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Polynomial invariants of knots
of codimension two’

By J. LEVINE

In classical knot theory, a useful set of invariants of knot type are the
elementary ideals in the integral group ring A of the integers (see [2]).
These can be expressed as invariants of the homology of the universal abelian
covering of the complement of the knot. In this paper we study the natural
generalization of these considerations to higher dimensional knots of codi-
mension two.

Just as the knot polynomials (again see [2]) are a weaker but more
tractable set of invariants, so we find more generally that the rational
homology of the universal abelian covering of the complement of a knot (which,
as will be apparent, is the appropriate generalization of the knot polynomials)
permits a more complete analysis. We refer the reader to Kervaire [6, Ch. I, II]
for a study of the first non-zero homotopy group of the complement and, there-
by, an indication of the complexity of the integral homology. One of the more
important reasons for this complexity is that the integral homology must be
treated as a A-module, and A is a relatively bad ring, while the rational
homology is a module over A X @, which is a principal ideal domain,

Our aim is to give a complete classification of those modules which can
appear as rational homology of the universal abelian covering of the comple-
ment of a knot. This will be almost accomplished; the sole obstruction being
the appearance of an analogue to the Kervaire invariant [7: § 8].

An interesting by-product of this investigation will be the fact that these
invariants seem to detect the differentiable structure on the knot in half the
cases (i.e.; knots in (49 — 1)-space. See §3.2 and 3.3), but ignore it in the
other half ((4¢ + 1)-space).

Some of the arguments and results of this paper are similar to those of
Kervaire [6, Ch, II].

1. Definition of the Alexander invariants

1.1. An n-knot K will be a smooth oriented (n — 2)-dimensional submani-
fold of the n-sphere S”, diffeomorphic to S*=2. The complement of K is the
space X = S™ — K. The universal abelian covering X of X is the covering

* Partially supported by National Science Foundation Grant GP-4035.
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associated with the commutator subgroup of 7,(X). By Alexander duality,
the group of covering translations of X is infinite cyclic; the orientations of
S* and K determine a preferred generator of this group corresponding to a
small oriented circle linking K with linking number 1. Thus the (integral)
homology groups of X have a well-defined action by the integers Z. If A is
the integral group ring of Z, they become A-modules, finitely generated be-
cause X has a finite polyhedron as a deformation retract, and A is noetherian.
Similarly the rational homology of X,

HQ(X; Q) ~ HQ(X) Xz Q,
is a finitely-generated module over the rational group ring, '~ A ®Q, @, of
the integers.

1.2. We shall consider A as a subring of I', and write the elements of
both as Laurent polynomials in a variable t, the identity of Z, with integral
or rational coefficients, Thus an element A of I' will also be written \(¢).
This notation allows us to, e.g. write Mt™") for the image of )\ under the
unique automorphism of I' which maps ¢ to ¢7%, or Ma), @ € Q, for the image
of A under the unique homomorphism I' — @ mapping ¢ to a.

1.3. If R is any integral domain and )\ € R, we denote the R-module of
rank 1, with a single generator of order X, by M;(\). Notice that M,(\) =
Mg(p) if and only if X and g are associate in R, i.e., for some unit ac R,
N = ayp; we write M ~ p(im R). If A is a multiple of /¢ by an element of R,
we write ¢ | M (in R).

1.4. An element of A is primitive if its coefficients are relatively prime.
It is clear that every associate class in I' contains a primitive element of A;
that all such are associate in A follows from the easily proved:

LEMMA. Let ) and pt be primitive elements of A. Then \| p1(inT)if and
only if M| p(im A). Consequently, x ~ p (in I') if and only ©f M ~ pt (in A).

Thus, given a module M (\), we can require that \ be a primitive element
of A, and such a X\ is determined up to associate class in A,

1.5. We will occasionally have to do with an associate class in A in which
an element p satisfies p(t) ~ p(t™) in A, (1) is odd.

LEMMA. Any such associate class in A contains a unique element \
satisfying Mt) = Mt and M1) > 0.

This is proved by a standard argument (see [2, p. 137]). We have p(t) =
et*u(t™'), where ¢ = +1 and a is some integer. Since p4(1) # 0, we have ¢ =1,
while, if @ were odd, then z(1) would have to be even. Now set \(t) = t~*1(2).
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We call the element )\, whose existence is asserted by the lemma, the
normal element of the associate class.

1.6. Note that I" is a principal ideal domain. This follows readily from
the fact that the ordinary polynomial ring Q[t] is a principal ideal domain,
and an argument similar to that of [2, Ch. VII, §2]. Since H(X; Q) is a
finitely-generated I-module, there is a finite sequence A\{, A%, «-+, AL of ele-
ments of I', satisfying A, |\ in I, and unique up to associate class in T",
such that (for a proof, see e.g. [3])

Hy(X; Q) ~ 300, M:(M) .

