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PREFACE

This book represents essentially a semester course in combinatorial
topology which I have given several times at the Moscow National Uni-
versity. It contains a very rigorous but concise presentation of homology
theory. The formal prerequisites are merely a few simple facts about func-
tions of a real variable, matrices, and commutative groups. Actually, how-
ever, considerable mathematical maturity is required of the reader. An
essential defect in the book is its complete omission of examples, which are
so indispensable for clarifying the geometric content of combinatorial
topology. In this sense a good complementary volume would be Sketch of
the Fundamental Notions of Topology by Alexandrov and Efremovitch,
in which the attention is focused on the geometric content rather than on
the completeness and rigor of proofs. In spite of this shortcoming, it seems
to me that the present work has certain advantages over the existing volum-
inous treatises, especially in view of its brevity. It can be used as a reference
for obtaining preliminary information required for participation in a ser-
ious seminar on combinatorial topology. It is convenient in preparing for
an examination in a course, since the proofs are carried out in the book with
sufficient detail. For a more qualified reader, e.g., an aspiring mathema-
tician, it can also serve as a source of basic information on combinatorial
topology.

The present book makes use of a few facts concerning metric spaces
which are now ordinarily included in a course in the theory of functions of
a real variable, and which can be found in the sixth chapter of Hausdorff’s
Mengenlehre or in the third chapter of Alexandrov and Kolmogorov’s
Theory of Functions of a Real Variable. Information concerning commuta-
tive groups may be found in the fifth chapter (see §§21 and 22) of Kurosh’s
Theory of Groups.

Originally I expected to write this book jointly with Professor V. A.
Efremovitch. Numerous conversations with him were very useful to me;
in particular, they led to the simplification of the details of some of the
proofs. In the final editing of the book, I took into account a series of re-
marks of V. A. Rokhlin, who kindly read my manuscript.

L. PONTRYAGIN
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INTRODUCTION

The foundations of combinatorial topology were laid at the turn of the
last century by the great French mathematician Poincaré, for whom na-
ture was the source of mathematical problems. In the greater part of his
investigations, an important role is played by the geometric interpretation
of analytic problems and by geometric intuition. Starting with problems
in analysis, Poincaré arrived at the conclusion that it was necessary to
study the geometric, and primarily the topological, properties of multi-
dimensional manifolds. Initially Poincaré regarded a manifold as given by
a system of equations and inequalities relative to the coordinates of a
multi-dimensional Euclidean space. From this manifold he extracted, again
with the aid of equations, submanifolds of smaller dimension. In this treat-
ment there appeared already those fundamental notions which now play
a leading role in combinatorial topology. If, in an n-dimensional manifold
M, there exists a closed submanifold Z of smaller dimension r, r < 7, then
two cases are possible: 1) In M there exists a bounded (r + 1)-dimensional
submanifold C whose boundary is Z; 2) In M there does not exist a sub-
manifold C with boundary Z. In the first case, we say that Z is homologous
to zero in M, and write: Z~0 in M. In the second case, we say that Z is
not homologous to zero in M.

For example, let M be the region of the plane between two concentric
circumferences. If, now, we take for Z a circumference concentric with the
original ones and lying in M, then it is clear that Z cannot serve as a bound-
ary in M, and is consequently not homologous to zero in M. If, however,
we take for Z a circumference which bounds a circle wholly contained in
M, then Z~0 in M. It is easy to see from this example the connection be-
tween homology and analysis. If, in the region M, an analytic function is
given, then its integral along the contour Z is equal to zero when Z~0 in
M, and may not be equal to zero in the contrary case. This also indicates
that it is appropriate to examine the contour Z with a prescribed sense on
it, since the sign of the integral depends on the direction. An analogous
connection with integration is also found in the multi-dimensional case
(Stokes’ formula) ; the sense of the contour Z is then replaced by the orien-
tation of the manifold M.

After the first paper of Poincaré, it already became evident that the
analytic treatment of manifolds, i.e., their definition with the aid of equa-
tions, leads to a series of complications, and may serve as a source of error.
Poincaré then introduced a new method for the study of manifolds; he de-
composed them into elementary pieces, simplexes, which adjoin one another
in a regular fashion. This method has retained its significance to this day,
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X INTRODUCTION

and turns out to be fundamental in combinatorial topology. It led to the
formalization of the notion of homology, whereas the homology invariants
of manifolds introduced by Poincaré, Betti numbers and torsion numbers,
acquired an exact logical meaning. Poincaré, however, did not succeed in
establishing their topological invariance. This achievement belongs to the
American mathematicians Alexander and Veblen. They also proved that
the whole homology theory is applicable not only to manifolds, but also to
geometric objects of a more general type, viz., polyhedra.

After Poincaré, homology theory was developed intensively. To it was
added Lefschetz’s theory of intersections, which was known to Poincaré
only in an embryonic form. Lefschetz and Hopf proved theorems on fixed
points of mappings. Alexander discovered a new duality theorem which,
together with Poincaré’s duality theorem, served as a basis for an exten-
sive development of topological duality theorems, in which a large part was
played by Soviet mathematicians. Soviet mathematicians also participated
in the construction of cohomology theory. Finally, Alexandrov found ways
of applying homology theories to set-theoretic objects, and thus arrived at
a synthesis of combinatorial and set-theoretic topology.

At present, homology theory continues to develop, but the main problem
now, as I see it, is its application to the solution of geometric problems into
whose formulation the notion of homology itself does not enter. Some of
them, such as the problem of finding sums of indices of fixed points in map-
ping a polyhedron into itself, have been solved completely. The solution of
other problems, such as the classification of continuous mappings of one
polyhedron into another, is in an embryonic state.

At the present time, homology theory, broadly understood, is a basic,
well-developed, indispensable tool of combinatorial topology.

This book contains an exposition of the foundations of homology theory
and of some of its applications. In Chapter I, the notions of a complex and
its Betti groups are defined. In Chapter II, the topological invariance of
the Betti groups is proved. Applications of homology theory are given in
Chapter ITI: homology invariants of a continuous mapping of one poly-
hedron into another are constructed, and a certain sufficient condition is
established for the existence of a fixed point under a continuous mapping
of a polyhedron into itself.



NOTATION

In this book we assume that the reader is familiar with the important
notion of set (see, e.g., Hausdorff, Mengenlehre). We give here certain
notations connected with the concept of set and with elementary opera-
tions on sets.

A) a ¢ M means that the element a belongs to the set M. If the set
M is finite or enumerable, then we shall sometimes specify the set by
means of a simple enumeration of its elements; in symbols:

M = {al,...’an’ .}

This means that the set M consists of the elements a1, -+, an, .

B) M = N means that the sets M and N are identical.

C) M c N or N > M means that every element of the set M belongs
to the set NV, i.e., that the set M is a part, or subset, of the set N. The pos-
sibility that the two sets are identical is not excluded.

D) M n N denotes the intersection of the sets M and N, i.e., the set of
all elements which belong to both M and N.

E) M u N denotes the union of the sets M and N, i.e., the set of all
elements belonging to at least one of the sets M, N.

F) M\N denotes the difference between the sets M and N, i.e., the
set of all elements of M which do not belong to N. Thus the operation of
subtraction is possible independently of whether N is a subset of M or not.
If M < N, then the result of the above subtraction is the empty set, i.e.,
the set containing no elements.

G) Let M and N be two sets. Suppose that to every element z in the
set M there corresponds a definite element y = f(x) in the set N. We call
this correspondence a mapping f of the set M into the set N. The element
y is called the image of the element = under the mapping f, and the element
x is called the inverse tmage or one of the inverse images of the element y.
We say that f is a mapping of the set M onto the set N if every element b
of N has at least one inverse image a under the mapping f, i.e., b = f(a).
If A is a subset of the set M, i.e., A ¢ M, f(A) denotes the set of all those
elements in N which are images of elements in 4; f(4) is called the ©mage
of the set A. If B = N, then f(B) denotes the set of all those elements in
M which go over into elements of B under the mapping f; f(B) is called
the complete inverse image of the set B under the mapping f. The mapping
f of the set M onto the set N is called one-fo-one if every element of the
set N has only one inverse image under the mapping f. If f is a one-to-one
mapping, the equation ¥ = f(x) has a unique solution z, i.e., knowing the
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xii NOTATION

element y, « can be determined uniquely, and we have z = f(y). The
mapping f is called the inverse of the mapping f

H) This book presupposes a knowledge of metric spaces (see Hausdorff,
Mengenlehre). The distance between the points z and y of a metric space
will be denoted by p(z, ¥). The distance between the subsets A and B of
a metric space will be denoted by p(4, B). It is possible to understand the
book, with the exception of §3, if one interprets metric space as an arbi-
trary subset of a Euclidean space of an arbitrary number of dimensions,
and regards as the distance between two points of this subset their ordinary
Euclidean distance.



Chapter I
COMPLEXES AND THEIR BETTI GROUPS

Combinatorial topology studies geometric forms by decomposing them
into the simplest geometric figures, simplexes, which adjoin one another in
a regular fashion. A geometric figure which can be decomposed into sim-
plexes in the appropriate way is called a polyhedron, and the scheme of
decomposition itself is called a complex. To begin with, the study of a poly-
hedron is confined to a search for its topological invariants. The investi-
gation starts with some decomposition of the polyhedron into simplexes,
i.e., with a complex which determines the polyhedron. The problem of con-
structing a complete system of topological invariants of a polyhedron has
by no means been solved. As yet only several invariants have been con-
structed and studied. Among these, the Betti groups, also known as the
homology groups, are the most significant. The Betti groups are commuta-
tive and admit of finite systems of generators. They can, therefore, be de-
termined by their numerical invariants. These same numerical invariants
were originally introduced by Poincaré as topological invariants of poly-
hedra. Later, under the influence of the ideas of modern algebra, it was
found more expedient to start with an examination of the groups them-
selves, rather than with their numerical invariants. Application of the
group-theoretic approach to polyhedra gave only some advantages in ex-
position. In the transition to geometric forms more general than polyhedra,
however, it also made possible the investigation of group invariants not
reducible to numbers.

This chapter is concerned basically with the definition of a complex and
the construction of its Betti groups. The proof of the invariance of the Betti
groups will be given in the following chapter.

The complex, arising initially as a scheme of decomposition of a poly-
hedron, now plays a more significant role in topology; in particular, it leads
to important applications in set-theoretic topology, one of which is given
in §3.

§1. Euclidean space
We shall state here several properties of Euclidean space which are needed
in the sequel.
Linear Space

DeriNiTION 1. A set R™ of elements, referred to as points or vectors, is
called a linear or veclor space of dimension n, if it satisfies the following

1



2 ' COMPLEXES AND THEIR BETTI GROUPS [CH. I

conditions:

1. The set R" forms a commutative group under addition.

9. The set R is a module over the field of real numbers, i.e., multiplica-
tion of the elements of R" by real numbers can be defined to satisfy the
conditions: if A and p are arbitrary real numbers, and x and y are arbitrary
vectors of R”, then

Mo +9) =M+ Ny, A+ =+,
AMuz) = (\w)z, 1.z ==z, 0-z = 0.

3. The maximum number of linearly independent elements of R" is

equal to n.
As usual, a system z; , - -+ , 2 of elements of R" is called linearly inde-
pendent if the relation
(1) Ny + -+ Nz = 0,
where A!, - -+, N are real numbers, implies that
@) M= =N =0
A maximal system e, -+ , e, of linearly independent elements of the

n-dimensional linear space R" is called a basis of R™. It is possible to intro-
duce coordinates by means of a chosen basis in R": if z is an element of
R", there exists a dependence relation Az -+ Ner + -+ 4+ A, = 0, be-
cause the system e; , + -+ , e, is maximal. Here X £ 0, since a basis is line-
arly independent. Solving this relation for z, we get

3) =2+ -0+ 2",

where z', - -+, 2" are real numbers, referred to as the coordinates of the
vector z with respect to the basis e;, - -+ , ¢, . We shall write = in terms
of its coordinates as

(4) z=(, - ,2").

A) A system of points o , %1, - - - , & of an n-dimensional linear space
R" is called independent if the system of vectors
(5) (xl - xo), T (xk - xo)

is linearly independent. It is clear that independence is possible only for
kE < n. It turns out that the system (5) is linearly independent if, and only
if, the relations

(6) Nao 4+ Nay 4+ -+ 4+ Mg, = 0,
7 . NN+ N =0
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imply that
) N=2A= . =2 =0,
where A%, N, - -+, A* are real numbers.
Hence the independence of a system of points zo, z1, - - - , 2 does not

depend on the order in which the points are enumerated. Moreover, it is
clear that the independence of a system of points implies the independence
of every one of its subsystems.

We shall show that, given the linear independence of the system of vec-
tors (5), relation (8) follows from (6) and (7). By (7), we can rewrite (6)
in the form

' - + M) + Ny + -0+ Ny, = 0,
or -
Al(xl - xo) “+ e 4 )\k(xk - xo) = 0.

Since the system (5) is linearly independent, the last relation implies that
A = .-+ = N\ = 0, and hence, in view of (7), it also follows that A\’ = 0.
Let us now prove that if (8) follows from (6) and (7), then the system (5)
is linearly independent. Let us assume that

(9) M@ — 20) 4 -+ 4+ Ne(mp — z) = 0.
Setting \* = —(\' 4+ - -+ 4 N¥), we can rewrite (9) in the form
Nao + NMay + -0+ N, = 0,

where the numbers \°, A}, - -+ | At satisfy condition (7). Hence, by assump-
tion, )\0_ =N = ... =N = 0,ie., it follows from (9) that

)\1=...=)\k=0’

which means that the system (5) is linearly independent.

Geometrically, the independence of the points z , 21, -+, % means
that the hyperplane of least dimension which spans them is of dimension k.
If the points @, %1, - -+, x are dependent, the hyperplane of least di-
mension which spans them has dimension less than k. We shall now give
another criterion for the independence of points.

B) Let @y, 21, -+, 2, k = n, be a system of points of an n-dimen-

sional linear space R", and e; , - - - , ¢, a basis of this space. The coordinates
of our points are determined by the relation

(10) Xy = xli e1 '+' .. + x’ni €n , i = 0, 1, sy k_
Now introduce formally the numbers 2°; by setting ‘ '
(11) 2 =1, i=0,1,--+, k.
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Denote the matrix || 2% ||, = 0,1, --- ,k;7 = 0,1, --- , m, by
N(xorxly 7xk) =N(X)

It has k + 1 rows and n + 1 columns, £k + 1 < »n 4+ 1. We shall prove
that the points z, , 21, * - - , 2, are independent if, and only if, the matrix

N(X) is of rank k + 1.
If the rank of the matrix N(X) is less than k£ + 1, there is a linear de-

pendence among its rows, i.e., there are £ 4+ 1 numbers AND CERRRIS U
not all equal to zero, for which
(12) Naeh + AT+ - N =0, j=0,1,--,n

Multiplying relation (10) by A" and summing over ¢, we get, by (12),
Mo + Ny 4 -0 4 Nz = Yok V2% 4+ Nzt 4+ -+ Mah)e; = 0.

For j = 0, relation (12), in virtue of (11), gives A’ + A" + -+ + N\ = 0.
Hence the points 7, @1, - -+ , 2 are dependent (see (6), (7) of A)).

Let us assume that the points 2, %1, -+, 2 are dependent. Then
there are k + 1 numbers X, ', -+, * which do not all vanish and which
satisfy (6) and (7). Substituting into (6) the expression for z; given in
formula (10) and rewriting (7) in the form 2%z% 4+ N'a% + --- + M2% =0
(see (11)), we obtain (12). However, this means that the rank of the
matrix N(X) is less than k& + 1.

It is very easy to find an independent system of points uo , uy, -+ , u,
k < n, in an n-dimensional space R". For, if ¢;, - -+ , e, is a basis of R",
it suffices to put

(13) =0, u=e, -, U =eé.

Here 4, = 0 is the zero of the group R", or equivalently, the origin of co-
ordinates of the linear space R". The vectors

(ur — o) = €1, -+, (e — U) = &

are obviously linearly independent; hence, by A), the points uo , %1 , * -+ , U
are independent. We shall answer the question concerning the existence
of independent points more fully in C). In this connection we shall use the
notion of proximity of points in R" in the sense of the proximity of their
coordinates. '

C) Ifwo, 21, -+, %, k = n,is a system of points of an n-dimensional
linear space R", then an arbitrary neighborhood of each point z; contains
a point y; such that the system vo , ¥1, * - - , ¥ is independent.

‘We shall apply B) to prove C). Let uy, w1, -+, u be a system of
points known to be independent (see (13)), and let ¢, 0 < ¢ < 1, be a real
parameter.
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Consider the points determined by
(14) 2:(f) = tus + (1 — )zs, i=0,1, -,k

It is easily verified that the matrix N(Z(f)) associated with the system of
points (14) is related to the matrices N (X) and N(U) of the initial systems
of points by the equation

(15) " N(Z®) = NU) + (1 — HNEX).

Since the points 4o , 41, -+ - , s are independent, it follows from B) that
the rank of the matrix N(U) is equal to k + 1. Hence the matrix N(U)
contains a non-vanishing determinant of & -+ 1 columns. Let D(¢) be the
corresponding determinant of N(Z(t)), the notation emphasizing its de-
pendence on the parameter ¢. Since N(Z(1)) = N(U) (see (15)), D(1) = 0,
and therefore D(f) does not vanish identically in ¢ Since D(¢) is a poly-
nomial in ¢, there is an arbitrarily small positive number s for which
D(s) ## 0. This means that the matrix N(Z(s)) is of rank & 4+ 1, and hence
1o = 20(8), y1 = 21(8), - , Yx = 2(s) form an independent system of points.
The point y; is arbitrarily close to z; (see (14)), in view of the arbitrary
smallness of s.

DErINITION 2. A system of points @y, 21, -+ , T of an n-dimensional
linear space R" is said to be in general position, if each of its subsystems of
k -+ 1 points &, &1, -+« , & (b = m) is independent (see A)).

It is clear that, if m < n, generality of position is equivalent to indepen-
dence. If m = n, in order that a system be in general position, it is sufficient
that every one of its subsystems of exactly » 4+ 1 points (k = n) be inde-
pendent.

We shall show that, for every positive integer m, there is a system of
m + 1 points in general position. However, the proof of this fact is more
conveniently carried out by the use of a metric, and will therefore be post-
poned until we have defined a Euclidean space.

Linear Euclidean Space

DerinNITION 3. A linear space R” is called Fuclidean if there exists in
R"™ an operation known as scalar multiplication, i.e., an operation which
associates with every two vectors z and y of R™ a real number zy, their
scalar product, and which is linear, symmetric, and nonnegative:

Az + py)z = Azz + pye, zy = yz, zx = 0,

where, in the last relation, equality occurs only if z = 0.

Two vectors = and y are said to be orthogonal if their scalar product is
zero, zy = 0.

We remark that it is possible to introduce a scalar product in every linear
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space R". In fact, if e1, -+ , e, is a basis of R", define the scalar product
for the basis vectors by putting ee; = 8;;(8s = 1, 8;; = 0 for ¢ == j). If
z =2+ - +a"e,andy = y'es + -+ + y"e, are any two vectors of
R", then to satisfy the conditions postulated for the scalar product, we
must have

(16) zy =2y + o+t

It is easily verified that the scalar product defined by the last relation
satisfies all the requirements of Def. 3.

D) It is always possible to introduce an orthonormal basis in the Eu-
clidean space R", i.e., a basis e1, * -+ , ¢, such that ee; = §;; . It is clear
that if the basis is orthonormal, the scalar product in coordinate form
is given by formula (16).

We shall start with an arbitrary basis 2;, + -+ , 2, of the space B" and
construct an orthonormal basis from it. Since #1 , - - - , 2, is a basis, z; # 0,
and hence ;21 # 0. We can therefore put e, = (xlxl)_ixl , S0 that eje; = 1.
Now assume that the system e;, --- , e, €; = 8:;;, k < n, has already
been constructed, with all its elements expressed linearly in terms of the
veetors 1, - -+, % . In view of this, the vector

Y = zp1 — (Ner 4 -+ + Neew)

differs from zero. Choose the numbers N, --- , N so that ye; = 0,
i =1, -+, k; for this it suffices to set \* = Zy41¢; . Since y = 0, we may
put epqr = (yy)’*y, with the result that e.e; = 8:5,%,7 =1, --- , k + 1.
In this manner, the system e;, --- , e, is constructed. Since it is ortho-
normal, it is obviously linearly independent. Indeed, scalar multiplication
of the relation Me; + -+ 4+ A'e, = 0 by e; yields A= 0.

E) A metric which satisfies all three axioms of a metric space can be
introduced in the Euclidean space R™ by setting

p(z,9) = @ — Y — I
By the axioms defining the scalar product (see Def. 3), p(z, y) = 0 if,
and only if, z = y; furthermore, p(z, ¥) = p(y, ). To prove the triangle
axiom, 1.e.,
(@~ 9@ -l + 14— 2@ -2 2 (@ - 2@ - 2T,
set 2 — y = 4,y — 2z = v and rewrite the axiom in the form
[wal + [w] 2 [(w + v)(u + 0],

Since both sides of this relation are nonnegative, it is equivalent to the
relation

wu + 2[ww) ) + w = uu + 2uv + w,
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which in turn is equivalent to
(17) (uw)(w) = (w)™.

Relation (17), the so-called Schwarz inequality, will now be proved.
The quadratic form

()N + 2@)\ + w) = O + v)Qu + v)

is nonnegative, since it is the scalar square of the vector Au + v. Hence
its discriminant (uw)(w) — (w)® is nonnegative, which means that rela-
tion (17) is always valid.

We return now to the question of the general position of points (see
Def. 2).

TueorREM 1. If {z, 21, «++, Zu} = S is a system of points in general
posttion in the Buclidean space R", then there exists a positive & such that
oxi, yi) < & 12 = 0, 1, ---, m, implies that the system of poinis
Yo, Y1, *** 5 Ym 18 also in general position.

Proof. Let &; = 2, , 2 = 0,1, --+ , k; k < n, be an arbitrary subsystem
S’ of the system S. The system S’ is independent by definition, and hence
the matrix N(& , &, - -+ , &) (see B)) is of rank &k + 1. Therefore one of
the determinants, say D, composed of & + 1 columns of this matrix, is
different from zero. Since D is a continuous function of the coordinates of
the points of the system S’, there is a positive & such that for every
system of points n; = yp; , 7 = 0, 1, -+ , k, with p(&;, 7:) < ¢, the de-
terminant D formed for the points 7o, 71, *++ , 7% is also different from
zero. Hence the matrix N(no, 71, -+ , ) is of rank k& + 1, which means
that the system 7o, mi, -+, m is independent. Thus a suitable & can
be assigned to every subsystem S’ of the system S, and the required ¢ of
the theorem can be obtained by setting € equal to the smallest of the num-
bers ¢'.

TueoreM 2. If {x0, 21, -+, Tu} = S 1s any system of points of the
Euclidean space R", and ¢ is a posttive number, then there exists a system of
points Yo, Yi, -, Ym N general posilion such that p(x:, y:) < &
i=0,1, ---, m. In other words, any finite system of points of R™ can be
brought into general position by an arbitrarily small displacement.

Proof. Let us number all subsystems & , &, * - , &, & < 7, of the sys-
tem S, denoting them by Si, -+, S,. The system S; contains at most
n + 1 points, and it can therefore be transformed into an independent
system by an arbitrarily small displacement (see C)). Now suppose that,
by means of arbitrarily small displacements of the whole system S, we
have already obtained a position for which all the subsystems Sy, ---, S, ,
s < r, are independent. By C), the system S, can also be transformed
into an independent one by an arbitrarily small displacement, and this
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displacement can therefore be chosen so small that the independence of
the systems S, -+, S, achieved previously will not be disturbed (see
Theorem 1). This completes the induction, and the theorem is proved.

Convex Bodies

We shall present here some facts concerning convex bodies needed in
the sequel.

F) Let a and b be two distinct points of the Euclidean space R". The
set of all points 2 € R™ of the form z = \a + ub, where X and p are real
numbers satisfying the conditions

Adu=1 A0, w20,

will be called the segment (a, b) = (b, a) with endpoints a and b. The two
parameters X and  can be replaced by a single parameter s = 4,0 £ s < 1,
in terms of which a point of the segment can be written in the form

(18) z=(1—-s)a+sb=a+s(b—a)=a+ su, u=10—aq.

If the segments (a, b) and (a, ¢) have a common point different from a,
then one of the segments is contained in the other; in particular, the seg-
ments may coincide, in which case b = c. ‘

To prove this assertion, let us write the points of both segments in the
form (18)

z = a + su, 0=s=1; y=a+ W, 0=st=1.

If % = g # a is a point common to the two segments, then
To = 0+ su = Yo = a + w, s # 0, o 0,
and
Sol = .

If sy = 4, then u = v, b = ¢, and the segments coincide. If s, 5 f, , then,
assuming for definiteness that s, < 4, we have v = (so/to)u, and any
point y of the segment (a, ¢) is of the form y = a + i(s/to)u.
Since (so/%) < 1,y € (a, b) for 0 < ¢ < 1, and the second segment is a
proper subset of the first.

G) A set M of points of the Euclidean space R is called convez if a ¢ M ,
b ¢ M implies (a, b) = M. The point a is called an interior point of the set
M if there exists a positive ¢ such that p(a, ) < € implies z ¢ M. A con-
vex set W which is compact and contains interior points will be referred
to as a convex body. The set U of all interior points of a convex body W
clearly forms an open set in B”, and hence V = W\U is compact. The set
V is called the frontier of the convex body W. If a e U, and b and ¢ are
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two distinet points of V, then the segments (a, b) and (a, ¢) have only one
common point a. Furthermore, if @ ¢ U and ¢ is any point of W, then there
is a point b e V such that the segment (a, b) contains c.

To prove the above, we shall show first that if ¢ € U, b e W, then every
point ¢ of the segment (a, b) distinct from b is contained in U. Let
¢ = Aa + ub, X > 0. Since a ¢ U, there is a positive ¢ such that (e+z)eW
for zx < €. Hence the segment (a + z, b) is wholly contained in W, and
therefore also the point

NMa+2z)+uwb=Na+ub+AXc=c+ rcelW.

If now y is an arbitrary vector of R”, with yy < N&®, then the point
¢ + y is of the form ¢ + Az, where zz < & But under this condition,
¢ -+ Az belongs to W, and hence ¢ ¢ U.

Nowlet a e U, and let b and ¢ be two distinct points of V. If the segments
(a, b) and (a, ¢) have a common point different from a, then, by F),
either they coincide and b = ¢, which is impossible, or one of them forms
a proper subset of the other. If, say, (a, ¢) = (a, b), then ¢ e (a, b), with
¢ # b. Hence ¢ ¢ U and ¢ ¢ V, which is a contradiction.

Now let a € U, and let ¢ be any point of W distinct from a. We shall
determine the segment (a, b), b ¢ ¥, which contains ¢. Set ¢ — @ = » and
consider the set of all points y of R" of the form y = a + @, t = 0. If ¢ is
sufficiently small, y is evidently in U, since a is an interior point of W. On
the other hand, if ¢ is sufficiently large, i cannot be in W since W is com-
pact. Hence the compactness of W implies that there is a largest positive
value ¢ = # for which y ¢ W. It is clear that @ + {» = b is a frontier point
of W, for otherwise, & would not be maximal.

