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STABLY FLAT COMPLETIONS OF UNIVERSAL

ENVELOPING ALGEBRAS

A. YU. PIRKOVSKII

Abstract. We study localizations (in the sense of J. L. Taylor [70]) of the
universal enveloping algebra, U(g), of a complex Lie algebra g. Specifically,
let θ : U(g)→ H be a homomorphism to some well-behaved [1] topological
Hopf algebra H . We formulate some conditions on the dual algebra, H ′,
that are sufficient for H to be stably flat [52] over U(g) (i.e., for θ to be a
localization). As an application, we prove that the Arens-Michael envelope,

Û(g), of U(g) is stably flat over U(g) provided g admits a positive grading.
We also show that Goodman’s weighted completions [19] of U(g) are stably
flat over U(g) for each nilpotent Lie algebra g, and that Rashevskii’s hy-
perenveloping algebra [63] is stably flat over U(g) for arbitrary g. Finally,
Litvinov’s algebra A (G) of analytic functionals [38, 39, 41] on the corre-
sponding connected, simply connected complex Lie group G is shown to be
stably flat over U(g) precisely when g is solvable.

One of the most important problems of modern analysis is to construct a
functional calculus of several noncommuting operators. This problem goes
back to von Neumann [53] and has its origin in mathematical foundations of
quantum mechanics. Functions of noncommuting variables also appear natu-
rally in the theory of partial differential and pseudodifferential operators and
in some problems of algebra, geometry, and mathematical physics; see, e.g.,
[51] and references therein.

A possible way to define the value of a function f at an n-tuple (a1, . . . , an)
of linear operators is provided by the so-called ordered representation method
[51] that was introduced by Feynman and developed by Maslov [48] (see also
related papers [40, 41] by Litvinov). An essential difference of this method with
the single-variable case is that the assignment f 7→ f(a1, . . . , an) is no longer an
algebra homomorphism. Another approach to the functional calculus problem
is based on the philosophy of noncommutative geometry: we may change the
concept of function itself and replace the commutative algebra of functions by
some noncommutative algebra.

In a coordinate-free language, a tuple of noncommuting linear operators on
a Banach space E is a representation of some finitely generated associative
algebra, A, that can be viewed as an “algebra of polynomial functions on a
noncommutative space”. Therefore a noncommutative analogue of the classical
(i.e., single-variable) functional calculus problem can be formulated as follows:
Is is possible to extend the given representation A → B(E) to some larger
algebraB containing A? Depending on their properties, such algebras B can be
considered as noncommutative versions of algebras of holomorphic functions,
smooth functions, continuous functions, Borel functions, etc. Note that this
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2 A. YU. PIRKOVSKII

problem also makes sense when A is not a subalgebra of B; it is sufficient that
a homomorphism A→ B be fixed.

The notion of spectrum plays a key role in the functional calculus problem.
To give a simple example, recall that a bounded operator T on a Banach space
E has a holomorphic functional calculus on an open set U ⊂ C (i.e., the ho-
momorphism C[t] → B(E), t 7→ T extends to a continuous homomorphism
from the algebra O(U) of holomorphic functions to B(E)) if and only if U
contains the spectrum of T . It is therefore natural to look for a reasonable
analogue of the notion of spectrum for several (possibly noncommuting) oper-
ators. A general approach to this problem was suggested by J. L. Taylor [70].
If π : A→ B(E) is a representation of an algebra A on a Banach space E, then
the spectrum σ(π,A) is a part of a suitably chosen set (a “structure space”)
ΩA of (isomorphism classes of) locally convex A-modules, and F ∈ ΩA does
not belong to σ(π,A) if and only if TorA

n (F,E) = 0 for all n ≥ 0. (Here TorA
n

denotes the nth derived functor of the projective tensor product; see [25, 69]
and Section 1 below). For example, in the case A = C[t] one can take ΩA to be
the set of all 1-dimensional A-modules. This set is naturally parametrized by
points of the complex plane, and the Taylor spectrum, σ(π,A), coincides with
the usual spectrum, σ(T ), of the operator T = π(t). In the same manner, if
A = C[t1, . . . , tn], then σ(π,A) is a subset of Cn. In this case, representations
of A are in bijective correspondence with n-tuples of commuting operators,
and σ(π,A) is what is now called the Taylor joint spectrum of the n-tuple
(T1, . . . , Tn), Ti = π(ti). In his famous papers [67]–[70], Taylor established a
number of remarkable properties of the joint spectrum and constructed a mul-
tivariable version of an analytic functional calculus. For a modern treatment
of this theory, see [14].

The definition of σ(π,A) suggested by Taylor depends not only on the image
of the representation π : A → B(E) (i.e., not only on the given n-tuple of
operators), but also on the algebra A. Therefore, if π can be extended to
a representation ρ of a larger algebra B ⊃ A, then one cannot expect that
σ(π,A) = σ(ρ,B) in general. On the other hand, the equality still holds
in many important cases (e.g., in the above-mentioned case A = C[t], B =
O(U)). Therefore it seems natural to consider only those algebrasB ⊃ A which
have the property that if some representation π of A extends to a representation
ρ of B, then σ(π,A) = σ(ρ,B). More generally, if A is not a subalgebra of
B, but a homomorphism θ : A→ B is given, then it is natural to require that
σ(π,A) = θ∗(σ(ρ,B)) where θ∗ : ΩB → ΩA denotes the pullback along θ.

Taylor [70] introduced an appropriate class of algebra homomorphisms satis-
fying the above requirement and called them localizations. Roughly speaking,
a topological algebra homomorphism A → B is a localization if it identifies
the category of topological B-modules with a full subcategory of the category
of topological A-modules, and if the homological relations between B-modules
do not change when the modules are considered as A-modules. Since Taylor’s
objective was to construct a holomorphic functional calculus of several com-
muting operators, he considered mainly the case where A = C[t1, . . . , tn], the
polynomial algebra endowed with the finest locally convex topology. Taylor
has proved that the canonical homomorphism of C[t1, . . . , tn] to O(U), the
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Fréchet algebra of holomorphic functions on an open set U ⊂ Cn, is a local-
ization provided U is a domain of holomorphy. He has also shown that the
canonical homomorphisms of C[t1, . . . , tn] to the algebra C∞(V ) of smooth
functions (where V ⊂ Rn is an open set) and to the algebra E ′(Rn) of com-
pactly supported distributions are localizations.

Thus the polynomial algebra C[t1, . . . , tn] has a rich supply of localizations.
Motivated by this example, Taylor suggested a general scheme for constructing
a noncommutative functional calculus, a scheme where the notion of localiza-
tion plays a fundamental role. The first step of this scheme is as follows. Sup-
pose A is a fixed finitely generated algebra (the “base algebra”) endowed with
the finest locally convex topology. The problem is to construct a sufficiently
large family of localizations of A with values in some topological algebras hav-
ing a richer structure. Having constructed such a family, one can hope to
develop a reasonable spectral theory for representations of A.

As was said above, Taylor defined localizations in the topological algebra
setting. In pure algebra, a notion analogous to that of localization was intro-
duced by W. Geigle and H. Lenzing [17] under the name “homological epimor-
phism”. This notion turned out to be useful in the representation theory of
finite-dimensional algebras (see [9]). Recently, A. Neeman and A. Ranicki [52]
applied homological epimorphisms to some problems of algebraic K-theory.
They use a different terminology; namely, in the case where θ : A → B is a
homological epimorphism, Neeman and Ranicki say that B is stably flat over
A, while the word “localization” is used by them in a different (rather ring-
theoretical than homological) sense. We adopt both the languages here and
use the phrases “θ : A → B is a localization” (in Taylor’s sense) and “B is
stably flat over A” as synonyms. The reason is that the word “localization”
is used in modern mathematics in many different senses, and the terminol-
ogy of [70] is not the most common one. On the other hand, it is convenient
to use Taylor’s terminology when it is necessary to emphasize the role of the
homomorphism θ.

Taylor [70] has pointed out that a possible candidate for an algebra B which
often seems to be stably flat over A is its Arens-Michael envelope (the com-
pleted l.m.c. envelope, in the terminology of [70]), which is defined as the
completion of A w.r.t. the family of all submultiplicative seminorms on A.

From the viewpoint of operator theory, an important property of Â (which

uniquely characterizes Â within the class of Arens-Michael algebras) is that

A and Â have the same set of continuous Banach space representations. If
A = C[t1, . . . , tn], then Â is isomorphic to the algebra O(Cn) of entire func-
tions (and hence is stably flat over A). Thus the Arens-Michael envelope of
a noncommutative finitely generated algebra can be viewed as an “algebra of
noncommutative entire functions”.

Apart from the polynomial algebra, Taylor [70, 71] has also studied local-
izations of the free algebra Fn on n generators. In particular, he proved that
the canonical homomorphism of Fn to its Arens-Michael envelope F̂n is a lo-

calization (i.e., F̂n is stably flat over Fn). Some results on localizations of Fn

were also obtained by Luminet [44].
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Another important class of noncommutative algebras considered by Taylor is
that of universal enveloping algebras. Let g be a complex Lie algebra and U(g)
its universal enveloping algebra. Taylor [70] proved that if g is semisimple, then

the Arens-Michael envelope Û(g) of U(g) fails to be stably flat over U(g), in
contrast to the abelian case. On the other hand, Dosiev [12] has recently proved

that Û(g) is stably flat over U(g) provided g is metabelian (i.e., [g, [g, g]] = 0).

A natural conjecture is that Û(g) is stably flat over U(g) for each nilpotent
Lie algebra g, but this question is still open.

In this paper we consider some “standard” locally convex algebras H that
contain U(g) as a dense subalgebra, and study the question of whether or not
they are stably flat over U(g). Specifically, we concentrate on the following
algebras:

• H = Û(g), the Arens-Michael envelope of U(g);
• H = U(g)M , Goodman’s weighted completion of U(g) [18, 19];
• H = F(g), Rashevskii’s hyperenveloping algebra [63];
• H = A (G), Litvinov’s algebra of analytic functionals on the corre-

sponding connected, simply connected complex Lie groupG [38, 39, 41].

We generalize the above-mentioned result of Dosiev and show that Û(g) is
stably flat over U(g) provided g admits a positive grading. The weighted
completion U(g)M is shown to be stably flat over U(g) for each nilpotent Lie
algebra g and each entire weight sequence M (for terminology, see [19] and
Section 7 below). We also prove that Rashevskii’s hyperenveloping algebra
F(g) is stably flat over U(g) for every Lie algebra g. Finally, A (G) turns out
to be stably flat over U(g) if and only if g is solvable.

A common feature of the above algebras H ⊃ U(g) is that they are well-
behaved topological Hopf algebras [1, 42]. This means that they are Hopf alge-
bras in the tensor category of complete locally convex spaces equipped with the
projective tensor product ⊗̂, and that their underlying locally convex spaces
are either nuclear Fréchet spaces or nuclear (DF)-spaces. The category of
well-behaved topological Hopf algebras has a number of remarkable properties
(see [1, 42]); in particular, it is anti-equivalent to itself via the strong duality
functor. To answer the question of whether or not a morphism U(g) → H in
this category is a localization, we propose a general method that applies to
all of the above-mentioned algebras H . This method is based on the following
observation. Let g be a Lie algebra, and let V·(g) = C·(g, U(g)) denote the
Koszul resolution of the trivial g-module C. The classical fact that the aug-
mented complex 0← C← V·(g) is exact is traditionally proved by introducing
an appropriate filtration on this complex and then using an induction or a
spectral sequence argument (see, e.g., [6], Chap. XIII, Theorem 7.1, or [23],
Chap. II, Lemme 2.2). However, if g a finite-dimensional Lie algebra over C,
it is possible to give another proof using the fact that the (topological) dual of
U(g) is isomorphic to the Fréchet algebra C[[z1, . . . , zn]] of formal power series.
The main point is that the complex dual to V·(g) turns out to be isomorphic
to the (formal) de Rham complex of C[[z1, . . . , zn]]. By the Poincaré lemma,
the latter complex (augmented by the unit map C→ C[[z1, . . . , zn]]) splits as a
complex of topological vector spaces. Taking the topological dual, we conclude
that 0← C← V·(g) is exact.
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The advantage of this proof is that it carries over to topological algebras
more general than U(g). This suggests the following approach to the above-
mentioned localization problem for U(g). Given a well-behaved topological
Hopf algebra H and a morphism θ : U(g) → H , we can view H as a right
g-module via θ. Using a version of the Cartan-Eilenberg “inverse process” (see
[6], Chap. X), we prove that θ is a localization if and only if the standard
complex C·(g, H) augmented by the counit map H → C splits as a complex of
topological vector spaces. Due to the reflexivity of the algebras involved, this
happens precisely when the dual complex 0→ C→ C ·(g, H ′) splits. Suppose
now that H is cocommutative; then the dual algebra, H ′, is commutative.
Under some additional conditions on H , the latter complex turns out to be
isomorphic to the de Rham complex of A = H ′. In this situation we say that
A is g-parallelizable. Thus the problem of whether or not θ is a localization
reduces to the question of whether or not the augmented de Rham complex
0 → C → Ω(A) splits. A sufficient condition for this to be true is that A
be contractible in the sense of Chen [7]. Therefore in order to prove that
θ : U(g)→ H is a localization it is sufficient to show that H ′ is g-parallelizable
and contractible.

It should be noted that the above method is inspired by the following result
due to Taylor [70]. Suppose that g is the complexification of the Lie algebra of
a real Lie group G. Then U(g) is canonically embedded into E ′(G), the algebra
of compactly supported distributions on G. Taylor proved that this embedding
is a localization if and only if the de Rham cohomology of G vanishes. The
method described above is in fact a generalization of Taylor’s proof.

This paper is organized as follows. In Section 1 we recall some basic facts
from topological homology (i.e., the homology theory for locally convex alge-
bras [25]). We also discuss “continuous versions” of some concepts from pure
algebra such as DG algebras, Kähler differentials and de Rham cohomology.
Section 2 is devoted to a version of the Cartan-Eilenberg inverse process for
topological Hopf algebras. As a byproduct, we describe the Hochschild coho-
mology groups of the algebras ℓ1(G) (where G is a discrete group) and E ′(G)
(where G is a real Lie group) in terms of the bounded and continuous coho-
mology groups of G. As another application, we show that a Banach Hopf
algebra with invertible antipode is amenable precisely when it is left amenable
in the sense of Lau [36]. In Section 3 we discuss the notion of localization
for topological algebras and introduce related concepts of weak localization
and strong transversality. The latter notion is a somewhat stronger version of
transversality condition for Fréchet modules that was introduced in [65] and
has proved to be extremely useful in complex analytic geometry and operator
theory [31, 65, 14, 10]. Using results of the previous section, we show that
for Hopf ⊗̂-algebras with invertible antipode the notions of localization and
weak localization coincide. In Section 4 we recall some portions of Chen’s al-
gebraic homotopy theory [7] in the topological algebra framework, and apply
this theory to localizations of U(g) within the category of well-behaved cocom-
mutative Hopf ⊗̂-algebras. Given a morphism θ : U(g) → H in this category
such that Im θ is dense in H , we show that θ is a localization provided H ′ is
g-parallelizable and contractible. In Section 5 we concentrate on nilpotent Lie
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algebras and show that the dual of a well-behaved Hopf ⊗̂-algebra H contain-
ing U(g) is g-parallelizable provided H is contained in the formal power series
completion [U(g)] of U(g). In Section 6 we discuss some general properties of
Arens-Michael envelopes and describe the Arens-Michael envelopes of graded
algebras as certain vector-valued Köthe spaces. As a corollary, we show that
the dual of the Arens-Michael envelope of U(g) is g-parallelizable provided
g admits a positive grading. Next we introduce a notion of contractible Lie
algebra. By definition, a Lie algebra g is contractible if there is a smooth
path in the set of all endomorphisms of g connecting the zero endomorphism
and the identity endomorphism of g. We show that if g is contractible, then
Û ′(g), the dual of the Arens-Michael envelope of U(g), is contractible in the
sense of Chen. This result is then used to prove that the Arens-Michael en-
velope of U(g) is stably flat over U(g) for each positively graded g. As a
byproduct, we show that the injective homological dimension of each nonzero

Û(g)-⊗̂-module is equal to the dimension of g. In Sections 7 and 8 we prove
the above-mentioned results on the stable flatness of weighted completions of
U(g), hyperenveloping algebras, and algebras of analytic functionals. Finally,
in Section 9 we explain how the completions of U(g) considered above are
related to one another, and formulate some open problems.

Remark. A. Dosiev has kindly informed the author that he proved the stable

flatness of the Arens-Michael envelope Û(g) over U(g) under the condition
that g is a nilpotent Lie algebra with normal growth. Roughly speaking, g

has normal growth if for each embedding of g into a Banach algebra norms
of powers of elements from [g, g] decrease sufficiently rapidly. The class of Lie
algebras with normal growth contains all metabelian Lie algebras, but it is not
clear how this class is related to that of positively graded Lie algebras.

Acknowledgments. The author is grateful to A. Ya. Helemskii and A. Dosiev
for valuable discussions, and to G. L. Litvinov for helpful comments.

1. Preliminaries

We shall work over the complex numbers C. All associative algebras are
assumed to be unital.

1.1. Topological algebras and modules. In this subsection we recall some
basic notions from topological homology (homology theory for topological al-
gebras). For more details, see [25], [27], and [69].

We refer to [64] and [72] for general facts on topological vector spaces. Given
topological vector spaces E and F , we denote by L (E,F ) the space of all
linear continuous maps from E to F . We endow L (E,F ) with the topology
of uniform convergence on bounded subsets of E. Unless otherwise specified,
E ′ = L (E,C) denotes the strong dual of E. The completion of E is denoted
by E∼. If E and F are locally convex spaces (l.c.s.’s), then E ⊗̂F stands for
their completed projective tensor product.

By a topological algebra we mean a topological vector space A together
with the structure of associative algebra such that the multiplication map
A × A → A is separately continuous. A complete, Hausdorff, locally convex
topological algebra with jointly continuous multiplication is called a ⊗̂-algebra
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(see [69, 25]). If A is a ⊗̂-algebra, then the multiplication A×A→ A extends
to a linear continuous map from the projective tensor product A ⊗̂A to A. In
other words, a ⊗̂-algebra is just an algebra in the tensor category (LCS, ⊗̂) of
complete l.c.s.’s (cf. Section 2 below).

Recall that a seminorm ‖ · ‖ on an algebra A is called submultiplicative if
‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. A ⊗̂-algebra A is called an Arens-Michael alge-
bra (or a locally m-convex algebra) if its topology can be defined by a family of
submultiplicative seminorms (see [50, 26]). In particular, any Banach algebra
is an Arens-Michael algebra. By a Fréchet algebra we mean a metrizable (not
necessarily locally m-convex) ⊗̂-algebra.

Each associative C-algebra A becomes a topological algebra w.r.t. the finest
locally convex topology. We denote the resulting topological algebra by As. If
A has countable dimension as a vector space, then As is a ⊗̂-algebra [1]. In
particular, this condition is satisfied whenever A is finitely generated.

A left ⊗̂-module over a ⊗̂-algebra A (a left A-⊗̂-module for short) is a
complete Hausdorff locally convex space X together with the structure of left
unital A-module such that the map A × X → X, (a, x) 7→ a · x is jointly
continuous. As above, this means that X is a left A-module in (LCS, ⊗̂).
Given two left A-⊗̂-modules X and Y , an A-module morphism is a linear
continuous map ϕ : X → Y such that ϕ(a · x) = a · ϕ(x) for all a ∈ A, x ∈ X.
The vector space of all A-module morphisms from X to Y is denoted by

Ah(X, Y ).
Right A-⊗̂-modules, A-⊗̂-bimodules, and their morphisms are defined simi-

larly. As in pure algebra, A-⊗̂-bimodules can be regarded as either left or right
⊗̂-modules over the algebra Ae = A ⊗̂Aop, where Aop stands for the algebra
opposite to A. Given two right A-⊗̂-modules (respectively, A-⊗̂-bimodules)
X and Y , we use the notation hA(X, Y ) (respectively, AhA(X, Y )) to denote
the corresponding space of morphisms. The resulting module categories are
denoted by A-mod, mod-A, and A-mod-A, respectively.

If θ : A→ B is a ⊗̂-algebra homomorphism (i.e., a unital continuous homo-
morphism), then each left (resp. right) B-⊗̂-module X can be considered as
a left (resp. right) A-⊗̂-module via θ. Sometimes we will denote the resulting
A-⊗̂-module by θX (resp. Xθ).

If A is a commutative ⊗̂-algebra, then an A-⊗̂-bimodule X is symmetric if
a · x = x · a for all a ∈ A, x ∈ X. As usual, we identify left modules, right
modules, and symmetric bimodules over a commutative algebra and call them
just “modules”.