As pointed out in (1.4) we can choose \! to be a primitive element of A;
its associate class in A is then uniquely determined. With this convention we
refer to the set {\{}, 0 < g < n — 1, as the Alexander invariants of the knot,
where \! is, strictly speaking, an associate class in A.

If n = 2¢ + 1, we also consider the element

A= NN N
which is, by the Gauss lemma, a primitive element of A and well-defined only
up to associate class. In the case n = 8, A is the Alexander polynomial (see

[11, §2]); when X is (¢ — 1)-connected, A is related to the torsion [12] of X
(see [6, Lem., III. 11]).

2. Some properties of the Alexander invariants
2.1. The aim of this section will be to prove the following theorem.

THEOREM 1. Let (\},0 <qg <n—1,0 <1 <k, be the family of Alex-
ander invariants of an n-knot, n = 3. Then, the following properties must
be satisfied:

(a) My MinA,

(b) (1) = =1,

(€) N(E) ~ N7 (™) i A,

(d) i2f n=2q + 1, q even, and A, as defined in (1.6), is assumed normal,
by (b), (¢), and (1.5), then A(—1) is an odd square.

REMARK. This theorem and proof are valid for knots which are homotopy
spheres.

For n = 3, the theorem is well-known (see [2], [13]). Our proof will use
a generalization of the technique of Seifert [13].

2.2, We begin with the notions of presentation of a module and ele-
mentary ideals of a finitely generated module. We refer the reader to [16,
p. 117] for details.
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Let R be a ring and 4 an R-module. It is well-known that there exists
an exact sequence of R-modules,

F-AF—A—0,

where F, and F, are free R-modules. If {«;} and {8;} are bases of F, and F,
respectively, we can write

d(a;) = 22, Miifbi .

The collection (\;;) of elements of R forms a matrix (with perhaps an infinite
number of rows or columns) which we refer to as a presentation matrix of A.

If A is finitely-generated, we may insist that F, be finitely generated and,
therefore, only consider presentation matrices with a finite number of rows.
Suppose such is the case, and (\;;) has m rows. If, in addition, R is com-
mutative, we may consider, for each integer k = 0, the (m — k) x (m — k)
sub-determinants of (\;;). We call these the minors of order k. They generate
an ideal in R, which depends only on A, called the k™ elementary ideal of
(\;) or A, denoted E,(A). If k = m, we define E,(A) = R. It is clear that
E(4) C E,.i(4).

- 23, If R is a principal ideal domain, we choose a generator A (A) of
E,(A); A(A) is determined up to associate class. We have 4,,,(4) | A.(4).

By the structure theorem for finitely-generated R-modules (see [3]), A
has a diagonal presentation matrix with entries \,, -+ -, \, satisfying N;.; [ N
It is readily checked that A, = A,(A) may be chosen so that

NesNete * 0 Ny for k <r,

A, =
g 1 fork=1r.

We see immediately that the sequence {4,} is a faithful invariant of the iso-
morphism class of A.

2.4. Given an n-knot K with complement X, we will obtain a presentation
for H,(X; Q) with the aid of a submanifold V of S* bounded by K (see [1], [4],
[6], and [18], for related discussion).

According to [6, Lem. II. 10] or [10, Lem. 2] V exists. Let Y be the
manifold (with corner) obtained from S" by cutting along V; then 0Y con-
sists of two copies of V, V, and V,, identified along their boundaries. Note
the isomorphism H,(S" — V)~ H,(Y) by inclusion. X may be constructed
from Y in the following way. Let (Y, Vi, VJ), —c < @ < <o, be an infinite
number of copies of (Y — K,V, — K, V,— K). Then X is obtained as a
quotient space of the disjoint union of the Y; by identifying V; and Vi*' for
every i. A generator of the group of covering translations maps Y; onto Y.,
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in the obvious manner. This construction of X permits a convenient applica-
tion of the Mayer-Vietoris sequence. Define, for e = 0,1, Y* = |J; Y, ..; then
(X; Y°, YY) is a proper triad, and Y°NY'= |; Vi = V. Note that ¥ is in-
variant under the covering transformations of X. Thus
H(V; Q) ~ 3 H(Vi; Q)
is a I-module and is, clearly, isomorphic to H,(V; Q) X, I' with H,(V}; Q)
corresponding to H(V; @) ® Qt'. Also
H(Y% Q)@ H(Y; Q) ~ 3, H(Y;; Q)

can be identified with H,(Y; Q) ®, ', with H,(Y;; Q) corresponding to
H/(Y, Q) ® Qt° (see (1.2)). By the Mayer-Vietoris theorem we have an exact
sequence of I'™-modules:

d ~
(1) H(V; Q) T — H(Y; Q) ®, T — H,(X; Q) .
From the construction of X and the action of the covering transforma-
tions, it follows that d can be described as follows. Let 4, 7,: V—Y be defined

by the identification of V with V, or V,. If ¢ is the element of I" corresponding
to the covering transformation Y; — Y;,,, then, for a e H(V; Q)

da®1) =) ®t — i) ®1
= t(i(@) @ 1) — in(@ 1.

