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[Let an orientable and an oriented r-dimensional h-manifold K
be a triangulation. Let m and n be independent distributions of

masses on the vertices of K (see section 4:3). Let the chain
£, € LTTP(R, )

correspond to the m-chain

al™P -
ta = Z 4015t € Lig(k,Y),

m =y
and let the chain §2 c Lr—q(K,H) correspond to the n-chain

al”P -
% T jéi fg(t; Q)ns? e chfK,ﬁ)‘

By [4:44], the chains x, and x_ are in general position in K;

consequently, the intersection
= tg-r 9
XK oxy, x € L%:ﬁ (K, %)

ptg
a. -
is defined. Let the chain & = kzi é(x)€+q rt£+q correspond to the

chain x.

We will call this chain the product of the chains §1 and fg:

(5:41) £ &, X &,

If the chains 51 and 69 are V-cycles, then, as easily follows
from the above, & is also a V-cycle and the V-class of the cycle &

is the product of V-classes corresponding to the V-cycles fi and §2
as defined by formula (5:4).

The indices of the traces (x)£+q_r of the intersection of the
chains X, and x, can be easily found on the basis of the calcula-
tions of section 4:4. From these calculations it follows immedi-
ately that the product (5:41) coincides with the product of Alexan-
der, and consequently, the ring V(K,%), with the multiplication

(5:41), coincides with the ring of Alexander.

Since Alexander’s ring is topologically invariant [see Whitney

Ann. of Math. (2) 39, 397-432 (1938)], the topological invariance
of the ring of Lefschetz follows. :
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Introduction

In the present work I give a full account of a part of results

published earlier in the Doklady Akademil Nauk [1].

The method of spherical mappings plays an essential role 1n

geometry, as can be concluded from the following.

Let #% be a differentiable orientable manifold of dimension
b with continuously turning tangents, embedded in Euclidean space
gk*1 of dimension k + 1. At the point x € ME we erect a unit nor-
mal N, to Mk, the direction being chosen in accordance with the
orientation to Mk, We displace the normal N_, by parallel dis-
placement in Hk+1, in such a way that its origin falls on a fixed
point O of the space Hk+i; then the end of the normal falls on the

point N(x) of the unit sphere S centered at O.

In this way we obtain a spherical representation N of the
manifold 4%, mapping each point x € #* on the corresponding point
N(x) € Sk,

The study of the mapping N leads to the discovery of several
invariants of the manifold M¢, both topological and differential-
geometric, In particular, if the manifold MR is closed, and k is
finite, the degree of the mapping N represents in itself a topo-
logical invariant of the manifold M®, equal to half the Euler
characteristic [2].

It is known that not every manifold M* of dimension k can be
properly embedded in a k+{-dimensional space. In view of this
there arises naturally the notion of giving a construction, ana-
logous to the spherical mapping, for manifolds Mk embedded in a
Euclidean space ER*! of dimension k + 1, where | is an arbitrary
integer.

The present work is devoted to the construction of several
invariants of closed differentiable orientable manifelds, based on
construction of a mapping of the type mentioned. It is still an
open question whether these invariants are new or whether they can
be computed from those already known, for example the ring of in-
tersections. It 1s indubitable, however, that these invariants
are closely connected with many geometric questions; in particular,
they are bound up with the problem of classification of mappings

of a sphere of high dimensicn on spheres of lower dimensionality.
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The means by which I construct the present invariants are
contained in the well-known cycles of Stiefel [3], and, inciden-
tally, the present paper closely adjoins a series of papers of
Whitney [4], in which Stiefel cycles are studied in detail. Stie-
fel cycles represent, however, only a part of the whole set of in-
variants considered here. The connection with Stiefel cycles and
related objects is given in my paper [5] which will be published

later.
The general course of the present investigations is as follows:
Two differentiable manifolds are called equivalent, or simply
homeomorphic, if there exists a homeomorphic continucusly differen-
tiable mapping of one on the other and the Jacobian of the mapping
nowhere vanishes. The invariants which we shall consider are in-

variants from the point of view of this equivalence.
The dimension of a given space P will be denoted by D(P).
Let Rk*1 denote the Euclidean space of dimension & + [, and
(0 a certain fixed point of this space.

By H(k,l) we denote the manifold of all orientable k-dimen-

sional linear subspaces of RRl containing 0.

The dimension of H(k, 1) is defined correspondingly:

D(H (k, D)=k - L. ()
It is clear that if RE*1 ' C RE*l) then

H ik, U'yC H (kD). (2)
This inclusion relation provides a connection between the various

manifolds H(k,l) for fixed k.

Now let Mk be an abstractly defined differentiable orientable
manifold and f a homeomorphic mapping of it on the manifold

f{Mk) C B**l wich continuously turning tangent.

At the point f(x) €_f(Mk) we construct the orientable linear
space 7, of dimension k tangent to f(Mk) and denote by T(x) the
element of the manifold H{k,l) parallel to T,.

In this way there arises a mapping T of the manifold M on the
manifold H{k,1). I call the mapping T the tangential representa-
tion of the manifold Mk; it depends on the imbedding f of the mani-



152 L. S. PONTRYAGIN

fold M® in the space £%*1 and plays the role of the spherical
representation N.

1f f, and f4q are two distinct imbeddings of MR in Hk*L, the
tangential representations T, and T, corresponding to them are
distinet. It is easily shown that for I 2 k *+ 1, TU and Tj are
always homotopic in fi(k,1).

Thus, with precision up to a homotopy, the tangential repre-
sentation is independent of the inbedding of the manifold MR in
the Euclidean space BR*l. The inclusion relation (2) frees the

tangential representation from dependence even on the number I[.

In the present work we construct a complete system of homology
invariants of the tangential representation of a closed manifold

#% on H(k,1). The construction proceeds essentially as follows.

Let Z be any cycle of dimension kl — 1 of the manifold H(k,l),
with r < k (cf. [1]1). Since the dimension of the manifold H(k, 1)
is large compared with the dimension of the manifold Mk, there
subsists a homeomorphism T4 of the manifold Mk on H(k, 1), approxi-
mating the tangential mapping T and such that the cycle Z and the
manifold Ti(Mk) are in a general position in H(k,1).

The algebraic intersection [6] of Zy with the manifold Ti(mk),
Z X 7I(Mk), represents a k-r -dimensional cycle on 71(Mk). Letius
denote by X the image of this cycle in M® under the mapping Ty
Since the cycle X is independent, up to a homology, of the approxi-

mation T, to the mapping T, we may write simply
X ~ T (Z % T (M), (3)

although this formula has no immediate sense.

Since the tangential mapping T, up to a homotopy, is uniquely
defined by the manifold Mk, the homology class of the cycle X de-
pends only on the homology class of the cycle Z and on the manifold
¥%. The orientation of the manifold H(k, ) can be chosen arbitrar-
ily.

Choosing the cycle Z in different ways, we construct a com-
plete system of homology invariants of the tangential mapping 1.

The inclusion relation (2) allows us independence of the number l.

In order to decide what cycles Z to choose in fi(k, 1), we must
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study the homologies of dimension kl — r, r £ k, of the manifold
H(k,I). This study occupies an important place in the present
work; it is derived from the method of Ehresmann [7]. Since re-

ference to Ehresmann’s definitive results is not possible here, T

will give an account which is independent of Ehresmann’s papers.

An adequate stock of cycies can be constructed by the follow-

procedure.

Let @ be a monotore non-decreasing integer-valued function of

the integer argument ¢ = 1, 2, ..., k, satisfying the condition
Dgw () <!, (h)
We consider in the space RE* L the sequence
B R ...C R, (9)

of linear subspaces each containing ¢, with dimensions satisfying

the conditions

DR)=wit)4i, §=1.2....,k (6)

We will denote by Z(w) the set of all elements Rk € H(k,Ll)

satisfying the conditions
D(REXR)y>»¢, (=1,2,. ... F. i7

It should be noted that Z{w) represents a closed pseudomanifold

the dimension of which is defined by

k

DiZ w))=riw)= D w (. (8)

izl

In the case where Z(w) is orientable, it can be regarded, with a

given orlentaticn, as an integer cycle on li(k,1).

If Zlw) is non-orientable, it can be looked on as a cycle
modulo 2. In this case, we can derive from it an integer cycle,
making use of the following general method. Let Y be a cycle mod
2, If we consider all the simplexes of the cycle Y, each with a

given orientation, we have an integer chain Y', for which

QY’“_—ZFY, th
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where T'Y is an integer cycle whose homology class is uniquely de-
fined by the homology class of the cycle ¥,

In place of the function @ it 1is desirable to introduce the

function ¥, defined by the relation
w-l—k-.-_——'.{,i.e.w([)—}—’x([):l, .'.':I,'_’,,..,fr. 10,

The function X is an integer-valued monotone non-increasing func-

tion of the integer argument L, satisfying the condition

(2130 (b

By making use of the relation (10), we can always construct from
a function X satisfying (11) a function @ satisfying (4).

The pseudomanifold Z(w), and the corresponding cycle, will be
denoted by Zy; its dimension, in view of the relations (8) and (10),

will be given by the formula

k
D(Zy) =kl—r(x), rix)=2x (12

i=1

We now strengthen the condition (11}, as applied to the function

X,; we suppose, in fact, that
=12y >0 )

Tt should be noted that if this condition is satisfied the ques-
tion of the orientability of the pseudomanifold Zy is soluble on
the basis of the properties of the function X, and does mot depend
on the number [.

If in the relation (3) we consider the cycle Z% instead of the
arbitrary cycle Z, we are led to the following definition.

Definition. lLet M be a closed orientable differentiable
manif;Ig—;f dimension k; let T be a tangential mapping of it on
H(k, 1), and let X be a function satisfying condition (13) and also
the condition r(X) £ k.

We set

X iM¥i= Xy~ T ZgX TMY) (D (Xy) ==k r (XD K
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Tf the pseudomanifold Zy is non-orientable, then the intersec=i

tion is taken mod 2, and Xy 1s a cycle mod 2.

If the pseudomanifold Zy is orientable, then both it and the
manifold H(k,!l) have a certain definite sense of orientation, and

KXo is an integer cycle.

It turns out that the homology class of the cycle Xxlin the
manifold wk s uniquely defined by the oriented diflerentiable
manifold Mk and the function X; we will call the cyele kx the
characteristic cycle of type X of the oriented manifold 1k

In the case in which Zy is non-orientable, we will call the

homology class of the cycle
Xy~ T Xy X TeM*) (DiTXy) =k —rip—| (10)

the secondary characteristic cycle of type ) of the oriented mani-
fold Ak

If r(X) = k, then U(Xy) = 0, and the homology class of the
characteristic cycle Kx 1s uniquely connected with an 1integer or
with a remainder mod 2, depending on whether the pseudomanifold Zy
is orientable or not. In this case we will denote by Xy not only
the (O-dimensional cycle, but also the corresponding integer or
remainder. The characteristic number or remainder 1s an invariant

of the oriented manifold Me.

For a more detailed study of characteristic cycles let us look

at certain properties of the function X.

By a jump point of the function X.we will mean a value 1 of

its argument for which Afi + 1) < X(1). Let Lgs Loy vy Tpog be
the set of all jump points of the function X, written in increasing
order. We will suppose, further that L, =0, T, = & and we will
set

L UREE PR PR I (A N— '} (16)

Eﬂh:.'x{l'h)' ‘x'(bh 1), h:I,Q ...,n—i; an‘x‘.kj

We now condider the equations
@, B =a, 43, =, F Byl =0 (mod 2). 17y

The set of functions X for which (13) and (17) are satisfied
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will be denoted by XO.

The set of functions % for which (13) is satisfied and (17)
is not, we will denote by X?.

It turns out that for % € X, the pseudomanifold Zy, is orienta-
ble, and that Zy is non-orientable for % € Xy.

We denote by X' the set of functions X satisfying (13) and

also the relation
a; =2 (18)

For a given function X we consider two sequences of numbers

auﬁn 11"ﬁl""’n”_“g””‘q”: } (19)

@ By %y Bar - oy @y Bn-i-

We let X correspond to the first of these sequences if 8 > 0, and

to the second if ,Gn = 9.
We assign a function X € X' to:

the set X, if all numbers corresponding to it in (19) are even;

the set X,, if there are odd numbers in the sequence of (19)
corresponding to it, and the first of these 1is
some a;

the set Xﬁ' if there are odd numbers in the sequence of (19)
corresponding to it, and the first of these is

some [3.

In this way the set X' is decomposed into the sum of the three

disjunct sets X, X,, and ‘Xﬂ' It is clear that X © X  and X,BC“XEJ'
It is to be noted also that for X € )ﬁ'o =:A,

V72 ~0, (20)

The theorem stated below provides a homology basis for H(k,1),

for the dimensions of interest to us.
Theorem 1. A canonical basis for the homologies of dimension
El - r, r< 1 =1, of the manifold H(k, 1) can be constructed from

the cycles

zx-XEX,T(X)"-’?'; PZ;’: x'ex}1 l'(]’.'):'r—"I- (21!
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Here the cycles Zy are free, una the cycles FZXJ have order two.
From theorem 1 it follows that all characteristic cycles of
tha manifold M can be expressed by the cycles Xy, % € X, and
Xyt x' € X{B' These characteristic cycles we will call basic.
The cyecles Xy, K € X are integer cycles, and the Xy, X' € Xﬁ’

are cycles mod two. If ‘X,* € X, the cycles _th is itself basic.
If 'X,* € Xo = X, then

Xy~ :ﬂ bll'Xp (22)
XEXp

where by, is a remainder mod two, uniquely determined by the func-
*
tion X .

If 'X,* € XQ, then

Xyo ~ Day Xy v B b TXy+ D) o Xy (mod 2), (23)
XEX %ENg 1€

where ay, by, and cy are remainders mod two, uniquely determined
by the function x*

Further, for x* € Ag we have

]‘Xy s -\_“ Cy, l,‘Xx. (23‘1)
RN

where cy is a remainder mod two, uniquely determined by the func-
tion x*

For characteristic numbers, the results we have obtained mean
that the characteristic number Ay, X € )(0, can be different from
0 only for X € X. 1In fact, the zero-dimensional Betti group for
an integer coefficient field has no torsion and therefore, if a
zero-dimensional cycle Xy satisfies the condition 2Xy ~ 0 (cf.
(20)), then Xy ~ 0, that is the characteristic number Xy reduces
to zero. For the same reason the zero-dimensional integer cycles
of the form FX,G do not give characteristic numbers different from

Zero.

Thus, it is meaningful to consider only those characteristic
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numbers Xx‘corresponding to X€ X. As for the characteristic re-

mainders, relation (23) yields,

Xyg= Ny Xy+ D Xy (mod?2), (20)
Xex XEXg-

where ux and cy are remainders mod two, uniquely defined by the
function ¥.

Among the characteristic numbers we distinguish one, namely
Xog = &gy for which X = 1. This function X belongs to the set A
but belongs to X only if k is even. Therefore, for odd k, Xy 70,
In my paper [5] it was shown that the characteristic number X1 is
equal to the Euler characteristic of the manifold under considera-
tion. This fact corresponds to the theorem of Hopf, recalled a-
bove, to the effect that the degree of a spherical mapping for
even-dimensional manifolds 1s one-half the Euler characteristic.

If the orientation of the manifold Mk is reversed, that 1s,
if we consider the manifold - M, the tangential representation of
it is essentially changed, since we are considering oriented tan-
gents,

The connection between the characteristic cycles of the mani-
folds Mk and - k¥ is given by the following theorem.

