϕ

(
(1 ⊗ h)(a ⊗ 1) − a ⊗ h

)
‖

≤ ‖ϕ(1 ⊗ h)‖‖ϕ(a ⊗ 1)‖ + ‖ϕ(a ⊗ h)‖
= ‖ϕ2(h)‖‖ϕ1(a)‖ + ‖ϕ1(a)ϕ2(h)‖ ≤ 2C‖ϕ1(a)‖ = 2C‖a‖′,(4)

where C = ‖ϕ2(h)‖.
Now let g ∈ H be a group-like element. Then for each a ∈ A we have

(1 ⊗ g)(a ⊗ 1) = τ (g ⊗ a) = (µH,A ⊗ 1H)(1H ⊗ cH,A)(g ⊗ g ⊗ a)

= (µH,A ⊗ 1H)(g ⊗ a ⊗ g) = g · a ⊗ g.
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Therefore,

‖g · a‖′ = ‖ϕ(g · a ⊗ 1)‖ = ‖ϕ
(
(1 ⊗ g)(a ⊗ 1)(1 ⊗ g−1)

)
‖

≤ ‖ϕ(1 ⊗ g)‖‖ϕ(a ⊗ 1)‖‖ϕ(1 ⊗ g−1)‖
= ‖ϕ2(g)‖‖ϕ1(a)‖‖ϕ2(g−1)‖ = C‖a‖′,(5)

where C = ‖ϕ2(g)‖‖ϕ2(g−1)‖.
Since H is cocommutative, it is generated by primitive and group-like elements

[14, 13.1]. Therefore it follows from (4) and (5) that ‖ · ‖′ is H-stable. Hence ϕ1 is
continuous. In view of the above remarks, ϕ is also continuous, and so it uniquely
extends to a ⊗̂-algebra homomorphism Ã #̂ Ĥ → B. This completes the proof. �

Corollary 2.3. Let g be a Lie algebra acting on an algebra A by derivations. Then
(A #U(g))̂ ∼= Ã #̂ Û(g) as ⊗̂-algebras.

Corollary 2.4. Let G be a group acting on an algebra A by automorphisms. Then
(A # CG)̂ ∼= Ã #̂ ĈG as ⊗̂-algebras.

3. The main result

Let H be a ⊗̂-bialgebra with counit ε : H → C, and let A be an H-⊗̂-module
algebra.

Lemma 3.1. Define τ : H ⊗A → A⊗H by (1). Then (1A ⊗ ε)τ = µH,A.

Proof. This is a direct computation:

(1A ⊗ ε)τ = (1A ⊗ ε)(µH,A ⊗ 1H)(1H ⊗ cH,A)(∆ ⊗ 1A)

= µH,A(1H ⊗ 1A ⊗ ε)(1H ⊗ cH,A)(∆ ⊗ 1A)

= µH,A(1H ⊗ ε ⊗ 1A)(∆ ⊗ 1A) = µH,A.

�

Lemma 3.2. There is a unique left A #̂H-⊗̂-module structure on A such that

(6) (a ⊗ 1) · b = ab, (1 ⊗ h) · b = h · b

for each a, b ∈ A, h ∈ H.

Proof. Consider the map 1A⊗ε : A #̂ H → A. Let us prove that Ker(1A⊗ε) is a left
ideal of A #̂H. In view of the direct sum decomposition A ⊗̂H = (A ⊗̂Ker ε) ⊕
(A ⊗̂C1), is suffices to show that (a1 ⊗ h1)(a2 ⊗ h2) ∈ Ker(1A ⊗ ε) whenever
h2 ∈ Ker ε. We have

(a1 ⊗ h1)(a2 ⊗ h2) = (µA ⊗ µH)
(
a1 ⊗ τ (h1 ⊗ a2) ⊗ h2

)
∈ (µA ⊗ µH)(A ⊗̂A ⊗̂H ⊗̂Ch2) ⊂ Ker(1A ⊗ ε).

Therefore Ker(1A ⊗ ε) is a left ideal of A #̂H, so that we can make A into a left
A #̂H-⊗̂-module via the identification A = (A #̂H)/ Ker(1A ⊗ ε).

Now take a, b ∈ A and h ∈ H. We have

(a ⊗ 1) · b = (1A ⊗ ε)
(
(a ⊗ 1)(b ⊗ 1)

)
= (1A ⊗ ε)(ab ⊗ 1) = ab.
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On the other hand, Lemma 3.1 implies that

(1 ⊗ h) · b = (1A ⊗ ε)
(
(1 ⊗ h)(b ⊗ 1)

)
= (1A ⊗ ε)

(
τ (h ⊗ b)

)
= h · b.

Hence conditions (6) are satisfied.
The uniqueness readily follows from the identity a ⊗ h = (a ⊗ 1)(1 ⊗ h). �

From now on, we endow A with the left A #̂H-⊗̂-module structure defined in
the previous lemma.

Lemma 3.3. Suppose that C is a projective left H-⊗̂-module. Then A is a projec-
tive left A #̂H-module.

Proof. Since C is projective, there exists an H-module morphism λ : C → H such
that ελ = 1C. Then the element x0 = λ(1) satisfies ε(x0) = 1 and hx0 = ε(h)x0 for
each h ∈ H. Consider the map

ρ : A → A #̂H, ρ(a) = a ⊗ x0.

We claim that ρ is a left A #̂H-module morphism. To prove the claim, it is con-
venient to consider A #̂ H as a left A-⊗̂-module and as a left H-⊗̂-module via
the embeddings i1 : A → A #̂H and i2 : H → A #̂H given by a �→ a ⊗ 1 and
h �→ 1 ⊗ h, respectively. Thus we have to show that ρ is an A-module morphism
and an H-module morphism.

