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2 J. L. BRYANT

1. Introduction

The piecewise linear category offers a rich structural setting in which to study
many of the problems that arise in geometric topology. The first systematic ac-
counts of the subject may be found in [2] and [63]. Whitehead’s important paper
[63] contains the foundation of the geometric and algebraic theory of simplicial com-
plexes that we use today. More recent sources, such as [30], [50], and [66], together
with [17] and [37], provide a fairly complete development of PL theory up through
the early 1970’s. This chapter will present an overview of the subject, drawing
heavily upon these sources as well as others with the goal of unifying various topics
found there as well as in other parts of the literature. We shall try to give enough
in the way of proofs to provide the reader with a flavor of some of the techniques
of the subject, while deferring the more intricate details to the literature. Our
discussion will generally avoid problems associated with embedding and isotopy in
codimension 2. The reader is referred to [12] for a survey of results in this very
important area.

2. Basic Definitions and Terminology.

Simplexes. A simplex of dimension p (a p-simplex) σ is the convex closure of a
set of (p+1) geometrically independent points {v0, . . . , vp} in euclidean n-space IRn.
That is, each point x of σ can be expressed uniquely as

∑
tivi, where 0 ≤ ti ≤ 1

for 0 ≤ i ≤ p and
∑

ti = 1. (This is equivalent to requiring linear independence of
the set of vectors {v1 − v0, . . . , vp − v0}.) The vi’s are the vertices of σ; the ti’s are
the barycentric coordinates of x in σ. We say that σ is spanned by its vertices, and
write σ = v0v1 · · · vp. The point β(σ) =

∑
1

p+1vi is the barycenter of σ. A simplex
τ spanned by a subset of the vertices is called a face of σ, written τ < σ.

Simplicial Complexes. A collection K of simplexes in IRn is called a (simpli-
cial) complex provided

(1) if σ ∈ K and τ < σ, then τ ∈ K,
(2) if σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ , and
(3) K is locally finite; that is, given x ∈ σ ∈ K, then some neighborhood of x

meets only finitely many τ in K. 1

Simplicial complexes K and L are isomorphic, K ∼= L, if there is a face-preserving
bijection K ↔ L. The subset |K| =

⋃
{σ : σ ∈ K} of IRn is called the polyhedron of

K. Property (3) ensures that a subset of A of |K| is closed in |K| iff A∩σ is closed
in σ for all σ ∈ K. That is, the weak topology on |K| with respect to the collection
K of simplexes coincides with the subspace topology on |K|. A complex L is a
subcomplex of a complex K, L < K, provided L ⊆ K and L satisfies (1) – (3). If
L < K, then |L| is a closed subset of |K|. If A ⊆ |K| and A = |L|, for some L < K,
we shall occasionally write L = K|A. For any complex K and any p ≥ 0, we have
the subcomplex K(p) = {σ ∈ K : dim σ ≤ p} called the p-skeleton of K. For a
simplex σ, the boundary subcomplex of σ is the subcomplex σ̇ = {τ < σ : τ 6= σ}.
The interior of σ,

◦
σ= σ − |σ̇|.

1This is not a standard requirement, but we shall find it convenient for the purposes of this
exposition. The astute reader, however, may notice an occasional lapse in our adherence to this

restriction.
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Subdivisions. A complex K1 is a subdivision of K, K1≺K, provided |K1| =
|K| and each simplex τ of K1 lies in some simplex σ of K. We write (K1, L1)≺(K, L)
to denote that K1 is a subdivision of K inducing a subdivision L1 of L. If σ is a sim-
plex, L≺ σ̇, and x ∈◦σ, then the subdivision K = L∪{xw0w1 · · ·wk : w0w1 · · ·wk ∈
L} is obtained from L by starring σ at x over L. A derived subdivision of K is
one that is obtained by the following inductive process: assuming K(p−1) has been
subdivided as a complex L and σ is a p-simplex of K, choose a point σ̂ in

◦
σ and

star σ at σ̂ over L||σ̇|, thereby obtaining a subdivision of K(p). If we choose each
σ̂ = β(σ), the resulting derived subdivision is called the first barycentric subdivi-
sion of K and is denoted by K1. More generally, Kr will note the rth-barycentric
subdivision of K: Kr = (Kr−1)1 (where K0 = K). There are relative versions
of this process: if L is a subcomplex of K, inductively choose points σ̂ ∈ intσ for
σ 6∈ L. The result is a derived subdivision of K mod L.

A subcomplex L of a complex K is full in K, L/ K, if a simplex σ of K belongs
to L whenever all of its vertices are in L. If L is a subcomplex of K and K ′ is a
derived subdivision of K, then the subcomplex L′ of K ′ subdividing L is full in K ′.

Any two subdivisions L≺K and J ≺K have a common subdivision. The set
C = {σ ∩ τ : σ ∈ L, τ ∈ J} is a collection of convex linear cells that forms a cell
complex: given C, D ∈ C, C ∩ D ∈ C is a face of each. C can be subdivided into
simplexes by induction using the process described above. C can also be subdivided
into simplexes without introducing any additional vertices, other than those in the
convex cells of C, by a similar process: order the vertices of C and, assuming the
boundary of a convex cell C of C has been subdivided, choose the first vertex v of C
and form simplexes vw0 · · ·wp where w0 · · ·wp is a simplex in the boundary of C not
containing v. A consequence of the latter construction is that if subdivisions L≺K
and J ≺K share a common subcomplex M , then a common subdivision of L and
J can be found containing M as a subcomplex. Finally, if L < K and L′≺L, then
there is a subdivision K ′≺K such that K ′||L| = L′: proceed inductively starring
a p-simplex σ of K not in L at an interior point x over K(p−1)′||σ̇|.

Stars and Links. Given a complex K and a simplex σ ∈ K, the star and link of
σ in K are the subcomplexes St(σ,K) = {τ ∈ K : for some η ∈ K, σ, τ < η}, and
Lk(σ,K) = {τ ∈ St(σ,K) : τ ∩ σ = ∅}, respectively. We let st(σ,K) = |St(σ,K)|
and lk(σ,K) = |Lk(σ,K)|. The open star of σ in K,

◦
st(σ,K) = st(σ,K)− lk(σ,K).

One can easily show that the collection {
◦
st(v,Kr) : v ∈ (Kr)(0), r = 0, 1, . . .} forms

a basis for the open sets in |K|.

Simplicial and Piecewise Linear Maps. Given complexes K and L, a sim-
plicial map f : K → L is a map (we still call) f : |K| → |L| such that for each
σ ∈ K, f |σ maps σ linearly onto a simplex of L. A simplicial map f : K → L
is nondegenerate if f |σ is injective for each σ ∈ K. A simplicial map is then de-
termined by its restriction to the vertices of K. A map f : |K| → |L| is piecewise
linear or PL if there are subdivisions K ′≺K and L′≺L such that f : K ′ → L′

is simplicial. Polyhedra |K| and |L| are piecewise linearly (or PL) homeomorphic,
|K| ∼= |L|, if they have subdivisions K ′≺K and L′≺L such that K ′ ∼= L′.

Simplicial Approximation Theorem. If K and L are complexes and f : |K| →
|L| is a continuous function, then there is a subdivision K ′≺K and a simplicial
map g : K ′ → L homotopic to f . Moreover, if ε : |L| → (0,∞) is continuous, then
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there are subdivisions K ′≺K and L′≺L and a simplicial map g : K ′ → L′ such
that g is ε-homotopic to f ; that is, there is a homotopy H : |K| × [0, 1]→ |L| from
f to g such that diam(H(x× [0, 1]) < ε(f(x)) for all x ∈ |K|.

The proof of this theorem is elementary and can be found in a number of texts.
(See, for example, [45] or [54].) The idea of the proof is to get an r such that for each

vertex v of Kr, f(st(v,Kr)) ⊆
◦
st(w,L) for some vertex w of L. The assignment of

vertices v 7→ w, defines a vertex map g : (Kr)(0) → L(0) that extends to a simplicial
map g : Kr → L homotopic to f (by a straight line homotopy). This can be done
whenever K is finite. When K is not finite, one may use a generalized barycentric
subdivision of K, constructed inductively as follows. Assuming J is a subdivision
of K(p−1), and σ is a p-simplex of K, let Kσ be the subdivision of σ obtained by
starring σ at β(σ) over J ||σ̇|. Let n = nσ be a non-negative integer, and let K ′

σ

be the nth-barycentric subdivision of Kσ mod L||σ̇|. It can be shown that any
open cover of |K| can be refined by {st(v,K ′) : v ∈ (K ′)(0)} for some generalized
barycentric subdivision K ′ of K.

To get the “moreover” part, start with a (generalized) rth barycentric subdivision
L′ of L such that vertex stars have diameter less than ε.

Generalized barycentric subdivisions can also be used to show that if U is an
open subset of the polyhedron |K| of a complex K, then U is the polyhedron of a
complex J each simplex of which is linearly embedded in a simplex of K.

Combinatorial Manifolds. A combinatorial n-manifold is a complex K for
which the link of each p-simplex is PL homeomorphic to either the boundary of
an (n − p)-simplex or to an (n − p − 1)-simplex. If there are simplexes of the
latter type, they constitute a subcomplex ∂K of K, the boundary of K, which is, in
turn, a combinatorial (n− 1)-manifold without boundary. If K is a combinatorial
n-manifold, then |K| is a topological n-manifold, possibly with boundary |∂K|.

Triangulations. A triangulation of a topological space X consists of a com-
plex K and a homeomorphism t : |K| → X. Two triangulations t : |K| → X and
t′ : |K ′| → X of X are equivalent if there is a PL homeomorphism h : |K| → |K ′|
such that t′ ◦ h = t. A PL n-manifold is a space (topological n-manifold) M , to-
gether with a triangulation t : |K| → M , where K is a combinatorial n-manifold.
Such a triangulation will be called a PL triangulation of M or a PL structure on
M . ∂M = |∂K| and int M = M − ∂M . M is PL n-ball (respectively, PL n-sphere)
if we can choose K to be an n-simplex (respectively, the boundary subcomplex of
an (n + 1)-simplex). In a similar manner we may define a triangulation K > L of
a pair X ⊇ Y , where Y is closed in X (or for a triad X ⊇ Y,Z, or n-ad, etc.).

A PL structure on a topological n-manifold M can also be prescribed by an
atlas Σ on M , consisting of a covering U of open sets (charts) in M together with
embeddings φU : U → IRn, U ∈ U, such that if U, V ∈ U, then

φV (φU )−1 : φU (U ∩ V )→ φV (U ∩ V )

is piecewise linear. Here we assume that open subsets of IRn inherit triangulations
from linear triangulations of IRn as described above. Two atlases Σ and Σ′ are
equivalent if there is a (topological) homeomorphism h : M → M such that the
union of Σ and h(Σ′) forms an atlas, where h(Σ′) is the atlas consisting of the
cover {h(U ′) : U ′ ∈ U′} and embeddings φU ′h−1. An atlas Σ on M determines a
PL triangulation of M as follows. If M is compact, cover M by a finite number of
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compact polyhedra obtained from a finite cover of open sets in Σ, and triangulate
inductively. If M is not compact, then dimension theory provides a cover X =
X0 ∪X1 ∪ . . . ∪Xn, subordinate to U, such that the members of Xi, i = 0, 1, . . . , n,
are mutually exclusive, compact polyhedra. One can then proceed as in the compact
case. It is not difficult to show that atlases Σ and Σ′ are equivalent if, and only if,
the induced triangulations of M are equivalent.

One may also consider the problem of “triangulating” a diagram of polyhedra and
PL maps; that is, subdividing all spaces so that each of the mappings in the diagram
is simplicial. If the diagram forms a “one-way tree” in which each polyhedron is
compact and is the domain of at most one mapping, then it is possible to use
an inductive argument, based on the following construction, to triangulate the
diagram. Given a simplicial mapping f : K → L and a subdivision L′≺L, form
the cell complex C = {σ ∩ f−1(τ) : σ ∈ K, τ ∈ L′}, and subdivide C as a simplicial
complex K ′ without introducing any new vertices, as above. Then f : K ′ → L′ is
simplicial.

If a diagram does not form a one-way tree, then it may not be triangulable, as
a simple example found in [66] illustrates. Let |K| = [−1, 1], |L| = |J | = [0, 1],
let f : |K| → |L| be defined by f(x) = |x|, and let g : |K| → |J | be defined by
g(x) = x, if x ≥ 0, and g(x) = −x/2, if x ≤ 0. The problem is that there is a
sequence {1/2, 1/4, 1/8, . . .} in |L| such that gf−1( 1

2i )∩ gf−1( 1
2i+1 ) 6= ∅. In [9] it is

shown that a two-way diagram |J | g←|K| f→|L| can be triangulated provided it does
not admit such sequences. (See [9] for a precise statement of the theorem and its
proof.)

The PL Category. The piecewise linear category, PL, can now be described
as the category whose objects are triangulated spaces, or, simply, polyhedra, and
whose morphisms are PL maps. The usual cartesian product and quotient con-
structions can be carried out in PL with some care: the cartesian product of two
polyhedra doesn’t have a well-defined triangulation (since the product of two sim-
plexes is rarely a simplex), and a complex obtained by an identification on the
vertices of another complex may not give a complex with the expected (or desired)
polyhedron. For example, identifying the vertices of a 1-simplex will not produce a
complex with polyhedron homeomorphic to S1, since the only simplicial map from a
1-simplex making this identification is a constant map. One must first subdivide the
simplex (it takes two derived subdivisions). Either of the two processes described
above for finding a common subdivision of two subdivisions of a complex may be
used to triangulate the cartesian product of two complexes K and L. For example,
one can inductively star the convex cells σ × τ , (σ ∈ K, τ ∈ L). Alternatively,
one can order K(0)×L(0), perhaps using a lexicographic ordering resulting from an
ordering of K(0) and L(0) separately, and inductively triangulate the convex linear
cells σ × τ (σ ∈ K, τ ∈ L) without introducing any new vertices.

Joins: Cones and Suspensions. The join operation is a more natural oper-
ation in PL than are products and quotients. Disjoint subsets A and B in IRn are
joinable provided any two line segments joining points of A to points of B meet in
at most a common endpoint (or coincide). If A and B are joinable then the join of
A and B, A∗B, is the union of all line segments joining a point of A to a point of B.
We can always “make” A and B joinable: if A ⊆ IRm and B ⊆ IRn, then A× 0× 0
and 0×B × 1 are joinable in IRm × IRn × IR = IRm+n+1. We assume the convention
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that A∗∅ = ∅∗A = A. If A∩B = C 6= ∅, then A and B are joinable relative to C if
A−C and B−C are joinable and every line segment joining a point of A−C and
B−C misses C. Then A ∗B (rel C) = [(A−C) ∗ (B−C)]∪C denotes the reduced
join of A and B relative to C. For example, given a simplex σ = v0 · · · vp and faces
τ = v0 · · · vi and η = vj · · · vp with j ≤ i + 1, then σ = τ ∗ η (rel τ ∩ η). Likewise,
if K and L are finite complexes in IRn such that |K| and |L| are joinable, then we
can define the join complex, K ∗ L = {σ ∗ τ ⊆ IRm+n : σ ∈ K and τ ∈ L}. For
example, if σ is a simplex in a complex K, then St(σ,K) = σ∗Lk(σ,K). Unlike the
case for products and quotients, triangulations of compact spaces X and Y induce
a canonical triangulation of X ∗ Y . An important artifact of the join construction
is that the join of two spaces A ∗B comes equipped with a join parameter obtained
from a natural map s : A ∗B → [0, 1] that maps each line segment in A ∗B from a
point of A to a point of B linearly onto [0, 1]. When K and L are finite complexes,
the map s is a simplicial map from K ∗ L onto the simplex [0, 1]. With the aid of
the join parameter, one can easily extend simplicial maps f : H → K and g : J → L
between finite complexes to their joins, f ∗ g : H ∗ J → K ∗ L.