We will see below that d is a monomorphism for all ¢; by exactness, this

implies e is onto for every ¢ and, therefore, we can derive a presentation
matrix from (1).

2.5. For any space S, let B,(S) denote the image H,(S)— H,(S; Q). Then
B,(S) is free abelian, and H,(S; @) = B,(S) ®, Q. The elements of H,(S; Q)
which lie in B,(S) will be called integral.

If Visasin (2.4) and p = n — 1 — ¢, there is a homomorphism:
L:B(V)R,;B,(S"—V)— 7,

which is defined by linking numbers (see [14, p. 277]). By Alexander duality,
L is a completely dual pairing, i.e., given any basis a,, «- -, &, of B/(V),
there is a dual basis B, - -+, B, of B,(S™ — V) such that

L(a; @ B;) = 05 .
Note that L extends to a completely dual pairing:
L: H(V; Q) Qe H(S" — V;Q) — @
Given ae H,(V; Q), Be H,(V; Q), we have the relation
(2) La ® i(B)) = (=1 L(B ® ix(a)) ,
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where i,, i, are defined in (2.4) using the isomorphism H,(S" — V) ~ H,(Y).
This is an immediate consequence of the definitions and the commutativity
([14, p. 278]) of linking numbers.

Finally we have, for € H(V; Q), B€ H,(V; Q),

(3) L(a ® i(B)) — L@ ® i.(B)) = a-8,
where a- £ is the intersection number in V, This follows from the existence
of a (¢ + 1)-chain ¢ in S™ satisfying
oc = 11*(/8) - 12*(6)

cNV=g,
where we have confused cycles and homology classes. The chain ¢ is con-
structed from a cycle z representing S by constructing I X z transversal to
V along 1/2 % z. The formula follows from a consideration of the intersection
a-cin S™,

2.6. For every q, choose a basis {@!} of B,(V) and a dual basis {87} of
B,(S* — V)~ B,(Y). Then {a! ®1} and {8?® 1} form bases of the free I'-
modules H(V; Q) ®, ' and H,(Y; Q) ®,I'. Set

’1:2*(05;) = E,; )"gilgg ’
il*(ag') = Ei #gj H
Note that \?; and p¢; are integers. Thus
da; Q1) =2, (tpd; — MBI R 1),
and we can define P,(t), a presentation matrix for H/(X;Q), with entries in A
by
Py(t) = (tpd; — M) .
Note that P,(t) is a square matrix since, by Alexander duality,
H(S"=V;Q)~ H,(V;Q);
and by Poincaré duality, H(V; Q) ~ H,(V;Q),0 < g <n — 1.

2.7. We now translate (2) and (8) into information about P,(t). First,
we have

(4) L} @ in(ag)) = 220, L} Q B7) = e
(5) L} @ iw(a)) = T ML} @ BY) = My
By (2), we have #2, = (—1)***'\{;. This implies

(6) (=17 P(t) = tP,™),

where ’ indicates transpose.
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As a consequence of (3), (4), and (5), we have
(7) N — pl; = ageag
Thus P,(1) is, up to sign, the matrix of the intersection pairing

B(V)®:B,(V)— Z;
since 0V is a sphere, P,(1) is unimodular, i.e.,
(8) det P,(1) = +1.

As a consequence of (8), P,(t) is non-singular and, therefore, the homo-
morphism d in (1) is injective. This implies e is onto, and so P,(?) is, indeed,
a presentation matrix for H(X; Q).

2.8. Now A;(H,(X; Q)) can be chosen as a greatest common divisor A! of
the ™ order minors of P,(t); A? is an element of A, We see that Al,, | A?in A,
By (8), AY1) = det P,(1) = +1 and, therefore,

A1) = +1,
Furthermore, by (6),
AL(t) ~ AX(ET) inA-.
Now, define ptf = AY/A%,,, an element of A. From the above properties of Af
we have
(1) = %1
and
Lt ~ i) inA.
This implies that ¢ is primitive. Finally, by (2.3) and (1.4), p! ~ \! in A,
This proves (b) and (¢) of Theorem 1.