Theorem 2. If we denote by — MR the manifold which coincides

geometrically with MR but is opposttely oriented, then

X (= MY~ X, (M%) (26)
For X1, but X€X:  Xy(— M5~ — Xy (M), (27)

and for the remaining cheracteristic cycles
Xy(— M%)~ X, (M*). (25

From theorem 2 it follows immediately that if a characteris-
tic cycle Xy, X7 1, X € X, has the property that, taken twice, it
is not homologous to zero, then the manifold is asymmetric--that
is, it cannot be mapped on itself by a sense-reversing homeomor-

phism.
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The theorem below displays a certain geometrical property of

characteristic numbers and remainders,

Theorem 3. If the oriented closed manifold Mk can form the
boundary of an oriented bourded manifold M**1 then all charac-
tertstic numbers and remainders of Mk vanish, with the possible
exception of XI’ which is even.

That the Euler characteristic of M% is even can be shown very

simply by doubling the manifold MK*I,

Thus, we observe an interesting geometrical fact: not every
closed oriented manifold can be the boundary of an oriented mani-
fold. The simplest example of this is the complex projective plane,
which, considered as a four-dimensional manifold, is orientable and
has an Euler characteristic equal to three.

Theorem 3 gives us nothing in the case of two-dimensional and
three-dimensional manifolds.

It is known that every oriented surface can form the boundary
of an oriented three-dimensional manifold. It would be interesting,
and for some purposes important, to show that the same thing is true

of three-dimensional manifolds.
One further property of characteristic cycles is worth noting.

If the manifold M* can be imbedded in Euclidean space of di-
mension k + 1, then all its characteristic cycles are homologous
to zero, with the possible exception of Xy, and in this case the
characteristic number XI is even.

For two and three dimensional manifolds the characteristic
cycles yield no new invariants,

For two-dimensional manifolds M? we obtain only the charac-
teristic number Xy, which is equal to the Euler characteristic.

For three-dimensional manifolds Mg, all characteristic cycles
can be reduced to the Stiefel cycle, which, as he showed, is homol-
ogous to zero.

For four-dimensional manifolds M% there are three basic char-
acteristic cycles, The first, already considered, namely Xl’
yields the Euler characteristic. The second, also zero-dimensional,
Xgg, corresponds to the function X with the values X(1) = A(2) = 2,
X(3) = X(4) = 0.
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The characteristic numbers X, and X9g are equal mod two, but
to a considerable extent are independent, as is shown in my paper
[5]. The characteristic cycle X?g does not belong to the class of
Stiefel cycles.

Beyond the two already indicated, there exists another basic
cycle Xgy for four-dimensional manifolds, defined by the function
A with values X(1) = %2) =1, X(3) =X(4) = 0. The cycle Xoq is
defined mod two, is two-dimensienal, and is a Stiefel cycle.

1f we were able to discover all the connections among the
three cycles Xi’ XQQ: X?i of a four-dimensional manifold Ma, we
would have made significant progress toward solving the problem
of classifying the mappings of an §*3__sphere of dimension n + 3
on an n-dimensional sphere 8". For example, if it could be shown
that from XQI ~ 0 it would follow that XQQ ~ @, then we could show
that the number of distinct homotopy classes of mappings of §7¥3

on S™ is countable.

In conclusion it should be remarked that the actual calcula-
tion of characteristic cycles on the basis of the definitions given
here does present great difficuley. In view of this an alternative
construction is of interest, if it leads te characteristic cycles.
Such a construction.1s given 1n my paper [5], where the study of
vector fields on a manifold leads to characteristic cycles. The
question, however, of the extent to which this process lightens

the task of calculations is still not free of obscurity.

It would be most important to give a definition of character-
istic cycles which would be applicable to combinatorial, though
not to differentiable, manifolds, since there exists an algorithm
for the calculation of characteristic cycles which depends on the

combinatorial concept of the manifold.

$ 1. The Manifold H(k, 1)

Here we construct the manifold H(k, 1) and a certain pseudo-
manifold situated in 1t; later we construct a homology basis for
H{k,l).

We will consider only finite-dimensional real vector spaces.

The orientation of an n-dimensiohal vector space R™ can be

specified by a sequence ey, ..., €, of vectors of a basis for R",
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taking account of the fact that the positive orientation is given

by the orientation of the simplex (0, €4 €9y -y e, ).
The dimensionality of the set M will be denoted by D(M).

Definition 1. Let R**! be a vector space of dimension k& * I,
(k2 1, 12 1). The manifold of all oriented k-dimensional vector
subspaces of the space R**1 e will denote by H(k,l). Tt will be
shown below (see (A)), that D(H(k,1)) = kl, and that for a suita-
bly chosen local coordinate system H(k, l) becomes an analytic mani-
fold.

If R* is an arbitrary element of H(k,l), the symbol ﬁk will
denote an element of H(k,l) distinguished from R* only as to orien-
tation: ﬁk = - Rk, Clearly, the correspondence Rk?iﬁk is a homeo-
morphism, and it is evident from (A) that it is also analytic. If
M is an arbitrary set of elements of H(k,l), we denote by ﬁ the set

: A
which is the 1mage of M under the transformation Rk - Bk,

Let %L be & vector subspace of dimension k + ', and
H'(k,1') the manifold of all i1ts k-dimensional oriented vector sub-
spaces. If a is a non-degenerate linear mapping of Hk+l' on Hk+l,
then we will map every RE € H'(k,l") into the corresponding
a(Hk) € H(k,1); thus, there arises a mapping ¢ of the manifold

H'(k,1") on the manifold H(k,1).

(A) Suppose Bg € H(k,1), and let €4 +v.s €p be a basis for
Hﬁ specifying its orientation. We will denote by fy, ..., f; a
system of vectors in R**l such that the vectors
81, “uay ek‘ fi’ “ney f'l_ (1)

l

form a basis for the space Rk* , and we will denote by P the line-
ar span of the vectors fy, ..., f. Then R¥*! is the direct sum
of its subspaces Rﬁ and P, so that for every x € R*¥* 1 we have

x = u + v, where u € Rﬁ and v € P.

Let us set u = ¢(x); then ¢ is a projection of the space
J LA Ri in the direction P. The mapping ¢ will play a very
important role in the later portions of this paper.

We denote by U the collection of all elements of H(k,l) which
under projection by the mapping ¢ are mapped into Hi without de-

generation and with preservation of orientation. Clearly, U is a
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region in H(k,l) containing Rg. The regions U and 3 do not inter-
sect; we will denote the complement of their sum, in H(k,l), by V.
We now introduce in U a coordinate system depending on the
system (1).
1f H; € U, there exists in H§ a basis e&, ..., e}, specifying

the orientation of R? and such that

‘?(82)=ci, !;:1,...,}:;

we have
, ri . .
ei:€£+E:Jil], l=i,...,k. (Z)
j=1
Here nf{ “ = £ is a real numerical matrix, whose elements (there

are kl of them) we take as coordinapes of the element H; e U If
we arbitrarily specify a matrix Hf%“ = £ and define the vectors
ey - e}, by the relation (2), and then span a subspace Hg on
them, to so-defined space H? is an element of U.

Thus, in the region U containing Rz we have introduced coor-
dinates with Hﬁ as origin. Accordingly, U is homeomorphic to a
kl-dimensional Euclidean space. The system of coordinates which
we have selected in U depends on the basis (1) of the space Hk+1;
the analyticity of the transformation from one coordinate system

to another is demonstrated without difficulty.

Definition 2. Let w(i) be an integral-valued monotone non-

decreasing function of the integer argument i = 15 s op B

0 €w(t) £1. In the space Rk+l (see definition 1) we choose an

increasing sequence
RCR,C. .CH, (3)
of vector subspaces, such that
DR)=i+w(), i=1,...,k

By Z{w) we denote the set of those elements RE of Hik, 1)

which are such that

DRFONRY2 L i=1,..., k.
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It 1s clear that Z(w) is compact, and that Zfw) = E(w). Tt
will be shown beloz, (see (G)), that Z{w) is a pseudomanifold of
dimension r(w) = Eg&w(i).

I1f the pseudomanifold Z(w) 1s orientable, then assigning to
it one of the two possible orientations, we have a cycle 1in fi(k, 1)
in the field of integer coefficients.

If the pseudomanifold Z{w) is non-orientable, then we may con-
sider 1t as a cycle in H(k,l) module two.

In place of the sequence (3) let us now consider in RE*L 4

sequence

Hoe=R.e. . &R, (

-

of vector subspaces of the same dimensions:
D(R;)::D(Hi.)’ i:tv---ak-

Just as we defined the pseudomanifold Z{w) with the aid of (3),

so we define a Z'(w) with the aid of (4). Clearly, there exists
a continuous rotation of RE*1 carrying the sequence (3) into the
sequence (4). Since H(k,l) goes into itself under this rotation,
the pseudomanifold Z(w) moves in H(k,l) and at the completion of

the rotation occupies the position Z' (w).

Thus the pseudomanifolds Z(w) and Z'(w), considered as cycles
and taken with snitable orientation, are homologous in f(k,1).
This explains why the notation for Z({w) does not involve the se-

quence (3) but only the function w.

(B) By a point of increase of the function w (see definition

2) we will mean a value i of its argument for which w(i + 1) 7 w(i).

Let 1 eraze 5 B be the set of all points of increase of the
1 n-1 p

function w, taken in increasing order; and write io =0, i, T k.

Let us denote the space Hih of the sequence (3) by Sp; we consider

the increasing sequence

S, cCS,C...cCd, (5)

of vector subspaces of the space RR*L. It turns out that if we

impose on the element Rk of H(k, 1) the condition
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DRNSY=ip k=1, n

we again have the set Z{w). Thus, Z(w) is uniquely defined by the
subsequence (5) of the sequence (3}.

We will demonstrate (B). Suppose that i is not a point of in-

crease of the function @ and is not equal to k. We remark that if
D(R* N R,y 2 i * 1, then L% k) z i; from this it i‘olié».\:s
that we can delete the space f; from the sequence (3) without 111
consequences. By this means, the possibllity of passing from the

sequence {3) to the subsequence (5) is guaranteed.
We put
RE ) R, = A5 RN R,=AH".

The dimensions of the spaces R® and RT are equal to s and r respec-
tively. Evidently, R™ = R® N i, and since R® and R, are both

contained in H 44,

P2l UdwinN—G Lo+ )j=s—1.

But s » ¢ + 1. Therefore, r 2 1.
Thus, the assertion (B) is proved.
(€) We will say that the element RR of the set Z{w) is in

general position in Z(w), if
DR S=1,. h=1,. ... n. (See (B)).

If Rﬁ is in general position in Z{w), there exlsts a basis

e froo o h (1)
of the space RE*L guch that the vectors

€y Ex (7

from a basis for HE, defining its orientation, and the vectors
Cii s i foss

sl = lovess Wy (8)

for a basis for the space Sp.
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Now let U be a coordinate region in l(k,l) constructed on the
pasis (6) in the same way as was done in (A). It turns out that
all the elements of U [ Z(w) are in general position in Z(w), and

that H? € U belongs to Z(w) if and only if the matrix & = Hf%

sa-

tisfies the condition:

g{=0 for ]>UJ(15 Ty 149y

Thus, the neighborhood U M Z(w) of the element RE in the set Z{w)

is homeomorphic to the Euclidean space of dimension r(w) = fm(i),
1=

We begin the proof of (C) by choosing in R**l 4 basis of the
type (6) indicated in (C).

bt nJ

We set RE [ s, = B'h. s tl R, b= 1
o h . olnce & sSpaces A g

form an increasing system, the vectors ey, ., € can easily be

h

L
chosen so that the system ey, ..., e¢; {forms a basis for R ",

th
h =1, ..., n. Since the vectors €fs +ons € are independent,

3
and lie in Sy, the basis for Sy can be constructed by completing

the system ey, ..., e with an arbitrary system, independent of

1

these, of vectors f, . fw(ii) lying in S;. Thus we will have
constructed a system of the type (8) for h = 1, such that it forms

a basis for Si'

Now suppose that the system (8) has been constructed for some
given h in such a way that it forms a basis for S;. The vectors

of the system

81, “w ey Cih, fl, Py fw(lh)
are linearly independent, and the vectors e, .y, Pl Eih s are
+
independent of them in view of the fact that D(Rﬁ N Sy) = ip-
Since the vectors ey, ..., eih+1’ Fio oo j@(ih) ame lindepanifant

and lie in Sp,y, we can complete this system by means of vectors
fw(ih)+1’ ceey ﬁ”{ih+1) to a basis for the space 5, 4, and we have
then the system (8) for a larger value of h.

In this way the system (8) is inductively constructed. If
w(k) < 1, we complete the system (8) for h = n to form a system

(6).

Let £ be a matrix satisfying condition (9); we will show that
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R; belongs to Z(w) and is in general position in Z(w). We remember
that Hg is spanned by the vectors e&, . s eé, and the vector e} is
given by formula (2). In view of condition (9), the vector e% be-

longs to Sy for @ £ ip, and accordingly
DRE 1 S, > i

One easily sees, then, that i1n fact

BRI S, =iy,

N

Therefore, H? belongs to Z(w) and is in general position in Z{w).
We now suppose that R? € Z(w), and we show that the matrix
£ satisfies condition (9).

LLet x be an arbitrary vector belonging to B? 1 S;. Since

] k .
x E_Hg, we can write x = r;:1116!';-. Since x € 5, it follows that
%t =0 for t > ip, SO that
in
%= Y kel 10)
f=t

Since D(R? M Sy) 2 i, and the expression on the right side of
(10) contains exactly iy parameters, these parameters must be given
arbitrary values; in particular, we see that the vector e; belongs
to S for i £ ip. Since the vector e; is expressed by formula (2)
and belongs to the space &, for which the system (8) forms a basis,

we must have
Eért) for (& ip J o wiig). (1)

We suppose that 1, 4 € U £ 135 then w(i) = w(iy), and the relation

(11) can be written in the form

E:i:.-.(J'for Lo i€, [ o>wley, hA=1,...,n,

and this means that the matrix & satisfies condition (9).

Thus, assertion (C) is fully demonstrated.

(D) Suppose that @ # (. We assume that the space Bf+1 and
the spaces making up the system (5) are oriented. If w(k) = i,
the space Hk+l and the space Sn coincide; in this case we will

assume that their orientations also coincide. It turns out that
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the basis (6) for the space B**l a5 constructed in (C), can be so
chosen that the orientations of the spaces Hk+l, Hg, 5, are deter-

minea in accordance with their bases (6), (7), (8).

In order to fulfil this requirement, it is sufficient to
change the signs of certain vectors of (6). This operation would
not be permissible 1f w = 0, since the spaces Hﬁ and S; would co-
incide and we might encounter conflict between their orientations,
which are given in advance. If, of course, these orientations a-
gree with one another, the given requirement may be fulfilled even
if w = 0.

(E) For @ # 0 the set M of all elements in .general position
in Z{w) 1is connected; M is then a manifold of dimension r(w).

(See (C)).

For w = 0 the set Z(w) consists of two elements Bg and ﬁi, and
these are in general position in Z(w).
We will show that for w #Z 0, ¥ is connected. We suppose that

the space S of the system (5) and the space B®*l are oriented as
in (D). We set

Further, we denote by T%+1 a vector subspace of Sh+1 such that

$h+1 is the direct sum of S, and Th+1’ for h = 0, 1, S

We denote by 4 the group of all linear transformations of the
k+l
?

space f which carry every space S, into itself with preservation
of orientation, and we show that 4 is connected.