Two special cases of the join construction are the cone and suspension. Given a
compact set X and a point v, the cone on X with vertex v, C(X, v) = v ∗X. We
may also write C(X) to denote C(X, v). The suspension of X, Σ(K) = S0 ∗ K,
where S0 is the 0-sphere. One defines cone and suspension complexes of a (finite)
complex K similarly. As observed above, if v is a vertex of a complex K, then
St(v,K) ∼= v ∗ Lk(v,K). Using the join construction for simplicial maps, one can
easily prove PL equivalence for stars of vertices.

Theorem 2.1. Suppose that X is a polyhedron, x ∈ X, and K1 and K2 are
equivalent triangulations of X containing x as a vertex. Then st(x, K1) ∼= st(x,K2).

Proof. Without loss of generality we may assume that K2 is a subdivision of K1

so that st(x, K2) ⊆ st(x,K1). Hence, for each point y of lk(x, K2), there is a unique
point z ∈ lk(x, K1) such that y ∈ x ∗ z ⊆ x ∗ lk(x,K1) = st(x,K1). Conversely, for
each z ∈ lk(x,K1) there is a unique y ∈ lk(x, K2) such that x ∗ z ∩ lk(x,K2) = y.
Moreover, if z is a vertex of Lk(x,K1), then y is a vertex of Lk(x, K2). Thus, we
can get a simplicial isomorphism f from Lk(x, K2) to a subdivision Lk(x,K1)′ of
Lk(x,K1) by extending the map above from the vertices of Lk(x, K2) into lk(x,K1).
Extending further to the cones over x gives the desired equivalence.

As pointed out in [66] and [50] , the natural projection lk(x,K2) → lk(x,K1)
along cone lines is not linear on the simplexes of K2, although it does match up
the simplexes of Lk(x, K2) with those of the subdivision Lk(x,K1)′ of Lk(x,K1).
(This is the “Standard Mistake”.)

The proof of the following important theorem can be found in [50] .

Theorem 2.2. Suppose Bp (respectively, Sp) denotes a PL ball (respectively,
sphere) of dimension p, then

(1) Bp ∗Bq = Bp+q+1,
(2) Bp ∗ Sq = Bp+q+1, and
(3) Sp ∗ Sq = Sp+q+1.

For example, if K is a combinatorial n-manifold and σ is a p-simplex of K, then
st(σ,K) ∼= σ ∗ lk(σ,K) ∼= Bn.
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An elementary argument shows that the join operation is associative. This im-
plies, for example, that a k-fold suspension Σk(X) = Σ(Σ(· · · (Σ(X)) · · · )) of a
compact polyhedron X is PL homeomorphic to Sk−1 ∗X. The proof of the follow-
ing proposition is a pleasant exercise in the use of some of the ideas presented so
far.

Proposition 2.3. If X is a compact polyhedron, then

C(X)× [−1, 1] ∼= C((X × [−1, 1]) ∪ (C(X)× {−1, 1}))
by a homeomorphism that preserves C(X)×[−1, 0] and C(X)×[0, 1]. In particular,
if J > J+, J−, J0 is a triangulation of

C(X)× [−1, 1] ⊇ C(X)× [0, 1], C(X)× [−1, 0], C(X)× {0},

then
(st(v, J), st(v, J+), st(v, J−), st(v, J0)) ∼=
(C(X)× [−1, 1], C(X)× [0, 1], C(X)× [−1, 0], C(X)× {0})

(where v is the vertex of C(X)).

Proposition 2.3 in turn may be applied to give a proof of a PL version of Morton
Brown’s Collaring Theorem [7] . A subpolyhedron Y of a polyhedron X is collared
in X if Y has a neighborhood in X PL homeomorphic to Y × I. Y is locally
collared in X if each x ∈ Y has a neighborhood pair (U, V ) in (X, Y ) such that
(U, V ) ∼= (V × I, V × {0}).

Theorem 2.4. If the subpolyhedron Y of X is locally collared in X, then Y is
collared in X.

Proof. Let K > L be a triangulation of X ⊇ Y , and assume that for each vertex
v ∈ L, st(v, L) lies in a collared neighborhood. That is, v has a neighborhood pair
(U, V ) PL homeomorphic to (st(v, L)×I, st(v, L)×{0}) (I = [0, 1]). By Proposition
2.3, we may assume that U = st(v,K). Let X+ = X ∪Y×{0} (Y × [−1, 0]). Then
U ∪V×{0} (V × [−1, 0]) ∼= V × [−1, 1] is a neighborhood of v = (v, 0) in X+, and V ×
[−1, 1] ∼= v∗(lk(v, L)×[−1, 1]∪V ×{−1, 1}). Let Σ = lk(v, L)×[−1, 1]∪V ×{−1, 1},
and let v′ = (v,− 1

2 ). Then there is a homeomorphism hv : V × [−1, 1]→ V × [−1, 1]
such that hv(v) = v′, hv|Σ = id, and hv sends each v ∗ z, z ∈ Σ “linearly” onto
v′ ∗ z. In particular, hv commutes with the projection map V × [−1, 1]→ V.

Now let K ′ > L′ be a derived subdivision of K > L. Write (L′)(0) = V0 ∪ V1 ∪
· · ·Vm, where Vi = {σ̂ ∈ L′ : dim σ = i}. Then for v1, v2 ∈ Vi st(v1,K

′) ∩
st(v2,K

′) ⊆ lk(v1,K
′) ∩ lk(v2,K

′) so that hv1 is the identity on st(v1,K
′) ∩

st(v2,K
′). Let hi : X+ → X+ be the PL homeomorphism satisfying hi = hv on

st(v,K ′) ∪st(v,L′)×{0} (st(v, L′) × [−1, 0]) for v ∈ Vi and hi = id, otherwise. Then
h = hm◦· · ·h1◦h0 : X+ → X+ is a homeomorphism that takes (Y ×[−1, 0], Y ×{0})
to (Y × [−1,− 1

2 ], Y × {− 1
2}). Hence, h−1 takes Y × [− 1

2 , 0] onto a neighborhood
of Y in X.

Corollary 2.5. Suppose that X is a PL n-manifold with boundary Y . Then Y is
collared in X.

Proof. Each x ∈ Y has a neighborhood N such that N ∼= Bn and N ∩ Y ∼=
Bn−1. Since Sn−1 is collared in Bn, x has a neighborhood PL homeomorphic to
Bn−1 × [0, 1].
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Join structures play an essential role in PL theory. They lie at the heart of many
constructions and much of the structure theory. We conclude this section with three
important examples.

Simplicial Mapping Cylinders. Suppose f : K → L is a simplicial map. (If
K is not finite, assume additionally that f−1(v) is a finite complex for each vertex
v of L.) Choose first derived subdivisions K ′ of K and L′ of L such that f : K ′ →
L′ is still simplicial. For example, we can choose L′ = L1, the first barycentric
subdivision of L, and for each σ ∈ K, choose a point σ̂ ∈ ◦

σ ∩f−1(β(f(σ))) at
which to star σ. The simplicial mapping cylinder of f is the subcomplex of L′ ∗K ′,

Cf = {τ̂1τ̂2 · · · τ̂j ∗ σ̂1σ̂2 · · · σ̂i| τ1 < · · · τj < f(σ1), σ1 < · · · < σi ∈ K} ∪ L′.

Thus, a simplex of Cf is either in L′ or is of the form α ∗ β ∈ L′ ∗K ′, where, for
some τ ∈ L and σ ∈ K, α ⊆ τ , β ⊆ σ, and τ < f(σ). There is a natural projection
γ : Cf → L defined by

γ(τ̂1τ̂2 · · · τ̂j ∗ σ̂1σ̂2 · · · σ̂i) = τ̂1τ̂2 · · · τ̂jf(σ̂1)f(σ̂2) · · · f(σ̂i).

Figure 2.1 illustrates the simplicial mapping cylinder of a simplicial map f : σ → τ
from a 2-simplex σ to a 1-simplex τ .

τ=  (σ)

σ

  τ̂

σ̂

Fig. 2.1

f

fC

u

u

f(u  )

f(u  ) = f(u  )

u

0

0

1

1

2

2

As is shown in [15], the simplicial mapping cylinder Cf is topologically homeo-
morphic to the topological mapping cylinder |K| × I ∪f×{1} |L|. If f is degenerate,
however, any PL map (|K| × I)

∐
|L| → Cf restricting to f on |K| × 1 will fail to

be one-to-one on |K| × [0, 1).
If f : K → L is the identity on a complex H < K ∩ L, then one can also define

the reduced simplicial mapping cylinder, a subcomplex of L′ ∗K ′ rel H, where L′

and K ′ are first derives mod H:
Cf rel H = {α ∗ τ̂1τ̂2 · · · τ̂j ∗ σ̂1σ̂2 · · · σ̂i| α < τ1 < τ2 < · · · τj < f(σ1), α ∈ H,

τ1 ∈ L−H, σ1 < σ2 < · · · < σi} ∪ L′.

Suppose f : X → Y is a PL mapping between polyhedra. In light of the com-
ment above, we may refer to “the” PL mapping cylinder Mf of f , obtained from
triangulations K of X and L of Y under which f : K → L is simplicial. Mf is
well-defined topologically, but its combinatorial structure will depend on K and L.
If f |A is an embedding for some subpolyhedron A of X, we may also define the
reduced PL mapping cylinder Mf rel A.
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Dual Subcomplexes. Given complexes L < K, let K ′ be the first barycentric
subdivision of K mod L, and let J = {σ ∈ K ′| σ ∩ |L| = ∅}. Then J is the dual of
L in K. In particular, if K is an n-complex and if L = K(p) is the p-skeleton of K,
then J is called the dual (n − p − 1)-skeleton of K, and is denoted by K̃(n−p−1).
Whenever J is the dual of L in K, K ′ is isomorphic to a subcomplex of L ∗ J ,
since every simplex of K ′ is either in L, in J , or is the join of a simplex of L
and a simplex of J . It is occasionally useful to consider relative versions of duals.
For example, if K is a combinatorial n-manifold with boundary ∂K, then the dual
(n− p− 1)-skeleton of K rel ∂K is the dual of K(p) ∪ ∂K.

Dual Cell Structures. Suppose K is a combinatorial n-manifold (possibly
with boundary), and K ′ is a first derived subdivision. Given a p-simplex σ in K,
K ′|lk(σ,K) is naturally isomorphic to the subcomplex K̃σ = {τ̂1τ̂2 · · · τ̂m : σ <

τ1 < · · · τm ∈ K, σ 6= τ1} of K ′. Thus, |K̃σ| ∼= Sn−p−1 or Bn−p−1, and, hence,
B̃σ = σ̂ ∗ |K̃σ| is a PL (n − p)-ball. B̃σ is the dual cell to σ, and the collection K̃

of dual cells is called the dual cell complex of K. K̃ satisfies the conditions:
(1) σ < τ , whenever B̃τ ⊆ ∂B̃σ, and
(2) B̃σ∩B̃τ = B̃η, if η = σ∗τ (rel σ∩τ) is a simplex of K, (and = ∅, otherwise).

Figure 2.2 illustrates cell-dual cell pairs for a 1-dimensional face σ of a 2-simplex τ .

Bτ

σ

Bσ

Fig 2.2

τ

~

~

3. Regular Neighborhoods

Derived Neighborhoods. Given a subcomplex L of a complex K, the simpli-
cial neighborhood of L in K is the subcomplex

N(L,K) = {σ : σ ∈ K, σ < τ, τ ∩ |L| 6= ∅}
=

⋃
{St(v,K) : v ∈ L(0)}.
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Suppose L/ K. Let C(L,K) = {σ ∈ K : σ∩|L| = ∅}, the simplicial complement of
L in K, and let K ′ be a derived subdivision of K mod L∪C(L,K). Then N(L,K ′)
is a derived neighborhood of L in K. Any two derived neighborhoods corresponding
to derived subdivisions K1 and K2 of K mod L∪C(L,K) are canonically isomorphic
via an isomorphism φ : K1 → K2 that is the identity on L∪C(K, L). The boundary
of N(L,K ′) is the subcomplex Ṅ(L,K ′) = {σ ∈ N(L,K ′) : σ ∩ |L| = ∅}. Given
ε > 0, the ε-neighborhood of L in K is a derived neighborhood constructed as
follows. Since L/ K, the simplicial map f : K → [0, 1] defined by the vertex map

f(v) =
{

0, if v ∈ L,
1, if v 6∈ L,

has the property that f−1(0) = L. For any simplex σ of K such that σ 6∈ L∪C(L,K)
choose σ̂ ∈ ◦

σ ∩f−1(ε). Let K ′ be the resulting derived subdivision of K mod
L ∪ C(L,K), and set Nε(L, K) = N(L, K ′).

Example. Given a complex K and p ≥ 0, let L = K(p), let K ′ be the first
barycentric subdivision of K mod L, let L̃ < K ′ be the dual of L, and let K ′′ be
a derived subdivision of K ′ mod L ∪ L̃. Then N(L,K ′′) ∪ N(L̃,K ′′) = K ′′ and
Ṅ(L,K ′′) = Ṅ(L̃,K ′′).

Proposition 3.1. Suppose L/ K and (K1, L1)≺(K, L). Then there are derived
neighborhoods N(L,K ′) and N(L1,K

′
1) such that |N(L,K ′)| = |N(L1,K

′
1)|.

Proof. Given f : K → [0, 1] as above, choose ε > 0 so that f−1((0, ε)) contains
no vertex of K or K1. For each simplex σ of K (respectively, K1) that meets
|L| (= |L1|), choose σ̂ ∈ ◦

σ ∩ f−1(ε).

Regular Neighborhoods. Given polyhedra Y ⊆ X, choose a triangulation K
of X containing a subcomplex L triangulating Y . By passing to a derived subdi-
vision of K mod L, we may assume that L/ K. The polyhedron N = |N(L,K ′)|
is called a regular neighborhood of Y in X. Proposition 3.1 can be applied to prove
the following uniqueness theorem.