Let A be a ⊗̂-algebra and M an A-⊗̂-bimodule. Recall that a linear con-
tinuous map D : A → M is a derivation if D(ab) = Da · b + a · Db for all
a, b ∈ A. Denote by Der(A,M) the set of all continuous derivations from A
to M . We also set DerA = Der(A,A). If A is commutative, we may speak
about derivations of A with coefficients in left A-⊗̂-modules by identifying left
modules with symmetric bimodules (see above).

If X is a right A-⊗̂-module and Y is a left A-⊗̂-module, then their A-
module tensor product X ⊗̂A Y is defined to be the completion of the quotient
(X ⊗̂Y )/N , where N ⊂ X ⊗̂Y is the closed linear span of all elements of the
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form x · a ⊗ y − x ⊗ a · y (x ∈ X, y ∈ Y , a ∈ A)1. As in pure algebra, the
A-module tensor product can be characterized by a certain universal property
(see [25] for details).

A morphism σ : X → Y of left A-⊗̂-modules is said to be an admissible epi-
morphism if there exists a linear continuous map τ : Y → X such that στ = 1Y ,
i.e., if σ is a retraction when considered in the category of topological vector
spaces. Similarly, a morphism κ : X → Y is an admissible monomorphism if it
is a coretraction in the category of topological vector spaces. Finally, a mor-
phism ϕ : X → Y is admissible if it possesses a factorization ϕ = κσ with κ an
admissible monomorphism and σ an admissible epimorphism. Geometrically,
this means that the kernel and the image of ϕ are complemented subspaces of
X and Y , respectively, and ϕ is an open map of X onto its image. A chain
complex X• = (Xn, dn) of left A-⊗̂-modules is called admissible if it splits as
a complex of topological vector spaces. Equivalently, X• is admissible if it is
exact, and all the dn’s are admissible morphisms.

Remark 1.1. It can easily be checked that the category A-mod together with
the class of admissible monomorphisms and epimorphisms satisfies the axioms
of exact category (see [62] and [30]), so that the main constructions of abstract
homological algebra (derived categories, “total” derived functors, etc.) make
sense in this setting. However, we shall not use such a general approach here.

An A-module P ∈ A-mod is called projective if for each admissible epi-
morphism X → Y in A-mod the induced map Ah(P,X) → Ah(P, Y ) is
surjective. Dually, an A-module Q ∈ A-mod is called injective if for each
admissible monomorphism X → Y in A-mod the induced map Ah(Y,Q) →

Ah(X,Q) is surjective. For each E ∈ LCS the projective tensor product
F = A ⊗̂E has a natural structure of left A-⊗̂-module with operation defined
by a · (b ⊗ x) = ab ⊗ x. Such modules are called free. In view of the natu-
ral isomorphism Ah(A ⊗̂E, Y ) ∼= L (E, Y ), Y ∈ A-mod, each free module is
projective. This implies that the category A-mod has enough projectives, i.e.,
for each X ∈ A-mod there exists an admissible epimorphism P → X with P
projective. To see this, it suffices to set P = A ⊗̂X and to define A ⊗̂X → X
by a⊗ x 7→ a · x.

Remark 1.2. If A is a Banach algebra, then the category A-mod has enough
injectives as well, i.e., each X ∈ A-mod can be embedded into an injective
A-⊗̂-module via an admissible monomorphism [25]. However, if A is non-
normable, then A-mod may fail to possess nonzero injective objects [60, 61];
see also Corollary 6.21 below.

Given a left A-⊗̂-module X, a resolution of X is a chain complex P• =
(Pn, dn)n≥0 of left A-⊗̂-modules together with a morphism ǫ : P0 → X such
that the augmented sequence

0←− X
ǫ
←− P0

d0←− · · · ←− Pn
dn←− Pn+1 ←− · · ·

1Here we follow Helemskii’s monograph [25]. To avoid confusion, we note that this defi-
nition of X ⊗̂A Y is different from that given by Kiehl and Verdier [31] and Taylor [69] (and
used also in [65] and [14]). More precisely, X ⊗̂A Y is the completion of the Kiehl-Verdier-
Taylor tensor product.
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is admissible. A projective resolution is a resolution in which all the Pi’s
are projective ⊗̂-modules. Since A-mod has enough projectives, it follows
that each A-⊗̂-module has a projective resolution. Therefore one can define
the derived functors Ext and Tor following the general patterns of relative
homological algebra (see [25]). Namely, take a projective resolution P• of an
A-module X ∈ A-mod and set

Extn
A(X, Y ) = Hn

(
Ah(P•, Y )

)

for each Y ∈ A-mod. (Here “Hn” stands for the nth cohomology space).
Similarly,

TorA
n (Y,X) = Hn(Y ⊗̂

A
P•)

for each Y ∈ mod-A. Of course, Extn
A(X, Y ) and TorA

n (Y,X) do not depend
on the particular choice of the resolution P• and possess the usual functorial
properties (see [25] for details).

A projective bimodule resolution of A is a projective resolution of A in
A-mod-A.

If M ∈ A-mod-A, then the nth Hochschild cohomology (resp. homology)
of A with coefficients in M is defined as H n(A,M) = Extn

Ae(A,M) (resp.
Hn(A,M) = TorAe

n (M,A)).
A left A-⊗̂-module X has projective homological dimension ≤ n if X has a

projective resolution P• such that Pi = 0 for all i > n. The least such integer
n is denoted by dhAX and is called the projective homological dimension of
X. Equivalently,

dhAX = min{n : Extn+1
A (X, Y ) = 0 ∀Y ∈ A-mod }.

If no such n exists, one sets dhAX =∞.
The injective homological dimension of X ∈ A-mod is

inj.dhAX = min{n : Extn+1
A (Y,X) = 0 ∀Y ∈ A-mod }.

If A is a Banach algebra, then inj.dhAX can also be defined as the length of
the shortest injective resolution of X (cf. Remark 1.2 above).

An A-⊗̂-module X is projective (resp. injective) if and only if dhAX = 0
(resp. inj.dhAX = 0).

The left global dimension of A is

dgA = sup{ dhAX : X ∈ A-mod }.

Similarly, one can define homological dimension for right A-⊗̂-modules and
for A-⊗̂-bimodules. The homological dimension of A considered as an A-⊗̂-
bimodule is called the homological bidimension of A and is denoted by dbA.
For every ⊗̂-algebra A we have dgA ≤ dbA.

1.2. Kähler differentials. Recall some facts about Kähler differentials and
de Rham cohomology for commutative ⊗̂-algebras. Most of this material is
well-known in the purely algebraic case (see, e.g., [22] or [35]). For the ⊗̂-case,
see [58], [47].

Let A be a commutative ⊗̂-algebra. A pair (Ω1A, dA) consisting of an A-
⊗̂-module Ω1A and a derivation dA : A→ Ω1A is called the module of Kähler
differentials if for each A-⊗̂-module M and for each derivation D : A → M
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there exists a unique A-⊗̂-module morphism ϕ : Ω1A → M such that the
following diagram is commutative:

Ω1A

ϕ

���
�
�

A

dA 66mmmmmm

D ((RRRRRRR

M

The derivation dA is called the universal derivation of A.
Obviously, there is a natural isomorphism Ah(Ω1A,M) ∼= Der(A,M) defined

by the rule ϕ 7→ ϕdA. In other words, Ω1A represents the functor M 7→
Der(A,M). Hence Ω1A is unique up to a ⊗̂-module isomorphism.

The module of Kähler differentials can be constructed explicitly as follows.
Let I be the kernel of the product map A ⊗̂A → A. Set Ω1A = (I/I2)∼ and

define dA : A → Ω1A by dAa = (a ⊗ 1 − 1 ⊗ a) + I2. Then (Ω1A, dA) is the
module of Kähler differentials for A (see, e.g., [58, Appendix B] or [22, §20]
for the algebraic case).

If A = C∞(M) is the Fréchet algebra of smooth functions on a manifold M ,
then Ω1A is canonically isomorphic with the module of differential 1-forms on
M (cf. [58]). A similar result holds for algebras of holomorphic functions on
Stein manifolds. Since we could not find this fact in the literature, we give a
complete proof below.

Let (V,OV ) be a complex space. Consider the diagonal map ∆: V → V ×V ,
and denote by I ⊂ OV ×V the ideal sheaf of the subspace ∆(V ) ⊂ V × V .
Recall ([21]; cf. also [24]) that the sheaf of 1-differentials of V is defined as
Ω1

V = ∆∗(I /I 2). There is a canonical morphism of sheaves d : OV → Ω1
V

defined locally as da = (a ⊗ 1 − 1 ⊗ a) + I 2
x,x for each a ∈ OV,x, x ∈ V . If

V is a complex manifold, then Ω1
V coincides with the usual cotangent sheaf of

V , the space of global sections Ω1(V ) = Γ(V,Ω1
V ) is the space of holomorphic

differential 1-forms on V , and the map dV : O(V ) → Ω1(V ) induced by d is
precisely the exterior (de Rham) derivative.

We need some facts on Stein modules [16]. Let (V,OV ) be a Stein space.
For each coherent analytic sheaf F on V the space of global sections F (V ) =
Γ(V,F ) has a canonical locally convex topology making it into a Fréchet O(V )-
module. Modules of this form are called Stein modules. Denote by Coh(V ) the
category of coherent sheaves of OV -modules and by St(V ) ⊂ O(V )-mod the
category of Stein O(V )-modules. The functor of global sections Γ: Coh(V )→
St(V ) is exact (Cartan’s Theorem B) and fully faithful [16]. Hence Γ is an
equivalence of Coh(V ) and St(V ). If F ,G ∈ Coh(V ), and at least one of
them is locally free, then there is a canonical isomorphism F (V ) ⊗̂O(V ) G (V ) ∼=
(F ⊗OV

G )(V ) (see [65] or [14, 4.2.4]). If F = Γ(V,F ) is a Stein module and
G ⊂ F is a closed submodule, then G is also a Stein module, i.e., G = Γ(V,G )
for some coherent subsheaf G ⊂ F . In particular, each closed ideal J ⊂ O(V )
has the form J = Γ(V,J ) for some coherent sheaf of ideals J ⊂ OV . In this

case, J2 = Γ(V,J 2) (see [16]).

Lemma 1.1. Let (V,OV ) be a Stein space. Then the O(V )-⊗̂-module Ω1(O(V ))
of Kähler differentials is canonically isomorphic with Ω1(V ) = Γ(V,Ω1

V ). Un-
der this identification, dV : O(V )→ Ω1(V ) becomes a universal derivation.
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Proof. Set V 2 = V × V , and let I = Γ(V 2,I ) ⊂ O(V 2) be the ideal of
all functions vanishing on ∆(V ). Identifying O(V 2) with O(V ) ⊗̂O(V ), we
see that I becomes the kernel of the product map O(V ) ⊗̂O(V ) → O(V ).
Consider the commutative diagram

Γ(V 2,I )
q̃ // Γ(V 2,I /I 2) Ω1(V )

O(V )

D 66llllll

D ((RRRRRRRRRR

I
q // I/I2

j

OO

Ω1(O(V ))

Here D(a) = a ⊗ 1 − 1 ⊗ a for all a ∈ O(V ), q is the quotient map, and q̃ is
induced by the sheaf quotient map I → I /I 2. Note also that Ω1(O(V )) =

I/I2 since I is a Fréchet space. Obviously, dV = q̃D, and dO(V ) = qD. Since
V is a Stein space, we see that j is an isomorphism (see the remarks preceding
the statement of the lemma). The rest is clear. �

In some important cases the module of Kähler differentials is free and finitely
generated. The next lemma gives a simple sufficient condition for this.

Lemma 1.2. Suppose there exist x1, . . . , xn ∈ A and ∂1, . . . , ∂n ∈ DerA such
that the xi’s generate a dense subalgebra of A, and ∂i(xj) = δij for each i, j.
Then ∂ = (∂1, . . . , ∂n) : A → An is a universal derivation. In particular, Ω1A
is isomorphic to An.

Proof. Let D : A → M be a derivation. Denote by (u1, . . . , un) the standard
basis inAn (i.e., ui = (0, . . . , 1, . . . , 0) with 1 in the ith coordinate, 0 elsewhere).
We have ∂(xi) = ui for each i = 1, . . . , n. Define an A-⊗̂-module morphism
ϕ : An → M by ϕ(ui) = D(xi) for i = 1, . . . , n. Then (ϕ∂)(xi) = D(xi) for
each i. Since x1, . . . , xn generate a dense subalgebra of A, we conclude that
ϕ∂ = D. On the other hand, since An is generated (as an A-module) by Im ∂,
ϕ is a unique A-module morphism with the above property. �

1.3. DG ⊗̂-algebras and de Rham cohomology. By a graded ⊗̂-algebra
we mean a sequence A = {An}n∈Z+ of complete l.c.s.’s together with linear
continuous mappings

Ap ⊗̂Aq → Ap+q, (a, b) 7→ ab

satisfying the usual associativity conditions. In particular, A0 is a ⊗̂-algebra,
and each An is an A0-⊗̂-bimodule. We will always assume that A is unital,
i.e., that A0 is unital and each An is a unital A0-bimodule. A graded ⊗̂-algebra
A is said to be graded commutative if ab = (−1)pqba for each a ∈ Ap, b ∈ Aq.
If A is graded commutative, then A0 is commutative in the usual sense, and
all the A0-⊗̂-bimodules An are symmetric.

Morphisms of graded ⊗̂-algebras are defined in an obvious way.
If A is a graded ⊗̂-algebra, then A =

⊕
nA

n is a topological algebra w.r.t.
the locally convex direct sum topology. If, in addition, each An is finite-
dimensional, then the topology on A is the finest locally convex topology, so
that A is a ⊗̂-algebra (see Subsection 1.1). In this case we will often identify
A and A and say that A =

⊕
nA

n is a graded algebra.
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Let A be a commutative (ungraded) ⊗̂-algebra. Given an A-⊗̂-module M
and n ∈ N, we can define the nth exterior power ofM as in the purely algebraic

case. Namely, consider the antisymmetrization map aM :
⊗̂n

AM →
⊗̂n

AM
defined by

aM (x1 ⊗ · · · ⊗ xn) =
1

n!

∑

σ∈Sn

ε(σ) · xσ−1(1) ⊗ · · · ⊗ xσ−1(n) . (1)

It is easy to see that aM is anA-⊗̂-module morphism and that a2
M = aM . Hence

Im aM is a direct A-⊗̂-module summand of
⊗̂n

AM . We set
∧̂n

AM = Im aM

(or, equivalently,
∧̂n

AM =
⊗̂n

AM/KeraM ), and call the resulting A-⊗̂-module
the nth exterior power of M . As usual, for each x1, . . . , xn ∈M we denote the

element aM(x1 ⊗ · · · ⊗ xn) of
∧̂n

AM by x1 ∧ · · · ∧ xn.
For each p, q ∈ Z+ we have a bilinear continuous map

∧̂p

AM ×
∧̂q

AM →
∧̂p+q

A M, (x, y) 7→ x ∧ y = a(x⊗ y)

(here we set
∧̂0

AM = A and use the canonical identifications A ⊗̂AX =

X ⊗̂AA = X). As in the purely algebraic case, the above maps make
∧̂

AM =

{
∧̂p

AM : p ∈ Z+} into a graded commutative ⊗̂-algebra called the exterior
algebra of M .

Now let A be a graded commutative ⊗̂-algebra. For each n ∈ N we have
an A0-⊗̂-module morphism

∧̂n

A0 A1 → An, a1 ∧ · · · ∧ an 7→ a1 · · ·an. (2)

A is called exterior if (2) is an isomorphism for each n ∈ N (cf. [35]). In other

words, A is exterior if the canonical morphism
∧̂

A0 A1 → A is a graded ⊗̂-
algebra isomorphism. It is easy to see that a morphism ϕ : A → B of graded
exterior ⊗̂-algebras is an isomorphism if and only if it is an isomorphism in
degrees 0 and 1.

Example 1.1. Let (V,OV ) be a Stein space, and let F be a locally free sheaf
of OV -modules. Set A = O(V ) and F = F (V ). We have an obvious sheaf-
theoretic version of the antisymmetrization map (1)

⊗n
OV

F
aF−−→ ⊗n

OV
F .

By definition, Im aF =
∧n

OV
F . Since the functor Γ of global sections takes

tensor products over OV to projective tensor products over A (see above), we
see that the morphism Γ(V, aF ) of SteinA-modules coincides with aF : ⊗̂

n

A F →

⊗̂
n

A F . Since Γ is exact, we conclude that
∧̂n

A F = Im aF = Γ(V,Im aF ) =

Γ(V,
∧n

OV
F ). Thus we have an isomorphism of graded ⊗̂-algebras

∧̂
A F
∼=

Γ(V,
∧

OV
F ).

By a differential graded ⊗̂-algebra (a DG ⊗̂-algebra for short) we mean a
graded ⊗̂-algebra A together with a sequence {dp : Ap → Ap+1 : p ∈ Z+} of
linear continuous maps such that dp+1dp = 0 for all p (so that A becomes a
cochain complex), and dp+q(ab) = dp(a)b+(−1)padq(b) for each a ∈ Ap, b ∈ Aq.
In particular, d0 is a derivation of A0 with values in A1. A DG ⊗̂-algebra is
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said to be graded commutative (exterior, etc.) if it has this property when
considered as a graded ⊗̂-algebra. Morphisms of DG ⊗̂-algebras are morphisms
of graded ⊗̂-algebras commuting with differentials.

Let Ω1A be the module of Kähler differentials of a commutative ⊗̂-algebra

A. Then the exterior algebra
∧̂

A(Ω1A) has a unique structure of DG ⊗̂-algebra
such that the mapping d0 : A → Ω1A coincides with the universal derivation
dA (cf. [3, 35]). The resulting DG ⊗̂-algebra is denoted by Ω(A) and is called
the algebra of differential forms of A. The cohomology groups of Ω(A) are
called the de Rham cohomology groups of A and are denoted by Hn

DR(A).
The algebra of differential forms has the following universal property (cf.

[35]): For each graded commutative DG ⊗̂-algebra B and each ⊗̂-algebra mor-
phism ψ : A→ B0 there exists a unique DG ⊗̂-algebra morphism ϕ : Ω(A)→ B
such that ϕ0 = ψ. In particular, each morphism ψ : A → B of ⊗̂-algebras
uniquely extends to a morphism ψ∗ : Ω(A) → Ω(B) of DG ⊗̂-algebras. Thus
the assignment A 7→ Ω(A) is a functor from the category of commutative
⊗̂-algebras to the category of graded commutative DG ⊗̂-algebras.

Proposition 1.3. Let V be a Stein manifold. Then the topological cohomology
groups Hn

top(V,C) coincide with the de Rham cohomology groups Hn
DR(O(V ))

of the Fréchet algebra O(V ).

Proof. For each n denote by Ωn
V the sheaf of holomorphic differential n-forms

on V . By the Poincaré lemma and Cartan’s theorem B, the de Rham complex

0→ C→ OV → Ω1
V → Ω2

V → · · ·

is an acyclic resolution of the constant sheaf C. Therefore the cohomology
groups of Ω(V ) = Γ(V,Ω•

V ) coincide with the topological cohomology groups
Hn

top(V,C). On the other hand, the embedding O(V ) → Ω(V ) uniquely ex-

tends to a DG ⊗̂-algebra morphism Ω(O(V ))→ Ω(V ) that is an isomorphism
in degrees 0 and 1 (see Lemma 1.1). Since both the algebras are exterior
(see Example 1.1), we conclude that Ω(O(V )) → Ω(V ) is a DG ⊗̂-algebra
isomorphism. The rest is clear. �

1.4. Lie algebra actions. Throughout the paper, by a Lie algebra we always
mean a finite-dimensional complex Lie algebra.

Let g be a Lie algebra and M a right g-module. For each n ∈ Z+ set
Cn(g,M) = M ⊗

∧n
g. The boundary mappings dn : Cn+1(g,M) → Cn(g,M)

are defined by

dn(m⊗X1 ∧ · · · ∧Xn+1) =

n+1∑

i=1

(−1)i−1m ·Xi ⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn+1

+
∑

1≤i<j≤n+1

(−1)i+jm⊗ [Xi, Xj] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn+1.

(Here, as usual, the notation X̂i indicates that Xi is omitted.) The spaces
Cn(g,M) together with the mappings dn form a chain complex denoted by
C·(g,M). The homology groups of this complex are called the homology groups
of g with coefficients in M and are denoted by HLie

n (g,M).
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Now let U(g) be the universal enveloping algebra of g. We consider U(g)
as a right g-module w.r.t. the right regular representation given by (a,X) 7→
aX. The corresponding chain complex V·(g) = C·(g, U(g)) augmented by the
counit map ε : U(g) → C is exact (see [6], Chap. XIII). Since all the dn’s
are morphisms of left U(g)-modules in this case, it follows that V·(g) is a free
resolution of the trivial g-module C in the category of left U(g)-modules (the
Koszul resolution). If M is a right g-module, then C·(g,M) is isomorphic to

the tensor product M ⊗U(g) V·(g). Therefore HLie
n (g,M) = TorU(g)

n (M,C) for
each n ∈ Z+.

