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GALACTIC OBSERVED

NAME R. A. (1900) pEC. LATITUDE MED. MAG. 7’ sin 8

h m s ° ! ° KPC

HV 6426 0 08 20 —29 05.4 —84 16.15 15.1
RZ Scl 1 37 21 —26 43.3 =77 15.5 10.9
RY Phe 0 45 36 —56 06.4 —62 15.7 10.9
HYV 6242 21 03 08 —15 38.0 —38 16.45 10.7
HYV 6395 0 32 56 —54 19.0 —63 15.6 10.5
HYV 6373 0 38 50 - 0 30.8 —62 15.6 10.4
AW Aqr 22 19 22 —24 08.9 —58 15.6 10.0
SX Scl 0 01 52 -30 10.2 —82 15.25 9.9
HV 6372 0 36 39 — 3 33.6 —66 15.35 9.6
AR Aqr 22 07 41 —25 13.0 —56 15.55 9.5

In northern latitudes, several variables with 7’ sin 8 > 12 kiloparsecs are
known, mostly those found by Baade® near the globular cluster N. G. C.
4147. The very distant cluster variables in Milky Way Fields 233 and 269
stand well away from the galactic plane,* but because the galactic latitudes
are low, the greatest values of 7’ sin § are, for them, between four and five
kiloparsecs.

1 These PROCEEDINGS,19, 20-34 (1933) and 22, 8-14 (1936); Harvard Reprints 81
and 118.

2 Pub. Am. Ast. Soc., 9, 239 (1939).

3 Ast. Nach., 244, 153 (1931).

4 Harv. Ann., 90, No. 9 (1939) and 105, No. 13 (1936).
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1. Introduction.—We shall define the critical points of a map on a mani-
fold to an oriented circle and describe how to classify them as to type.
We shall show that inequalities analogous to the inequalities of Morse!
are satisfied by the numbers of critical points of various types and the
ranks of suitably chosen groups of homology classes. These ranks are in-
variants of the homotopy class of the map and are the connectivities of the
given manifold for the class of maps homotopic to a point. We shall
make several assumptions at the beginning of section 2 in order to simplify
the exposition of those portions of the theory which are similar to known
developments and to highlight the novel methods and results of this paper.
The reader will bear in mind that the theory can be developed with much
lighter assumptions; the principal results would be group theoretic rather
than numerical in form. See the developments cited in notes 2 and 3.
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We shall use the obvious definition of differential critical points in terms
of the angular codrdinate on the circle and shall use Morse’s definition of
type numbers.? Our method consists first of defining an induced covering
space of the given manifold which can be mapped on the given manifold
by a map which is locally isometric. The covering manifold is such that
we can define a periodic function whose critical sets cover those of the given
function and have the same type numbers. Methods due to Morse are
applied to a convenient fundamental domain to yield the fundamental in-
equalities (Theorem I) between the numbers of critical points of various
types and the excesses of new cycles over newly bounding cycles of various
dimensions. Further theorems show that the excesses are positive or zero
(Theorem II), are independent of the choice of fundamental domain
(Theorem III), and are invariants of the homotopy class of the map
(Theorem IV).

2. The Map and the Critical Sets.—To fix ideas, we suppose L is an n-
dimensional manifold of class C*, defined in terms of overlapping local co-
ordinate systems and carrying a fundamental differential form of class C3,
which defines the metric. On the circle S! we use the angular coérdinate 6,
with 6 increasing in the direction of positive orientation. We assume that
the map on L to S! is defined by a point function F which is of class C? in
terms of local coordinates. A point of L will be termed a critical point of F
if it is a differential critical point of the function 6 in the usual sense. It is
assumed that the images of critical points on .S! are isolated.

With the above assumptions it will be sufficient for our purposes to use
singular chain topology with integers mod 2 as coefficients, though more
refined developments demand the use of Vietoris topology.

By a critical set we shall mean a component of the set of critical points.
The image of a critical set is a point. To a critical set is assigned a set of
type numbers [mo, my, ..., my] namely, the set of type numbers assigned by
Morse* to the set as a critical set of the function §. We recall that the set
of type numbers of a critical set depends only on the function on a neighbor-
hood of the critical set and is independent of alterations in the function and
the space elsewhere. The count of critical points of type k is the sum My, of
the numbers my over all critical sets.