Since ¢ = a + v e W, it follows that & = 1. Setting tw = u, the set of
all points of the segment (a, b) can be written in the form z = a + su,
0 = s = 1. The point ¢ is of the form a + (1/f)u, 0 < (1/4) < 1, and
therefore belongs to the segment (a, b).

Since a convex body contains an interior point a, it also contains other
interior points. All of these must lie on segments of the form (@, b),beV,
and therefore V' is non-vacuous. If ¢ = @, the point ¢ lies on an arbitrary
segment (a, b), b ¢ V. This proves G).

§2. Simplex. Complex. Polyhedron

Combinatorial topology studies geometric figures, decomposing them in
some regular fashion into the simplest figures, simplexes. Those geometrical
figures which can be decomposed in a suitable manner into simplexes are
called polyhedra, and the scheme of decomposition into simplexes is known
as a complex. This section is devoted to the definition of these basic con-
cepts. »
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Simplex

DeriNiTioN 4. Let a0, a1, - -+ , a, be a system of independent points
of the n-dimensional Euclidean space R", r < n (see §1, A)). The set A
of the points x of the space R" of the form

(1) z =2a + Nay + - + Na,,

where \’, 5\1, -+« , X" are real numbers which satisfy the conditions

@) NN+ N =1,

3) ANz o, i=0,1, 7

is called an r-dimensional simpler, or briefly, an r-simplex. We write
A" = (@,0, - ,a,). The points ap, a1, - - - , G-, called vertices, are
obviously contained in the simplex A"

It will be shown below that if two simplexes 4™ and B® coincide, 4™ = B,
then their vertices also coincide, except possibly for a permutation; and,
in particular, » = s. Furthermore, as a consequence of (1) and (2), the
point z uniquely determines the numbers A°, A, - - - , N. This enables us
to regard the numbers A%, \', - - | \", which satisfy (2) and (3), as the co-
ordinates (barycentric coordinates) of the point z ¢ A",

We show first that (1) and (2) uniquely define the numbers AN T
If

(4) ¢ =pa+ da+ - + ua,
where
(3) KA+ =1,

then subtractioh of (1) from (4) yields
@ =N+ @ = Mo+ - + @ = N, = 0.
Relations (2) and (5) imply that
W =)+ @ =N+ (= N) =0,

and since the points ao , a1, -« , a, are independent, u° — \* = 0, i.e.,
uto= t=0,1,-+,r.
Let us now show that the vertices aq y @1, ***, @ are uniquely deter-

mined by the set A" If u, and w are two distinet points of R",
then z = (up + i) is the midpoint of the segment (o , uy). It turns out
that every point z of the simplex A’, which is not a vertex, is the midpoint
of some segment whose endpoints belong to A”. The vertices of A’, how-
ever, cannot be midpoints of segments with endpoints in 4"
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If z = Nao + Nay + - - 4+ Na, is any point of A" and not a vertex of
A’, then at least two of its barycentnc coordinates, say N\, N, ¢ 5 j, do not
vanish, so that A* > 0, A’ > 0. Choose an ¢ such that 0 <e<AN,0<
e<N,andsetup =z + ¢ (@i — aj), ws = & — € (a; — a;). The points
1%, and u; evidently belong to A7, and

= 3(u + w).
If ax = 3(uo + w1), where uo and u, are two distinet points of A", and
»=Npa+ - +N,a,, p=0,1,

then, since the points % and u; are distinct, there are two integers 1, 7,
i # j, for which A% > 0 and A% > 0. By assumption,

ap = i()\o—l-)u)ao‘i‘ oo+ 3o + N) e,

where 10\ 4+ 2\ > 0, 1(\% + V1) > 0. This contradicts the previous
proof of the uniqueness of the coordinates of the points of a simplex, since

=0a0+ oo _}_l.ak_l_ “ee .-I_O.ar'

By Def. 4, a O-simplex (ao) consists of one point a . A 1-simplex (ay, a;)
represents the rectilinear segment connecting the points @, and a; . A
2-simplex (ay , a1 , a2) consists of the triangle with vertices ay, a1 , as .
Finally, a 3-simplex (@, a1, a2, a3) is a tetrahedron with vertices ao , a1 ,
as , a3 .

A)If A" ¢ R"is an r-simplex, then a point x e A", all of whose barycentric
coordinates are positive, is called an ¢nterior point of the simplex A". A point
of A" which is not an interior point of the simplex A" is called a frontier
point of A”. The set G" of all interior points of the simplex is called an r-di-
mensional open simplex, or simply, an open r-simplex; and the set F™" of
all frontier points of the simplex A" is referred to as its frontier. It is easily
verified that the closure @ of an open simplex G" coincides with the initial
simplex A"; and since A" is a bounded closed set in R", it is compact. The
set F™ is also obviously closed in A”, and therefore G* = A\F"" is an
open set in A". If G" and H® are two open simplexes which coincide, ¢ =
H*®, then G = H°; and since G" and H° are the usual (closed) simplexes,
their vertices coincide and r = s. Hence an open simplex determines its
vertices uniquely.

B) Let R"™ be the (r + 1)-dimensional Euclidean space, & , 1, -« - , e
an orthonormal system of points (vectors) in R (see §1), and ' =

(e, €, - - ,e)c B the r-simplex with these points as vertices. Every
point z € E" is of the form z = Ney + Ne; 4+ - -+ + Ne, with the A\”s satis-
fying (2) and (3). Since e , €1, « -+ , ¢ is an orthonormal system, the Euclid-

ean coordinates of the point z relative to this system are the same as its
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barycentric coordinates in E', and we may write
z= Q%2 - N) =
Hence the distance between two points A and u of E' is given by
P ) =[O0 — 6+ N = )+ = )T

The resulting metric of this 7-simplex, called its natural metric, is a func-
tion of the intrinsic (barycentric) coordinates of the simplex. Relation (1),
which associates the point \ ¢ E” with the point z ¢ 47, is obviously con-
tinuous and one-to-one; and since E’ is compact, this correspondence is
bicontinuous. Hence every two r-simplexes are homeomorphic, and this
homeomorphism may be realized by the mapping which associates points
having identical barycentric coordinates.

C)Let A" = (ap, a1, - , ar) be an r-simplex in R", and oy = a,,,
k=0,1,---,s 0 < s < r asubset of the vertices of A". Since the vertices
G, @, -+, a are independent, the vertices o, a1, =+ , @, are also in-
dependent, and hence C°* = (&g, a1, -+ , @) is & simplex in R". The sim-
plex C° will be referred to as an s-dimensional face, or simply s-face, of the
simplex A". Denoting those of the numbers 0, 1, - - - , r which are different
from % ,%, ** ,% by Ji, -, Jrs , an arbitrary point = ¢ C* is obtained
by putting

(6) NE=0, k=1 ,r—s,

in (1). Hence C° ¢ A™ and the set C° is determined in 4" by the system
(6). Conversely, every system (6) determines some face of 4. By Def. 4,
every vertex of a simplex A" is a O-face of A", and A" is its own r-face.
Faces of dimension less than r are called proper faces of the simplex A"

D) The simplexes A and B of the Euclidean space B" are said to be
properly sttuated either if they are nonintersecting or if their intersection
A n Bis a common face of A and B. If C is a face of the simplex 4, and D
is a face of the simplex B, with 4 n B < C n D,ie, A nB = C n D, then
clearly the simplexes 4 and B are properly situated if, and only if, the faces
C and D are properly situated.

E) Two faces of a simplex are always properly situated.

Indeed, if C and D are two faces of the simplex 4, then each of them is
determined by a system of equations of the form (6). Two such systems
of the form (6) combined again constitute either a system of the form (6)
or an inconsistent system. The latter oceurs if the joint system contains
all the coordinates \*, in which case the intersection C' n D is empty; in the
contrary case, this intersection is the common face of the simplexes C' and
D.
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Complex

Let us turn now to the basic notion of a complex.

DeriNiTION 5. A finite set K of simplexes of the Euclidean space R" is
called a geomelric complex, or simply a complez, if K satisfies the following
conditions: '

1. If A is a simplex of K, then every face of A is also in K.

2. Every two simplexes of K are properly situated (see D)).

The O-simplexes of a complex K are called its vertices.

The maximum dimension of the simplexes of K is called the dimension
of K. An n-dimensional complex K will be referred to as an n-complex.

Although the complex is the fundamental notion of combinatorial topol-
ogy, the real object of study turns out to be not the complex, but the
topological space which is determined by it.

DrerinitioN 6. Let K be a geometric complex situated in the Euclidean
space R". The set of all points contained in the simplexes of the complex
K is called a polyhedron and is denoted by | K |.

Since R" is a metric space, | K |, as a subset of R", is also a metric space.
The space | K | is obviously compact, since it is the union of a finite number
of compact sets, simplexes.

If K and L are two complexes and f is a continuous mapping of the poly-
hedron | K | into the polyhedron | L |, then we shall sometimes refer to f
as a mapping of the complex K into the complex L.

The simplest r-complex is the set 77 of all faces of the simplex A". The
set 87 of all proper faces of the simplex 4 also forms a complex.

Ttisclearthat | 77| = A" and | 8 | = F™", where F" is the frontier
of A7 (see A)).

In view of condition 1 of Def. 5, the vertices of each simplex of K are
also vertices of K itself. Hence, in order to determine the complex K in
R", it suffices to prescribe all the vertices of K and then to distinguish those
sets of vertices whose spanning simplexes yield all the simplexes in K. Ab-
stracting from the geometric positions of the vertices in R", we arrive at
the notion of an abstract complex.

DEriNITION 7. A finite set & of elements ¢, ¢, *+ - , ¢ is called an ab-
stract complex with vertices ¢, ¢1, -+, ¢ if ® satisfies the following condi-
tions: ‘

1. Certain non-empty subsets of the set & are destinguished and are called
abstract simplexes of the complex &.

2. Every subset of f consisting of a single element is a distinguished sub-
set. Hence every vertex of R is also a simplex of &.

3. If % is a simplex of ), then every non-empty subset of 2, referred to -
as a face of the simplex %, is also a simplex of the complex &.

The abstract simplex %" = (@, a3, =- - , @) with r + 1 vertices is said

PROPERTY OF
CATNEGIE INSTITUTE OF TECHNOLOGY

LIBRARY
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to have dimension r. The maximum of the dimensions of the simplexes con-
tained in the complex & is called the dimension of the complex &. If the
dimension of & is n, & will be referred to as an n-complex.

With every geometric complex K there is associated an abstract com-
plex &, and conversely. The geometric complex K is called a geometric rea-
lization of the corresponding abstract complex &. The question as to whether
every ‘abstract complex admits of a geometric realization is treated in the
following propositions.

Theorems of Realization

F) Let £ be an abstract complex with vertices o, ¢;, -+ - , ¢, and Ef =
(0, €, -+, e) a k-simplex taken with its metric, E* ¢ R**' (see B)).
Let ¢;; = b;,7=0,1, ---, r, denote any subset of ¢, ¢, -+, & and let
e;; =vj,j=0,1,--,r, denote the corresponding subset of ¢ , €1, - -,
er . To each abstract simplex A" = (b, b1, -+, b.) of the complex R as-
sign the face A" = (w, v, -+ , v,) of the simplex E*. The resulting set
N of simplexes obviously forms a geometric complex, since the faces of the
simplex E* are properly situated (see E)). This geometric realization N
will be referred to as the natural realization of the abstract complex {,
and the metric of the polyhedron | N | induced by the metric of E* will be
called the natural metric corresponding to . The above yields a realiza-
tion of & in E* = R**'. The point

Neo + New + <o A = AN, -+ A =2

(see B)) of the simplex E” is obviously contained in the polyhedron | N |
if, and only if, A\ % 0,7 = 0, 1, --- , r, and the other coordinates zero
implies that & contains the simplex (b, d1, -+, d,). Now let K be an
arbitrary realization of the complex & in the Euclidean space R™. Denote
the vertices of K by i, ¢1, - -+ , ¢ , where ¢; corresponds to ¢; . If to each
point X = (A% N}, -+, A\") of the polyhedron | N | is assigned the point
¥(\) € R™, where

YO = Neo + New 4+ -+ + N,

then the resulting mapping ¢ is a homeomorphism of | N | onto | K |. Hence
every realization of the complex & is homeomorphic to the natural realiza-
tion N of R, and therefore every two realizations of & are homeomorphic.

Let us show that ¢ is a homeomorphism of | N | onto | K |. The mapping
¥ is obviously continuous, and it suffices to prove that ¥ is one-to-one and
onto. This will establish that y is a homeomorphism, since | N | is compadct.
To show that (| N |) = | K |, let A" = (w0, v1, +*- , ,) be a simplex of
Nand *A" = (o, u, - - - , u,) the corresponding simplex in K, where u; =
¢;,J =0,1, -+, r. The mapping ¢ of A" into *A" is obviously onto and
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one-to-one. Since the existence of the simplex A" in N implies the existence
of the simplex *4" in K and conversely, it is clear that (| N |) = | K |.

To show that Y(\) = ¥(u) implies A = u, let A = O°, A}, --- )\, u =
(', 1Yy - -+, 1") be two points of | N |, and denote by ALl=0,1, - T,
and p'?,p = 0,1, ---, s, those of the numbers \* and »’, respectively, which
are different from zero. Let e;, = ¢,,1 = 0,1, --- ,r,ande;, = w, ,p =
0,1, -+, IfA" = (o, b, -, %), B = (wo,w, -+, ws), then the
points X and u are interior points of A” and B*, respectively, which means
that ¢(\) and ¢¥(u) are interior points of *A" and *B’, respectively. Since
*4" and *B° are both in the same complex K, they are properly situated,
and hence have a common interior point ¥ (A\) = ¥ (u) only if they coincide.
Hence *A™ = *B°, which means that A” = B®. Since ¢ is one-to-one on the
simplex A", A = u.

The dimension of the space R**" in which the natural realization N of
the abstract complex & is imbedded (see F)) depends on the number & + 1
of the vertices of .

The following theorem gives a deeper result on the possibility of realizing
an abstract complex.

TaEOREM 3. An abstract n-complex & can always be realized by a geometric
complex K imbedded in the Euclidean space R*™H of dimension 2n + 1. To
this end, the vertices of the complex K can be chosen arbitrarily, provided only
that they be in general positton (see §1, Def. 2).

Proof . If ¢o, ¢1, - -+, ¢ are the vertices of &, choose any system of points
Co,C, - ,Csin general position in R*™ (see Def. 2) and assign to ¢; the
point ¢; .

Nowif A" = (@, a1, +++ , ) is any simplex of &, let 4™ = (ay, a1,

-, a,) be the geometric simplex which spans the points ao, a1, -+ , a,
corresponding to the vertices ap , a1, - -+ , ar . We must show that the re-
sulting set K of simplexes of R™ is a geometric complex, i.e., that K
satisfies conditions 1 and 2 of Def. 5. Condition 1 follows immediately
from condition 3 of Def. 7, and we now show that K satisfies condition 2.

Let A" and B° be two simplexes of &, A" and B° the corresponding geo-
metric simplexes of K, and denote by do , d1, - - - , d; the set of all points
which are vertices of at least one of the simplexes A™ and B°. Since the
dimension of & is n, it follows that r £ n, s < n, and therefore ¢t £ 2n +
1. Hence D' = (dy, ds, * -+ , ds) is a simplex in R which may or may
not be in K. Since A” and B° are faces of D*, they are properly situated (see
E)). Hence K satisfies condition 2 of Def. 5 and is a complex. The geometric
complex K obviously realizes &, and this proves the theorem.

We have therefore shown that with every abstract complex & is asso-
ciated a geometric complex K; and moreover, by the same token, that the
polyhedron | K | is determined uniquely, up to a homeomorphism, by the
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abstract complex ®. The basic problem of combinatorial topology is the
study of the topological properties of a polyhedron. In this respect, the
complex plays a purely auxiliary role; it is used to determine the poly-
hedron and to construct its invariants. The customary way of construct-
ing the invariants is to ascertain the properties of the abstract complex
which determines the polyhedron, and then to prove that they are topo-
logical invariants of the latter.

§3. Application to dimension theory

This section is a digression in the direction of set-theoretic topology. Its
content will be used very little in the sequel, except in §10, which is itself
a digression from the basic theme of this book.

Dimension theory occupies a significant place in set-theoretic topology,
deciding, as it does, the question as to what should be called the dimension,
or the number of dimensions, of a topological space, and studying those
properties of a topological space which have to do with its dimension. There
are several different definitions of the dimension of a topological space, but
for compact metric spaces the most important of these yield the same num-
ber. We shall give a definition of dimension only for compact metric spaces,
and this definition will be phrased in terms of coverings of the space. The
purpose of this section is to prove that every compact metric space of
dimension r can be mapped homeomorphically onto some subset of the
Euclidean space of dimension 2r -+ 1. This result is one of the most basic
in dimension theory, and is an excellent demonstration of the power of
combinatorial methods in set-theoretic topology. Its proof is based on the
notion of a nerve and on Theorem 4, both due to P. S. Alexandrov. The
proof of this purely set-theoretic result rests on the use of basic elementary
notions of combinatorial topology which, apparently, are indispensable
here.

The Notions of Dimension and Nerve

A) Let R be a metric space, 4 a set of points in R, and 6 a positive num-
ber. Denote by H(A, §) the set of all points of R whose distance from A is
less than 8, and by H(A, 8) the set of all points of R whose distance from
A does not exceed 8. It is clear that the closure of H(4, 6) is contained in
H(A, 5) and that H(4, &) is open, while A (4, 8) is closed. If A consists of
one point a, the diameter of both sets H(a, 8) and H(a, §) evidently does
not exceed 2 4. o

B) Let R be a metric space, and denote by £ = {Cy, Cy, --- , Ci} a
finite system of subsets of R. The system Z is said to constitute a covering
of the space R if each point of R is contained in at least one set of the sys-
tem 2. A covering 2 of the space R is called an ‘e-covering if the diameter
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of each set C; of the system Z is less than the positive number e. It is cus-
tomary to consider systems Z consisting either entirely of open sets (open
covering) or entirely of closed sets (closed covering). The system = of R
is said to be of order » if there is a point of R which is contained in n sets
of the system Z, while no point of R is contained in n + 1 sets of 2. We
shall show that if B is a compact metric space and ¢ is a positive number,
then R has both an open and a closed e-covering.

In fact, R = U,.H(z, ¢/3) (see A)); and since R is compact, a finite
number of these sets, say H(zo , ¢/3), H(x:, &/3), -+ , H(z: , €/3), will
form an open e-covering of E. As a closed e-covering of R we may choose
the system H (o , £/3), H(x1, €/3), -+, H(z , £/3).

DzrintrioN 8. The compact metric space B has a finite dimension r if
both of the following conditions are satisfied:

1. For every positive ¢ there exists a closed e-covering of R of order
<r+ 1

2. There exists a positive ¢ such that every closed e-covering of R is of
order > r.

If there is no integer » = 0 which satisfies both of the above conditions,
R is said to have infinite dimension. It is easily verified that the dimen-
sion of a space R is one of its topological invariants.

In fact, let B and R’ be two compact metric spaces and f a homeo-
morphism of R onto R’. Since R is compact, f is uniformly continuous, and
hence, for every positive number &', there exists a positive number ¢ such
that o[f(z), f(¥)] < & for p(z, y) < e.Ifnow 2 = {Cy,Cy, --- ,C} is a
closed e-covering of R, then the sets f(C;) = C’;,7=20,1, --- , k, form a
closed &’-covering 2’ of R'. Since f is one-to-one, = and 2’ are of the same
order, and it follows immediately that the dimension of B’ does not exceed
the dimension of R. Since B and R’ can be interchanged in the above argu-
ment, B and R’ are of equal dimension.

We shall show in §10 that an r-simplex (see Def. 4) has dimension r in
the sense of Def. 8 as well. There are also other reasons for considering
Def. 8 to be appropriate.

C) If R is a compact metric space and £ = {Cp, C1, -+, Ci} is a closed
e-covering of R, there exists a positive number 6 (the Lebesgue number of
the covering =) such that the closed covering Zs consisting of the sets
H(C;,8) =F;,2=0,1, ---,k (see A)), is an e-covering of the same order
as the original covering Z. This implies that the open covering Z; consist-
ing of the sets H(C;,8) = G;,%2 = 0,1, - -+, k, is an open &-covering of the
same order as =.

Let Cp; = Ts,4 = 0,1, --+ , n, be any system =’ of sets whose inter-
section is empty, i.e., no point is contained in all the sets of the system
3. Setting F,, = ®;,17 = 0, 1, - -+ , n, we shall show that there is a posi-
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tive g for which the intersection of the sets of the system 2, = {®, &,

.+, ®,} is also empty. In the contrary case, there would exist, for each
natural number m and 5 = 1/m, a point a, contained in all the sets of the
system ', . Since R is compact, the sequence a1, Gz, -+, @m, * - Would
have a limit point a; and since the sets of the system 2’ are closed, a would
be contained in all the sets of the system =’.

Hence we may assign to each subsystem of the form X’ of the system
T a sufficiently small positive 5 for which the sets of the system Z’, have
an empty intersection. Since = has only a finite number of subsets of the
form ', we can take for § the least of the numbers 4, and this choice of
will insure that the order of Z; is the same as that of 2. Moreover, since
the diameter of each of the sets C; is less than ¢, it is also possible to ¢hoose
the above & small enough so that the diameter of each of the sets F; will
be less than . The system Z; is then also an e-covering. Proposition C)
implies, in particular:

D) If the dimension of the compact metric space R is equal to r, then for
every positive &, there exists an open e-covering of E whose order does not
exceed r + 1.

DerNITION 9. Let & = {Cy, C1, - -+, Ci} be a system of sets of the space
R. We shall construct the abstract complex &, called the nerve of the sys-
tem =. With each set C; associate the letter ¢; and take the set of letters
G, G, ", C to be the set of vertices of the complex & We shall regard
the set of vertices ¢;;,j = 0, 1, -+, s, as defining a simplex of the com-
plex & if, and only if, the sets Ci; ,j = 0, 1, - -+, 5, have a non-empty in-
tersection. If the system Z is of order r ++ 1, then its nerve is obviously of
dimension r.

E) A continuous mapping f of a metric space R into a metric space S is
called an e-mapping if the complete inverse image f~* (2) of every point
z € f(R) is of diameter less than ¢ in E.

TaEOREM 4. Let R be a compact metric space, 2 = {Gy, Gy, -+ -, Gk} an
open e-covering of R, ® the nerve of this covering, and K a geometric realiza-
tion of 8 in some Euclidean space R™, so that to each set G; of Z there corre-
sponds a point ¢; € R™ which is a vertex of the geometric nerve K of the covering
3. Then there exists a continuous e-mapping f of the space R into the poly-
hedron | K | for which z e G, tmplies that f(x) is contained in a simplex A*
of K with vertex c, .

Proof. Define the real-valued function ¢i(z), z e B, 2 = 0, 1, --- , k, as
the distance of the point z to the closed set R\G:. The function pi(z) is
evidently continuous on R, is positive if and only if z ¢ G, , and vanishes if
x ¢ R\@; . Since every point z is contained in at least one of the sets @; of
the system Z, the sum ¢(x) = @o(z) + ¢1(x) + - -+ + @u(x) is positive for
every z. Setting A(z) = o:(z)/0(z), We see that the function A*(z) has the
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properties listed above for ¢; , and, moreover,
® N(@) + N @) + -+ @) = L

Let N be the natural realization of the abstract complex £ (see §2, ),
and assign to each point z ¢ R the point

(2) Az) = (@) e + N@) e+ -+ + No(z) ex

of the Euclidean space R**". Relation (1) and the nonnegativeness of \(z)
imply that A(z) is contained in the simplex E* ¢ R**', We shall show that
M) is contained in the polyhedron | NV |.

Let ¢ R and denote by 2. = {G:; ,j = 0, 1, - -+ , r} the set of all open
sets of the system = which contain the point z. Since the open sets of the
system Z, have a non-empty intersection, the simplex A = (c;,, ¢;), - -+ ,
¢;,) isin &, and hence the simplex A = (s, , €5, , -+, €;,) is in N. On the
other hand, A\, j = 0, 1, --- , r, are those numbers of the sequence \'(z),
A(z), -+, \*(z) which are different from zero, whence, by (2),

Nz) = i A ey,

which means that \(x) ¢ A ¢« N. Moreover, if z ¢ G, , then G, is a set of the
system Z. and e, is a vertex of the simplex 4.

To show that the mapping X of the space R into the polyhedron | N |
is an e-mapping, let z be a point of \(R), \7'(2) its complete inverse image
in R, and = e \"*(2). Some set, of the system 2, say G, , contains z, and hence
N(z) # 0. If now y € N7'(z), then A\ (z) = A\(y), and, by (2), N°(y) = \P(x) ==
0. Therefore y € G, , i.e., \"'(2) < G, ; and since the diameter of Gy is less
than & and A7'(2) < G, , the diameter of A7'(2) is also less than e.

We shall now make the transition from the complex N to the complex K
by means of the mapping ¥ (see §2, F)) by setting f(z) = ¥[A(z)]. Since ¢
is & homeomorphism of N onto K and maps each simplex of N onto a cor-
responding simplex of K, f satisfies the requirements of the theorem. Ex-
plicitly, the mapping of R into | K | is given by

3) fx) = X@)eo + N@)er + - -+ + N(@)er .

This proves the theorem.

If the space R has dimension r, then, by D), for every positive ¢ there
exists an open ¢e-covering T of R whose order does not exceed » 4 1. Hence
there is a continuous e-mapping f of the space R into the r-dimensional
polyhedron | K |, the nerve of the covering =. This result establishes a very
important connection between general compact metric spaces and poly-
hedra; it is due to P. S. Alexandrov and has numerous applications in
topology.
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The Space of Mappings and the Imbedding Theorem

T) Let R be a metric space. A sequence @, @1, =+ , Gm, -+ of points
of R is called a Cauchy sequence, if for every positive ¢ there exists a natural
number 7 such that p(a, , a,) < &€ for p > n, ¢ > n. It is easily shown that
a Cauchy sequence can have but one limit point, and if a Cauchy sequence
does have a limit point, then it converges to that point. The space R is
called complete if every Cauchy sequence in R converges. It is easily seen
that a compact space is always complete, just as a Euclidean space is com-
plete. f Gy = R, Gy, -+, Gn , - - - is a sequence of open sets of a complete
metric space, each of which is everywhere dense in R, then the intersec-
tion of all these open sets is non-vacuous and even everywhere dense in R.

To prove the last statement, let a; be any point of Gy = R and let & be
any positive number. We shall show that there is a point a contained in
all the sets G, such that p(ay , ) £ & . )

Suppose that the finite sequence of points @y, a1, --- , @, of the space
R and the finite sequence of numbers &, &1 < 1, --- , & < 1/n have al-
ready been constructed so as to satisfy the conditions

4) H(a;, &) «c H@i, €1) 0 G, i=1,2-,n (see A)).

We shall extend these two sequences. Since (41 is everywhere dense in R,
there exists a point Gny1 € H(@n , &) 0 Guyy ; and since H(a, , €2) 0 Gops
is an open set, there exists a positive number ¢,41 < 1/(n -+ 1) such that
H(tny1, €ns1) © H(@n , €2) 0 Gayr . Hence the sequences ag, ay, --- ,
Gm, - and &, &1, =+, €, -+ are infinite and satisfy condition (4).
If p < g, then a, € H(a, , &), whence p(a, , a,) < & < 1/p. Thus a,
@1, *** , Um, + - is a Cauchy sequence, and therefore converges to some
point a. The sequence @m , Gmt1, - - - also converges to the same point a,
and is contained in the closed set H(ay, , £x). Therefore a ¢ H(a., , €m) and
a is contained in all the sets G, . Moreover, p(a , @) < & , since a ¢ H(a ,
&). This proves the assertion.

