DIFFERENTIABLE STRUCTURES ON SPHERES.*

By Jor~N MILNOR.

According to [5] the sphere S can be given several differentiable struc-
tures which are essentially distinct. A corresponding result for the 15-sphere
has been proved by Shimada [10] and Tamura [12]. The object of this
note is to prove corresponding theorems for other dimensions of the form
4k —1.

In §1 certain differentiable manifolds M (f,,f.) are constructed and
studied ; where (f1) € mm (SOni1), (f2) € 71 (8Omi1). In most cases these mani-
folds are topologically spheres. In §2 an invariant A is defined for differ-
entiable (4% — 1)-manifolds which are both homology spheres and boundaries.
In §3 the invariant A (M (fi,f.)) is computed.

For k = 8 the calculations are carried out explicitly. It is shown that
there exist non-standard differentiable structures on S*-* for k —2,4,5,6,7, 8.
For example §%! has over sixteen million distinct differentiable structures.
It is conjectured that the same argument works for all k¥ = 4; but I have not
succeeded in solving the number theoretic problem which arises.

For k=1,3 the argument does not work. This is not surprising in the
case k=1, since J. Munkres, S. Smale, and J. H. C. Whitehead have shown
(independently) that two differentiable 3-manifolds Wthh are homeomorphic
must necessarily be diffeomorphic.

The word manifold will always be used for a compact, oriented manifold,
with or without boundary. The symbol D* will stand for the unit disk in
the euclidean space R*.

1. Construction of manifolds homeomorphic to spheres. Given any dif-
feomorphism * f: §m X §»— 8™ % S*, a manifold M of dimension m +n + 1
is obtained by matching the boundaries of D™ X 87 and 8™ X D™ under
the correspondence f. That is: M is the identification space obtained from
the disjoint union of D™ X §* and S™ X D™' by identifying each point
(2,y) in the boundary of D™ X S» with f(z,y), considered as a point in
boundary of Sm X D+,

* Received February 10, 1959.
* The author holds a Sloan fellowship. ‘
* A diffeomorphism is a differentiable homeomorphism with differentiable inverse.
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An alternative definition of M, which makes it into a differentiable
manifold, is the following. Let f(z,y) = (¢/,y’) and define ¢’ =1/¢. Start
with disjoint spaces B™* X S» and S™ )X R". Let M be obtained from these
by matching (tz,y) with (2/,¢y’) for every z € 8™, y€ 8%, 0 <t <oo.

[As an example suppose that f is the identity map of S™ 87 Then
M is diffeomorphic to the unit sphere S™+m* C Rm+* X Rm*. In fact the
correspondence .

(tw,y) — (to/ (14 )4 y/ (1 + 1%)1),
(@, 0y) = (2//(L+ )3 Uy /(14 12))
defines a diffeomorphism M — Sm+n+ ]

If y € 8 has coordinates (4o,* * *,¥Yn), define h(y) =—=y». The function
h: 87— [—1,1] has just two critical points.

LeEmMMA 1. Suppose that the diffeomorphism

f
(x; y) _ (xl: y/)
satisfies the restriction h(y) =h(y) for all (z,y). Then the manifold M

constructed above ts homeomorphic to Sm™m+t,

Proof. A differentiable map ¢g: M — [—1,1] is defined by the corres-.
pondence

(tz,y) > h(y)/(1 4+ ¢*)? (in the first coordinate system),
(@, 'y = th(y)/(1 4+ ¢?) (in the second).
It is easily verified that g has just two critical points, and that these are
non-degenerate. Together with [5] Theorem 2, this completes the proof.

One way to construct such a diffeomorphism (z,y) — (2/,y") is the
following. Start with differentiable maps of spheres into rotation groups

f1:8m>80n1,  fa: 8" 80mu,
and let

y="hHe)y, =) e=0(fi(2) )" e
for all z€ §™, y€ §». This defines a diffeomorphism with inverse
e=f:(y) -,  y=f@)*y=0H4) )"y

[More generally the rotation groups SOn,; and SOy, could be replaced by the
groups Diff §», Diff 8 consisting of all diffeomorphisms.] The condition
h(y) =h(y’) is equivalent to the requirement that f,(S™) be contained in
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the subgroup 80, C SO,.;. Whether this condition is satisfied or not, the
resulting (m + n 4+ 1)-manifold will be denoted by M (fi, f2).