3. The Induced Covering Space—We shall develop the idea of the in-
duced covering space. Let p, be a fixed point of L and let 6, be a value of 6
at F(po). Alongany curve \ joining p, to a point p, 8 is uniquely determined
as a continuous function of the parameter on \, and consequently the path
X\ determines § at p uniquely. The determination of § by two paths, XA and
4, is the same if and only if the two maps F(\) and F(u) are homotopic on St
when their end-points are held fast. The different values of 6 at p differ by
integral multiples of 2x. Either (case I) there is one possible value 6, of 6
at p, or (case II) there is a positive integer « such that the possible values
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of fat parel, + 2mamr,m = 0, =1, =2, ..., with , any particular deter-
mination at p. Whichever situation holds at one point of L holds at all
points, and in the second case the value of « is independent of the point p.

The points of the induced covering space K are pairs (p, 6,) where pis a
point of L and 0, is a determination of § at p. Let ¢ denote the map on K
to L in which (p, 6,) is carried into p. We readily define the metric on K in
such a way that the map ¢ is locally one to one and isometric. Except for
notation this definition is independent of $, and 6,.

4. The Function on the Covering Space.—On K we define a point function
F* by the relation

F*(p, 05) = 0.

Let ¢(6) denote the point of S! with angular codérdinate §. Then ¢ is a
map on the line to the circle. The two maps Fp and ¢ F* on K to S* are
identical. The critical sets of F as defined in section 2 and of F* in the
usual sense correspond under ¢ and have the same sets of type numbers.

The covering space admits a group of translations under which its map
on S! remains fixed. In case I, this group is the identity, while in case II
it is generated by the translation 7" which sends (p, 8,) into (p, 0, + 27a).
In case I, K is the fundamental domain of the translation and is uniquely
determined. In case II, the set of points where ¢ < F* < ¢ 4 27raisa
Sfundamental domain for any value of ¢ and we shall use only domains of this
form. We let 4 and B denote numbers such that 4 < F*< B in case I
and ¢ and ¢ 4 27w« in case II.

We term a cycle on K a new cycle relative to (4, B) if it lieson F < Band
is not homologous on F< Btoacycleon F < A. We termacycleon K a
newly bounding cycle relative to (4, B) if it lies on F < 4 and is homologous
tozeroon F < Bbutnoton F < A. We count new cycles or newly bound-
ing cycles independent if every proper linear combination is respectively a
new cycle or a newly bounding cycle. We term a cycle on K a new cycle
which bounds provided it is a new cycle and bounds on K.

The fundamental domain was so chosen that the count of critical points
on it of type k is M. Methods similar to those of Morse® serve to prove
the following theorem.

TaEorREM 1. If My denotes the count of critical points on L of type k and
QO denotes the count of new k-cycles less the count of newly bounding k-cycles
relative to (A, B) then the following inequalities hold.

Mg — Mp—1 4+ ... + (—=1)*Mo = Qr — Qa1 + ... + (=1)FQo.

Herek = 0, 1, ..., n and the equality holds when k = n.

We have the following theorems.

THEOREM I1.  The numbers Qy are independent of the choice of the funda-
mental domain.
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TueEOREM III. The count of newly bounding k-cycles is equal to the count
of k-cycles which bound. Thus Qr = 0.

THEOREM IV.  The numbers Qy are invariants of the homotopy class of the
map F.

Theorem II is a byproduct in the proof of Theorem I. The proof of
Theorem III depends on the use of the cycle limits® developed by Morse
and on the existence of the translation 7. To prove Theorem IV we show
that any deformation of a map of L can be replaced by a sequence of def-
ormations each of which leaves a fundamental domain on K topologically
invariant.

1 Morse, M., ‘““Calculus of Variations in the Large,” Am. Math. Soc., Coll. Publ., New
York, 1934, Ch. VI. The basic theorem is Theorem 7.4.

2 Morse, M., Ann. Math., 38, 386-449 (1937).

3 Morse, M., “Functional Topology and Abstract Variational Theory,” Memoriale des
Science Math., 92; Paris (1939).

4 See reference 1, sections 2 and 7.

5 See reference 1, Theorem 7.3 and relation 7.10.

6 See reference 2, section 4.
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1. General Considerations—For the sake of clearness we shall use the
term subgroups in the present article in the sense of a proper subgroup,
excluding both the identity and the entire group from the subgroups of a
given group G. The non-invariant subgroups of G are transformed under
G according to a substitution group to which G is «, 1 isomorphic. The
subgroup of order « in G which corresponds to the identity of this substitu-
tion group includes the central of G and is invariant under G. A necessary
and sufficient condition that this substitution group is transitive is that all
the non-invariant subgroups of G constitute a single set of conjugate sub-
groups under G. If this substitution group is of degree » and involves a
substitution of degree # then to the cyclic subgroup generated by this
substitution there corresponds at least one cyclic invariant subgroup of G,
because a group is transformed into itself by each of its own operators.

If G contains two and only two non-invariant subgroups these subgroups
are transformed transitively under G. This is also true when G contains
three and only three non-invariant subgroups since every substitution