Dually, if M is a left g-module, then the space Cn(g,M) of n-cochains is
defined as HomC(

∧n
g,M). Thus n-cochains are just alternating multilinear

maps of n variables from g with values in M . The coboundary mappings
dn : Cn(g,M)→ Cn+1(g,M) are defined by

dnf(X1 ∧ · · · ∧Xn+1) =

n+1∑

i=1

(−1)i−1Xi · f(X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jf([Xi, Xj] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn+1).

The spaces Cn(g,M) together with the mappings dn form a cochain com-
plex denoted by C ·(g,M) (the Chevalley-Eilenberg complex). The cohomology
groups of this complex are called the cohomology groups of g with coefficients
in M and are denoted by Hn

Lie(g,M). As in the case of homology groups, we
have Hn

Lie(g,M) = Extn
U(g)(C,M) for each n ∈ Z+.

Remark 1.3. Recall that each right g-module M can also be viewed as a left
g-module w.r.t. the action X ·m = −m ·X (m ∈ M, X ∈ g), and vice versa,
so that the categories of left g-modules and of right g-modules are isomorphic.
Thus one can speak about the complex C·(g,M) (resp. C ·(g,M)) in the case
where M is a left (resp. right) g-module.

By a right g-⊗̂-module we mean a complete Hausdorff l.c.s. M together
with the structure of right g-module such that the map M →M, m 7→ m ·X
is continuous for each X ∈ g. If we endow g with the usual topology of a
finite-dimensional vector space, then the above condition means precisely that
the map M ⊗̂ g → M, m ⊗ X 7→ m · X is continuous. Similarly, one can
speak about left g-⊗̂-modules. If M is a right (resp. left) g-⊗̂-module, then
the strong dual, M ′, becomes a left (resp. right) g-⊗̂-module via the action
〈m,X ·m′〉 = 〈m ·X,m′〉 (resp. 〈m′ ·X,m〉 = 〈m′, X ·m〉) for m ∈ M, m′ ∈
M ′, X ∈ g.

Remark 1.4. If we endow U(g) with the finest locally convex topology, then
each g-⊗̂-module M becomes a topological U(g)-module. Note, however, that
M need not be an U(g)-⊗̂-module, i.e., the action U(g) ×M → M need not
be jointly continuous.

If M is a right (resp. left) g-⊗̂-module, then the obvious identifications
M ⊗

∧n
g = M ⊗̂

∧n
g and HomC(

∧n
g,M) = L (

∧n
g,M) enable us to con-

sider C·(g,M) (resp. C ·(g,M)) as a complex in LCS. If M is a right (resp.
left) g-⊗̂-module, then the complex C ·(g,M ′) (resp. C·(g,M

′)) is isomorphic
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to the strong dual of C·(g,M) (resp. C ·(g,M)). This readily follows from the
canonical isomorphisms L (

∧n
g,M) ∼= (

∧n
g)′ ⊗̂M .

Let A be a ⊗̂-algebra together with the structure of left g-⊗̂-module. Sup-
pose that for each X ∈ g the map A → A, a 7→ X · a is a derivation. In
this case we say that g acts on A by derivations. The complex C ·(g, A) has
then a structure of DG ⊗̂-algebra (cf. [13]). The multiplication on C ·(g, A)
comes from the identification of C ·(g, A) with the tensor product of algebras∧

g∗ ⊗̂A. In particular, if A is commutative, then C ·(g, A) is isomorphic (as

a graded ⊗̂-algebra) to the exterior algebra
∧̂

AC
1(g, A).

2. The inverse process for Hopf ⊗̂-algebras

In this section we describe a version of the Cartan-Eilenberg “inverse pro-
cess” ([6], Chap. X) adapted to the Hopf ⊗̂-algebra case. Originally, Cartan
and Eilenberg applied the inverse process to the study of homological dimen-
sions of group algebras and universal enveloping algebras. Subsequently some
generalizations were obtained for cocommutative [32] and commutative [37]
Hopf algebras. Though we believe that the algebraic versions of the results
below are known, we could not find them in the literature in a form suitable
for our purposes. That is why we give complete proofs.

For convenience of the reader, we recall some algebraic definitions (see [46]
for details). Let C be a monoidal category, i.e., a category equipped with a
bifunctor ⊗ : C × C → C, a neutral object I, and natural isomorphisms

aX,Y,Z : (X ⊗Y )⊗Z → X ⊗(Y ⊗Z), lX : I ⊗X → X, rX : X ⊗ I → X

satisfying natural coherence (constraint) conditions (see, e.g., [45]). With-
out loss of generality (by MacLane’s coherence theorem [45, Theorem 15.1]),
we may assume that C is strict, so that all associativity and unit isomor-
phisms are identities. An algebra in C is an object A together with morphisms
µ : A⊗A→ A (multiplication) and η : I → A (unit) such that the diagrams

A⊗A⊗A
µ⊗1A //

1A⊗µ

��

A⊗A

µ

��
A⊗A

µ // A

I ⊗A
η⊗1A //

lA %%JJJJJJJJJJ
A⊗A

µ

��

A⊗ I
1A⊗ηoo

rA
yytttttttttt

A

are commutative. For example, if C = LCS is the category of complete locally
convex spaces over C, and ⊗ = ⊗̂ is the bifunctor of the completed projective
tensor product, then we obtain the definition of ⊗̂-algebra given in Subsec-
tion 1.1. If (A, µA, ηA) and (B, µB, ηB) are algebras in C, then a morphism
ϕ : A→ B is an algebra homomorphism if ϕµA = µB(ϕ⊗ ϕ) and ϕηA = ηB.

Dually, a coalgebra in C is an object C together with morphisms ∆: C →
C ⊗C (comultiplication) and ε : C → I (counit) such that the diagrams

C⊗C ⊗C C ⊗C
∆⊗1Coo

C ⊗C

1C⊗∆

OO

C
∆oo

∆

OO I ⊗C C⊗C
ε⊗1Coo 1C⊗ε // C⊗ I

C
l−1
C

eeJJJJJJJJJJ r−1
C

99tttttttttt

∆

OO

are commutative.
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The monoidal category C is braided if it is equipped with a natural isomor-
phism cX,Y : X ⊗Y → Y ⊗X satisfying the relations

(cX,Z ⊗ 1Y )(1X ⊗ cY,Z) = cX ⊗Y,Z and (1Y ⊗ cX,Z)(cX,Y ⊗ 1Z) = cX,Y ⊗Z

In this case, the tensor product of any two algebras A,B in C is an algebra
with multiplication and unit defined as the compositions

A⊗B⊗A⊗B
1A⊗cB,A⊗1B
−−−−−−−→ A⊗A⊗B⊗B

µA⊗µB−−−−→ A⊗B,

I
rI=lI−−−→ I ⊗ I

ηA ⊗ ηB−−−−→ A⊗B.

A bialgebra in C is an object H equipped with the algebra and the coalgebra
structures such that ∆: H → H ⊗H and ε : H → I are algebra homomor-
phisms. Finally, a Hopf algebra in C is a bialgebra H together with a morphism
S : H → H (antipode) such that the diagram

H ⊗H

S⊗1H

��

H
∆oo ∆ //

ηε

��

H ⊗H

1H⊗S
��

H ⊗H
µ // H H ⊗H

µoo

is commutative.

Lemma 2.1. Let H be a Hopf algebra in a braided monoidal category C, and
let Φ,Ψ: H ⊗H → H ⊗H be given by

Φ = (µ⊗ 1H)(1H ⊗∆) and Ψ = (µ⊗ 1H)(1H ⊗ S ⊗ 1H)(1H ⊗∆).

Then Φ = Ψ−1.

Proof. The relation ΦΨ = 1H ⊗H follows from the commutative diagram

H ⊗H
GF ED

Φ

��1⊗∆ // H ⊗H ⊗H
µ⊗1 // H ⊗H

H ⊗H ⊗H
1⊗1⊗∆ //

µ⊗1

OO

H ⊗H ⊗H ⊗H
1⊗µ⊗1 //

µ⊗1⊗1

OO

H ⊗H ⊗H

µ⊗1

OO

H ⊗H ⊗H
1⊗1⊗∆ //

1⊗S⊗1

OO

H ⊗H ⊗H ⊗H

1⊗S⊗1⊗1

OO

H ⊗H@A BC

1⊗l−1
H

OO

@A

GF

Ψ

//

1⊗∆

OO

1⊗∆
// H ⊗H ⊗H

1⊗∆⊗1

OO

1⊗ε⊗1
// H ⊗ I ⊗H

1⊗η⊗1

OO

BC

ED

rH⊗1

oo
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Similarly, the commutative diagram

H ⊗H
GF ED

Φ

��1⊗∆ //
GF

@A

1⊗l−1
H

//

1⊗∆
��

H ⊗H ⊗H
µ⊗1 //

1⊗1⊗∆
��

H ⊗H

1⊗∆
��

ED

BC

Ψ

oo

H ⊗H ⊗H
1⊗∆⊗1 //

1⊗ε⊗1

��

H ⊗H ⊗H ⊗H
µ⊗1⊗1 //

1⊗1⊗S⊗1
��

H ⊗H ⊗H

1⊗S⊗1
��

H ⊗H ⊗H ⊗H
µ⊗1⊗1 //

1⊗µ⊗1

��

H ⊗H ⊗H

µ⊗1

��
H ⊗ I ⊗H

1⊗η⊗1 //
@A BC

rH⊗1

OOH ⊗H ⊗H
µ⊗1 // H ⊗H

shows that ΨΦ = 1H ⊗H . �

Let A be an algebra in C. Recall that a left A-module is an object M together
with a morphism µM : A⊗M →M such that the diagrams

A⊗A⊗M
µA⊗1M//

1A⊗µM

��

A⊗M

µM

��
A⊗M

µM // M

I ⊗M
η⊗1M //

lM %%KKKKKKKKKK
A⊗M

µM

��
M

are commutative. Again, in the case (C,⊗) = (LCS, ⊗̂) we obtain the defi-
nition of ⊗̂-module given in Subsection 1.1. If (M,µM) and (N, µN) are left
A-modules, then a morphism ϕ : M → N in C is an A-module morphism if
ϕµM = µN(1A ⊗ ϕ). Right A-modules and their morphisms are defined simi-
larly.

Now let C be a braided monoidal category, and let H be a Hopf algebra in
C. Then H ⊗H has two natural structures of right H-module. The first one is
given by the action of H on the right factor, and the second one arises from the
algebra homomorphism ∆: H → H ⊗H . Thus we obtain the right H-modules
(H ⊗H, µr) and (H ⊗H, µ∆) with the actions µr, µ∆ : (H ⊗H)⊗H → (H ⊗H)
given, respectively, by

µr : (H ⊗H)⊗H ∼−→ H ⊗(H ⊗H)
1H⊗µ
−−−→ H ⊗H

µ∆ : (H ⊗H)⊗H
1H⊗H⊗∆
−−−−−→ (H ⊗H)⊗(H ⊗H)

µH⊗H
−−−→ H ⊗H.

To simplify notation, we shall often write H(n) to denote the n-fold tensor
power H ⊗ · · ·⊗H .

Lemma 2.2. The morphism Φ: (H ⊗H, µr)→ (H ⊗H, µ∆) defined in Lemma
2.1 is an isomorphism of right H-modules.
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Proof. By Lemma 2.1, Φ is an isomorphism in C. To prove that Φ is a right H-
module morphism, it is enough to consider the following commutative diagram:

H ⊗H ⊗H
1H⊗∆⊗1H //

GF ED

Φ⊗1H

��

1H⊗∆⊗∆ **UUUUUUUUUUUUUUUU

µr=1H⊗µH

��

H ⊗H ⊗H ⊗H
µH⊗1H⊗1H //

1
H(3)⊗∆

��

H ⊗H ⊗H

1
H(2)⊗∆

��

ED

BC

µ∆

oo

H ⊗H ⊗H ⊗H ⊗H
µH⊗1

H(3)
//

1H⊗µ
H(2)

��

H ⊗H ⊗H ⊗H

µ
H(2)

��
H ⊗H

1H⊗∆ //
@A BC

Φ

OOH ⊗H ⊗H
µH⊗1H // H ⊗H

�

Let Hop denote the algebra opposite to H , i.e., µHop = µHcH,H , and let
He = H ⊗Hop. Then S : H → Hop and E = (1H ⊗S)∆: H → He are algebra
homomorphisms [46]. Hence He becomes a right H-module via E. We denote
this module by He

E.

Lemma 2.3. If H has invertible antipode, then the right H-modules (H ⊗H, µr)
and He

E are isomorphic.

Proof. Since S is an isomorphism in C, it follows that 1H ⊗S : H ⊗H →
H ⊗Hop = He is an algebra isomorphism. Hence He

E
∼= (H ⊗H, µ∆) as right

H-modules. Now it remains to apply Lemma 2.2. �

From now on, let (C,⊗) = (LCS, ⊗̂) be the category of complete locally
convex spaces over C. By a Hopf ⊗̂-algebra we mean a Hopf algebra in LCS

(cf. also [42, 1, 57]). Given a Hopf ⊗̂-algebra H , we consider C as a left
H-module via the counit map ε : H → C.

Lemma 2.4. Let H be a Hopf ⊗̂-algebra with invertible antipode. There exists
an isomorphism of left He-⊗̂-modules

ϕ : He
E ⊗̂

H
C→ H, u⊗ 1 7→ µ(u). (3)

Proof. Consider the bilinear map

R : He × C→ H, (u, λ) 7→ λµ(u).

To prove that (3) is a well-defined linear map, we have to show that

R
(
(a⊗ b) · c, λ

)
= R(a⊗ b, c · λ) (4)

for each a, b, c ∈ H and each λ ∈ C. To this end, note first that

µE = µ(1H ⊗ S)∆ = ηε. (5)

Since µ : He → H is a left He-module morphism, we see that

R
(
(a⊗ b) · c, λ

)
= λµ

(
(a⊗ b)E(c)

)
= λaµ

(
E(c)

)
b = ε(c)λab. (6)

On the other hand,

R(a⊗ b, c · λ) = R
(
a⊗ b, ε(c)λ

)
= ε(c)λab. (7)
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Comparing (6) and (7), we obtain (4), as required. Hence ϕ is a well-defined,
linear continuous map. Evidently, ϕ is also a left He-module morphism.

To construct the inverse of ϕ, consider the map

ψ : H → He
E ⊗̂

H
C, a 7→ (a⊗ 1)⊗ 1.

Clearly, ϕψ = 1H . Thus it remains to prove that ψϕ = 1He
E
⊗̂H C

, which is

equivalent to

u⊗ 1 =
(
µ(u)⊗ 1

)
⊗ 1 (8)

for each u ∈ He.
Take the map Φ: H ⊗̂H → H ⊗̂H defined in Lemma 2.1, and set

Φ′ = (1H ⊗ S)Φ: (H ⊗̂H, µr)→ He
E.

By Lemmas 2.2 and 2.3, Φ′ is an isomorphism of right H-⊗̂-modules. We have

Φ′(a⊗ 1) = (1H ⊗ S)(µ⊗ 1H)(1H ⊗∆)(a⊗ 1)

= (1H ⊗ S)(µ⊗ 1H)(a⊗ 1⊗ 1) = (1H ⊗ S)(a⊗ 1) = a⊗ 1

and hence

Φ′(a⊗ b) = Φ′(a⊗ 1 · b) = Φ′(a⊗ 1)E(b) = (a⊗ 1)E(b).

Since Φ′ is bijective, it is enough to check (8) with u = (a⊗ 1)E(b). Using (5)
and the fact that µ is a left He-module morphism, we see that

µ(u) = µ
(
(a⊗ 1)E(b)

)
= aµ

(
E(b)

)
= ε(b)a.

Hence the right-hand side of (8) is
(
µ(u)⊗ 1

)
⊗ 1 = ε(b)(a⊗ 1)⊗ 1,

while the left-hand side of (8) is

u⊗ 1 = (a⊗ 1)E(b)⊗ 1 = (a⊗ 1)⊗ b · 1 = ε(b)(a⊗ 1)⊗ 1.

Therefore (8) is satisfied, and so ψ = ϕ−1. Hence ϕ is an isomorphism, as
required. �

Theorem 2.5. Let H be a Hopf ⊗̂-algebra with invertible antipode, and let

0←− C←− P•

be a projective resolution of C in H-mod. Then the tensor product complex

0←− H ∼←− He
E ⊗̂

H
C←− He

E ⊗̂
H
P• (9)

is a projective bimodule resolution of H.

Proof. By Lemma 2.3, He
E is a free right H-⊗̂-module. Hence the augmented

complex (9) is admissible. To complete the proof, it remains to apply Lemma
2.4. �

LetH be a Hopf ⊗̂-algebra andM anH-⊗̂-bimodule (i.e., a left He-module).
We may consider M as a left H-⊗̂-module via E : H → He. Similarly, by con-
sidering M as a right He-⊗̂-module, we obtain a right H-⊗̂-module structure
on M . The resulting left (resp. right) H-⊗̂-module will be denoted by EM
(resp. ME).
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Corollary 2.6. Let H be a Hopf ⊗̂-algebra with invertible antipode. Then for
each M ∈ H-mod-H there exist natural isomorphisms

H n(H,M) ∼= Extn
H(C, EM) and Hn(H,M) ∼= TorH

n (ME,C).

Proof. Let P• be a projective resolution of C in H-mod. In view of Theorem
2.5, we have

H n(H,M) = Hn
(

Heh(He
E ⊗̂

H
P•,M)

)
∼= Hn

(
Hh(P•, EM)

)
= Extn

H(C, EM).

Similarly,

Hn(H,M) = Hn(M ⊗̂
He
He

E ⊗̂
H
P•) ∼= Hn(ME ⊗̂

H
P•) = TorH

n (ME ,C).

�

Corollary 2.7. Let H be a Hopf ⊗̂-algebra with invertible antipode. Then
dhH C = dgH = dbH.

The following two examples are “continuous versions” of Cartan-Eilenberg’s
result on the Hochschild cohomology of group algebras ([6], Chap. X, §6).

Example 2.1. Let G be a discrete group. The Banach algebra ℓ1(G) has a
canonical Hopf ⊗̂-algebra structure uniquely determined by

∆(δg) = δg ⊗ δg, ε(f) =
∑

g∈G

f(g), Sf(g) = f(g−1).

(Here δg denotes the function which is 1 at g ∈ G, 0 elsewhere.) Using the bar
resolution of C in ℓ1(G)-mod (see [25]), it is easy to check that Extn

ℓ1(G)(C, X)

is isomorphic to Hn
b (G,X), the nth bounded cohomology group of G with

coefficients in X ([54]; cf. also [29]). Thus we obtain the following

Corollary 2.8. Let G be a discrete group and M a Banach ℓ1(G)-bimodule.
Denote by EM the left G-module obtained from M by setting gm = δg · m ·
δg−1 (g ∈ G, m ∈M). Then there exist canonical isomorphisms

H n(ℓ1(G),M) ∼= Hn
b (G, EM).

Example 2.2. Let G be a real Lie group. The convolution algebra E ′(G) of
compactly supported distributions on G is a Hopf ⊗̂-algebra in a natural way
(see, e.g., [41, 1]; cf. also Section 8 below). Let X be a left E ′(G)-⊗̂-module.
As in the previous example, it can easily be checked that Extn

E ′(G)(C, X) is
isomorphic to Hn

c (G,X), the nth continuous (or, equivalently, differentiable)
cohomology group of G with coefficients in X (cf. [23], Chap. III, Prop. 1.5).
Thus we obtain the following

Corollary 2.9. Let G be a real Lie group and M an E ′(G)-⊗̂-bimodule. De-
note by EM the left G-module obtained from M by setting gm = δg ·m·δg−1 (g ∈
G, m ∈M). Then there exist canonical isomorphisms

H n(E ′(G),M) ∼= Hn
c (G, EM).

We end this section with an application of the above results to left amenabil-
ity in the sense of Lau [36]. Recall that a Banach algebra A is said to be
amenable [29] if H 1(A,X∗) = 0 for each Banach A-bimodule X, i.e., if every
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derivation from A to X∗ is inner. Suppose A is endowed with an augmenta-
tion εA (i.e., a continuous homomorphism A → C). Then A is said to be left
amenable [36] if for each Banach A-bimodule X such that a · x = εA(a)x for
all a ∈ A, x ∈ X, every derivation from A to X∗ is inner.

In the next lemma, we consider C as a left Banach A-module via εA : A→ C.

Lemma 2.10. Let A be an augmented Banach algebra. Then A is left amenable
if and only if Ext1

A(C, Y ∗) = 0 for each right Banach A-module Y .