Next we will show that M (fy,f.) is a boundary. Start with three copies
of the space D™+ % D™, The notation (z;y;) will be used for a point of
(D™ X D), i=1,2,3. Identify (8™ X D), with (8™ X D»*'), by the
correspondence (&, ¥1) = (Z2,y2) Where

Xy =1y, Y2 = f1(21) * Y1

The resulting space (D™ X D™1), U (D™ X D™*'), can be considered as a
fibre bundle over the (m -4 1)-sphere (D™*),U (D™*'), with fibre D",
group 8Oy, and characteristic map f;. (See Steenrod [11] §18.) It follows
that this union can be given a differentiable structure in a natural way.

Next identify (D™ X 8*), with (D™ X 8*); by the correspondence
(@2, y2) < (23, 9s), Where yo =13, ©;=712(ys) ‘3. Thus

(Dm+1 >< Dn+1)2 U (D‘m+1 >< Dn+1)3

becomes a fibre bundle over an (n 4 1)-sphere with fibre D™* and charac-
teristic map f,.

Let W, denote the union of all three copies of D™+ X D»+t. Clearly W,
is a topological manifold with boundary:

an _ (_Dm+1 >< Sn)l U (Sm >< Dn+1)s-
The intersection
(Dm+1 >< Sn)l n (Sm >< D"+1)3

of the two halves of the boundary is equal to (8™ X 8%),= (8" X 8")s.
These two copies of 8™ X 8" are identified under the composite correspondence

(21, Y1) = (22, 92) = (25, ¥s),
where

Ys=y>=Ff1(21) "9y, w3=f2(ys)_l'$2=fz(ys)_1'$1.

But this is just the correspondence which was used to define the manifold
M (f,f2). Thus W, is homeomorphic to M (fy, f2). -

As it stands W, is not a differentiable manifold since there is an ““angle”
along the subset (8™ X 8%), of dW,. Let W denote a differentiable manifold
obtained by “straightening” this angle. (See the appendix to [7].) Clearly
0W is diffeomorphic to M (fi,f2).

2. The invariant N(M). First recall the index theorem of Hirzebruch
[4]. If M, is a 4k-manifold without boundary having Pontrjagin classes
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Pi,° * *sPr, then the index I(M,) is equal to Lx(ps, - -, px)[M.]; where
Ly is a certain polynomial.® For example

L1=P1/3; L2=(7p2—‘P12)/45:' e

The coefficient s of pi in Ly is particularly important. Hirzebruch
expresses s, in terms of the Bernoulli number B; as follows (page 14):

S = 27 (22-1 1) B,/ (2k) .

For example s, ="/45, s;=62/945, s, = 127 /47R5.
Now let M be a differentiable (4% —1)-manifold which

1) has the same rational homology groups as the (4k—1)-sphere,
and
?) is a boundary: M =9W with W differentiable.* Then a rational

number modulo 1,
MM) €Q/2,

is defined as follows. The natural homomorphism
j H (W, M;Q) = HY(W; Q)

is an isomorphism for 0 <4< 4k—1. Hence the Pontrjagin -classes
D1yttt Pra 0F W ocan be lifted back to H*(W,M;Q). Define A(M) as the
residue class of

(L(W) — Ly (77*ps>* * *5 7 Pr-1,0) [W]) /52

modulo 1. (Here the symbol [ W] stands for the homomorphism H* (W, M ; Q)
— @ associated with the orientation of W; and I(W) denotes the index of
the quadratic form a— («U a)[W], where a€ H*(W,M;Q).)

LemMMA 2. This residue class A(M) s an wnvariant of M : that is it does
not depend on the choice of W.