DerniTIoN 10. Let R be a compact metric space, S an arbitrary metric
space, and ® the set of all continuous mappings of the space E into the
space S. If f and g are two mappings of ®, then o[f(x), g(z)] is a continuous
real-valued function defined on the compact space R, and therefore at-
tains its maximum; we define this maximum, denoted by »(f, ¢), to be the
distance between the elements f and ¢ in the metric space just defined.
It will be shown below that p(f, g) satisfies all the axioms of a metric space.
We shall also show that if S is complete, then & is complete.

It is clear that p(f, g) = 0 if, and only if, f = ¢. Similarly, it is obvious
that p(f, g) = p(g, f). To prove the triangle inequality, i.e., if f, g, h ¢ ®, then
o(f, B) < o(f, 9) + p(g, ), let a be a point of R for which p[f(z), h(z)] at-
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tains its maximum. Then

p(fy ) = plf(a), Ma)] = olf(a), g(a)] + plg(a), h(a)] = o(f, 9) + (g, h).

This proves that the metric axioms are satisfied for ®.
Let us now show that if S is complete, then & is also complete. If f; ,

fi, -+, fm, -+ is a Cauchy sequence of ®, then for every positive ¢ there
exists a natural number n such that o(f, , f,) < £ for p > n, ¢ > n. Hence,
6) plfa(2), fo@)] < €

for any point x e B. Thus fo(z), fi(z), -+, fu(), - - - is a Cauchy sequence
of S, and therefore converges to a point of S which we denote by f(xz).

Letting ¢ — « in (5), we get s
(6) plfs(@), f@)] = €
for p > n.

We shall show now that f is a continuous mapping of R into S. Since f,
is continuous at z, there exists a positive § such that p[f,(x), f,(%)] < & for
o(z, y) < 6. Since relation (6) holds also for the point y, we have

plf(@), fW)] = plf(2), Fr(@)] + plfa(@), HW)] + plfa®), f)] < 3 &.

Hence f is a continuous mapping, i.e., f ¢ . Moreover, since relation (6)
implies that p(f, , f) £ ¢ for p > n, the sequence fo ,f1, -+ ,fm, - -+ con-
verges to f.

G) If ® is the metric space of all continuous mappings of a compact
metric space R into an arbitrary metric space S (see Def. 10), and ®. is
the set of all e-mappings of ® (see E)), then ®. is an open set in .

If f ¢ &, then there exists a positive number é such that x, ¥y ¢ B and
olf(x), f(y)] < & imply p(z, y¥) < €. In the contrary case, there is a sequence
81,08, +++, 8m, -+ of positive numbers tending to zero, and a pair of
points . , Y= for each natural number m, such that p[f(zm), f(Ym)] < 6m
and p(Tm , Ym) = ¢ Since R is compact, we can choose a convergent sub-
sequence from the sequence z1 , 23, +*+ , Zm, -+ - . In order not to change
the notation, suppose that the sequence z;, 2, ** , Zm, - - itself con-
verges to a point x. Similarly, we can suppose that the sequence 1, .,
“- , Ym, -+ converges to a point y. Then p[f(z), f(¥)] = O, ie., flx) =
f(), while p(z, y) = ¢, which contradicts the assumption that fis an e-map-
ping.

We shall now show that o(f, g) < 8/2 implies that ¢ is an e-mapping, i.e.,
&, is an open set. If g(z) = ¢(y) = 2, then

plf(@), fW)] = plf(@), 9@)] + plg@), fW)] < (/2) + (8/2) = 3,

whence p(z, y) < ¢. Since the complete inverse image g~ (2) of the point
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z € g(R) is compact in R and p(z, y) < e¢for =,y e ¢ '(z), the diameter of
¢ '(2) must be less than . Hence g € ®., and proposition G) is proved.

THEOREM 5. A compact metric space R of dimension r can be mapped homeo-
morphically onto some subset of the Euclidean space R of dimension 2r + 1.

Proof. Let ® be the space of all continuous mappings of the space R into
the space R (see Def. 10), and denote by . the set of all e-mappings
of ®. In virtue of G), ®. is open in &. It is clear that &, , &1z, * =+ , Pym, = -
is a decreasing sequence of open sets of ®. Denote the intersection of all the
open sets &1/, by ¥. Since each h ¢ ¥ is an e-mapping for every € > 0, h is
a one-to-one, continuous mapping of the space R onto the subset h(R) of
R¥*', and h is a homeomorphism, because R is compact. Hence it suffices
to prove that ¥ is non-vacuous.' By F), this will follow if it is shown that
&, is everywhere dense in ®. Let us prove this fact.

We shall show that if g € ® and ¢, 7 are any two positive numbers, then
there exists an e-mapping f of R into R**" such that p(g, f) < n. This will
prove that ®, is everywhere dense in ®. Since g is uniformly continuous,
there is a positive 8 < ¢ such that p(z, y) < & implies plg(x), g(¥)] < 7/6.
Now let = = {Go, G1, -+, Gx} be an open §-covering of B whose order
does not exceed 7 + 1 (see D)). Since § < ¢, = is also an e-covering. Since
the diameter of each set G is less than 8, the diameter of each set g(G:) =
F, is less than /6. Choose points ¢;, 2 = 0, 1, -- -, k, of R 50 that the
distance of ¢; from F; is less than n/6 and such that ¢y, ¢1, --- , ¢ are in
general position (this choice is possible by Theorem 2). Take the points ¢,
¢, -+, 6 as the vertices of the geometric nerve K (see Theorem 3) of the
covering =, and associate with the vertex c; the element G of the covering
3. We shall show that the mapping f of the space R into the nerve K, con-
structed in Theorem 4, satisfies the requirements of the present theorem.

Since T is an open e-covering, f is an e-mapping by Theorem 4. It re-
mains to be shown that p(g, f) < 1.

Let us estimate, first, the diameters of the simplexes of the complex K
by means of proposition C) of §9, whose proof depends only on the defini-
tion of a simplex. This proposition asserts that the diameter of a simplex
is equal to the length of its longest edge, i.e., one-dimensional face. Hence
it suffices to estimate only the diameters of the 1-simplexes of K. If (¢, , ¢q)
is any 1-simplex of K, the sets G, and G, have a common point, whence the
sets F, and F, have a non-empty intersection. Since the diameter of each
of the sets F, and F, is less than /6, and the distances of the points ¢, and
¢, to the sets F, and F, , respectively, are also less than /6, it follows that
p(cy , €o) < % 7. Hence the diameter of every simplex of K is less than % 7.

Now, if z is any point of R, there is an open set G, of the system Z which
contains z. Since g(z) € F, and the distance of the vertex c, from the set F,
is less than #/6, it follows that p[g(z), ¢,] < 7/3. On the other hand, by
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Theorem 4, the point f(z) is contained in the simplex A* of K with vertex
¢y ; and since the diameter of A* is less than % %, plc, , f(2)] < 2 4. Hence
plg(@), f(x)] < n, and since z is any point of R, p(g, f) < 5. This proves The-
orem 5.

As a supplement to Theorem 5, we remark that for every natural num-
ber r there exists an r-dimensional compact metric space P which cannot
be mapped homeomorphically onto a subset of the Euclidean space R
of dimension 2r. This very non-trivial result is due to van Kampen, who
defined the space P" in the following way. If A¥* is a (2r 4+ 2)-simplex,
the set of all faces of A*™* whose dimension does not exceed r forms an
r-complex K'. The space P" is the polyhedron | K" |. If » = 1, the complex
K can be easily imagined, and it is not difficult to prove by elementary
methods that | K* | cannot be mapped homeomorphically onto a subset of
the plane. If r > 1, the proof depends on the notion of intersection num-
ber, which is not considered in this book.

§4. The Betti groups

We shall apply here the general method of constructing the invariants of
a polyhedron, mentioned at the end of §2, to the determination of the basic
invariants, the Betti groups. A proof of the invariance of the Betti groups
will be given in Chapter II. Since the definition and analysis of the Betti
groups in this and later sections of the present chapter depend on a com-
plex only in the sense of its combinatorial scheme, there is no need here
to distinguish between an abstract complex and its geometric realization.

A) An arbitrary order of succession a, b, ¢, - - - , f of the set of all vertices
of a simplex will be called a vertex ordering of this simplex. The simplex
(@, a1, -+ , ar) is said to receive an orientation or to be oriented, if each
of its vertex orderings is assigned the sign 4+ or — in such a way, that
orderings differing by an odd permutation receive opposite signs. This can
be written in the form

(1) Ar:S(a();al:“':aT)y

where ¢ denotes that sign which is assigned to the ordering a;, a1, - -,
a, , ¢ = +1. Hence every simplex receives two different (opposite) orienta-
tions. If A" is an oriented simplex, — A" will denote the oppositely oriented
simplex.

Although a O-simplex (ao) has only one vertex ordering, it shall never-
theless be assigned, by definition, two opposite orientations, + (@) and

— (ao).
B) If (a0, a1, - -+ , a,) is an r-simplex, any one of its (r — 1)-faces can
be obtained by canceling one vertex a; from the sequence @, , a;, -+ , @, .

The resulting face will be referred to as the face opposite the vertex a; .
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With the orientation A" = ¢ (@, a1, *-- , @) of the original simplex as-
sociate the orientation '

Bi7 = (1)@, a1, -+, QG1, 0, -, a)

of the (r — 1)-face of A" opposite the vertex a; . It is easily verified that
this correspondence between the orientations of A” and B, is independent
of the vertex ordering ao, a1, -+, a, . If A" corresponds to B/, then
obviously —A" corresponds to —B; . The simplexes A" and B/ are
said to be coherently oriented. ‘

C)Let Ay, A"y, -+, A" be the set of all arbitrarily oriented r-sim-
plexes of a complex K, and G an arbitrary commutative group taken in
the additive notation. The linear form

(2) z=gdA" 4+ gpA + -+ gemd aw

in the simplexes A"y, A%, -+, A s with coefficients g1, g2, **+ , oty
in @G, is called an r-dimensional chain, or simply an r-chain, of the complex
K over (the coefficient group) G. If ¥4y , ¥A" | - -+ | *4A" 4y are the r-sim-
plexes of K taken with any other orientations, ¥*A™; = ¢; A";, we shall
write

z = ag*A + egp*A + -+ amfam *A ) -

This makes the definition of a chain independent of the choice of orienta-
tion of the simplexes. If

=250 gA%, oy =250 hA,
are two r-chains of K over G, set
®) gy =250 (g + R4S

This defines the operation of addition in the set of all r-chains of K over G,
and the set becomes a commutative group, which will be denoted by
L'(K, @), or simply by L’, when this cannot lead to misunderstanding.

The group G used in the formation of chains is in most cases taken to
be either the group Gy of integers or the group G, of residues modulo m.
For brevity we shall write L'(K, G») = L', m = 0, 1, 2, - - - . Especially
useful are the groups G, and G; . The use of G enables us to dispense with
oriented simplexes, since in this case ¢ = —g and there is no need to dis-
tinguish between the simplex A" and the simplex — A" in the chain z.

DerinrrioN 11. If A7 is an oriented r-simplex of a complex K, it can
be regarded as a chain of K over Gy (the group of integers). The boundary
of the oriented simplex A" is defined as the (r — 1)-chain of K over Gy given
by

(4) A(AT) = AAT = .BOT_1 + Blr_l + e + Brr—ly
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where By"™, By, - -+ | B, is the set of all (r — 1)-faces of A" coherently
oriented with respect to A". If r = 0, set
(4" A4’ = 0.
It is clear that

A(=A") = —A(4").

The definition of boundary is extended to an arbitrary r-chaln z of K over G
(see (2)) by setting

(5) A) = Ar = D &P g.AAT; .
It is easy to see that
(6) A(—2) = —Az and A(z + y) = A(@) + Ay).
We shall show, moreover, that
) AAz = 0.
It suffices to prove (7) for the casex = A". Let A" = +(ap, a1, -+ , a,)

and let C," ™, Cp" " be the oriented simplexes obtained from A" by omitting,
respectlvely, the vertex a, and the two vertices a, and a,, p < ¢, i.e.,

C,pr—l — —I—(ao,al, ety Op1, Qpg1, t vt ,ar),
Cpqr——2 - +(aﬂ,a1, Tt Ope1 y Qpa1, v, Qgely Qgyly t v, Op)
Then,
AA™ = 3 (107
and
ACT™ = D0 (—1)°C 2 4 D (=170
Hence

AMAT = 2,0 ()0 + Zig; (1)L =0,

which proves (7).

The boundary operator A is the most important in combinatorial to-
pology, and leads to the following basic notions of the so-called homology
theory.

DerinrrioN 12. An r-chain z is called a cycle if its boundary is equal to
zero, i.e., if Az = 0. The set of all r-cycles of K over @ is denoted by
Z"(K, @), or simply by Z" [Z"(K, G»n) = Z',]. The set Z" is clearly a sub-
group of the group L (see (6)) and, in particular, if r = 0, Z° = L’ (see
4).

We note that every boundary is a cycle (see (7)).

Derinrrion 13. An r-cycle z of an n-complex K is said to be homologous
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to zero if it is the boundary of an (r + 1)-chainof K,r =0,1,2, --- ,n — 1,
An n-cycle z is considered homologous to zero only if it is equal to zero.
In symbols, “z homologous to zero” is written as “z ~ 0”. The set of all
r-cycles of K over @ which are homologous to zero is denoted by H'(K, @),
or simply by H' [H'(K, G.) = H',). It is clear that H"-is a subgroup of
the group Z" (see (7))s Two r-cycles z; and 2 are said to be homologous
(21 ~ =) if their difference is homologous to zero (z; — 22 ~ 0).

DeriNitioN 14. Since H™ < Z7 (see Defs. 12, 13), we can form the fac-
tor group B = Z'/H'. The group B" = B'(K, @) is called the r-dimen-
sional Betit group or the r-dimensional homology group of the complex K
over G [B"(K, G,) = B,

The elements of the Betti group, in virtue of Defs. 13 and 14, are classes
or cosets of homologous cycles. The definition of the terms “cycle” and
“homologous to zero” depends of course on the group G used in the basic
construction.

It turns out that in order to determine the Betti groups of a complex K
over an arbitrary group G, it suffices to know the Betti groups over the
group of integers Gy ; because of this, the group Gy plays a particularly
important role. However, we shall not prove this fact.

It will be proved in the sequel that the Betti groups of a complex K are
topological invariants of the corresponding polyhedron | K | . The Betti
groups of a polyhedron are the basic topological invariants, and have been
studied more thoroughly than any of the others.

D) If K is an n-complex and A is the boundary operator in K, then A
is a homomorphism of the group L’ into the group L™ (see (6)),
r=1,2, --- ,n. In virtue of Defs. 12 and 13, the subgroup Z" is the kernel
of the homomorphism A in the group L’, and the subgroup H™™ < L' is
the image of L” under A. Hence the groups L'/Z" and H™" are isomorphic.

B) If z* y* 2* are elements of the Betti group B" of a complex K, and
z, y, z are cycles of K in the corresponding homology classes x¥*, y*, z*
then the relations z* + y* = z* and 2 + y ~ 2z are equivalent. Hence an
arbitrary relation between the elements of the Betti group B" can be
replaced by a relation between cycles by using the homology symbol in
place of the equality sign. Therefore, in studying homology relations be-
tween cycles, we study, by the same token, properties of Betti groups, and
this is the significance of the homology symbol. To give an example, the
notion of linear independence of the elements of a Betti group can be re-
placed by the notion of independence of cycles with respect to homology.

§6. Decomposition into components. The zero-dimensional Betti group

This section is devoted to the clarification of the geometrical meaning
of the zero-dimensional Betti group of a complex. As a preliminary to this,
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we shall prove a general proposition, which is also of some independent
interest (see Theorem 6).

A) A subcomplex of a complex K is any complex L all of whose simplexes
are contained in K. The set of all simplexes of a complex K, whose dimen-
sion does not exceed r, is called the r-dimensional skeleton, or simply the
r-skeleton, of the complex K. The r-skeleton of K is a subcomplex of K.

B) A complex K is said to be connected if it cannot be represented as
the union of two non-empty subcomplexes L and M without common
simplexes. A complex is connected if, and only if, given any two of its
vertices a and e, there exists a sequence of vertices

1) : QG = 0,02, ,0q =€
such that a;, @iy1,7 = 1,2, - -+, ¢ — 1, are the vertices of a 1-simplex of
K

To prove this, suppose first that the complex K is not connected, i.e.,
is the union of two disjoint non-vacuous subcomplexes L and M. Let a
be a vertex of L and e a vertex of M, and assume that a sequence (1) exists
for these vertices. If a; is the last vertex of (1) which is contained in L,
the simplex (a:, a:y1), which exists according to the above condition,
cannot lie in either L or M. Hence, if K is not connected, the sequence
(1) is lacking for at least one pair of vertices of K.

Assume now that the complex K is connected. Let a be a fixed, but ar-
bitrary, vertex of K and denote by E the set of all vertices ¢ of K which
can be joined to a by a sequence of the form (1). If a simplex A4 has at
least one vertex in E, then obviously all its vertices are in E. Hence the
set of all simplexes of K with vertices in E forms a subcomplex L of K.
The set of all simplexes of K which are not in L clearly also forms a sub-
complex M of K, which, however, is empty since K is connected. There-
fore I contains all the vertices of K, and the fixed vertex a can be joined
to an arbitrary vertex e by a sequence of the form (1). This immediately
implies that every pair of vertices of K can be joined by a sequence (1).

C) Any connected subcomplex L of the complex K, such that K is the
union of two disjoint complexes L and M, will be called a component of
K. If K, ---, K, is the set of all components of K, then K; n K; = 0,
7 # j, and K is the union of the complexes K;, --- , K, .

Assume that the components K; and K; intersect. Since K; is a com-
ponent, K is the union of two disjoint subcomplexes K; = L and M. De-
noting the intersections of K; with L and M by K’; and K”;, respectively,
it is easily seen that K’; and K”; are disjoint subcomplexes of the com-
plex K;, and that their union is K;. Since K; is connected, one of the
subcomplexes K'; or K”;, in fact the latter, must be empty, because
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K'; = K; n K;, which is non-empty by hypothesis. Hence K; < K;.
Similarly, it can be shown that K, « K, i.e., K; = K;, whence 7 = j.

We shall prove now that K is the union of all its components, by showing
that an arbitrary simplex A of K is contained in one of the components.
If K is connected, there is exactly one component, K = K,;, and the
assertion is true. If K is not connected, it is the union of two disjoint sub-
complexes L and M, and one of these, say L, contains A. If L is connected,
then L is a component of K, and the simplex A is contained in one of the
components of K. If L is not connected, we extend the decomposition un-
til a component containing A is reached.

A fixed coefficient group G is used in what follows, and this fact will not
be mentioned explicitly again.

TueoreM 6. If Ky, - -+, K, is the set of all components of a complex K,
and B", B'; are the Betli groups of the complexes K and K, respectively,
then B 1s isomorphic to the direct sum By + -+ + B, .

Proof. Let L” be the group of all r-chains of the complex K, and denote
by L'; that subgroup of L which consists of all chains of L™ in which the
only simplexes appearing with non-vanishing coefficients are simplexes of
the complex K. It is clear that

@ =Lt o+ L,

and that L; is the group of all r-chains of the complex K, . Furthermore,
if we set H/ ™' = AL’;, then

(3) Hir—l c Lir—l.
We shall show that
(4) Hr-—l = le-l + . _|_ Hpr——l'

Indeed, if Az, where ¢ L, is any element of H™, then, by (2),

r=o 4+ 2, z;eL;,

and hence

(5) Az = Az + -+ + Az,

where Az; ¢ H/™". The uniqueness of the decomposition (5) follows from
(2) and (3).

Denoting by Z"; the kernel of the homomorphism A in the group L';, it
will be shown that

(6) T =24 -+ 7,
IfzeZ thenz = z + --- + z,, where x; ¢ L"; (see (2)). Hence
Axl-l_ e +Axp= Az =O;
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and by (3) and (4), this yields Az; = 0, so that z; ¢ Z"; . The uniqueness
of this decomposition of z follows from (2).

Relations (4) and (6) imply that the group Z/H' is isomorphic to the
direct sum Z"y/H'y + -+ + Z',/H", . This proves Theorem 6.

D) Let K be an arbitrary complex, and 4%, ---, A4°, the set of all
positively oriented O-simplexes A% = +(a;) of K. If

= qA% + pA% + - + gud’e

is any O-chain of K over @, define the Kronecker index I(z) of the chain
z by setting

I) =g+ - + ga.
It is clear that ’
(7 I(z +y) = I(x) + I(y).

We shall show that 2 ~ 0 implies I(z) = 0.
Let A' = +(a, b) be any oriented 1-simplex of K, and set

A’ = +(@), B =4+@).

Then A(gA") = gB" — gA°, which implies that I{A(gA")] = 0, which in
turn, by (7), implies that I(Ay) = O for any ¥ e L'. This proves the asser-
tion.

We remark that it is not possible to introduce the notion of index for
chains whose dimension is greater than zero. Indeed, only in the case of
a O-simplex can we speak of a positive orientation, since only then does
there exist a unique vertex ordering.

E) If K is a connected complex, then I(z) = 0 is equivalent to z ~ 0;
and moreover, B'(K, G) is isomorphic to G-

Let a and e be any two vertices of K, and set A° = +(a), E' = +(e).
Since K is connected, there exists a sequence (1) such that K contains the
simplexes (a:, @iy1), ¢ = 1, -+ ,¢ — 1. Setting A"; = +(a:, @i41), the
boundary of the chain

y= gA11 + gAlz + o+ gAlq_x

over G is obviously Ay = gE° — gA®. Hence gE® ~ gA°, and this imme-
diately implies that any 0-chain = over an arbitrary group G is homologous
to a chain gA°, g ¢ G. Since z and gA® are homologous, their indices are
equal, and hence I(z) = g. Therefore

x ~ I()A"

The last relation shows that if I(x) = 0, then z ~ 0, which proves that
the relations I(x) = 0 and z ~ 0 are equivalent.
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By (7), the operator I is a homomorphic mapping of the group =2
into the group G. If g € G, there is a cycle gA® in Z° whose Kronecker index
is equal to g, and hence I (Z" = G. On the other hand, the equivalence of
the relations I(z) = 0 and z ~ 0 implies that H? is the kernel of the ho-
momorphism I. Hence Z'/H® is isomorphic to @, and this completes the
proof of proposition E).

TaroreM 7. The zero-dimensional Betti group of an arbitrary complex

K over G is isomorphic to the direct sum G + --- + G, where the number
of terms in the direct sum is the same as the number of components of the
complex K.

This theorem follows immediately from Theorem 6 and proposition
E).

§6. The Betti numbers. The Euler-Poincaré formula

Since the Betti group B’ of a complex K is a topological invariant of the
polyhedron | K |, any numerical invariant of the Betti group is an in-
variant of | K | . Particularly great interest attaches, of course, to finding
a complete system of numerical invariants of the Betti group. The prob-
lem of constructing a complete system of numerical invariants will be
solved here for the Betti group B’y over Gy, the group of integers, and also
for the Betti group B, over G., the group of residues modulo m, m a
prime. A complete system of invariants for the group B’y consists of its
rank, which is the Betti number, and its torsion coefficients. The group
B',. has just one invariant, the Betti number modulo m. In this section
we shall also derive the Euler-Poincaré formula, which gives two expres-
sions for the Euler characteristic of a complex: one in terms of the Betti
numbers, i.e., invariant expressions, and the other in terms of the num-
ber of simplexes of different dimensions, which are non-invariant expres-
sions.

Let us first recall several fundamental facts of the theory of commu-
tative groups. The groups will be written additively.

A) The commutative group A is said to admit of a finite system of gen-

erators 1, + -+, Ts, s € 4, if every z € A is of the form
T =Na1+ -+ A,
where A1, -+-, A\ are integers. It is known that every factor group and

every subgroup of a group with a finite system of generators also admits
of a finite system of generators. A group 4 generated by a single element
z; is called a cyclic group. If the relation Azy = 0, where X is an integer,
implies X = 0, the generator z; and the group A itself are called free or of
order zero. If there exists a natural number X such that Az; = 0 and X is
the least natural number satisfying this condition, then the generator x;
and the group A itself are said to be of fintte order \.



§6] THE BETTI NUMBERS 31

B) Every commutative group A with a finite system of generators is a
direct sum of cyclic groups

Al,"',A»,-; Bl,"',Bq,

where the 4.’s are free cyclic groups and each B; is a cyclic group of finite
order 7;, with 7,4, divisible by 7, . [For a proof of this fact, see Pontrya-
gin, Topological Groups, Ch. 1.] The numbers 7, 71, -+ - , r,form a com-
plete system of invariants of the group A. The number r is called the
rank of the group A and the numbers 1, -+, 7, its torsion coefficients.
We note that if all the elements of the group 4 are of prime order m, then
its rank is equal to zero and all the torsion coefficients r, , - - - , r, are equal
to m. In this case, the number ¢ of torsion coefficients is called the rank
modulo m of the group 4, and it, together with m, forms a complete sys-
tem of invariants of A.

C) If the coefficient group @ is a cyclic group with generator gy, the
group L" evidently admits of a finite system of generators

g, g d e

where A7y, -+, A4 is the set of all arbitrarily oriented r-simplexes of
the complex K. By A), the subgroups Z" and H" of the group L', as well
as the factor group B" = Z'/H", also admit of a finite system of generators.

DeriniTiON 15. Let B’y be the r-dimensional Betti group of a complex
K over the group of integers Gy . The rank of the group B’y is called the
r-dimensional Betti number of the complex K and is denoted by po(r) = p(r).
The torsion coefficients =, - -+, 7, of the group B’y are called the r-dimen-
sional torsion coefficients of the complex K, and are denoted by

T DR r
T1, y T a(n) -

D) If the group @, of residues modulo m, m a prime, is taken as the
coefficient group, then every element of the group L', , as well as every
element of the subgroups Z",, and H",, of L",, and the factor group

BT’m = Zrm/Hrm;

is also of order m.

DeriniTioN 16. Let B",, be the r-dimensional Betti group of a complex
K over the group G,, of residues modulo m, m a prime. The rank modulo
m of the group B",, is called the r-dimensional Bettt number of the complex
K modulo m and is denoted by pn(r).

TurorEM 8. The zero-dimensional Betti number pn,(0) of an arbitrary
complex K modulo m, m = 0 or a prime, is equal fo the number p of com-
ponents of the complex K. Moreover, the zero-dimensional Betti group B’ of
the complex K over Gy does not have any torsion coefficients.
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Proof. By Theorem 7, the group B, is the direct sum of groups
Cl y "t CP ’

each of which is isomorphic to the group G, of residues modulo m. If m = 0,
every group C; is free, i.e., B% has no torsion coefficients, and its rank is
p. If m is a prime, every group C; is of order m, and the rank modulo m
of the group B’, is equal to p. This proves Theorem 8.

The Euler Characteristic. The Euler-Poincaré Formula

TaeorEM 9. If K s an n-complex, a(r) the number of r-simplexes of K,
p(r) the r-dimensional Betti number of K, and pn(r) the r-dimensional Betti
number of K modulo m, m a prime, then we have

x = x(K) = 27 (=1'e(r) = 2 (=1)P() = 237 (—1)paulr).