Theorem 3.2. Suppose N1 and N2 are regular neighborhoods of Y in X. Then
there is a PL homeomorphism h : X → X such that h|Y = id and h(N1) = h(N2).
If Y is compact, then we can choose h so that h is the identity outside a compact
subset of X.

Proof. Suppose N1 = |N(L1,K
′
1)| and N2 = |N(L2,K

′
2)|, where Ki > Li triangu-

lates X ⊇ Y , and Li / Ki. Let K0 > L0 be a triangulation of X ⊇ Y subdividing
both K1 and K2. By Proposition 3.1 there are derived subdivisions K ′′

i of Ki mod
Li ∪ C(Li,Ki), i = 0, 1, 2, such that |N(L0,K

′′
0 )| = |N(L1,K

′′
1 )| = |N(L2,K

′′
2 )|.

By the canonical uniqueness, there are isomorphisms φi : K ′
i → K ′′

i , fixed on
Li ∪C(Li,Ki), i = 1, 2, taking N(Li,K

′
i) to N(Li,K

′′
i ). The composition φ−1

2 ◦ φ1

is a PL homeomorphism of X that is the identity on Y ∪ [C(L1,K1) ∩ C(L2,K2)]
and takes N1 to N2.

Theorem 3.3. Suppose that N is a regular neighborhood of Y in X. Then a
regular neighborhood of Ṅ in X is PL homeomorphic to Ṅ × I.

Proof. Suppose N = |N(L, K ′)| where K > L triangulates X ⊇ Y and L/ K.
Without loss of generality, N = |N(L,K ′)| = |N 1

2
(L, K ′)| = f−1([0, 1/2]), where

f : K → [0, 1] is the simplicial map described above. For any simplex σ ∈ K −
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(L ∪ C(L,K)), f−1([1/4, 3/4]) ∩ σ is canonically PL homeomorphic to f−1( 1
2 ) ×

[1/4, 3/4]. These homeomorphisms fit together naturally to give the desired result.

The next theorem follows easily from Theorem 2.4 and Theorem 3.2.

Theorem 3.4. Suppose Y is a subpolyhedron of a polyhedron X such that Y is
locally collared in X. Then a regular neighborhood of Y in X is a collar.

Theorem 3.5. Suppose that N is a regular neighborhood of Y in X. Then N is
PL homeomorphic to the mapping cylinder Cφ of a PL map φ : Ṅ → Y .

Proof. As above, we suppose K > L triangulates X ⊇ Y with L/ K and N =
|N(L,K ′)| = |N(L′,K ′)| = |N 1

2
(L′,K ′)| = f−1([0, 1/2]), where K ′ > L′ is a first

derived subdivision of K > L mod C(L,K). Any simplex σ ∈ K − (L ∪ C(L,K))
is a join, σ = τ ∗ η, with τ ∈ L and η ∈ C(L,K). The vertex assignment τ̂ ∗ η 7→ τ̂

defines a simplicial map φ : Ṅ(L′,K ′)→ L′, and Cφ = N(L′,K ′).

The proof of the following theorem is left as an exercise. (Use Theorem 3.3.)

Theorem 3.6. Suppose X is a subpolyhedron of a PL manifold M . Then a regular
neighborhood N of X in M is a PL manifold. If X is in the interior of M and
N = |N(L, K ′)| for some triangulation K > L of M ⊇ X, then ∂N = |Ṅ(L,K ′)|.

A converse of Theorem 3.6 is contained in the following Simplicial Neighborhood
Theorem. We state the theorem along with a selection of some of its more important
corollaries. A proof may be found in [50].

Theorem 3.7. (Simplicial Neighborhood Theorem) Suppose X is a subpolyhedron
in the interior of a PL manifold M , and N is a neighborhood of X in M . Then N
is a regular neighborhood of X if and only if

(1) N is a PL manifold with boundary, and
(2) there is a triangulation K > L, J of N ⊇ X, ∂N with L/ K, K = N(L,K)

and J = Ṅ(L, K).

Corollary 3.8. If Bn ⊆ Sn is a PL ball in a PL sphere, then C`(Sn −Bn) ∼= Bn.

Corollary 3.9. If N1 ⊆ intN2 are two regular neighborhoods of X in intM , then
C`(N2 −N1) ∼= ∂N1 × I.

Corollary 3.10. (Combinatorial Annulus Theorem) If B1 and B2 are PL n-balls
with B1 ⊆ intB2, then C`(B2 −B1) ∼= Sn−1 × I.

The Regular Neighborhood Theorem. The Regular Neighborhood Theorem
provides a strong isotopy uniqueness theorem for regular neighborhoods of X in
M . Given a subpolyhedron X of a polyhedron M , an isotopy of X in M is a
level-preserving, closed, PL embedding F : X × I →M × I. (This term will also be
used for a (closed) PL map F : X × I →M whose restriction to each X × {t}, t ∈
I, is an embedding.) An isotopy of M is a level-preserving PL homeomorphism
H : M × I →M × I such that H0 = id. An isotopy F of X in M is ambient if there
is an isotopy H of M making the following diagram commute.

X × I
F0×id //

F $$JJJJJJJJJ M × I

Hyyttttttttt

M × I
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We compose isotopies F and G of M by “stacking”:

F ◦G(x, t) =
{

F (x, 2t), if 0 ≤ t ≤ 1/2;
G(F (x, 1), 2t− 1), if 1/2 ≤ t ≤ 1.

Proposition 3.11. (Alexander Isotopy) If h0, h1 : Bn → Bn are PL homeomor-
phisms that agree on Sn−1, then h0 and h1 are ambient isotopic by an isotopy that
fixes Sn−1.

Proof. As Bn ∼= v ∗ Sn−1, use Proposition 2.3 to get Bn × [−1, 1] ∼= v ∗ (Sn−1 ×
[−1, 1]∪Bn×{−1, 1}). Define H : Sn−1× [−1, 1]∪Bn×{−1, 1} → Sn−1× [−1, 1]∪
Bn × {−1, 1} by H|Sn−1 × [−1, 1] ∪Bn × {−1} = id and H|Bn × {1} = h1 ◦ h−1

0 .
Extend linearly over the cone to get H : Bn×[−1, 1]→ Bn×[−1, 1]. (The Alexander
Isotopy is the isotopy Hh0|Bn × I : Bn × I → Bn × I.)

Proposition 3.12. If X is collared in M , then any isotopy of X extends to an
isotopy of M supported on a collar of X in M .

The proof of this proposition as well as the following corollary to 3.11 and 3.12
are left as exercises.

Corollary 3.13. If C is a cell complex and f : C → C is a homeomorphism that
carries each cell of C onto itself, then f is ambient isotopic to the identity.

Theorem 3.14. (Regular Neighborhood Theorem) Suppose X is a subpolyhedron
in the interior of a PL manifold M and N1 and N2 are regular neighborhoods of
X in intM . Then there is an isotopy of M , fixed on X and outside an arbitrary
neighborhood of N1 ∪N2 taking N1 to N2.

Proof. Let N0 ⊆ int N1 ∩ intN2 be a regular neighborhood of X. Then C`(Ni −
N0) ∼= ∂N0 × I for i = 1, 2. For a given neighborhood U of N1 ∪ N2, choose
regular neighborhoods N+

i of C`(Ni − N0) in U − X, i = 1, 2. Then there is a
PL homeomorphism hi : N+

i → ∂N0× [0, 3] such that hi(C`(Ni−N0), ∂N0, ∂Ni) =
(∂N0 × [1, 2], ∂N0 ×{1}, ∂N0 ×{2}. There is an obvious ambient isotopy of ∂N0 ×
[0, 3], fixing ∂N0 × {0, 3}, taking ∂N0 × {2} to ∂N0 × {1}. An appropriate compo-
sition does the job.

Collapsing and Shelling. Theorem 3.5 leads toward another important char-
acterization of regular neighborhoods, because of the very special way in which a
simplicial mapping cylinder deforms to its range. If X ⊇ Y are polyhedra such
that, for some n ≥ 0,

(C`(X − Y ),C`(X − Y ) ∩ Y ) ∼= (Bn−1 × I,Bn−1 × {0}),

then we say that there is an elementary collapse from X to Y , X↘e Y . We say
that X collapses to Y , X ↘ Y , if there is a sequence of elementary collapses
X = X0↘e X1↘e X2↘e · · ·↘e Xk = Y . If X ↘ Y , then Y expands to X, Y ↗ X.
A (compact) polyhedron X is collapsible, X ↘ 0, if X collapses to a point.

If M ⊇ Q are PL n-manifolds and M↘e Q, then we call the elementary collapse
an elementary shelling. If we set (Bn, Bn−1) = C`(M −Q),C`(M −Q) ∩Q), then
Bn−1 ⊆ ∂Q, and, hence, there is a homeomorphism h : M → Q, fixed outside any
preassigned neighborhood of intBn−1 in ∂Q. We say that M shells to Q if there is
a sequence of elementary shellings starting with M and ending with Q.

Proposition 3.15. If f : K → L is a simplicial map with K finite, then |Cf | ↘ |L|.
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Proof. A quick way to see this is to apply a result of M.H.A. Newman (see [66], Ch.
7, Lemma 46, also [15], Proposition 9.1), which says that if σ and τ are simplexes,
dim σ = n, and if f : σ → τ is a linear surjection, then (|Cf |, σ) ∼= (Bn×I, Bn×{0}).
(The proof of this assertion is not as immediate as one might like.) One then
proceeds by induction downward through the skeleta of K.

It is also possible to prove this directly, using induction and the fact that, if X
is a compact polyhedron, C(C(X))↘ C(X).

Clearly, if X ↘ Y , then X deformation retracts to Y , but the converse may
fail be true in a very strong sense. Polyhedra X and Y are simple homotopy
equivalent if there is a sequence X = X0 ↘ X1 ↗ X2 ↘ X3 ↗ · · · ↘ Yk = Y .
In particular, if f : K → L is a simplicial map (of finite complexes), which is also
a homotopy equivalence from |K| to |L|, then |Cf | deformation retracts to |K|,
but the equivalence may not be simple. There is an obstruction τf ∈Wh(π1(|K|),
the Whitehead group of the fundamental group of |K|: for a homotopy equivalence
f : |K| → |L|, τf = 0 if, and only if, the inclusion of |K| in |Cf | is a simple homotopy
equivalence. We refer the reader to [17] for a comprehensive treatment of this topic.

We state the collapsibility criteria for regular neighborhoods. They depend upon
the fact that if X ↘ Y , then a regular neighborhood of X shells to a regular
neighborhood of Y . Complete proofs may be found in [50] or [66] .

Theorem 3.16. Suppose X is a compact polyhedron in the interior of a PL manifold
M . A polyhedral neighborhood N of X in intM is a regular neighborhood of X if
and only if

(1) N is a compact manifold with boundary,
(2) N ↘ X.

Corollary 3.17. If X ↘ 0, then a regular neighborhood of X in a PL manifold is
a ball.

There are analogues for these results in the case of noncompact polyhedra and
“proper” maps. The reader is referred to [51] and [53] for more details.

Regular Neighborhoods of Pairs. The Simplicial and Regular Neighborhood
Theorems can be generalized to the “proper” inclusion of polyhedral pairs (Y, Y0) ⊆
(X, X0), meaning Y ∩X0 = Y0. The simplicial model is constructed as before: Let
(K, K0) > (L,L0) be triangulations of (X, X0) ⊇ (Y, Y0), with L/ K. Then L0 / K0

and polyhedra N0 ⊆ N of the derived neighborhoods N(L0,K
′
0) < N(L,K ′) are

regular neighborhoods of Y0 in X0 and Y in X, respectively. Call (N,N0) a regular
neighborhood of the pair (Y, Y0) in (X, X0).

We will mostly be interested in the case in which X and X0 are PL manifolds.
Suppose Q is a q-dimensional submanifold of a PL n-manifold M . We say that Q
is proper in M if Q ∩ ∂M = ∂Q, and, if Q ⊆ M is proper, we call the pair (M,Q)
an (n, q)-manifold pair. A proper ball pair (Bn, Bq) is unknotted if (Bn, Bq) ∼=
(Jn, Jq × {0}), where J = [−1, 1]. Similarly, a sphere pair (Sn, Sq) is unknotted if
(Sn, Sq) ∼= (∂Jn, ∂Jq×{0}). A manifold pair (M,Q) is locally flat at x ∈ Q if there
is a triangulation K > L of M ⊇ Q, containing x as a vertex, such that the pair
(st(v,K), st(v, L)) is an unknotted ball pair. (In the case that Q ⊆M is not proper
and x ∈ ∂Q − ∂M , require instead that (st(v,K), st(v, L)) ∼= (Jn, Jq−1 × [0, 1] ×
{0}).) (M,Q) is a locally flat manifold pair if it is locally flat at every point. It is an
exercise to see that (M,Q) is a locally flat manifold pair if there is a triangulation
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K > L of M ⊇ Q such that (st(v,K), st(v, L)) is an unknotted ball pair for each
vertex v of L.

We state the Regular Neighborhood Theorem for Pairs. The proof follows that
of that of the Regular Neighborhood Theorem with the obvious changes.

Theorem 3.18. (Regular Neighborhood Theorem for Pairs) Suppose (X, Y ) is
a polyhedral pair in a locally flat manifold pair (M,Q), with X ∩ Q = Y , and
suppose (N1, N1,0) and (N2, N2,0) are regular neighborhoods of (X, Y ) in (M,Q).
Then there is an isotopy H of (M,Q), fixed on X and outside a neighborhood of
N1 ∪N2 with H1(N1, N1,0) = (N2, N2,0).

If (M,Q) is a locally flat manifold pair, then the pair (∂M, ∂Q) is locally collared
as pairs in (M,Q). That is, if x ∈ ∂Q, then x has a neighborhood pair (X, Y ) ⊆
(M,Q) and (X0, Y0) ⊆ (∂M, ∂Q) such that (X, X0, Y, Y0) ∼= (X0 × [0, 1], X0 ×
{0}, Y0 × [0, 1], Y0 × {0}) The proof of Theorem 2.4 generalizes immediately to
provide a collaring theorem for pairs.

Theorem 3.19. If (Y, Y0) ⊆ (X, X0) is a proper inclusion of polyhedral pairs and
(Y, Y0) is locally collared in (X, X0) at each point of Y0, then (Y, Y0) is collared in
(X, X0).

Corollary 3.20. If (M,Q) is a locally flat manifold pair, then (∂M, ∂Q) is collared
in (M,Q).

One may define collapsing and shelling for pairs. For example, (X, X0)↘ (Y, Y0)
means that X0 ∩ Y = Y0, X ↘ Y , X0 ↘ Y0, and the collapse preserves X0. For
example, if X↘e Y so that X = Y ∪ B, where B is a cell meeting Y in a face C,
then B ∩X0 must be a cell meeting Y0 in a face that lies in C. In particular one
can arrange that X ↘ X0 ∪ Y ↘ Y ↘ Y0.