The proof is completely analogous to that in [5], [10] or [12]. If M
is the boundary of both W, and W,, then an unbounded 4k-manifold M, is
obtained from W,, W, by

3 The symbol [M,] is used to denote the homomorphism of H**(M,; @) into the
rational numbers @ which is determined by an orientation for M,. The index I(M,) is
defined as the index of the quadratic form over H?(M,; Q) which is given by the
formula a - (aya) [M,].

4 This second condition follows automatically if H, (M ; Z) has no torsion. In fact
every homology (4k— 1)-sphere is a w-manifold (see [7]), and every m-manifold is a
boundary (see [81).
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1) reversing the orientation of W,;
?2) matching W, and W, along the common boundary M ;

3) constructing a differentiable structure in a neighborhood of W, N W,
—M. (See [6] Lemma 4 or [7]). Then I(M,)=I(W,)— (W:); and
each Pontrjagin number p;, - - - p;,[M,] other than pi[M,] is equal to the
difference of corresponding Pontrjagin numbers for Wi, W,. Now the index
theorem for M, implies that the two definitions of A(M) differ only by the
integer px[M,].

Ezample 1. For the (4k—1)-sphere it is clear that
A(S*¥1)=0 (mod1l).
Example 2. For a 3-manifold the definition reduces to
AMM3)=3-I(W)=0 (modl).
Ezample 8. For the 7-manifold M," of [5] the values
I(W) =1, (;7*p.)*[W]—36
give
MMy = (451(W) + (77'p)*[W]) /T =4/7 (mod1).

Remark. 1f H*(M;Z) has no torsion, then the classes j™p; can be
considered as integral cohomolgy classes, hence the Pontrjagin numbers of W
are integers. This sharply restricts the denominator which A(M) can have.
(For example 7A(M7) must be an integer.) On the other hand, if H*(M ;Z)

has torsion then arbitrarily large denominators may occur. (See the examples
studied by Tamura.)

Ezample 4. In [7] §4 certain homotopy spheres M,** are constructed
for k> 1. These have the property that M,*-*=9W, where W is paralleli-
zable, and I (W) =8. Thus

MM 1) =8/s;, (modl).

For k —2 this gives M(M,") =3/7 with denominator ¥. For ¥=3,4,5,6,7
the denominator of A(M,*1) is 81, 127, 73, 1414477, and 8191 respectively.
(These numbers are prime, except for 1414477 —23-89-691.) I do not
know whether the inequality 8/s;5=0 (mod 1) holds for all &> 1.

In conclusion, the following three properties of the invariant A are easily
verified.

1) If the orientation of M is reversed, then A changes sign.
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?) For the connected sum of manifolds (see [7]), A satisfies
MO, # M) =MM,) +1(M:) (modl).

3) X is an invariant of the J-equivalence class of M. (See Thom [13]
or [7].)

3. Computation of N(M(fy, f.)). Define the Pontrjagin homomorphism
Pr: w1 (80q) > Z

as follows. Every map f: 81— 80, induces a bundle ¢ over S* with
Pontrjagin class p,(¢) € H* (8% ;Z) = Z. Define p,(f) as the corresponding
integer p, (&) [S*].

Let f1: 8 — 8041, f2: 8% — SOy be arbitrary differentiable maps, with
m-+n—41=4k—1. First suppose that m s£n.

LemMma 3. If ms&n then M(fy, f2) is a topological sphere. The tnvariant
MM (f1,f2)) s zero if m, n are not of the form 4r—1. If m=4r—1,
n=4(k—r) —1, then

A== P, (f1) Pr—r (f2) $rSk—/Sk (mod 1).
Proof. We may assume that m < n. The exact sequence
wm(SOn) - 'n'm(SOn+1) —> wm(S”) =0

implies that f; is homotopic to a map f,” which carries S™ into the subset
80, C 8O,4;. According to Lemma 1 the manifold M (f,,f.) is homeo-
morphic to ™+, But it can be verified that M (fy,f,) is homeomorphic to
M (f,f2), and therefore is also homeomorphic to the sphere.

Next consider the manifold W constructed in Section 1. Recall that W
is the union of a fibre bundle over S™* with fibre D' and a fibre bundle
over 8 with fibre D™**. Call these sets W, and W, respectively, Thus
W.U W, is W and W, N W, is a topological cell.