The number x is called the Euler characteristic of the complex K.

To prove Theorem 9, we reintroduce the notion of the rank of a group,
and derive one of its properties.

E) If 4, is an arbitrary commutative group, a system z;, - -+, @, of
elements of 4, will be called linearly independent if the relation

Mzt - AT, =0,

where the \; are integers, implies \; = - -+ =\, = 0. If the group 4, ad-
mits of a finite maximal system of linearly independent elements

Tiy 3%,

then A, will be said to be of finite rank p, denoted by pi(4o). If the group
Aq has n linearly independent elements for every natural number 7, then
we set po(4o) = . It is easily proved that the rank of a group is one of
its invariants, i.e., it is independent of the choice of a maximal system.

We shall show that if A4, is a group with a finite number of generators,
then definitions B) and E) yield the same number. ‘

Denoting by z; a generator of the ¢yclic group A; and by y; a generator
of the cyclic group B; (see B)), we show that z;, - - - , 2, form a maximal
linearly independent system. Suppose that

(1) )\1131 + e + )\T.'E,- = 0.

Since 4o = 41 4+ --- 4+ 4, 4+ Bi+ .-+ + B,, (1) implies \z; = 0, and
inasmuch as z, is a free generator, \; = 0. Now, multiplication of an ar-
bitrary element © = May + - -+ + M2 4+ pays + -+ + pey, of the group
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Aoby N = 7o yields Az — A\zp — -+ — A2, = 0, i.e., the system
x, xl , e , xr

is linearly dependent.

F) If A, is a group, all of whose elements are of prime order m, and
G is the group of residues modulo m, then one can define an operation of
multiplication of X € G, by @ € 4, . In fact, if 8 is any number of the resi-
due class X, then the product Bz is obviously independent of the choice of
B, and depends merely on the class \ itself. We may therefore set Az = Bz.

A system z, -+, z, of elements of the group A, is called linearly inde-
pendent modulo m, if the relation Mizy + -+ + Nz, = 0, where \; € G, ,
implies Ay = --- = A\, = 0. If 4,, has a maximal system =, y ", 2, of

linearly independent elements modulo m, we shall say that the rank mod-
ulo m of the group 4, is equal to p and denote it by p,.(4 m). If, for every
natural number n, there exists in 4., a system of n linearly independent
elements modulo m, we set pn(A,) = . It is easily proved that this defi-
nition of rank is a group invariant, i.e., is independent of the choice of a
maximal system. We shall show that if A is a group with a finite system
of generators, definitions B) and F) reduce to the same notion of rank
modulo m.

Denote by y; a generator of the cyclic group B; (see B)), and assume
that

@) Myt + o0 4 Ny, = 0.

Since A = By + --- 4+ B,, (2) implies \;y; = 0; and since the order
of the generator y; is equal to m, \; = 0, (\; ¢ G,,). Furthermore, if

Y= my+ -+ py,

is any element of the group 4, then the relation

Y=y — = pgYe =0

shows that the system y, 1, - - - , ¥, is linearly dependent modulo m.

LemMmA. Let m be zero or a prime, and A, a group with the property that
mx = 0 for every x € An ; i.e., if m # 0, every element of A, is of order m,
and if m = 0, A, is arbitrary. If B, is any subgroup of the group A.., and
Cn = Au/Bn, then

(3) Pm(Am) = PM(Bm) + Pm(Cm)-

Proof. To avoid having to distinguish the cases m % 0 and m = 0, call
the ordinary linear independence (see E)) linear independence modulo 0.
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If

4) Yyt 5 Ys
and

®) 2,0 %

are systems of elements, linearly independent modulo m, of the groups
B, and. C,., respectively, and z; e A, is in the coset z;, then we shall
show that the system

(6> Tiy, 5 %Y1, 0 5 Ys

is linearly independent modulo m in A, .
Suppose that

(7) >\1x1+---+>uxt+u1y1+---+#sys=0,
N €Gm,ui€CGn.

The corresponding relation for the factor group is M2y + -+ + N\2; = 0,
and since the system (5) is independent, Ay = --- = A, = 0. Hence rela-
tion (7) reduces to my1 + -+ + wmsys = 0, whence, by (4),

po= - =p =0

Therefore the system (6) is independent.

The above implies that if either pn(Bmn) = ® or pm(Cm) = o, then
pm(An) = . Hence the lemma is proved for this case. We shall now show
that if pm(Bn) and pm(Cn) are finite, and the systems (4) and (5) are max-
imal, then the system (6) is also maximal.

Suppose that = ¢ 4,, and let 2 be the coset of C'», which contains x. Since
the system (5) is maximal,

(8) vz + ver + o0 4 vz = 0,

where v 5% 0, v ¢ Gn , vj € G . Relation (8) implies

9) vr 4+ vy + oo vt = Y € B .

Since the system (4) is maximal, it follows that

(10) By + oy o+ opdls =0,

where u = 0, u € G, ps € G . From (9) and (10) we obtain
(11) w4+ oy 4 - 4 v+ pyn + -0+ sy = 0.

Here ur # 0, since, if m = 0, p and » are integers different from zero;
and if m # 0, u and » are non-zero residues modulo m, m a prime, and
their product is thus different from zero modulo m. Hence (11) estab-
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lishes the linear dependence of the systemz, 1, < -+ , 2., 1, -+, ¥s , Which
proves that the system (6) is maximal.

Proof of Theorem 9

Let m be zero or a prime, G, the group of residues modulo m, and g a
generator of the group G, (G is the group of integers). Further, let

Ay AT

be the set of all arbitrarily oriented r-simplexes of the complex K. The
elements gA™y, -+, gA .y can be Tegarded as generators of the group
L., . It is easily established that this system is linearly independent mod-
ulo m. That it is maximal follows from the fact that it forms a system of

generators. We have therefore

(12) pu(L'm) = a(r).
In virtue of the lemma, we have
(13) pr(L'n) = pm(Z7m) + Pm(er/Zrm)’ r=20,1,---

If r > 0, the groups L m/Z m and Ha'™ ! ‘are isomorphic (see §4, D)), and
(13) reduces to

(14) Pm(L ) = Pm(Zrm) + Pm(H iil), T = l, e, M.
If r = 0, then Z°, = L, , , and hence
(15) Pm(L m) = Pm(ZOm)

Introducing the notation p,,.(H m )
can be written as

(16) a(r) = va(Zrm)'“}" -Pfrl:(gmr_l), Pm(Hm—l = 0,
DA i e -

0 the two relations (14) and (15)

From the lemma and Defs. 15 and 16, it follows that
on(Zm) = pu(H'w) + pulZ'w/H ) = pu(H m) + pm(B'm)
= pu(H ) + pu(r), r=01---,n
Since, by its very definition, H",, = {0}, relations (16) and (17) combined
yield
a(r) = pu(r) + pu(Hu'™) + pu(H'n), puHn ") = pu(H"n) =
r=20,1,---,n.
Multiplying the first of these by (—1)" and summing over r, we obtain
2o (=) = 270 (=1)Pulr).

This proves Theorem 9.

(17)



Chapter 11
THE INVARIANCE OF THE BETTI GROUPS

This chapter is devoted to the proof of the fact that, if the polyhedra
| K| and | L | are homeomorphic, then the complexes K and L which
generate them have isomorphic Betti groups in all dimensions. This en-
ables one to speak of the Betti groups of the polyhedra themselves. The
proof of this fact is not simple and requires the creation of a complicated
technique, which is itself of great interest and is applicable not only to the
proof of invariance, but also to the study of continuous mappings of one
polyhedron into another.

The most interesting part of the machinery developed here is the con-
struction of the so-called simplicial approximations. If ¢ is a continuous
mapping of a polyhedron | K | into a polyhedron | L |, the mapping ¢ is
replaced by a so-called simplicial mapping, which can be completely
treated from the combinatorial point of view, and which generates alge-
braic connections between the complexes K and L. It turns out, however,
that, in order to make simplicial approximation possible, it is necessary
to have the simplexes of the complex K sufficiently fine, and it is therefore
necessary to subdivide the complex K. The complex K* is called a subdivi-
sion of the complex K if | K* | = | K | and if every simplex of K* is con-
tained in some simplex of K. Just because of its generality, however, this
general notion of subdivision is not easy to apply. We shall employ here
instead the special so-called barycentric subdivisions. The relation be-
tween the complex K and its barycentric subdivision K’, nevertheless, is
so cumbersome as to make the proof of the isomorphism of the Betti
groups of the complexes K and K’ involved. This constitutes the most
unpleasant part of the proof of the invariance of the Betti groups. The
combination of the method of simplicial approximation with the operation
of barycentric subdivision yields a proof of the invariance of the Betti
groups.

§7. Simplicial mappings and approximations -

In this section the notion of a simplicial mapping of a complex K into a
complex L is defined, the behavior of chains, cycles, and homologies under
a simplicial mapping of K into L is brought out, and it is proved that a
continuous mapping ¢ of a polyhedron | K | into a polyhedron | L | can be
approximated by a simplicial mapping, provided that certain restrictions
are imposed on ¢.

36
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Simplicial Mapping
A) Let A" = (a0, a1, - -+, a,) be an r-simplex in R™,
B = (bO:bla :bs)

an s-simplex in R", and f a mapping which assigns to each vertex a; some
vertex b; (f need not be one-to-one). Assign to each point

(1) z=2Na+ Nay+ --- + Na, e 4’
the point f(z) € R" by setting ‘
@) f@) = XNf(a) + Nf(a) + -+ + Nf(an).

The resulting mapping obviously coincides with the initial one on the ver-
tices a;, and is a continuous mapping of the simplex A" into the simplex
B°. It is called a simplicial mapping of A" into B®. The set f(4") is a face
D" of the simplex B’, where the simplex D* spans those vertices b; which
are of the form f(a;). Moreover, if ¢ is a simplicial mapping of B into the
simplex C* = (¢, ¢1, -+ - , ¢), then gf is a simplicial mapping of A into
C". Since f may map two or more distinet vertices of A" into a single ver-
tex of B’, it is possible to combine the terms which contain the vertex
b; on the right-hand side of equation (2), with the result that (2) takes
the form

3) f@) = 1% + w'by + + -+ + u'by,

where 1’ is the sum of all the A’ for which fla;) = b;. Since the )\’ satisfy
(2) and (3) of Def. 4, the u’ also satisfy these conditions, whence f(z) e B,
Relation (3) implies that f(A") is equal to D, while the continuity of f on
A" follows from §2, B). The mapping gf, given by the formula

glf @] = Nglf(a)] + - -+ + Nglf(an)],

is simplicial in virtue of (2) and (3). Let us illustrate the above by a simple
example.
Let r = 3, s = 2, and set

flao) = flaz) = by,  fla) = flas) = bs.

Then f(z) = \° + M)bo + A\ + Aby, 1 =2 + N, u* = A + 2. Here
k= 13;1’1le = (bo,bl). .

Derinirion 17. Let K and L be two complexes and f a continuous map-
ping of the polyhedron | K | into the polyhedron | L | . If f is at the same
time a simplicial mapping of the simplex 4 into some simplex B of L for
every simplex A of K (see A)), then f is called a simplicial mapping of
the complex K into the complex L. ‘
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The successive application of two simplicial mappings obviously again
results in a simplicial mapping (see A)).

Def. 17 implies

1. If @y, a1, -+, a, are vertices of a simplex of the complex K, then
f(a), flay), - -, f(a,) are vertices of some simplex of the complex L.

It will be shown below (see B)) that if a mapping f, defined only on the
vertices of the complex K, satisfies condition 1, then it can be extended,
and moreover uniquely, to a simplicial mapping of all of K into L. This
leads to the following definition.

DeriniTioN 18. A mapping f which assigns to every vertex of the com-
plex K a vertex of the complex L in such a way as to satisfy condition 1,
is called a simplictal vertex mapping of the complex K into the complex L.
It may also be referred to as a simplicial mapping of the abstract complex
& into the abstract complex &, where & and ¢ are the abstract complexes
corresponding to the geometric complexes K and L.

If two or more distinct vertices of the simplex A are mapped by f into
a single vertex, then the simplex A is said to be degenerate under the map-
ping f or simply degenerate.

B) If K and L are two geometric complexes and f a simplicial vertex
mapping (see Def. 18) of the complex K into the complex L, then f can
be extended to a mapping g of the whole polyhedron | K | so that ¢ is a
simplicial mapping of the complex K into the complex L (see Def. 17).
This extension, moreover, is unique.

Let ayp, a1, -+, ax be the vertices of the complex K, & the abstract
complex corresponding to K, and N the natural realization of & in the sim-
plex E* = (e, &1, -+, &) (see §2, F)). For simplicity we may allow a;
and e; to correspond to the same vertex of the complex ®. The relation

(4) z = Nao + Nay + -+ + Ny

assigns to each point A ¢| N | a point z ¢ | K |. The resulting mapping
A — « of the polyhedron | N | onto the polyhedron | K | is one-to-one
and bicontinuous (see §2, F)). The relation

(5) g9(@) = Nf(ao) + Nf(ar) + -+ + Nf(aw)

defines a continuous mapping A — g(z) of the polyhedron | N | into the
polyhedron | L | . Hence relations (4) and (5) together define a continuous
mapping g of | K | into | L | . It is clear that g(a;) = f(a;). Moreover, if
A" = (@i, @y, -+, a;) is a simplex of K, then ¢ defines a simplicial
mapping of A" into a simplex B* ¢ L. We have thus found a simplicial map-
ping g of K into L which coincides with f on the vertices of K. The unique-
ness of g is obvious, for if ¢ coincides with f on all the vertices of some
simplex A", it can be extended, by its very definition (see A)), to the whole
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simplex A" in just one completely defined way (see (2)). This proves prop-
osition B).

The Approximation Theorem

We shall now prove that continuous mappings can be approximated by
simplicial mappings. To this end, we introduce an auxiliary notion, that
of the star of a complex.

C) The set of all interior points of a simplex (see §2, A)) of a complex
K will be referred to as an open simplex of K. It is easily seen that every
point of the polyhedron | K | is contained in exactly one open simplex of
K. If ais a vertex of the complex K, the set-theoretic union of all the open
simplexes of K with a as vertex is called the star of the vertex ¢ in K and
is denoted by S(a), S(a) = | K | . Let us prove that every star S(a) of K
is an open set in | K | .

Let us set F = | K |\S(a) and show that F = | K* | , where K*is a sub-
complex of K. This will prove our assertion, since every complex is com-
pact and hence closed. Let K* consist of all simplexes of K which do not
have a as a vertex; then | K*| = F. For, by construction, F is the set-
theoretic union of all open simplexes of K not having a as vertex; but, if
A is an open simplex which does not have a as vertex, then none of its
faces have a as vertex, i.e., A = F. Hence F is the set-theoretic union of
all closed simplexes of K which do not have a as vertex, and F = | K*|.

TeEOREM 10. Let ¢ be a continuous mapping of a complex K into a com-
plex L which satisfies the star condition, i.e., with the property that for every
star S(a) of K there is at least one star S(b) of L satisfying the condition
¢[S(a)] = 8(b). Now assign to each vertex a of K a veriex f(a) of L for which
¢[S(@)] = S[f(a)]. Then f is a simplicial vertex mapping of K into L, and
hence can be extended to a simplicial mapping of the whole complex K into
the complex L. Under these conditions, f 1s called a stmplicial approximation
to @, or ¢ is satd to admit of a simplicial approzimation f. Moreover,if z ¢ | K |,
D e L, and ¢(x) € D, then f(x) € D.

Proof. Let z ¢| K |. Let A be that open simplex of K which contains
z and B be that open simplex of L which contains ¢(z). Denoting the ver-
tices of A by ay, a1, -+, a-, we show that f(a;) is a vertex of B. Since
z e A = S(a;), we have

o(z) € ¢[S(a:)] = S[f(a:].
Moreover, since ¢(x) ¢ B, the open simplex B is contained in the star
S[f(a;)], and hence f(a;) is a vertex of B.
Since z is any point of | K |, A is an arbitrary open simplex of K, and

this proves that f maps the vertices of a simplex of K into the vertices of
a simplex of L, i.e., f is a simplicial mapping.
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Since f is a simplicial mapping, it follows that f(4) = C < B, where
C is a face of the simplex B. Now, let D be a simplex of L which contains
the point ¢(x) and T the complex consisting of D and all its proper faces.
Since ¢(x) can lie in just one open simplex of L, namely B, it follows that
B eT. Hence B is a face of D, which implies that C is also a face of D,
and therefore ‘
f(&) ¢ f(d) = € = D.

This completes the proof of Theorem 10.
- We remark that the simplicial approximation f to the continuous map-
ping ¢ defined in Theorem 10 is not unique, because there may be several
stars S(b) which satisfy the condition ¢[S(a)] = S(b). In the sequel we
shall choose one of the possible approximations.

D) Let K, L, and M be three complexes, and ¢, ¥ continuous mappings
of K into L and L into M, respectively. If f, g are simplicial approxima-
tions to ¢ and ¥, respectively, then gf is a simplicial approximation to

Ye.
If o is a vertex of K, then ¢[S(a)] = S[f(a)], and therefore

Y{elS@)]} = ¢{S[f([@)]} = S{glf(@)]},
which means that gf is a simplicial approximation to the mapping ye.
Algebra of a Simplicial Mapping

What follows below is applicable to both abstract and geometric com-
plexes, so that we shall not distinguish between them.

E) Let f be a simplicial mapping of a complex K into a complex L,
and A" = e(a, a1, -+, @) an oriented simplex of K. If A" is not de-
generate under the mapping f, i.e., all the vertices of A" are mapped into
distinet vertices of L, f(a:) = b, , set

(6) f(Ar) = é‘(bo, bl, Tt br) = B".
In the contrary case, set
@) : jan =o.

Moi*eover, ifx = gAdt + -+ + gamnd a» is any r-chain of K over G,
the relation '

®) f@) = gf(A) + -+ + gerf(Aaw)

associates with the chain z a chain f(z) of L of the same dimension and over
the same group G. Hence we may say that the simplicial mapping f induces
a chain mapping f given by (8). It is clear that

9) f@ + y) = =) + fw).
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Moreover, f satisfies the following important condition:
(10) Af(e) = f(az).
It suffices to prove (10) for z = A”, the simplest integral chain.
If A7 is not degenerate, (6) implies
Af(AT) = Do e(—=1)'(bo , by, -+ - s bit, bigr, o0 by).
Furthermore,
AT = 3T e(— D) a0, a1, vy Qi Qi - @),

Since A" is not degenerate, none of its faces is degenerate, and the last
relation yields

. f(AAr) = Z;-_—U 8(“1)i(b0 y bl y T bi~—1 ) bi+1 y T, b")

Now, let A" be degenerate, but so that f(4") has dimension just one less
than A7, i.e., exactly two vertices of A" correspond to a single vertex of its
image. Since the order of the vertices is not essential, assume these to be
a and a1, i.e., f(a) = f(a) = b, while all the remaining vertices

f(a'i)=bi’ ?:—"—'2,"',7',

are distinct ‘zmd different from b. By definition (see (7)), f(4") = 0, and
hence Af(A") = 0. Consequently, it suffices to prove that f(AA™) = 0. To
this end, consider

AAT = Zg=0 8(—"1)1:(0,0 y @1yt Qi Gaqa, e, ar)~

There are just two simplexes, (a1, 62, -+, a,) and (@, as, --+, @), on
the right-hand side of the last equation, which are not degenerate; while
the remaining simplexes are degenerate, since they each contain both
vertices ap and a; . Hence

f(ad™y = e, by, --- ,b) — elb, by, -+, b,) = 0.
If A" is degenerate, and f lowers its dimension by more than one, then
all its (r — 1)-faces are degenerate, and relation (7) implies
f(adn) =0 and Af(47") = 0.
This completes the proof of (10).

F) Let f be a simplicial mapping of a complex K into a complex L. If
z is a cycle of K, then f(2) is a cycle of L; and if 2, ~ 2, then

f (21) ~ f (22).

In other words, f[Z"(K)] = Z"(L), and f'[H'(K}] c H'(L).
In fact, by (10), Az = 0 implies Af(z) = f(A2) = 0. If 2 — 2, = Az,
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then (9) and (10) imply
f@) — ) = f(Az) = Af(z).

This proves proposition F).

The above leads to the following basic definition.

DeriNiTiON 19. Let f be a simplicial mapping of a complex K into a
complex L, and B'(K) and B"(L) the r-dimensional Betti groups of K and
L over an arbitrary group G. If z* ¢ B'(K) and z is any cycle of the ho-
mology class 2¥, set
(11) @) = j@*,
where f(2)* is the homology class of B'(L) which contains the cycle f(z).
It will be proved below that the mapping 7 of B"(K) into B'(L) defined
by (11) is unique, and moreover, that it is a homomorphism of B"(K)
into B"(L). The mapping f will be referred to as the induced homomorphism
of the stmplicial mapping f.

To show that f is unique, let 2, and 2. be two cycles of 2*. Then z; ~ z,,
which implies f(z1) ~ f(z2) (see F)), whence f(z1)* = f(22)*. To prove that
f is a homomorphism, let u*, »* be two homology classes of B'(K), with
w* + v* = w*, and let w, v be cycles of u*, v*, respectively. Then

w = (u + v) ew*
and
Jw*) = fw)* = fu + v)* = [fw) + fO)I*.

The last term of this equation is the homology class containing the sum
f(u) + f(@); but, in accordance with the definition of addition in a factor
group, the class containing a sum is equal to the sum of the corresponding
classes, 1.e.,

[f(w) + JO)I* = fw* + jo)* = Fu*) + Jo*).

Hence f(w*) = f(u*) + f(»*), and f is a homomorphism.

G) If K, L, M are three complexes and f, g are simplicial mappings of
K into L and L into M, respectively, then the induced mappings of the
simplicial mapping e = gf satisfy the relations

(12) ‘ é=gf
and
(13) & =gJ.

It suffices to prove (12) merely for an oriented simplex A" of K. If A" is
not degenerate under e, then A" is not degenerate under f and f(A") is not
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degenerate under g; and it is then clear that (4”) = §[f(4")], so that (12)
holds in this case. If A is degenerate under e, then at least one of the fol-
lowing conditions must be satisfied: a) A" is degenerate under f, b) f (A ) is
degenerate under g. If a) holds, f(4") = 0, whence glfan] = 0; if b)
holds, §[f(47)] = 0. In either case 6(4") = 0 = §f(4").

Relation (13) is a consequence of (12), for if z* e B'(K) and z is a cycle
of 2*, then

8" = &@)* = §lfEI* = glf()* = alfE")].
§8. The cone construction

We shall apply the cone construction, which is frequently used in com-
binatorial topology, to the barycentric subdivision of a complex. It will
be applied again in Chapter III.

The Cone

A) Let R" be a Euclidean space, F any set of points in R", and « ¢ R™.
The point « is said to be in general position with respect to F if x is not in F
and if, for any two distincet points « and y of F, the segments (k, ) and (x, y)
have just the one point « in common (see §1, F)).

If « is in general position with respect to F, then the set of all points con-
tained in segments of the form (k, z), = € F, is called a cone with vertex
and base F, and is denoted by «(F). If « is in general position with respect
to F and G < F, then clearly «(G) n F = @.

It is easily verified that if a set F’ is homeomorphic to F and «’ is in general
position with respect to F’, then the cones x(F) and «'(F') are homeomor-
phic. However, we shall not use this fact.

A simple example of a cone construction is afforded by a convex body
(see §1, G)). If W is a convex body, U the set of interior points of W, V
the frontier of W, and « any point of U, then proposition G) of §1 im-
mediately implies that  is in general position with respect to V and that

(1) W = «(V).

A simplex is another example of a cone construction. This example will
be needed in the sequel.

B) If A" = (ag, a1, - , @) is an r-simplex of the n-dimensional Euclid-
ean space R" (see Def. 4), then A" is a convex set. Moreover, if G" is the
set of interior points of A", F™" (see §1, A)) the frontier of A", and x e G,
then « is in genelal posmon with respect to Fland A" = K(FM)

Ifa = Na + Nay + -+ + Nar, b = a0 + plas + - -+ + w'a, ave two
distinct points of A", and = is a pomt of the segment (a, b), z = aa + B,
a+B8=1a=0820,then

1
= a + var+ - 4+ va,
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where
@ v = o\’ + By, i=0,1,-,m

It is immediately verified that »° + »* + +-- + »" = 1, v 20,1 =0,
1, ---,r.Hence z e A" and the barycentric coordinates of the point x ¢ (a, b)
are expressed in terms of the barycentric coordinates of the points a and b
by formula (2). The property that the point « belong to the segment (a, b)
is thus formulated in terms of the system of barycentric coordinates and
hence is an intrinsic property of the simplex. Consequently, it suffices to
prove the relation k(F"™*) = A’ for some particular r-simplex. Since the
r-dimensional Euclidean space contains an r-simplex, it is sufficient to con-
sider the case n = r.

We shall therefore show that if A" ¢ R, then A" = W is a convex body,
with F™" as the frontier V of W and @ as the set U of interior points of
W. By the remark above (see (1)), this will prove B) completely.

Let e, - -, e be any basis of B™ and set

gi=ake+ - +adie, i=01-,r z=dgea+ - -+ 3.
If e A" and A%, A}, -- -, \" are the barycentric coordinates of z, then

3) NN+ RN =1,

(4) Nady + Nahy + -+ + N, = 2, j=1,-0,m

The joint system of relations (3) and (4) associates with each system of
numbers (A%, A}, --+, \) = A, satisfying (3), the system of numbers
(', -+, 2") = 2 = o(\). Conversely, if the system of numbers \ in (3) and
(4) is regarded as unknown, and the system z as given, then (3), (4) con-
stitute a system of simultaneous linear equations with matrix equal to the
transpose of the matrix N(ag, a1, -, a,) (see §1, B)). Since the points
@ ,0, -+, a are independent, this matrix has a non-vanishing deter-
minant (see §1, B)). Hence the system (3), (4) is solvable with respect to
z, and we can set A = ¢ '(z). If z ¢ G, then, by definition (see §2, A)), all
the numbers of the system A = ¢ '(z) are positive. Since the correspond-
ence ¢ is continuous, there is a positive & such that all numbers of the
system ¢ (y) are positive for every y with p(z, y) < ¢, whence y € G = W
for every such y. It therefore follows that G = U.

If, now, z € ", then at least one of the numbers of the system ¢ (z) =
is equal to zero, say A’ = 0. If § is an arbitrary positive number and we set

W==5  d=N+4s LS =N, 4=,

then the resulting system of numbers satisfies (3), while A" = W does not
contain the point y = ¢(u). Since § is arbitrary, so is p(z, y), and hence
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zeV,ie, F' ¢ V. This and the fact that ¢" ¢ U imply F/™' = V and
G" = U, which proves proposition B).

Proposition C) gives an example of a cone construction which is needed
in the sequel.

C)If A" = (m, &, -+, a) is a simplex of the Euclidean space R,
then a point « € R™ is in general position with respect to the set A" if, and
only if, the system «, as, a1, - - -, a, is independent (see §1, A)), in which
case B = (,a0,01, -, @) isa simplex. If the points k, @y, a1, * -+ , a,
are independent, then x(4") = B™*.

To prove C), assume that A" contains two distinct points z, and z» such
that the segments («, 21) and (k, x) intersect in a point y distinct from «.
If the barycentric coordinates of the points z;, j = 1, 2, are denoted by
N, -+, A\, then

(5) y=ax+BN;a+ -+ BN;a, e L
If relation (5) for j = 1 is subtracted from the same relation for j = 2, then
6) (e — ek + (BNs — BX’Dag + -+ + (BN — BNDa, = 0.