Theorem 3.21. If (Y, Y0) ⊆ (X, X0) ⊆ (M,Q) are proper inclusions of pairs and
(M,Q) is a locally flat manifold pair, and if (X, X0) ↘ (Y, Y0), then a regular
neighborhood pair of (X, X0) in (M,Q) shells to one of (Y, Y0).

Corollary 3.22. If (X, X0) ⊆ (M,Q) is a proper inclusion, where (M,Q) is a
locally flat manifold pair, and if (X, X0)↘ 0, then a regular neighborhood pair of
(X, X0) in (M,Q) is an unknotted ball pair.

Cellular Moves. Two q-dimensional, locally flat submanifolds Q1, Q2 of a
PL n-manifold M differ by a cellular move if there is a (q + 1)-ball Bq+1 ⊆ intM
meeting Q1 and Q2 in complementary q-balls Bq

1 and Bq
2 , respectively, in ∂Bq+1

such that Q1 ∩Q2 = Q1 − intBq
1 = Q2 − intBq

2 .

Theorem 3.23. If Q1, Q2 ⊆ M differ by a cellular move across a (q + 1)-ball
Bq+1, then there is an isotopy H of M , fixed outside an arbitrary neighborhood of
Bq+1, such that H1(Q1) = Q2.

Proof. Using derived neighborhoods, we can get a regular neighborhood N of Bq+1

in M such that if Ni = N∩Qi, then (N,Ni), i = 1, 2, is a regular neighborhood pairs
of (Bq+1, Bq

i ) in (M,Qi). Since, by Corollary 3.22, each (N,Ni) is an unknotted
ball pair there is a homeomorphism h : (N,N1)→ (N,N2), fixed on the boundary.
The Alexander Isotopy provides the isotopy H.

Corollary 3.24. A locally flat sphere pair (Sn, Sq) is unknotted iff Sq bounds a
(q + 1)-ball in Sn.
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Proof. If Sq = ∂Bq+1, choose a triangulation K > L of Sn ⊇ Bq+1 and a (q + 1)-
simplex σ of L such that σ ∩ Sq is a q-dimensional face of σ. Then (st(σ,K), σ) is
an unknotted ball pair, and ∂σ and Sq differ by a cellular move.

Relative Regular Neighborhoods. If Z ⊇ X ⊇ Y are polyhedra, then one
can define a relative regular neighborhood of X mod Y in Z. The simplicial model
is constructed much as above: Choose a triangulation J > K > L of Z ⊇ X ⊇ Y ,
let J ′′ be a second derived subdivision of J mod K, and set N(K − L, J ′′) = {σ ∈
J ′′ : for some τ ∈ J ′′, σ < τ and τ ∩ |K| − |L| 6= ∅}. We recommend [16] for a
complete treatment, including recognition and uniqueness theorems. As an example
result from the theory we have the following

Theorem 3.25. Suppose that (Bq, intBq) ⊆ (M, intM) and (int M, intBq) is a
locally flat pair. If N is a regular neighborhood of Bq mod ∂Bq in M , then (N,Bq)
is an unknotted ball pair.

Structure of Regular Neighborhoods. We have commented on the fact that
a regular neighborhood N of a polyhedron Y in a polyhedron X has the structure
of a mapping cylinder of a mapping φ : Ṅ → Y . In [16], Section 5, Cohen analyzes
the fine structure of the mapping cylinder projection γ : N → Y .

Theorem 3.26. [16] If N is a regular neighborhood of Y in X, then for each y ∈ Y ,
γ−1(y) ∼= y∗φ−1(y). Moreover, if (X, Y ) is a locally unknotted (n, q)-manifold pair,
then φ−1(y) ∼= Sn−q−1 ×Bi, where i is an integer depending on y.

Suppose now that (M,Q) is a locally flat (n, q)-manifold pair. It is not generally
true that we can get the integer i in Theorem 3.26 to be 0 for all y ∈ Q. Whenever
that is possible the regular neighborhood N of Q in M has the structure of an
(n − q)-disk bundle over Q. There are, however, examples [25] , [48] of locally
flat PL embeddings without disk-bundle neighborhoods (although, they acquire
disk-bundle neighborhoods after stabilizing the ambient manifold). Rourke and
Sanderson show [49] that it is possible, however, to give N the structure of a block
bundle. Given polyhedra E, F , and X, a PL mapping φ : E → X is a (PL) block
bundle with fiber F if there are PL cell complex structures K and L on E and X,
respectively, such that φ : K → L is cellular and for each cell C ∈ L, φ−1(C) is
PL homeomorphic to C ×F . If φ : E → X is a block bundle with fiber F , then the
mapping cylinder retraction γ : Cφ → X is also a block bundle with fiber the cone
x ∗F , and for each cell C ∈ L, (γ−1(C), C) ∼= (C × (x ∗F ), C ×{x}). If F = Sm−1

and C is a p-cell in L, then (γ−1(C), C) ∼= (Jp+m, Jp × {0}). A PL retraction
γ : E → X satisfying this property is called an m-block bundle over X.

Theorem 3.27. [49] Suppose that (M,Q) is a locally flat (n, q)-manifold pair.
Then a regular neighborhood N of Q in M has the structure of an (n − q)-block
bundle over Q.

Proof. We only consider the case in which ∂Q = ∅. Let K > L be a triangulation
of M ⊇ Q with L/ K, let K1 be a first derived subdivision of K mod L, and
let N = |N(L,K1)|. Since (M,Q) is a locally flat, for any p-simplex σ ∈ L,
(lk(σ,K1), lk(σ, L)) is an unknotted (n− p− 1, q − p− 1)-sphere pair; hence,

(lk(σ,K1), lk(σ, L)) ∼= (Sq−p−1 ∗ Sn−q−1, Sq−p−1).

Let K ′ > L′ be a first derived subdivision of K > L extending K1, and let σ
be a p-simplex of L. Let K̃σ < K ′ and L̃σ < L′ denote the dual (n − p − 1)-
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and (q − p − 1)-spheres to σ in K ′ and L′, respectively, and let C̃σ = σ̂ ∗ K̃σ and
D̃σ = σ̂ ∗ Lσ denote the respective dual cells. Then

(K̃σ, L̃σ) ∼= (lk(σ,K1), lk(σ, L)) ∼= (Sq−p−1 ∗ Sn−q−1, Sq−p−1),

so that
(C̃σ, D̃σ) ∼= (Jn−p, Jq−p × {0}).

These dual cell pairs fit together nicely to give the neighborhood N the structure
of an (n−q)-block bundle over Q with respect to the dual cell structures on M and
Q obtained from K and L. The mapping γ : N → Q is obtained by induction on
the dual cells of L; it is not, in general, the same as the natural projection defined
above.

4. General Position

General position is a process by which two polyhedra X and Y in a PL manifold
M may be repositioned slightly in order to minimize the dimension of X ∩ Y . It is
also a process by which the dimension of the singularities of a PL map f : X →M
may be minimized by a small adjustment of f . A combination of general posi-
tion and join structure arguments form the underpinnings of nearly every result in
PL topology. We start with definitions of “small adjustments.”

Given metric spaces X and M and ε > 0 (ε may be a continuous function of X),
An ε-homotopy (isotopy) of X in M is a homotopy (isotopy) F : X × I → M such
that diam F (x× I) < ε for every x ∈ X. An ε-isotopy of M is an isotopy H of M
that is also an ε-homotopy. If X, Y ⊆ M , then an ε-push of X in M , rel Y , is an
ε-isotopy of M that is fixed on Y and outside the ε-neighborhood of X.

Suppose f : X → M is a (continuous) function. The singular set of f , is the
subset S(f) = C`{x ∈ X : f−1f(x) 6= x}. If X and M are polyhedra and f is PL,
then f is nondegenerate if dim f−1(y) ≤ 0 for each y ∈ M . If f is a PL map, and
f−1(C) is compact for every compact subset C of M , then S(f) is a subpolyhedron
of X.

Let us start with a (countable) discrete set S of points in IRn. We say that S is
in general position if every subset {v0, v1, . . . , vp} of S spans a p-simplex, whenever
p ≤ n. Since the set of all hyperplanes of IRn of dimension < n spanned by points
of S is nowhere dense, it is clear that if ε : S → (0,∞) is arbitrary, then there is an
isotopy H of IRn, fixed outside an ε-neighborhood of S such that H1(S) is in general
position and diam H(v × I) < ε(v) for all v ∈ S. Moreover, if S0 is a subset of S
that is already in general position, then we can require that H fixes S0 as well. We
can also approximate any map f : S → IRn by map g such that g(S) is in general
position, insisting that g|S0 = f |S0 if f(S0) is already in general position.

General position properties devolve from the following elementary fact from lin-
ear algebra.

Proposition 4.1. Suppose that E1, E2 and E0 are hyperplanes in IRn of di-
mensions p, q and r, respectively, spanned by {u0, u1, . . . , up}, {v0, v1, . . . , vq},
and {w0, w1, . . . , wr} with ui = vi = wi for 0 ≤ i ≤ r and ui 6= vj for i, j >
r. If the set S = {u0, u1, . . . , up, vr+1, vr+2, . . . , vq} is in general position, then
dim((E1 − E0) ∩ (E2 − E0)) ≤ p + q − n.

As usual, we interpret dim(A∩B) < 0 to mean that A∩B = ∅. Proposition 4.1
motivates the definition of general position for polyhedra X and Y embedded in a
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PL manifold M . If dimX = p, dim Y = q, and dim M = n, we say that X and Y
are in general position in M if dim(X ∩ Y ) ≤ p + q − n.

Theorem 4.2. Suppose that X ⊇ X0 and Y are polyhedra in the interior of a PL n-
manifold M with dim(X−X0) = p and dim Y = q and ε : M → (0,∞) is continuous.
Then there is an ε-push H of X in M , rel X0, such that dim[H1(X −X0) ∩ Y ] ≤
p + q − n.

Proof. Let J > K, K0 be a triangulation of M ⊇ X, X0 with K0 / K. Let v be a
vertex of K−K0. Let g : lk(v, J)→ Sn−1 be a PL homeomorphism that is linear on
each simplex of Lk(v, J). Extend g conewise to a PL homeomorphism h : st(v, J)→
Bn such that h(v) = 0. Apply Proposition 4.1 to get a point x ∈

◦
Bn such that

dim(((x ∗ τ) − τ) ∩ h(Y )) ≤ p + q − n for every simplex τ = h(σ), σ ∈ Lk(v,K).
Let F be an isotopy of Bn, fixed on Sn−1, with F1 the conewise extension of idSn−1

that takes x to 0. Let F v be the isotopy of M , fixed outside st(v, J), obtained by
conjugating F with h. By choosing x sufficiently close to 0 ∈ Bn, we can assume

that F v is a δ-push of Y in M , rel (M −
◦
st(v, J)). Then dim((st(v,K)− lk(v,K))∩

F v
1 (Y )) ≤ p + q − n, and for any δ > 0.
Assume now that K is a derived subdivision of a triangulation of X so that the

vertices of K can be partitioned: K(0) = V0 ∪ V1 ∪ · · · ∪ Vk, k = dim K, where
st(v,K) ∩ st(w,K) ⊆ lk(v,K) ∩ lk(w,K) when v, w ∈ Vi, v 6= w. (See the proof of
Theorem 2.4.) For 0 ≤ i ≤ k, define an isotopy F i of M by F i = F v on st(v, J),

v ∈ Vi, and F i = id on M −
⋃

v∈Vi

◦
st(v, J). We can easily make F i an ε

2(k+1) -push

of X in M , rel (M −
⋃

v∈Vi

◦
st(v, J)). If we construct the F i’s inductively we can

ensure that the composition G = F 0 ◦ . . . ◦F k is an ε
2 -push of X in M , rel X0, and

that dim((X −X0)∩G1(Y )) ≤ p + q − n. The inverse H of G is then an ε-push of
X in M , rel X0, such that dim(H1(X −X0) ∩ Y ) ≤ p + q − n. (The inverse of an
ε-push H of X is only a 2ε-push of H(X).)

A similar type of argument can be used to prove a general position theorem for
mappings.

Theorem 4.3. Suppose X ⊇ X0 are polyhedra with dim(X − X0) = p, M is a
PL n-manifold, p ≤ n, and f : X → M is a continuous map with f |X0 PL and
nondegenerate on some triangulation of X0. Then for every continuous ε : X →
(0,∞) there is an ε-homotopy, rel X0, of f to f ′ : X →M such that dim(Sf−X0) ≤
2p− n. Moreover, if X1 ⊆ X and dim(X1 −X0) = q, then we can arrange to have
dim((Sf ∩ (X1 −X0)) ≤ p + q − n.

A mapping satisfying this last condition is said to be in general position with
respect to X1 rel X0.

Corollary 4.4. Suppose X ⊇ X0 is a p-dimensional polyhedron, f : X → M is a
continuous mapping of X into a PL n-manifold M , 2p+1 ≤ m, such that f |X0 is a
PL embedding, and if ε : X → (0,∞) is continuous, then f is ε-homotopic, rel X0,
to a PL embedding.

This is the best one can expect in such full generality. There is a p-dimensional
polyhedron X, namely the p-skeleton of a (2p + 2)-simplex, that does not embed
in IR2p [20] . Shapiro [52] has developed an obstruction theory for embedding p-
dimensional polyhedra in IR2p.
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General position and regular neighborhood theory can be used to establish an
unknotting theorem for sphere pairs.

Theorem 4.5. A sphere pair (Sn, Sq) is unknotted, if

(1) q = 1 and n = 4, or
(2) n ≥ 2q + 1 and n ≥ 5.

Corollary 4.6. An (n, q)-manifold pair (M,Q) is locally flat provided q = 1, n ≥ 1,
or q = 2, n ≥ 5, or q > 2, n ≥ 2q.

Proof. [50] (i) If n ≥ 5, then general position gives an embedding of the cone on
S1, so that S1 is unknotted by 3.24.

If n = 4, then there is a point x ∈ IR4 such that x and S1 are joinable: Let
V =

⋃
{E(u, v) : u, v ∈ S1}, where E(u, v) is the line determined by u and v. V is

a finite union of hyperplanes, each of dimension at most 3 in IR4. Hence, if x 6∈ V ,
then x ∗ S1 is the cone on S1. Thus S1 bounds a 2-ball in IR4.

(ii) Assume as above that Sq ⊆ IRn. By induction, using Corollary 4.6, we may
assume that (Sn, Sq) is locally flat. Since 2q ≤ n − 1, we may assume that the
restriction of the projection π : IRn → IRn−1 to Sq has a singular set consisting of
double points {a1, b

′
1, . . . , ar, b

′
r}, where ai lies “above” b′i. Choose a point x near

infinity “above” Sq, and let f : x ∗ Sq → IRn be the natural linear extension to the
cone x ∗Sq, so that the singularities of f lie in

⋃r
i=1 x ∗ {ai, bi}, where bi is close to

b′i. Since q ≥ 2, there is a PL q-cell B in Sq − {b1, . . . , br} containing {a1, . . . , ar}.
Then f |x ∗ ∂B is an embedding as is f |x ∗ (Sq − intB). The (q + 1)-ball f(x ∗ B)
provides a cellular move from Sq to ∂f(x ∗ (Sq − intB)). But ∂f(x ∗ (Sq − intB))
is unknotted, by 3.24.