Let Ay be the group of all linear transformations of RR*!

which carry the spaces 1) into themselves with preservation of
orientation; then Ay C A. Since R**! 55 the direct sum of all
spaces Ty, the group Ay is the direct product of a group of posi-

tive (i.e., sense-preserving) transformations of the spaces T.

Therefore the group 4; is connected. Suppose that

it
ac A, x = Zl';p -EJ.ET,‘.

ha1

We set
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aix,)=b(z,) 1 e (zh).

where b(xy) € Sp_ g, aq(xp) € Ty Now suppose that t is a real num-
ber, 0 € t £ 1, and let

a1
a(x)-- D 11— 062 4 a, ()

h=1
We have
a4 a,=a, a €A,

Therefore, A 1s a connected group.

. ek, fi’ ""j.’,
I

Let Rﬁ and Eﬁ be two elements of M, and ey,
¥ #a }d be two bases for the space Rk+ , con-

" e P "
structed for the elements RE and Hﬁ by the process indicated in (€)

and (D).

and :3-1,

We define a linear transformation g, putting

a(ci)—_;;‘., i=1.... k, u(f}')‘—‘f};‘- f=1 . L

Then a & A, and a(Rg) = Rﬁ.
Thus M admits a connected transitive group 4 of transforma-

tions, and is therefore connected.

(F) Put N = Z{w) - M. (See (E).) We show that

DN)gr(w) -3, D(Z(w)=rw.

Suppose #® is not in general position in Z(w); then for some

number g (1 £ g <n - 1),
DR NS, >i,+1.
We introduce a new function w{q}{i), defined by the conditions:

for igiy,:  wig (i) =w(i),
for ¢, i+ 1 wip(b)=w(i)—1,
for ¢ > i+ 1: wy, (0) =w ().

The function-w(q)(i) has no jump at the point iq; instead, there

appears a jump &t the point iq LT g For the remaining values
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of h we take i; = 1. Then £R satisfies the condition
DR NSO =i, h=1,...,n,

and therefore ik G.Z(m(q))_

We have
k
\ . . . )
riw)—r (wiq)) = Z (w(r) — wegy (8)) = Ly—ly +1+w (lq—f— 1) —w (z'q):;.‘i_
ra1
(12)
Further, it 1is evident that
n- |
NC Y Z (g (13)
y=t
If we now note that D(Z({w')) = r(»') for any function @’ satisfying

the condition r{w’) < r(w), the relations (12) and (13) yield:
NNy r(w)y-—-3.

Since, further, Z(w) =M + N, D(Z(w)) 1s equal to the larger of the
numbers D(M) and D(N), that is, r({w).

Thus, assertion (F) is proved.

(G) It follows immediately from propositions (E) and (F) that
the space Z(w), represented in the form of a complex, is a pseudo-

manifold of dimension r{w).

{(H) For kI > 1 the manifold H(k, 1) is simply connected; that
is, it has a trivial fundamental group, and since fH(1,1) 1s homeo-
morphic to a circle, H(k,l) is always orientable. Further, for

k> 2, 12 2, the region H(k,1) = Z(w) is simply connected.

Suppose R**l is an oriented Euclidean vector space. Then to
every oriented k-dimensional subspace &k of the space RR*L corre-
sponds uniquely 1ts oriented complement Hl, KR - Hl. This corre-
spondence yields, evidently, a homeomorphic mapping of the mani-

fold fi(k, 1) on the manifold f(l,k); we denote this by .

It is clear that the manifold H(1,1) is homeomorphic to an I[-

dimensional sphere, and by applying the mapping y» we can convince



170 L. S. PONTRYAGIN

ourselves that H(k,1) is homeomorphic to a k-dimensional sphere.
Therefore, if kIl > 1, and one or other of k, [ is equal to

unity, then H(k,1) is simply connected.

: : R+l
Let PS5 be an s-dimensional subspace of the space k , and

Ter Qk+£-s be its orthogonal complement in RRYL e set

wy(ty=i—1. w, (2= ... zlw.(kfﬂzfz
m‘(‘]:[ﬁz, w1[2): — wl(k); i |
m)kl)-_-:; m,(‘ll:.;.','——i, wa(S);—, i :w’(k)lﬂb_

The pseudomanifolds Z{w;), Z(wg), Z{wq) are defined, respectively,

by the conditions

DRFO MY 21, DRENP )31 DIRFA P > 2. (See (B).)

We have

r{w) =k 1. riw)=r(w,)=hk —2

It is easily seen that wy, Wo, W3 exhaust the set of functions w,

for which r{wm) 2 kl = 2, with the exception of w = (.

It is not difficult to see that under the mapping { the pseu-

domanifold 2({wg) C H(k,l) goes into the pseudomanifold Z(wy) C

H(l,k). »

The region H{r,l) ~ Zﬁui) consists of two regions U and U
(see (A)) and 1s therefore simply connected.

The region fi(k, 1) = Z{wg) consists of all RE € H(k,l) whose
intersection with pl=1 .ontains the zero point only; therefore the
orthogonal projection of i* on Qk+1 can be carried out without de-
generation. If we carry R by a definite motion into its projec-
tion Hﬁ C:Qk+1, we have a continuous deformation of the reg;on .
H{k,1) = Z(wy) inte the manifold H(k,l) consisting of all fj lying
in Qk+1. Thus, the fundamental group of f(k,1) = Z(wg) is isomor-
phic to the fundamental group of the manifold H(k,l), and for k > 1
is trivial. )

Since r(wg) = kI = 2, an arbitrary curve in H(k,l)} can be de-
formed into a curve lying in Z(wg); and in H(k, 1) = Z(wy) this

curve can be shrunk to a point if & > 4. Thus, in this case, the
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fundamental group of H(k, 1) is trivial.

The region H(k,1) = Z{wy) is carried by the mapping ¢ into
the region H(!l,k) - Z(wg), and therefore is simply connected for
P> 1.

Now if r(w) £ kl - 3, the region H(k,l) - Z(w) 1s simply con-
nected, because the manifold H(k,1) is. In fact, not only every
curve, but also every two-dimensional surface in H(k,l), can be

continuously deformed into Z{w).

Thus, propoesition (H) 1s proved.

We now consider that to every orientable pseudomanifold Z(w)

there is pre-assigned a certain definite orientation.

(A) Let R™ be an n-dimensional vector space, in which a cer-
tain system of cartesian coordinates has been introduced; that 1is,

every x € K™ has been put into correspondence with a sequence of

1

numbers xl, Lea XY x = fxd, ., 2™). To the chosen system of

coordinates in R™ corresponds a definte basis €qs +ons €y such that
23 - 5 ;

x = Eazlei, and this basis assigns a definite orientation to the
iz

space R™, as was pointed out at the beginning of paragraph 1. Thus,
to a definite coordinate system in R"™ corresponds a definite orien-
tation of R™.

Jr

We will denote by {R"; d = 0, ., 7 =0} a coordinate

plane of the space R", defined by the equatiens xji =0, :
i i
xjr = 0; in this plane the coordinate system is x 1 ..., <

and therefore a definite orientation is given.

A subspace of the space R™, given by the inequality 2™ < 0,
will be denoted by {R", xz™ < 0}; we can take it as oriented in the

same way as RB". It is easy to see that

A& (R™, 2™ < Q)= (--1)™' {fi", x™ = 0}. o

In the coordinate neighborhood U (see $ 1, (A)) there are
given coordinates f% which are elements of the matrix &£. In order
that these coordinates specify an orientation in [/ and in the co-
ordinate planes of U, it is sufficient to number them in some de-
finite way. We will suppose that the subscript indicates the num-

ber of the row and the superscript the number of the column; we
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will order the elements by columns; that is, we write them in a

sequence as follows:

1 1 1 3 5t N i l i )
E,,Ezy--—,fk, f,, Ty sy ek“-'- ¥ EHE:,‘-"'?ER‘ 12)
The coordinate surface U [} Z(w), given by equations (9) § 1, has
a definite orilentation, consistent with our condition; we will la-
ter assign this to the neighborhood U N Z(w); this orientation

depends, therefore, on the bases (6) § 1 of the space RR+L,

(B) Let @ # 0 be a function such that the pseudomanifold Z(w)
is orientable. We will suppose that the spaces Sgpoo-.. S, of the
system (5) & 1, defining Z(w), are all oriented, and we assign the
orientation of Z(w) in accordance with the chosen orientations of
the spaces Sp- We assign the space Hk+i any orientation, except
that if w(k) = [ this orientationsis to coincide with the chosen
orientation of S . We so choose the basis (6) § 1 of the space
Hk+l that condition (D) & 1 shall be satisfied. This basis deter-
mines the orientation of the neighborhood U N Z(w) of the element
Hﬁ € Z(w) in the same way as was done in (A). Since the pseudo-
manifold Z{w) is orientable, the orientation of the neighborhood
U N Z(w) induces an orientation of the whole of Z{w). It turns
out that the orientation of Z(w) so determined depends only on
the orientations chosen for the spaces of the system (5) $ 1. We

will clarify the nature of this dependence in the case where
w(1) > 0.

Let us introduce the notation:

ah;":hf’!h—rv h ..., n;
B,=w i+ 1) w(iy), h=1, . .. ,n—1: By=l—w(k) I (3)
(see § 1, (B));

the numbers Sy will be used later. Now suppose
Sh S =41, h=1,...,n

The pseudomanifold Z'(w), constructed with the aid of the spaces

Sf,» can differ from Z{w) only as to orientation. It turns out that

for w(1) >0 2" (w)=eft . ep-..eM7 (0). (%)
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Suppose Rg and R§ are two elements in general position 1in

Zlw), and

Cre ey B jn-”sf].s ()

€y ooy € fr e ft 3 (t)

are bases for the space £%*1 constructed from these elements by
the process indicated in (C) and (D), $ 1, i.e., taking account
of the orientations of the spaces Sh and A**!.  We show that the
orientations induced in Z({w) by the bases (5) and (6) coincide.
Rk+[,

We define a linear mapping a of the space setting:

ale) =e€. i=1,..., k;: a(ty =715y [=1...., 1L

By virtue of the construction given in (E), ¢ 1, there exists a

Hk+1, such

one-parameter family ay of linear mappings of the space

that a,(Sp} = 5, h = 1,
mapping. The basis

., n, and ay = a and a, 1s the identity

deled, - agley).  alf), oL de(Ty)

of the space RE*! defines an orientation in the neighborhood
a, (U N Z{w)) C Z(w). From continuity considerations it follows
that the orientation so defined on the pseudomanifold 4(w) always
coincides with the orientation induced by the basis (5). For

t = 1, this yields the desired result.

Let us demonstrate (4). We remark, first of all, that 1f 1in
the basis {(5) we change the orientation of the vector fq’ the ori-
entation of the neighborhood U | Z{w), given in (B), is multiplied
by the factor (-1)”, where 7 is the number of coordinates fg which
can be distinct from zero in U ] Z(w) (cf. (9) § 1). For g =
wltp gt 1) we have v = k - i i for g = w(ih_i + 1) t 1, we have
¥ =k — ip. Let us now change the sign of each of the indicated
vectors; then the orientation of the neighborhood [ ) Z(w) 1is
multiplied by (—1)ah (cf. (3)). On the other hand, the indicated
changes of sign of two vectors change the orientation of the space
Sp,, and ‘do not change the orientaticn of the remaining spaces of

Hk+t

the sequence (5), § 1. The orientation of the space changes
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under this operation only in the case that h = n and 5 7 perl,
From what has been said, formula (4) follows. If w(k) <, the
orientation of Z(w) does not depend on the orientation of Hh+i,
since, changing the sign of the vector fq only, for g T w(i,_4 T 1)

+ 1, we have ¥ T k ~ 1, = 0.

(C) Let @ be a function such that wil) > 0, Z{w) is orientable,

and 2Z(w) not homologous to zero in H(k,1); then

C=a,==0 (mod 2y, (7
C=a,_,==0 (mod2). (R)

for w(k} L
for wi(k) = L:

Therefore, in the case w(k) < [ the orientation of Z(w), given in
(B), dees not depend on the orientation of the spaces of the sys-
tem (5) § 1 (ef. 4); in the case w(k) = | the orientation of Zfw)
depends only on the orientation of the space S = #**l Both these

cases can be summed up in the single formula

2 (w)= e Z (w), w(l)>0, (9
R+l
where Z{w) is constructed by starting from the oriented space R L

and Z'({w) by starting from the oriented space eRk+l e =t 1. Tt

Lurns out, mMoreover, that if we fix the orientation of the space

Hk+1 and construct the oriented pseudomanifold Z(w), starting from

the system of spdces (5) € 1, and also construct the oriented

pseudomanlfold Z (w), starting from some other system éh' h =

i, ..., 1, then
Z*(w) ~ Z (») in H(I’-, n. 110)
Let us demonstrate (7) and (8). Suppose
Sh=e,8, =42 1 h=1, ,n
If w(k) = 1, we set €, = + 4. Then it is easy to construct a line-
ar mapping ¢ of the space R+l , conserving its orientation, and
such that

I’L(\)—,l)utslh, I't:1,..., n.

- . E+1l 3 . _
Since a conserves the orientation of R , there exists a one
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parameter family of linear mappings a, of the space Rk+1, such
that ay = @ and a  is the identity mapping. The pseudomanifold
a;(Z(w)) depends on the parameter t; for ¢ = 0 it becomes Z(w),
and for ¢t = 1 it becomes Z'(w); thus, Z' (w) ~ Z{w)., Hence, from
relation (4) follows

(1—-e%-gfr... ) Z (wi ~ 0,
Since the relation 2Z(w) ~ 0 is inadmissible by hypothesis, we

see that (7) and (8) are in fact true.

Let us prove (9). In virtue of (3), k = ay + g e T ay
From this, because of the relations (4), (7), and (8), we derive

(9).

Let us demonstrate (10), Let a be a linear orientation-pre-
serving mapping of the space ﬁk+l, such that
a,(_Sh)r:Sf,. h=1....,n.

The spaces S and S; are here regarded as not oriented, since their
orientation does not determine that of the pseudomanifolds Z(w)

and Z*(M). Since ¢ conserves the orientation of Hk+l, there exists
a one-parameter family a, of linear mappings of the space Hk+z,
such that a; = a and ¢/ is the identity mapping. 'he oriented
pseudomanifold a,(Z{w)) depends on the parameter t. Its value 1is
Z{w) for t = 0 and Z*(m) for t = 1. Therefore, Z{w) ~ Z*{m).

Thus, the assertion (C) is completely proved.

(D) Let @ = ¢, where ¢ is a natural number. It is easy to
see that the pseudomanifold Z(c¢) is homeomorphic to the manifold
H(k,c¢), which is orientable (cf. $ 1, (H)); thus, Z(c) is also
orientable.

Since the function w = ¢ has no jumps, we have n = 1, ay = &,
and the system (5) § 1 consists of the single space Sy = Fk+c, the
orientation of which defines the orientation of Z(c) (cf. (B)).
Also

27 (et =€k Z () (cf. (4)). (11)

(E) Let R**l and RE*U"C RR*L | = 1" = n > 0, be two oriented
vector spaces; then H(k,1") C H(k,l), and both these manifolds are
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oriented by virtue of (B) (cf. (D)). Further, let Z(w) be the
pseudomanifold given by the system {Sh}, h =1, ..., n. If Z{w)
is orientable, we will suppose that the spaces S5, are oriented and
give the orientation of Z{w).

We will study the algebraic intersection Z(w) ¥ Rk, 1" )--
module 2 if Z(wj is non-orientable, and with the computed orienta-
tion otherwise.