Now, az — a1 + D imo (B2\2 — BAy) = 0, and not all the coefficients of (6)
vanish. In fact, if @ — a1 = 0, then the vanishing of the remaining coef-
ficients would imply that #; = z. . Hence the points «, a,, a1, - - - , a, are
linearly dependent.

Now, assume that if « is in general position with respect to A", then the
points «, @ , a1, - -+, & are independent. We shall then show that the
sets k(A") and B"™ are identical. If z ¢ A", and the barycentric coordinates
of z are A\, X!, - -+ | \", then any y e «(z) is of the form

y = ax+ f\a + -+ + BNa,,
whence y € B". Now, if
2= pk + plag + - + pa,

is any point of B"*', assume that 4 5 1 (this will be true except in the ob-
vious case z = k), and set

(") a=p B=1l—ypu N=4/8
Then
2= ax+ f\Na + -+ + fN\ar,

whence 2 € k(A"). Therefore x(A") = B™.
We shall now show that if « is in general position with respect to A,
then «, ap, a1, - -+, a- are independent. Assume that the points «, a,
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ai, -+, a are dependent (see §1, A)), i.e.,
® A Slawt Ve =0 v+ + -+ =0, v£0.

Since this relation remains true if multiplied by an arbitrary number, its
coefficients may be taken arbitrarily small. Moreover, if z; is any interior
point of A" with barycentric coordinates N, - -+, A\, set

) y = o+ BA\1a + -+ + B\ a, o 5 1,8 = 1.

Since all the coefficients in (9) are positive, addition of relations (8) and
(9), the former taken with sufficiently small coefficients, yields the relation

y = (a4 v+ B+ Nao + - + B+ e
with all coefficients positive. As in (7), setting
w=a+r, f=1—a, Ne= @A+ )6,
we get
Y= ok + BN ag + -+ + B\ a,.

Denoting by x, the point with barycentric coordinates PTERRIND (N
we show that o1 5 2. . If 21 = 2, = 2, then y = awx + Bz, ¥ = asx + Boz,
and since ay ¥ oy = oy + », these are two distinct representations of
y € (k, ). This is impossible since (k, z) is a 1-simplex, and « and 8 are bary-
centric coordinates with respect to it. This proves C).

D) Let K be a complex imbedded in the Euclidean space R" and « a
point of R™ which is in general position with respect to the polyhedron
| K| . Since « is in general position with respect to | K |, it is in general
position with respect to any simplex 4 of K, and hence «(4) is a simplex
in R" (see C)). Under these conditions, the set of all simplexes of the form
k(A), A ¢ K, and their faces, forms a complex denoted by «(K); moreover,
| k(K) | = «(| K |). The faces which have to be added to the simplexes of
the form x(A4) to fill out «(K) are obviously the simplexes of K and the
vertex (k).

To prove that the simplexes of the set x(K) are properly situated, notice
first that, if P and Q are two properly situated simplexes, then their re-
spective boundaries consist of properly situated simplexes. Hence it suffices
to show that any two simplexes of the form «(4) and x(B) (4, B ¢ K) are
properly situated. If A and B are disjoint, then the intersection of x(4) and
k(B) contains just the point «, their common vertex. If A n B = C, then C
is the common face of A and B, and obviously x(4) n «(B) = «(C).

We shall now show that |«(K) | = x(|K|).If A eK, then A < | K|,
and hence k(4) < «(| K | ), which means that | «(K) | = «(| K |). If, on
the other hand,y e x(| K | ), then thereisa point = € | K | such that y € (k, z);
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and since there is a simplex A of K containing z, it follows that y e x(4).
Hence «(| K |) < |«(K) |, which completes the proof of proposition D).

Algebra of the Cone

E) Let K be a complex imbedded in the Euclidean sﬁace R" and « a
point in general position with respect to the polyhedron | K | . If

A" = 8(0’0:0’17 ’a?‘)
is an oriented simplex of K, denote by x(A") the oriented simplex
S(K: Qo, Qr, 7a7‘)

of the complex «(K) (see D)). If 2" = ¢34 + -+ + gpd": is any r-chain
of K, and we set

(10) k@) = gue(A) + -+ + gik(47),

then k(2") is an (r 4+ 1)-chain of x(K) over the same coefficient groupv as
z', whose boundary satisfies the relations

Ak(z") = 27 — «A(2"), r >0,
Ak(z") = a° — I(2")(x),

where I(z") is the Kronecker index of 2° (see §5, D)).

The two relations (11) are immediately established for 2" = A", and are
extended to an arbitrary chain " through multiplication by the coefficients
g: and summation over <.

The construction given here is applied to the proof of a simple propo-
sition.

THEOREM 11. Let A™ be an r-simplex, and denote by S the complex con-
sisting of all the proper faces of A”, by T" the complex: composed of A™ and all
its proper faces. Then every s-cycle 28, s > 0, of T" is homologous to zero;
while, in 8™, every s-cycle 2*, 0 < s < r — 1, is homologous to zero, and
every (r — 1)-cycle 27", r — 1 > 0, is of the form 2" = gA(A"), where g s
an element of the cocfficient group selected and A" is the oriented simplex.

Proof. With no restriction on generality, we can assume that the simplex
A" = (@, a1, -, ar) is imbedded in R" and that there is a point « such
that the system «, ag, a1, - - - , @, is independent. Define a simplicial map-
ping f of the complex x(T") into the complex 7" by setting

fl) = ao,fla;) = a;,0=0,1,--- ;7

If ¢, s > 0, is any cycle of 77, set v = «(2%), so that Av = 2° (see (11)).

(11)
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Then z* ~ 0 in «(T"), and, by construction, f(z*) = 2*. Since
2 = @) = af0) = Ay,

where v is a chain of 77, it follows that 2* ~ 0 in 7".

Now, if 2° is any cycle of 8™, then 2° = A(u), where u is a chain of 7",
If s < r — 1, the chain u is contained in S, because 8" contains every
simplex of 7" of dimension less than 7. Hence in this case 2° ~ 0in 8™,
If s = r — 1, since there is exactly one simplex A” of dimension r in 77,
then denoting either one of the orientations of A" again by A", we have
u = gA", and hence 2" = gA(A"). This proves Theorem 11.

Theorem 11 should be supplemented by the remark that zero-dimen-
sional homologies in the complexes 7" and S™" are treated on the basis of
§5. It need only be remarked that 7" is always connected, and 8™ is con-
nected unless 7 — 1 = 0, in which case 8" consists of two points.

§9. Barycentric subdivision of a complex

In this section we shall define the barycentric subdivision K’ of a com-
plex K by means of the cone construction (see §8, A)). The purpose of the
operation of barycentric subdivision is to represent the polyhedron | K |,
initially given by the complex K, in terms of the complex K', | K' | = | K |,
whose simplexes are smaller than those of K. In this connection, it is im-
portant that the transition from K to K’ be as simple as possible and allow
the establishment of a relation between homologies in K and K'.

The geometric meaning of barycentric subdivision is very simple. We
shall call the point of A, all of whose barycentric coordinates are equal to
1/(r 4 1), the center of A". If K is of dimension zero, take K = K'. If K
is of dimension one, to define K’, divide each 1-simplex of K in half to ob-
tain two l-simplexes, thereby creating a new vertex, the center of the
original 1-simplex. Now, assume that the operation of subdivision has
already been defined for an n-complex. To determine K’ for an (n + 1)-
complex K, it is necessary to subdivide each (n + 1)-simplex A" of K
barycentrically, assuming that all simplexes of lesser dimension have
already been subdivided. Assume that the boundary S" of A™ has been
barycentrically subdivided, and define the barycentric subdivision of
A" to be the cone «[(S™)’] whose vertex « is the center of A",

Geometry of Barycentric Subdivision

Derintrion 20. Let us assign to every complex K, imbedded in the
Euclidean space R", the complex K’, likewise imbedded in R”, and called
the barycentric subdivision of K. If K is a 0-complex, put K’ = K. Now,
assume that the barycentric subdivision of an arbitrary n-complex has
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already been defined so as to satisfy the following conditions:
a) [ K’ | = | K l P

and b) if L is a subcomplex of K, then L’ is a subcomplex of K’. To
define the barycentric subdivision of an (n 4 1)-complex K, denote by M
the n-skeleton of K (see §5, A)) and by 4,"*, 4,"™, - | 4,"™ the set
of all (n + 1)-simplexes of K. Further, let S; be the set of all proper faces
of A;,"", Si e M, and let «; be the center of A,"™ (the point of 4" whose
barycentric coordinates are all equal to 1/(n + 2)). Since the complex S;
is of dimension 7, its barycentric subdivision S’; is defined, and «;(S’ 5) is
a complex by §8, B). Now, define K’ as the set of all simplexes contained in
the complexes M’ and «:(S's), ¢ = 1, ---, k. Then K’ is a complex, and
satisfies conditions a) and b).

Since K’ is defined as the union of several complexes, it obviously satis-
fies condition 1 of Def. 5. To prove that K’ satisfies condition 2 of Def. 5,
let P and @ be two simplexes of K’. We shall show that they are properly
situated by examining three possible cases.

Case 1. The simplexes P and @ are contained in M’. Since M’ is a complex
by the inductive hypothesis, P and @ are properly situated.

Case2. PeM’, Qexi(8S;). Since all simplexes of x;(S’;) are faces of
simplexes of the form «;(B), B € §';, it suffices to consider the case Q € «;(B).
Since P = | M'| = | M | and x:(B) = A;"", it follows that

PanQec|M|n A" = |8].
Again, x;(B) n | 8| = B implies that P n Q < P n B. Moreover, P and
B, as two simplexes of M’, are properly situated; whence, by §2, D), P and
Q are also properly situated.

Case 3. P e k:(83), @ ex;(8';). If 2 = j, P and @ are contained in the
same complex and so are properly situated. If 1 £ j, then, as in Case 2,
assuming that P = x;(4), 4 € 8';, Q = «;(B), BeS';, we have

Pc Ain+1, Q c A]_’n+1, Pn Q c Ain+1 n Ajﬂ-'l'l.
Since s  j, A" 0 A e | S | n| S;|, which implies that
PnQ<[8:|n]|8;];
this in turn implies that Pn Q@ = P n | S;|n @n | S;|. Again,
Pn|8:| =xld)n| 8| =4,Qn[8;] =« (B)n|8;| =B,

whence Pn @ = A n B. Since 4 and B are in M’, they are properly
situated, and hence P and @ are also properly situated (see §2, D)).
We shall now show that the barycentric subdivision K’ of an (n + 1)-
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complex K satisfies a) and b). We have
|K|=|M|vA v .04,

and
|K'| = | M| ]a(8)]u - u|m(8%)].

By the inductive hypothesis, | M | = | M’ |, and A" = |«(8") | by
§8, B) and D); therefore | K | = | K’ |.

Now, let L be any subcomplex of K, and N the n-skeleton of L. Number
the (n + 1)-simplexes of K so that A,"™", -+, 4," " is the set of all (n + 1)-
simplexes of L. By definition, L’ consists of all the simplexes in the com-
plexes N’ and «;(S8';), 7 = 1, - -+, l. By the inductive hypothesis, N’ is a
subcomplex of M’, because N is a subcomplex of M. Hence, since l = k, L'
is a subcomplex of K’, and K’ satisfies a) and b).

A) If K is any complex imbedded in the Euclidean space R™, and

(1) AOaAI:"'7AT

is any decreasing sequence of simplexes of K, i.e., a sequence in which
A,y is a proper face of 4;,7 = 0,1, -+, 7 — 1, then

(2) (0'0?0'1,"',0',-)

is a simplex of K’, where o is the center of A;. Conversely, every simplex
P of K’ can be given in this way. Hence the sequence (1) will be said to
determine the simplex (2).

We shall prove A) by induction on the number of dimensions of K, re-
taining in this connection the notation of Def. 20.

If the simplex A, is of dimension less than n + 1, then all the simplexes
of (1) are contained in M, and, by the inductive hypothesis, (2) is a simplex
of M’ € K'. If the dimension of 4gisn + 1, then 4, = 4,"™ and o0 = «;.
If r = 0, (o) ex:s(S's) = K. If r # 0, the sequence 4;, ---, A, is con-
tained in S;; and, by the inductive hypothesis, A = (o1, **-, 0,) is a
simplex of S’; , whence

K'i(A) = (00)01: "'70-1')

is a simplex of x;(S’s).

To prove the converse, let P e K'. If P e M’, then, by the inductive
hypothesis, P is determined by (1). If P e x;(S’;), the following cases may
oceur: a) P ¢ §';, and hence P = M’; b) P = («,), in which case P is deter-
mined by the sequence consisting of a single A."**; ¢) P = x;(4), 4 = &,
in which case, by the inductive hypothesis, A is determined by some
sequence Ay, ---, A, of faces of S;, and P itself is determined by the
sequence A;"*, 4, -, A, . This completes the proof of A).
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The property of a barycentric subdivision stated in A) could have been
used for its definition. Such a definition would perhaps be simpler, but, in
my view, less intuitive. The proof of the facts that K’ is a complex and that
| K'| = | K | would remain just as unwieldy.

We introduce now the notion of an iterated barycentric subdivision.

B) If K is an arbitrary complex, let K© = K and define K™ as the
barycentric subdivision of K. The complex K™ will be called the
barycentric subdivision of order m of K, or simply a subdivision of K.
Whenever the order of the subdivision is immaterial, the subdivision of the
complex K will be denoted by K with a Greek superscript, e.g., by K
Here, a does not indicate a number, so that the subdivisions K% and K%
of two distinct complexes may be of different orders.

Let us estimate now the diameters of the simplexes of K™ as compared
with the diameters of the simplexes of K.

C) The diameter of a simplex 4 of R is equal to the maximum length
of its 1-faces. ,

Let A = (ap, a1, -, a,) be an r-simplex, and z, ¥ two points of A, with
the barycentric coordinates of z equal to \°, A', --- | \". The distance be-
tween z and y in R" is given by the formula

p@,y) = @ — Yk -y = @@ -y~
If the vector x is given an increment A, then
plz +hy) = (@—1y"+2@—y) b+ 1

We shall show that if z is not a vertex of the simplex A, then there is a
point & + h of 4 for which

3) p + h,y) > oz, y).

If z is not a vertex of A, at least two of its barycentric coordinates, say
N’ and \', are different from zero. Let » be a positive number such that
y < N/2, v < \/2,and set b = ¢ v (6 — a1), ¢ = =& 1. It is clear that
z + his contained in 4. Now, choose that value for ¢ for which

(x—yhz0;

then, for the chosen value of h, inequality (3) follows.

Hence, if = is not a vertex of 4, the function p(z, ¥) cannot attain its
maximum. It does attain its maximum when z and y lie at the ends of the
longest edge of 4.

TuroreM 12. Let K be an r-complex imbedded in R". If the diameter of
bvery simplex of K does not exceed the mumber n, then the diameter of every
wmplex of K™ (see B)) does not exceed [r/(r + 1)]™n. Consequenily, the
ftmplexes of K ™ can be made arbitrarily small by taking m sufficiently large.
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Proof. By C), the diameter of any simplex of K’ does not exceed the
greatest length of its 1-simplexes. Let (o0 , 1) be any 1-simplex of K’, where
o is the center of a simplex 4o = (a0, 01, * - , as), and oy is the center of a
proper face A1 = (@, a1, -+, a:;) of Ao (see A)). Set A = (@41, -~ -, @)
and let ¢ be the center of 4. It is immediately verified that

oo =[¢t+1D/G+ Dlen+ (s —0/(s+ Do (see §8, (2)).

Thus the point ¢, divides the segment (o1, o) in the ratio (s — £): (¢ + 1),
and hence p(oo, o1) = [(s — £)/(s + 1)]o(e1, o). However, since o; and ¢
are contained in Ao, p(e1, ¢) does not exceed the diameter of 4o, whence
ploo, o) £ [(s — 8)/(s+ 1)]y. Since 0 £ s = rand0 = ¢ < s — 1, the
diameter of an arbitrary 1-simplex of K’ does not exceed [r/(r 4+ 1)]n;
which, by C), implies that the diameter of any simplex of arbitrary di-
mension of K’ does not exceed [r/(r + 1)]n.

The proof given above immediately implies the assertion of the theorem
for a barycentric subdivision K™ of order m of K. This proves Theorem 12.

Algebra of Barycentric Subdivision

Our problem now is to indicate the transition from each chain z of K
to some definite chain z’ of K’ when we pass from K to its barycentric sub-
division K'. ‘

D) Let K be a complex of arbitrary dimension, and K’ the barycentric
subdivision of K. We shall assign to each r-chain z of K over @ an r-chain
z' of K’ over the same coefficient group G. The chain z’ is called the bary-
centric subdivision of the chain z, and is defined as follows. If z is a O-chain,
set 2’ = x. Assuming that the barycentric subdivision of the n-chains of
K has already been defined, we shall define the barycentric subdivision of
the simplest (n + 1)-chain of K, z = A, where 4 is an oriented (n + 1)-
simplex of K. Let S be the set of all proper faces of A and « the center of
4, so that «(§') = K’. By the inductive hypothesis, the barycentric ‘sub-
division (AA)’ of the boundary AA of A has already been defined, since
(AA) is a chain of 8. Set A’ = «[(AA4)'] (see §8, E)), and if

T =gl + -+ gede

is any (n 4+ 1)-chain of K, put 2’ = g:4"1 + -+ + gud’x. Then any chain
z of K satisfies the following important relation:

@ Ae) = (az)'.

If K™ is the barycentric subdivision of order m of K, define the chain z™

inductively by letting 2® = z and ™™ = (™). If K™ is denoted by
K* (see B)), then ‘™ will be denoted by z*. Relation (4) immediately
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implies
(5) A@z®) = (Ax)”

Relation (4) will be proved by induction. It is obvious for a 0-chain. We
shall prove it for an oriented (n 4 1)-simplex 4 on the assumption that it is
true for an arbitrary n-chain. Since

(6) A" = A(AA)] = (AA) — dA(a4)],

and A4 is n-dimensional, it follows by the inductive hypothesis that
A(AA) = (AAA) = 0. Hence relation (6) reduces to (4).

E) If zis a cycle of K, then 2% is a cycle of K*. If the cycles 2; and 2z, are
homologous in K, then the cycles 2% and 2% are homologous in K¢ This
proposition follows immediately from (5).

§10. A lemma on the covering of a simplex, and its application

The present section is a digression from the basic theme of this book,
homology theory, but closely borders on it. None of the exposition which
follows it is based on the contents of this section.

A proof of Sperner’s lemma and two applications of this lemma are given
here. The applications are: 1) A proof of the fact that an r-simplex has
dimension r in the sense of Def. 8, and 2) A proof of the fact that a con-
tinuous mapping of a simplex into itself always has a fixed point, i.e., a
point which is mapped into itself.

The question as to whether or not the number of dimensions of a simplex
is a topological invariant was one of the difficult problems of mathematics.
It was solved in the affirmative by Brouwer and Lebesgue at the beginning
of this century. Sperner’s lemama is the result of a long process of perfecting
the proof of the invariance of the dimension number of a simplex.

Sperner’s Lemma

A) Let K be a complex, K* a subdivision of K (see §9, B)), and let a
be any vertex of K Denote by C(a) the simplex of smallest dimension of
K which contains a, and assign to the vertex a e K* one of the vertices
f(a) € K of the simplex C(a). Then the mapping f of the vertices of K® into
the vertices of K is simplicial (see Def. 18), and every chain = of K satisfies
the relation

1) J=*) = .
Let us prove A). Def. 20 of the barycentric subdivision K’ of a complex
K implies that each simplex of K’ is contained in at least one simplex of K.

This statement is obviously valid also for an arbitrary subdivision K* of K.
Now, let B be a simplex of K* and denote by C(B) the simplex of least
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dimension of K which contains B. The simplex C(B) is obviously uniquely
determined, since the intersection of any two simplexes of K is again a
simplex of K, unless this intersection is empty. If b is any vertex of B, then
clearly C(b) is a face of C(B) which may coincide with C(B). Hence f(b) is
a vertex of C(B), and f maps all the vertices of B into vertices of C(B),
i.e., f is a simplicial vertex mapping.

Relation (1) will be proved by induction on the number of dimensions of
the chain . It is obvious for a 0-chain. We shall prove it for the simplest
r-chain, an oriented r-simplex 4, on the assumption that it is true for any
(r — 1)-chain of K. Every simplex B of the chain 4“ with non-vanishing
coefficient is obviously contained in the simplex 4, and hence C(B) is a
face of A. Therefore f(B) is a face of A. Now, regarding B as an oriented
simplex, f(B) is zero if B is degenerate under the mapping f, and +4 or
— A otherwise. Hence

@ JA%) = k4,

and it need only be shown that k¥ = 4-1. To this end, take the boundary of
both sides of equation (2), obtaining

Af(A%) = J(A4®) = fl(A4)] = kAA.

Setting A4 = x, we get f(z*) = kz from the last equality; and since z is an
(r — 1)-chain, it satisfies (1), whence k& = 1. .

To extend the above from A to an arbitrary r-chain z, it suffices to re-
mark that both sides of (1) are linear in x. This proves A).

Lemuma. Let A = (a0, a1, -+, @) be an r-simplex and = = {F,,
Fy, -+, F,} a closed covering of A (see §3, B)), with the property that
an arbitrary face C = (ay, @iy, -+, a;,) of A is wholly contained in the
union of the sets of the system 2’ = {Fy,j = 0,1, ---, s}. Then there
exists a point a which is contained in every set of the system Z, i.e., the cover-
ing Z s of order r + 1.

Proof. Assume that there is no point @ which is contained in every set of
the system =. Then the order of £ does not exceed r, and there exists a
positive & for which the system Z; composed of the sets

H(F;,6),1 = 0,1,---,m,
is again of order less than or equal to r (see §3, C)).
.Denote by T the complex consisting of all the faces of 4, | T| = 4, and

by T* a subdivision of 7' so fine that the diameter of every simplex of T°
is less than & (see Theorem 12). If b is any vertex of T% and

C(b) = (aio s Qigy "0, aia)’ .
then, by hypothesis, the face C(b) = C of the simplex 4 is contained in the
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union of the sets of the corresponding system 3’. Hence there is a set
F;, of 2’ which contains b. A correspondence, of the sort indicated in A),
between each vertex b e T and a vertex f(b) e T is established by setting
f®) = a;,; and moreover, f(b) = a; implies that b e F;. We now show
that if B = (bo, b1, -+, b,) is any r-simplex of 7% then B is degenerate
under the mapping f, i.e., it cannot be mapped onto the whole simplex

A. Otherwise, all the vertices f(b:), 7 = 0, 1, ---, r, would be distinct,
which would mean that b;eF;, , 7 = 0, 1, ---, r, where all the indices
Jo, Ji, =+, Jr arve distinct. Hence the simplex B would intersect every

set of Z. However, if B intersects F;, then B = H(F;, 5) since the diameter
of B is less than 8. Hence B is contained in every set of =5, which is impos-
sible, whence every r-simplex of 7'* is degenerate under the mapping f.

Now, if A is an oriented simplex, then 4 is an integral r-chain of T%;
and since every r-simplex B of T* is degenerate under f, it follows that
f(4%) = 0. This contradicts (1) and proves the lemma.

B) In order that a covering = satisfy the conditions of the lemma, it is
sufficient that each set F; not intersect the face

Ai: (ao,alr"'7ai—17ai+1""yar>

opposite the vertex a; .

Indeed, if ¢ is not one of the numbers %, ¢, - - , 4, , then C is a face of
the simplex A; (see the lemma), and by hypothesis this face does not in-
tersect F; . Hence C can intersect only sets of Z’. Since = is a covering
of 4, the face C is contained in the union of the sets of 2, and therefore
C is contained in the union of the sets of 2’. Consequently, = satisfies the
hypothesis of the lemma.

Dimension of a Polyhedron

It will be shown here that if K is an r-complex (see Def. 5), then the
dimension of the polyhedron | K | is equal to r (see Def. 8). Hence the
dimension of a complex is a topological invariant of the complex, since
Def. 8 is topologically invariant. In particular, this also answers the ques-
tion as to the invariance of the dimension number of a simplex. The non-
trivial part of the proof consists in showing that the dimension of an r-
simplex is not less than r; this is carried through by means of Sperner’s
lemma. The trivial part of the proof is the construction of an e-mapping
of the polyhedron | K | of order r -+ 1.

C) Let K be any r-complex, K’ the barycentric subdivision of K, and ¢
a vertex of K (c¢is obviously also a vertex of K'). The set of all simplexes of
K’ with vertex ¢, and all their faces, is called a barycentric star of K with
center ¢, and is denoted by B(c). If the diameter of all simplexes of K’ is
less than ¢/2, then obviously the diameter of the polyhedron | B(c) |is
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less than €. If ¢y, ¢1, - - -, ¢ is the set of vertices of K, then the polyhedra
| B(es)|,72=0,1,---,k, form a closed covering 2 of order » + 1 of the
polyhedron | K | .

If B is a simplex of K’, it is determined by a decreasing sequence
Ay, A1, -+, Ay of simplexes of K (see §9, A)). If 4,1 is a O-simplex,
ie., if A,1 = (¢;), then B is in the barycentric star B(c;). If the dimen-
sion of A,_1is positive, denoting by ¢; one of the vertices of this simplex and
setting 4, = (c;), the sequence

(3) ‘ AO:Aly""AP—17AP

determines a'simplex D of the complex B(c;), where B is a face of D. Hence,
in this case again, the simplex B is contained in the barycentric star B(c;).
Consequently, every simplex of K’ is contained in at least one barycentric
star, which means that the system = is a covering of | K | .

If ois a vertex of the complex B(c;) and A is the simplex of K whose center
is o (see §8, B)), we shall show that ¢; is a.vertex of the simplex A. Since ¢
is a vertex of the complex B(c;), there is a simplex D in B(c;) with ¢ and ¢;
among its vertices. Let us assume that the simplex D is determined by the
sequence (3); then the simplex A appears in this sequence. Since

4, = (c)

is a face of every simplex of the sequence (3), it follows that ¢; is a ver-
tex of A.

Suppose that the sets of a subsystem of 2 have a non-empty intersec-
tion P. Since every set of Z is a polyhedron corresponding to a subcomplex
of K, P is likewise a polyhedron corresponding to a subcomplex of K’, and
hence contains a vertex o of K’. If 4 is the simplex of K whose center is o,
then the centers of all the complexes B(c;) which contain o are vertices of
the simplex A. Since the dimension of 4 is not greater than r, it follows that
the number of such complexes B(c;) does not exceed r + 1. Hence the order
of Z does not exceed r 4 1.

If A is an r-simplex of K with vertices ap, a1, - - - , @, then the vertex o,
the center of the simplex 4, is contained in every complex

B(@),i =101,

Therefore the order of Z is not less than » 4 1. This completes the proof of
C).

TreorEM 13. If K s an r-complez, | K | has dimension r in the sense of
Def. 8.

Proof. Let € be an arbitrary positive number and let K* be a subdivision
of the complex K such that the diameters of all simplexes of K* do not
exceed /2. Application of proposition C) to the complex K* yields a closed
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e-covering of | K | of order r + 1. Hence the dimension of | K | does not
exceed 7.

To prove that the dimension of | K | is not less than r, it suffices to show
that this is the case for an arbitrary r-simplex 4 of K, since, by Def. 8, the
dimension of a subspace cannot be greater than the dimension of the space.