2.9. Suppose n = 2q + 1, q even. Then (6) implies that P,(—1) is skew-

symmetric. Note that

A = A(H,(X; Q)) ~ det Py(¢) .
Thus A(—1) = +det P(—1). But the determinant of a skew-symmetric
matrix is square (see [5, 9.3]) and, therefore, | A(—1)| is square.

Since A is normal, we have A(1) = 1 and A(t) = A(t™"). These properties
imply A(—1) — A(1) = A(—1) — 1 is a multiple of 4. But this is impossible
if A(—1) were the negative of a square; or, if it were an even square. This
proves (d) of Theorem 1.

3. Further restriction on A(—1)

3.1. Whenn = 2¢q + 1, q odd, Theorem 1 contains no restriction on A(—1).
In this section we will see that, when ¢ # 1, 8, or 7, it is reasonable to impose
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the condition A(—1) = 1 mod 8. A proof of the necessity of this condition,
though, will be seen to imply a proof of the Arf invariant conjecture (see
[7, p. 536]). It is probably equivalent to the Arf invariant conjecture.

3.2. Forn = 2¢ + 1, q odd, let K be an n-knot and V a submanifold of
S™ bounded by K. We define a function

X: Hq( V)y— 2
by x(a) = L(a Q t.(a)). We check immediately from (2-(2), (3)), that
@+ pB) =x@+ 1B +ap mod2.

We can, therefore, form the Arf invariant of %, a(y), in the usual way
(see [7, §8]). Choose a symplectic basis {a,, -+ -, @,; B, -+ +, B,} of B(V); the
residue class

a(y) = E;l X(@)X(B;) € Z,
does not depend on the choice of symplectic basis.

3.3. If v is the positive normal field on V in S*, the Kervaire invariant
e(V, v) is defined (see [9, §4]). We would expect that ¢(V, v) = a(y), and will
prove AN

PROPOSITION. If V is (¢ — 1)-connected, c¢(V, v) = a()).

ProoF. Let w be a normal field to S* in D*** and F = (w, v) so that
(V, ¥) is a framed submanifold of D"*', By [9, 4.4], ¢(V, F) = ¢(V, v). The
proposition will be proved if we show that ¥ = @(V, F) (see [9, 4.1]), reduced
mod 2,

Let a € H(V) be represented by an imbedded sphere s. Then s bounds an
imbedded disk d in D™** which meets S™ transversely at 0d = s. The obstruc-
tion to extending v to a normal frame on d is an element of 7,(S? ~ Z, and
can be identified with y(a). But the residue class mod 2 can also be identified
with o(V, F)-«a (see e.g. [9, 4.10]).

3.4. In (3.3) we have seen that a(y) is related to the differential structure
on K. We now see that it is also related to the invariant A,

PROPOSITION, If A s normal, A(—1) =1 + 4a()) mod 8.

Let us consider the presentation matrix P,(t) constructed in §2; then
A ~ det P,(t), » = 29 + 1. Since P,(t) has an even number of rows, say 2r,
because the intersection pairing is a unimodular skew-symmetric bilinear form
(see [5, 9.8]), it follows from (2-(6)) that det P,(t) = t* det P,(t™"). Further-
more, it follows from (2-(7)) that det P,(1) = 1, since a unimodular skew-
symmetric form must have determinant 1 (compare (2.9)). Thus
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A =t"det P(t),
and we want to prove
det P(—1) = (—1) + 4a()) mod 8 ,

3.5. We will examine the residue class mod 8 of each of the summands
in the determinant of P,(—1) = (a;;). Note, by (2-(16)), that (a;;) is sym-
metric. Assume the basis «, ---, @, of B,(V) is symplectic, i.e., a;-a; =
0;4r,; for 1 = j. It follows from (2-(7)) that

(i) a;; = a;; is even if |© — j| # r; we call these terms non-special; and

(1) a;; = a;; is odd if |7 — j| = r; we call these terms special.

Clearly any summand of det (a;;) which contains more than two non-
special terms is a multiple of 8. On the other hand there is exactly one
summand made up entirely of special terms

(—1)ra1,r+1a2,r+2 o ar,2ra"r+1,l e a’2r,r .

Since any odd square is = 1 mod 8, this summand is = (—1)" mod 8.

We now consider the summands containing exactly two non-special terms.
It is not hard to see that there are precisely »* summands of this type; for
every pair of integers 1 < p, s < r, there is a summand

Spvs = (_l)r_lap,sas+r,p+r Hﬁep Qiyigr Hi#s Qitryi s

where 7 ranges from 1 to 7 except for the value indicated. Notice that S,,, =
S,,,, since (a;;) is symmetric. If p # s, S,,, + S,,, is a multiple of 8, since S,,,
is a multiple of 4 (by (i)).