Theorem 4.7. [6] Suppose X ⊇ X0 is a p-dimensional polyhedron, M is a PL n-
manifold, 2p+2 ≤ n, and f, g : X →M are PL embeddings such that f |X0 = g|X0

and f ' g, rel X0. Then f and g are ambient isotopic, rel X0, by an isotopy
supported on an arbitrary neighborhood of the image of a homotopy of f to g.

Proof. Let K > K0 be a triangulation of X ⊇ X0 and assume, inductively, that
f |K0∪K(p−1) = g|K0∪K(p−1). As the isotopy will be constructed by moving across
balls with disjoint interiors, we assume further that f ' g, rel |K0| ∪ |K(p−1)|. Let
Z = X×I mod (|K0|∪|K(p−1)|), and let F : Z →M be a relative homotopy from f
to g. Assume F is PL and in general position, so that dim S(F ) ≤ 2(p + 1)−n ≤ 0
and S(F ) consists of double points {ai, bi} lying in the interiors of cells σ × I mod
∂σ, where σ is a p-simplex of K. For each ai ∈ intσ × (0, 1), get a PL arc Ai in
intσ× [0, 1) joining ai to a point ci ∈ intσ×{0}, chosen so that the Ai’s are disjoint
and contain none of the bj ’s. Get a regular neighborhood pair (Di, Di,0) of (Ai, ci)
in (intσ× [0, 1), intσ×{0}), chosen so that the Di’s are disjoint (and contain none
of the bj ’s). Let Ci be the face of ∂Di complementary to Di,0. Then there is a
cellular move across Di taking σi × {0} to (σi × {0}) − intDi,0. The net effect of
these moves is to get a homotopy of F to an embedding.

Assume now that we have an embedding F : Z → M . For p-simplexes σ ∈ K,
choose relative regular neighborhoods Nσ of F (σ × I) mod F (∂σ) so that Nσ ∩
F (Z) = F (σ × I) and the Nσ’s have disjoint interiors. Then (Nσ, F (σ × {i}),
i = 0, 1, is an unknotted ball pair. Hence, there is an isotopy H of M , fixed outside
the union of the Nσ’s, such that on Nσ, H1 ◦ f |σ = g|σ.
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5. Embeddings, Engulfing

In this section we address the following question, which arises naturally from
Corollary 4.4. Suppose X is a p-dimensional polyhedron and M is a PL n-manifold.
When is a map f : X →M homotopic to a PL embedding? The first theorem takes
a small but important step in reducing the codimension restriction of Corollary 4.4.

Theorem 5.1. Suppose that Q is a connected PL q-manifold, M is a properly
simply connected PL n-manifold, and n ≥ 2q 6= 4. Then every closed mapping
f : Q→M is homotopic to a PL embedding.

Proof. To say that M is properly simply connected means that M is simply
connected and simply connected at infinity. That is, for every compact set C in M
there is a compact set D ⊇ C such that any loop in M−D is null-homotopic in M−
C. We consider only the case n ≥ 6. The proof exploits the now famous “Whitney
Trick” [64], [62]. Given f : Q → M , use general position to get a PL mapping
g : Q → intM homotopic to f such that S(g) is a closed set consisting only of
“double points”: S(g) = {a1, b1, a2, b2, . . .} ⊆ intQ, where the indicated points are
distinct, g(ai) = g(bi), i = 1, 2, . . ., and g(ai) 6= g(aj) if i 6= j. Since q ≥ 3, we
can get a closed family of mutually exclusive PL arcs A1, A2, . . . joining ai to bi,
respectively. The images g(Ai) are PL simple closed curves in int M . Since M is
properly simply connected and n ≥ 6, we can use general position to get a closed
family of mutually exclusive PL 2-cells D1, D2, . . . in intM such that ∂Di = g(Ai).
Using suitable triangulations we can get mutually exclusive regular neighborhoods
Ni of Di in intM such that Vi = g−1(Ni) is a regular neighborhood of Ai in intQ,
i = 1, 2, . . .. By Corollary 3.17 Ni and Vi are PL balls of dimensions n and q,
respectively. Using the cone structures on Ni and Vi, we can redefine g|Vi to get
an embedding hi : Vi → Ni, agreeing with g on ∂Vi, and homotopic to g|Vi rel ∂Vi.
Then g ' h, where h|Vi = hi and h|Q−

⋃
i Vi = g|Q−

⋃
i Vi.

Generalizations of the Whitney Trick may be used to reduce the codimension,
n−q, provided compensating assumptions are made on the connectivity of Q and M .
One approach uses engulfing techniques, introduced by Stallings [56] and Zeeman
[66] , which have proved useful in other contexts as well.

Engulfing. The engulfing problem: Given a closed set Y (polyhedron) and a
compact set C in a PL manifold M , with C ⊆ intM , and an arbitrary neighborhood
U of Y in M , find an ambient isotopy H of M , fixed on Y ∪ ∂M and outside a
compact set, such that H1(U) ⊇ C. If such an isotopy of M exists, we say that C
can be engulfed from Y . Obvious homotopy conditions must be met, but they are
not sufficient in general to find H. One need only look at the Whitehead link as C
in the torus S1 ×B2, with Y = pt. (See, e.g., [66], Ch. 7.)

Theorem 5.2. Suppose Y is a compact polyhedron of dimension ≤ n − 3 in a
PL n-manifold M , such that (M,Y ) is k-connected. A compact, k-dimensional
polyhedron X in intM can be engulfed from Y provided

(1) n ≥ 6 and n− k ≥ 3, or
(2) n = 4 or 5 and k = 1, or
(3) n = 5, k = 2.

Proof. The proof uses the collapsing techniques of [56] and [66] . We shall first
give an argument for (i) in the case n − k ≥ 4, deferring the case n − k = 3 of (i)
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and (iii). We leave the proof of (ii) as an exercise. An elegant alternative proof of
Theorem 5.2, using handle theory, may be found in [50].

The proof uses the fact that a simplicial mapping cylinder collapses to its range.
Suppose A ⊇ B are polyhedra and A↘ B. For a subset C of A, define the trail of
C, tr(C) ⊇ C, under the collapse as follows. Let A = A0↘e A1↘e · · ·↘e Ar = B
be a sequence of elementary collapses, so that

(C`(Ai−1 −Ai),C`(Ai−1 −Ai) ∩Ai)
hi∼= (Bm−1 × I,Bm−1 × {0}).

Suppose tri(C) = tr(C) ∩ C`(A − Ai) has been defined for 0 ≤ i < k (where
tr0(C) = ∅). Let D = hk((trk−1(C) ∪ C) ∩ (C`(Ak−1 − Ak)) ⊆ Bm−1 × I, and
let E = {(x, t) ∈ Bm−1 × I : (x, s) ∈ D, for some s ≥ t}. Define trk(C) =
trk−1(C) ∪ h−1

k (E). Finally, define tr(C) = trr(C) ∪ C. If C is a polyhedron of
dimension p in A, then elementary arguments show that

(a) A↘ B ∪ tr(C)↘ B, and
(b) dim tr(C) ≤ p + 1.

Suppose now that Y, X ⊆M , as in (i), with n− k ≥ 4. We shall actually prove
the stronger

Assertion 5.3. There is a polyhedron Q ⊆ M such that X ⊆ Q, Q ↘ Y , and
dim(Q− Y ) ≤ k + 1.

Given the assertion, one may apply the Regular Neighborhood Theorem to obtain
the desired isotopy.

Proof of Assertion 5.3. Fix k(≤ n − 4), and suppose inductively that, for
0 ≤ i ≤ k, we have the following:

(1) a polyhedron Q ⊇ X ∪ Y in M with dim Q ≤ n− 3, such that
(2) Q↘ Y ∪ P , where
(3) dim P ≤ k − i.

Start the induction at i = 0 with Q = X ∪ Y and P = X.
Since (M,Y ) is k-connected, there is a homotopy of the inclusion of P in M , rel

P ∩Y , to a map f : P → Y , which we may assume to be PL. Choose triangulations
K and L of P and Y , respectively, such that H = K ∩ L triangulates P ∩ Y and
f : K → L is simplicial. Let Z = |Cf rel H|. Then dim(Z − Y ) ≤ k − i + 1
and the homotopy provides a map F : Z → M such that F |P ∪ Y = id. We
may assume that F is in general position (with respect to Y ) so that dim S(F ) ≤
(n − 3) + (k − i + 1) − n ≤ k − i − 2 (Theorem 4.3). Let T = tr(S(F )) under
the collapse Z ↘ Y . Then dim T ≤ k − i − 1, and Z ↘ Y ∪ T ↘ Y ; hence,
F (Z) ↘ Y ∪ F (T ). Let R = tr(F (Z) ∩ Q) under the collapse Q ↘ Y ∪ P . Then
dim R ≤ k − i− 1, and Q↘ Y ∪ P ∪R↘ Y ∪ P .

Set Q1 = Q∪S(Z) and P1 = F (T )∪R. Then Q1 ↘ Y ∪F (Z)∪R↘ Y ∪F (T )∪
R = Y ∪ P1, and dim P1 ≤ k − i− 1.

When i = k + 1, the process stops, since the set P = ∅.
The inductive argument given above does not work in the case n−k = 3. (Check

the dimension of the polyhedron T in the proof.) To argue this case we shall use
Zeeman’s Piping Lemma, which we paraphrase next. A proof may be found in [66],
Ch. 7, Lemma 48.

Lemma 5.4. (Piping Lemma [66] ) Suppose M is a PL n-manifold, K is a finite
complex of dimension k ≤ n − 3, f : K → L, dim L ≤ n − 3, is a simplicial
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mapping that restricts to an embedding on a subcomplex H < K, Z = |Cf rel H|,
Z0 = |Cf |K(k−1) rel H|, and F : Z →M is a PL mapping that is in general position

with respect to Z0. Then F is homotopic rel |K| ∪Z0 to a PL mapping G : Z →M
such that

(a) Z ↘ Z1 ↘ |L|,
(b) S(G) ∪ Z0 ⊆ Z1,
(c) dim(Z1 − |L|) ≤ k − 1, and
(d) dim C`(Z1 − |L|) ∩ Z0) ≤ k − 2.

We indicate the proof of Assertion 5.3 when k = n− 3, n ≥ 5. The inclusion of
X in M is homotopic rel X ∩ Y to a mapping f : X → Y , which we may assume
to be PL. Let K, L, H triangulate X, Y, X ∩ Y so that f : K → L is simplicial
and f |H = id. Let Z = |Cf rel H|, and let F : Z → M be a PL mapping with
F |X ∪ Y = id, guaranteed by the connectivity, in general position with respect
to Z0 = |Cf |K(n−4) rel H|. By Lemma 5.4 F is homotopic, rel |K| ∪ Z0, to a
PL mapping G : Z → M satisfying (a), (b). and (c) of 5.4. Then G(Z) ↘ G(Z1).
In the proof of Assertion 5.3, set Q = G(Z) and P = C`(G(Z1) − Y ). Then
dim Q ≤ n− 2 and dim P ≤ n− 4, and the inductive argument proceeds without a
problem.

Generalizations of the Whitney Trick for eliminating double point singularities
of a mapping f : Qq →M2q, as in Theorem 5.1, can be obtained from the engulfing
techniques just described. Irwin’s embedding theorem, which we now state, can be
thought of as the generalization to codimension 3 of the process of removing one
pair of double points.

Theorem 5.5. ([33]) Suppose Q is a compact PL q-manifold, M is a PL n-
manifold, n − q ≥ 3, such that Q is (2q − n)-connected and M is (2q − n + 1)-
connected. Then every map f : (Q, ∂Q)→ (M,∂M) for which f |∂Q : ∂Q→ ∂M is
a PL embedding is homotopic rel ∂Q to a PL embedding.

Proof. Since general position works when n ≤ 5, we assume that n ≥ 6. By playing
with the collar structures on ∂Q and ∂M , one may assume that f(int Q) ⊆ intM
and f |N is a PL embedding for some collar neighborhood N of ∂Q in Q and that a
general position approximation g : Q→M satisfies g|N = f |N , S(g) ⊆ C`(Q−N),
and dim S(g) ≤ 2q−n. We will find collapsible polyhedra C ⊆ intQ and D ⊆ intM
such that S(g) ⊆ C = g−1(D). Once we have C and D, we can proceed as in the
proof of Theorem 5.1: Get regular neighborhoods U of D in intM and V of C in
intQ such that g−1(U) = V . Then U and V are PL n- and q-balls, respectively, and
g|∂V : ∂V → ∂U is a PL embedding. We redefine g on V to get a PL embedding
homotopic to g.

We shall assume, initially, that n− q ≤ 4. We construct C and D by induction.
Assume that f : Q → M is a PL mapping in general position with S(f) ⊆ int Q
and f(S(f)) ⊆ intM . Suppose, inductively, we have the following:

(a) polyhedra C ⊆ Q, D ⊆M such that
(b) S(f) ⊆ C ↘ 0, f(C) ⊆ D ↘ 0,
(c) f−1(D) = C ∪ C1,
(d) dim C ≤ q − 3, dim D ≤ q − 2, and
(e) dim C1 ≤ q − 3− i, and dim(C1 ∩ C) ≤ q − 4− i.
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We start the induction at i = 3. Since dim S(g) ≤ 2q − n ≤ q − 4, we can use
the connectivity conditions and Assertion 5.3, with Y = pt, to get a collapsible
polyhedron C ⊆ Q with dim C ≤ 2q − n + 1 ≤ q − 3. Apply the connectivity
conditions and Assertion 5.3 again, with Y = pt, to get a collapsible polyhedron
D ⊇ f(C), with dim D ≤ 2q−n+2 ≤ q−2. Use general position to get dim(f(Q−
C) ∩D) ≤ q + (q − 2)− n ≤ q − 6, and dim(C`(f(Q− C) ∩D)) ∩D) ≤ q − 7. Set
C1 = f−1(C`(f(Q− C) ∩D)); dim C1 ≤ q − 6.

Suppose we are given (a) – (e), for 1 ≤ i ≤ k, so that dim C1 ≤ q − 3 − k, and
dim(C1∩C) ≤ q−4−k. Let S = C1∩C, and let T = tr S under the collapse C ↘ 0;
dim T ≤ q − 3− k. Then C ↘ T ↘ 0. The connectivity conditions, together with
the homotopy extension theorem, imply there is a homotopy, rel C1 ∩ T , of idC1 to
a mapping g : C1 → T ⊆ C. Assertion 5.3 then provides a polyhedron A ⊇ C1 ∪ C
such that A↘ C (↘ 0), dim(A− C) ≤ q − 2− k, and C`(A− C) ∩ C ≤ q − 3− k.