Proof. Obviously, the A-bimodules in the definition of left amenability are pre-
cisely those of the formX = C ⊗̂Y where Y ∈mod-A. Hence X∗ ∼= L (C, Y ∗)
(see [25, II.5.21]), and so H 1(A,X∗) ∼= Ext1

A(C, Y ∗) (see [25, III.4.12]). The
rest is clear. �

Proposition 2.11. Let H be a Banach Hopf algebra (i.e., a Hopf ⊗̂-algebra
whose underlying locally convex space is a Banach space) with invertible an-
tipode. Then H is left amenable if and only if H is amenable.

Proof. The “if” part is clear. Conversely, assume H is left amenable, and
let X be a Banach H-bimodule. By Corollary 2.6, we have H 1(H,X∗) ∼=
Ext1

H(C, E(X∗)). On the other hand, it is immediate that E(X∗) = (XE)∗.
Now the result follows from the previous lemma. �

3. Localizations and weak localizations

Let A be a Fréchet algebra, X ∈ mod-A, and Y ∈ A-mod. Then X and
Y are said to be transversal over A (notation: X ⊥A Y ) if TorA

0 (X, Y ) is
Hausdorff, and TorA

n (X, Y ) = 0 for all n > 0. This notion was introduced in
[65] and has proved to be extremely useful in complex analytic geometry and
operator theory [31, 65, 14, 10]. We shall need a somewhat stronger condition
of transversality type.

Proposition 3.1. Let A be a ⊗̂-algebra, X ∈mod-A, and Y ∈ A-mod. The
following conditions are equivalent:

(i) There exists a projective resolution

0← X ← P• (10)

of X in mod-A such that the tensored complex

0← X ⊗̂
A
Y ← P• ⊗̂

A
Y (11)

is admissible.

(i)′ For each projective resolution (10) of X in mod-A the complex (11) is
admissible.

(ii) There exists a projective resolution

0← Y ← Q• (12)

of Y in A-mod such that the tensored complex

0← X ⊗̂
A
Y ← X ⊗̂

A
Q• (13)

is admissible.
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(ii)′ For each projective resolution (12) of Y in A-mod the complex (13) is
admissible.

Proof. The equivalences (i) ⇐⇒ (i)′ and (ii) ⇐⇒ (ii)′ readily follow from
the fact that every two projective resolutions of a ⊗̂-module are homotopy
equivalent (see [25]).

Let us prove that (i)⇐⇒ (ii). Choose a projective resolution

0← A← L• (14)

of A in A-mod-A. Then the complexes

0← X ← X ⊗̂
A
L•

0← Y ← L• ⊗̂
A
Y

are projective resolutions of X ∈mod-A and Y ∈ A-mod, respectively. Since
(i) ⇐⇒ (i)′ and (ii) ⇐⇒ (ii)′, we see that both (i) and (ii) are equivalent to
the admissibility of the complex

0← X ⊗̂
A
Y ← X ⊗̂

A
L• ⊗̂

A
Y.

Therefore (i)⇐⇒ (ii). �

Definition 3.1. We say that X ∈ mod-A and Y ∈ A-mod are strongly
transversal over A if they satisfy the conditions of Proposition 3.1. In this
case, we write X ⊥A Y .

Remark 3.1. Suppose that A is a Fréchet algebra. If we require that (11) or
(13) be only exact (but not necessarily admissible), then we come to the usual
definition of transversality (see the beginning of this section).

Proposition 3.2. Let θ : A→ B be a homomorphism of ⊗̂-algebras. Suppose
that the map

B ⊗̂
A
B → B, b1 ⊗ b2 7→ b1b2 (15)

is a topological isomorphism. Then the following conditions are equivalent:

(i) B⊥AB;

(ii) B⊥AM for each M ∈ B-mod;

(iii) M ⊥AB for each M ∈mod-B;

(iv) Be⊥Ae A.

Proof. (ii)=⇒(i), (iii)=⇒(i): this is clear.
To prove the remaining implications, take a projective bimodule resolution

(14) of A in A-mod-A, and note that

0← B ← L• ⊗̂
A
B (16)

is a projective resolution of B ∈ A-mod.
(i)=⇒(iv). If (i) holds, then the complex

0← B ⊗̂
A
B ← B ⊗̂

A
L• ⊗̂

A
B (17)

is admissible. On the other hand, the latter complex is isomorphic to

0← Be ⊗̂
Ae
A← Be ⊗̂

Ae
L•,
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and we obtain (iv).
(iv)=⇒(iii). If (iv) holds, then the complex (17) is admissible. Since

B ⊗̂AB ∼= B is projective in B-mod, we see that (17) splits in B-mod.
Hence M ⊗̂B(17) is admissible. On the other hand, M ⊗̂B(17) is isomorphic
to M ⊗̂A(16), and we obtain (iii).

The implication (iv)=⇒(ii) is proved similarly. �

Remark 3.2. It is easy to see that (i)⇐⇒ (iv) without the additional assump-
tion that (15) is an isomorphism.

The following basic notion was introduced by Taylor [70]; cf. also [17] for a
purely algebraic version.

Definition 3.2. A homomorphism θ : A → B of ⊗̂-algebras is a localization1

if it satisfies the conditions of Proposition 3.2. In this case, we say (following
[52]) that B is stably flat over A.

Remark 3.3. Using condition (iv) of Proposition 3.2, we see that θ : A→ B is a
localization if and only if the functor B ⊗̂A( · ) ⊗̂AB : A-mod-A→ B-mod-B
takes some (=every) projective bimodule resolution of A to a projective bimod-
ule resolution of B. This is exactly the definition given by Taylor [70].

Proposition 3.3. Suppose that θ : A → B is a localization. Then for each
M ∈ B-mod the canonical map B ⊗̂AM → M, b ⊗ x 7→ b · x, is an isomor-
phism.

Proof. Apply the functor ( · ) ⊗̂B M to (15). �

A useful property of localizations is that they “do not change homological
relations between modules”. In particular, if A → B is a localization, then
H p(B,M) = H p(A,M) and Hp(B,M) = Hp(A,M) for each B-⊗̂-bimodule
M (see [70], Prop. 1.4 and 1.7). The next proposition is a combination of this
fact with the Cartan-Eilenberg inverse process [6, XIII.5.1].

Proposition 3.4. Let g be a finite-dimensional Lie algebra, and let U(g) be
its universal enveloping algebra endowed with the finest locally convex topology.
Suppose that θ : U(g) → B is a localization. For each M ∈ B-mod-B denote
by EM (resp. ME) the left (resp., right) g-module obtained from M by setting
X ·m = θ(X)·m−m·θ(X) (resp., m·X = m·θ(X)−θ(X)·m); X ∈ g, m ∈M .
Then there exist vector space isomorphisms

H p(B,M) ∼= Hp
Lie(g, EM), Hp(B,M) ∼= HLie

p (g,ME) (p ∈ Z).

For later reference, we note the following

Proposition 3.5 ([70]). Let A
θ
−→ B

λ
−→ C be ⊗̂-algebra homomorphisms.

Suppose θ is a localization. Then λ is a localization if and only if λθ is a
localization.

By an augmented ⊗̂-algebra we mean a ⊗̂-algebra A together with a homo-
morphism εA : A→ C. Homomorphisms of augmented ⊗̂-algebras are defined
in an obvious way. Given an augmented ⊗̂-algebra A, we consider C as an
A-module via εA.

1In Taylor’s paper [70], such homomorphisms are called absolute localizations, whereas
the term “localization” is used for a somewhat wider class of homomorphisms.
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Definition 3.3. A homomorphism θ : A → B of augmented ⊗̂-algebras is a
weak localization if B⊥A C, and the map

B ⊗̂
A

C→ C, b⊗ λ 7→ ε(b)λ (18)

is a topological isomorphism.

Setting M = C in Proposition 3.3, we get the following.

Proposition 3.6. Each localization of augmented ⊗̂-algebras is a weak local-
ization.

In the case of Hopf ⊗̂-algebras with invertible antipodes, the converse is also
true. To see this, let us first observe that if θ : U → H is a homomorphism of
Hopf ⊗̂-algebras, then the homomorphisms EHθ : U → He and (θ⊗θ)EU : U →
He coincide. Indeed,

(θ ⊗ θ)EU = (θ ⊗ θ)(1U ⊗ SU)∆U = (θ ⊗ θSU)∆U = (θ ⊗ SHθ)∆U

= (1H ⊗ SH)(θ ⊗ θ)∆U = (1H ⊗ SH)∆Hθ = EHθ.

Hence any of the above homomorphisms can be used to make He into a right
U -⊗̂-module. It also follows from the above that the canonical isomorphisms

He
EH
⊗̂
H
Hθ → He, x⊗ h 7→ xEH(h);

He
θ⊗θ ⊗̂

Ue
Ue

EU
→ He, x⊗ w 7→ x(θ ⊗ θ)(w) (19)

are isomorphisms in mod-U .

Proposition 3.7. Let θ : U → H be a homomorphism of Hopf ⊗̂-algebras
with invertible antipodes. Then θ is a localization if and only if it is a weak
localization.

Proof. The “only if” part readily follows from Proposition 3.6. If θ is a weak
localization, then the map H ⊗̂U C → C, h ⊗ λ 7→ ε(h)λ is an isomorphism.
Combining this fact with Lemma 2.4 and (19), we obtain a chain of isomor-
phisms

H ⊗̂
U
H ∼−→ H ⊗̂

U
U ⊗̂

U
H ∼−→ He

θ⊗θ ⊗̂
Ue
U ∼−→ He

θ⊗θ ⊗̂
Ue
Ue

EU
⊗̂
U

C

∼−→ He ⊗̂
U

C
∼−→ He

EH
⊗̂
H
H ⊗̂

U
C
∼−→ He

EH
⊗̂
H

C
∼−→ H.

It is easy to check that the composition of the above isomorphisms takes each
h1 ⊗ h2 ∈ H ⊗̂U H to h1h2 ∈ H . Thus we have shown that the canonical map
H ⊗̂U H → H is an isomorphism.

Now let P• be a projective resolution of C in U -mod, and let P • denote
the augmented complex P• → C → 0. By Theorem 2.5, the complex Q• =
Ue

EU
⊗̂U P• is a projective bimodule resolution of U . In order to prove that θ is

a localization, it remains to show that the augmented tensor product complex
H ⊗̂U Q• ⊗̂U H = He

θ⊗θ ⊗̂Ue Q• is admissible.

Since θ is a weak localization, we see that L• = H ⊗̂U P• is a projective
resolution of H ⊗̂U C ∼= C in H-mod. Using again Theorem 2.5, we conclude
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that He
EH
⊗̂H L• is a projective bimodule resolution of H . In particular, the

augmented complex He
EH
⊗̂H L• is admissible. Now it follows from (19) that

He
EH
⊗̂
H
L•
∼= He

EH
⊗̂
H
H ⊗̂

U
P •
∼= He ⊗̂

U
P •
∼= He

θ⊗θ ⊗̂
Ue
Ue

EU
⊗̂
U
P •
∼= He

θ⊗θ ⊗̂
Ue
Q•.

Therefore He
θ⊗θ ⊗̂Ue Q• is admissible, as required. �

We end this section with the following simple observation.

Lemma 3.8. Let θ : A → B be a homomorphism of ⊗̂-algebras (resp. of
augmented ⊗̂-algebras) with dense range. Then θ is a localization (resp. weak
localization) if and only if Be⊥Ae B (resp. B⊥A C).

Proof. Since Im θ is dense in B, the map X ⊗̂A Y → X ⊗̂B Y, x⊗A y 7→ x⊗B y
is a topological isomorphism for each X ∈ mod-B and each Y ∈ B-mod. In
particular, (15) (resp. (18)) is a topological isomorphism. The rest is clear. �

4. Localizations of U(g) and duality

Following [1] (cf. also [42]), we say that a Hopf ⊗̂-algebra is well-behaved
if its underlying locally convex space is either a nuclear Fréchet space or a
nuclear (DF)-space. Recall (see, e.g., [20]) that the strong dual of a nuclear
Fréchet space is a complete nuclear (DF)-space, and vice versa. Moreover, if E
is either a nuclear Fréchet space or a complete nuclear (DF)-space, then there
is a canonical topological isomorphism E ′ ⊗̂E ′ ∼= (E ⊗̂E)′. Therefore for each
well-behaved Hopf ⊗̂-algebra H the strong dual, H ′, is also a well-behaved
Hopf ⊗̂-algebra in a natural way. More precisely, the multiplication (resp.
comultiplication) on H ′ is the dual of the comultiplication (resp. multiplica-
tion) on H , the antipode of H ′ is the dual of that of H , etc. Note that H is
commutative (resp. cocommutative) if and only if H ′ is cocommutative (resp.
commutative). For example, if G is a real Lie group, then the algebra C∞(G)
of smooth functions is a nuclear commutative Fréchet Hopf algebra, and its
dual is the Hopf algebra E ′(G) of compactly supported distributions. For later
reference, recall that the comultiplication, the counit, and the antipode of
C∞(G) are given, respectively, by

(∆f)(x, y) = f(xy), ε(f) = f(e), (Sf)(x) = f(x−1). (20)

Here we identify C∞(G) ⊗̂C∞(G) with C∞(G × G) (see, e.g., [20], Chap. II,
§3, no. 3).

Another important example is U(g), the universal enveloping algebra of a
finite-dimensional Lie algebra g. If we endow U(g) with the finest locally
convex topology, then it becomes a cocommutative nuclear (DF) Hopf ⊗̂-
algebra. Recall that the comultiplication, the counit, and the antipode of
U(g) are uniquely determined by

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X (X ∈ g).

The strong dual of U(g) is topologically isomorphic to the Fréchet algebra of
formal power series C[[z1, . . . , zn]] with the topology of convergence of each
coefficient (cf. [11, Prop. 2.7.5] and [72, Theorem 22.1]; cf. also Lemma 5.1
below).
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Many other examples of well-behaved Hopf ⊗̂-algebras can be found in [41],
[42], [43], [1], and [57].

Let g be a Lie algebra. Suppose we are given a Hopf ⊗̂-algebra homo-
morphism of U(g) to a well-behaved Hopf ⊗̂-algebra H . In this section we
formulate some conditions on the dual algebra, H ′, that are sufficient for H to
be stably flat over U(g).

4.1. Homotopy of commutative ⊗̂-algebras. In this subsection we briefly
discuss a continuous version of the notion of homotopy between morphisms
of commutative algebras. This notion was introduced by Chen [7] in the
purely algebraic case. All the definitions and the results in this subsection
are straightforward adaptations of [7] to the ⊗̂-case.

Throughout this subsection, all ⊗̂-algebras are assumed to be commutative.

Definition 4.1 (cf. [7], [8]). A ⊗̂-algebra C is called exact if it possesses
at least one nonzero augmentation C → C, and if there exists a derivation
∂ : C → N to some C-⊗̂-module N such that the sequence

0→ C
ηC
−→ C

∂
−→ N → 0

splits in LCS. A derivation ∂ with the above property is called split exact.

Basic examples of exact algebras are the algebra of smooth functions C∞(I)
on an interval I ⊂ R, the algebra O(U) of holomorphic functions on a simply
connected domain U ⊂ C, the algebra C[[z]] of formal power series, the poly-
nomial algebra C[z] (with the finest locally convex topology), etc. In each of
the above examples, the usual derivation d

dz
: A→ A is split exact.

Definition 4.2 (cf. [7]). Two morphisms ϕ0, ϕ1 : A → B of commutative ⊗̂-
algebras are said to be homotopic if there exists an exact algebra C, a morphism
Φ : A→ C ⊗̂B and two augmentations ε0, ε1 : C → C such that

ϕi = (εi ⊗ 1B)Φ (i = 0, 1).

For instance, if X and Y are smooth manifolds and f0, f1 : X → Y are
smooth homotopic mappings, then the induced morphisms f ∗

0 , f
∗
1 : C∞(Y ) →

C∞(X) are homotopic in the above sense. To see this, it suffices to set
C = C∞[0, 1] and to reverse the arrows in the usual definition of a (smooth)
homotopy between f0 and f1.

Two ⊗̂-algebras A,B are called homotopy equivalent if there exist morphisms
ϕ : A→ B and ψ : B → A such that ψϕ is homotopic to 1A and ϕψ is homo-
topic to 1B. A ⊗̂-algebra is said to be contractible1 if it is homotopy equivalent
to C. Equivalently, A is contractible iff there exist an exact algebra C, a
morphism Φ : A → C ⊗̂A, and augmentations ε0, ε1 : C → C and εA : A → C

such that (ε1 ⊗ 1A)Φ = 1A and (ε0 ⊗ 1A)Φ = ηAεA. For example, the algebra
of smooth functions on a contractible smooth manifold is contractible. It is
also easy to prove that the polynomial algebra C[z1, . . . , zn], the algebra of
formal power series C[[z1, . . . , zn]], the algebra of entire functions O(Cn) etc.
are contractible.

1We use the word “contractible” following Chen [7]; it should be noted, however, that
the notion of “contractible algebra” has an absolutely different meaning in the cohomology
theory of locally convex algebras (see, e.g., [25]).
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Theorem 4.1 ([7]). If two morphisms ϕ0, ϕ1 : A → B of commutative ⊗̂-
algebras are homotopic, then the induced morphisms ϕ0,∗, ϕ1,∗ : Ω(A) → Ω(B)
are chain homotopic (as morphisms of complexes in LCS).

We omit the proof, because it is an obvious modification of the proof from
[7] to the ⊗̂-case.

Corollary 4.2. If A is a contractible ⊗̂-algebra, then the augmented de Rham

complex 0→ C
ηA
−→ Ω(A) splits in LCS.

4.2. Lie algebra actions and parallelizability.

Definition 4.3. Let A be a commutative ⊗̂-algebra, and let g be a Lie algebra
acting on A by derivations. We say that A is g-parallelizable if the derivation

d0 : A→ C1(g, A), a 7→ (X 7→ Xa)

is universal, i.e., if (C1(g, A), d0) is the module of Kähler differentials for A.

Proposition 4.3. A is g-parallelizable if and only if the identity map of A
extends to a DG ⊗̂-algebra isomorphism between C ·(g, A) and Ω(A).

Proof. The “if” part is clear. To prove the converse, recall that the universal
property of Ω(A) yields a unique DG ⊗̂-algebra morphism ϕ : Ω(A)→ C ·(g, A)
such that ϕ0 = 1A. If A is g-parallelizable, then ϕ1 : Ω1A → C1(g, A) is an
isomorphism. Since both Ω(A) and C ·(g, A) are exterior, we conclude that ϕ
is an isomorphism (see Subsection 1.3). �

Now suppose that H is a well-behaved cocommutative Hopf ⊗̂-algebra, g

is a Lie algebra, and θ : U(g) → H is a Hopf ⊗̂-algebra homomorphism. We
consider H as a right g-⊗̂-module via θ by setting x · X = xθ(X) for each
x ∈ H, X ∈ g. The strong dual space, H ′, is then a left g-⊗̂-module in a
natural way (see Subsection 1.4). Namely, the action of g on H ′ is given by

〈X · a, x〉 = 〈a, xθ(X)〉 (a ∈ H ′, X ∈ g, x ∈ H). (21)

It is easy to check that g acts on H ′ by derivations. Indeed, for each a, b ∈
H ′, X ∈ g, x ∈ H we obtain

〈X · ab, x〉 = 〈ab, xθ(X)〉 = 〈a⊗ b,∆(xθ(X))〉 = 〈a⊗ b,∆(x)∆(θ(X))〉

= 〈a⊗ b,∆(x) · θ ⊗ θ(∆(X))〉 = 〈a⊗ b,∆(x)(θ(X)⊗ 1 + 1⊗ θ(X))〉. (22)

For each x1, x2 ∈ H we have

〈a⊗ b, (x1 ⊗ x2)(θ(X)⊗ 1)〉 = 〈a⊗ b, x1θ(X)⊗ x2〉

= 〈Xa, x1〉〈b, x2〉 = 〈Xa⊗ b, x1 ⊗ x2〉.

Therefore 〈a ⊗ b, u(θ(X) ⊗ 1)〉 = 〈Xa ⊗ b, u〉 for each u ∈ H ⊗̂H . Similarly,
〈a⊗ b, u(1⊗ θ(X))〉 = 〈a⊗Xb, u〉 for each u ∈ H ⊗̂H . Setting u = ∆(x) and
substituting in (22), we see that

〈X · ab, x〉 = 〈Xa⊗ b+ a⊗Xb,∆(x)〉 = 〈Xa · b+ a ·Xb, x〉.

Hence g acts on H ′ by derivations.
In what follows, we say that the action defined by (21) is determined by θ.

We shall sometimes refer to θ explicitly by writing X ·θ a instead of X · a or
Xa.
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Theorem 4.4. Let g be a Lie algebra, and let H be a well-behaved cocommu-
tative Hopf ⊗̂-algebra. Suppose θ : U(g) → H is a Hopf ⊗̂-algebra homomor-
phism with dense range. Assume that H ′ is g-parallelizable (w.r.t. the action
determined by θ) and contractible. Then θ is a localization.