These bundles have canonical cross-sections corresponding to the center
point of the disk. Hence S™** and S™** are imbedded in W. It follows easily
that W has the same homology groups as §™* \/ §»* (the union with a single
point in common). That is H;(W;Z) is infinite cyclic for ¢ equal to 0, m - 1,
or n 4 1, and zero otherwise.

The homology intersection ring of W (see Lefschetz [14]) is described
as follows. Let a and b stand for generators in dimensions n-+1, m +1
respectively. Clearly @ and b have intersection number =+ 1. The self-inter-
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sections ¢-a and b-b are zero. For example a-a is represented by a cycle

of dimension
dima + dimg—dim W=n—m

which lies on the sphere §** C W,.  Since Hy,pn(S™;Z) =0, this cycle is
homologous to zero.

Applying Poincaré duality it follows that H*(W,M;Z) is free abelian
on three gemerators, say a in dimension m -1, B in dimension n -+ 1, and
aB i dimension m +n -+ 2. The cup products aa and BB are zero. This
implies that the index I (W) is zero.

Computation of the Pontrjagin numbers of W. We may assume that
m=—4r—1, n=4k—4r—1. (If the dimensions are not of this form,
then the Pontrjagin numbers are certainly zero, hence A=0.) First consider
the tangent bundle of W,. This splits into a Whitney sum & », where £
is the bundle of vectors tangent to the fibre and » is the bundle of vectors
normal to the fibre. Restricting 5 to the sphere 8§™* C W, we obtain the
tangent bundle of S™* with trivial Pontrjagin classes. Restricting & to S
we obtain the bundle determined by (f;) € 7m(SOnii). Thus p, (W) = p.(£)
is equal to the integer p,(f.) multiplied by a generator of the infinite cyclic
group H* (W,;Z). Using the isomorphisms

J
H4 (W3 2) « H (W3 Z) «— H* (W, M;Z)

it follows that ‘
pr(W) = %= pr(f1)j ().
Similarly

Prr(W) = = prr(£2) 1 (B).

Thus the Pontrjagin number (j7p,) (57 pr=r) [W] is equal to == p,(f1) prr(f2)-
All other Pontrjagin numbers of W are zero (except (j*px)[W] which is not
- defined).

Computation of the coefficients of p,pr—, in the Hirzebruch polynomial L.
Define the symmetric function X ¢,%- - -f,% in indeterminates ¢,,- - -, ¢y
as the sum of all monomials which can be obtained from ¢,%- - -{,% by per-
muting £, - -,fy. Hach possible monomial should be included only once
in the sum. (For example X ¢,"=14#"+- - -+ {y".) Hirzebruch showed®
that the coefficient of py, - - - ps, in Ly can be expressed in the form 3 £,%- - - ¢,fe,
where ¢;,- + -, ty are certain fixed complex numbers. (Here N stands for

5See [4] §1.4.1.
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some fixed integer greater than or equal to k.) In particular, the coefficient
sz of py is equal to X ;%
The product rule

(Bt (Btrr) = tF+ Xtk for rkk—r

is easily verified. Hence the coefficient 3 ¢,7t.*" of p,pu—r in Ly is equal to
S¢St — Sk

Thus we have I(W) =0 and
Li(57pys + 5 7P, 0) [W] = == pr (£2) pror (F2) (185 — s1).-

Dividing by s, and reducing modulo one, this yields the required formula
M) = = pr(f1) por (f2) $r84/56 - (mod 1)

Now consider the case m =mn. Again it is necessary to assume that m
has the form 4r—1 in order to obtain a non-trivial A.

Lemma 4. If the maps fi, f, both carry S™ into the subgroup
80, C 80u.1, then the formula

M) = pr(f1) pr(f2) $rSr/Ser

holds, just as in Lemma 3.

Proof. Just as above, Hy(W;Z) is isomorphic to H, (Sm\ Sm1),
If b,a€ Hpu(W;Z) are the generators corresponding to the two spheres,
then the intersection number a-b is =4 1. The hypothesis f, (8™) C SO,
implies that the normal bundle of the first (m 4 1)-sphere in W has a cross-
section. Hence the self-intersection number a-a is zero. Similarly b-b—=0.
It follows that W has index zero.