Let A1 = C`(A − C) and let B1 = f(A1). Then dim B1 ≤ q − 2 − k and
dim B1 ∩ D ≤ q − 3 − k. Let S1 = B1 ∩ D and let T1 = tr S1 under the collapse
D ↘ 0. Then dim T1 ≤ q− 2− k and T1 ↘ 0. Repeat the argument above: use the
connectivity conditions, together with the Homotopy Extension Theorem, to get a
homotopy, rel B1 ∩ T1, of idB1 to a mapping h : B1 → T1 ⊆ D. Assertion 5.3 then
provides a polyhedron P ⊇ B1∪D such that P ↘ D (↘ 0), dim(P−D) ≤ q−1−k,
and C`(P −D)∩D ≤ q− 2−k. Use general position to get dim((P −D)∩ f(Q)) ≤
(q − 1− k) + q − n ≤ q − 5− k. Set P1 = f−1(C`(P −D). Then A and P1 replace
C and C1 to complete the inductive step.

The case n − q = 3 requires Lemma 5.4 to get the induction going, very much
as in the proof of Assertion 5.3. We shall leave the details to the reader.

Corollary 5.6. If Q is a compact k-connected q-manifold, q − k ≥ 3, then Q
embeds in IR2q−k.

Corollary 5.7. If f : Sq−1 → ∂M is a PL embedding of the (q − 1)-sphere into
the boundary of a (q− 1)-connected n-manifold M , n− q ≥ 3, then f extends to a
PL embedding f̄ : Bq →M .

To get a generalization of the Whitney Trick analogous to the removal of all
of the double point singularities of Theorem 5.1, one must impose a connectivity
condition on the mapping f . Recall that a mapping f : Q → M is k-connected if
πi(f) = πi(Mf , Q) = 0, for 0 ≤ i ≤ k.

Theorem 5.8. [29, 57, 60] Suppose Q and M are PL manifolds of dimensions
q and n, respectively, n − q ≥ 3, and f : (Q, ∂Q) → (M,∂M) is a (2q − n + 1)-
connected map such that f |∂Q is a PL embedding. Then f is homotopic, rel ∂Q,
to a PL embedding.

This theorem was first proved by Hudson [29], with an extra connectivity hy-
pothesis on Q, using a generalization of the techniques of the proof of Theorem 5.5.
This condition later proved to be superfluous as a consequence of the argument in
the proof of following theorem of Stallings [57]. We include Stallings’ argument,
since it has only appeared in preprint form.

Theorem 5.9. [57] Suppose X is a compact k-dimensional polyhedron, M is a
PL manifold of dimension n, n− k ≥ 3, and f : X →M is (2k − n + 1)-connected.
Then there is a k-dimensional polyhedron X1 ⊆ M and a simple homotopy equiv-
alence f1 : X → X1 such that f1 and f are homotopic as maps to M .
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Proof. [57] It is not difficult to see that a map f : X → M is i-connected if, and
only if, any map α : (P,Q)→ (Cf , X) of a polyhedral pair (P,Q) into the mapping
cylinder of f , with dim(P −Q) ≤ i, is homotopic, rel α|Q, to a map into X.

Suppose that f : X → M is a (2k − n + 1)-connected map and that f is in
general position, so that dim Sf ≤ 2k − n. Suppose, inductively, that we have a
k-dimensional polyhedron Y , a simple homotopy equivalence h : X → Y , and a PL
map g : Y →M such that

(a) gh = f ,
(b) dimS(g) ≤ 2k − n− j, for some j, 0 ≤ j ≤ 2k − n.

Then g is (2k−n+1)-connected. We start the induction by setting Y = X, h = id,
and g = f .

Set S = S(g), T = g(S(g)), and let C be the mapping cylinder of g|S : S → T
with projection γ : C → T . Then C is a submapping cylinder of Cg and dim C ≤
2k−n−j+1 ≤ 2k−n+1. Our hypotheses imply that the inclusion (C,S) ⊆ (Cg, Y )
is homotopic, rel S, to a map of C into Y . Let H : C×I → Cg be such a homotopy.
That is, H0(y) = y, for all y ∈ C, Ht(y) = y, for all y ∈ S, and H1(C) ⊆ Y . Let
β = H1 : C → Y (keep in mind that β(y) = y, if y ∈ S), and form the reduced
mapping cylinder Dβ rel S. Then dim(Dβ − Y ) ≤ 2k − n − j + 2 and Dβ ↘ Y ,
so that the inclusion Y ⊆ Dβ is a simple homotopy equivalence. Since C ⊆ Dβ

and C ↘ T , the adjunction space Y1 = Dβ ∪γ T is simple homotopy equivalent to
Dβ . (See (5.9) of [17].) Hence, each of the maps X → Y → Dβ → Y1 is a simple
homotopy equivalence. Denote the composition by h1 : X → Y1.

Observe that the composition g′ : Y → Dβ → Y1 induces the same identifications
on Y that g does, so that Y is sent to a subset of Y1 homeomorphic to g(Y ) ⊂M .
Thus, the composition γg ◦ H : C × I → M , where γg : Cg → M is the projec-
tion, induces a map g1 : Y1 → M such that g1g

′ = g and g1|g′(Y )(= g(Y )) is an
embedding. Assume g1 is in general position rel g(Y ). Then we have

(a) g1h1 = f , and
(b) dim S(g1) ≤ (2k − n− j + 2) + k − n ≤ 2k − n− j − 1,

since dim(Y1 − g(Y )) ≤ 2k− n− j + 2, and n− k ≥ 3. The inductive process stops
after at most 2k − n iterations.

Using surgery theory, Wall [60] obtains the following embedding theorem, which
was proved first for Q simply connected by Casson and Sullivan and by Browder
and Haefliger [24]. One can easily see that Theorem 5.8 follows from Theorems 5.9
and 5.10.

Theorem 5.10. [60] Suppose Q and N are compact PL manifolds of dimensions
q and n, respectively, n − q ≥ 3, and f : (Q, ∂Q) → (N, ∂N) is a homotopy equiv-
alence such that f |∂Q is a PL embedding. Then f is homotopic, rel ∂Q, to a
PL embedding.

Perhaps the first important application of engulfing due to Stallings is his proof
of the higher dimensional Poincaré Conjecture [56].

Theorem 5.11. (Weak Poincaré Conjecture) [56] Suppose that M is a k-connected,
closed PL n-manifold, n ≥ 5, k = bn/2c. Then M is topologically homeomorphic
to Sn.

Proof. Let M1 be M minus the interior of an n-ball. Then M1 is also k-connected.
Let K > K0 be a triangulation of M1 ⊇ ∂M1, let L = K(k) ∪K0, and let L̃ < K ′
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be the dual (n − k − 1)-skeleton of K rel K0. Let N be a regular neighborhood
of ∂M1 in M1 (a collar), and let B be a small n-ball in intM1 containing a point
p 6∈ N in its interior. Use 5.2 to get isotopies H1 and H2 of M1, fixed on ∂M1,
such that H1

1 (N) ⊇ |L| and H2
1 (B) ⊇ |L̃|. Using the Example of Section 3 and

the Regular Neighborhood Theorem, we may assume that M1 = H1
1 (N) ∪H2

1 (B).
The composition H = H−1

2 ◦ H1 is an isotopy of M1, fixed on ∂M1, such that
H(N) ⊇M1 − intB. Without loss of generality, p 6∈ H(N).

Set M2 = C`(B −H(N)), and repeat the construction for M2, obtaining M2 =
N2 ∪ B2, where N2 is a collar on ∂M2, p 6∈ N2, and B2 is a small n-ball in int M2

containing p in its interior. After an infinite repetition we obtain M1 − {p} ∼=
∂M1× [0,∞), so that M −{p} ∼= IRn. Thus M is the one point compactification of
IRn, which is topologically homeomorphic to Sn.

A stronger version of the Poincaré Conjecture, concluding that M is PL homeo-
morphic to Sn, can be proved for n ≥ 6 using handle theory and the h-cobordism
theorem [55], [3] . We shall discuss these topics in the next section.

6. Handle Theory

Suppose that K is a combinatorial n-manifold with polyhedron M . The com-
binatorial structure of K provides M with a nice decomposition into PL n-balls,
stratified naturally by their “cores”, called a handle decomposition. Given PL n-
manifolds W1 and W0, and J = [−1, 1], we say that W1 is obtained from W0

by adding a handle of index p, if W1 = W0 ∪ H(p), where (H(p),H(p) ∩ W0) =
(H(p), ∂H(p) ∩ ∂W0) ∼= (Jp × Jn−p, ∂Jp × Jn−p). Given a PL homeomorphism
h : (Jp × Jn−p, ∂Jp × Jn−p) → (H(p),H(p) ∩ ∂W0), we call h(Jp × {0}) the core
of the handle H(p), h(∂Jp × {0}) is the attaching sphere, h({0} × Jn−p) is the co-
core, and h({0} × ∂Jn−p) is the belt sphere. We call h the characteristic map, and
f = h|(∂Jp)× Jn−p the attaching map.

For example, suppose M is a PL n-manifold without boundary, and K is a
combinatorial triangulation of M with first and second derived subdivisions K ′ �
K ′′. If σ is a p-simplex of K, then lk(σ,K) ∼= Sn−p−1 so that

(st(σ,K), σ) ∼= (σ ∗ lk(σ,K), σ)
∼= (Bp ∗ Sn−p−1, Bp)
∼= (Jp × Jn−p, Jp × {0}).

Using a cone construction one in turn sees that

(st(σ,K), σ) ∼= (st(σ̂, K ′′), st(σ̂, σ′′)),

where σ′′ = K ′′|σ.
Denote the PL n-ball, st(σ̂, K ′′), by Bσ. It is not difficult to see that Bσ∩Bτ = ∅

whenever dim σ = dim τ . Setting Hp =
⋃
{Bσ : dim σ = p}, we see that M =

H0 ∪ H1 ∪ · · · ∪ Hn, where each Hp is a disjoint union of n-balls. (See Fig. 6.1,
where Bp denotes a Bσ, dim σ = p.) If we set Wp−1 =

⋃
i<p Hi, then for dim σ = p,

Bσ ∩ Wp−1 = ∂Bσ ∩ ∂Wp−1 is a regular neighborhood of ∂σ′′ in ∂Bσ; hence,
Bσ ∩Wp−1

∼= Sp−1 × Jn−p. Thus, Wp is obtained from Wp−1 by adding p-handles
Bσ, dim σ = p, and M = H0 ∪H1 ∪ · · · ∪Hn.
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A handle decomposition of a PL n-manifold M is a presentation M = H0 ∪H1 ∪
· · · ∪ Hn, where H0 is a disjoint union of n-balls, and Wp =

⋃
i≤p Hi is obtained

from Wp−1 by adding p-handles, 1 ≤ p ≤ n. It may be that Wp = Wp−1, in which
case the decomposition has no handles of index p. That is, we allow Hp = ∅.

If M is a PL n-manifold with boundary ∂M , let C be a regular neighborhood
of ∂M in M , (C, ∂M) ∼= (∂M × I, ∂M × {0}). Assume that C = N(∂K ′′,K ′′) for
some PL triangulation K of M . Construct the n-balls Bσ as above for σ 6∈ ∂K.
Then M = C ∪ H0 ∪ · · ·Hn as before, and Wp = C ∪

⋃
i≤p Hi is obtained from

Wp−1 by adding p-handles. Notice that any attaching set that meets C meets it
in Ṅ(∂K ′′,K ′′). Any such presentation of M is a handle decomposition of M , rel
∂M .

Finally, we extend the idea of a handle decomposition to a cobordism between
(n−1)-manifolds. A cobordism is a triple (W ;M,M ′), where W is a PL n-manifold
and ∂W = M ∪ M ′, M ∩ M ′ = ∅. A handle decomposition of W , rel M , is
a presentation W = C ∪ H0 ∪ H1 ∪ · · ·Hn ∪ C ′, where C and C ′ are regular
neighborhoods of M and M ′ in W , respectively, and Wp = C ∪

⋃
i≤p Hi is obtained

from Wp−1 by adding p-handles.

Dual Handle Decompositions. Notice that if W = C∪H0∪H1∪· · ·Hn∪C ′ is
a handle decomposition of a cobordism (W ;M,M ′), and if H(p) is a p-handle with
characteristic map h, then H(p) ∩ (

⋃
i>p Hi ∪ C ′) = h(Jp × ∂Jn−p). That is, H(p)

can be thought of as an (n− p)-handle added to
⋃

i>p Hi ∪ C ′. With this point of
view, we write H(p) = H̃(n−p) and call H̃(n−p) the dual (n− p)-handle determined
by H(p). Thus, we also get a handle decomposition W = C ′∪H̃0∪H̃1∪· · ·∪H̃n∪C,
where H̃p = Hn−p. Dual handle structures are closely related to dual cell structures
described in Section 2.

Handle decompositions arising from triangulations of a manifold are generally
too large to be of much use, although they often provide a place to get started. The
goal is to try to find the simplest possible handle decomposition. For example, if
a cobordism (W ;M,M ′) has a handle decomposition with no handles, then W =
C ∪ C ′ is a product: (W ;M,M ′) ∼= (M × I;M × {0},M × {1}). An obvious
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necessary condition for this to happen is that the inclusions Mi ↪→W , i = 0, 1, are
homotopy equivalences. A cobordism (W ;M,M ′) satisfying this condition is called
an h-cobordism between M and M ′, or simply an h-cobordism.

h-Cobordism Theorem 6.1. Suppose (W ;M,M ′) is a compact h-cobordism,
dim W ≥ 6, and W is simply connected. Then (W ;M,M ′) ∼= (M×I;M×{0},M×
{1}).

We shall outline a proof of the h-Cobordism Theorem in this section. Our
treatment is taken from [50], where many of the omitted details may be found.

Simplifying handle decompositions. For the immediate discussion, we will
let (W ;M,M ′) denote a compact cobordism with dim W = n. Our first observation
is that “sliding a handle” does not change the topology of the resulting manifold.

Lemma 6.2. If f, g : ∂Ip × In−p → ∂M ′ are ambient isotopic attaching maps,
then W ∪f H(p) ∼= W ∪g H(p) by a homeomorphism that is fixed outside a regular
neighborhood (collar) of M ′.

Proof. By Proposition 3.12, an isotopy of M ′ extends to W , fixing the complement
of a collar on M ′.

Lemma 6.3. If p ≤ q, then (W ∪H(q))∪H(p) ∼= (W ∪H(p))∪H(q), with H(p) and
H(q) disjoint.

Proof. Let Sa be the attaching sphere for H(p) and Sb the belt sphere for H(q).
Then dim Sa + dim Sb = (p − 1) + (n − q − 1) < n − 1 so that Sa can be general
positioned to miss Sb in ∂(W ∪H(q)). Use 3.14 and Lemma 6.2 to “squeeze” the
p-handle so that H(p) ∩ Sb = ∅ as well. Let N be a regular neighborhood of the
cocore of H(q) in W ∪ H(q) such that N ∩ H(p) = ∅. Since H(q) is also a regular
neighborhood, there is an isotopy of W ∪H(q) taking N to H(q). This isotopy slides
H(p) off of H(q), so Lemma 6.2 applies to complete the proof.