Proof. Since H is cocommutative, we have S2 = 1H (for a categorical proof of
this classical fact, see [66], Chap. 9). In particular, S is invertible. In view of
Proposition 3.7, it suffices to show that θ is a weak localization. Set U = U(g),
and consider the Koszul resolution

0← C
εU←− V·(g)

of the trivial g-module C (see Subsection 1.4). Clearly, the chain complexes
H ⊗̂U V·(g) and C·(g, H) are isomorphic. Due to Lemma 3.8, we need only
check that the augmented complex

0← C
εH←− C·(g, H)

splits in LCS. Since the above complex consists of reflexive spaces, it splits if
and only if the dual complex

0→ C
ηH′

−−→ C ·(g, H ′)

splits. Now it remains to apply Corollary 4.2 and Proposition 4.3. �

5. Power series envelopes of U(g)

Our next task is to show that the strong dual algebras of some locally convex
completions of U(g) (for g nilpotent) are indeed g-parallelizable. To this end,
recall some facts on the “formal power series completion” [U(g)] of U(g) (see
[18]).

Let g be a nilpotent Lie algebra and let I ⊂ U(g) be the ideal generated
by g. Recall that the quotient algebra U(g)/In is finite-dimensional for each
n (see, e.g., [11, 2.5.1]). Endow each U(g)/In with the usual locally convex
topology of a finite-dimensional vector space, and set [U(g)] = lim

←−
U(g)/In.

Clearly, [U(g)] is a nuclear Fréchet-Arens-Michael algebra. We have a canonical
homomorphism

θ : U(g)→ [U(g)], x 7→ (x+ In). (23)

Since g is nilpotent, it follows that
⋂

n I
n = {0} (see, e.g., [28, XIV.4.1]),

so that (23) is injective. For notational convenience, we shall often write U
instead of U(g) and [U ] instead of [U(g)], and we shall identify U with its
canonical image in [U ].

It is easy to show that [U(g)] has a natural structure of Hopf ⊗̂-algebra such
that (23) is a Hopf algebra homomorphism. Indeed, let K = I ⊗U + U ⊗ I ⊂
U ⊗U be the augmentation ideal of U ⊗U . Evidently, we have ∆(I) ⊂ K, and
so ∆(In) ⊂ Kn for each n. Therefore we obtain an algebra homomorphism

[U ] = lim
←−

U/In → lim
←−

(U ⊗U)/Kn, (x+ In) 7→ (∆(x) +Kn). (24)

Since U ⊗U is isomorphic to U(g × g), and since g × g is nilpotent together
with g, it follows that dim(U ⊗U)/Kn <∞ for each n. Hence we can endow
lim
←−

(U ⊗U)/Kn with a locally convex topology in the same way as we did for

[U ]. Thus (24) becomes a ⊗̂-algebra homomorphism.
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For each n denote by τn : U → U/In the quotient map, and set

πn = τn ⊗ τn : U ⊗U → (U/In)⊗(U/In).

We clearly have

Kn =
∑

i+j=n

I i⊗ Ij ,

and so K2n ⊂ Ker πn. Hence there exists a homomorphism

(U ⊗U)/K2n → (U/In) ⊗̂(U/In), y +K2n 7→ πn(y).

Taking the inverse limit and using the fact that the projective tensor product
commutes with reduced inverse limits [34, 41.6], we obtain a homomorphism

lim
←−

(U ⊗U)/Kn → [U ] ⊗̂[U ].

(This is even an isomorphism, since Kerπn ⊂ Kn for each n.) Composing with
(24), we get a ⊗̂-algebra homomorphism

[∆] : [U ]→ [U ] ⊗̂[U ].

It is easy to check that [∆] extends ∆ in the sense that the diagram

[U ]
[∆]

// [U ] ⊗̂[U ]

U
∆ //

θ

OO

U ⊗̂U

θ⊗θ

OO

is commutative. Since θ has dense range, the coassociativity of [∆] readily
follows from that of ∆.

Arguing as above, it is easy to construct an antipode [S] : [U ] → [U ] and
a counit [ε] : [U ] → C in such a way that [U ] becomes a Hopf ⊗̂-algebra and
θ : U → [U ] becomes a Hopf ⊗̂-algebra homomorphism.

A somewhat more explicit construction of [U ] was suggested by Goodman
[18]. Fix a positive filtration F on g, i.e., a decreasing chain of subspaces

g = g1 ⊃ g2 ⊃ · · · ⊃ gℓ ⊃ gℓ+1 = 0, [gi, gj] ⊂ gi+j .

The smallest ℓ such that gℓ+1 = 0 is called the length of the filtration.
An example of a positive filtration is the lower central series of g defined

inductively by gn+1 = [g, gn].
Given X ∈ g, X 6= 0, the F -weight of X is defined by w(X) = max{n :

X ∈ gn}. A basis (ei) of g is called an F -basis if w(ei) ≤ w(ei+1) for all i, and
gn = span{ei : w(ei) ≥ n} for all n. Given an F -basis (ei), we set wi = w(ei)
for each i. For each multi-index α = (α1, . . . , αN) ∈ ZN

+ (N = dim g), set
|α| =

∑
i αi and w(α) =

∑
i wiαi. By the Poincaré-Birkhoff-Witt theorem, the

elements eα = eα1
1 · · · e

αN

N form a basis of U(g). For each n, set

Jn = span{eα : w(α) ≥ n} ⊂ U(g). (25)

Then we have

U(g) = J0 ⊃ I = J1 ⊃ J2 ⊃ · · · , JiJj ⊂ Ji+j, (26)

so that {Jn} is a decreasing filtration on U(g) satisfying
⋂

n Jn = {0}. In
particular, each Jn is an ideal of U(g). Goodman [18] defines [U(g)]F as the
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completion of U(g) w.r.t. the topology determined by the filtration {Jn}. Thus
we have an algebraic isomorphism [U(g)]F = lim

←−
U(g)/Jn.

If we endow each U(g)/Jn with the usual topology of a finite-dimensional
vector space, then it is easily seen that [U(g)]F is isomorphic (as a topological
algebra) to the algebra [U(g)] introduced above. Indeed, setting C = maxwi,
we see that w(α) ≤ C|α| for each α ∈ Z

N
+ , and so JCn ⊂ In for each n. On

the other hand, we have In = Jn
1 ⊂ Jn for each n. Therefore the filtrations

{Jn} and {In} are equivalent, and so the algebras [U(g)]F and [U(g)] are
isomorphic.

As a locally convex space, [U(g)] is isomorphic to the space of all formal
power series x =

∑
α cαe

α endowed with the topology of convergence of each
coefficient (cf. [18]). More precisely, the topology on [U(g)] can be generated
by the sequence of seminorms {‖ · ‖n : n ∈ Z+} defined by

‖x‖n =
∑

w(α)≤n

|cα| for each x =
∑

α

cαe
α ∈ [U ].

For each multi-index α ∈ ZN
+ set eα = eα/α!. Then ∆(eγ) =

∑
α+β=γ eα⊗eβ

(see [11, 2.7.2]), and the same relation clearly holds for [∆].

Lemma 5.1. The mapping κ : [U ]′ → C[z1, . . . , zN ] defined by the rule

f 7→
∑

α

f(eα)zα (27)

is an algebra isomorphism. Moreover, κ is a topological isomorphism w.r.t.
the strong topology on [U ]′ and the finest l.c. topology on C[z1, . . . , zN ].

Proof. The continuity of f implies that there exists n ∈ Z+ such that f(eα) = 0
whenever w(α) ≥ n. Hence the sum in the right-hand side of (27) is finite, and
κ is well defined. Since the eα’s generate a dense subspace of [U ], we see that
κ is injective. Conversely, for every polynomial p =

∑
α λαz

α the mapping
f : [U ] → C, f(

∑
α cαeα) =

∑
α cαλα is a continuous linear functional on [U ]

satisfying κ(f) = p. Hence κ is bijective. A direct computation (see [11,
2.7.5]) shows that κ is an algebra homomorphism. Finally, since the topology
on the strong dual of a countable inverse limit of finite-dimensional spaces
is the finest l.c. topology (see, e.g., [72, Theorem 22.1]), we see that κ is a
topological isomorphism. �

Definition 5.1. Let g be a nilpotent Lie algebra. By a power series envelope
of U(g) we mean a Hopf ⊗̂-algebra H together with Hopf ⊗̂-algebra homo-
morphisms θ1 : U(g) → H and θ2 : H → [U(g)] such that both θ1 and θ2 are
injective with dense ranges, and the composition

U(g)
θ1−→ H

θ2−→ [U(g)]

coincides with the canonical homomorphism θ defined by (23).

Remark 5.1. Since θ is injective with dense range, the conditions “θ1 is in-
jective” and “θ2 has dense range” are satisfied automatically. Note also that,
since U(g) is cocommutative and θ1 has dense range, H is also cocommutative.
For the same reason, we have S2 = 1H in H .
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It is immediate from the definition that the “smallest” power series envelope
of U(g) is U(g) itself, and the “largest” one is [U(g)].

Theorem 5.2. Let g be a nilpotent Lie algebra, and let H be a well-behaved
power series envelope of U(g). Then H ′ is g-parallelizable.

Proof. Fix a positive filtration F on g, and choose an F -basis (ei) of g. Using
Lemma 5.1, we may identify [U ]′ and C[z1, . . . , zN ]. For each i = 1, . . . , N set
xi = θ′2(zi) ∈ H ′. Since θ2 is injective, it follows that Im θ′2 is dense in H ′

w.r.t. the weak∗ topology σ(H ′, H). Using the semireflexivity of H , we see
that Im θ′2 is dense in H ′ w.r.t. the strong topology as well. Hence x1, . . . , xN

generate a dense subalgebra of H ′.
Set A = H ′, and consider the free A-module AN with the standard A-

basis (ui), i.e., ui = (0, . . . , 1, . . . , 0) with 1 in the ith coordinate, 0 elsewhere.
Denote by (ei) ⊂ g∗ the basis dual to (ei) (i.e., ei(ej) = δij for all i, j). Identi-
fying the A-modules C1(g, A) and A⊗ g∗, we see that the elements vi = 1⊗ ei

(i = 1, . . . , N) form an A-basis of C1(g, A).
Now consider the A-module morphism ϕ : AN → C1(g, A) taking each ui to

d0(xi). Let (ϕij) be the matrix of ϕ w.r.t. the bases (ui) and (vi), respectively.
Applying the identity ϕ(uj) =

∑
i ϕijvi to ei, we see that

ϕij = ϕ(uj)(ei) = d0(xj)(ei) = ei · xj .

Given a ∈ H ′, denote by ā the restriction of a to U(g) (i.e., ā = θ′1(a)). Then
for each y ∈ U(g) we have

〈ϕ̄ij, y〉 = 〈ϕij, θ1(y)〉 = 〈ei · xj, θ1(y)〉 = 〈xj , θ1(yei)〉 = 〈x̄j, yei〉. (28)

We claim that the matrix (ϕij) is upper triangular with 1’s on the main diag-
onal. Indeed, using (26), we see that yei ∈ Jwi

for each y ∈ U(g); moreover,
yei ∈ Jwi+1 for each y ∈ I = J1. On the other hand, it is immediate from
(27) that x̄j = zj |U(g) vanishes on Jwj+1. Hence 〈x̄j , yei〉 = 0 for all i > j and
all y ∈ U(g), 〈x̄i, yei〉 = 0 for all y ∈ I, and 〈x̄i, ei〉 = 1. Together with (28),
this gives ϕ̄ij = 0 for each i > j, and ϕ̄ii = 1. Finally, since Im θ1 is dense
in H , it follows that θ′1 is injective, and so the latter relations hold with ϕ̄ij

replaced by ϕij . Therefore the matrix of ϕ has the required form, so that ϕ is
an isomorphism.

For each i = 1, . . . , N , let pi : A
N → A be the projection on the ith direct

summand. Evidently, ∂i = piϕ
−1d0 is a derivation of A. It is immediate from

the definition of ϕ that ∂i(xj) = pi(uj) = δij for each i, j. Hence the conditions
of Lemma 1.2 are satisfied, and so ∂ = (∂1, . . . , ∂N ) : A → AN is a universal
derivation. Since ϕ is an isomorphism, we conclude that d0 = ϕ∂ is a universal
derivation as well, i.e., A is g-parallelizable. �

Combining the above theorem with Theorem 4.4, we obtain the following.

Corollary 5.3. Let g be a nilpotent Lie algebra, and let H be a well-behaved
power series envelope of U(g) such that H ′ is contractible. Then H is stably
flat over U(g).

Corollary 5.4. For each nilpotent Lie algebra g, [U(g)] is stably flat over
U(g).
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Proof. By Lemma 5.1, the algebra dual to [U(g)] is isomorphic to C[z1, . . . , zN ]
and hence is contractible. Now it remains to apply Corollary 5.3. �

6. Arens-Michael envelopes of universal enveloping algebras

In this section we prove that for each positively graded, finite-dimensional
Lie algebra g the Arens-Michael envelope of U(g) is stably flat over U(g). First
we recall some facts on Arens-Michael envelopes.

6.1. Arens-Michael envelopes. Arens-Michael envelopes of topological al-
gebras (under a different name) were introduced by Taylor ([69], Definition
5.1). Here we follow the terminology of Helemskii’s book [26].

Definition 6.1 ([26], Chap. V). Let A be a topological algebra. A pair (Â, ιA)

consisting of an Arens-Michael algebra Â and a continuous homomorphism

ιA : A→ Â is called the Arens-Michael envelope of A if for each Arens-Michael
algebra B and for each continuous homomorphism ϕ : A → B there exists a

unique continuous homomorphism ϕ̂ : Â → B making the following diagram
commutative:

Â
ϕ̂ //___ B

A

ιA

OO

ϕ

??��������

In the above situation, we say that ϕ̂ extends ϕ (though ιA is not injective
in general; see Remark 6.2 below).

Remark 6.1. In the above definition, it suffices to consider only homomor-
phisms with values in Banach algebras. This is immediate from the fact that
each Arens-Michael algebra is an inverse limit of Banach algebras (see, e.g.,
[26], Chap. V).

Clearly, the Arens-Michael envelope is unique in the sense that if (Â, ιA)
and (A, jA) are Arens-Michael envelopes of A, then there exists a unique iso-

morphism j : Â → A of topological algebras such that the following diagram
is commutative:

Â
j //_______ A

A

ιA

__>>>>>>>> jA

??��������

Recall (see [69] and [26, Chap. V]) that the Arens-Michael envelope of a
topological algebra A always exists and can be obtained as the completion of
A w.r.t. the family of all continuous submultiplicative seminorms on A. This

implies, in particular, that ιA : A→ Â has dense range. It is easy to see that

the correspondence A 7→ Â is a functor from the category TA of topological
algebras to the category AM of Arens-Michael algebras. In what follows, we
call it the Arens-Michael functor. Clearly, the Arens-Michael functor is the
left adjoint to the forgetful functor from AM to TA.



COMPLETIONS OF UNIVERSAL ENVELOPING ALGEBRAS 33

If A is not equipped with a topology, then by an Arens-Michael envelope of
A we mean the Arens-Michael envelope of the finest locally convex algebra As

(see Section 1).
Here are two basic examples due to Taylor [70].

Example 6.1. The Arens-Michael envelope of the polynomial algebra C[z1, . . . , zn]
is the algebra of entire functions O(Cn) endowed with the compact-open topol-
ogy.

Example 6.2. Let Fn be the free C-algebra on n generators ζ1, . . . , ζn. Given
a k-tuple α = (α1, . . . , αk) of integers from [1, n], we set ζα = ζα1 · · · ζαk

∈ Fn

and |α| = k. It is convenient to agree that the identity of Fn corresponds to
the tuple of length zero (k = 0). The algebra Fn of “free power series” consists
of all formal expressions a =

∑
α λαζα satisfying the condition

‖a‖ρ =
∑

α

|λα|ρ
|α| <∞ for all 0 < ρ <∞ .

The system of seminorms {‖ ·‖ρ : 0 < ρ <∞} makes Fn into a Fréchet-Arens-
Michael algebra. Evidently, Fn is a subalgebra of Fn. Taylor [70] proved that
Fn is the Arens-Michael envelope of Fn. Note that in the case n = 1 we have
F1 = C[z] and F1

∼= O(C).

Remark 6.2. It should be noted that the Arens-Michael envelope can be trivial
even in very simple cases. For example, let A be the Weyl algebra, i.e., the
algebra with two generators p, q subject to the relation [p, q] = 1. It is a
standard exercise from spectral theory (see, e.g., [26], Prop. 2.1.21) to show

that A has no nonzero submultiplicative seminorms. Hence Â = 0.
Another example of this kind is given in [26], Chap. V.

Remark 6.3. If g is a finite-dimensional Lie algebra, then (in contrast to the

previous example) the homomorphism ιU(g) : U(g) → Û(g) is injective. This
readily follows from the fact that finite-dimensional representations (and, a
fortiori, Banach space representations) of g separate the points of U(g) (see,
e.g., [11, 2.5.7]).

The next proposition shows that the Arens-Michael functor commutes with
quotients.

Proposition 6.1. Let A be a topological algebra and I a two-sided ideal of A.

Denote by J the closure of ιA(I) in Â. Then J is a two-sided ideal of Â, and

the homomorphism A/I → Â/J induced by ιA : A→ Â extends to a topological
algebra isomorphism

Â/I ∼= (Â/J)∼ .

Proof. Since ιA has dense range, we see that J is indeed an ideal of Â, and so

(Â/J)∼ is an Arens-Michael algebra. Consider the homomorphism ῑ : A/I →

(Â/J)∼ taking each a+ I ∈ A/I to ιA(a)+J . We claim that ((Â/J)∼, ῑ) is the
Arens-Michael envelope of A/I. Indeed, each homomorphism ϕ from A/I to
an Arens-Michael algebra C determines a homomorphism ψ : A→ C vanishing

on I. Each such homomorphism extends to a homomorphism ψ̂ : Â→ C that

vanishes on J and hence gives a homomorphism ϕ̂ : (Â/J)∼ → C. It is now
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elementary to check that ϕ̂ῑ = ϕ. The uniqueness of ϕ̂ is immediate from the
fact that ῑ has dense range. �

Since each separated quotient of a Fréchet space is complete, we obtain the
following

Corollary 6.2. Under the conditions of Proposition 6.1, assume that Â is a

Fréchet algebra. Then Â/I ∼= Â/J .

Corollary 6.3. If A is a finitely generated algebra, then Âs is a nuclear Fréchet
algebra.

Proof. Since A is finitely generated, it is isomorphic to a quotient of the free

algebra Fn for some n. By Corollary 6.2, Â is isomorphic to a quotient of
F̂n = Fn (see Example 6.2). Since Fn is a nuclear Fréchet space [44], so is

Â. �

Another useful property of the Arens-Michael functor is that it commutes
with projective tensor products.

Proposition 6.4. Let A,B be ⊗̂-algebras. Then there exists a topological
algebra isomorphism

(A ⊗̂B)̂∼= Â ⊗̂ B̂ .

Proof. Set ι = ιA ⊗ ιB : A ⊗̂B → Â ⊗̂ B̂. Clearly, ι is a continuous homomor-
phism. Suppose ϕ : A ⊗̂B → C is a homomorphism to some Arens-Michael al-
gebra C. Then ϕ1 : A→ C, ϕ1(a) = ϕ(a⊗1) and ϕ2 : B → C, ϕ2(b) = ϕ(1⊗b)

extend to continuous homomorphisms ϕ̂1 : Â → C and ϕ̂2 : B̂ → C, i.e., we

have ϕ̂1ιA = ϕ1 and ϕ̂2ιB = ϕ2. Let ϕ̂ : Â ⊗̂ B̂ → C be the linear continuous

map associated to the bilinear map Â × B̂ → C, (a, b) 7→ ϕ̂1(a)ϕ̂2(b). Evi-
dently, we have ϕ̂ι = ϕ. Since ι has dense range, we conclude that ϕ̂ is an
algebra homomorphism. For the same reason, ϕ̂ is a unique homomorphism

extending ϕ. Hence (Â ⊗̂ B̂, ι) is the Arens-Michael envelope of A ⊗̂B. �

Proposition 6.5. Let A be a topological algebra. Then (Aop)̂∼= Âop.

Proof. It suffices to use the 1-1 correspondence between continuous homomor-
phisms Aop → B and continuous homomorphisms A→ Bop. �

Corollary 6.6. Let A be a ⊗̂-algebra. Then (Ae)̂∼= (Â)e.

The next proposition shows that the Arens-Michael functor can also be
considered as a functor from the category HTA⊗̂ of Hopf ⊗̂-algebras to the

category HAM⊗̂ of Hopf ⊗̂-algebras that are Arens-Michael algebras.