Since there are no summands with an odd number of non-special terms,
we have

det (a;;) = (—1)" + E::1 S,., mod 8
By (i), S,, = (—1)"'a, 01,0, for some odd integer b. Thus, since
b* = 1 mod 8,
Spp = (1705, 0p4rpe,  Mod 8.
Now a,,, = — (%, + \%,) = —2\, = —2x(«,) by (4) and (5). Therefore,
2 Sop = (=143 A(a,)1(a,,)  mod8
By the definition of a(y), this completes the proof of the proposition.

3.6. Since we are dealing only with knots diffeomorphic to the standard
sphere, the preceding two propositions, together with the Arf invariant con-
jecture ([7, p. 536]) might lead us to expect that, when n = 2¢ + 1, ¢ odd,
qg+1,8,7, A, when normalized, should satisfy the condition A(—1) =1 mod 8.
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4. Knots with given Alexander invariants
4.1, The remainder of this paper will be devoted to proving

THEOREM 2. Let (M}, 0<qg<n—1,0<1t <k, be a set of primitive
elements satisfying (a)-(d) of Theorem 1. Suppose, in addition, when n =
2¢ +1,q9o0dd,q#+1,3,7, A (in normal form) satisfies

(e) A(—1) = 1 mod 8.

Then, if n = 3, there exists an n-knot with {\i} as its Alexander invariants.

In the exceptional case n — 2¢ + 1, ¢ odd, ¢ +# 1, 3, 7, if condition (e) is re-
moved, it can be proved that the conclusion of the theorem still holds where the
knot may be an exotic sphere. This can be proved using the techniques of [6, Th.
II. 3], and matrix construction similar to those of [13]. Because of the ex-
ceptional nature of the proof, further details are, for the present, omitted.

For n = 8, Theorem 2 is proved in [11]; we will assume n > 3. The case
n = 4 contains [8, §6] as a consequence.

We will deal with certain special cases of the theorem and demonstrate,
in (4.16), how the general result follows by use of the connected sum opera-
tion,

4.2, Suppose n > 2¢ + 1, and A € A satisfies (1) = 1. We construct an
n-knot with Alexander invariants

M=X, A=), M=1
if (1,p) = @,9)or 1, n —q—1),
By Theorem 1, it suffices to construct an n-knot K such that:
HX)~ M\, H(X)=0 for 0 < 2i <m,i+#4q.

The construction is similar to one in [6, p. 243]. We also refer the reader
to [15] for related results.

4.3. Let K be an imbedded null-isotopic (i.e., bounding a disk) oriented
(n — 2)-sphere in S? x 8™, Let X, = S*x S — K, and X, the infinite
cyclic covering of X, associated with the kernel of the homomorphism
m(X,) — Z defined by intersection number with any disk bounded by K. It
follows readily that H,(X,), H,_,(X,) are free A-modules of rank one, and
H(X)=0ifi+0,q,n —q.

Notice that we have a natural isomorphism of H,(X,) ~ m,(X,) with a
subgroup of 7,(X,) (base-points are understoocd) by projection. It follows that
any element of H,(X,) can be represented by a lift of an imbedded sphere in
X, (n = 2q). Choose a generator (as a A-module) @ of H,(X,), and let S be an
imbedded sphere in X, with a lift to X, representing \.-a. Since X, is a =-
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manifold and % > 2¢, there exists an imbedding ¢: S? x D" *— X, with S =
@(87 x 0), and we can perform the spherical modification x(p) ([7, p. 513]).
This converts the pair (S? x S"7, X,) to a new pair (%, X), where K is an
imbedded (7» — 2)-sphere in % and X = % — K.

4.4. With a little care we can insure that % is diffeomorphic to S”. In
fact, the condition M(1) = 1 implies that S represents a generator of

T (S X 8" Y~Z (n—q>q).
Since n > 2q + 1, S is isotopic to S? X x,, x,€ S* ¢ By the tubular neigh-
borhood theorem, we may choose ¢ isotopic to the standard imbedding
St x D"1—— S?x D1 ST x S*7,

where D77 is a hemisphere of S™~9, It follows immediately that ¥ is diffeo-
morphic to S”.