As a consequence of Lemma 6.3, we can rearrange the addition of handles to
a cobordism W so that the handles are added in nondecreasing order, thereby
producing a handle decomposition of W . We now look at circumstances in which
handles may be eliminated.

Suppose W1 = W ∪ H(p) ∪ H(p+1), dim W = n. Then H(p) and H(p+1) are
called complementary handles if the attaching sphere Sa of H(p+1) meets the belt
sphere Sb of H(p) transversely in a single point. This means that near x = Sa ∩Sb,
and after an ambient isotopy of the attaching map f for H(p+1), f matches up the
product structure on ∂H(p+1) with that on ∂H(p).

Lemma 6.4. Suppose that W1 = W ∪ H(p) ∪ H(p+1), where H(p) and H(p+1)

are complementary handles. Then W1
∼= W by a PL homeomorphism that is the

identity outside a collar on M ′.

Proof. Let h : Jp × Jn−p → H(p) be the characteristic map for H(p) and let
f : (∂Jp+1)× Jn−p−1 → ∂(W ∪H(p)) be the attaching map for H(p+1). Using the
Regular Neighborhood Theorem and Lemma 6.2, we may assume that h(Jp×({1}×
Jn−p−1)) = f((Jp × {1}) × Jn−p−1), and that f−1 ◦ h|Jp × ({1} × Jn−p−1) = id.
(See Fig. 6.2.) Thus, we see that W1 is obtained from W by attaching an n-ball
B = H(p) ∪H(p+1) to M ′ along an (n− 1)-ball in ∂B. That is, W1 shells to W .
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The reverse of this process allows one to introduce a cancelling pair of handles
to a cobordism.

In general, if W1 = W ∪H(p) ∪H(p+1), then we can define the incidence number
ε(H(p+1),H(p)) as follows. There is a strong deformation retraction of W ∪ H(p)

onto W ∪h(Ip×{0}), where h is the characteristic map for H(p). The composition
W ∪ H(p) → W ∪ h(Ip × {0}) → (W ∪ h(Ip × {0})/W ∼= Sp gives a mapping
g : W ∪ H(p) → Sp. If Sa is the attaching sphere for H(p+1), then the restriction
g|Sa gives a mapping of Sp ∼= Sa → Sp. Choose orientations for (each) Sp, and
define ε(H(p+1),H(p)) to be the degree of this map. Thus, ε(H(p+1),H(p)) is an
integer, which is well-defined up to sign. If Sa and the belt sphere Sb for H(p) are in
general position in ∂(W ∪H(p)), then they intersect transversely in a finite number
of points. If H(p) and H(p+1) are given orientations, then ε(H(p+1),H(p)) is the
algebraic intersection number of Sa and Sb in ∂(W ∪H(p)). If H(p) and H(p+1) are
a complementary pair of handles, then, clearly, ε(H(p+1),H(p)) = ±1. The next
lemma gives conditions under which, up to an ambient isotopy of attaching maps,
the converse is true. The proof uses another form of the Whitney Trick and may
be found in [50], Ch. 6.

Lemma 6.5. (Handle Cancellation Lemma) Suppose W1 = (W ∪H(p))∪f H(p+1),

2 ≤ p ≤ n−4, n ≥ 6, M ′ is simply connected, and ε(H(p+1),H(p)) = ±1. Then the
attaching map f for H(p+1) is ambient isotopic to an attaching map g such that, in
W2 = (W ∪H(p)) ∪g H(p+1), H(p) and H(p+1) are complementary handles. Thus,
W1
∼= W2

∼= W .

Lemma 6.6. (Handle Addition Lemma) Suppose W1 = W ∪f1 H
(p)
1 ∪f2 H

(p)
2 , where

H
(p)
1 ∩H

(p)
2 = ∅, 2 ≤ p ≤ n − 2, and M ′ is simply connected. Then f1 is ambient

isotopic to f3, where [f3] = [f1] + [f2] in πp(M ′).

Proof. If 2 ≤ p ≤ n − 2 and M ′ is connected, we can connect PL embedded
(p− 1)-spheres S1 and S2 with a PL “ribbon” D = g(I × Ip−1) in M ′, where g is a
PL embedding, g(I×Ip−1)∩S1 = g({0}×Ip−1) and g(I×Ip−1)∩S2 = g({1}×Ip−1).
(See [50], Ch. 5.) In this way we can add the homotopy classes of [f1] and [f2] in
πp−1(M ′) (this requires 2 ≤ p ≤ n−2), and if M ′ is simply connected, the resulting
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class is independent of D. Inside the boundary of the p-handle H1 = H
(p)
1 in W1,

there is a “parallel” copy of its core: B = h(Jp × {x}), where x ∈ ∂Jn−p and h is
a characteristic map for H1. Connect the boundary sphere S of B to the attaching
sphere S2 for the handle H2 with a ribbon D in M ′.

Now we have the collapses B ∪ D ∪ S2 ↘ S2 and B ∪ D ∪ S2 ↘ S3 = (S1 ∪
D ∪ S2) − g(I × int Ip−1) in M2 = ∂(W ∪ H1) −M . Thus, in M2, the Regular
Neighborhood Theorem provides an ambient isotopy of the attaching map f1 to
f3 : Sp−1 → M ′ with [f3] = [f1] + [f2] in πp(M ′). The new handle can be moved
off of H

(p)
1 ∪H

(p)
2 .

Lemma 6.7. Suppose that (W ;M,M ′) is a connected cobordism. Then W has a
handle decomposition with no 0- or n-handles.

Proof. If a 1-handle H(1) joins C to a 0-handle H(0), then (H(0),H(1)) is a com-
plementary pair. Proceed by induction: if there are any 0-handles, then there is
one that is joined to C by a 1-handle. The n-handles in a handle decomposition of
W are the 0-handles in the dual decomposition.

If M is simply connected, one can use a handle decomposition (W ;M,M ′) =
C ∪H1 ∪ · · · ∪H(n−1) ∪C ′, where Hp = H

(p)
1 ∪ · · · ∪H

(p)
np is the (disjoint) union of

handles of index p, to compute the homology of the pair (W ;M). Form the chain
complex whose pth chain group, Cp, is generated by the (oriented) p-handles. If
H

(p)
i is a p-handle, define ∂(H(p)

i ) =
∑

j ε(H(p)
i ,H

(p−1)
j )H(p−1)

j . Observe that if
X ⊇ Y is a polyhedron with dim(X − Y ) ≤ p, and if f : (X, Y ) → (W,M) is a
mapping, then f is homotopic, rel Y , to a mapping g : X → C ∪H1∪· · ·∪Hp. Just
proceed inductively: use general position to get f(X) disjoint from the cocores of
higher dimensional handles and then use the handle structure to get f(X) miss the
handles themselves. A similar general position argument can also be used to prove
the following useful fact.

Lemma 6.8. Suppose that W = C ∪H0∪ · · ·∪Hn∪C ′ is a handle decomposition,
W (p) = C ∪H1 ∪H1 ∪ · · · ∪Hp, and M (p) = ∂W (p) −M . Then

(a) πi(W,W (p)) = 0 for i ≤ p, and
(b) πi(W,M (p)) = 0 for i ≤ min{p, n− p− 1}.

Lemma 6.9. Suppose that W is connected, n ≥ 6, M is simply connected, and
(W ;M,M ′) has a handle decomposition with no handles of index < p, 1 ≤ p ≤ n−4.
If Hp(W,M) = 0, then there is another handle decomposition with no handles of
index ≤ p and with the same number of handles of index > p + 1.

Proof. Let W = C ∪H1 ∪ · · · ∪Hn ∪ C ′) be a handle decomposition for W .
Case 1: p = 1. Let H(1) be a 1-handle in H1; H(1) is attached to M0 = ∂C −M .
Let α be an arc in ∂H(1) parallel to its core, and let β be a PL arc in C joining the
endpoints of α. Use general position to get α to miss all 2-handles and β to miss the
cores of the 1- and 2-handles so that γ = α∪β ⊆ ∂(C ∪H(1))−M . By Lemma 6.8
and general position, γ bounds a PL disk D in M1 = ∂(C ∪H1 ∪H2)−M . By 4.6
D is locally flat in M1. Introduce a complementary pair of 2- and 3-handles H(2)

and H(3) so that H(2) has attaching sphere ∂D and D lies in the attaching sphere
of H(3). Then H(1) and H(2) are complementary handles and may be eliminated.
After rearranging handles, we get a new decomposition with H(1) eliminated and
a new H(3) introduced.
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Case 2: 1 < p ≤ n − 4. As Hp(W,M) = 0 and there are no handles of index
< p, the boundary map ∂ : Cp+1 → Cp must be onto. If H(p) is a p-handle, then∑

i niε(H
(p+1)
i ,H(p)) = 1 for some chain

∑
i niH

(p+1)
i in Cp+1. Thus we can use

handle addition to get ε(H(p+1)
i ,H(p)) = 1 for some (p + 1)-handle H

(p+1)
i and

ε(H(p+1)
j ,H(p)) = 0 for j 6= i. We may then cancel H(p) and H

(p+1)
i .

Proof of the h-Cobordism Theorem. Let (W ;M,M ′) be a compact h-cobordism,
dim W ≥ 6, with W is simply connected. Let (W ;M,M ′) = C∪H1∪· · ·∪Hn−1∪C ′

be a handle decomposition with no 0- or n-handles. Use Lemma 6.9 to eliminate
handles of index ≤ n − 4, leaving only handles of index (n − 3), (n − 2), and
(n − 1). Thus the dual handle decomposition only has handles of index 1, 2, and
3. Eliminate the dual 1-handles from the dual decomposition, leaving only dual 2-
and 3-handles. Since we are working over the integers, the matrix of the bound-
ary map from C3 to C2, which is invertible over ZZ, may be diagonalized, and the
elementary operations may be realized by handle additions. Hence, we arrive at
a handle decomposition with only complementary handles in dimensions 2 and 3,
which may be cancelled as well, leaving a decomposition with no handles. Hence,
W is a product M × I.

Corollary 6.10. (Strong Poincaré Conjecture) [3],[55] If M is a k-connected, closed
PL n-manifold, n ≥ 6, k = bn/2c, then M is PL homeomorphic to Sn.

Proof. Remove the interiors of disjoint, PL n-balls from M . The result is an
h-cobordism between boundary spheres, which is a product Sn−1 × I.

If W is not simply connected, one must define incidence numbers as elements
of the group ring ZZ[π1(M)], and the proof of the h-cobordism theorem may break
down at the last step, when we eliminate the dual 2- and 3-handles. In this case
the matrix of the boundary map is a non-singular matrix over ZZ[π1(M)], and it
can be diagonalized if, and only if, we are given the additional hypothesis that the
inclusion M ⊆ W is a simple homotopy equivalence. An h-cobordism (W ;M,M ′)
with this property is called an s-cobordism.

Theorem 6.11. (s-Cobordism Theorem) Suppose that (W ;M,M ′) is an h-cobordism,
n ≥ 6. Then (W ;M,M ′) ∼= (M × I;M ×{0},M ×{1}) if, and only if, (W ;M,M ′)
is also an s-cobordism.

There are also relative versions of the h- and s-cobordism theorems. There proofs
proceed very much the same as in the absolute case. A relative cobordism between
(n − 1)-manifolds M and M ′ with boundaries is a triple (W ;M,M ′), where W is
an n-manifold such that ∂W = M ∪V ∪M ′, where M ∩M ′ = ∅, ∂V = ∂M ∪ ∂M ′,
V ∩ M = ∂M , and V ∩ M ′ = ∂M ′. A relative cobordism is an h-cobordism
(s-cobordism) if all of the inclusions M,M ′ ⊆ W , ∂M, ∂M ′ ⊆ V are homotopy
equivalences (simple homotopy equivalences).

Theorem 6.12. (Relative s-Cobordism Theorem) Suppose W is a compact relative
h-cobordism, n ≥ 6, such that V ∼= ∂M × I. Then (W ;M,M ′) ∼= (M × I;M ×
{0},M × {1}) if, and only if, (W ;M,M ′) is also an s-cobordism.
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7. Isotopies, Unknotting

In this section we explore further the question: Given polyhedra X and Y ,
when are homotopic embeddings f, g : X → Y ambient isotopic? The first result is
Zeeman’s unknotting theorem [65] .

Theorem 7.1. [65] A PL sphere pair (Sn, Sq) or a proper PL ball pair (Bn, Bq),
n− q ≥ 3 is unknotted.

Proof. [50] The proof is by induction (eventually) on n. The case n = 3 is trivial.
The case n = 4 follows from Theorem 4.5(i), for sphere pairs, and Theorem 4.7, for
ball pairs. Theorem 4.5(ii) gives the result for sphere pairs when n = 5, and the
Regular Neighborhood Theorem for Pairs can, in turn, be used to show that ball
pairs unknot.

Assume, then, that n ≥ 6. Let (Bn, Bq) be a ball pair, n− q ≥ 3. By induction,
(Bn, Bq) is locally flat. Hence if N is a regular neighborhood of Bq in Bn, then,
by 3.22, (N,Bq) is an unknotted ball pair. Let W = C`(Bn − N), M = N ∩W .
Then W is a relative cobordism between (M,∂M) and (M ′, ∂M ′), where M ′ =
C`((∂Bn ∩ W ) − N ′) and N ′ is a small collar of ∂M in ∂Bn ∩ W . Since Bq is
contractible and Bn − Bq is simply connected, by general position, W is an h-
cobordism. Thus W ∼= M × I and so (Bn, Bq) is unknotted.

Suppose (Sn, Sq) is a sphere pair, n ≥ 6, and n − q ≥ 3. Let K > L be a
triangulation of Sn ⊇ Sq, and let v be a vertex of L. Then (st(v,K), st(v, L)) is an
unknotted ball pair, as is the complementary pair. Thus (Sn, Sq) is obtained by
gluing two unknotted ball pairs together.

Corollary 7.2 Any proper (n, q)-manifold pair is locally flat, if n− q ≥ 3.

Since the Whitehead group of ZZ is trivial, any h-cobordism between manifolds
with fundamental group ZZ is an s-cobordism. Thus the proof of Theorem 7.1 works
for locally flat sphere pairs in codimension 2, provided the pair is “homotopically
unknotted.”

Theorem 7.3. Suppose (Sn, Sn−2), n ≥ 6, is a locally flat sphere pair. Then
(Sn, Sn−2) is unknotted if, and only if, Sn − Sn−2 has the homotopy type of a
circle.