Proposition 6.7. Let H be a Hopf ⊗̂-algebra. Then there exists a unique

Hopf ⊗̂-algebra structure on Ĥ such that ιH : H → Ĥ becomes a Hopf ⊗̂-
algebra homomorphism. Moreover, if L is both a Hopf ⊗̂-algebra and an Arens-
Michael algebra, and ϕ : H → L is a Hopf ⊗̂-algebra homomorphism, then so

is ϕ̂ : Ĥ → L.
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Proof. To obtain ∆Ĥ , εĤ, and SĤ , it suffices to apply the Arens-Michael func-
tor to ∆H , εH, and SH , respectively, and to use Propositions 6.4 and 6.5. The
Hopf algebra axioms (such as the coassociativity of ∆̂Ĥ etc.) are then readily
verified by applying the Arens-Michael functor to the appropriate commutative
diagrams involving H .

To prove that ϕ̂ respects comultiplication, it is enough to show that (ϕ̂ ⊗
ϕ̂)∆ĤιH = ∆Lϕ̂ιH . We have

(ϕ̂ ⊗ ϕ̂)∆ĤιH = (ϕ̂ ⊗ ϕ̂)(ιH ⊗ ιH)∆H = (ϕ ⊗ ϕ)∆H = ∆Lϕ = ∆Lϕ̂ιH .

A similar argument shows that ϕ̂SĤ = SLϕ̂ and εLϕ̂ = εĤ . Hence ϕ̂ is a Hopf

⊗̂-algebra homomorphism. �

Example 6.3. Let g be a finite-dimensional Lie algebra and U(g) the universal
enveloping algebra of g. Then it follows from Proposition 6.7 and Corollary 6.3

that Û(g) is a well-behaved (see the beginning of Section 4) Hopf ⊗̂-algebra.

Denote by ιg : g → Û(g) the restriction of ιU(g) to g. Then it is easy to

see that Û(g) is characterized by the following universal property: for each
Arens-Michael algebra A and each Lie algebra homomorphism ϕ : g→ A there

exists a unique ⊗̂-algebra homomorphism ψ : Û(g) → A such that ψιg = ϕ.
In particular, for each Lie algebra homomorphism f : g → h there exists a

unique ⊗̂-algebra homomorphism Û(f) : Û(g) → Û(h) such that Û(f)ιg =

ιhf . Moreover, Proposition 6.7 implies that Û(f) is in fact a Hopf ⊗̂-algebra
homomorphism (cf. [5], Chap. II, §1, no. 4).

6.2. Arens-Michael envelopes of filtered and graded algebras. In this
subsection we describe Arens-Michael envelopes of locally finite graded alge-
bras. As a corollary, we show that the Arens-Michael envelope of the universal
enveloping algebra of a nilpotent Lie algebra g is a power series envelope (see
Definition 5.1) provided g admits a positive grading.

Recall that a decreasing filtration on an algebra A is a chain of linear sub-
spaces

A = A0 ⊃ A1 ⊃ A2 ⊃ . . . satisfying AiAj ⊂ Ai+j .

The filtration is called separated if
⋂

nAn = {0} and is said to be of finite type
if dimAn/An+1 <∞ for all n. In the sequel all filtrations are assumed to have
these properties.

As in Section 5, we endow each A/An with the usual locally convex topology
of a finite-dimensional vector space, and set [A] = lim

←−
A/An.

The following proposition is immediate from the definition of [A].

Proposition 6.8. For each n ∈ Z+ let Vn be a linear complement of An+1 in
An. Fix a norm on each Vn. Then, as a locally convex space, [A] is isomorphic
to the space of all formal series {a =

∑
i vi : vi ∈ Vi} endowed with the family

of seminorms {‖ · ‖n : n ∈ Z+} defined by

‖a‖n =
n∑

i=0

‖vi‖ for each a =
∑

i

vi.
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Since each A/An is a finite-dimensional (hence Banach) algebra, we see that
[A] is an Arens-Michael algebra. Therefore the canonical homomorphism

θ : A→ [A], x 7→ (x+ An)n∈Z+ (29)

uniquely extends to a homomorphism

θ̂ : Â→ [A], θ̂ιA = θ. (30)

Proposition 6.9. Let A be an algebra. Suppose that A admits a decreas-
ing, separated filtration of finite type. Then the canonical homomorphism

ιA : A→ Â is injective. In other words, submultiplicative seminorms separate
the points of A.

Proof. The condition
⋂

nAn = {0} implies that θ is injective. Since θ = θ̂ιA,
we conclude that ιA is also injective. �

Our next task is to show that θ̂ : Â → [A] is also injective provided the
filtration on A comes from a grading.

Let A =
⊕

n≥0A
n be a graded algebra (see Subsection 1.3). We assume

that A is locally finite, i.e., dimAn <∞ for each n. Setting An =
⊕

i≥nA
i, we

obtain a decreasing, separated filtration of finite type on A.
The following is a direct consequence of Proposition 6.8.

Proposition 6.10. Let A =
⊕

n≥0A
n be a locally finite graded algebra. Then,

as a ⊗̂-algebra, [A] is isomorphic to the direct product
∏

nA
n endowed with

the multiplication

(ai) · (bj) = (ck), ck =
∑

i+j=k

aibj . (31)

In order to describe the Arens-Michael envelope of A as a certain “power
series algebra”, it will be convenient to use “vector-valued Köthe spaces”,
which are more or less straightforward generalizations of classical Köthe spaces
(see, e.g., [59]).

Let E = {Ei : i ∈ N} be a countable family of Hausdorff locally convex
spaces. For each i denote by N(Ei) the set of all continuous seminorms on Ei.

Definition 6.2. An E-power set is a family P of functions p : N→
⋃

i N(Ei)
such that pi = p(i) ∈ N(Ei) for each i, and the following conditions are
satisfied:

1) for each i ∈ N the family of seminorms {pi : p ∈ P} generate the
original topology on Ei;

2) for each p, q ∈ P there exists r ∈ P such that ri(x) ≥ max{pi(x), qi(x)}
for each i ∈ N and each x ∈ Ei.

Definition 6.3. Given a family E = {Ei : i ∈ N} of Hausdorff l.c.s.’s and an
E-power set P , define the vector-valued Köthe space λ(P,E) by

λ(P,E) =
{
x = (xi) ∈

∏

i

Ei : ‖x‖p =
∑

i

pi(xi) <∞ ∀p ∈ P
}
.

Remark 6.4. If Ei = C for each i, then we come to the classical notion of
Köthe sequence space.
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Evidently, λ(P,E) is a Hausdorff locally convex space w.r.t. the family of
seminorms {‖ · ‖p : p ∈ P}.

Proposition 6.11. λ(P,E) is complete iff all the Ei’s are complete.

We omit the proof, because it is a straightforward modification of the clas-
sical fact that ℓ1 is complete.

Now let A =
⊕

n≥0A
n be a locally finite graded algebra. As usual, we endow

each An with the usual topology of a finite-dimensional vector space.

Definition 6.4. A graded submultiplicative seminorm on A is a function
p : N →

⋃
n N(An) such that pn = p(n) ∈ N(An) for all n ∈ Z+, and

pi+j(ab) ≤ pi(a)pj(b) for all i, j ∈ Z+ and all a ∈ Ai, b ∈ Aj.

If p is a graded submultiplicative seminorm on A, then the associated semi-
norm ‖ · ‖p : A→ R+ defined by ‖a‖p =

∑
i pi(ai) for each a =

∑
i ai, ai ∈ A

i

is submultiplicative in the usual sense. Therefore graded submultiplicative
seminorms on A are in 1-1 correspondence with submultiplicative seminorms
‖ · ‖ on A satisfying the condition ‖a‖ =

∑
i ‖ai‖ for each a =

∑
i ai, ai ∈ A

i.

Denote by P the collection of all graded submultiplicative seminorms on A.

Lemma 6.12. P is an A-power set.

Proof. To check condition 1) of Definition 6.2, it suffices to show that for each
n there exists p ∈ P such that pn is a norm on An. Fix a submultiplicative
norm on the finite-dimensional algebra A/An+1, denote by τn+1 : A→ A/An+1

the quotient map, and set pi(a) = ‖τn+1(a)‖ for each i ∈ Z+ and each a ∈ Ai.
Evidently, p is a graded submultiplicative seminorm on A. Since ‖ ·‖ is a norm
on A/An+1, and since An ∩Ker τn+1 = {0}, we conclude that pn is a norm on
An.

Given p, q ∈ P , the function r = max{p, q} (i.e., ri(a) = max{pi(a), qi(a)}
for each a ∈ Ai and each i ∈ Z+) clearly belongs to P . Hence condition 2) of
Definition 6.2 is also satisfied, so that P is an A-power set. �

Theorem 6.13. Let A =
⊕

n≥0A
n be a locally finite graded algebra, and let

P be the set of all graded submultiplicative seminorms on A. Denote by ιA
the canonical embedding of A into λ(P,A) that is the identity on each An.
Then λ(P,A) is a subalgebra of

∏
nA

n, and (λ(P,A), ιA) is the Arens-Michael
envelope of A.

Proof. Given a = (ai) and b = (bj) in λ(P,A), we must show that the element
c = ab ∈

∏
nA

n defined by (31) belongs to λ(P,A). For each p ∈ P we have
∑

k

pk(ck) ≤
∑

k

∑

i+j=k

pk(aibj) ≤
∑

k

∑

i+j=k

pi(ai)pj(bj)

=
∑

i

pi(ai)
∑

j

pj(bj) = ‖a‖p‖b‖p.

Hence ab ∈ λ(P,A), and ‖ab‖p ≤ ‖a‖p‖b‖p. This implies, in particular, that
λ(P,A) is an Arens-Michael algebra, and ιA is an algebra homomorphism.

Now let ϕ : A→ B be a homomorphism to some Arens-Michael algebra B.
Fix a submultiplicative seminorm ‖ · ‖ on B, and define p : Z+ →

⋃
n N(An)
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by pi(ai) = ‖ϕ(ai)‖ for each i ∈ Z+ and each ai ∈ Ai. Evidently, p is a
graded submultiplicative seminorm on A, and ‖ϕ(a)‖ ≤ ‖ιA(a)‖p for each
a ∈ A. This implies that ϕ is continuous w.r.t. the topology induced on A
from λ(P,A). Since A is dense in λ(P,A), we see that there exists a unique
continuous homomorphism ϕ̂ : λ(P,A)→ B extending ϕ. Hence λ(P,A) is the
Arens-Michael envelope of A. �

Corollary 6.14. Let A =
⊕

n≥0A
n be a locally finite graded algebra, and let

θ : A → [A] be the canonical homomorphism (29). Then the induced homo-

morphism θ̂ : Â→ [A] (see (30)) is injective.

Proof. If we identify [A] with
∏

nA
n via Proposition 6.10 and Â with λ(P,A)

via Theorem 6.13, then θ̂ becomes the natural inclusion of λ(P,A) into
∏

nA
n.
�

Now let g =
⊕ℓ

n=1 gn be a positively graded, finite-dimensional Lie algebra.
As in the case of associative algebras (see above), we may define a filtration
F = {gn} on g by setting gn =

⊕
i≥n gi. It is easy to show that the universal

enveloping algebra U(g) has a grading U(g) =
⊕

n≥0 U(g)n such that the
associated filtration on U(g) coincides with (25). Indeed, let Tg be the tensor
algebra of g, and let L be the two-sided ideal of Tg generated by elements of
the form x⊗ y − y ⊗ x− [x, y]; x, y ∈ g. Then we have U(g) ∼= Tg/L. If g is
graded, then we can define a grading on Tg by

(Tg)n =
⊕

i1+···+ik=n

gi1 ⊗ · · · ⊗ gik .

Thus Tg becomes a locally finite graded algebra, and L becomes a graded ideal
of Tg. Therefore U(g) = Tg/L is also a locally finite graded algebra. We have

U(g)n =
∑

i1+···+ik=n

gi1 . . . gik .

Choose an F -basis (ei) of g consisting of homogeneous elements, and set

V n = span{eα : w(α) = n}.

By the Poincaré-Birkhoff-Witt theorem, we have U(g) =
⊕

n V
n. On the other

hand, it is clear that V n ⊂ U(g)n. Since U(g) =
⊕

n U(g)n, we conclude that
V n = U(g)n for all n. Hence the associated filtration of U(g) has the form

U(g)n =
⊕

m≥n

U(g)m = span{eα : w(α) ≥ n} = Jn

(see (25)).
Now Proposition 6.7, Example 6.3, and Corollary 6.14 imply the following.

Proposition 6.15. Let g be a positively graded Lie algebra. Then Û(g) to-

gether with the homomorphisms ιU(g) : U(g) → Û(g) and θ̂ : Û(g) → [U(g)] is
a power series envelope of U(g).



COMPLETIONS OF UNIVERSAL ENVELOPING ALGEBRAS 39

6.3. The contractibility of Û ′(g). Let g be a positively graded Lie algebra.

In order to prove that Û(g) is stably flat over U(g), it now remains to show

that the strong dual, Û ′(g), of Û(g) is a contractible ⊗̂-algebra (see Corollary
5.3). To this end, it will be convenient to use the following Lie algebra version
of contractibility.

Definition 6.5. We say that a finite-dimensional Lie algebra g is contractible
if there exists a smooth mapping h : [0, 1]× g→ g such that

(i) for each t ∈ [0, 1] the map ht : g→ g, ht(X) = h(t, X) is a Lie algebra
homomorphism;

(ii) h0 = 0 and h1 = 1g.

Example 6.4. Each positively graded Lie algebra g = g1⊕· · ·⊕gℓ is contractible.
To see this, it suffices to set ht(X) = tnX for each X ∈ gn and each t ∈ [0, 1].

Example 6.5. Let g be the 2-dimensional Lie algebra with basis X, Y and
commutation relation [X, Y ] = Y . Take a function f ∈ C∞(R) such that
f(t) = 0 for each t ≤ 0 and f(t) = 1 for each t ≥ 1, and define ht : g → g by
ht(X) = f(2t)X and ht(Y ) = f(2t− 1)Y . It is easy to check that ht satisfies
the conditions of Definition 6.5, and so g is contractible.

Remark 6.5. It is easy to prove that each contractible Lie algebra is solvable.
Indeed, suppose that g is not solvable, and consider the Levi decomposition
g = r ⊕ l (r = rad g, l is a semisimple subalgebra, l 6= 0). It is clear that
a semidirect summand (i.e., a retract in the category of Lie algebras) of a
contractible Lie algebra is contractible. Thus it suffices to show that l is not
contractible. Since l is a direct sum of simple algebras, we need only prove that
a simple Lie algebra is not contractible. Assume towards a contradiction that
g is both simple and contractible, and let ht : g→ g be a contracting homotopy
from Definition 6.5. Since g is simple, each ht is either 0 or an automorphism.
Replacing, if necessary, the segment [0, 1] by [t0, 1] where t0 = max{t : ht = 0},
we may assume that ht is an automorphism for all t > 0. Let B(·, ·) denote
the Killing form on g. By Cartan’s criterion, B is nondegenerate. Since ht is
an automorphism, we have B(ht(X), ht(Y )) = B(X, Y ) for all X, Y ∈ g and
all t > 0. Letting t→ 0, we obtain B ≡ 0, which is a contradiction.

Remark 6.6. It should be noted that not every nilpotent Lie algebra is con-
tractible. For example, let g be the 7-dimensional Lie algebra with basis
X1, . . . , X7 and commutation relations

[X1, Xi] = Xi+1 (i = 2, . . . , 6),

[X2, X3] = −X6, [X3, X4] = X7, [X2, X4] = [X2, X5] = −X7

(see [15]). Let {ht : t ∈ [0, 1]} be a continuous family of endomorphisms of
g, and let (hij(t)) be the matrix of ht w.r.t. the basis X1, . . . , X7. A routine
calculation shows that if h11(t0) 6= 0 and h22(t0) 6= 0 at some point t0, then
hii(t0) = 1 for all i = 1, . . . , 7. This clearly implies that g is not contractible.

Our next goal is to prove that the contractibility of g implies that of Û ′(g).
We need some facts on topological vector spaces. Most of them are standard
and can be easily deduced from [64] and [20].
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Let E, F , and G be locally convex spaces (l.c.s’s). Consider the vector space
B(E × F,G) of all separately continuous bilinear mappings from E ×F to G.
We endow this space with the topology of bibounded convergence (i.e., the
topology of uniform convergence on direct products of bounded sets). There
is a natural mapping

L (E,L (F,G))→ B(E × F,G) (32)

defined by the rule ϕ 7→ ((x, y) 7→ ϕ(x)(y)). Obviously, this mapping is
topologically injective. A bilinear map Φ : E × F → G belongs to the image
of the mapping (32) iff for each 0-neighborhood U ⊂ G and each bounded set
B ⊂ F there exists a 0-neighborhood V ⊂ E such that Φ(V × B) ⊂ U . Such
bilinear maps are usually called F -hypocontinuous. If E is barreled, then each
separately continuous map of E×F toG is F -hypocontinuous (see [64, III.5.2]),
so the mapping (32) is surjective in this case. Therefore, for each barreled l.c.s.
E and arbitrary l.c.s.’s F and G we have a topological isomorphism

L (E,L (F,G)) ∼= B(E × F,G). (33)

Recall also (see [20], Chapitre II, Théorème 6 or [64, IV.9.4]) that for each
complete barreled nuclear l.c.s. E and each complete l.c.s. F there exists a
natural topological isomorphism

E ⊗̂F → L (E ′, F ) (34)

defined by x⊗ y 7→ (x′ 7→ 〈x, x′〉y).

Lemma 6.16. Let E be either a nuclear Fréchet space or a complete nuclear
(DF )-space, and let F be a complete nuclear barreled l.c.s. Then for each
complete l.c.s. G there exists a topological isomorphism

L (E,F ⊗̂G) ∼−→ L (F ′, E ′ ⊗̂G) (35)

taking each u : E → F ⊗̂G to v : F ′ → E ′ ⊗̂G such that

〈v(y′), x⊗ z′〉 = 〈u(x), y′ ⊗ z′〉 , (36)

for each x ∈ E, y′ ∈ F ′, z′ ∈ G′.

Proof. Applying (34) and (33), we obtain topological isomorphisms

L (E,F ⊗̂G) ∼= L (E,L (F ′, G)) ∼= B(E × F ′, G) ∼= B(F ′ × E,G). (37)

Since F is complete and nuclear, it is semireflexive [64, IV.5], and hence F ′

is barreled (see [64], IV.5.5). Further, the assumptions on E imply that E is
reflexive, and E ′ is barreled and nuclear [20]. Using again (33) and (34), we
see that

B(F ′ ×E,G) ∼= L (F ′,L (E,G))

∼= L (F ′,L (E ′′, G)) ∼= L (F ′, E ′ ⊗̂G). (38)

Combining (37) and (38), we obtain the required isomorphism (35). Relation
(36) is then readily verified. �

Recall that for each smooth manifold M and each complete l.c.s. X there
exists a topological isomorphism C∞(M) ⊗̂X ∼= C∞(M,X) taking an elemen-
tary tensor f ⊗ x to the function t 7→ f(t)x (see [20], Chap. II, §3, no. 3).
Applying the previous lemma to G = C∞(M), we obtain the following.
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Corollary 6.17. Let E and F be locally convex spaces satisfying the conditions
of Lemma 6.16, and let M be a smooth manifold. Then there exists a topological
isomorphism

L (E,C∞(M,F )) ∼= L (F ′, C∞(M,E ′))

taking each u : E → C∞(M,F ) to v : F ′ → C∞(M,E ′) such that

〈v(y′)(t), x〉 = 〈y′, u(x)(t)〉 ,

for each x ∈ E, y′ ∈ F ′, t ∈M .

Theorem 6.18. Let g be a contractible, finite-dimensional Lie algebra. Then

Û ′(g) is contractible as a commutative ⊗̂-algebra.

Proof. Set I = [0, 1] and suppose that h : I×g→ g is a smooth map satisfying
the conditions of Definition 6.5. Note that the space C∞(I, g) is a Lie algebra
w.r.t. the pointwise multiplication. It is readily seen that the map

F : g→ C∞(I, g), F (X)(t) = h(t, X)

is a Lie algebra homomorphism. Using the universal property of Û = Û(g) (see

Example 6.3) and the obvious fact that C∞(I, Û) is an Arens-Michael algebra,

we obtain a unique continuous homomorphism Ψ : Û → C∞(I, Û) that fits into
the commutative diagram

Û
Ψ // C∞(I, Û)

g

ιg

OO

F
// C∞(I, g)

C∞(I,ιg)

OO

For each t ∈ I define ψt : Û → Û by ψt(x) = Ψ (x)(t). Evidently, ψt is an
algebra homomorphism. Using the above diagram, it is readily seen that ψt

extends ht in the sense that ψtιg = ιght. Hence ψt = Û(ht) (see Example 6.3),
and so ψt is a Hopf ⊗̂-algebra homomorphism. Since h1 = 1g and h0 = 0, we
see that ψ1 = 1Û and ψ0 = ηÛεÛ .