Let us set @" = w — m; the function @” is suitable for the
definition of a pseudomanifald Z(w,) only if w(l) 2 m.

We will suppose that the spaces 5, and Hk+l" are in general
position in Hk+i, and we set Sﬁ = Sh X.Hk+l" with the calculated

orientation for orientable Z(w). We have
D(Spr= {4 w i) —m.

Therefore, for w(1) 2 m, the spaces Sj, h = 1, ..., n, can serve
as a foundation for the comstruction of a pseudomanifold Zw") C

Hik,1"). It turns out that

for wily-2m: Z()NH ik, " is empty; (12s
for wilipm. wz=m Z{wixHk (=25 (13
for wamme 2 ) . T Jei=A". (44)

In (14) we have the index of intersection; in (13) the intersec-
tion mod 2 1f Z(w) is non-orientable, and with the calculated
orientation otherwise.

Let us proceed to the demonstration. If RF € Z(w), rk €
H(k,1"), then

DiRNOS, ) > 4, R¥C RV,

and therefore D(Bk M Sp) 2 iy In the case w(1) < m, we have,
therefore, 14 < ii + w(ii) -m £ il - 1; this islémpossikle, ?nd
so (12) is true. In the case w(1) 2 m, we have Z{w) [ H(k,1")
C Z(»w"). The inverse inclusion relationship obviously helds, and

therefore,

for wi)pm : ZiwNH Kk M=4Ziwh. ;
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We will now suppose that w(1) Z m. If w = m, we set Rﬁ = 33.
If w # m, we choose for HE an arbitrary element in general position

in Z{w")}. Suppose that

By svn Cgn Fign <oy B (16)

is a basis for the space Hk+1", constructed as in (C) § 1 for the

elements Hg < Z(w"); that is, such that the vectors

61, e ey Ek (17)

represent a basis for the space HE, and the vectors

€4, s €p, f?, R f;H(ih), h =1, ..., n, (18)

O

represent a basis for the space Sj. The orientations of the spaces
gE*L, RE, S¢ are defined in accordance with the bases (16), (17),

and (18). In the space S; we choose vectors fy, ..., f,, linearly
independent of S;, and make up a basis for the space R**l from the

vectors

egy ianv Cpe Fgn vama Tuo Fueg T Fp v B = £ (19)

Then the basis of the space S will consist of the vectors

ef woos ehy oo oees Fugip): (20)

We choose the vectors fy, ..., f, in such a way that the basis (19)
determines the orientation of the space RE+L Then, from the con-
dition Sﬁ-: Sy X.Hk+l” it follows without difficulty that the basis
(20) gives the orientation of the space Sj.

The basis (19) defines a coordinate neighborhood U of the ele-
ment Hﬁ in H(k,1) (see § 1, (A)). The neighborhood U'" = U N Z(w)

of the element Hﬁ in Z{w) is distinguished in U by the equations
£L=0 for j>w(i), =1, ..., k. (21)

The neighborhood U = U ] H(k, 1") of the element KX in H(k,1") is

distinguished by the equations

§{ =0 forj < m. (22)
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The neighborhood U" = U 1 Z{w") of the element Rﬁ in Z(w") arises
as the union of the systems (21) and (22). The orientation of the
coordinate spaces U, U', U", U™ is given by the rule stated 1in (A),
i.e., with the aid of an enumeration of the elements of the matrix
£ by columns.

Let A be the sequence of all unit coordinate vectors of U,
written in that order. We will denote the portions of the sequence
A which are in U', D", U" by A", A", A", respectively. Then the
orientations of the neighborhoods U, U', U", U" are given by the
respective sequences A, A', A", A", The sequence derived from A’
by removing the elements contained in A" we will denote by b'.
Similarly, the sequence derived from A" by removing the elements
of A" which are contained in A" we will denote by B"., Since the

numeration was carried out by columns, it follows that in the se-

gquence A every element of B' precedes every element of B", Let
- E(AWBI B" ) A" = €' (AMBJ ), At = e (AUIBH)' (23)
Here ¢ =+ 1, €' =+ 1, €" =+ {, and the relationships (23) dis-

close the connection between the orientations of the spaces under
consideration, as given with the help of the several sequences of

In view of the fact that in the sequence A every element

vectors.
} —_— i - " -
of B' precedes every eleuent of B", we have € = &'+e¢"”, and this,
o= gt i . : )
in virtue of Lefschetz’ rule, shows that " o= gt Y U" with orienta

tions as computed.
Thus, the relationship (13} is demonstrated.

For w = m, the result so obtained yields I(u',u")= + 1.
Therefore, at the point Hﬁ the index of intersection of Z({w) and
H(k,1") is equal to * 1. For @ = m, the intersection Z({w) []
H(k,1") = Z(w") = Z(0) (see (15)) contains only two points, the
one already considered HS, and another RE. In order to calfulate
the index of intersection of Z(w) and H(k,1") at the point Rf, we
reverse the orientation of Sy, 1.e., take Si == 8. We will de-

note by Z'{w) the pseudomanifold defined by the space S}. Then
Z'(w) = (~1)%Z(w) (see (11)). (24)

; k
The roles of the elements Hﬁ and ﬁi are here interchanged: R was

defined as SE = 51 N Rk+l". Therefore, the index of intersection
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of Z'(w) and fi(k,1") at the point ﬁg is equal to + 1, and from (24)
we see that the index of intersection of Z(w) and H(k,1") at the

Fal

point HS is equal to (“i)k. Accordingly, the relationship (14)

does in fact hold.
Thus assertion (E) is demonstrated.

The pseudomanifolds Z{w) yield a significant collection of
cycles of the manifold H(k,l). The problem of constructing from
them a homology basis will be resolved in a later section (see $ 5).

We will now give a general operation for the construction of cycles.

(F) Let Z be an r-dimensional cycle modulo two. Assigning to
each of its simplexes an orientaticn, we have a chain Y with in-
teger coefficients, such that AY = 92X, where X is an integer-cycle
of dimension r — 1, the homology class of which 1s uniquely defined
by the homology class of the cycle Z. We set X = 1'Z, The opera-
tion [, defined up to a homology, will be applied later to the non-

orientable pseudomanifold Z(w).

If Z is an r-dimensional V-cycle modulo two, then, assigning
to its simplexes an arbitrary orientation, we have a whole-number
chain Y, such that V¥ = 2X, where X is an (integer-coefficient) V-
cycle of dimension r + 1, the homology class of which is unigquely

defined by the homology class of the V-cycle Z. We write X = T'Z,

¢ 3. Tangential Representations and Characteristic Cycles

Here we introduce a concept which is fundamental to the work

as a whole: the concept of characteristic cycle of a closed dif-

k

ferentiable oriented k-dimensional manifold M

Let U* be some coordinate neighborhood of the point a of the
differentiable manifold Mk, in which are introduced local coordi-

1 k

nates x*, ..., x%, The mapping f of the manifold M% on the vector

space RF*l with coordinates yl, e yk*l is called by Whitney

regular in the point a if near the point a the mapping can be

written in coordinate form as
o= ylead, o) xR =), i, kL (1)

and the functional matrix

Sk

dxt

, =1, ...,k I =1y epded
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is of rank £ at the point a and also depends continuously on x
there. If the mapping f is regular at every point a E.Mk, then 1t
is called regular. Whitney showed that a differentiable manifold
Mk can be regularly mapped on the vector space A2k The manifold
MR can be mapped on the vector space RZ*1 photh regularly and ho-
meomorphically at the same time. We will call such a mapping the
inclusion of the differentiable manifold ME in the vector space
gR*! and we will sometimes identify the image j(Mk) with the ori-
ginal manifold jk and write wk C RETL

We shall have occasion below to comsider mappings of the mani-
fold Mk on various manifolds H(k, 1) (cf. definition 1); 1in view of
this it is worth while to establish the concept of equivalence of
such mappings.

(A) Let R'k+1, and g'R+1" Yo two vector spaces, and H'(k,1")
and H"(k,l”) the manifolds corresponding to these (cf. definition
1).

Two mappings &' and §" of the p-dimensional complex KP on the
manifolds H'(k,1') and H" (k,1"), respectively, will be called
equivalent if there exist non-degenerate linear mappings ¢’ and a”
of the vector spaces R'k+l' and &+ 1" o0 some vector space Hk+l,
cuch that the mappings a’'@’ and "6" of the complex KPP on H{k,1l)
are homotopic to one another in H(k,1). Here we keep 1n mind that
to the linear mappings a' and a" correspond the mappings a' and a”
of the manifolds H' (k,1") and H"(k,1") in H(k,1). The reflexivity
and symmetry of this definition is evident; the transitivity will
be demonstrated below. It turns out that every mapping & of the
complex WP in some H{k,1l) is equivalent to some mapping of it in
H(k,p): and, accordingly, to some mapping in H(k, pt1)) since
lifk,p) CH(k, pt1). Further, two mappings @' and 8" of the complex
kP in the manifold fi(k, pt+1) are egquivalent in the given sense of
the word when and only when they are homotopic to each other in
H(k, pt1). There fore, in order to classify the mappings of the
complex KP from the point of view of the equivalence relationship
just introduced, it is sufficient to classify all mappings of KP
in the manifold h{k, pt1)} according to the usual homotopy theory.

From this the transitivity of the eguivalence follows.

For the proof of the assertions made 1in (A), we prove (B).
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(B) Let RR*l and R*1-1 cRrk*L be two vector spaces, and
H(k, 1=1) CH(k, 1) manifolds corresponding to them (see definition
1). It turns out that if p £ 1 — 1, then every mapping & of the
complex KP in H{k, 1) is homotopic to some mapping &' of the com-
plex KP in H(k, i-1). Further, if p £ I = 2, and &, and 04 are
two mappings of the complex KP in H(k, I-1) which are homotopic
in H(k, 1), they are also homotopic in H(k, I-1).

We will suppose that the space RRHL g Euclidian, and denote
Rk*l-l Rk+l—1_

by e the unit vector in normal to

We will denote the
set of all elements RR € H(k,1) which contain e by H. It is easy
to see that /i is homeomorphic to the manifold H(k=1, l) and there-

fore has dimension (k—1)1.

Now let RR be an element of H(k,1), belonging neither to H
nor to H(k, l-1). We will denote the projection of the vector e
on Rﬁ by g, and the projection of the vector g on gk+i-1 by h.
We will denote the unit vectors in the directions of g and h by
ey and ey, respectively. We will denote the linear subspace of
the space Rg which is orthogonal to e, by Bg_i. Let e,, 0 <t =<1,
be a unit vector, uniformly rotating from the position e, to the
position ey in the plane of the vectors e,, ey. We denote by Hﬁ
the linear span of the vector e; and the space Hﬁ'i.

1f R% ¢ H(k, 1-1), we will suppose that &% = R Thus, to
every element Hg not belonging to H, we have defined a process by
which it moves from the position K% to the position RS € H(k, 1-1),
while the elements of H(k, I-1) do not move. The deformation so

defined we will denote by .

Suppose p < I =~ 1, and let & be a mapping of the complex kP
in H(k,1). Since the difference between the dimensions of H(k, 1)
and H is equal to Il > p, we can by a slight deformation of the
mapping ¢ obtain a mapping 8" such that 6" (KP) does not intersect
H. Applying the deformation ¢y to the mapping 6", we obtain the
desired mapping &'.

Now suppose p < 1 - 2, and that ¢,, 0 £ t £ 1, is a family of

mappings of the complex KP in H(k,l) such that
B (KP) CH(k, 1-1), BI{KP) CH(k, 1-1);

this means that the mappings &, and €, are homotopic to one another
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in H(k,1). We will denote by KP*1 the product of the complex KFP

by the unit segment of the real number line. To the family &,
corresponds in a known way a mapping & of the complex kP*1 in

H(k,!). Just as before, by a slight deformation of the mapping &
we can transform it into a mapping &" such that 9”(Kp+1) does not
intersect H. Applying the deformation Y to the mapping 8", we ob-
tain a mapping &' of the complex Kl oin fifk, 1—1) which realizes
the homotopy between ¢ and &, in f(k, [=1).

Thus assertion (B) is demonstrated.

Let us now demonstrate (A). It follows immediately from (B)
that every mapping & of the complex EP on an H(k, 1) is equivalent

to some mapping of the complex KP an the manifold H(k,p).

Now, let &' and €" be two equivalent mappings of the complex
KP in H(k, p+1). This means that there exist non-degenerate linear
mappings a' and a" of the space RE*P*1 o0 some space Bk+l, such
that the mappings a'8' and a"8" of the complex kP in H(k,p) are
homotopic in H(k,1). Without loss of generality we may assume that
pt 1< 1, so that there exists a one-parameter family a,, 0 = t <
1, of non-degenerate linear mappings of the space RR*PTL o0 the
'

Hh+l, such that a, = o, and ay = a"., Thus, the mappings

apt’ and aiﬁ' are homotopic in H(k,l). Since, by hypothesis, the

space

mapplngs aoﬁ' and a16" are homotopic in H(k,!), the mappings alﬂ'
and 316” are homotopic in H(k,l). It follows immediately from this,
on the basis of (B), that the mappings a0’ and a8 of the complex
KP on ay(H(k, pt1)) are homotopic in the manifold a (H(k, pt1)) it-
self. Applying the mapping a}I, the inverse of ay;, we see that the
mappings ¢' and §" are homotopic in H(k, pt1). Thus assertion (A)
is demonstrated.

Definition 3. Suppose f is a regular (although not necessar-
ily homeomorphic) mapping of the differentiable oriented manifold
M*% on the vector space Rk+*l  (See (4).) Then to the point x € MR
there corresponds a well-defined oriented T, , tangent bo f(Uk) at
the point f(x), where UF is a small neighborhood of x in ME. e
will denote the oriented k-dimensional vector subspace of the space
gR*l which is parallel to T, by T(x). Since T(xz) € H(k, 1), we ob-
tain a continuous mapping T of the manifold # on H(k,1), which we

will call the tangential representation. It turns out that all
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tangential representations of a closed oriented manifold Mk are

equivalent to one another in the sense developed in (A).

Let f' and f” be two regular mappings of the manifold W on
the vector spaces gL ang H"k+l“, and let T' and 1" be the
corresponding tangential representations of #* in the manifolds
B (k,1") and H'(k,1"}. We now show that the mappings 1’ and T°
are equivalent to one another (see (A)).

We will denote the direct sum of the spaces H'k+1, and grErl
by Hk+l, with 1 = & + ' + [". We will take Rkl g grkel” g
subspaces of the space Hk+l. To the inclusion relations H'k+l' c
Hk+l and 7kt c ghel correspond the relations ' (k,1') C H(k, 1)
and H"(k,1") C©H(k,1). It suffices for us to show that the mappings

7' and T" of the manifold M* into Hfk, 1) are homotopic in H{k,1).

We set

Fo(x) = (1= t)f (x) + tf"(x), x €MF.

The regularity of the mapping f, follows easily from the regularity
of the mappings f' and f”. The tangential representation corre-
sponding to the regular mapping f, will be denoted by T,. There-
fore T, is a continuous deformation which carries the representa-
tion T’ into the representation T", and these two are therefore
homotopic in fi(k,1).

With this, the equivalence of all tangential representations

of a closed oriented differentiable manifold is demonstrated.

We must remember that the tangential representation T depends
on the orientation of the manifold M. Alteration of the orienta-
tion of the manifold gives another tangential representation, not,

in general, equivalent to the first.