We consider next the weaker question: When are isotopic embeddings of X into
M ambient isotopic? (See Section 3 for definitions.) The answer is yes whenever
the isotopy is “locally extendable”. Given an isotopy F : X × I → M × I, (or a
proper isotopy of pairs) and a point (x, t) ∈ X × I, F is locally extendable at (x, t)
if there are neighborhoods V of x in X, U of F (x, t) in M , and J of t in I and
a level preserving embedding h : U × J → M × J such that h(y, t) = (y, t) for all
y ∈ U and h(F (x, s), s) = F (x, s) for (x, s) ∈ V ×J . In other words, local collars of
F (X × {t}) in F (X × [t, 1]) (if t < 1) and in F (X × [0, t]) (if t > 0) are extendable
(locally) to collars of M×{t} in M×[t, 1] and M×[0, t]. By Theorem 3.19, a locally
extendable isotopy is extendable at X × {t} for all t ∈ I, meaning we can choose
V = X and U = M . This fact together with a standard compactness argument
proves the following extension theorem.

Theorem 7.4. If X is a compact polyhedron and F : X → Y is a locally extendable
isotopy, then F is ambient.
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If Q and M are PL q- and n-manifolds, respectively, with n − q ≥ 3, then, by
Zeeman’s Unknotting Theorem, any isotopy of Q in M is locally extendable. This
fact, together with Proposition 3.12 establishes the following corollary.

Corollary 7.5. [32]Suppose Q and M are PL q- and n-manifolds, respectively,
with n− q ≥ 3, and Q is compact. Then any proper isotopy of (Q, ∂Q) in (M,∂M)
is ambient.

If X and Y are polyhedra and X is compact, a proper PL embedding
f : ((v∗X), X)→ (w∗Y, Y ) is unknotted if there is a PL homeomorphism h : w∗Y →
w ∗ Y fixing Y such that hf is the cone on f |X. Lickorish’s Cone Unknotting
Theorem [38] is a polyhedral analogue of Theorem 7.1. We state it next without
proof.

Theorem 7.6. [38] Suppose that X is a compact (q − 1)-dimensional polyhedron
and f : (v ∗ X, X) → (Bn, Sn−1) is a proper embedding, n − q ≥ 3. Then f is
unknotted.

Theorem 7.6 allows one to prove that a PL isotopy of a polyhedron in a PL manifold
in codimension ≥ 3 is locally extendable. Thus, the line of argument above can be
used to prove the following isotopy extension theorem due to Hudson [30].

Corollary 7.7. [30] Suppose that X is a compact q-dimensional polyhedron, M is
a PL n-manifold, n− q ≥ 3. Then any isotopy of X in M is ambient.

An embedding F : X × I → Y × I satisfying F−1(Y × {i}) = X × {i}, i = 0, 1,
is a concordance of X in Y (from F0 to F1). Thus, an isotopy of X in Y is a
level-preserving concordance. Hudson [31] obtains the following improvement of
Corollary 7.7. Rourke [47] gives a “handle straightening” argument for this result
as well.

Theorem 7.8. [31] Suppose that X is a compact q-dimensional polyhedron, M is
a PL n-manifold, n− q ≥ 3. Then concordant embeddings of X in M are ambient
isotopic.

Corollary 7.9. Suppose that Q is a compact PL q-manifold, M is a PL n-manifold,
n − q ≥ 3, and f : (Q, ∂Q) → (M,∂M) is a (proper) PL embedding such that f
is (2q − n + 1)-connected. If g : (Q, ∂Q) → (M,∂M) is a PL embedding that is
homotopic to f rel ∂Q, then f and g are ambient isotopic.

8. Approximations, Controlled Isotopies

Many of the results of Sections 5, 6, and 7 have “controlled” analogues. In this
section we state without proof a few of the basic theorems of this type. The first
result is Miller’s Approximation Theorem [42].

Theorem 8.1. [42] Suppose that Q is a PL q-manifold, M is a PL n-manifold,
n − q ≥ 3, and f : (Q, ∂Q) → (M,∂M) is a topological embedding. Then for
every ε : Q → (0,∞), there is a PL embedding g : (Q, ∂Q) → (M,∂M) such that
d(f, g) < ε.

(This result was initially announced by T. Homma [27] , but a problem was
discovered in his proof by H. Berkowitz. A proof along the lines originally presented
by Homma can be found in [9].) Using Miller’s theorem for q-cells, Bryant [8] was
able to extend Miller’s theorem to embeddings of polyhedra.
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Theorem 8.2. [8] Suppose that X is a q-dimensional polyhedron and f : X →M
is a topological embedding into a PL n-manifold. Then for every ε : Q → (0,∞),
there is a PL embedding g : X →M such that d(f, g) < ε.

The next theorem is an ε version of the isotopy theorems of Section 7. This result
is an amalgamation of results due primarily to Connelly [18] and Miller [41], with
contributions and improvements due to Cobb [14] , Akin [1] , and Bryant-Seebeck
[10].

Theorem 8.3. [18, 41] Suppose that (X, Y ) is a polyhedral pair, dim Y < dim X =
q, M is a PL n-manifold, and f : (X, Y )→ (M,∂M) is a proper topological embed-
ding, n− q ≥ 3. Then for every ε : X → (0,∞) there is a δ : X → (0,∞) such that
if gi : (X, Y ) → (M,∂M) are PL embeddings, i = 0, 1, within δ of f , then there is
an ε-push H of M such that Hg0 = g1.

There are useful variations on Theorem 8.3. For example, if dim(X−Y ) ≤ n−3,
f |Y is a PL embedding, and gi|Y = f |Y , i = 0, 1, then one can get an ε-push H of
M rel ∂M with Hg0 = g1.

There are a number of controlled versions of the engulfing theorem (Theorem
5.2), although mostly they have been replaced by Quinn’s End Theorem [46]. Bing’s
article “Radial Engulfing” [5], contains a variety of such theorems the reader is
encouraged to survey. We state one such result from [10]. It requires a definition:
A subset Y of a space X is 1-LCC (1-locally co-connected) in X if for each x ∈ Y
and each neighborhood U of x in X, there is a neighborhood V of x in X such
that the inclusion π1(V − Y )→ π1(U − Y ) is trivial. An embedding f : Y → X is
1-LCC if f(Y ) is 1-LCC in X.

Theorem 8.4. [10] Suppose f : X →M is a 1-LCC embedding of a q-dimensional
polyhedron X into a PL n-manifold M , n − q ≥ 3, n ≥ 5. Then for every ε > 0,
there is a δ > 0 such that if g : X →M is a PL embedding within δ of f and U is any
neighborhood of g(X), then there is an ε-push H of M such that H1(f(X)) ⊆ U .

If X is not compact then ε and δ are functions of X. The 1-LCC condition allows
one to push f(X) off of the 2-skeleton of a neighborhood of f(X) and then close
to the dual (n − 3)-skeleton. One then engulfs the dual (n − 3)-skeleton with U .
These are ε versions of Stallings arguments in [57].

Using Theorems 8.2, 8.3, and 8.4, and an infinite process due to Homma [26]
and Gluck [23] , one can deduce the following “taming” theorem of Bryant-Seebeck
[10] .

Theorem 8.5. [10] Suppose f : X →M is a 1-LCC embedding of a q-dimensional
polyhedron X into a PL n-manifold M , n − q ≥ 3, n ≥ 5. Then for every ε > 0,
there is an ε-push H of M such that H1f is PL.

There is a 4-dimensional analogue of this result due to R. D. Edwards (unpub-
lished), obtained from Casson-Freedman handle theory for 4-manifolds [21] .

9. Triangulations of Manifolds

We conclude this chapter with a discussion of the two most central issues in
PL topology: existence and uniqueness of triangulations of topological manifolds.
Classically, these questions dealt with PL triangulations of manifolds, although
there are obvious related questions concerning triangulations in general. Existence
and uniqueness of PL triangulations of manifolds of dimensions ≤ 3 have been
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known for some time, the case n = 3 being due to Moise [44] and Bing [4]. The
uniqueness question (the Hauptvermutung) can be asked for polyhedra in general.
Milnor was the first to construct examples of polyhedra that are homeomorphic,
but not piecewise linearly homeomorphic [43]. Edwards was able to exhibit a non-
combinatorial triangulation of Sn, n ≥ 5, by showing that the k-fold suspension
of a non-simply connected 3-manifold constructed by Mazur [40] is topologically
homeomorphic to Sk+3. (See [19].) Edwards and Cannon [11] solved the “Double
Suspension Problem” in general by proving the following theorem.

Theorem 9.1. [11] Suppose that Hn is a PL n-manifold with the homology of
Sn. Then, for each k ≥ 1, the polyhedron Sk ∗H is topologically homeomorphic to
Sk+n+1.

Whenever H is not simply connected, which can happen when n ≥ 3, the poly-
hedron Sk ∗H is not PL homeomorphic to the standard Sk+n+1. Thus, uniqueness
of triangulations of topological manifolds fails if one does not require triangulations
to be PL. The problem of uniqueness of PL triangulations is more subtle yet.

Suppose that M and N are PL n-manifolds and h : M → N is a topologi-
cal homeomorphism. Sullivan’s idea [58],[59] was to prove that M and N are
PL homeomorphic by taking a handle decomposition of M and, inductively, “straight-
ening” their images under h. This idea presents a handle problem, that is, a topo-
logical homeomorphism h : Bk × IRn−k → V n onto a PL manifold V n that is PL on
a neighborhood of Sk−1 × IRn−k. The handle can be straightened if there is an
isotopy H of V n, fixed on a neighborhood of Sk−1 × IRn−k and outside a compact
set, such that H1h is PL on h : Bk ×Bn−k. Sullivan showed that, for n ≥ 5, there
was a possible ZZ/2 obstruction to straightening 3-handles [58]. In his solution to
the annulus conjecture, Kirby [36] showed how to straighten 0-handles when n ≥ 5.
Kirby and Siebenmann (see [37]) proved that k-handles can be straightened pro-
vided n ≥ 5 and k 6= 3. Whether or not 3-handles could be straightened depended
upon the Hauptvermutung for the n-torus Tn = S1 × · · ·S1. The following result
of Hsiang and Shaneson [28] , Wall [61] and Casson classifies the PL structures on
Tn, showing, in particular, that they are not all equivalent.

Theorem 9.2. For n ≥ 5, the set of PL equivalence classes of PL manifolds topo-
logically homeomorphic to Tn, is in one-to-one correspondence with the set of orbits
of (Λn−3ZZn)⊗ZZ/2 under the natural action of GL(n, ZZ). The standard torus cor-
responds to the zero element under this action.

(ΛkZZn denotes the kth exterior algebra on ZZn.) In particular there are non-
standard T 5’s. The classification implies that if M is a non-standard, or fake, torus,
then even covers of M will be standard, while odd covers are not. Kirby [36] used
the first fact in his “torus trick” to prove the annulus conjecture, while the second
fact is used to disprove the Hauptvermutung. (See [37].)

Theorem 9.3. [37] Given a PL n-manifold M , n ≥ 6 or n ≥ 5 if ∂M = ∅, the
isotopy classes of PL structures on M are in one-to-one correspondence with the
elements of H3(M ;ZZ/2).

The coefficient group ZZ/2 appears as the homotopy group π3(TOP/PL), where
TOP/PL is the fiber of the forgetful map BTOP → BPL of classifying spaces for topo-
logical and piecewise linear bundles. Further handle analysis leads to the following
existence theorem of Kirby-Siebenmann.
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Theorem 9.4. [37] Given a topological n-manifold M , n ≥ 6, or n ≥ 5 if ∂M has a
PL triangulation, there is a well-defined obstruction in H4(M ;ZZ/2) to triangulating
M as a PL manifold extending the triangulation on ∂M .

There are, in fact, topological 4-manifolds that do not admit PL triangulations.
One such may be constructed using results of Kervaire and Freedman. Kervaire
shows [35] that there is a homology 3-sphere H, the Poincaré 3-sphere, that bounds
a parallelizable PL 4-manifold M with signature 8. Freedman shows [21] that H
bounds a contractible topological 4-manifold M ′. V = M ∪H M ′ is then a closed
4-manifold with signature 8. A result of Rohlin (see [34]) states that V cannot have
a PL triangulation, for, if it did, its signature would be divisible by 16. (A manifold
is parallelizable if its tangent bundle is a product bundle.)

It is clear that if M has a PL triangulation, then so does M × IRk for k ≥ 1.
Kirby-Siebenmann prove a very strong converse to this fact for higher dimensional
topological manifolds.

Theorem 9.5. (Product Structure Theorem) [37] Suppose that M is a topological

n-manifold and that M × IRk, k ≥ 1, is triangulated as a PL manifold. If n ≥ 6, or
n ≥ 5 and ∂M = ∅, then there is a PL triangulation of M inducing an equivalent
triangulation on M × IRk.

There are relative versions of the Product Structure Theorem, which the reader
may find in [37] I, section 5. The following, rather obvious corollary has proved
useful in applications.

Corollary 9.6. Suppose that M is a topological n-manifold with boundary, n ≥ 6,
such that intM has a PL triangulation. Then M has a PL triangulation.

In particular, any topological, n-dimensional submanifold (with boundary) of a
PL n-manifold M , n ≥ 6, has a PL structure. Likewise, if a compact subset C of
a topological n-manifold, n ≥ 6, has vanishing Čech cohomology in dimension 4,
then naturality of the obstruction in Theorem 9.4 implies that sufficiently small
manifold neighborhoods of C have PL structures.

The question as to whether a topological n-manifold has a triangulation (PL or
not) has been investigated extensively by Galewski and Stern. (See, e.g., [22].)
Let θH

3 denote the group obtained from oriented PL homology 3-spheres, under the
operation of connected sum, #, modulo those that bound acyclic PL 4-manifolds.
There is a homomorphism µ : θH

3 → ZZ/2 (the Kervaire-Milnor-Rohlin map) defined
by µ(H) = [σ(W )/8], where σ(W ) denotes the signature of any parallelizable 4-
manifold W with boundary H. If H is the Poincaré homology 3-sphere, then
µ(H) = 1, so that µ is surjective.

Theorem 9.7. [22] Suppose M is a topological n-manifold, n ≥ 6 or n ≥ 5 if
∂M is triangulated. Then there is an element tM ∈ H5(M,∂M ; kerµ) such that
tM = 0 iff there is a triangulation of M compatible with the given triangulation on
∂M . Moreover, the set of concordance classes of triangulations of M rel ∂M is in
one-to-one correspondence with the elements of H4(M,∂M ; kerµ).

Triangulations K0 and K1 of M are concordant if there is a triangulation K of
M × I restricting to Ki on M × {i}, i = 0, 1.

Galewski and Stern [22] and Matumoto [39] have shown that all compact topo-
logical n-manifolds (n ≥ 6 or n ≥ 5 if ∂M is triangulated) can be triangulated if



PIECEWISE LINEAR TOPOLOGY 35

there is a homology 3-sphere H such that µ(H) = 1 and H#H bounds a paralleliz-
able 4-manifold with signature 0. At the time of this writing it is unknown whether
such a 3-manifold exists or whether every topological n-manifold, n ≥ 5, can be
triangulated. Casson, however, has found a topological 4-manifold that cannot be
triangulated [13].
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