4.5. We now compute H,(X), and show it is as desired. Notice that ¢
lifts to a family of imbeddings

@iZSqXD"Hq'—’Xoy —e {1 < e

If we perform the spherical modifications ¥(@;), — > < 1 < oo, we obtain an
infinite cyclic covering of X; by the definition of X, this is, in fact X.
To compute H,(X) we need the preliminary space

X =X — UipS*x D™

By excision, we have
o o A t=n—q,n,
H(X, X)) ~ .
0 1#= N —q,n.
o o A 1=q+ 1, n,
HIX, %) ~ { —a
0 1#q+1,n.
It follows immediately from the exact homology sequences of (X,, X,) and
(X, X)) that, in the range 0 < 2¢ < n, H,(X) = 0 except, possibly, for i = q
orgq + 1.
To compute H,(X) consider the diagram

Hq+1(X’ Xl) — Hq()?l) Hq(X) 0
l Q
H,(X,)

where the horizontal sequence is exact and the vertical isomorphism is valid
because 0 < q <n —q — 1. H, (X, X)) and H,(X,) are free A-modules of
rank 1 and the former has a generator represented by a disk whose boundary
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is, say, @,(S? x x,) for some z,€ S* . But ¢, (S? X 0) represents A\-a, for
some generator « of H,(X,); as a consequence, H/(X) ~ M,(\).

If n = 2¢ + 2, then 2(¢ + 1) = =, and our verifications are complete. If
n > 2q + 2, we must show H,,+1(X ) = 0. But we have an exact sequence

Hq+1(X1) — Hq+1()~() —_— Hq+1(Xy X1) —_— Hq(XO .

Since n — q > q + 2, H,. (X)) ~ H,.«(X,) = 0, and, since » # 0, the right-
hand homomorphism is injective. By exactness, HQH(X' ) = 0.

4.6. The case n = 2q + 1 will use the following:

LEMMA. Let (\;;) be a square matrizc with entries wm A satisfying, for
some integer q¢ > 1,
(1) N(t) = (=D N5,
(ii) if q is odd, q # 3, 7, then \y(1) is even, and
(iii) (ni;(1)) is unimodular.
Then, there exists a (2q + 1)-knot such that H(X)=0,i+0,q, and
H(X) has (\:;) as a presentation matriv.
This lemma represents the natural extension of the main construction of
[11] to higher dimensions.
4,7, Set
Nis = D Cagit” for some m > 0 .
Let K be a null-isotopic oriented (n — 2)-sphere imbedded in S”, where
n = 2q + 1. If (\;;) is an (r X r)-matrix, let us imbed in an n-ball B in X, =
S* — K a family {S;}, 1 =1 =< r, 0 = k < m, of disjoint null-isotopic oriented
g-spheres. We may arbitrarily specify the linking numbers I(S;,;, S;,.), for
(i, k) # (4, h), except for the demands of commutativity ([14, p. 278]),
l(Si,ky Sj,h) = ('—1)(]+1Z(Sj,h, Si,k) .
We shall specify them by
Cijik—n ifk=0,h=0,0rk=0h=0,
USses Sin) = 0 otherwise.
That the commutativity relations hold follows from (i).
For each 7,1 = ¢ = r, define a new oriented imbedded sphere S; in X, by
forming the connected sum
Si = Si,—m # Si,l—m # e # Si,o# Si,l # e # Si,m .
More precisely, connect S;,; to S;,;;, with an are 4,, —m = k<m —1, such
that the interiors of the A, are mutually disjoint and disjoint from all {S;,}
(n — ¢ > 1). We can thicken these arcs to tubes diffeomorphic to 4, x D?
meeting S;,, U S;,..: along 04, x D7, so that the orientations agree (assuming
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A, oriented from S, to S;,.+.). Then define S; by
S; = (Uk Sie — U 4i ¥ D") UU, Ay x S

with orientation induced (consistently) by the {S,,.}.

We will also ask that the arcs A, pass once around X, in the positive
direction, i.e., for some disk d in S™ — B bounded by K, the intersection
number of A, and d is 1.

4.8. Let X, be the universal (infinite cyclic) covering of X,; note X, is
contractible, Then each S, lifts to an infinite family {o;,.}, — < k < o, of
imbedded spheres; the o;, can be indexed so that the positive generator of
the group of covering transformations maps 7;,, onto ;..

The linking numbers of the {o;,,} are given by

WOk, 04,0) = Es USikssy Sines) = Cijoimn
(see the argument in [11, p. 139-40]).
4.9. We now put a normal frame ¥, on S, so that the translate S; of S;
along the first vector field of &; satisfies
Z(Siy S:) = Nail(1) .
Condition (ii) is needed to assure this. In fact, if »;;(1) = 0, F; exists, since S;
is null-isotopic in S* (n = 2¢ 4+ 1, ¢ > 1). But if ¢ is even, condition (i) assures

that (1) = 0. If ¢ is odd, we can alter F; by any element « < 7,(S0,.,), and
the resultant change in I(S;, S}) is p.(«), where

p: 80, —> S¢
is the standard fibration, for a proper isomorphism 7,(S? ~ Z. But it is well-
known that p, is onto if ¢ = 1, 3 or 7, while
Image p, = 27,(S9)

if ¢ isodd, ¢ == 1, 3, 7. With condition (ii), the existence of ¥, is, thereby,
assured.