Among all possible mappings of an oriented manifold #E on the
manifold ti(k, k*1) (see (A)) we distinguish a special homotopy
class of mappings, equivalent to a tangential representation. This
tangential class of mappings undoubtedly expresses deep properties
of a differential manifold MR, Ome must keep in mind the fact that
a tangential class of mappings does not depend on the process by
which a topological manifold is rendered differentiable; 1t 1s very

likely that such a class can be defined for a topological manifold.
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Our task is seen to be the study of the homology properties
of the tangential class of mappings; these can be fully expressed
by the characteristic cycles of the manifold Mk (see definition 4).

We introduce some notations:

(C) Let ?((i) be a monotone non-increasing integer-valued func-
tion of the integer-valued argument 1 = 1, ..., k, satisfying the
condition 0 < )«i) < 1. Then the function w = [ =7, defined by

the equations
w(L):Z—-X{L], ;‘:I,__.,/f,

satisfies the conditions of definition 2 and can therefore serve
as the basis for constructing a set Z{w) in H(k,l). We put Z, =

Z(1 - x}; then

k
D(Zy)=kl—r(x), r(x):.}:x_(i). (2)
i=1
The numbers Gy wees Ap, Bi’ A ﬁn, corresponding to the function

w=1-%X (see §2, (3)), can be computed with the aid of the func-
tion . For this it is sufficient to determine the jump points of
the function %, as was done for the function @ in § 2, (B); then
the jump points of both functions coincide, and the numbers

@yq, «--s Qp are expressed by means of the function . The numbers
Bys oo B, are given by the formula

8y =gt =X Ea+1)y A=1,..,n- 1, B=y(h).

The condition w(1) > 0 is equivalent to the condition (1) <
I, and the condition w(k) < I is equivalent to the condition
~(k) > 0. It is easily seen that the numbers Qs vovs Rp,
51, S Bn determine the function y& We will show later (see
&5, (B)) that, for w(1) > 0, the orientability of Z(w) depends
solely on the numbers ay, ..., ap, ﬁi, e, Bn; for this reason,
the pseudomanifolds Zy, for L > X(1) are either all orientable, or

all non-orientable, independently of the value of [.
We now rewrite the relations (12), (13), (14) of the preceding

paragraph in a new form. To this end, we remark that 1f o = 1 =7,

then w’ = 1" —; therefore we adopt the notation Zy for the pseudo-
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manifolds Z(w") in H(k, 1" ). 'Then in place of (12), (13), (14) of

§\ 2 we will have:

for ytl)y> 1"t Z, ) H(k ") is empty; (3
for yw(h <" w5l Zyx HkIY=24 (4
for Xily=={" [(Zy H (& U)=1410—1jk (5)

(D) Let & be a mapping of the p-dimensional complex kP on the
manifold H(k, 1), let 7 be such a function that r(X) < p, (1) < I
(see' (C)), and let E be an arbitrary oriented simplex of dimension

rfx) of the complex KP. We set
[ I R e
Y’L(L)—I:Zl.b\l_',)). (6)

On the right of this equation 1is the index of intersection of the
pseudomanifold Zy with the image of the simplex E in fi(k,1); it is
computed modulo two 1if Z% 1s non-orientable, and in the field of
the integers otherwise. Thus, Y% is a function of the oriented
simplexes of the complex KP. As is known, Yi is a V-cycle of the
complex KP. It will be shown below that the homology class of the
V-cycle XE depends only on the function 7 and the class {&¢} of map-
pings homotopic to & (see (A)). We will call the V-cycle Y% the

characteristic V-cycle of type % of the mapping &,

If the pseudomanifold Zy is non-orientable, we have
TYZ(E') = I(TZy,6(E')) (see § 2, (F)). %)

We will call the V-cycle Fri the second characteristic V-cycle of
type X, of the mapping &.

1f the complex KP is an oriented manifold Mk, then, as 1s
known, there corresponds to the V-cycle Yi a cycle X% of dimension

k- rﬁ‘), defined up to a homology, and X€ satisfies the condition
YR(E) = I(Xg,E), (8)

where E is an arbitrary oriented r(y)-dimensional simplex of Mk,
and on the right-hand side of (8) we have the index of intersection

taken 1in Mk.

The cycle Xi is defined immediately by the relaricnship
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x§ = 671z, X o(m*)). (9)

Here Zy X (Mk) is the algebraic intersection, calculated in fi(k, 1),
and the operation 6°1 carries this intersection back agaln 1into u*.
For the calculation it is necessary that Zy and 5(mk) be in general
position in H(k,l). This is easily achieved by replacing the map-
ping ¢ by another which approximates it. If the dimension of
H(k, 1) is great enough, which is always true below, we can always

secure an imbedding of Mk in H(k,l) without having Wk

intersect
itself. In this case the inverse mapping 6=1 has a visualizable
character. We will write the relation (9) without presupposing
that 4y and E(Mk) are in general position, remembering that for

actual calculations & must be replaced by a neighboring mapping.

We will call the cycle Xg the characteristic cycle of typey
of the mapping ¢. If the pseudomanifold Z, is non-orientable, the
cycle ng (cf. § 2, (F)) will be called the secona characteristic

cycle of type X, of the mapping &. Clearly, we have
rxg = 671z, x 6u*)). (10)

We now show that the homology class of the V-cyecle }i depends
only on the function 7% and the class of the mapping {6},

First, let us consider the question of orientation. If Z 1s
orientable, then formula (6) presupposes given orientations of Z%
and H(k, 1).

1f 9Zy ~ 0, then 2%7 ~ 0, that is = ¥ ~ Y. Thus, the ho-
mology class of Yg does not depend on the choice of orientation.
if, however, QZ% + 0, the orientation of Zx and H(k,!) is prescribed
by the orientation of the space Hk+l, and when the latter 1is re-
versed, both the former are multiplied by the coefficient (-i)k,
(cf. $ 2, (C), (B)). Thus, even 1in this case, arbitrary choice of

: . a
orientation has no effect on the homology class of Tx.

Now suppose that &' and 8" are two equivalent mappings of the
complex KP on the manifolds H'(k,1") and H"(k,1") (cf. (A)). This
means that there exist two non-degenerate linear mappings o’ and
a" of the spaces H’IHIr and R'k+l” on the space Hk+l, such that
the mappings a'@' and a"0" are homotopic in fi(k, ). Let & be an

arbitrary mapping of kP on H(k,l), which is homotopic to both of
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the mappings &'’ and a"6". We will denote the characteristic V-
)
cycles, calculated for the mappings &, €', and 8", by kg, Y&J, and
" I "
y% , respectively. We w?]l Shfw that Xi - Yi’ and Y; = Yi . Thus,
it will be shown that Yi ™~ Yi . Since &' and 6" are fully equi-

valent, it will be sufficient to show that Y% ~ Yi :

The V-cycle Ki calculated for the mapping ¢ by formula (6),
is defined up to a homology by a class of mutually homotopic map-
pings &, and therefore we may choose for our mapping ¢ the mapping

a"ﬁ". We set
a" (R &+ ) = RRYL 0 gk 17)) = H(R,LT).
Then
YE(E) = I(Z,,6(E)), yf"(ﬁ) = 1(24,0(E))

Since the pseudomanifolds Z% and Z; may be chosen arbitrarily in
the manifolds H(k, 1) and H(k,1!"), we may suppose that Z& is defined

by Zxdaccording to formula (4), and this formula then shows that
I(Zy,6(E)) = I(Zy,6(K)).

Thus the invariance of the characteristic V-cycle is demon-
strated.

Let us apply the result just derived to the tangential re-
presentation.

Definition 4. Let #% be a closed differentiable oriented
manifold, and T its tangential representation in H(k,[) (cf. defi-
nition 3).

We will call the characteristic V-cycle Y} (cf. (D)) the
charecteristic V-cycle of type K of the manifold MR, We will de-
note it by Yy (M¥) or by ¥,.

We will call the characteristic cycle Xi.the characteristic
cycle of type o of the manifold M. We will denote it by Xx(Mk)
or by X%. Thus, for (1) < I:

KRy = Xy = T-1(Z, % T(MR)), D(Xy) = k& = r(y). (11)

The cycle Xy is a cycle mod 2 if the pseudomanifald Zy, 1s non-
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orientable, and 1s an integer cycle otherwise.

If Z% is orientable, and ?Z¢+ 0, then the orientations of
H(k,l) and Zy should be so chosen that they follow from one and

the same orientation of the space Rkt (cf. § 2, (C), (Y.

For non-orientable Zy the second characteristic cycle FX% of

type X, of the manifold n* is defined by the relation
Thy = T 1TZy X T(HF)), DTXy) =k = r(y) = 1. (12)

We remark that for the calculation of the characteristic cycle
Xx’according to formula (11) the condition X (1) < [ can be waived
(cf. (4)), but for (1) > I,

Ay~ 0 (et (3)). (13)

For X(1) = I the guestion whether to choose thas a cycle mod 2 or
a cycle in the field of integer coefficients is to be decided

according as Zy 1s non-orientable or orientable for ! > X(1).

(E) The characteristic cycle Xx is of special interest if

r(x) = k., In this case its dimension is zero, and 1ts homology
class is defined by an integer or by a residue mod 2, depending

on whether the pseudomanifold Zy is oriéntable or not. In this
case we will mean by Xx either the integer or the residue, respec-
tively. If Zy is orientable and 2Zy ~ 0, the number X, is 0,
since 2Xy ™~ 0. In this case the characteristic number X, is of

no interest. For the same reason there is no need to consider the

characteristic numbers 'Y, (rix) = & - 1).

A study of characteristic cycles must include an investigation
of the relations between them. Such relations can be of two dis-
tinct types. Relations of the first kind refer to the character-
istic cycles Yi’ and hold for arbitrary choice of the mapping &
of the complex KP. Relations of the second kind refer to the
characteristic cycle xl of the manifald ¥* and take into account
the specific tangential representations. It cannot be doubted
that these are deeper than relationships of the first kind. For
the development of relationships of the first kind one must at

the outset study homology relationships among the pseudomanifolds

Zy in H(k,1).
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For the investigation of the mappings of the complex KF we
are interested only in function576 satisfying the condition r(y) <
p; and at the same time we may suppose that p £ I = 1 (cf. (A)),
so that r{y) < 1 - 1. For the functions w = [ = this yields

r{w) 2z k1 - 1 + 1, (14)

In view of this, 1t is sufficient for our present purpeses to study
those homology bases of the manifold l(k,1) which are of dimension

r, with r satisfying the condition
£ RlE= 1 F s (15)

The next two paragraphs will be devoted to a study of this question.

§ 4. Cellular Decomposition of the Manifold H(k, 1)

I will calculate homologies in the manifold H(k,l) by Ehres-
mann’'s method, with the aid of a decompesition of H({k, !} into cells
of a very general type. Ehresmann applied his method, in particu-
lar, to a Grassmann manifold, for which H(k,l) serves as a two-
layered universal covering space. Thus, for H(k,1) a cell counts
for twice as much as on the Grassmann manifold, and the whole con-
struction is rather complicated. In view of the impossibility of
citing Ehresmann’s definitive results, and for the convenience of
the reader, I will go through the whole development from the be-
ginning.

l
,

(A) In the vector space RE* we choose a fixed basis

gi: gg, siaEs. 5 gk+1: (1)
and we denote by Q™ a space with the basis
E1r €9y vy Bp, M <k t+ 1. (2)

We denote by Z (w) the pseudomanifold Z{w) {cf. definition 2} con-
sisting of all those R* € H(k, 1) satisfying the relationship

DRR (O > o o=, L, k.

Further, we set
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€17 Bu(1)t1y cccr Sk T Ew(k)tk: (3)

That subsequence of the sequence (1) which consists of the vectors

not in {(3), we will write in the form Fgoovees £ T —

91, ey, ek, fi’ ey fl (4’)

form a basis for the space Ef*L We denote by HIS the oriented li-
near span of the vectors of the system (3). Then Hg is an element
in general position of Z (w}, and the basis (4) satisfies the re-
quirement introduced in § 1 (C) with respect to Hﬁ € z,(w) (cf. §
1, (6)).

Thus, to the basis (4) corresponds an oriented neighborhood
Un Z,(w) of the element Ri in Z {(w), which we denote by U(w)
(cf. § 1, (C); § 2, (A)). We denote by 8(.&)} the oriented image
of U{w) under the mapping RE ~ ﬁk. Therefore, U{w) and E(w) are
oriented cells of dimension r(w) of the manifold H(k,l). It will
be shown below (see the auxiliary theorem) that these cells con-

stitute a cellular decomposition of the manifeld H(k, ).

(B) Let @' and @ be two admissible functions (cf. definition

2). We will write @' < w, if w'(i) € w(i) for 1 = {1, ., k. I,
further, @' (i) # w(i), we will write o’ < w,
Suppose w” < @, and r{w") = r(w) - 1. Then it is evident that

w" coincides with w for all values of the argument with the excep-
tion of one, say p, for which w” i1s one less than w. The function
w" being non-decreasing, the exceptional value p of the argument
cannot be chesen arbitrarily, and, in fact, p = iy * .1, h =0, 1,

., n— 1 (cf. § 1, (B)). We set " = yp(w) = mh, Thus,
for i 7 iy, *+ 1: mh(i) = w(1), wh(i t 1) Towliy v 1) - 1.

If w(1) = 0, the function «° has a negative value (@°(1) = - 1)

and therefore cannot be used for our purposes. In order not to
have to treat this case separately, from now on we will take U(w?),
3@30), Zoﬁdoj, and Z(w”) as equal to zero whenever w(1) = 0. It

is easy to see that if @' < @, by a series of applications of the
operator vP to the function @ for different values of p, we can

obtain the function w’.
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(C) For every AR € H(k, 1) there exists one and only one func-
tion @ such that nk belongs to the sum Ufw) (] ﬁ(w). Since Ufw)
and &(m) do not intersect one another {(cf. $ 1, (A)), we see that
H(k,1) splits into the sum of all cells constructed in (A). Fur-
ther, the pseudomanifold Z (w) splits into the sum of all Ufw")

and a(wf), where w' € w. Therefore, we have

Zywy= DU W) ) 0wy o

‘
w' L w

Let us prove (C). We consider an integer-valued function
D(n) defined by the relation

D(m) =D(RR y Q"), m = 1, ..., k+ L (6)

It is easy to see that this function satisfies the following con-

ditions:

0D, Dik41)=k \
0D m+ =D&l m=t,. .. kri-1. ]

(7

The last of these relations follows from the fact that the dimen-
sions of Q"1 and " differ by one. Tt follows from (7) that the
set of all positive values of the function D{m) consists of the
numbers 1, ..., k.

We denote by m; the smallest value.of the number » lor which
D(m) = 1; ¢ =1, ..., k. Thus,
pr* Q") = i;
for m < mg, D(.ﬁ}C n o™ < i; (8)
for m 2 m,, D(RE Q%) 2 i,

The relations (8) set up a correspondence between the elements K<

of fifk, 1) and the sequence
Mgy ey My, 0 < m g <L .0 Smp SR L (9)
We now consider the relations

R¥ € Z_(w), (10)
and mp (i) toa, =, L.,k (11)



Wy

192 L. S, PONTRYAGIN

and show that they are equivalent.

1f (10) holds, then
bk n @YYy 2, 0= g,

and (11) follows from (8). But, if (11) holds, we conclude by (8)

that
DR @Yy s s =g, Lk,

that is, (10) holds. Thus (10) and (11) are equivalent.

We now consider the relations

gk € U(w) Y ), (12)
and my Tawfi) ti, =1, ..., k, (13)

and show that they are equivalent.