For each a, b ∈ A we have

ρ(ab) = ab ⊗ x0 = (a ⊗ 1)(b ⊗ x0) = a · ρ(b),

so that ρ is an A-module morphism. Further, the relation hx0 = ε(h)x0 implies
that (1A ⊗ µH)(u ⊗ x0) = (1A ⊗ ε)(u) ⊗ x0 for each u ∈ A ⊗̂H. Together with
Lemma 3.1, this gives

h · ρ(a) = (1 ⊗ h)(a ⊗ x0) = (1A ⊗ µH)
(
τ (h ⊗ a) ⊗ x0

)
= (1A ⊗ ε)

(
τ (h ⊗ a)

)
⊗ x0 = h · a ⊗ x0 = ρ(h · a)

for each a ∈ A, h ∈ H. Therefore ρ is an H-module morphism and hence an
A #̂H-module morphism. Finally, since ε(x0) = 1, we see that (1A ⊗ ε)ρ = 1A.
Thus A is a retract of A #̂ H in A #̂H-mod, so it is projective. �

Now let g be a finite-dimensional complex Lie algebra. Denote by r the radical of
g, and consider the Levi decomposition g = r⊕ h. The action of h on r by commu-
tators extends to an action of h on U(r) by derivations, and there exists a canonical
isomorphism U(g) ∼= U(r) #U(h) (see, e.g., [8, 1.7.11]). Using Corollary 2.3, we see
that

Û(g) ∼=
(
U(r) #U(h)

)̂∼= Ũ(r) #̂ Û(h).

Lemma 3.4. Ũ(r) is a projective Û(g)-⊗̂-module. As a corollary,

TorÛ(g)
k

(
C, Ũ(r)

)
= 0 for each k > 0.

Proof. Since h is semisimple, the Arens-Michael envelope Û(h) is isomorphic to
a direct product of full matrix algebras [16, Corollary 7.6]. Hence each Û(h)-⊗̂-
module is projective [15] (see also [4, 5.28]). Now it remains to apply Lemma 3.3.

�
Lemma 3.5. Suppose that k = dim h > 0. Then TorU(g)

k

(
C, Ũ(r)

)
�= 0.
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Proof. Set A = Ũ(r), and recall that the groups Hp(g, A) = TorU(g)
p (C, A) can be

computed as the homology groups of the standard complex C·(g, A):

0 ← A
d←− g⊗A

d←−
∧2

g⊗A
d←− · · ·

∧p−1
g⊗A

d←−
∧p

g⊗A
d←− · · · .

The differential d is given by

(7) d(X1 ∧ · · · ∧ Xp ⊗ a) =
p∑

i=1

(−1)i−1X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xp ⊗ Xi · a

+
∑

1≤i<j≤p

(−1)i+j [Xi, Xj ] ∧ X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧ Xp ⊗ a.

(Here, as usual, the notation X̂i indicates that Xi is omitted.) We also consider C

as a trivial h-module, and denote the differential in the standard complex C·(h, C)
by d′.

In order to prove that Hk(g, A) �= 0, it suffices to find a k-cycle z ∈ Ck(g, A)
which is not a boundary. Note that

∧k
g =

∧k
h ⊕ E, where

E =
k⊕

i=1

∧i
r⊗

∧k−i
h.

Fix η ∈
∧k

h, η �= 0, and set z = η⊗1 ∈ Ck(g, A). Since h acts on A by derivations,
we have X ·1 = 0 for each X ∈ h. Now it follows from (7) that d(η⊗1) = (d′η)⊗1,
i.e., only the second group of summands in (7) survives. On the other hand, since
h is semisimple, we have Hk(h, C) �= 0, i.e., the differential d′ :

∧k
h →

∧k−1
h is

zero [7]. Therefore d(η ⊗ 1) = (d′η) ⊗ 1 = 0.
In order to prove that η ⊗ 1 is not a boundary, note that A has a canonical

augmentation εA : A → C defined by εA = εi1, where ε is the counit of Û(g), and
i1 : A → Û(g) = A #̂ Û(h), a �→ a ⊗ 1 is the canonical embedding. Clearly, the
restriction of εA to U(r) is precisely the counit of U(r). Now take ξ ∈

(∧k
g
)∗ such

that ξ(η) = 1 and ξ|E = 0. We then have (ξ ⊗ εA)(η ⊗ 1) = 1. Let us show that
ξ ⊗ εA vanishes on Im d. To this end, consider the decomposition

(8)
∧k+1

g⊗A =
(
r⊗

∧k
h⊗A

)
⊕ (F ⊗A),

where

F =
k+1⊕
i=2

∧i
r⊗

∧k+1−i
h.

It follows from (7) that d(F ⊗A) ⊂ E ⊗A. By the same formula, for each X ∈ r

and each a ∈ A we have d(X ⊗ η ⊗ a) = η ⊗ Xa + w for some w ∈ E ⊗A. Since
ξ|E = 0, we see that ξ ⊗ εA vanishes on E ⊗A. On the other hand, we have
εA(Xa) = εU(r)(X)εA(a) = 0, and so (ξ⊗εA)(η⊗Xa) = 0. Together with (8), this
implies that ξ ⊗ εA vanishes on Im d, and so η ⊗ 1 /∈ Im d. The rest is clear. �

Combining Lemma 3.4, Lemma 3.5, and Proposition 1.4, we obtain the following.

Theorem 3.6. Let g be a finite-dimensional Lie algebra such that Û(g) is stably
flat over U(g). Then g is solvable.
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(1950), 65–127. MR0036511 (12:120g)

[8] McConnell, J. C.; Robson, J. C. Noncommutative Noetherian Rings. John Wiley & Sons,

Ltd., Chichester, 1987. MR0934572 (89j:16023)
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