4.10. At this time we point out
(1) US:, S7) = Nif(1) = Ek U0 iy OFa)
for any value of h, where o', is the translate of ¢, lying over S}.

First note that U(S;, Sj) = X2, Uou, 0}4), since, if & is any chain in X,
bounded by ¢, then its projection ¢ in X, is bounded by S}, and the intersec-
tions of ¢ with all the {5,,}, — < k < oo, correspond, in a one-one manner,

with the intersections of ¢ with S,.
If © = 7, U(S;, S}) = N\i;(1) by choice of F;. If ¢ # j, then
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US;, S;) = Ek o, 05) = Ek Wow, 01) = Ek Cijoen = Mif(1) .

4.11. We can use the framed spheres {(S;, F;)} to perform spherical modi-
fications and convert the pair (S*, X;) to a new pair (%, X); then K is an
imbedded (7 — 2)-sphere in 3 and X =3 — K. We will show that = is a
homotopy n-sphere; therefore, since n =5, we can change the differential
structure at a point in X to make = diffeomorphic to S”.

Let Y be the preliminary space, as in (4.5), obtained by removing open
tubular neighborhoods of the {S;} from S". By an argument using excision
on the pairs (S, Y) and (5, Y), we see that H,(S) = 0 for ¢ # 0,¢,¢ + 1 and
n; since ¢ > 1, a similar use of the van Kampen theorem implies I is 1-
connected.

Finally we have a diagram

0—— H, \(S) — H, (S, Y) — H(Y) — H,(S) —0

H, (S", Y)
where the row is a portion of the exact homology sequence of (%, Y), and the
vertical isomorphism comes from that of the pair (S”, Y). It follows, by ex-
cision, that H, (S, Y) and H,(S", Y) are free abelian of rank r. Then
H(Y) has a basis a,, -++, &, where «; is represented by a sphere u; such
that the linking number I(S;, u;) = 0;;; H,1(2, Y) has a basis 8, -+, 5,
where S; is represented by a disk whose boundary is S.

Now suppose d(8;) = 2, @,;&. This is represented by S’. Recall that

the linking number I(S;, S}) = A;;(1), by (1). On the other hand,

uS;, S5 = Ek @ l(Si, i) = ij . .
Thus d has a matrix representation (\;;(1)); by condition (iii), d is an isomor-
phism. This shows = is a homotopy n-sphere.

4.12. A procedure similar to that in (4.11), but more complicated, will
serve to compute H,(X). First notice that X may be constructed from X, by
spherical modification using the o, with the normal frame & lifted from &;.
Let X, be the complement in X, of open tubular neighborhoods of all the {7;.}.

By excision H(X,, X,) and H(X, X,) are free A-modules of rank r, if
i = q -+ 1, but zero for ¢ # ¢ + 1, n. As a consequence, H(X)=0fori=0,
¢, q + 1, and we have a diagram

0— H, () — H, (X, X) —2 H(X) — H(X)—0

Iz

H,.(X, X))
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where the row is exact. Now H, (X, X,) has a basis 8,, - - -, 5,, where B, is
represented by a disk whose boundary is ¢}. H,(X,) hasa basis a, -+, a.
where «; is represented by a sphere ¢, satisfying l(o;., ;) = 0:;0,; con-
sequently, t*a; is represented by a sphere 7,, satisfying

ry

U0 jny Tir) = 0504 .

Suppose d(B;) = 3, tti;-a;, where p;; = 2, @ipt®. Since d(B;) is repre-
sented by ¢’,, we have

UOu, 050) = ip Giitl(Tany Tix) = Qyjn .

But if (s, k) # (4, 0), this is the same as l(g,,, 0;,) = ¢,;5. It remains to prove
@jj0 = Cjj, Which now follows from \;;(1) = #,,(1). In fact, using (1),

1) = 32, @i = 35, UOj, 0F0) = Nj5(1) .
Thus g£;; = \i;, and (\,;) is a presentation matrix for H,(X). Finally, since
(Mi;(1)) is unimodular, (\;;) is non-singular, and d is a monomorphism; thus
Hq+1(X ) =0.

4.13. Given n = 2¢ + 1, ¢ > 1, we wish to construct an n-knot K with
complement X such that H(X) = 0,7 # 0, ¢, and H,(X; Q) has a diagonal
presentation matrix whose entries {\{} satisfy (a)-(e) of Theorems 1 and 2.
This will be accomplished by showing that the desired H,(X;Q) must also
have a presentation matrix (\;;) satisfying the conditions of Lemma (4.6), and
then applying the lemma. Note that for ¢ = 3 or 7, the matrix with entries
{\%} already is of this type.