By (A), the basis (4) of the space . corresponds to the
function . The linear span of the vectors f4, ..., f; will be
denoted by P; we define & as the projection of the space KR on
Rk in the direction P (cf. § 1, (A)). Let x; be a vector of

n m.-
Rk N le, not belonging to Rk M @Y . It is evident that the

system Xy, ..., X 1s a basis for the space R, We have
mi
= ) bTgm i=1.....k (1w
m=1

Since Uf{w) 8(&0 C:ZO{w), we can derive (10) from (12) and con-
sequently, can derive (11) from (12), Thus, 1f either (12) or
(13) holds, then (11) holds, and therefore

w(i)+i
xrp = :5 87 . =1, i el L&
m=1
Thus we have
i
g = D bertee, =1, ..k (cf. (3)), (16)

*»% |
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- s 1+
e now set ai = bT(S) 5.

and (16) is valid 1f one of the relations (12) or (13) holds.

the matrix Hui|| has triangular form,

Let us now suppose that (12) holds. Then the determinant of
the matrix Ha§|‘ is different from zero, and accordingly all terms
u} k= bf(i)+i, i £ ., kiare different from zero. This means
that the vector x; belongs to Q”(L)+i, but not to Qw(l)+i#1. From
this 1t follows immediately, because of the choice of the vector

x that m; =w(i) t 1, that is, that (13) holds.

i
Let us now suppose that (13) holds. Then the vector x ., be -
longing to U”(i)+i, cannot belong to Gw(i)+i_1, and therefore the
numbers 6%(1)%T 4re different from zero (cf. (15)). This means
that the determinant of the matrix “a§|| is different from zero,
which in turn means that the projection @ of R® on RE 1s non-de-
generate. Taking into account the relation rk € Z (w), this proves

(12).
Thus the relations (12) and (13) are equivalent.

In view of the equivalence of (12) and (13), the relationship

(13) uniquely defines the function w for which (12) holds.

Because of this, (5) is an immediate consequence of the equi-

valence of (10) and (11).
Thus (C) 1s completely proved.

Auxiliary Theorem. The cells U(w) end U(w) defined in (A)

constitute a cellular decomposition of the manifold H(k,1). The
set-theoretical boundaries V(w) = Ufw) = Uf{w) and ?ﬁu) = aﬁw) -
ﬁ(w) of the cells U(w) anu Gﬁ») are defined by the relation

Vi) =¥ (@)= D Uw) )T (). s

The algebraic boundaries AU(w) and Aﬁ(m) of the same cells are

given by the relattions

n-1

Al (w)= E (U (wh 4+ —1 s (wh)) (— 1)tie ), 115
h=1)
n— 1

A D‘r (w) = E ”:' (whj + (- Pysen.h) [ (why) (— 1)tlw.h), (1

h=10
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s(w,h) Tofiy, + 1) + iy + 1+ k
Safl) ta, t Byt o0 ta T4+ kRt 1 (ef. $2, (3)); (20)
1 1 h h

and we do not write out t(w,h) (cf. (53)).

Proof. By (A), to the function w there corresponds the basis

&gy wans gps T v Py (21)

of the space RR*l In the same way, to the function wh (cf. (B))

corresponds the basis
Bla sems iy T wwe B (22)

of the space RE*l  Both bases (21) and (22) are obtained by re-
labelling the elements of the basis (1). 1In order to show the con-

nection between the bases (21) and (22), we introduce the notation
pTipt 1, g Twliy,t 1), h=0, ..., n~ 1, (23)
Then we have:
3 . oh o= h - . ‘ . sh = h -
for i Fpr e ey eh = f for jF e e gL fh=e, (20
In order to prove (24), it is only necessary to spell out the pro-
cess of going from a basis (1) teo a basis (4) with the aid of some
function @, This process consists in first selecting the vectors
3&)(i)+i for ¢+ = 1, ..., k from the sequence (1) and denoting these
by e;, 1 = 1, ..., k, respectively, and then denoting the remain-
ing, unselected vectors by fgs «--, f;- Now, since w and wh dif-
fer only for ¢ = p, where wh(p) = w(p) — 1, 1t is clear that after
the first step of our process the vector eg precedes the vector

. . H . . :
e while at the same time all other vectors ef coincide with the

cirresponding vectors e;. In order to see what takes place in the
second step, 1t is necessary to investigate the index-number of
the vector fj which immediately precedes e, in the sequence (1).
Tt is easy to see that j = p + g — p = gq. Thus, in going from the
function @ to the function wh the vector fq moves one place to the
right and is renumbered to become fg. The relation (24) follows.

Now we consider a linear transformation a, 0 £t <2, of the

l

space Rk » which we define by the relations (e, being elements of
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the basis (21))
for © Fp:oagfe;) = e;; for j 7 q: at(fj) = fj; (25)
™~ .
ay{ep) = (cos 5 t)ep—t- (sm % t) for

| (26)
a{fg) = — (sm l;— I) ep+(coa -gﬂ t) .
For t = 2 and t = 1 we have:
for % 7 prongfey) - €54 a?(ep) i - ep;} (27)
for j 7 g: ag(fj) = iz ag(fq) - fgf
agle;) = ely for j # g ag(fi) = 1% ag(fg) = = fo (cf. (24)).(28)
It is easy to see that at(Q“(i)“) o ffd(i)+i, 1= 1, ..., Kk,
and, therefore,
a, (Z,(w)) = Z(w). (29)
Just as in § 1, (A), we denote by I the linear span of the
vectors fy, ..., fy, and by ¢ the operation of projecting RE*1
on Hﬁ in the direction P. Then

fori= p: ¢(a,(e))=¢n @(a (ep))=(cos%z) ep (cf. (25), (26)); (30)
for £ g g (a () =0; ¢la, ()= —(sin 5 £) ey (L. (25), (26)). (31)

In the cell Ufw) we introduce coordinates in the same way as
we did in § 1, (C); namely, in the element H? € L(w) there exists
a basis e&, i e eL, specifying its orientation, and defined by

the relations

1
e€=9e+2. Bfp i=1,...,k (32)
=1
H=0 for j>o(). (33)
Here the numbers g{, satisfying (33), are coordinates of Bg € Ufw).
These coordinates specify the orientation of Ufw) in the way de-
scribed in § 1, (A). We denote by a,(U(w)) the oriented image of
the cell U(x) under the mapping a,.

We now consider the conditions under which at(Rk) belongs to
either U(w) or a(m). For the resolution of this guestion we study

the mapping @& of the space ut(ﬁé).
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We have

for i<<pre(a(e) =e,
g’»(at(e;))x(cosTZ)ep—(sina—t)Ege,,. (cf. (30), (31,

H (32), (33),
for i> pio(a (e))=¢,— (Sin = ‘)E?ep-

Thus, the determinant of the mapping ¢ of the space at(Hg) on Hg

is equal to
nos-;it-(sin—;-tDEg,
and, accordingly, (cf. (29)),
for cos 3t — (sin T2 )5 > 0: g (ap(R)) €U (o),
for cns—}t——(sin if_,—z)Eg<0: ¢ lac (RY) € U (o),

for nos—;—t—— (Sin % :) =0
¢ (2, (RE) € Z, (0) — (U (0) T (w)).

(cf. (29)) (35)

From this it follows that

a, (U () | U (o) = {at (U ()), cos—Z—t-—(aiu %x) £, > 0} o (36)
oW @) N @ ={a@ @) cosFe—(sinJe)m<0}. @

Here the right-hand sides of the relationships denote the regions

of a,(Ufw)) cefined by the inequalities
¢os %—t-—-(sin %—t) £81>0, cos%t-—(sin—%—t}&;<0,

where the numbers f%, satisfying (33), are the coordinates of the
element at(Hz} in the cell a,(U(w)). Thus, the intersections (36)
and (37) are either connected regions in the cell a,(Ufw)) or are

empty, depending on the value of the parameter t.
It is an immediate consequence of (35) and (37) that the cells
{(w) and aQ(U(w)) coincide as sets, but may have different orien-
tations. We now examine the connection between their orientations.
We denote by EQ(Rﬁ) the image of the element a?(Rg) under the
mapping J Rk, SiDCé 3?(32) € Ufw), 32(H§) = H?'. Let us exa-
mine the connection between £ and &£'. The element a?(Bg) has a

basis a?(E}), PIRW “Q(EL) (cf. (32)).
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We write,

for 1 # p: Qi = agf(e}), e = a?(e;). (38)

5 =
Then the vectors 31, Ces gk form a basis for the element Q?(Hg).

From the relations (27), (32), and (38) follows:

!
gz=€f+2 &l (391
i=1
for © # p, j F q: £} = &L for i Fop: £39 7 - fg,}
. ; (40)
for i 7 oq: &0 = - gl £'9 = g9,
or L7 q: & $hr Ept T &

We see that the transformation from the matrix & to the matrix &'

is given by the relations (40). The determinant of the mapping
£ = £' is, accordingly, equal to (_1)p+q+k+1, and we have

ag(Ufw)) = (—1)Prar R A0 ) {(41)

Let us now consider the cell ag(Ufw)). The element ai(Hg)

has the basis

ai(e}), § iy aifeé).

By (28) and (32), this basis can be written in the form

|
3]

1
ag(el) = e+ 3 i, (42)

(43)

1"
Ury
-
3
L)
I
|
Ui
g

for j 7 gq:

Since the quantities f% satisfy condition (33), the quantities n%

satisfy the analogous condition
nl =0 for j > w(i). (44)
The equation fg = 0 provides the equation
q =
mg = 0. (45)
Equations (44) and (45) give us

7l =0 for j > WP(i). (46)
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Thus, in the cell a (Ufw)) the eyuation fg = (0 distinguishes the
cell U(wh), and we may write

{ag(U)), €3 = 0} = Uh). (47)

This relation takes no account of orientation. The cell a;(Ufw))
is decomposed, therefore, by the cell U(wh) into two subspaces,

and, taking account of orientation, we may write

Aay(U(w)), 8 < 0} = eU(w™); May(U(w)),£8 > 0} = - eUfl),  (48)
where € =+ 1, and we do not calculate 1t here explicitly.
Fixing our attention on the relations (36) and (37) for t = 1,

we see that the two parts into which the cell Uﬁmh) divides the
cell aI(U(w)) coincide respectiveay with the intersections
ag(U(w)) N U() and ay(U(=)) N D(w).

Since a,(U{w)) = Ufw), and since for 0 £ t £ 1 the intersec-
tion (36) is connected, the orientations induced in the intersec-
tion aI(U(w)) N U{w) by U(w) and by aj(Uﬁu)) are 1identical; there-

fore,
AU(w) = eUfM) + ... (cf. (48)). (49)

Since ap(U(w)) = (=1)P***4*1f(w) (cf. (41)), and since for

4 €<t £ 2 the intersection (37) is connected, the orientations
i~ A

induced in ay(U(w)) N U(w) by (-1)P*9*%+10(0) and by a (Uw))

are identical; therefore,
M) = e(-1)P*I**yh) + ... (cf. (48)).
Applying the mapping Rk - %k to this latter relationship, we obtain
k[ ot
AU(w) = ef(=1)PTT R U@") + ... (50)
Taken together, (49) and (50) yield
M) = e(U@h) + (—1)P*a*kfhyy + . (51)

Relation (51) shows that the set-theoretical boundary V(w)
of the cell U{w) contains both cells Uﬁvh) and 8ﬁﬂh). Since V(w)
is closed, we conclude by (B) that V(w) contains all cells U )
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A
and U(w’) for @’ < w. On the other hand, it 1s clear that
Viw)C Z,(w); whence, in view of (5), (17) follows.

By virtue of (17), the algebraic boundary of the cell Ufw)

A
can contain only those cells Uf{w") and U{w") for which " < w,
and r(w") = r{w) — 1. Because of (B), we conclude that the alge-
braic boundary of the cell Ufw) can contain only terms of the type
of (51), which are all written out in (18), and so (18) holds (cf.
(23)).
n

The relation (19) is derived from (18) by the mapping RR — Rk,

With this, the proof of the auxiliary theorem is complete.

It should be said that the theorem just proven follews easily
from Ehresmann’s results. The same is not true, as [ see it, of

the results of the following section.

Let us define the function w by the relations

for jgi,+1: o (i) =w(D), }
for i>ih+1: ;fi):w(ih—i-‘i}. (Jl)
Then
I3
t(o, h)=r(@)=Do@ (cf, (20)); (53)

i=1

this relationship can be derived without difficulty from (1) $ 1

and (43) § 4, but it will not be used in the present work.

¢ 5. Homology in H(k, 1)

Here we will construct the r-dimensional canonical homology
basis of the manifold H(k, 1) for arbitrary r satisfying the in-

equality
riccklh = Ry (1)

Construction of the homology basis of lower dimensions is trouble-

some, and is not needed for what we are doing now (cf. $ 3, (15)).

The cellular decomposition of the manifold fi(k, 1), as set
forth in the preceding section, is fundamental to the study of the
homology theory of H(k,l), as we shall consider chains which are

linear forms with integer coefficients on the oriented cells con-
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structed in ¢ 4, (A). Tt is easy to see that for the function w

b

we can derive from (1) the condition
w(l) 2 1, (2)

which plays a most important role in what follows.

{A) The cellular decompesition of the pseudomanifold Z (w)

contains only two cells of maximal dimension, namely Lfw) and Ufw)

(cf. & 4, (C)): We will now consider Zo(w), as a chain, putting
Z, (0) = U (0) + (= )2+ (o). 3)
Then
Zy (0) = (= ) OHZ, (w), ()
n-1
AT () = Z, (00) (— 1)1 4+ ) (U (%) + (= )RT (M) (= 1)ten,  (5)
h=1
Al () -oZ (o) ) EIROTRT G
n-1
+ V(U (") + (— )T (@) (= 1Hem, (6)
h=1
n—1
AZy ()= D) (A— (= O PF T Z, (0f) (= 1), 0
h=1
The relation {4) follows immediately from (3). The relations
(5) and (6) follow immediately from (18), (19), and (20) of § 4,
and from (3) § 5. Relation (7) follows from the same, but omne

must take account of the fact that for h 2 1, wh(i) = w(1). Thus,
(4), (5), (6), and (7) are true.
A
(B) Suppose w(1) 2 1. TIf the chain alifw) * btU(w) = X has the
Fad
property that its boundary AX contains the cells U(w®) and Ufw?)

with zero coefficients, then
A=l (8)

Further, the pseudomanifold Z(w) (see definition 2) is orientable

if and only 1t

u
\

+

iy
I

o= Ta gt 3 4= 0 (med 2). (9)
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If the function « 1s constant, w = ¢, then it has no jumps
(that is, n = 1) and (9) is certainly satisfied. Therefore, the

pseuﬁomanifold Z(C) 1s orientable.

It follows from (5) and (6) that
AX =4 (a+b (=D Y 7 W),

so that if the cells [(w?) and ﬁﬁ»o) do not enter AX, we have

b = u(—I)mo(i)+k+1, and (8) holds. Now let us suppose that the
pseudomanjfold ZO(w) is orientable; this means that for a suitable
choice of signs, the chain * Ufw) + Eﬁu) is a cycle. Since it 1is
a cycle, the cells Ufw?) and ﬁ(wo) do not enter its boundary, and
so this chain 1s equal to £ Zo(w) (cf. (8)); and the latter 1s a
cycle if and only if (9) is satisfied.

An arbitrary linear form with integer coefficients on chains
of the type of (3), 1.e., z&wzo(w} for r(w) = r will be called a
Z-chain of dimension r. Relation (7) shows that the boundary of
a Z-chaln 1s again a Z-chain.