Let A = (a,a1, -+, a) be an r-simplex of K and let

A; = (ao,al,"',05-1,a¢+1,"',ar)

be the face of the simplex A opposite the vertex a;. It is clear that no
point of A can be common to all the faces 4; . Indeed, the face A; is de-
fined by the equation A" = 0 (see §2, C)), and the set of all such equations
implies the relation A’ = \' = ... =\" = 0, which cannot be satisfied by
the barycentric coordinates of a point. Hence there exists a positive num-
ber ¢ such that the intersection of all the sets of the system =*; consisting
of the sets H(4:, €),7 = 0, 1, ---, r, is empty (see §3, C)). We shall
show that every closed e-covering = = {C,, Cy, -+, Ci} of the simplex
4 is of order greater than or equal to r 4 1.

The set C; of the system = cannot intersect all the faces 4., for other-
wise C'; would be contained in every set of the system =*. , which is im-
possible. Hence we may assign to each index j, 7 = 0, 1, --- , k, an index
9(7), 0 = ¢g(7) £ r, such that C; does not intersect A,; . If F;is the union
of all those sets C; of the system = for which g(j) = ¢, then F; does not
interseet A;, 7 = 0, 1, --- , r. Hence the system Fy, Fy, - - , F, satisfies
the condition of proposition B), and, in accordance with the lemma, there
is a point a common to all the sets Fy, F'1, ---, F,. Since a ¢ F;, and F;
is the union of certain sets of Z, there exists an index j; such that a € C;;
and g(j;) = ¢. The indices of the sets C;,,7 = 0, 1, -- - , r, are all distinct,
because each index j was assigned a unique integer g(7). It follows that a
is contained in r + 1 distinct elements of the covering =, and hence the
order of this covering is not less than » 4+ 1. This proves Theorem 13.

Brouwer’s Theorem

The theorem concerning the existence of a fixed point of a continuous
mapping of a simplex into itself will be obtained here as a very simple
application of Sperner’s lemma.

TueoREM 14. If A = (ap, a1, -+, a,) 18 an r-stimplex and ¢ s a con-
tinuous mapping of A into itself, then there exists a point a € A for which
o(@) = a. The point a is called a fized point of the mapping ¢.

Proof. Denote by A(p), u‘(p), 2 = 0, 1, --- , r, the barycentric coordi-
nates of a point p € A and its image ¢(p), respectively. If F; is the set of all
points p of the simplex 4 for which

) N(p) = ui(p),
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we shall show that the system = = {Fo, Fy, -+, F,} satisfies the con-
ditions of the lemma.

The continuity of ¢ immediately implies that every set of the system
T is closed.

Let C = (aiy, @iy, -+ , @s,) be any face of the simplex A (not excluding
A itself). Let p ¢ C and assume that p is not contained in any set of the
system 2’ = {F;;,j = 0,1, ---, s}. Then, by (4),

kij(p) < /J'ij(p): .7 = 0, 1: e, S

Adding all these inequalities, we get
D=0 Ni(p) < Xm0 u¥(p).

Since the point p is contained in the simplex C, the left side of this in-
equality is equal to one, while the right side cannot exceed one. Hence the
inequality is impossible.

Consequently, in accordance with the lemma, there exists a point a ¢ 4
which is contained in every set of 2, whence

G N 2z @), Na 2z @, -, N@ 2 4.

If the system (5) were to contain at least one strict inequality, say
\(a) > u'(a), then addition of all the inequalities (5) would yield

2(@) + N@) + - + N (@) > 1e) + #') + - + K ().
This is a contradiction, since each side is equal to one. Hence it follows that
N(a) = (@), N'(a) = ¥'(@), -+ ,N'(a) = 1'(a),

1.e., @ = ¢(a). This proves Theorem 14.

§11. The invariance of the Betti groups under barycentric subdivision

In this section we shall derive a relation between homologies in a complex
K and a subdivision K* of K (see §9, B)). In particular, the Betti groups of
K and K* will be shown to be isomorphic.

TarorEM 15. Let K be any complex, and let K* be a subdivision of K
(see §9, B)). If 3 is any r-dimensional homology class of K and z is a cycle of
3, then denote by 3 the homology class of K® which contains the cycle 2°. Under
these conditions the single-valued mapping 3 — 3° (see §9, E)) s an isomor-
phism of the r-dimensional Betti group B (K) of K onto the r-dimensional
Betti group B"(K*) of K*.

In the sequel we shall sometimes identify the homology classes 3 and 3”
and treat the groups B'(K) and B (K*) as identical.

The proof of Theorem 15 is preceded by a lemma.

Lemma. If K is a complex, K* a subdivision of K, and x a chain of K*



§11] INVARIANCE UNDER SUBDIVISION 59

whose boundary Ax is of the form Az = 2%, where z is a cycle of K, then there
exists a chain y of K with boundary Ay = z such that x— y® 1s a cycle homol-
ogous to zero in K*.

We shall show first that Theorem 15 follows from the lemma.

A) Theorem 15 follows from the lemma. Retaining the notation of
Theorem 15, set 3* = ¢(3). The mapping ¢ assigns to each element of the
group B'(K) an element of the group B"(K®), and is clearly a homomor-
phism of B"(K) into B"(K*®). It suffices to show that this homomorphism is
an isomorphism onto all of B"(K®).

We shall show first that ¢ is an isomorphism. If 3* = 0, then 2* ~ 0 in
K% i.e., there is a chain z of K® with Az = z° Application of the lemma to
the chain z yields a chain y of K with Ay = ¢, i.e., 2 ~0in K or 3= 0.
Hence ¢(3) = 0 implies 3 = 0, and ¢ is therefore an isomorphism.

To show that ¢ is a mapping onto the whole group B"(K®), let 1 be any
element of B"(K®) and z an element of the homology class 1. Since z is a
cycle of K% Az = 0% where 0 is the trivial cycle of K. Hence the lemma,
with z = 0, is applicable. Thus there is a chain y of K such that Ay = 0 and
z — y* ~0in K* It is clear that () = 1, where y is the homology class
of K which contains y. Hence ¢ maps B"(K) onto all of B"(K*). This proves
proposition A).

Proof of the Lemma

We shall prove the lemma only for K* = K, i.e., for the first barycentric
subdivision of K. The proof can be extended to any subdivision K™ by an
obvious induction on m. For K* = K', the lemma is proved by induction
on the number of dimensions of the complex K. If K is a O-complex, the
lemma is obvious. Suppose that it is true for every n-complex; then, in
virtue of A), Theorem 15 also holds for every n-complex.

Let K be any (n + 1)-complex, M its n-skeleton, and 4, --. , 4,
the set of all arbitrarily oriented (n 4 1)-simplexes of K. Denote by S;
the set of all proper faces of 4,"™, by «; the center of A and set
T; = x(8";). By the inductive hypothesis, both the lemma and Theorem
15 hold for S;, since S; has dimension n. Hence the homology properties
of the complex §’; are the same as those of the complex S;, whose
homology properties have already been examined in Theorem 11. Starting
with the homology properties of S’; and the relation T; = KZ(S i), We now
turn to the homology properties of T';.

Let @; be an r-chain of T'; of the form «(2;), where z; is a chain of §';,
with the property that its boundary Az; is contained in S’;. Then: a) if
r £ m, there exists a chain y; in S’; such that x; — y;is a cycle homologous
to zeroin T;,and b) if r = n + 1, z; = g; (4:"™)’, where g;is an element of
the coefficient group over which the chains are taken.
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Ifr = 1, Az; = Axi(z:) = zi — I(z:)x: (see §8, (11)), and since Az, is con-
tained in §';, it follows that I(z;)x; = 0, or I(z;) = 0, i.e., in this case z;
is a 0-cycle of S’; with Kronecker index equal to zero. If » > 1 (see §8,
(11)), Az = Axi(z;) = 2z;i — ki(Az;), which implies that x:(Az;) = 0, or
Az; = 0, 1ie., 2z;is an (r — 1)-cycle of §';.

a) If r < n, the dimension of z; does not exceed n — 1. By Theorem 15,
the cycle z; is homologous to zero in §'; if > 1, because every éycle of
dimension less than n but greater than zero is homologous to zero in S;
(see Theorem 11). If r = 1, then, by the above, I(z;) = 0. Sincen = r = 1,
S, is connected and therefore z; ~ 0 in this case also (see §5, E)). Hence
there is a chain ¥, in S’; such that Ay; = z;, and setting v; = x:(y:), we have

Av; = Yi — K«;(Ayi) = Y; — Z;, i.e., Xy — Y~ 0 in Tz

b) If r = n + 1, then z; has dimension n. If n = 0, the Kronecker index
of z; is zero, and hence, as is easily seen, #; is of the form 2; = g;AA’;. This
proves the assertion for n = 0, since A4A’; = (AA4;)’. Now let n be greater
than zero. By Theorem 15, there is a cycle u; in S; such that z; ~ u'; in
S’; ; but, since z; has the same dimension as §’;, the homology reduces to
an equality, and z; = «’; . By Theorem 11, the ¢ycle u; of S;is of the form
giAAin—H. Hence z; = gi(AAin“)’, i.e., XT; = gqu;[(AAin_'_l)/] = gi(Ain-H)’.
This completes the proof of a) and b).

We assumed in the preceding that z; = x(2;), and hence that the di-
mension of z; was not less than one. We shall now show that:

¢) If x; is a O-chain of T'; , there exists a O-chain y; of §'; such that
Z; — yiNOin Ti.

If a is a vertex of S’;, then +(k:, a) is a simplex of 7T'; with boundary
4(a) — (x), i.e., +(k:;) ~ +(a) in T;. Replacing the simplex +(x;) by
+(a) in z;, we obtain the required chain y; .

Now, let z be a chain of K’ satisfying the conditions of the lemma. Since
the dimension of Az = 2’ is not greater than n, z1is a chain of M, and hence
2’ is a chain of M’. Denote by x; the sum of all the members of the linear
form z which contain simplexes with vertex «; ; then z; is a chain of 7';,
and we shall show that Az;is a chain of §’;. In fact, the chain x — z; does
not contain any simplexes with vertex x;, and hence the boundary Az —
Az; likewise does not contain such simplexes. The chain Az is contained
in M’ and also does not contain any simplexes with vertex «; . Hence the
difference Az; = Az — (Az — Aw;) of these two chains contains no simplex
with vertex «; . Thus, the chain Az, is contained in §’; and a), b), and ¢) are
applicable to it.

Now let us consider two cases.

First case: The dimension of the chain z is less than n + 1. By a) and ¢),
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there is a chain y; of §’; such that z; — y; ~ 0 in T;. Setting

== (r— ) — o — (o — yx),
we obtain Az* = Az = 2’ and therefore 2* — & ~ 0 in K’. The chain z*
obviously does not contain a simplex with vertex «;, 7 = 1,2, --- , k, and

hence =* is contained in M'. Therefore the lemma is applicable to z*, i.e.,
there exists a chain y of M such that Ay = 2z and 2* — 3’ ~ 0in M.
Hence x — y’ ~ 0 in K'. This proves the first case.

Second case: The dimension of the chain z is » + 1. By b), the chain z;
is of the form x; = g.(4," ™). If

y = g1A1n+l + . + gkAkn-H,

the chain @ — %’ obviously does not contain any simplex with vertex
kit =1,2,---, k. Since z — ' is an (n + 1)-chain, it is equal to zero,
and hence x = y’. The boundary of 2 — ¥’ is (z — Ay)’ = 0. Therefore
Ay = 2, since the barycentric subdivision of a chain is zero only if the chain
itself is zero. This proves the second case and completes the proof of the
lemma, which by A) proves Theorem 15.

§12. The invariance of the Betti groups

We come finally to a proof of the invariance of the Betti groups based
on the technique presented in the preceding sections of this chapter.

TuroreMm 16. If K; and K. are complexes such that the polyhedra | K |
and | Ko | are homeomorphic, then the Betti groups B' (K., @) and B' (K, , @)
are isomorphic for any coefficient group G.

This theorem is a direct consequence of the more precise Theorem 18.
The latter establishes an explicit isomorphism between the groups B’ (K,
@) and B'(K., G) when a definite homeomorphism ¢ of the polyhedron
| Ki | onto the polyhedron | K, | is given. The formulation and proof of
Theorem 18 are preceded by several preliminary remarks.

Preliminary Remarks and a Lemma

A) Let K and L be two complexes, K* and L? subdivisions of K and L,
respectively, and f a simplicial mapping of K into L. The mapping f in-
duces a homomorphism J of the group B"(K®, @) into the group B"(L’, G)
(see Def. 19). On the other hand, Theorem 15 establishes a definite iso-
morphism between B (K*, G) and B (K, (), as well as between B (L%, &)
and B"(L, G). Hence f can be regarded as a homomorphism of B'(K, G)
into B"(L, G). More precisely, the homomorphism j of B'(K, G) into
B'(L, @) is described as follows: let t be any element of the group B'(K, &),
z a cycle of the class 1, and z* the subdivision of z in K* Then fz®) is a
cycle of L? (see §7, F)), and by Theorem 15, there exists a cycle y of L
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whose subdivision 3’ is homologous to f(z*) in L. If y is the homology
class which contains y, then f(z) = y.

B) If K and L are two complexes and ¢ is a continuous mapping of the
polyhedron | K | into the polyhedron | L |, then there exists an integer
m = 0 for which the mapping ¢ of the complex K ™ into L satisfies the star
condition (see Theorem 10).

There exists a positive number ¢ such that every subset F of the poly-
hedron | L | of diameter less than ¢ is wholly contained in one of the stars
S(b) of the complex L. In fact, let us assume the contrary, i.e., that for
every natural number ¢ there exists a set F; of | L | of diameter less than
1/t which is not wholly contained in any one of the stars of the complex L.
Since | L | is compact and the diameters of the sets F; tend to zero, there
exists a point ¢ in | L |, an arbitrary neighborhood of which contains an
infinite number of the sets F'; . Taking as a neighborhood of ¢ the star S(b)
of K which contains ¢, at least one of the sets F; is contained wholly in S(b),
and we arrive at a contradiction. This proves the existence of the required e.

Since | K | is compact, ¢ is uniformly continuous, and therefore there is a
positive number § such that

1) ple(@), e)] < €

for z, ye| K| and p(z, y) < 6.

If 5 is the greatest of the diameters of the simplexes of K, choose an m
large enough so that [n/(n + 1)]™n < §/2; then the diameter of every
star S(a) of K™ is less than & (see Theorem 12). By (1), the diameter of
¢[S(a)] is less than &, and hence ¢[S(a)] is contained in at least one of the
stars S(b). Thus the mapping ¢ of K™ into L satisfies the star condition.
This proves B).

C) If K’ is the barycentric subdivision of an arbitrary complex K, then
every star of K’ is contained in some star of K.

Let ¢ be any vertex of K’ and A the simplex of K whose center is o.
If B= (00,01, ,0r) is any simplex of the star S(¢) of K’, then ¢ = o, .
The open simplex B is obviously contained in the open simplex A4, (see
§9, A)), and since A; = A is a face of 4y, the star S(¢) is contained in the
union S(4) of all open simplexes with 4 as face. If a is a vertex of 4, it is
clear that the star S(a) of K contains S(4), and hence S(¢) = S(a). This
proves C).

Lemma. Let f be a simplicial mapping of a complex K into a complex L
and let K* be a subdivision of K (see §9, B)). If K* = K, then f is not a
simplicial mapping of K* into L, but it does satisfy the star condition, and
hence there exists (see Theorem 10) a stmplictal mapping f* of K* into L
which approximates f. In addition, if x is a chain of K,

@) @) = f@).
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Jj;n, particular, if L = K and f is the identity mapping of K onto itself, then
(%) = z.

Proof. We shall show first that f satisfies the star condition.

Let a be a vertex of K. If f(a) = b and 4 is any open simplex of K with
vertex a, it is easily seen that f(4) is an open simplex of L with vertex b
(see §7, A)). Hence f[S(a)] = S(b), and this, by C), implies that the map-
ping f of K® into L also satisfies the star condition.

Relation (2) will be proved by induction on the number of dimensions
of the chain x. It is obvious for a 0-chain. We shall prove that it is true for
an oriented r-simplex 4 of K on the assumption that it is true for any
(r — 1)-chain.

Let T' be the set of all faces of the simplex A. Then f( | T|) = D, where
D is a simplex of L. All vertices of the complex T are mapped by f into
points of D, and hence f* maps every simplex of 7* either into D or a face
of D (see Theorem 10). Consider the following two cases:

a) If the dimension of D is less than r, then all r-simplexes of T are de-
generate under f*, and hence f*(4%) = 0, which implies that f(4) = 0.

b) If the dimension of D is , then f(A) is the simplex D oriented in some
fashion. On the other hand, since every r-simplex of T* is either degenerate
under f* or maps onto D, it follows that.

3) Fa?) = k),

where k is an integer. To show that k& = 1, apply the operation A to 3)
obtaining :

Af*(A%) = JUAA™) = JUA4)7] = kaf(4) = kf(ad).
If AA is denoted by =z, the last relation implies that
@) = kf(@).

Since, by the inductive hypothesis, relation (2) holds for an (» — 1)-chain z,
it follows that & = 1. Hence f*(4%) = f(4.) for an arbitrary oriented
simplex 4; of K. Multiplication of the last relation by the coefficient g;
and summation over ¢ yields (2) for an arbitrary r-chain. This proves the
lemma.

We note an important consequence of the lemma just proved.

D) Let f be a simplicial mapping of a complex K into a complex L,
K* a subdivision of K, and f* a simplicial mapping of K* into L which ap-
proximates f. The mapping f* induces a homomorphism 7* of B"(K%) into
B'(L), which, by A), can also be interpreted as a homomorphism of B"(K)
into B'(L). On the other hand, f also induces the homomorphism J of
B'(K) into B'(L), and it turns out that the homomorphisms f and 7* of
B’(K) into B"(L) are identical. In particular, if L = K and f is the identity
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mapping of K onto itself, then the homomorphism f* is the identity map-
ping of B'(K) onto itself.

If z* ¢ B'(K) and « is a cycle of the homology class z*, then f*(z%) is a
eyele of L and the homology class F%(@*)* containing it is, according to
A), 7*(z*). On the other hand, f(x) is also a cycle of L and the homology
class f(z)* containing it is f(z*). By the lemma, f*(z*) = f(z), whence
F*(x*) = F(z*). This proves D).

The above lemma also yields a simple proof of the invariance of the di-
mension of a polyhedron.

TaeoreM 17. If | K1 | and | K. | are homeomorphic polyhedra, their cor-
responding complexes K1 and K, have equal dimensions. This enables us to
speak of the dimension of a polyhedron.

Proof. Assume that the dimension n of the complex K is greater than the
dimension of the complex K, and let ¢ be a homeomorphism of K, onto
K, . Choose subdivisions K% and K% of K, and K, respectively, suffi-
ciently fine to insure the existence of simplicial mappings f of K% into K,
and g of K% into K% which approximate ¢ and ¢, respectively. Then the
simplicial mapping fg of K® into K; approximates the identity mapping
e¢ ", and hence, by the lemma,

) flg=)] = =

holds for every chain z of K.

On the other hand, every n-simplex of K% is degenerate under the
mapping ¢ because K® contains no simplexes of dimension n. Hence
§(z%) = 0 for every n-chain z of K, whence f[§(z*)] = 0. However, this
contradicts relation (4), because K; contains a non-trivial n-chain z. This
proves Theorem 17.

The Fundamenial Theorem

TraEOREM 18. Let ¢y be a homeomorphism of a complex K, into a complex
Ks, ot = @2, and K%, K% subdivisions of the given complexes for which
the mapping ¢1 of K% into K% satisfies the star condition. If the mapping
1 of K% into K% is a simplicial approzimation to ¢, then

a) the homomorphism I of the group B'(K,) into the group B'(Ks) is in-
dependent of the choice of K%, K%, and %1, and hence can be denoted by
&1,

@B (K1) = B'(K);

b) the homomorphism @, is an 1somorphism of B (K1) onto B (K,);
and

¢) if the isomorphism @, of B"(Ks) onto B"(K,) is induced by s in the same
manner, then the isomorphisms @ and . are inverse to each other.
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Proof. In order to prove a) and b), let us introduce, in addition to K%
and K%, two other subdivisions K?; and K?; of the given complexes for
which the mapping ¢, of K?, onto K%, satisfies the star condition, and
denote by the mapping f%; of K? into K? a simplicial approximation to
f1.

Since K“ and KP; are barycentric subdivisions of the same complex
K, one of the subdivisions is finer than the other, say K* is finer than
K% . Choose a subdivision K of K, so fine that the mapping ¢» of K™
onto KP, satisfies the star condition. Denote by f% and f*, simplicial approx-
imations to g2 of K" into K* and K" into K , respectively. In addition,
let K1 be a subdivision of K; such that the mapping ¢; of K into K7
satisfies the star condition, and denote by f"; a simplicial approximation
to ©1 of 1{71 into K72 . ‘

The resulting system of mappings can be represented schematically as
follows: -

K% 2 K2 K 2K
2 fal 1 faz 2 f.),l 1
In the diagram the arrows refer to the mappings, with the given homeomor-
phisms written above the arrows and their simplicial approximations be-
low the arrows. Substitution of the index 8 for the index « yields the alter-
native mapping scheme which will not be written down.
The simplicial mappings induce homomorphisms of the corresponding
Betti groups which can likewise be schematically represented as:
B'(K%) «—— B (K*)) <= B"(K") <~ B"(K",) ,
fa 1 fa 2 f "

BT(Kz) <~ BT(Kl) « BT(KQ) «— BT(K1)

In this scheme the Betti groups of the subdivided complexes are written
on the first line, while the groups of the original complexes, for which there
are also induced homomorphisms (see A)), are shown on the second line.
Again, substitution of 8 for « yields the alternative scheme.

The mapping f* [ of K" into K% is a simplicial approximation to
o102 (see §7, D)), and hence the homomorphism 7% 7% of B"(Ks) onto itself
is the identity homomorphism (see the lemma). The kernel of the homo-
morphism 7% 7% contains the kernel of 7%, and since 7% f* is the identity
homomorphism, its kernel is zero. Therefore:

(5) The kernel of the homomorphism F% 4s zero.
Since 7% 7% maps B'(K.) identically onto itself, we have
B'(K») = J*\J%B(Ks) < f4B"(Ky),
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and hence
(6) 4B (Ky) = B'(K,).

The mapping f% f"1 of K", into K is a simplicial approximation to the
identity mapping ¢se1 , and in the same way we obtain

(1) The kernel of the homomorphism " is zero,
®) JB'(Ky) = B'(Ky).

It follows from (5) and (8) that 7% is an isomorphism of B"(K») onto B'(K,),
and since % f% is the identity mapping, f* and 7 are inverse isomor-
phisms:

9) ' o=@
Similarly, we conclude that f% and "1 are inverse isomorphisms:
(10) o= F9
It is seen from (9) and (10) that 7% and f*; are identical:
(11) ‘ =7,
Replacing o by B, we get
(12) Fi=7n.

From (11) and (12) it follows that f* = 7%, which proves a). It has al-
ready been proved that f° is an isomorphism, whence b) also holds.

We can now apply proposition a), which has just been proved, to the
mapping ¢ of K, onto K;. If the induced homomorphism of B"(K:)
onto B'(K;) is denoted by @, relation (9) shows that the isomorphisms
@ and & are inverse to each other. This proves c), and completes the
proof of Theorem 18.

The Betti Groups of a Polyhedron

Let us extend somewhat the notion of a polyhedron.

Drrinirion 21. A metric space P is called a polyhedron if it is homeo-
morphic to a polyhedron | K | in the previous sense of the term (see Def.
6). If ¢ is a homeomorphism of the complex K onto the space P, the pair
(o, K) will be called a triangulation of the polyhedron P. The r-dimensional
Betti group of K will be referred to as the r-dimensional Betti group of
this triangulation and will be denoted by B(s, K).

Theorem 16 enables us to speak of the Betti groups of a polyhedron P,
because the Betti groups of any two triangulations of the polyhedron P
are isomorphic. However, on the basis of Theorem 16, the Betti group of a
polyhedron P is determined only to within an isomorphism, so that its
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elements do not retain their individuality. Theorem 18 leads to the follow-
ing more concrete definition. :

DeriNrrion 22. If P is a polyhedron and (o1, Ky), (02, K») are two tri-
angulations of P, then o "oy = pisa topological mapping of K; onto K,
whence, by Theorem 18, ¢ induces an isomorphism & of the group B'(oy,
Ki) onto the group B'(as , K3). The elements 2; € B'(o1 , K1) and z; € B (o2,
K,) will be regarded as equivalent, 2y ~ 2, if 2, = @ (z1). This relation
is obviously reflexive, its symmetry follows from Theorem 18, while its
transitivity will be proved below. The set of all equivalent elements of the
r-dimensional Betti groups of all the triangulations of a polyhedron P will
be considered an element of the r-dimensional Betti group B'(P) of P.
If £eB'(P), z €&, and z e B'(o, K), then z will be called a representative
of the element £ in the triangulation (o, K). If £ and 4 are two elements of
B'(P), and = and y are their representatives in the triangulation (e, K),
then the sum £ + 7 is defined as that element of B"(P) which contains
z + y. By Theorem 18, since ¢ is an isomorphism, it follows that this sum
is independent of the triangulation (o, K).

To show that the above equivalence relation is transitive, let (o;, K.),
1 = 1, 2, 3, be any three triangulations of the polyhedron P. In addition,
let 0‘2_—10‘1 = @, 0'3—-10'2 = w, and let Z; EBT(O'«,; , Ki), 7 = 1, 2, 3, be three
elements such that 2, ~ z, and 2 ~ 23. Then

wy = p(21), zy = &(z2),
ie.,
z3 = &[p(®)].

We shall show that the isomorphism &g corresponds to the mapping
os ‘o1 . Let K% be any subdivision of K, and denote by K% and K%
subdivisions of K, and K, , respectively, sufficiently fine to insure the exist-
ence of simplicial approximations ¢ of K% into K% and f of K% into K%
to the mappings o3 o2 and o2 o1, respectively. Then Theorem 18 implies
that

&=7¢q, ¢=]Jle,dp={f.
Since gf is a simplicial approximation to the continuous mapping
~1 -1 —1
03 0202 0O = 03 01 = Wy

(see §7, D)), the isomorphism & corresponds to the topological mapping
o3 ‘o1 . This proves transitivity.



Chapter I11
CONTINUOUS MAPPINGS AND FIXED POINTS

If P and Q are two geometric figures, e.g., two polyhedra, then all the
continuous mappings of P into @ can be divided into equivalence classes.
Two such mappings are regarded as equivalent if one of them can be trans-
formed into the other by means of a continuous deformation (see Def. 23).
The classification of continuous mappings from this point of view is one
of the basic problems of modern topology. This problem is as yet in the
initial stage of solution. Homology theory makes it possible to construct
some invariants of the mapping classes. If ¢ is a continuous mapping of a
polyhedron | K | into a polyhedron | L |, then ¢ induces homomorphisms
& of the Betti groups of the complex K into the Betti groups of the complex
L (see Theorem 20). These homomorphisms are invariants not only of the
mapping ¢ itself, but of the mapping class which contains ¢, as well. It is
natural to refer to these as homology invariants. As a matter of fact, only
in very special cases do the homology invariants form a complete system.
Nevertheless, these invariants are very important, and the first sections of
this chapter will be concerned with their construction.