Now set A = Û ′ and let Φ : A → C∞(I, A) be the map corresponding to Ψ
under the isomorphism

L (Û , C∞(I, Û)) ∼= L (A,C∞(I, A))

(see Corollary 6.17). For each a ∈ A, t ∈ I, and x ∈ Û we have

〈Φ(a)(t), x〉 = 〈a, Ψ (x)(t)〉 = 〈a, ψt(x)〉 = 〈a ◦ ψt, x〉.

Hence Φ(a)(t) = a ◦ ψt. In other words, for each t ∈ I the map ϕt : A →
A defined by ϕt(a) = Φ(a)(t) is the dual of ψt. Since ψt is a ⊗̂-coalgebra
homomorphism, we conclude that ϕt is a ⊗̂-algebra homomorphism. Hence so
is Φ. Note also that ϕ1 = 1A and ϕ0 = (ηÛεÛ)′ = ηAεA.

Now it is easy to check that Φ : A → C∞(I, A) ∼= C∞(I) ⊗̂A yields a ho-
motopy between 1A and ηAεA (see Definition 4.2). Indeed, consider the aug-
mentations εi : C

∞(I) → C, εi(f) = f(i) (i = 0, 1). Then for each a ∈ A we
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have
(
(ε0 ⊗ 1A)Φ

)
(a) = Φ(a)(0) = ϕ0(a) = (ηAεA)(a),

(
(ε1 ⊗ 1A)Φ

)
(a) = Φ(a)(1) = ϕ1(a) = a.

Hence (ε0 ⊗ 1A)Φ = ηAεA, and (ε1 ⊗ 1A)Φ = 1A. Therefore 1A is homotopic
to ηAεA, i.e., A is contractible. �

Now, applying Corollary 5.3, Proposition 6.15, and Theorem 6.18, we obtain
the following.

Theorem 6.19. Let g be a finite-dimensional, positively graded Lie algebra.

Then Û(g) is stably flat over U(g).

We end this section with an application of the above theorem to computing

injective homological dimensions of Û(g)-modules. To this end, we need a
formula of “Poincaré duality” type. Let g be a Lie algebra of dimension n.
Recall (see, e.g., [33, 6.10]) that for each left g-module V there exist vector
space isomorphisms

Hp
Lie(g, V ) ∼= HLie

n−p(g, V ⊗(
∧n

g)∗) (p ∈ Z).

If g is nilpotent, then it is easily seen that the action of g on
∧n

g is trivial.
(To see this, it suffices to take a basis (ei) of g with the property that [ei, ej] ∈
span{ek : k ≥ max{i, j}} and to observe that each ei acts on e1 ∧ . . . ∧ en

trivially.) Therefore the above formula takes the form

Hp
Lie(g, V ) ∼= HLie

n−p(g, V ) (p ∈ Z).

Combining this with Proposition 3.4, we obtain the following.

Corollary 6.20. Let g be a finite-dimensional, positively graded Lie algebra,

and let n = dim g. Then for each M ∈ Û(g)-mod-Û(g) there exist vector
space isomorphisms

H p(Û(g),M) ∼= Hn−p(Û(g),M) (p ∈ Z).

Corollary 6.21. Let g be a finite-dimensional, positively graded Lie algebra.
Then

(i) inj.dhÛ(g)M = dim g for each M ∈ Û(g)-mod, M 6= 0;

(ii) dhÛ(g)M = dim g for each Banach M ∈ Û(g)-mod, M 6= 0.

In particular, there are no nonzero injective Û(g)-⊗̂-modules.

Proof. This is an immediate consequence of [60, Theorem 2.1], [61, Corollary
4.1.3], and Corollary 6.20. �

7. Weighted completions of universal enveloping algebras

In this section we describe one more class of Fréchet Hopf algebras that
are stably flat completions of universal enveloping algebras. These algebras
were introduced by Goodman in [18] and [19]. Each of them is a power series
envelope of U(g) (see Definition 5.1) and consists of power series x ∈ [U ]
subject to certain growth conditions.

Recall some definitions and notation from [18] and [19]. Let g be a nilpotent
Lie algebra, and let N = dim g. Choose a positive filtration F on g, and
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fix an F -basis (ei) for g (see Section 5). A sequence M = {Mα : α ∈ ZN
+}

of positive numbers is an F -weight sequence if M0 = 1 and Mγ ≤ MαMβ

whenever w(γ) ≥ w(α)+w(β). Given an F -weight sequence M , consider the
space

U(g)M =
{
x =

∑

α

cαe
α ∈ [U ] : ‖x‖r =

∑

α

|cα|α!Mαr
w(α) <∞ ∀r > 0

}
.

Clearly, U(g)M is a Fréchet space w.r.t. the topology defined by the family
of seminorms {‖ · ‖r : r > 0}. Using the Grothendieck-Pietsch criterion (see,
e.g., [59]), it is easy to see that U(g)M is nuclear. Goodman [18] proved that
U(g)M is a subalgebra of [U ], and the multiplication in U(g)M is (jointly)
continuous w.r.t. the above topology. Note, however, that U(g)M need not be
an Arens-Michael algebra.

Example 7.1. Let g be an abelian Lie algebra endowed with the trivial filtration
F (i.e., F1 = g and F2 = 0), and let Mα = |α|−|α|. Then it is easy to see that
U(g)M is isomorphic to the algebra O(CN) of entire functions on CN . Indeed,
O(CN) is topologized by the family of seminorms ‖ · ‖′r (r > 0) defined by
‖f‖′r =

∑
α |cα|r

|α| for each f(z) =
∑

α cαz
α ∈ O(CN). We clearly have α! ≤

|α||α| for each α ∈ ZN
+ . On the other hand, the Cauchy estimates applied to the

entire function z 7→ exp(
∑

i zi) imply that |α||α| ≤ C |α|α! for some constant
C > 0. Since w(α) = |α| in this case, we obtain ‖f‖′r/C ≤ ‖f‖r ≤ ‖f‖

′
r for all

polynomials f and all r > 0. Hence the families of seminorms ‖ · ‖r and ‖ · ‖′r
are equivalent, and so U(g)M and O(CN) are isomorphic.

Example 7.2. Let g be an abelian Lie algebra endowed with the trivial filtra-
tion, and let Mα = 1 for all α. Then U(g)M is isomorphic to the algebra of
entire functions on CN of exponential order ≤ 1 and minimal type (cf. [63]).

An F -weight sequence M is entire [19] if it satisfies the following two con-
ditions:

∑

α

Mαr
w(α) <∞ for all r > 0; (39)

sup
α,β 6=0
{Aw(α)/w(β)M

1/w(β)
β M−1/w(α)

α } <∞ for some A > 0.

For instance, the weight sequence of Example 7.1 is entire [19], while that
of Example 7.2 is not entire.

If M is an entire F -weight sequence, then the dual of U(g)M admits an
explicit description as a certain function algebra [19]. Namely, let G be the
connected, simply connected complex Lie group corresponding to g. Since g

is nilpotent, the exponential map exp: g→ G is biholomorphic. The homoge-
neous norm on G is defined by

|g| = max
i
|ti|

1/wi for each g = exp(
∑

i

tiei) ∈ G.

Given z ∈ C, define a linear map δz : g→ g by δz(ei) = zwiei. We use the same
symbol δz to denote the corresponding holomorphic self-map of G satisfying
δz ◦ exp = exp ◦δz. It is immediate that δ1 = 1G, δ0(g) = e for all g ∈ G (here
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e is the identity of G), δzδz′ = δzz′, δ
−1
z = δz−1 for each z 6= 0, and |δzg| = |z||g|

for each z ∈ C, g ∈ G.
Given an entire F -weight sequence M , define the weight function WM on

G by

WM (g) =
∑

α

Mα|g|
w(α).

Condition (39) implies that WM is finite on G. For example, if g is abelian
and Mα = |α|−|α| (see Example 7.1), then WM satisfies the estimate

exp(N |g|/C) ≤WM (g) ≤ exp(N |g|). (40)

Given r > 0, consider the space

AM ,r(G) =
{
f ∈ O(G) : Nr(f) = sup

g∈G

|f(g)|

WM (δrg)
<∞

}
.

Evidently, AM ,r(G) is a Banach space w.r.t. the normNr. Note thatWM (δsg) ≤
WM (δrg) whenever 0 ≤ s ≤ r. This implies that AM ,s(G) ⊂ AM ,r(G) for each
s ≤ r, and Nr(f) ≤ Ns(f) for each f ∈ AM ,s(G). Therefore we may consider
the locally convex space

AM (G) = lim
−→

AM ,r(G).

Goodman [19] proved that AM (G) is a subalgebra of O(G) (under pointwise
multiplication), and the multiplication is jointly continuous w.r.t. the induc-
tive limit topology on AM (G).

For example, if g is abelian and Mα = |α|−|α| (Example 7.1), then it follows
from (40) that AM (G) is the algebra of entire functions onG = g of exponential
order ≤ 1.

Denote by P(G) the algebra of polynomial functions on G (i.e., functions f
such that f ◦ exp is a polynomial on g). This is a dense subalgebra of AM (G)
(see [19]). Using the identification P(G)⊗P(G) ∼= P(G×G), one can show
that P(G) has a Hopf algebra structure given by (20) (cf. [18], Prop. 2.1). The
algebra U(g) acts on P(G) via left-invariant differential operators, and this
leads to a canonical Hopf algebra pairing U(g)×P(G)→ C defined by 〈a, f〉 =
(af)(e) for a ∈ U(g), f ∈P(G) (cf. [28, XVI.3]). Goodman [19] proved that
this pairing extends to a pairing U(g)M ×AM (G)→ C and defines a topolog-
ical isomorphism between U(g)M and the strong dual space of AM (G). Since
U(g)M is a nuclear Fréchet space, it follows that the multiplication on AM (G)
yields (by duality) a comultiplication U(g)M → U(g)M ⊗̂U(g)M that extends
the comultiplication of U(g). Similarly, the multiplication on U(g)M yields a
comultiplication AM (G) → AM (G) ⊗̂AM (G) that extends the comultiplica-
tion of P(G). It is also easy to see that the antipode and the counit of U(g)
(resp. P(G)) extend by continuity to U(g)M (resp. AM (G)), so that U(g)M

(resp. AM (G)) becomes a Hopf ⊗̂-algebra containing U(g) (resp. P(G)) as
a dense Hopf subalgebra. Thus U(g)M and AM (G) are well-behaved Hopf
⊗̂-algebras dual to each other.

The above properties of U(g)M imply the following.

Proposition 7.1. Let g be a nilpotent Lie algebra with a positive filtration F ,
and let M be an entire F -weight sequence. Then U(g)M is a well-behaved
power series envelope of U(g).
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Proposition 7.2. AM (G) is contractible.

Proof. Given a function f : G → C and z ∈ C, define fz : G → C by fz(g) =
f(δzg). Using the obvious identity WM (δzg) = WM (δ|z|g), we obtain

Nr(fz) = sup
g

|f(δzg)|

WM (δrg)
= sup

h

|f(h)|

WM (δrδ−1
z h)

= sup
h

|f(h)|

WM (δr|z|−1h)
= Nr|z|−1(f) (41)

for each r > 0 and each z 6= 0. Therefore for each f ∈ AM (G) we have
fz ∈ AM (G), and the mapping AM (G) → AM (G), f 7→ fz is continuous.
Note also that f1 = f and f0 = f(e)1 for each f ∈ AM (G).

For each f ∈ P(G), the function (z, g) 7→ fz(g) is clearly a polynomial on
C×G. Therefore we have an algebra homomorphism

Φ0 : P(G)→P(C,P(G)) ∼= P(C×G), Φ0(f)(z) = fz.

We use the same symbol Φ0 to denote the composition of the above homomor-
phism with the canonical embedding P(C,P(G)) →֒ O(C, AM (G)).

We claim that Φ0 is continuous w.r.t. the topology on P(G) inherited from
AM (G) and the compact-open topology on O(C, AM (G)). Indeed, let ‖ · ‖ be
a continuous seminorm on AM (G) and let R > 0. Then the rule

‖u‖R = sup{‖u(z)‖ : |z| ≤ R}

defines a continuous seminorm on O(C, AM (G)). Furthermore, the compact-
open topology on O(C, AM (G)) is generated by all seminorms of this form.
Therefore to prove the continuity of Φ0 we have to show that for each contin-
uous seminorm ‖ · ‖ on AM (G) and each R > 0 the seminorm f 7→ ‖Φ0(f)‖R
is continuous on P(G). Since ‖ · ‖ is continuous on AM (G), we see that for
each r > 0 there exists C > 0 such that ‖f‖ ≤ CNrR(f) for all f ∈ AM ,rR(G).
Now let f be in P(G). Using (41) and the fact that Nr ≤ Ns whenever s ≤ r,
we obtain

‖Φ0(f)‖R = sup
|z|≤R

‖fz‖ ≤ C sup
|z|≤R

NrR(fz) = C sup
0<|z|≤R

NrR|z|−1(f) = CNr(f).

This means that the seminorm f 7→ ‖Φ0(f)‖R is continuous on P(G) w.r.t.
the topology inherited from AM (G). Therefore Φ0 is continuous. Since P(G)
is dense in AM (G) (see [19]), we see that Φ0 extends to a continuous homo-
morphism

Φ : AM (G)→ O(C, AM (G)) ∼= O(C) ⊗̂AM (G).

Let ε : AM (G)→ C, f 7→ f(e) denote the counit of AM (G). We claim that Φ is
a homotopy between 1AM (G) and ηε (see Definition 4.2). Indeed, for each z ∈ C

the mappings f 7→ fz and f 7→ Φ(f)(z) from AM (G) to itself are continuous,
and they coincide on P(G). Hence Φ(f)(z) = fz for each f ∈ AM (G) and
each z ∈ C. In particular, Φ(f)(1) = f and Φ(f)(0) = f(e)1 = (ηε)(f). In
other words,

(ε1 ⊗ 1AM (G))Φ = 1AM (G) and (ε0 ⊗ 1AM (G))Φ = ηε,
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where the augmentations εk : O(C)→ C (k = 0, 1) are defined by εk(f) = f(k).
Since O(C) is an exact algebra, we conclude that 1AM (G) is homotopic to ηε,
and so AM (G) is contractible. �

Now Proposition 7.1, Proposition 7.2, and Corollary 5.3 imply the following.

Theorem 7.3. Let g be a nilpotent Lie algebra with a positive filtration F ,
and let M be an entire F -weight sequence. Then U(g)M is stably flat over
U(g).

8. Algebras of analytic functionals

and hyperenveloping algebras

Let g be a Lie algebra, and let G denote the corresponding connected, simply
connected complex Lie group. In this section we prove that the hyperenveloping
algebra F(g) (see [63]) is always stably flat over U(g). We also show that the
algebra of analytic functionals A (G) (see [41]) is stably flat over U(g) if and
only if g is solvable.

First recall some definitions. Let G be a complex Lie group. The Fréchet
algebra O(G) of holomorphic functions on G has a canonical structure of Hopf
⊗̂-algebra given by (20). Since O(G) is nuclear, the strong dual space, O(G)′,
is a Hopf ⊗̂-algebra and, in addition, a nuclear (DF)-space. It is denoted by
A (G) and is called the algebra of analytic functionals on G (see [41]). The
product of α, β ∈ A (G) is called the convolution and is denoted by α ∗ β. By
definition, we have 〈α ∗ β, f〉 = 〈α ⊗ β,∆f〉 for each α, β ∈ A (G) and each
f ∈ O(G).

Consider the algebra Oe of germs of holomorphic functions at the identity e ∈
G. We endow Oe with its usual inductive limit topology, i.e., Oe = lim

−→
O(U),

where U runs through the collection of all neighborhoods of e. Relative to this
topology, Oe becomes a nuclear, complete (DF)-space (see [20], Chap. II, §2,
no. 3). Moreover, the multiplication in Oe is jointly continuous, so that Oe is
a ⊗̂-algebra.

By localizing (20) at the identity, we obtain a Hopf ⊗̂-algebra structure on
Oe (cf. [43, 4.2] and [55, 3.2.3]). More exactly, take a neighborhood U of e,
choose a neighborhood V ∋ e such that V 2 ⊂ U , and consider the map

∆UV : O(U)→ O(V × V ) ∼= O(V ) ⊗̂O(V ), (∆UV f)(x, y) = f(xy).

Composing with the restriction map O(V ) ⊗̂O(V )→ Oe ⊗̂Oe and taking the
direct limit over U ∋ e, we obtain a comultiplication ∆: Oe → Oe ⊗̂Oe. The
counit and the antipode are defined similarly using (20). Since all Lie groups
with the same Lie algebra are locally isomorphic, the Hopf algebra structure
on Oe depends only on g.

By definition, the hyperenveloping algebra F(g) is the strong dual algebra of
Oe. (Note that the original definition of F(g) given by Rashevskii in [63] was
different; we follow the approach suggested by Litvinov [41, 43].) Since Oe is
a nuclear (DF)-space, F(g) is a nuclear Fréchet space.

Let me be the ideal of Oe consisting of all germs vanishing at e. Consider

the formal completion Ôe = lim
←−

Oe/m
n
e . We endow each quotient Oe/m

n
e with

the standard topology of a finite-dimensional vector space, so that Ôe becomes
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a nuclear Fréchet algebra. Moreover, the comultiplication and the antipode of

Oe extend to Ôe (cf. [55, 3.2.3]), so that Ôe has a canonical structure of Hopf
⊗̂-algebra.

There is a natural Hopf algebra pairing between U(g) and Ôe defined as

follows (for details, see [55, 3.2]). For each X ∈ g, let X̃ denote the cor-
responding left-invariant vector field on G. For each open set U ⊂ G we

use the same symbol X̃ to denote the corresponding derivation of O(U).

Taking the direct limit over U ∋ e, we see that X̃ determines a derivation

of Oe which we also denote by X̃. It is easy to see that X̃(mn
e ) ⊂ mn−1

e

for each n, so that X̃ extends to a derivation of Ôe (again denoted by X̃).

The resulting map g → Der Ôe, X 7→ X̃, yields an algebra homomorphism

ρ : U(g) → EndC Ôe. Thus U(g) acts on Ôe via “formal left-invariant differ-

ential operators” (cf. Section 7). The canonical pairing between U(g) and Ôe

defined by 〈a, f〉 = [ρ(a)f ](e) for each a ∈ U(g), f ∈ Ôe, gives an algebraic iso-

morphism between Ôe and the algebraic dual of U(g) [55, 3.2.3]. If we endow

U(g) with the finest locally convex topology, then Ôe becomes the topological

dual of U(g), and the strong dual topology on Ôe coincides with the inverse
limit topology introduced above (cf. the beginning of Section 4).

The restriction maps

O(G)→ Oe → Ôe

are obviously Hopf ⊗̂-algebra homomorphisms. Taking the dual maps, we
obtain Hopf ⊗̂-algebra homomorphisms

U(g)
λ
−→ F(g)→ A (G). (42)

Note that Oe → Ôe is always injective with dense range, so that U(g)→ F(g)
has the same property. The restriction map O(G)→ Oe is injective provided
G is connected, and has dense range provided G is a Stein group. There-
fore for each connected Stein group (in particular, for each connected, simply
connected complex Lie group) both the maps in (42) are injective with dense
ranges (cf. [41]).

Let τ : U(g) → A (G) denote the composition of the above maps. It fol-

lows from the definition of the duality between U(g) and Ôe that 〈τ(X), f〉 =

(X̃f)(e) for all X ∈ g, f ∈ O(G). It is also easy to see that for each X ∈ g

the action of X on A (G)′ = O(G) determined by τ (see Subsection 4.2) co-

incides with the derivation X̃. Indeed, given x ∈ G, denote by δx ∈ A (G)
the functional which is evaluation at x. Then for each X ∈ g, f ∈ O(G), and
x ∈ G we have

(X ·τ f)(x) = 〈X ·τ f, δx〉 = 〈f, δxτ(X)〉

= 〈∆f, δx ⊗ τ(X)〉 =
d

dt

∣∣∣
t=0
f(x exp tX) = (X̃f)(x),

i.e., X ·τ f = X̃f , as required.
Similarly, for each X ∈ g the action of X on F(g)′ = Oe determined by the

canonical homomorphism λ : U(g) → F(g) coincides with X̃. Indeed, given
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f ∈ Oe, denote by f̂ the canonical image of f in Ôe; then for each X ∈ g and
each a ∈ U(g) we have

〈X ·λ f, λ(a)〉 = 〈f, λ(aX)〉 = 〈f̂ , aX〉 = [ρ(aX)f̂ ](e)

= [ρ(a)X̃f̂ ](e) = 〈(X̃f) ,̂ a〉 = 〈X̃f, λ(a)〉.

Since Imλ is dense in F(g), this implies X ·λ f = X̃f , as required.

Proposition 8.1. Let G be a Stein group with Lie algebra g. Then O(G) is
g-parallelizable.