We begin by expanding each \! as a product of prime powers in A; since
I" is a principal ideal domain, the diagonal matrix whose entries are the collec-
tion {p%} of prime powers obtained, is also a presentation matrix of H,(X; Q).
Using (b) and (¢) of Theorem 1, and making proper choices of p;, using Lemma
(1.5) also, it is not difficult to see that the {p:} may be ordered so that p,;(t) =
Diri(t7h), €; = e;44, but p;, p;.;, are relatively prime if 1 < ¢ =k, p,(t) = p:(t™)
if 4 > 2k, and p,(1) =1, all <.

For1 =1 =<k, set ¢t; = (:ipi2)%. For i > 2k, consider p,(—1)%; we may
assume the {p;} arranged so that this quantity is square for 2k < ¢ < s, but
non-square for 7 > s. Set p, = piii* for k <1 =s—k. If 1> s, we may
assume p; = p;, for 1 — s odd, s < 7 = s + 2u, while, for ¢ > s + 2u, {p;}
are pairwise relatively prime. Note that e, is odd for 7 > s. Set v, = p;%5¥7,
0; =piifor1 =i = wu,and = [, ,,,. p%.

The choices of p;, v;, 0;, are made so that they constitute the entries of
a diagonal matrix presenting H,(X; Q). Note also that these elements are
normal (see (1.5)) and, in addition, pt,(—1),v.(—1), 6,(—1) are odd squares.
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It follows from (d) or (e) that z4(—1) must be an odd square or = 1 mod 8, as
q is even or odd (= 3,7), respectively, since

A= II1 /"'i'I-L 'Yi'IL- 51'#

4.14. Summarizing, we may conclude that H,(X; Q) is the direct sum of
modules with one of the following presentation matrices

YA Y P

These matrices are of the general form

0
2 o)

where \, ¢t are normal, # |\ in A and p(—1)\(—1) is square or = 1 mod 8, as
q is even or odd (# 3,7) respectively. It suffices to show that such a matrix
has the same elementary ideals (in I') as a matrix of the form of Lemma (4.6)
(see (2.3)).

Define p€ A by A = p-y; then p is normal, and p(—1) is square or = 1
mod 8, as q is even or odd (= 3,7).

4.15. If q is even, let o(—1) = (2a + 1)’ and set

) =1+ a(l —1t).
Then p and 6* agree when ¢t = =1; so o(t) — 6(t)6(t™") has +1 as roots. Thus
there exists v € A satisfying
o) = @)™ + v(E)(E —t7) .

We check immediately that v(t) = —v(t™"). Consider the matrix:

( v(t)p(t) 0(8)12(¢) )
—0@E™)(e) (¢ — 7))
This has the form of Lemma (4.6), and has the same elementary ideals as (2).
If ¢ is odd (% 3,7), note that p(t) — 1 has 1 as a root. In fact, 1 is a
multiple root, for, if o(t) — 1 = (t — 1)o(t), then, because po(t) = o(t™"), we
check that o(t) = —t~'o(¢™"). But this implies (1) = 0. So we can write
o) =1— (¢t — DE™" — 1)) .

Then 6(t) = 6(¢t) and, since o(—1) = 1 mod 8, it follows that 6(—1) is even.
This implies 4(1) is also even. Thus the following matrix has the form of
Lemma (4.6) for g odd (+ 3,7)

(0(t)#(t) (1) )
pt) (¢ — D — Dpe))’
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and is easily seen to have the same elementary ideals as (2).

4.16, Using the knots constructed above, we can complete the proof of
Theorem 2 if, given n-knots K,, K,, a new knot can be constructed whose
Alexander invariants are the sums of the corresponding Alexander invariants
of K, and K,. For this purpose, we use the connected sum.

Let S»2c S™ be the standard trivial n-knot. By an isotopy, we may
assume K, N D" = S**N D", and K,ND*» = S**N D%. Then define K =
(K.nD*)yUy(K,nD)., If X,, X, and X are the complements of K,, K, and
K, respectively, then X = (X, N D?) U (X, N D). Notice that

X.nDyn(X,nDr)=8""— 8",

which is a homotopy circle, and (X, X, N D?), (X,, X, N D*) yield, by excising

n D, respectively, pairs in which the subspace is a deformation retract of

the larger space and both are homotopy circles. These facts imply that the

r— ~ P — ~ . .
inclusions X, N D — X,, X, N D* — X, induce homology isomorphisms, and
P O —

that X, N D2 N X, N D* is contractible. By the Mayer-Vietoris theorem, we
have

H/(X)~ H/(X)) + H(X.) , q>0,

which, with rational coefficients, is what we mean by saying that the Alex-
ander invariants of K are the sums of those of K, and K.
This completes the proof of Theorem 2,
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