The fact that the boundary of a Z-chain is a Z-chain leads
naturally to the hypothesis that in computing the homologies of
H(k,!) one need take into account only Z-chains. This hypothesis
turns out to be correct for dimensions satisfying (1), and the

class of chains considered can be even further narrowed.

The chain

D (@l (0) + b7 (),

where the summation is extended over only those @ for which the
first jump point is at not less than 2 (1; 2 2), will be called
special. Tt follows from (7) that the boundary of a special Z-
chain 1s again a special Z-chain.

Lemma. Let X be a chain whose aimension satisfies condition
(1) and whose boundary is a special chain,; then there exists a

special Z-chain Y such that X = Y is u cycle homologous to zero.
This lemma shows that for the study of homology in dimensions
satisfying condition (1), it is sufficient to consider special Z-

chains.
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Proof of the lemma, Let us arrange in lexicographical order

the set of all functions w satisfying the requirements of defini-
tion 2. In other words, we will say that wi.% @y if for the least
value of i for which w (1) 7 wo(i) we have wy (1) < wo(1).

Tf C be taken as an arbitrary chain, it can be written in the

form

q
C= (1l (w)) 4+ b0 (w,)), (10)

p=t

where for each p the coefficients a, and bp do not vanish simul-

taneously and @y ‘ng% R Wy Now let

Q‘ ~
¢’ =" (@50 (03) + b:U (wz))
p=1

be a second chain written in the same fashion. If wy £ w}, we
will say that ¢ <€C'. Further, if @, = w;, for p < t, but w, < wy,
we will also say that € €C’'. VFinally, if ¢' < g and @, = w; for
p € q', we will also say that C < C'. In this way, the set of all
chains is partially ordered. The ordering is not of a customary
kind, since it may be that ¢ = g’ and @y = w; for: p = di wiy Gy

while C and €', as chains, are distinct.
Let 4 be some set of chains. We will call the chain C € M
maximal in M if there is no chain C' € M such that C 2 C'.
Among all chains € satisfying the condition X = C ~ 0, we

choose a maximal chain, and we denote 1t by Y. Let

Y = (@,U (0,)+ 8,7 (0p),

=1

according to the form (10). We will show that ¥ is a special Z-
chain.

Let us note, first of all, that because of the condition im-
posed on the dimension of the chain ¥ (cf. (1)), wP(I) > 1 (cf.
(2)).

Suppose that for p < t the first jump point of the function
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“p 1s not less than 2 (11 2 ?), and that
I + i o = = -
apleop) * bpUwp) = Xy, = epZy(ay)

(for t = 1 this condition is vacuous). We show that then the first

jump point of w, is not less than 2, and that
U (wt)+blﬁ(wt)=yt=frzu ().

We have
AY , =dU (@D +ell @)+ ....

We will now show that d = ¢ = ¢, from which 1t follows (cf. (B))
that Y, = ¢,Z (w,). Since w,(1) 2 1, the first jump point of the
function ®§ is equal to unity, and therefore AY, is a special chain
only if @ = e = 0. Since AY is a special chain, the terms al(w}) +
eﬁpu@) disappear in computing AY. They cannot, however, cancel
terms of AYP for p < t, since for p < t, QYP 1s a special chain
(cf. (D)). On the other hand, they cannot cancel terms of AYP for
p > t, since wf ~§a¢ for p » t. Therefore, d = ¢ =0, and ¥, =
e L (wy).

Let us now suppose that the initial jump point of the function
w, is at 1(iy = 1); then there exists a function @ such that w, =

w?, and therefore

Alifw) = €Z (w,) + ..., € =+ 1 (cf. (5)).
It is clear that
Y - ec DlU(w,) &V,

that 1s, ¥ is not, as postulated, a maximal chain. The first jump

point of the function wy 1s therefore not less than 2.
We now introduce certain notations which will be useful later,

(C) Let us dencte by (0’ the set of all functions w (ef. defi-
nition 2) for which the initial jump point 1s not less than 2

iy 22) ek § 5, KB)).

The functions w were put into correspondence with the numbers

Gy iy By Sl‘ . = Bn (cf. § 2, (3)). Let us now consider the
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sequences

(11)

0,1_, }81’ a‘Q' ,82, - a,n_i, -8!’1—1’ s
g 51. Ao, ﬁg, ey Qp o, ﬁn-i‘

The functions w will be put into correspondence with the first of
the sequences 1f w(k) < 1, and with the second, if w(k) = L.

We will assign to the set (1 all functions o € (' for which
the corresponding sequence (11) contains no odd number. In parti-
cular, we will assign to () the function w = [, since for this func-
tion n = 1 and w(k) = [.

We will assign to the set Qa all functions w € (1’ for which
the corresponding sequence (11) contains odd numbers, and the first
odd number is some ay-

We will assign to the set Qﬂ all functions w € (' for which
the corresponding sequence (11) contains odd numbers, and the first
odd number is some [j.

In this fashion the set ()’ is broken down into three non-in-
tersecting sets (1, (0, Qﬁ'

It follows from (B) that for w € Q0 the pseudomanifold Z{w) is
orientable, and for =’ € Qﬁ the pseudomanifold Z{w') is non-orien-
table. If w =1 -7 (cf. §& 3, (C)), then, knowing ¥, we can de-
termine whether w € ()'. We can also determine, for w € ', whether
@ belongs to 2, {1
tions Y, and we denote by X, X, XB the sets corresponding to (l,
Q,, Qﬁ'

Theorem 1. The pseudomanifold Z{w), w € (), is orientable

a1 OT QB. We can thus decompose the set of func-

(cf. (C)), and, taken in some orientation, can be considered as a
cycle of dimension r(w), The pseudomanifold Z(w'), o' € Qﬁ' is
non-orientable (cf. (C)), and consequently [Z(w') (cf. § 2, (F))
is a cycle of dimenston r{w') — 1. The canonical homology basis
of dimension r 2 kl — 1 + 1 of the manifold H(k,1) is made up of

the cycles:
Ziw), €, r(w) = r; TZ('), o' € QB’ r{w') — 1 = r. (12)

Here Z(w) is a free cycle, and ['Z(w') is a cycle of order two.

Demonstration. We divide the proof into several sections.
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(a) Suppose w €& QG; then we have

n—1
AZy (o) = Z apk, ((“h}ﬂ (13)

h=1

where the coefficients ap can have the values * 2 and 0 (cf. (7)).

It turns out that in (13) there are non-zero coefficients; the

first of these we denote by « and we put w9 = §(m). Tt is true,

q?
further, that

for m > g: " E,Qﬁ, Piw) = wd € Qa. (14)

Finally, the mapping ¥ of {iI, into Q: so determined is a one-to-one
b 2

1 {
mapping of Jﬁ on 1.

et us prove (a). The numbers a and & (cf. S 2, (3)), corre-

sponding to the function @ will be denoted by Cifiye v o g S Ri’ e

Bn and the same numbers corresponding to «™ will be denoted by

m n am an

P ) PR S Then
for h<<m: o =an, BR=F, (15)
for fn=1: 6B —an41, (16)
for fm>1: a:;;:mm, ,E’;ln'—“}am_‘:l, am—:‘d:i- (17'

In view of (7), the number ap is different from zero if and only

if the number

(g 4B+ - - (o + By (18)

is odd. Therefore, g is to be defined as the smallest number A

for which (18) is odd; by virtue of the fact that » &€ Qﬁ, ﬁq 1s

the first odd number in the sequence (1l) corresponding to the func-
tion o,

If m > g, then 1t follows from (15) that in the sequence (11)
corresponding to the function «™, the first odd number is 63{3, that
is, for m > g, " G'QB‘

Now suppose m = q; then for Bq = 4 the first odd number in
the sequence (11) corresponding to the function w9 will be ag (cf:
(15}, (16)), that is, @7 €0 ; but if Bq

will be ag+1 (cf. (15), (17)), that is, «9 E_QQ. That is, (14)

> 1, the first odd number
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is now proved.

* R . ;
Let w* be an arbitrary function from Qa; we will denote the
numbers a and (3, corresponding to this function by af, ooy B,

By, e Bgs. We will so choose the function w that for some

h >0, o= wh; the function @ is, as 1is easlly seen, given by

the following expressions:

for ;qka?-]——f-a];: w(i):m-(i)) } (19)

for i=aj-+ ... +ap w(@)=0"(i)41.
(Here the equation p = n* is possible only if w*(k) < I.) In fact,

we have

for a!’;:I: w“zwp_l; for a;)‘> 1: w* = P, (20)

Denoting by ay, ..., ap, ﬁi‘ L ﬁn the numbers o and &, corre-

sponding to w, we have

for h<p—1 ap=a}, Br=B8L 2p-1=0ap_1, (21)
for ap=1: fo i =f-1+1, 22)
for ap>1: Bo1=8;_y, ap=0a;—1, Bp=1. (23

Now let a% be the first odd number in the sequence (11) correspon-
ding to the function w*. It is easy to determine that for p < ¢
the chain Z (w*) enters AZ, (w) with coefficient zero. For p > ¢
the function @ belongs to {I_, and only for p = t do we have € Qﬁ
and w* = J(w). Thus, Y is a one-to one mapping of Qﬁ on Qa.

(b) For w' € Qﬁ we define the cycle ['Z(w') of dimension

r(w') = 1, putting
Mz (') = TZ (") (ef. (13)). (24)

Tt then turns out that taken together, the chains

Zy(w), w €, riw) =r; Tza(w’), w' E'Qﬁ' riw') — 1 = r;

iy " " i e (25)
Z ("), "€ Qﬁ’ r{w") = r

form a linearly independent basis of r-dimensional special Z-chains

for arbitrary r, and at the same time that the chains
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Zy(w), 2 €0, rw) =r; T2 @), o€ Qg r(w') = 1=r, (26)

form a linearly independent basis of all r-dimensional special Z-

cycles.

Let us first show that the system (26) is linearly indepen-

dent. Suppose

3 toZy(@) + ) buTZ, (0)=0. (27)
wen o' € Ry

1f bw} 7 0, then the term £ bw}Zo(Q(wi)j enters (27), (cf. (13)),
and this term cannot cancel the corresponding term t b 1 Z (fi(w)))
of (27) for w} 7 wb, since in this case_@(w}) 7 g{wé) (cf. (a)).
Further, the term + 6 +Z (Ji(w})) cannot cancel other terms of
gmérzo(mé) (cf. (14) and (24)). Similarly, + waZO{@{mE)) cannot
cancel terms of the form a,Z (w), since w €0, Y(wy) € 0 .

Thus, all coefficients b, are equal to zero. Since the sys-
tem Zo(w), w € (1, is linearly independent, all the coefficients

a, are equal to zero. Thus, the independence of the system (26)

is demonstrated.

Let us now show that the system (25) is linearly independent.

Suppose

D) GeZo(w)+ D) b TZ, (0) + N curZ, (0")=0. (28

w £ u)'Eﬂﬁ m‘EDB

Taking the boundary of the left-hand side of (28) we have
:E: ?cmurzoﬁu") = 0. (29)
Qﬂ

Since the system (26) is linearly independent, it follows from (29)
that the ceefficients ¢, are all zero. Hence, in particular, it
is evident that the linear form (25) can be a cycle only when it

contains cycles of the system (26) alone.
Since all ¢ _» are equal to zero, the relation (28) coincides
with (27), and therefore all a, and b s are also equal to zero.

Thus, the system (25) 1is linearly independent.
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et us now show that an arbitrary special Z-chain X of dimen-
sion I 18 expl‘essibie linearly in terms of the chains (25). We
consider the chain X + Y, where Y 1s a linear sum of chains (26),
Among all chains of the form A + Y, where X is given and ¥ a line-
ar form of the indicated type, we choose a maximal chain X' = X +
Y’ (maximal in the sense defined in the proof of our lemma), We

show that

= D corZy(w). (30)

W E iy

We write the chain X' in the form
q
X e 2 cpd, ((np), o, €8, p=1,... ., 47, (31)
=1

where all coefficients ¢

p are different from 0 and w; <5 wy <2 ... 2

wg (the ordering of the functions e € (1’ being that used in the

proof of the lemma).

Let us show that @,

€ QB' We suppose that @y, € (; then,
clearly,

X!t = péo(mp)%- X,

and, accordingly, X' does not satisfy the condition of maximality.
Therefore, wy, cannot belong to {l. We suppose that @p E_Qa; then
there exists a function w' E.flﬁ such that @y = Q(w’) Ged, (a)),

and 1f

IZyj(o)=cZ (0 )+ ..., e=+1 (cf. (13), (24)),
then it is clear that
X’—ECIJ.[‘ZB (m') =X,

that is, X' likewise fails to be maximal. Therefore, there re-
mains only the possibility @y, € Qﬁ’ and relation (30) is demon-
strated.

We now have X = — ¥’ + X', where — Y' + X' is a linear sum

of chains of the type (25).
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Thus, assertion (b) is proved.

(c) Since, in view of the lemma, every cycle of dimension
r 2kl - 1 T 1 is homologous to a special Z-cycle, and a special
Z-cycle of dimension r 2 k[ — I + 1 which is homologous to zero
bounds a special Z-chain, it follows from (b) that the system (26)
forms a canonical homology basis for the manifeld f(k,1) for di-
mensions r 2 kl = 1 + 1 (cf, (24)), and moreover the cycles Z (w),
e

w € 0, are free cycles and the cycles ['Z (w’), o {,, are of

order two.

(d) Instead of the specially chosen cycle Z, (w) one may take
an arbitrary cycle 4(w), w € @ (cf. definition 2). Similarly, in
place of the cycle rzo(m’) one may choose ['Z(w'), w' & QB'

With this, the theorem is completely proved.

It follows from theorem 1 that the torsions of dimension
rz kl = 1+ 1 of the manifold H{k, 1} are equal to two. In view
of this, 1t 1s hardly necessary to consider modular cycles in

H{k,1), of the dimensions indicated, of modulus other than two.

(Dy For r 2 kl - 1 + 1 the r-dimensional homology basis mod

two of the manifold H(k,l) can be constructed of the cycles
Z(w), 0€ll, rlo)=r; TZ(0"), 0" €y r(0)—1=r; | (32)

Z ("), o €S, 1 (") =1,

taken mod two (cf. theorem 1); it can also be constructed of the

pseudomanifolds
Z{w), mGQ', r{w) = r, (33)

considered as cycles mod two.

The fact that (32) constitutes a homology basis mod two fol-

lows from theorem 1 on the basis of well-known results.

In order to convince ourselves that the system (33) also re-

presents a homology basis mod two, we consider instead the system
Z,(w), »€Q, r(w) =r, (34)

which 1s equivalent to 1it:

Z()(m) ~ 2(43) (mod 2).
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It follows immediately from our lemma, taken modulo two, and re-
lation (7) that (34) is a homology basis for the manifold H(k, 1),

mod two.

¢ 6. Certain Properties of Characteristic Cycles

Here we will consider characteristic cycles of a closed orien-
table differentiable manifold Mh, that is, cycles X]C‘ rexg) £k,
and TXy o, riy) t 1 <k (cf. definition 4},

The cycle Xy 1is an integer cycle or a cycle modulo two accor-
ding as the pseudomanifold Z(1 —x) = Z 1s or 1s not ecrientable.
Using proposition (B) $ 5, we can determine which case holds on the
basis of properties of the function -

(A) The function 'x 1s determined with respect to the numbers
Ggs ovrs Gpy ,31, coes By (et $ 3, (C)). Let us consider the re-

lations

o, -+ =a+4=.. .=a,,+3_,=0 (mod 2), (1

We will denote by Xo the set of all functions Y for which (1) 1is
satisfied. We denote by X5 the set of all remaining functions X

It follows immediately from (B) § 5 that for % € Xo’ ‘3&% 1s an
integer cycle, and for € /XQ, X',!. 1s a cycle mod two.