If the polyhedra P and Q are identical, one can speak of fixed points of
continuous mappings ¢ of the polyhedron P into itself. A point z of P is
called a fixed point of the mapping ¢ if ¢(z) = =.

Many existence theorems of analysis reduce to the question of the exist-
ence of fixed points of a mapping, and hence the problem of fixed points of
a mapping occupies an important position in topology. Great advances
have been made in its solution, which, in a certain sense, may be con-
sidered complete. Every isolated fixed point of a mapping is described
by its index, an integer which is positive, negative, or zero. It has been
proved that the sum of the indices of all fixed points of a given mapping ¢
of a polyhedron P into itself can be expressed in terms of homology invari-
ants of ¢. Hence this sum does not depend on ¢ itself, but is determined by
the mapping class which contains ¢. Therefore the problem concerning the
sum of the indices of the fixed points must be regarded as solved, but
this is not a solution of the problem in its full scope. It can happen, for
example, that the sum of the indices of a mapping is equal to zero. In that
case, it is impossible, on the basis of this result, to infer the existence of
fixed points. And yet the given mapping, and all those equivalent to it,
may have fixed points, even though the sum of the indices is zero. In
this case also the result gives no information about the number of dis-
tinet fixed points of the mapping. Again, it may occur that the sum of the
indices is very large, while the mapping has only one fixed point of large

68
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index. Nevertheless, the result expressing the sum of the indices in terms
of homology invariants is a very important one and is one of the most sig-
nificant in combinatorial topology. We shall, however, confine ourselves here
to proving that a mapping has at least one fixed point if the homology in-
variant expressing the sum of the indices does not vanish.

§13. Homotopic mappings

In this section we shall give a precise definition of the homotopy of map-
pings and indicate an important method for the study of this notion.
This method is based on the concept of a topological product and a continu-
ous mapping of this product.

DeriniTion 23. Let P and @ be two metric spaces, and for each real
number ¢, 0 £ ¢ £ 1, let ¢, be a continuous mapping of the space P into
the space Q. The family of mappings ¢ will be called continuous if the func-
tion ¢;(x), x € P, is a continuous function of the two variables, the number
¢ and the point z. More explicitly, this means that for each pair of values
z = £ t = 7 and for every positive number ¢ there exists a positive number
s such that p(z, £) < dand |t — 7| < § imply

1) ' ple:(x), e:(8)] < e.

The family ¢, will also be referred to as a conttnuous deformation of the
mapping ¢o into the mapping ¢:1 . Two continuous mappings ¢ and ¢ of
the space P into the space @ will be said to be homotopic or equivalent,
¢ ~ y, if there exists a continuous deformation ¢, of ¢ into ¥, i.e., if there
is a continuous family ¢: of mappings of P into @ for which ¢ = ¢ and
o = Y. .

We shall show that the homotopy relation is reflexive, symmetric, and
transitive, and hence is an equivalence relation. It thus serves to partition
all continuous mappings of P into @ into equivalence or homotopy classes.

Reflexiveness. If ¢ is a continuous mapping of P into @, let ¢, = ¢. Then
obviously ¢ is a continuous family of mappings and ¢, = ¢, ¢1 = ¢. Hence
o~ .

Symmetry. If ¢ and ¢ are two continuous mappings of P into @ and
¢ ~ ¥, then there exists a continuous family ¢; of mappings of P into Q
such that ¢y = ¢ and ¢ = ¥. Setting ¥; = @1, it is clear that . is again
a continuous family of mappings of P into @, with ¢ = ¢ and ¢4 = ¢
Hence ¢ ~ ¢. .

Transitivity. Let ¢, ¥, » be three continuous mappings of P into € such
that ¢ ~ ¢ and ¥ ~ o, i.e., there exist continuous families ¢; and ¥: such
that oo = @, 01 = ¥, Y0 = ¥, Y1 = w. Set

w=¢,0 St < 3andw = Yua,3 St S L
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There is no contradiction at ¢ = %, since wys = ¢1 = Yo = ¥. The con-
tinuity of the family w. is an immediate consequence of the continuity of
¢: and ¥; . Moreover, wy = ¢, w1 = w, and hence ¢ ~ w.

The following elementary construction yields a simple example of a con-
tinuous deformation.

A) Let ¢ and ¢ be two continuous mappings of a metric space P into a
convex set C of the Euclidean space R". In particular, C may be a simplex.
Setting

eu@) = (1 — o(z) + (),

the continuity of the family ¢, follows easily from that of ¢ and . Since
C is convex, ¢; is a mapping of P into C, 0 £ ¢ = 1, and in addition,

¢o=€0,¢1=¢-

Hence any two mappings of a metric space P into a convex set C' are ho-
motopic. This solves completely the problem of classifying the mappings
of an arbitrary metric space into a convex set.

The following theorem affords an important example of the equivalence
of mappings.

TreorEM 19. If ¢ 15 a conttnuous mapping of a complex K into a complex
L satisfying the star condition (see Theorem 10) and f is a simplicial approwi-
mation to ¢ of K into L, then the mappings f and ¢ of the polyhedron | K |
into the polyhedron | L | (or equivalently, of the complex K into the complex
L) are homotopic.

Proof. Let L be imbedded in the Euclidean space R", so that ¢ and f
are two continuous mappings of | K| into R". Setting

o) = (1 — e(z) + tf(2),

it is clear that ¢, is a continuous family of mappings of | K | into R", with
o = ¢, o1 = f. It remains to be shown that ¢.(z) is contained in | L |.
If, for a given point z ¢ | K |, D is a simplex of L such that ¢(z) e D, then,
according to Theorem 10, the point f(z) is also in D. Hence, since D is con-
vex, the point ¢,(z), as a point of the segment (p(z), f()), is likewise in D.
This proves Theorem 19.

Theorem 19 is important, because it shows that every continuous map-
ping of a complex K into a complex L is homotopic to a simplicial mapping
of some subdivision K* of K into L. Hence every homotopy class of con-
tinuous mappings contains simplicial mappings.

The function ¢;(z) which occurs in the study of continuous deformations
is a function of two variables, and it is therefore natural to write it in the
form customary for two variables, ¢:(z) = ¢(z, t). On the other hand, the
notion of the direct product of metric spaces enables one to regard the
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pair of variables z, { as a point of a new metric space, and at the same time
to replace the continuous family of mappings by a single continuous map-
ping. The significance of the notion of direct product in topology is, of
course, not exhausted by this simple application to the problem at hand.
DrriniTioN 24. The direct (topological) product of two metric spaces R
and S is defined to be the space R-S whose points z = z-y are arbitrary
pairs z, ¥, e B, y € S, and whose topology is defined by the metric

@) Pz, 2)" = p(z, )" + oy, ¥')",

where z = z-y, 2 = &'-y’ are any two points of R-S. It is easily verified
that R-S is indeed a metric space (see Notation, H)). In particular, if R
and S are Euclidean spaces of dimension r and s, then the product R-S
is the Euclidean space of dimension r + s. It is readily seen that if ¢ and ¢
are homeomorphisms of R onto R* and S onto S*, respectively, then the
mapping which assigns the point ¢(z) - ¢ (y) to the point z-y is a homeomor-
phism of B- S onto R*- S*. Thus the notion of direct product is topologically
invariant.

We shall now apply the concept of direct product to the problem of con-
tinuous deformations.

B) Let ¢, be a continuous family of mappings of a metric space P into a
metric space @ and denote by J the segment 0 = ¢t £ 1 of the real line
(J is obviously a metric space). Setting ®(z) = ®(z-1) = ou(x), 2 = z-t,
the function ® assigns to each point z ¢ P-J the point ®(z) ¢ @, and is a
continuous mapping of P-J into @. Conversely, if ¥ isan arbitrary continu-
ous mapping of P-J into @, and ¢.(x) = ¥(z-t) = ¥(z), -t = 2, then
V. is a continuous family of mappings of P into Q.

We shall show first that the continuity of & follows from that of the
family ¢, . Let ¢ be a positive number and choose § > 0 so that

pled(@), 0.(8)] < ¢

for p(z, &) < 6 and |t — 7| < & (see Def. 23). Now if p(z-f, £-7) < §,
then by (2),

(3) P(x’£)<67 lt—’l‘]<5,
whence by (1),
pl®(x 1), 8- 7)] = pleu(@), 0:(8)] < e

Let us now prove that the continuity of ¥ implies that of the family
¥: . Since ¥ is continuous, given a point - r and a positive ¢, there exists a
positive 8 = & 4/2 such that p(z-{, £-7) < & implies

4) pl¥(z ), ¥(E-7)] < &
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If now p(x, §) < 8, |t — 7| < 9, then by (2),
plz-t, &-7) < &,
whence by (4),
(), Y- ()] = p[¥(z-1), ¥(§-7)] < &.
This proves B).

§14. The cylinder construction

In this section we shall consider the direct product of a polyhedron | K |
by a segment J, and we shall show that | K |-/ is a polyhedron. Any defi-
nite subdivision of | K |-J into simplexes will be denoted by K-J; thus
K-J is a complex uniquely defined by the complex K, and

|K-J| = |K|-J.

In addition, we shall investigate some of the homology properties of K-J.
The role of the direct product of a space by the segment J has already
been indicated in the preceding section; its significance will be completely
brought out in the sequel.

Geometry of the Cylinder

A) Let F be any subset of the Euclidean space R™. We shall regard
R™ as imbedded in the Euclidean space R™" and we shall denote by e a
unit vector of R™** orthogonal to R™. If J is the set of all numbers
£,0 < t < 1, theset of all points of theform z = 2 + te, z e F, 1 ¢ J, is ev-
‘idently isometric to the direct product F-J, and for this reason, it will also
be denoted by F-J. It is natural to call the set F-J a cylinder constructed
on F. The set F-0 will be referred to as the lower, and the set /-1 as the
upper, base of the cylinder. If F is a convex set of R™, then F-J is a con-
vex set of R™"" (see §1, G)). Furthermore, if F = W is a convex body of
R™ with frontier V, then W-J is a convex body of R™* with frontier
V.J u W-0uW-1. Hence the frontier of the convex body W -J consists of a
lateral surface V-J and two bases W-0 and W-1.

Let us assume that F is convex and show that F-J is also convex. If

2p = T, + 1ye, el tyed, p = 1, 2,

are two points of F-J, then the point z = az; + Bz of the segment (z1,
2) can be written in the form

(l) 2 = aly —|— sz + (at1 + 61‘,2)8,

where & = 0,8 = 0, « + 8 = 1. Since F is convex, the point az; + B2:
isin F and t € J, t ¢ J immediately implies afy + B e J.
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Now consider the convex body F = W. Since W is compact, it follows
immediately that W-J is compact. Let us further denote by U the set of
all interior points of W and show that if z e U, 0 < £, < 1, then

20 = Xy + toe

is an interior point of the convex set W-J. Since z, is an interior point of
W, there exists a positive € such that z e R™ and p(x, %) < e imply z € W.
If necessary, ¢ can be decreased so that | ¢ — # | < eimplies0 < ¢ <1. If
2 = x + le, then p(z, 20) < eimplies p(z,20) < eand |t —4 | < &, whence
zeW-J, and 2 is an interior point of W-J.

If now 2y = 2 + ke is a point of W-J on the lateral surface V-J of the
cylinder W-J, i.e., 2 ¢ V, then we shall show that z is a frontier point of
W-J. Since zo is a frontier point of W, there exists a point z ¢ R™ arbitrar-
ily near z; and not in W. Hence the point z = z 4+ #e is not in W-J
and is arbitrarily near 2z, , which means that 2, is a frontier point of W-J.
Let zo = z + 0-e be any point of the lower base of the cylinder W-J;
then thereis a pointz = 2y — ¢e, notin W-J,in an arbitrary neighborhood
of 20, whence 2 is a frontier point of W-J. Similarly, if 2, = 20 + l-eisa
point of the upper base, there is a point 2o + (1 + ¢)e, in an arbitrary
neighborhood of 2, , which is not contained in W-J, so that z, is a frontier
point of W-J in this case also. This proves A).

B)Let F = A" = (@, a1, -+, a,) be a simplex of the Euclidean space
R™ R™ = R™, and e a unit vector orthogonal to R™ (see A)). The cylinder
A"-J = P will be called a prism. Denote the set of all proper faces of the
simplex A" by S and define the lateral surface of the prism P tobe | S |-J.
The complete frontier of the prism P’ is defined to be

|S|-JuA0u A1 = q.

The points of the prism P™*" which are not contained in its: frontier Q”
will be called the interior points of the prism. One of the interior points of
the prism is the center ¢ + e of P"*" (where ¢ is the center of the simplex
A"). If «is an interior point of P™*", k is in general position with respect to
Q" (see §8, A)), and x(Q") = P

If z = N + - -+ + Na. is any point of the simplex A", then the point
2=z + te of the prism P is uniquely determined by the numbers
A% AL -+, X, t, which will be called the intrinsic coordinates of the point
z of P, It is clear that the point z is an interior point of " if, and only
if, all the corresponding numbers \° are positive and ¢ satisfies the inequal-
ity 0 < ¢ < 1. Thus the property of being an interior or a frontier point is
formulated in terms of the intrinsic coordinates of the point.

Ifz, = N a+ -+ + Npa,,p = 1, 2, are two points of A", then (1)
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can be rewritten in the form

@) 2= (1 + A% + - + (@1 + B\ar + (et + Bhe,
or alternatively ‘

3) W=+ 8%, - N = a1+ BN, t= ol Bl

Thus the property that a point lie on the segment (21, 22) is expressed
in terms of the intrinsic coordinates of the prism.

In view of the above, it suffices to prove the assertions in B) for a single
arbitrary r-simplex; and in particular, we may assume that m = r, ie,
that A" lies in the 7-dimensional Euclidean space R". With this condition,
A" is a convex body in R (see §8, B)), whence by A), Pt isa convex body
of R where the frontier @ of the prism P"* is now the frontier of the
convex body P". The assertions in B) have already been proved, however,
for a convex body P'™ and its frontier Q" (see §8, (1)).

Let us now construct the complex K - J by subdividing the space | K |-J
into simplexes. The set | K |-J consists of the prisms A"-J = P*') where
A" is a simplex of K; hence, in order to subdivide | K |-J into simplexes,
it is necessary to indicate how the prisms P are to be subdivided. If
r = 0, the prism P'is a segment, i.e., a 1-simplex, and does not need to be
subdivided. If r > 0, S is an (r — 1)-complex and the complex S-J can be
regarded as already defined. Let the two simplexes A”-0 and A"-1 be ad-
joined to the complex S-J, and denote the resulting complex by C". Then
|C"| = @, and in view of B) we can construct the complex «(C"), where
« is the center of the prism P"™. The set of simplexes of the complex «(C")
constitutes a subdivision of the prism P! Such, in general terms, is the
construction of the complex K-J, and we now turn to its formal descrip-
tion.

C) Let K be a complex imbedded in the Euclidean space R™ ¢ R™"
(see A), B)). With the complex K associate the completely determined
complex K- J imbedded in R™ which will be called the cylinder over the
complex K.

If A is an arbitrary simplex of K, denote by K -0 the set of all simplexes
of the form A-0 and by K-1 the set of all simplexes of the form A-1.
It is clear that K-0 and K -1 are complexes. If K is a 0-complex, define the
complex K-J as the set of all simplexes contained in K-0 and K-1 and all
segments of the form a-J, where a is a vertex of K. Now assume that the
complex K- J has already been defined for an n-complex K, so as to satisfy
the following conditions: a) | K-J | = | K |-J;b) if L is a subcomplex of
K, then L-J is a subcomplex of K-J; ¢) K-0 and K-1 are subcomplexes
of K-J. In order to define the complex K-J for an (n + 1)-complex K,
denote by M the n-skeleton of K, and by A oo A the set of all
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(n + 1)-simplexes of K. In addition, denote the set of all proper faces of
the simplex 4,"™ by 8; and the center of the prism P; = A,"™. J by
k; . Adjoin the simplexes 4,"-0 and 4,"™-1 to the complex S;-J and de-
note the resulting complex by C;. If K-J is the set of all simplexes con-
tained in the complexes M-J and (C;), 1 = 1,2, ---, k, then K-J is a
complex for which conditions a), b), and ¢) are satisfied.

In order not to have to repeat the same proofs for the complexes K-0
and K-1, let p be 0 or 1 in the sequel.

We shall first show that if P e M-J, then

4) the simplexes P and A;"*"-p are properly situated.
Now, P ¢ |M-J| = | M |-J, whence
o " (A" p) e (| M |- T)n (A" -p) e (| M |-p) n (4, p)
=|8:|p.

Since S;-p is a subcomplex of the complex M -p and the latter, by c¢), is a
subcomplex of M -J, it follows that S;-p is a subcomplex of M -J. Let
aG-p, -+, 6P be the set of all vertices of the simplex P ¢ M -J which are
contained in the subcomplex S;-p of M -J. The points ay, - -+ , a, are ver-
tices of the simplex 4,"*"; denote by D the face of 4;,"™ which spans them.
The face D-p is common to both simplexes P and 4,"*"-p, so that to prove
(4) it suffices to show that

(6) Pn (47"p) = D-p.

If the equality D = A" were to hold, relation (6) would be true. This,
however, is incompatible with (5). Hence we need consider only the case
that D is a proper face of 4;"*", and is consequently contained in the com-
plex S;. By (5), in order to prove (6), it suffices to show that

) _ Pn ([8:]-p) = D-p.

Let E be any simplex of S; . Since P and E-p are simplexes of a single com-
plex M -J, the intersection of P with E-p is a simplex spanning the com-
mon vertices of P and E-p. The vertices common to P and S;:p are, how-
ever, all contained in the simplex D-p, whence P n E-p < D-p. This
proves (7), which implies (6) and then (4).

Relation (4) implies that C; is a complex. Indeed, C; is obtained by ad-
joining both simplexes 4;"*-p, p = 0, 1, to the complex S;-J. The sim-
plexes A,"™-0 and A,"*"-1 are disjoint, and hence are properly situated.
Furthermore, if P ¢ S;-J, then by b), P ¢ M-J, whence it follows from
(4) that the simplexes P and 4,"™*-p are properly situated. Thus C; satis-
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fies condition 2) of Def. 5. It also satisfies condition 1), since all the proper
faces of the simplex 4,"*-p are contained in Si-p, and the latter, by c),
is a subcomplex of S;-J. Hence ,(C;) is a complex (see B) and §8, D)).

Since K-J was defined as a set of simplexes contained in several com-
plexes, it obviously satisfies 1) of Def. 5. To show that it also satisfies 2),
let P and @ be two simplexes of K-J and consider three different cases.

Case 1. If P and @ are both in M -J, they are properly situated, since
M-J is a complex.

Case 2. If PeM-J, Q € xi(C;), then, since all simplexes of the complex
k:(C;) are faces of simplexes of the form x;(B), B ¢ C;, we can assume that
Q = x(B). Now P e [ M |-J,Q = ki(B) ¢ | ki(Ci)| = P; = A",
whence Pn Q < (| M |-J) n (4" J) = | 8:|-J < |C:|. Moreover,
since «;(B) n | C;| = B, it follows that P n @ = P n B.If B = A,"".p,
then (4) implies that P and B are properly situated, and hence P and Q
are also properly situated (see §2, D)). If B¢ S;-J < M-J, then P and B
are properly situated, since they are simplexes of the same complex M- J,
and again P and @ are properly situated (see §2, D)).

Case 3. If P e «(C:), Q ex;(C;) and ¢ = 7, then P and @ are properly
situated since they belong to the same complex. If 7 = j, then as in Case
2, we can assume that P = x;(4), 4 eC;, Q = «;(B), B eC;. Since ¢ 5 j,
it follows readily that P n Q@ = | C;| n | C;|, and since x;(4) n | C;| = 4
and «;(B) n | C;| = B, it also followsthat Pn Qc A n B. If 4 = A,""-p,
B = A;""-p/, then A and B are obviously properly situated, since either
they do not intersect at all for p s p’ or they are contained in a single
complex K-pforp = p.1fA ¢ S;-Jand B = 4,;™-p, then Case 3 reduces to
4). If AeS:-J, BeS;-J, then 4 and B are both contained in M- J,
and hence are properly situated. Thus A and B are always properly situ-
ated, which implies that P and Q are properly situated. Hence K-J is a
complex (see §2, D)).

To prove a), note that | K-J | = [ M-J| v | x(C)| v ---u | k(Ch) |
and |K|-J = |M|-JuPu---u P,. By the inductive hypothesis,
|M-J| = |M]|-J. Moreover, | C; | consists of the set of all frontier points
of the prism P; (see B)), since, again by the inductive hypothesis,

18T | = | 8:]-J

is the lateral surface of the prism P; . Hence | x:(C) | = «:(|Ci |) = P;,
sothat | K-J| = |K|-J.

In order to prove b), let L be a subcomplex of K, N the n-skeleton of L,
and A;"*, -+ | A" the set of all (n + 1)-simplexes of L, | < k. By the
inductive hypothesis, N-J is a subcomplex of M -J and L-J consists of all
the simplexes contained in the complexes N-J and «;(C;), 7 = 1, ---, 1,
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while K is the set of all simplexes of the complexes M -J and
ki(Ci), 1 =1, L.

Hence L-J is a subcomplex of K-.J.

We shall now prove ¢). The complex K-p obviously consists of all the
simplexes of the complex M -p and of the simplexes 4,"™-p, 1 = 1, --- | k.
By the inductive hypothesis, M -p is a subcomplex of M-J < K-J and
the simplex 4,"*".p is in the complex x;(C;); hence K- p is a subcomplex of
K-J.

It is clear that the dimension of the complex K -J is one greater than that
of K.

Algebra of the Cylinder

Having constructed the complex K-J, let us now associate with each
r-chain z of K an (r + 1)-chain z-J of K-J over the same coefficient group
as the chain z.

D) Let K be a complex, K-J the cylinder over K (see C)), and p either
0 or 1. To the oriented simplex A" = ¢ (a, - - - , a,) of K assign the oriented
r-simplex A"-p = ¢ (aop, - -+ ,a--p) of K-p,andif x = 14" + - -+ + gud"
is any r-chain of K, set

zp =gl + - + (4% p).
The boundary of z-p satisfies the relation
®) A(z-p) = (Az)-p.

We shall now construct the chain z-J.
E) Let K be a complex, K-J the cylinder over K (see C)), and

x = .(hArl + - gkATk

any r-chain of K over the coefficient group G. Assign to the chain z the
(r + 1)-chain z-J of K- J over G, referred to as the cylinder constructed on
z, in the following way. If A";-J has already been constructed for the sim-
plest integral chain, an oriented simplex A";, then set

) z-J = g(dJ) + -+ gu(4T ).
The chain A";-J is constructed by induction on the dimension r. If
A’ = +(a)

is an oriented 0-simplex, there is a segment a-J in the complex K-J with -
endpoints a-0 and a-1. Orient this segment in the direction from -0
to a-1 and take it to be 4°-J, i.e., set A°-J = +(a-0, a-1). The boundary
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of A% J is
A" J) = +(a-1) — (a-0) = A°1 — A°-0,
whence (9) implies
(10) AR T) = 21 — 2”0
for any 0-chain 2.

Now assume that the cylinder construction has already been defined
for any m-chain, so as to satisfy the condition

11 Alz-J) = z-1 — 2-0 — (Ax)-J.

Note that (11) reduces to (10) if » = 0. In order to define the cylinder for
an (n -+ 1)-chain, denote by A" oo A the set of all arbitrarily
oriented (n + 1)-simplexes of K, and, for the rest, retain the notation used
in C). The chain A4;"™ is n-dimensional and consists of simplexes of the
complex S;. Hence the chain (AA;"™)-J composed of simplexes of the
complex S;-J is defined. Now form the chain

w = A1 — A0 — (A4,
which is contained in the complex C;. The cone k:(u;) is therefore a chain
of the complex «;(C:) (see §8, E)), and we may set
(12) AT = ku) = k(A5 — A4S0 — (45T ).

If we now define the cylinder z-J for any (n + 1)-chain « in accordance
with (9), then relation (11) is again satisfied.

It suffices to prove (11) for the simplest (n + 1)-chain z = A" Since
(11) holds for the n-chain AA;"™ by the inductive hypothesis, it follows
that

) A[(AAMYJ] = (A4 -1 — (A4S0 — (AA4T)-T
= (A4,"™)-1 — (44,"7)-0,

whence (8) and (13) yield

(14) Au; = (A1 — (84,70 — A[(A4™)-J] = 0.

The boundary of the chain x;(u;) = A" J is computed on the basis

of §8, (11), ie.,
AASTT) = Axi(ws) u; — ki(Au) = Us

= A1 — A0 — (A4S

Hence (11) holds for z = A,"*.
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A consequence of relation (11) is the basic proposition:

F) If z is a cycle of K, then the cycles 2-1 and z-0 are homologous in
K-J.

Indeed, if Az = 0, then (11) implies

A(z-J) = z-1 — 20, ie., z2:l ~ 20 in K-J.

§16. Homology invariants of continuous mappings

In this section we shall associate with every continuous mapping « of a
polyhedron P into a polyhedron @ homomorphisms of the corresponding
Betti groups, and prove that two homotopic mappings induce identical
homomorphisms. This is the central result of the whole homology theory
of continuous mappings.

Homomorphisms for Complexes

LemMA 1. If fo and fi are two homotopic stmplicial mappings of a complex
K into a complex L, and z is any cycle of K, then fo2) ~ fi(2), i.e., the in-
duced homomorphisms Jo and Ji of the group B'(K) into the group B'(L) are
dentical.

Proof. Let f; be a continuous family of mappings of K into L which de-
forms fo into f1 , and set f(x, t) = fi(z),x | K |, t ¢ J, as in §13, B). Then f
is a continuous mapping of K-J into L. The mapping f is not simplicial on
the whole complex K-J, but it is simplicial on the subcomplexes K-0
and K -1, since fo and fi are simplicial. Hence the chain mapping fis de-
fined for chains of K-0 and K-1, and by definition,

1) fo@) = 1:0),  fi(e) = f(e-1),

where z any cycle of K.

Let (K-J)* be a subdivision of the complex K-J so fine that there is a
simplicial approximation g to f of (K-J)® into L. Since 20 ~z-1in K-J
(see §14, F)), it follows that (2:0)* ~ (2-1)“in (K-J)* (see §9, E)); whence,
in virtue of §7, F),

@ l(z-0)"] ~ gl(=-1)°].

Since g approximates f on (K-J) it does so also on any subcomplex of
(K-J)%, in particular, on (K-0)*. Hence, by the lemma of §12,

®3) §l(2-0)°] = f(=-0),
and similarly,

@) glz-1)°] = fe-1).
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Comparison of (1), (2), (3), and (4) yields
Jo@) ~ fi(2).

This proves Lemma 1.

 Lemma 2. Let K and L be two complexes, K® and K*® two subdivisions of
K, L* and L? two subdivisions of L, and f* and f° simplicial mappings of
K*® into L* and K® into LP, respectively. If f* and f° are homotopic, then the
induced homomorphisms f* and J* of B'(K) into B"(L) (see §12, A)) are iden-
trcal.

Proof. Let K” be the finer of the two subdivisions K* and K* and let
L" be the coarser of the subdivisions L* and L°. Then K" is a subdivision
of K* and K?, while L* and L* are subdivisions of L”.

The indices « and 8 are interchangeable in the discussion; in the sequel,
the construction will be carried out for the index «, but it should be kept
in mind that it applies equally well to the index 8.