The computation of Pontrjagin classes for W proceeds as before. Thus

pr(W) = = pe(f1) jo = pr(f2) 8-

However the Pontrjagin number (j-p,)*[ W] is now equal to == 2p,(f1) p(f2).
On the other hand, the coefficient of p.p, in L., is equal® to % (sysr — s2r).
Thus the factor of 4 cancels the 2, so that

MM (f1f2)) = == pr(f1) pr(f2) $r8r/S2r
as before.
In order to make use of Lemmas 3, 4 it is necessary to know what
integers p,(f) can occur.
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TurEorEM OF Bott [2], [8]. In the stable range q = 4r the Pontrjagin
homomorphism

pri mr1(804) > Z
. has image generated by
(Rr—1)! if r is even

R(Rr—1)! if r is odd.
For smaller values of ¢ this result can be augmented as follows.

Lemuma 5. If ¢=2r then the homomorphism p, is zero. If q>2r
then py is non-zero. In fact there exists an element

(f) € 741 (80y)
such that the prime factors of p,(f) are all less than 2r.

Proof by descending induction on ¢. Suppose that the assertion has
been proved for ¢ 4 1, and that ¢ > 2r. In the exact sequence

Tar-1(80¢) = 14r 1 (80g11) = Tars (89),

the third group is stable. According to Serre [9] a prime = can divide the
order of this group only if 27 —3 is less than or equal to the difference
4r—q—1. The inequalities 27— 3 = 4r—qg—1, ¢ > 2r, yield » = . Thus
any element of gy (S0q.), after being multiplied by primes less than or
equal to 7, can be lifted back to w4 (SOg). This completes the induction.

If ¢ < 2r, then the Pontrjagin class p, of any SO,-bundle is zero. If
q=2r, then p,(&*) is the square of the Euler class of £&7. (See Borel and
Serre [1].) Since our base space is §*7, this implies that p,(£?") = 0; which
completes the proof of Lemma 5.

Combining Lemmas 3, 4, 5 this proves:
TurorEM 1. Suppose that r is an integer satisfying
/3 < r=k/R.

Then there exists a differentiable manifold M homeomorphic to S*-* for which
A(M) is congruent modulo 1 to s,Sxr/5i times some integer with prime factors
all less than 2 (k—r).

The proof is straightforward. (The inequality /3 < r guarantees the
existence of a map f,: §*®"*— 80,, such that ps.(f.) 70.)
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Note. Given k, the inequality /3 < r = k/2 has a solution r providing
that k=2 or k= 4. It has no solution for k=1 or 3.

- THEOREM 2. There exist at least 7 distinct differentiable structures on
S7; at least:
127 on the 15-sphere,

73 on the 19-sphere,

R3-89-691 on the 23-sphere,
8191 on the 27-sphere, and at least

31-151-3617 on the 31-sphere.

Proof. These results follow immediately from Theorem 1. As an
example, for k =5, taking r=2, we have

8283/85 = 341/365.

Cancelling all prime factors less than 6 from the denominator, this leaves 73.
But if M is a 19-manifold such that the denominator of A(M) is 73, then
the first 73 manifolds .

S, M, M M, M # M# M, - -

must be pairwise distinct. (Alternatively, if the homotopy class (f;) is
replaced by ¢(fi), 0= ¢ < 73, then we obtain 73 different values for the
invariant A.) Each one represent a possible differentiable structure for the
19-sphere.

In conclusion, here are two unsolved problems.

Problem 1. Does Theorem 1 imply the existence of non-standard differ-
entiable structures on S*-* for all k=47 I have checked this only for %
up to 14.

Problem 2. TIs the invariant A(M*-) of a homotopy sphere always a
multiple of the invariant

A(M 1) =8/, ?

This question is of interest since, for any manifold M*-* which bounds a
parallelizable manifold W, we have

A M9y =I(W) /s, (mod1l),
and it can be shown that (W) is a multiple of 8. (Compare [7].)
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