It follows immediately, from proposition (C) % 5, that

D€ g O X, CX,. (2)

Furthermore, it turns out that if 7 € Xo’ (that i1s, 1f Z'L for

1 >n(1) is orientable), but ‘?Z'L+ 0 in H{k,l), then
xeX. (3)

This follows immediately from (B) ¢ 5 and (C) € 2. Thus, if
N € X, = X, then

QX»x“‘ 0. (4)

Theorem 1 allows us to select out of the class of all charac-
teristic cycles a part in terms of which all remaining characteris-

tic cycles can be expressed.

(B) We will call the characteristic cycles X‘I’ X € X, and
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A'X,"’X'" E‘Xﬁ’ (cf. § 5, (C)), basic cycles., All remaining charac-
teristic cycles can be expressed in terms of these.

if x* € X, then )(_L* 1s a basic characteristic cycle. If
,x* E-_XG - X, then

Xy~ D) 5IX,, (%)
1€ Xp

where by, are remainders modulo two, determined by the function *.

If g* € Xy, then

Xy~ DX+ ) bTX,+ D) X, (mod 2), (6)
YexX LE SB LE Xﬁ

where aq, by, cy are remainders modulo two, determined by the

function e Finally, if vt EX?, it follows from (6) that

TX;e ~ D) oI'X,. (N
I-E XS

Let us prove (5). It follows from theorem 1 that

Zyp~ Dl + B b7y, (&)

XEX 1EX3

where the e, are whole numbers and by are remainders mod 2. Since
theorem 1 gives us a canonical basis, the ax,and by are uniquely
determined by the function I — *. Relation (4) § 3 shows that
ay, and b, do not depend on the number I, but are defined by the
function ‘x* alone. Since x* 13 Xo =~ X, we have ?Z'X-* ~ 0 (cf. (A)),
and therefore all the numbers a, in (8) are equal to zero. Then

(8) yields (5) (cf. § 3, (11), (12)).

Let us prove (6). By virtue of (D) ¢ 5 we have

L~ adyt F 0TZ+ N ¢z, (mod2); )
YT 1EXg Xy
where Gy, by, and cy are remainders mod two. Since the basis

derived in (D) € 5 is independent mod two, the ay, by, and ¢, are

uniquely defined by the function x*; but, in view of (4) ¢ 3, Oy,
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b%, and C% do not depend on I, but are defined by the function yf

alone. HRelation (9) yields (6) (cf. ¢ 3, (11), (12)).

(C) If X(k}) > 0, then from the condition rfx) < k it follows
immediately that X = 1. Thus, for Y(k) > 0 we always have )i = 1.
The cycle Xi = Xx (.= 1) has dimension zero, and therefore defines
a characteristic number Xi (cf. $ 3, (F)). 1In reference [5] it
will be shown that the characteristic number Xi(mk) is the Euler
characteristic g?Mk) of the manifold *. The function Y = 1 be-
longs to X ; 1t belongs to X if and only i1f k is even. Thus, for
uneven k, the number Xi is equal to zero (cf. € 3, (E)), and there-
fore its identity with the Euler characteristic 1s patent 1in this
case.

(D) Among all integer characteristic cycles XTJ those are of
especial interest for which 7y € X, since it is only for these that

the relation QXK,N 0 fails in general to hold. We have already

considered (in {(C)) one such cycle, namely X, for even k. TIf
A EX A # 1, then (k) = 0, and theretore for the function ) all
the numbers ay, ..., 2, 31, &6 g ﬁn-i are even (cf. § 5, (C)).

Thus, for )} € X and X # 1,

LD=x@>. . > @p—1)=y2p) >y Cp+1)= ... =y (k) =0;

L. i
% (E)=0 (mod?2); r(y)<k. J (10)

From (10) it is clear that r{y) is divisible by four. All
the characteristic numbers Xy are determined by the conditioens
A E X, rig) = k. The characteristic number X, can be non-zero
only for even k, and the other characteristic numbers X determined

by (10) and the equation r(x) = k, are different {from zero only

for k divisible by four. For k = 2 there exists only the single
characteristic number Xi‘ For & = 4 there exist XI and one more,
XXf defined by the formulae

x)=x2)=2, x@),=x4) =0 (11)

Let us now clear up the question of the behavior of the char-
acteristic cycles under a change of orientation of the manifold

Mk, that is, when we go from M oto - Mk.

Theorem 2. Under a passage from the oriented manifold ME to

the oriented manifold ~ mk having the opposite orientation, we have
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for Y not belonging to X: X%(-Mk) ~ Xx(Mk), (12)
for A= 1: X =M<y ~ X (uk), (13)
for HEX, X # 1: Xy(~HE) ~ = Xy (MF). (14)

Proof. Let M* C:Hk+l, and let T be a tangential representa-
tion of the manifold M* on H(k,1). We denote by ?‘_f%) Phe: Heelion
subspace of the space RR*L Ghich is distinguished from T(y} only
as to orientation. Then T is a tangential representation of the
manifold — M® on H(k,1).

Let us write H = H(k,l). The relation (4) of £ 5 was proved
for chains Z (w), but it 1s true also of the pseudomanifolds Z {w).
In fact, if Zo(m) 1s non-orientable, the relation 1in guestion 1s
vacuous; 1f, however, Z (w) is orientable, then, taken with a
suitable orientation and considered as a cycle, 1t coincides with
the chain Z (w). Since we can pass from the pseudomanifold £ (w)
to an arbitrary pseudomanifold Z(w) by a rotation of Hk+i, the
relationship under consideration also holds for arbitrary pseudo-

manifolds Z(w). Thus, from (4) ¢ 5 we obtain
Zy= (—)H1®Z s B = (—1)F1H. (15)

For the proof of the theorem we will make use of characteris-
A
tic V-cycles. We denote by YI the characteristic V-cycle of the
manifold = M*. Then

Y (E)=1Ig(Zy T(E)); ¥, (E)=14(Zy, T (E)), (16)

where £ is an arbitrary oriented simplex of dimension rpx) of the
manifold Mk. In order to calculate the right-hand side of the
second of the equations (16) we subjecL the manifold Hik; 1) ta

the homeomorphic mapping Bk 2 ﬁk. Then
4 2
T2 TCE)Y = TH(Z5:THEY) = (- A2 TR F) bofs €15 €IT)

From (16) and (17) we obtain

¥, =(—1)oY,. (18)

In going from the V-cycle to the corresponding A-cycle the orienta-

tion of the manifold #¥ is taken into account (cf. £ 3, (8)). From
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(18) we obtain

Xy (= M¥y= (— 1O X, (M), (19)

1 X € Xy, then X% is a cycle mod two, and (19) yields (12).
If Y€ X, — X, then X, ~ = X (cf. (4)), and again (19) yields
(12). If°% = 1, then (1) = 1, and (19) yields (13). Finally, af
YEX, A F 1, then (k) =0 (ct. (C)), and all the numbers 8, ...,

. q are even (cf. § 5, (C)). Since (1) = 8y + ... ¥ Baq T X(R),

(19) vields (14).

Thus, theorem 2 1s proved.

As an immediate consequence of theorem 2, we have:

(E) If the manifold Mk admits a homeomorphic diflerentiable
mapping on itself which reverses orientation, then every charac-
teristic cycle X!, Y # 1, satisfies the condition QXx’W 0. 1In par-
ticular, every characteristic number X%,’X # 1, of the manifold MR
reduces to 0.

Theorem 3. If the manifold MR is the boundary of an ortented
diffe:;;tiable bounded manifold Mk+i, the characteristic number X,
of Mk is even, and all other characteristic numbers and remainders
are zero.

Proof. We will suppose that TS Nl LAL

It is easy to define a differentiable numerical function f(x),

x E,Mk+1, satisfying the following conditions:

(a) f(x) 2 0;

(b) the equation f(x) = 0 defines the boundary #*% of the mani-
fold ME*1;

(¢) the critical points of the function f are isolated and
lie in M.

Suppose a is an arbitrary non-critical point of Merl o We will

so orient the level surface defined by f(x) = f(a) that it is the
boundary of the piece f(x) £ f(a), and we construct at the point a
an oriented tangent T, to this level surface. We denote by ' (a)
the oriented vector subspace of the space /R yhich is parallel to
the oriented hyperplane T_. Then T'(a) € H(k,1), and we have a
representation T', defined and continuous for all non-critical

points a € #2*1 and T is a tangential representation of Me,
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Let @4, ..., @; be the set of all critical points of the func-

tion f. We will denote by P?+1 the tangent to T S the point

i, and by H?+i the vector subspace of A parallel to it.
Further, let & be a small positive number. We denote by tﬁ+1
the spherical neighborhood of the point a; in Mk+i, of radius 5,

k+1

oriented in accord with M and we denote by Sﬁ its boundary,

suitably oriented.

Let us further set
M= MEr— (B (] E?“).

Then the representation 1’ is defined on the whole of the bounded

manifold M§+1, and, accordingly,
T (MM~ T (8 .. +T7(S}y in  H (k). (20)

Thus, in order to calculate the characteristic numbers and remain-
ders X%Jof the manifold M® it is sufficient to calculate the index
of intersection I(Z, T’ _(s?)) for all j = 1, ..., t.

If 3 is small enough, then for a € S? the surface 1'(a) is
close to its projection 1"(a) on Hf*i, in the topology of H(k,1).
Thus, the representation 1’ of the sphere S? in H(k,l) can by a
small deformation be carried into the representation 17" which is

such that for a E_Sﬁ we have T”(&)C:H?+1.

If we denote by Hj(k,i) the manifold of all k-dimensional
oriented subspaces of the space H?+1, the representation 7" carries
s? into H;(k,1). Since the dimension of H,(k, 1) is equal to k,
the representation 1" of the sphere Sf in Hj(k,I) has some degree
yj, and we obtain

L2y, T (S =l (23, H (ks 1)). (21)

Let us now make use of relations (3) and (5) of § 3, putting

H?+1 = phel , that is, setting 1"'= 1. If % =1, then from (5) ¢ 3

we have
I(Zy Hy(k, ) =14 (— D~ @2)

If % # 1, then from r(%y) = k there follows'x(i) > 1, and relation
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(3) § 3 yields
T (Z, Hj(k, 1)=0. @23)

Theorem 3 follows from relations (20), (21), (22), and (23).

Since the characteristic number Xi is equal to the Euler
characteristic of the manifold, 1t follows from theorem 3 that
the manifold Wk, as the boundary of an orientable manifold Mk+1,

’
has an even-valued Euler characteristic. This fact can be easily

demonstrated directly for combinatorial manifolds MR and mkt1 by

Mk+1

matching two copies of the manifold along their boundaries

and counting simplexes to get the Euler characteristic.

Thus, there exists a four-dimensional orientable manifold
which cannot be the boundary of a five-dimensional orientable
manifold. The simplest example of this is the complex projective

plane, for which the Euler characteristic has the value 3.

It would be interesting to show that every three-dimensional
orientable manifold is the boundary of a four-dimensional orien-
table bounded manifold.

The following propositions (F) and (G) can be used for the

calculation of characteristic cycles of certain manifolds.

(F) If there exists a regular mapping f of the manifold P

on the vector space RE+1 (cf. § 3, (1)), then all characteristic
cycles of M® with the possible exception of Xi (cf. (D)), are
homologous to zero in Mk, and Xi is, as a characteristic number,
even.

Let gR+1 C:Hk+i, where [ 1s sufficiently large; then H(k, 1)
Hi{k,1).

The manifold H(k, 1) is homeomorphic to the k-dimensional
sphere. The tangential representation 1 of the manifold Mk, con-
structed on the basis of the regular mapping f (cf. definition 3),
has the property that T(Mk) C ik, 1).

If %(1) > 1, then by (3) § 3, the pseudomanifold Zﬁ,can be
so chosen that the intersection Zy (] li(k,1) is empty. I1f ¥(t) = 1
but r(x) < k., then Z% X H(k,1) ~ 0 in H(k,1), and therefore there
exists a cycle Z& homologous to the cycle Z% in H({&,l) and such

that the intersection Z% M H(k,1) is empry. TIf X(1) = 1 and
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r(0) = k, we have (= 1, and then, in view of (5) § 3,

From this and from the fact that T(Mk) C H(k,1), propasition (F)
follows at once.

(G) Suppose Mk 1s oriented,and, possibly, disconnected, and
let U? and Ug be two small spherical neighborhoods 1in 1t, the
closures of which do not intersect: Eﬁ n Eg = 0. We denote the

boundaries of these neighborhoods by Sﬁ'I and SE'I; both of these

are homeomorphic to the (k-1)-dimensicnal sphere. We cut the re-
gions U? and Ug out of Mk, and in the bounded manifold so obtained
we match the domains S?'i and Sg'l, preserving their orientations,

We denote by M? the closed oriented manifold which we obtain as a
result.

It is easily seen that in going from MR o M? only the Betti
groups of dimension 0, 1, k=1, k can be altered. Thus, for all
other dimensions we may speak of the coincidence of the cycles of
#* and M?. As far as the null-dimensional cycles are concerned,
we can speak of their coincidence in the sense of the coincidence
of indices. It turns out that all characteristic cycles, with the
possible exception of Xi (cf. (D)), coincide for the manifolds He
and #k.

Suppose that rk+1 1s a vector space of sufficiently high di-
mension, and suppose gkt 1 C:Bk+l. Then H(k,1) CH(k, 1). It is
easy to construct a regular mapping of the manifold #* into Hk+r,
say f, which satisfies the following conditions:

(a) f(vk) CRRYL, fri%) C RRML,

_ kR o_ gk
U5 U

(b) the mapping f of the bounded manifold R /5 con-

stitutes a regular mapping of the manifold Mﬁ into RRYL

Choosing the cycles Zx’and Z; just as we did in (F), we cen
convince ourselves of the truth of propesition {(G).

Now let us consider certain very simple characteristic cycles.

(H) Let 9{ be a function having at most one jump and satisfying
the condition r(y) € k. Then it is defined by the following rela-

tions:

r=...=xP=q, 1(Pp+D= ... =7(k)=0, r{y)=pg<k. (24
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Since a tunction ) so defined is determined by the two numbers p (b) Sur la topologie de certaines variétés al-
and q, we denote 1t by'xp ¢ We denote the pseudomanifold Zy, de- gébriques réelles, J, Math. Pures Appl. (9)
fined by this function, by Zp g+ and the characteristic cycle Xy 16, 69-100 (1937).

by A In the case when 9 has no jumps at all, that is, p = k,

P g’
the relation pg € % 1mplies either ¢ = f or ¢ = 0. For g = 1 we

have the characteristic cycle 4, 4 = X, with which we are already
familiar, (cf. (C)). For g = 0 we have Zk,o = H(k,l) and Xk,o =
Mk

1f %, has cne jJump, then p < k, and Q%)q(k) = (. Further,

== po)

ai = 1py ﬁi =gy and therefore
t_Dr P+q=0(mod2): ¥, ,€X,,
for p4 7==0(nod 2) : Fora E Xy (25)
for P=q=0(mod2): y, X

In all cases considered the pseudomanifold Z is defined by a

p.4q
single surface 5y {cf. £ 1, (B)) of dimension I + p — g; in fact,

Zﬂ g consists of all Rk € H(k,l) satisfying the condition

D(R*NS,) = p. (26)
(Received by the Editors 6 June 1947)
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