Proof. By Lemma 1.1, we may identify the O(G)-module Ω1(O(G)) of Kähler
differentials with the module Ω1(G) of holomorphic 1-forms on G in such a
way that the exterior (de Rham) derivative d : O(G) → Ω1(G) becomes a
universal derivation. Denote by Vect(G) the Lie algebra of holomorphic vector
fields on G. In what follows, we identify g with the Lie subalgebra of Vect(G)
consisting of left-invariant vector fields. Each ω ∈ Ω1(G) can be viewed as an
O(G)-module morphism Vect(G)→ O(G). Hence the rule ω 7→ ω|g determines
a linear map ϕ : Ω1(G) → C1(g,O(G)) which is easily seen to be an O(G)-

module morphism. Evidently, ϕ(df)(X̃) = X̃f for each X ∈ g, f ∈ O(G), i.e.,
ϕd = d0. It remains to show that ϕ is an isomorphism.

Given ω ∈ g∗, denote by ω̃ ∈ Ω1(G) the corresponding left-invariant 1-form
on G. Let ψ : C1(g,O(G)) → Ω1(G) be the unique O(G)-module morphism
taking each ω ⊗ 1 ∈ C1(g,O(G)) to ω̃. Recall that for each ω ∈ g∗ the value

of the left-invariant form ω̃ at a left-invariant vector field X̃ is the constant
function equal to 〈ω,X〉 (see, e.g., [73, 3.12]). This means precisely that
ω̃|g = ω ⊗ 1, i.e., ϕψ = 1C1(g,O(G)).

Let ω1, . . . , ωn be a basis of g∗. Then ω̃1(x), . . . , ω̃n(x) is clearly a basis of the
cotangent space, T ∗

xG, for each x ∈ G. Hence the forms ω̃1, . . . , ω̃n generate
Ω1(G) as an O(G)-module. This implies, in particular, that ψ is surjective.
Since ϕψ = 1, we see that ϕ and ψ are inverse to one another. This completes
the proof. �

Combining this with Propositions 1.3 and 4.3, we obtain the following well-
known fact.

Corollary 8.2. Let G be a Stein group with Lie algebra g. ThenHp(g,O(G)) ∼=
Hp

top(G,C) for each p.

The following result is an analytic version of [70, Prop. 7.2].

Theorem 8.3. Let g be a Lie algebra, and let G be the corresponding con-
nected, simply connected complex Lie group. Then A (G) is stably flat over
U(g) if and only if g is solvable.

Proof. Suppose that g is solvable. Then G is also solvable and so is biholo-
morphic with C

n (see, e.g., [5], Chap. III, §9, no. 6). Hence O(G) ∼= O(Cn)
is a contractible ⊗̂-algebra (cf. Subsection 4.1). On the other hand, O(G) is
g-parallelizable by Proposition 8.1. Now it remains to apply Theorem 4.4.

Now suppose that g is not solvable. Consider the Levi decomposition g =
r ⊕ l (r = rad g, l is a semisimple subalgebra, l 6= 0). Let R and L be the
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corresponding analytic subgroups of G. Since G is simply connected, it is
isomorphic to the semidirect product R⋊ L (see, e.g., [56], Chap. 6). Since L
is semisimple, we have Hm

top(L,C) 6= 0 form = dimL (see, e.g., [49], Lemme 5).
Therefore Hm

top(G,C) 6= 0. On the other hand, Hm
top(G,C) ∼= Hm(g,O(G)) by

Corollary 8.2, and so the augmented standard complex

0→ C→ C ·(g,O(G))

is not exact. Using the reflexivity argument (cf. the proof of Theorem 4.4),
we see that the dual complex

0← C← C·(g,A (G))

does not split in LCS. Therefore U(g) → A (G) is not a localization, i.e.,
A (G) is not stably flat over U(g). �

We now turn to the hyperenveloping algebra F(g). Recall that a commuta-
tive algebra is called local if it has a unique maximal ideal. By a local ⊗̂-algebra
we mean a commutative ⊗̂-algebra A which is local in the above sense and such
that the maximal ideal of A is closed and has codimension 1. For example, Oe

is a local ⊗̂-algebra with maximal ideal me = {f ∈ Oe : f(e) = 0} (see above),

and the same is true for Ôe.
We need the following simple lemma.

Lemma 8.4. Let A be an algebra, I ⊂ A a left ideal, and E a finite-dimensional
vector space. Then for each T ∈ HomC(E,A) the following conditions are
equivalent:

(i) T ∈ I · HomC(E,A);
(ii) ImT ⊂ I.

Proof. The implication (i)=⇒(ii) is clear. To prove the converse, take a basis
(ei) of E, and let (ei) be the dual basis of E∗. Identifying HomC(E,A) and
E∗⊗A, we see that T =

∑
i e

i⊗ ai, where ai = T (ei) ∈ I. Setting Ti = ei⊗ 1,
we obtain T =

∑
i aiTi ∈ I · HomC(E,A), as required. �

Lemma 8.5. Let A be a local ⊗̂-algebra with maximal ideal m, and let g be
a Lie algebra acting on A by derivations. Suppose there exists a linear map
χ : g∗ → A such that

(i) Imχ generates a dense subalgebra of A;
(ii) X · χ(ω) = 〈ω,X〉1 mod m for each X ∈ g and each ω ∈ g∗.

Then A is g-parallelizable.

Proof. We proceed in much the same way as in the proof of Theorem 5.2.
Consider the A-module morphism ϕ : A⊗ g∗ → C1(g, A) uniquely determined
by 1⊗ ω 7→ d0(χ(ω)). Our objective is to prove that ϕ is an isomorphism. To
this end, note that, since A is local and both A⊗ g∗ and C1(g, A) are free and
finitely generated, we need only prove that the induced map

ϕ̄ : A⊗ g∗/m · A⊗ g∗ → C1(g, A)/m · C1(g, A) (43)

is a vector space isomorphism (see [2], Chap. II, §3, no. 2).



50 A. YU. PIRKOVSKII

Since m is closed and has codimension 1, there exists a continuous homomor-
phism ε : A→ C such that m = Ker ε. Hence we can identify A⊗ g∗/m ·A⊗ g∗

and g∗ via the map

α : g∗ → A⊗ g∗/m ·A⊗ g∗, ω 7→ 1⊗ ω + m · A⊗ g∗. (44)

The inverse map is given by a⊗ ω + m · A⊗ g∗ 7→ ε(a)ω.
Next consider the map

β : C1(g, A)/m · C1(g, A)→ g∗, T + m · C1(g, A) 7→ εT. (45)

Lemma 8.4 implies that β is well defined and bijective. Indeed, the map taking
each ω ∈ g∗ to ω ⊗ 1 + m · C1(g, A) is readily seen to be an inverse of β.

Now it is easy to see that the map ϕ̄ defined by (43) corresponds to the
identity mapping of g∗ under the identifications (44) and (45). Indeed, for
each ω ∈ g∗ we have (ϕ̄α)(ω) = d0(χ(ω)) + m · C1(g, A), and hence

〈(βϕ̄α)(ω), X〉 = ε(d0(χ(ω))X) = ε(X · χ(ω)) = ε(〈ω,X〉1) = 〈ω,X〉

for every X ∈ g. Therefore βϕ̄α = 1g∗ , and so ϕ̄ is an isomorphism. By the
above remarks, so is ϕ.

Now define a derivation d : A→ A⊗ g∗ by d = ϕ−1d0. Note that d(χ(ω)) =
1⊗ ω for each ω ∈ g∗. Choose a basis (ei) of g, and let (ei) be the dual basis
of g∗. We may identify A⊗ g∗ and An (n = dim g) via the map

ψ : (a1, . . . , an) ∈ An 7→
∑

i

ai ⊗ e
i ∈ A⊗ g∗.

Let ∂ = ψ−1d = (∂1, . . . , ∂n) : A → An be the derivation corresponding to d
under the above identification. Since d(χ(ej)) = 1 ⊗ ej for each j, it follows
that ∂i(χ(ej)) = δij for each i, j. Thus the elements xi = χ(ei) ∈ A and the
derivations ∂i ∈ DerA satisfy the conditions of Lemma 1.2. Therefore ∂ is a
universal derivation. Since both ϕ and ψ are isomorphisms, we conclude that
d0 = ϕd = ϕψ∂ is a universal derivation as well, i.e., A is g-parallelizable. �

Theorem 8.6. Let g be a Lie algebra. Then F(g) is stably flat over U(g).

Proof. In view of Theorem 4.4, it suffices to check that Oe is contractible and
g-parallelizable.

To prove the contractibility of Oe, it suffices to do this for the algebra O0

of holomorphic germs at the origin 0 ∈ Cn. For each r > 0 denote by Dn
r the

polydisc in C
n of radius r, i.e.,

Dn
r = {z = (z1, . . . , zn) ∈ C

n : |zi| < r ∀i = 1, . . . , n}.

Consider the homomorphism

Φr : O(Dn
r )→ O(D1

2) ⊗̂O(Dn
r/2)
∼= O(D1

2 ×D
n
r/2),

(Φrf)(z, w) = f(zw).

Let εk : O(D1
2)→ C (k = 0, 1) be given by εk(f) = f(k). We clearly have

[
(ε0 ⊗ 1)(Φrf)

]
(w) = f(0),

[
(ε1 ⊗ 1)(Φrf)

]
(w) = f(w). (46)

Composing Φr with the restriction map O(D1
2) ⊗̂O(Dn

r/2)→ O(D1
2) ⊗̂O0 and

taking next the inductive limit over Dr ∋ 0, we obtain a homomorphism
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Φ : O0 → O(D1
2) ⊗̂O0. Relations (46) imply that (ε0 ⊗ 1O0)Φ = ηεO0 and

(ε1 ⊗ 1O0)Φ = 1O0 , where εO0 : O0 → C is the evaluation at 0. Since O(D1
2) is

an exact algebra, we see that Φ is a homotopy between 1O0 and ηεO0, and so
O0 is contractible.

We now turn to the g-parallelizability of Oe. Since the exponential map is
biholomorphic in a neighborhood of 0 ∈ g, it follows that for each ω ∈ g∗ there
exists a unique function fω holomorphic in a neighborhood of e ∈ G such that
fω(exp ξ) = ω(ξ) for all sufficiently small ξ ∈ g. Consider the map χ : g∗ → Oe

taking each ω ∈ g∗ to the germ of fω at e.
We claim that χ satisfies the conditions of Lemma 8.5. To prove this, fix a

basis (ei) of g, and let x1, . . . , xn be the corresponding canonical coordinates
of the first kind on a suitable neighborhood of e ∈ G. Recall that they are
defined by the rule xj(exp

∑
i t

iei) = tj for all j = 1, . . . , n. For each ω ∈ g∗

we have

fω

(
exp

∑

i

tiei

)
=

∑

i

ω(ei)t
i, i.e., fω =

∑

i

ω(ei)x
i.

Therefore Imχ consists of all germs of linear functions in x1, . . . , xn. Since
polynomials in x1, . . . , xn form a dense subalgebra of Oe, we conclude that
condition (i) of Lemma 8.5 is satisfied.

Finally, for each X ∈ g and each ω ∈ g∗ we have

(X · χ(ω))(e) = (X̃fω)(e) =
d

dt

∣∣∣
t=0
fω(exp tX) = ω(X).

Thus we see that condition (ii) of Lemma 8.5 is also satisfied. Hence Oe is
g-parallelizable. Now the result follows from Theorem 4.4. �

Remark 8.1. A similar argument applied to the local algebra A = Ôe shows
that A is contractible and g-parallelizable. Hence the standard cochain com-
plex 0→ C→ C ·(g, A) splits in LCS. Taking the topological dual, we recover
the classical fact that the Koszul complex 0← C← V·(g) is exact.

9. Relations between various completions of U(g)

In this final section, we explain how the completions of U(g) considered
above are related to one another, and formulate some open problems.

Let g be a nilpotent Lie algebra, and let G be the corresponding connected,
simply connected complex Lie group. Choose a positive filtration F on g,
and let M be an entire F -weight sequence (see Section 7). The algebra
AM (G) is a subalgebra of O(G), and it is easy to see that the inclusion map
AM (G)→ O(G) is continuous. Indeed, given r > 0 and a compact set K ⊂ G,
let C = supg∈K WM (δrg). Then for each f ∈ AM ,r(G) we have

‖f‖K = sup
g∈K
|f(g)| ≤ C sup

g∈K

|f(g)|

WM (δrg)
≤ CNr(f).

Hence the inclusion of AM (G) into O(G) is continuous.
Consider the Hopf algebra P(G) of polynomial functions on G. This is a

Hopf ⊗̂-algebra w.r.t. the finest locally convex topology. We have a chain of
canonical inclusion/restriction maps

P(G)→ AM (G)→ O(G)→ Oe → Ôe (47)
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which are obviously Hopf ⊗̂-algebra homomorphisms. To examine the dual
of this chain, choose an F -basis e1, . . . , eN of g, and recall that there is a
duality 〈·, ·〉κ between the formal completion [U(g)] of U(g) and the polynomial
algebra C[z1, . . . , zN ] defined by 〈a, ϕ〉κ = κ−1(ϕ)(a) for all a ∈ [U(g)], ϕ ∈
C[z1, . . . , zN ] (see Lemma 5.1). Thus the dual of the inclusion map i : U(g)M →
[U(g)] can be viewed as a ⊗̂-algebra homomorphism from C[z1, . . . , zN ] to
AM (G). For each u ∈ U(g)M and each ϕ ∈ C[z1, . . . , zN ] we have

〈u, i′(ϕ)〉 = 〈i(u), ϕ〉κ,

where the brackets 〈·, ·〉 on the left-hand side denote the duality between U(g)M

and AM (G).
We claim that i′ : C[z1, . . . , zN ]→ AM (G) becomes the canonical inclusion of

P(G) into AM (G) if we identify C[z1, . . . , zN ] with P(G) using the canonical
coordinates of the second kind. Indeed, for each α ∈ ZN

+ and each ψ ∈ O(G)
we have (in the standard multi-index notation)

〈eα, ψ〉 = [eαψ](e) = Dα
z ψ(0) (48)

w.r.t. the canonical coordinates of the second kind (see [41], Lemma 7.2).
On the other hand, it follows from (27) that 〈eα, ϕ〉κ = Dα

z ϕ(0) for each
ϕ ∈ C[z1, . . . , zN ] = P(G). Together with (48), this gives 〈eα, ϕ〉κ = 〈eα, ϕ〉,
and so 〈eα, i′(ϕ)〉 = 〈i(eα), ϕ〉κ = 〈eα, ϕ〉κ = 〈eα, ϕ〉 for each α ∈ ZN

+ . This
implies that i′(ϕ) = ϕ for each ϕ ∈P(G), which proves the claim.

Thus the sequence dual to (47) has the form

U(g)→ F(g)→ A (G)→ U(g)M
i
−→ [U(g)]. (49)

All the maps here are injective Hopf ⊗̂-algebra homomorphisms with dense
ranges. Combining Theorems 8.6, 8.3, 7.3, Corollary 5.4, and Proposition 3.5,
we see that all the morphisms in (49) are localizations.

Proposition 9.1. Let G be a connected, simply connected complex Lie group
with Lie algebra g, and let τ : U(g) → A (G) be the canonical homomor-
phism (see (42)). Then there exists a unique Hopf ⊗̂-algebra homomorphism

j : A (G) → Û(g) such that ιU(g) = j ◦ τ . (In other words, the canonical

morphism ιU(g) : U(g)→ Û(g) factors through A (G)).

Proof. Given a Banach algebra A and a homomorphism ϕ : U(g)→ A, we shall
construct a continuous homomorphism ϕ̄ : A (G)→ A such that the diagram

A (G)
ϕ̄ // A

U(g)

τ

OO

ϕ

==zzzzzzzzz

(50)

is commutative.
For each a ∈ A denote by La : A→ A the left multiplication by a. Consider

the representation

π0 : g→ L (A), π0(X) = Lϕ(X).

Since G is simply connected, π0 determines a holomorphic representation
π : G→ GL(A) such that exp ◦π0 = π ◦ exp (see, e.g., [5], Chap. III, §6, no. 1).
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For each x ∈ A and each y ∈ A′, let πx,y ∈ O(G) denote the corresponding
matrix element of π defined by πx,y(g) = 〈y, π(g)x〉. By [41, Prop. 3.5], π
uniquely extends to a continuous representation π̄ : A (G)→ L (A) such that
〈y, π̄(a′)x〉 = 〈a′, πx,y〉 for all a′ ∈ A (G), x ∈ A, y ∈ A′.

Consider the map ε1 : L (A)→ A, ε1(T ) = T (1), and define ϕ̄ : A (G)→ A
by ϕ̄ = ε1π̄. We claim that ϕ̄ makes diagram (50) commutative. Indeed, for
each X ∈ g and each y ∈ A′ we have

〈y, ϕ̄τ(X)〉 = 〈y, π̄(τ(X))1〉 = 〈τ(X), π1,y〉 = (X̃π1,y)(e)

=
d

dt

∣∣∣
t=0
π1,y(exp tX) =

d

dt

∣∣∣
t=0
〈y, π(exp tX)1〉 =

d

dt

∣∣∣
t=0
〈y, expπ0(tX)1〉

=
d

dt

∣∣∣
t=0
〈y, exp tϕ(X)〉 = 〈y, ϕ(X)〉,

i.e., ϕ̄τ = ϕ. Hence diagram (50) is commutative. Since Im τ is dense in
A (G), we conclude that ϕ̄ is an algebra homomorphism. For the same reason,
ϕ̄ is a unique linear continuous map making (50) commutative.

The above construction can easily be extended to the case where A is an
Arens-Michael algebra. Indeed, we have A = lim

←−
{Aν , σ

µ
ν } for some inverse

system {Aν , σ
µ
ν } of Banach algebras. For each ν, let σν : A → Aν denote

the canonical map. Given a homomorphism ϕ : U(g) → A, we can extend
the homomorphism σνϕ : U(g) → Aν to a homomorphism ϕ̄ν : A (G) → Aν

satisfying ϕ̄ντ = σνϕ. Since such an extension is unique, we clearly have
σµ

ν ϕ̄µ = ϕ̄ν whenever µ ≻ ν. Setting ϕ̄ = lim
←−

ϕ̄ν , we obtain a ⊗̂-algebra
homomorphism making (50) commutative.

Now set A = Û(g) and ϕ = ιU(g) : U(g) → Û(g). Then the above construc-

tion yields a unique ⊗̂-algebra homomorphism j = ϕ̄ : A (G)→ Û(g) satisfying
jτ = ιU(g). Since Im τ is dense in A (G), and since ιU(g) is a Hopf ⊗̂-algebra
homomorphism, we conclude that so is j. This completes the proof. �

The above theorem implies that for each nilpotent Lie algebra g the chain
of inclusions (49) can be completed as follows:

U(g)M

))SSSSSS

U(g) // F(g) // A (G)

55kkkkkk

j ))SSSSSSS
[U(g)]

Û(g) θ̂

55kkkkkkk

(51)

The following summarizes the main results of the previous sections.

Theorem 9.2. Suppose g is a positively graded Lie algebra, G is the corre-
sponding connected, simply connected complex Lie group, and M is an entire
weight sequence on g. Then all the arrows in (51) are Hopf ⊗̂-algebra local-
izations.

We end this section with some open problems.

Problem 1. Is the canonical map U(g) → Û(g) a localization for every
nilpotent Lie algebra g?
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By Proposition 3.5, we can replace U(g) in the above problem by either F(g)
or A (G) (assuming that G is connected and simply connected).

Problem 2. Let g be a nilpotent Lie algebra.

1) Is the canonical homomorphism θ̂ : Û(g)→ [U(g)] injective?

2) Is the algebra Û ′(g) contractible?

A positive answer to Problem 2 would imply a positive solution of Problem 1
(see Corollary 5.3).

Remark 9.1. The diagram dual to (51) has the form

AM (G)
uukkkkkk

Ôe Oe
oo O(G)oo P(G)

iiSSSSSS

θ̂′
uukkkkkkk

Û ′(g)
j′

iiRRRRRRR

Recall that all the maps here (except for θ̂′ and j′) are the usual set-theoretic

inclusions/restrictions of function algebras. Since j and θ̂ have dense ranges,

it follows that θ̂′ and j′ are injective. Hence the algebra Û ′(g) can be viewed
as a certain algebra of holomorphic functions on G containing the polynomi-
als. Thus Question 1) of Problem 2 has a positive solution if and only if the

polynomials are dense in Û ′(g).
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groups. (Russian). Funkcional. anal. i Priložen. 3 (1969), no. 4, 87–88. English transl.:
Functional Anal. Appl. 3 (1969), 332–334.

[39] Litvinov, G. L. Group algebras of analytic functionals, and their representations. (Rus-
sian). Dokl. Akad. Nauk SSSR 190 (1970), 769–771. English transl.: Soviet Math. Dokl.
11 (1970), no. 1, 191–194.



56 A. YU. PIRKOVSKII

[40] Litvinov, G. L. The Laplace transform on Lie groups. (Russian). Funkcional. Anal.
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