Let e be the identity mapping of K* onto itself, and e* a simplicial ap-
proximation to e of K into K* By Theorem 19, there is a continuous
family e; which deforms ¢ into ¢®. Similarly, let ¢ be the identity mapping
of L” onto itself, g* a simplicial approximation to g of L into L”, and g,
a continuous family which deforms g into g* This system of mappings
may be represented by the following scheme:

pdpel gl
- ga fa P ?
where the arrows refer to the mappings, the initial mappings are written
above the arrows and their simplicial approximations below. We may re-
gard f* as a simplicial approximation to itself. It is easily seen that the
family of mappings g.f%; of K" into L” is continuous, and since
gofe = f% gquf’er = g°f%",

it follows that
(5) 1%~ gofe’.

The simplicial mappings induce homomorphisms of the Betti groups
which can be represented schematically as follows:

B'(L") 3”_ B'(L%) ‘].; B(K*) 'é—a B'(K"),
B'(L) « B'(L) « B'(K) < B'(K),

where the homomorphisms induced in the Betti groups of the subdivided
complexes are written on the first line and the homomorphisms of the
Betti groups of the initial complexes appear on the second line. The latter
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were defined in §12, A). Since ¢* is an approximation to the identity map-
ping, the homomorphism § of B'(L) into B"(L) induced by it is, in virtue
of §12, D), the identity. Similarly, &* is the identity homomorphism of
B'(K) onto itself, whence the homomorphisms satisfy the relation

) 7 = g7
Application of the above argument to the index g8 yields the equivalence
(7) P~ ffed
for the continuous mappings and the equality
(8) 7 = P

for the homomorphisms.
By hypothesis, f* ~ f°, whence (5) and (7) imply

9) gofee ~ g’fPe.

Since g*f*e® and ¢°f%¢” are two simplicial mappings of K" into L?, it follows
from Lemma 1 of the present section and §7, G) that

(10) ife = 77
Comparison of (6), (8), and (10) yields
=7

This proves Lemma, 2.

TreorEM 20. Let ¢o be a continuous mapping of a complex K into a com-
plex L, L* any subdivision of L, and K a subdivision of K for which there
exists a simplicial approximation f* to oy of K* into L. Then the induced
homomorphism f* of B'(K) into B'(L) is tndependent of the choice of the par-
ticular subdivisions K and L” and of the particular approzimation f°, and s
determined only by the initial mapping ¢o . Hence we may denote the homo-
morphism F* simply by @ , &[B"(K)] € B'(L). In addition, if ¢ and ¢, are
two homotopic mappings of K into L, their induced homomorphisms @ and
&1 are identical.

Proof. If L is any subdivision of L and K? is a subdivision of K for which
there is a simplicial approximation f* to ¢ of K* into L®, then, according
to Theorem 19, f* ~ ¢, 1% ~ ¢, and since, by hypothesis, ¢o ~ ¢1, it
follows that f* ~ f®. Hence, by Lemma 2 of this section, the homomor-
phisms 7* and 7* are identical. Since 7* and f* were constructed independ-
ently of one another, the homomorphisms @ and @ of the theorem are
likewise independent of the choice of K*, K?, and f*. This proves Theorem
20.

According to Theorem 20, each continuous mapping ¢ of K into L in-
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duces a homomorphism & of the corresponding Betti groups. We shall prove
the following important property of the induced homomorphism.

TreoreM 21. If K, L, M are three complexes, and ¢ and 0 are continuous
mappings of K into L and L into M, respectively, then the continuous
mapping O¢ of K into M induces the homomorphism b3, the product of 8
and @ (see Theorem 20).

Proof. Let M* be any subdivision of M and let L* and K* be subdivi-
sions of L and K, respectively, so fine that the continuous mappings 6
and ¢ of L® into M and of K*into L* admit of simplicial approximations
g® and f%, respectively. Schematically, we have

Ma La [ Ka
e f
where the arrows refer to the mappings, the initial continuous mappings
are written above the arrows, and their simplicial approximations below.
By §7, D), ¢°f* is a simplicial approximation to f¢. By Theorem 20,

p=70=7
and 6 induces the product §°7* of the homomorphisms §* and f* (see §7,
G)). Hence 6y induces the homomorphism §@. This proves Theorem 21.

The Homomorphisms of Bettt Groups of Polyhedra

TaroreMm 22. Let w be a continuous mapping of a polyhedron P into a
polyhedron Q, & an element of the group B'(P) (see Def. 22), (o, K) and (7,
L) arbitrary triangulations of P and Q, and finally = a represeniative of the
element £ in the triangulation (o, K), © ¢ B'(0, K) = B'(K). The mapping
oo = uis obviously a continuous mapping of K into L, which by Theorem
20, induces a homomorphism of B"(K) into B'(L). Set y = j(z) and denote
by 7 the element of B'(Q) which contains y. Then q is independent of the choice
of the representative x of £ and 5t is therefore possible to define a homomorphism
& of B'(P) into B'(Q) by setting n = &(£). Moreover, if w and w1 are two
homotopic continuous mappings of P into Q, then & and & are identicol.

Proof. Let (o1, K1) and (o2, K») be any two triangulations of P and
(r1, L), (72, L) two arbitrary triangulations of . The continuous map-
pings

wey = gy, T wop = pg, ol =9, =0,
obviously satisfy the equality
pr = Oume
By Theorem 21, the same equality holds for the induced homomorphisms:

(11) fir = 0@ .
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Let £ be any element of B'(P) and z:, x» representatives of £ in B (K1)
and B'(Ky), respectively (see Def. 22). Setting y, = (), Yo = fe(xe), we
shall show that y; and y. are representatives of the same element 7 of the
group B'(Q) in the groups B'(r1, L;) and B'(r2, Ly). This will prove the
first part of Theorem 22.

Since z: and =, are representatives of the same element £, it follows from
Def. 22 that z; = & '(z2), whence, by (11), 2 = 8(yy). This in turn, by Def.
22, implies that : and y. are in the same element of B"(Q).

Now if w; is a continuous family of mappings of P into Q, it is readily
seen that 7 'w,c = v, is a continuous family of mappings of K into L. Let
£ € B'(P) and let = be a representative of the element £ in the group B'(c, K).
We must show that @ () = @.(£). Since vy and v; are homotopic, Theorem
20 implies that Gy(x) = 71(z), which means that @ (£) = @(£). This proves
Theorem 22.

TueorEM 23. If P, Q, R are three polyhedra, ¢ a continuous mapping of P
into Q, and 6 a continuous mapping of Q into R, then the continuous mapping
bp = w of P into R induces the homomorphism & = 83, the product of 6 and .

Proof. Theorem 23 follows immediately from Theorems 21 and 22. Let
(p, K), (o, L), and (7, M) be arbitrary triangulations of P, Q, and R, re-
spectively. The homomorphisms &, §, and & are constructed by means of the
continuous mappings ¢ ‘¢p = \ of K into L, 7 '6s = u of L into M, and
7 '0pp = v of K into M, respectively. Since » = u\, Theorem 23 follows di-
rectly from Theorem 21.

Homotopy Types of Polyhedra

The notion of homotopy types of polyhedra (see Def. 25) has lately be-
gun to play an essential role in topology. Due to its close relation to the
material presented above, it is discussed here, although it will not be used
in the sequel. It is interesting to note that many of the invariants of poly-
hedra having the same homotopy type are identical. We shall confine our-
selves here, however, to a proof of this fact for the Betti groups.

A) If P is a polyhedron and ¢ is a continuous mapping of P into itself
which is homotopic to the identity, then the induced homomorphism &
of. B"(P) into itself is the identity.

Because of Theorem 22, we may assume that ¢ is the identity mapping
of P into itself. If (p, K) is any triangulation of P, the mapping p '¢p = u
of K into itself is the identity. Hence the homomorphism g of B"(p, K) into
itself is also the identity, and this, by Theorem 22, implies A).

DEerFiniTION 25. Let P and @ be two polyhedra, and ¢ and 6 continuous
mappings of P into @ and @ into P, respectively. The mappings ¢ and
are said to be homotopically inverse to one another if both mappings, 6¢ of
P into itself and o8 of @ into itself, are homotopic to the identity. The poly-
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hedra P and Q are said to have the same homotopy type if there exist homo-
topically inverse mappings ¢ of P into @ and 6 of @ into P.

THEOREM 24. If two polyhedra P and Q have the same homolopy type and
¢ and 9 are corresponding homotopically tnverse mappings (see Def. 25),
then the induced homomorphisms @ and 8 are isomorphisms of B'(P) onto
B'(Q) and B'(Q) onto B'(P), respectively, and @, § are inverse to each other.

Proof. Since the mapping 8¢ = u is homotopic to the identity, it follows
from A) that the homomorphism g of B'(P) into itself is the identity iso-
morphism. According to Theorem 23, i = 8@, whence 63 is the identity
mapping of B (P) onto itself. This implies that the kernel of ¢ is zero and
8 is a homomorphism of B"(Q) onto all of B'(P).

Similarly, the kernel of 8 is zero and $ is a homomorphism of B'(P) onto
all of B'(Q). Comparing these results, it is seen that ¢ and 8 are inverse
isomorphisms, which proves Theorem 24.

§16. The existence theorem for fixed points

In this section we shall give sufficient conditions for the existence of
fixed points of a continuous mapping w of a polyhedron P into itself. These
conditions will be expressed in terms of the homology invariants of the map-
ping o (see §15). The sufficient conditions cited here are known not to be
necessary. It is known that nécessary and sufficient conditions cannot be
given in terms of the homology invariants alone. This is shown by rather
complicated examples which cannot be adduced in this book. In addition
to Theorem 27, we shall also prove Theorem 25. The latter is auxiliary to
Theorem 27, but has other and deeper consequences.

The Trace of an Endomorphism of o Group
A) If B is a commutative group of finite rank, written additively,
1:1 s ... s 1: »

a maximal linearly independent system of elements of B, and = any element
of B, then there exists a linear dependence

1
(1) ar=az+ - +a'z,,
. 1 .
where ¢ is a natural number, and a, --- , a” are integers. Set
a' = a'/a

and, with no régard for group-theoretic meaning, write the formal equality
@) g =adn+ oo+ d,,

where @', -+ , 4" are rational numbers. Equation (2) merely means that,
after multiplication by a suitable number a, it reduces to equation (1)
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which does have group-theoretic meaning. If a is a suitable number for the
reduction of (2) to (1), then obviously every multiple of a also serves the
same purpose. The numbers d', -+ - , 4" do not, of course, determine the
element z, but for a given system z;, - - - , z,, the element z does uniquely
determine the numbers a', --- , @". Let us prove this.

Assume that in addition to (2) we have

(3) z = ba + - + bz,

which, on multiplication by the natural number b, acquires group-theoretic
meaning. Multiplication of (2) and (3) by ab yields the equations
@ abx = aba'ry + -+ + abd'z,,
abx = abb'z; + --- + abb'z,,
which have group-theoretic meaning. Since the system zy, ---,z, is
linearly independent, equations (4) yield the numerical equalities:
aba’ = abb’, i =1, -, 15

whence ¢* = b°, and the assertion is proved.
B) A homomorphism of a group into itself is called an endomorphism
of the group. Let B be a commutative group of finite rank, and let

xl,...,xr

be a maximal system of linearly independent elements of B, and f an endo-
morphism of the group B. By A), we can write the relation

6)) f@) = i dliz;.
The trace S(|| 4’ ||) = 2.7 a’ of the matrix || &’; || is independent of the
choice of the system z;, - - - , =, and hence is called the trace of the endo-

morphism f of the group B. It will be denoted by S(f, B). We shall prove
that 7= &' is independent of the choice of the system i, ---, z,.

Let y1, - -+ , ¥» be another system of linearly independent elements, and
let

(6) ) = 2iabiy;

be the equality analogous to (5). In addition, let

@ yi = Doim Pl 25,

®) mi = D @Yy

There is obviously a natural number a which on multiplication into (5),
(6), (7), and (8) reduces these to expressions having group-theoretic mean-
ing. Relations (7) and (8) yield
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ayi = 2imap’s ax; = G amap’s ad’s yi, ie, yi = DG’ ¢ ue,

and since y; = ¥, it follows that
9) 2iap gty = 8.
Relations (8), (6), and (7) imply
d'f(z:) = af(im ad’s y5) = ad e ad’s af(y) = a2 5 umr ag’s abt; i

= D am ad’s abt; aye = 254 0m ad’s abt; apli i,
whence

flz) = 2ipm ¢ bk .
Comparing the last relation with (5), we get

ali = D i g bk
We now have, by (9),
Diaati= D ik 0 Y = D PR 0 = D B )
which proves that the trace S(f, B) is independent of the system
Ty, e, T

C) Let B be a group of finite rank, C' a subgroup of B, and B* = B/C
the corresponding factor group. If the subgroup C is invariant with respect
to an endomorphism f of the group B, i.e., f(C) < C, then the endomorphism
fis obviously also defined on C. Moreover, f can also be defined in a natural
way on B¥; in order to do this, it suffices to set

&%) = @),

where z* ¢ B¥, z e2*, and [f(z)]* is the element of B* which contains
f(x). The resulting mapping f(z*) is independent of the choice of = € z* and
is an endomorphism of the group B*. Furthermore, the traces of B, C,
and B* satisfy the following important relation:

(10) S(f, B) = S(f, B¥) + 8(f, C). ‘
If  and 2 are any two elements of z*, then x — 2’ ¢ ¢ and
f@@) — f@&") = fz — ') e C.

Hence f(r) and f(z") are in the same coset of the subgroup C relative to
the group B.

We shall now prove (10). Let v, -+, y; be a maximal linearly inde-
pendent system of C, and z*, -, 2% a maximal linearly independent
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system of B*. Denoting by z; an element of the coset z*;, the system
Tuy s sy Yyt Y is a maximal linearly independent system of the
group B. This has already been proved (see §6, lemma). Hence, by A),

(11) flx:) = ZI:=1 a i+ D i by,
and since f(C) < C, it follows that

(12) fly) = 24 éiun.

Multiplying (11) by a suitable natural number a, rewriting the result in
terms of the cosets, and dividing again by a, we obtain

(13) fa*) = 2iadbiah.
Relations (11), (12), and (13) imply
8(f, B) = 24145 + 2=,
8(f, €) = 2imé"s, 8(f, B¥) = 2imd's,

which proves (10).

D) Let B be a group of finite rank, C the subgroup of B consisting of all
the elements of finite order of the group B, and let B = B/C. If f is any
endomorphism of the group B, then obviously f(C) < C and S(f, C) = 0,
since C contains no independent elements. Hence the endomorphism f is
defined on B and S(f, B) = S(f, B). We call the passage from the group
B to the group B a reduction. The reduced group B obviously has no ele-
ments of finite order, other than zero.

Weak Homology

DeriNiTION 26. Let K be a complex and let Z' be the group of r-cycles
of K over the group of integers. Two cycles 2 and 2 of Z'y are said to be
weakly homologous, z1 & 2, if a(z1 — 22) ~ 0 for some natural number a.
The set H'o of all eycles weakly homologous to zero obviously forms a sub-
group of Z'y, while the group H', of cycles homologous to zero is contained
in H,. The factor group B = Z'o/H'y is called the reduced Betti group
of the complex K. Its elements are classes of weakly homologous cycles.

E) Since H' c H'y (see Def. 26), every coset z* of the subgroup H'y
relative to the group Z is contained in some coset z of the subgroup m,
relative to the group Z' . The correspondence z* — z obviously induces a
homomorphism of the group B’ onto the group B". The kernel of this
homomorphism consists of all the elements of finite order of By, so that
B’ is the reduced group of the group B' (see D)). Therefore the trace of an
arbitrary endomorphism of B’y is equal to the trace of the corresponding
endomorphism of B” . This is the significance of the reduced Betti group.
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Let us show that the kernel C” of the homomorphism z* — Z is the set of
elements of finite order of B'y . If z* € C" and 2 € 2*, then z &2 0, since

zez¥cz = 0,

Hence az ~ 0 for some natural number a, whence az* = 0, i.e., 2* is of
finite order. Conversely, if z* is of finite order, then az* = 0, whence az ~ 0
for an arbitrary cycle z e 2*, i.e., 2 = 0. Hence z = 0, i.e.,, 2*¥ e C".

F) Since the group B (see Def. 26) has no elements of finite order and
admits of a finite system of generators, B” has a linearly independent basis
Z, -+, 2. Let us choose a cycle z; from each class z;. The system of
cyeles 21, -+ , 2, forms a so-called weak homology basts of dimension r
of the complex K with the property that, if z is any r-cycle of K, then

zwalzl—l— cee 4 a2,

where a', - -+ , a? are integers uniquely determined by z and the basis
21,00, 2p -

Let K and L be two complexes, K* and L? subdivisions of K and L,
respectively, and f a simplicial mapping of K* into L. 1t is clear that
21 & 2 in K* implies f(z1) & f(z) in L®. Hence the simplicial mapping f
induces a homomorphism F of the group B'(K) into the group B'(L) (see
§12, A)). Now if L* = K, then the endomorphism 7 of the group B” and the
endomorphism f of the group B’y have identical traces (see D), E)). Their
common trace can be obtained as follows: let 271, --- , 2% be an r-
dimensional weak homology basis of K, so that

(14) (GO 7O T
Then
(15) S[f, BW(K)] = 8[f, B'(K)] = 2279, "o’

In order to prove (15), denote by z"; that weak homology class of K which
contains the cycle z7; and apply relation (14) to the group B'(K). Then

(16) jEr) = PO

Since 21, -, Zpry is a maximal linearly independent system of B'(K),
(16) implies (15). ,

The Euler-Poincaré-Hopf Formula

The theorem of Hopf which is given below serves as the basis for ob-
taining various theorems on fixed points, and is at the same time a direct
generalization of the Euler-Poincaré theorem on the Euler characteristic.

TrEOREM 25. Let K be an 'n-complex, K* a subdivision of K, and f a sim-
plictal mapping of K* into K. Denote by L'y the group of all r-chains of K*
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over th'e group of integers. If x ¢ L'y and g(z) = [f”(xl]“, then g is an endo-
morphism of L'y and f induces the endomorphism J of B"(K) (see G)). Under
these conditions, it follows that

(A7) 227 (1)78(g, L'o) = X7 (— 1 S[F,B(K)] = J(f, K).

Proof. The endomorphism ¢ is defined on L'y for arbitrary r,r = 0, 1,
-,m. If x e L7y, then

(18) Ag(z) = g(Az),
since

Ag(z) = Alf@)]" = [Af@)]" = [f(az)]* = g(ax).

Denote by Z'y the subgroup of cycles of L'y and by H'y the subgroup of
cycles homologous to zero of L'y . Relation (18) immediately implies that

(19) g(Z) =2, gH) cH,y.
This, by B), implies that
(20) S(g, L") = 8(g, Z') + S(g, L'o/Z")
= 8(g, Z'o/H') + S(g, H'o)+ 8(g, L'o/Z).

Let us clarify the meaning of the endomorphism ¢ as applied to the groups
Z"/H'y = Bo(K*) and L'y/Z"y, bearing in mind the fact that there exists
a well-defined isomorphism between B"o(K*) and B")(K), as well as between
Lro/Zro and Horﬁl. ‘

The simplicial mapping f associates with each cycle 2% of K* a cycle
f(z%) of K and in this way induces an endomorphism f of B'y(K) (see C)).
If we now wish to pass from the group B"o(K) to the group B"o(K“) by means
of a natural isomorphism (see Theorem 15), we must assign a cycle [f(z%)]*
to the cycle z* of K% This mapping coincides with g. Hence the endo-
morphism f of B"(K) is transformed into an endomorphism g of Z'o/H"y
by means of the natural isomorphism between B’y(K) and

Zro/HTo = Bro(Ka).
Thus
1) S[f, Bo(K)] = Slg, Z'o/H"].

Let z* be any element of L'o/Z" and x any chain of the coset z*. Since
all elements of z* have identical boundaries, we can set Az* = Az. The
mapping A so defined is an isomorphism of L'/Z’ onto Hy ™, since the
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kernel of the homomorphism A of L'y onto Hy ™ is Z7y . The endomorphism
g is defined on L'y/Zy as well as on Hy'™' = Ly (see C) and (19)). Since,
by (18), g(Az*) = Ag(z*), it follows that the endomorphism ¢ is the same
on Hy ™ and on L'y/Z" , provided that the transition from Hy ™ to L'y/Z"
is effected by means of the isomorphism A. Hence
(22) S(g, L'i/Z"s) = S(g, Ho ™).

In the light of (21) and (22) we may rewrite (20) in the form
(23) S(g, L'o) = S[J, B'o(K)] + S(g, H's) + S(g, H'™),
where we must put S(g, H") = S(g, Hy™") = 0. Multiplication of (23) by
(—1)" and summation over 7 yields

20 (=1)8(g, L's) = 27 (=1)S[f, B'o(K)].

Since the equality S[f,B"(K)] = S[f, B'o(K)] wasnoted previously (see G)),
the proof of Theorem 25 is complete.

H)If A"y, -+, A'a is the set of all oriented 7-simplexes of the complex
K% r=0,1,---,n, then f(4",) is an oriented r-simplex of K or 0, and
[f(4")]% is of the form
@4 (A" = 2 75 A%,

where the coefficients "f*; are all integers. We shall show that

@5)  J(f, K) = 20 (1) 20850 M = e (= 1) D dh.

In order to prove (25), note that A", - - , A" 4 is 2 maximal linearly
independent system of L'y , whence S(g, L's) = > +< "f* . Since (15) and
(17) also hold, the proof of H) is complete.

Let us now derive the Euler-Poincaré formula from (25). If K* = K
and f is the identity mapping of K onto itself, then (24) can be replaced by
J(A";) = A';, whence in this case, 'f*; = 6*;, i.e., 2ot "% = a(r). Simi-
larly, in this case, (14) can be replaced by f(z';) = 2’;, so that

p(r) r l

= p(r)
and therefore D g (—1)a(r) = 2 g (—1)p(r).
The Existence Theorem

TurorEM 26. If ¢ is a continuous mapping of an n-complex K into itself,
then ¢ has a fixed point provided that the number

J((a, K) = Zr=0 ( 1)TS{§5: ET<K)]

does not vanish. Here ¢ is the endomorphism of B"(K) induced by ¢ (see G)
and Theorem 20).
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Proof. The proof is by contradiction. We shall assume that ¢ has no fixed
points and show that then J(p, K) = 0.

If ¢ has no fixed points, since | K | is compact, there exists a positive &
such that

(26) olz, o(x)] > ¢ forze|K|.

Let K? be a subdivision of K so fine that the diameter of every simplex of
KP? is less than /3. In order not to change the notation used above, let
K? = K. This merely means that K was originally taken with a sufficiently
fine subdivision. Now let K be a subdivision of K so fine as to admit of a
simplicial approximation f to ¢ of K* into K. Since, for each z ¢| K|,
there is a simplex D ¢ K such that f(z) e D and ¢(z) €D, it follows that p[f(z),
o()] < &/3. Hence by (26),

27) plz, f(@)] > ge.

If A", is any oriented simplex of K*, then the simplexes f(A";) and A";
are disjoint. Indeed, if for z ¢ A"; and f(z) e f(4";), A"; were to intersect
f(A;), then we would have p[z, f(z)] < 3¢, since the diameters of both
simplexes are less than &/3.

If, in relation (24), at least one of the numbers "f9, is different from
zero, then the simplex A”; is contained in frar )% ie., A7 intersects f(4")),
which is impossible. Hence every coefficient 'f’; vanishes and J(f, K) = 0.
In order to show that this is also true of J (¢, K), it is merely necessary to
note that the endomorphism @, by construction, is the same as the endo-
morphism J. Hence J (¢, K) = 0. This proves Theorem 26.

The corresponding theorem for a polyhedron P follows immediately
from Theorem 26. The reduced Betti group B'(P) of the polyhedron P can
be defined as the reduction of the group B's(P) (see D)), or else by means of
triangulations, as was done in Def. 22. If w is a continuous mapping of the
polyhedron P into itself, it induces an endomorphism & of B'(P). The
endomorphism & may be defined either as in remark D) or as in Theorem 22.

TueoreM 27. If w is a continuous mapping of an n-dimensional poly-
hedron P into iiself, then  has a fized point provided that

J(w, P) = > (—1)"S[a, B'(P)]
does not vanish, where & is the endomorphism of B'(P) induced by .
Proof. If (o, K) is any triangulation of the polyhedron P, then
o =0 wo

is a continuous mapping of the complex K into itself. It is clear that
J(w, P) = J(p, K), so that J (e, K) 5= 0. Hence ¢ has a fixed point z (see
Theorem 26), and o(z) € P is a fixed point of w. Indeed,
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wlo(@)] = dle(@)] = o(2),

which proves Theorem 27.

DIfpisa contmuous mapping of a connected complex K into itself,
then S[7, B°(K)] =

Indeed, let f be a snnplicial approximation to ¢ of K® into K. If a is a
vertex of K, then 4 (a) is a cycle which generates a zero-dimensional weak
homology basis in K. Since f[4(a)] = +(b), where b is likewise a vertex
of K, it follows that [+ (a)] &~ =+ (a), whence by G), S[F,B°(K)] =

TuroreM 28. If A is a simplex of arbitrary dimension and w is an arbi-
trary continuous mapping of A into ztself, then J(w, A) = 1. Hence w has a
fized point (see Theorem 14).

Proof. In virtue of I), S[@, B’(4)] = 1. Moreover, since for r > 0 the
group 5'(4) has no elements different from zero, we have J(w, 4) =

This proves Theorem 28.
J) Let R, n = 1, be the (n + 1)-dimensional Euclidean space with
Cartesian coordinates z, #°, - -+ , """, The set =" of points of R"*" satis-

fying the equation (2')* + (z*)* + -+ + (&™)’ = 1, called an n-sphere,
is homeomorphic to the frontier F* = | 8" | of an (n + 1)-simplex. Hence
2" is a polyhedron whose n-dimensional Betti group is the free cyclic
group. If u is a generator of this group and w is a continuous mapping of
the polyhedron =" into itself, then &(u) = ku. The number k is called the
degree of the mapping (Abbildungsgrad)  of =" into itself. It is an invariant
of the mapping class which contains w.

In order to prove that =" and F" are homeomorphic, choose an (n + 1)-
simplex A™*" in R whose center is at the origin of coordinates O of
R"™ and such that 2" ¢ 4™, If & ¢ F™ (where F" is the frontier of A™*),
then the segment (0, z) intersects =" in a single point ¥ = ¢(z). It is easily
seen that ¢ is a homeomorphism of F" onto =".

TuEOREM 29. If w 15 a continuous mapping of an n-sphere =" into itself
(see J)) of degree k, then J(w, Z") = 1 + (—1)"k. Hence » always has a
fized point provided that the number 1 + (—1)"k does not vanish.

Theorem 29 is an immediate consequence of Theorem 27 and the fact
that the Betti groups of dimension 7, 0 < r < 7, of the complex S™ are all
trivial, while its zero- and n-dimensional Betti groups are free cyclic groups
(see Theorem 11).

As a simple application of Theorem 29, consider the mapping « of ="
into itself which maps each point z ¢ Z" into its diametrically opposite
point, —z, i.e., w(z) = —z. This mapping obviously has no fixed points,
and hence the number 1 + (—1)"k is equal to zero, so that k = (—1)"",
i.e., the degree of the mapping of =" into itself which maps every point
into its diametrically opposite one is (—1)"*.
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