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FOREWORD

Mathematicians frequently use geometrical examples as aids to the study
of more abstract concepts and these examples can be of great interest in
their own right. Yet at the present time little of this is to be found in
undergraduate textbooks on mathematics. The main reason seems to be
the standard division of the subject into several watertight compart-
ments, for teaching purposes. The examples get excluded since their
construction is normally algebraic while their greatest illustrative value
is in analytic subjects such as advanced calculus or, at a slightly more
sophisticated level, topology and differential topology.

Experience gained at Liverpool University over the last few years, in
teaching the theory of linear (or, more strictly, affine) approximation
along the lines indicated by Prof. J. Dieudonné in his pioneering book
Foundations of Modern Analysis [14], has shown that an effective course
can be constructed which contains equal parts of linear algebra and
analysis, with some of the more interesting geometrical examples in-
cluded as illustrations. The way is then open to a more detailed treat-
ment of the geometry as a Final Honours option in the following year.

This book is the result. It aims to present a careful account, from
first principles, of the main theorems on affine approximation and to
treat at the same time, and from several points of view, the geometrical
examples that so often get forgotten.

The theory of affine approximation is presented as far as possible in a
basis-free form to emphasize its geometrical flavour and its linear algebra
content and, from a purely practical point of view, to keep notations and
proofs simple. The geometrical examples include not only projective
spaces and quadrics but also Grassmannians and the orthogonal and
unitary groups. Their algebraic treatment is linked not only with a
thorough treatment of quadratic and hermitian forms but also with an
elementary constructive presentation of some little-known, but in-
creasingly important, geometric algebras, the Clifford algebras. On the
topological side they provide natural examples of manifolds and, par-
ticularly, smooth manifolds. The various strands of the book are brought
together in a final section on Lie groups and Lie algebras.

Acknowledgements

I wish to acknowledge the lively interest of my colleagues and students
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in the preparation of this book. Particular thanks are due to the students
of W3053 (Advanced Calculus) at Columbia, who met the book in
embryo, and of BH (Algebra and Geometry), CH (Linear Algebra and
Analysis) and DP5 (Lie Groups and Homogeneous Spaces) at Liverpool,
who have suffered parts of it more recently. I owe also a considerable
debt to Prof. T. J. Willmore, who was closely associated with the earliest
drafts of the book and who shared in experiments in teaching some of
the more elementary geometrical material to the BH (first-year) class.
Various colleagues—including Prof. T. M. Flett, Prof. G. Horrocks and
Drs. R. Brown, M. C. R. Butler, M. C. Irwin and S. A. Robertson—
have taught the ‘Dieudonné course’ at Liverpool. Their comments have
shaped the presentation of the material in many ways, while Prof.
C. T. C. Wall’s recent work on linear algebra over rings (for example
[57]) has had some influence on the final form of Chapters 11 and 13.

The linear algebra in the first half of the book is fairly standard, as is
the treatment of normed linear spaces in Chapter 15 and of topological
spaces in Chapter 16. For most of Chapters 9 and 11 my main debt is to
Prof. E. Artin’s classic [3]. My interest in Clifford algebras and their use
in relativity was stimulated by discussions with Dr. R. H. Boyer, tragic-
ally killed in Austin, Texas, on August 1st, 1966. Their treatment here is
derived from that of M. F. Atiyah, R. Bott and A. Shapiro [4], while the
classification of the conjugation anti-involutions in the tables of Clifford
algebras (Tables 13-66) is in a Liverpool M.Sc. thesis by A. Hampson.
The observation that the Cayley algebra can be derived from one of the
Clifford algebras 1 also owe to Prof. Atiyah. Chapters 18 and 19, on
affine approximation, follow closely the route charted by Prof. J.
Dieudonné, though the treatment of the Inverse Function Theorem and
its geometrical applications is from the Princeton notes of Prof. J.
Milnor [42]. The proof of the Fundamental Theorem of Algebra also
is Milnor’s [44]. The method adopted in Chapter 20 for constructing
the Lie algebras of a Lie group was outlined to me by Prof. J. F.
Adams.

Finally, thanks are due to Mr. M. E. Matthews, who drew most of the
diagrams, and to Miss Gillian Thomson and her colleagues, who pro-
duced a very excellent typescript.

References and Symbols

For ease of reference propositions and exercises are numbered con-
secutively through each chapter, the more important propositions being
styled theorems and those which follow directly from their immediate
predecessors being styled corollaries. (Don’t examine the system too
closely—there are many anomalies!)



0 FOREWORD

Implication is often indicated by the symbol = or <=, the symbol <>
being an abbreviation for ‘if, and only if’.

The symbol [] is used to mark the end of a proposition or exercise
and such proof or hints at proof as may be given.

Numbers within [ ] are references to the bibliography on pages
463—466. The entries in the bibliography are very varied in character.
Some are texts which are readily accessible and which complement the
material of this book. Others are given because of their historic interest.

Following the bibliography there is a list of the more important
mathematical symbols used in the text, as well as a comprehensive index.

Liverpool, September 1969
IAN R. PORTEOUS

The opportunity has been taken in this second edition to correct a
number of misprints and minor errors, some brought to my attention
by readers, to all of whom I am most grateful.

The text remains essentially unaltered, the earlier chapters providing
a route from first principles through standard linear and quadratic
algebra to geometric algebra—the study of the classical matrix groups
and their homogeneous spaces, Grassmannians, quadrics and the like—
with Clifford’s geometric algebras taking pride of place. In parallel with
this is an account, again from first principles, of the elementary theory
of topological spaces and of continuous and differentiable maps leading
up to the definitions of smooth manifolds and their tangent spaces and
of Lie groups and Lie algebras. Here the geometric algebra provides
numerous significant examples. It is the study of these examples, using
topological and differentiable techniques whenever necessary, which we
call ‘topological geometry’.

The main addition to the book is a new chapter, Chapter 21, on
triality, a feature of the group Spin 8 which illuminates the structure
of several of the other Spin groups and which is related to a property of
six-dimensional projective quadrics first noticed eighty years ago by
Study in work on the rigid motions of three-dimensional space. This
chapter leads on naturally from Chapter 13 on Clifford algebras and
Chapter 14 on the Cayley algebra as well as from Chapter 20 with its
final section on Lie groups and Lie algebras. There is plenty of interest
in the details, which include a number of important transitive group
actions and a description of one of the exceptional Lie groups, the group
G,. Much of this material is difficult to find elsewhere.

Liverpool, September 1979
IAN R. PORTEOUS



CHAPTER 0

GUIDE

This short guide is intended to help the reader to find his way about
the book.

As we indicated in the Foreword, the book consists of a basic course
on affine approximation, which we refer to colloquially as ‘the Dieudonné
course’, linked at various stages with various geometrical examples
whose construction is algebraic and to which the topological and dif-
ferential theorems are applied.

Chapters 1 and 2, on sets, maps and the various number systems
serve to fix basic concepts and notations. The Dieudonné course proper
starts at Chapter 3. Since the intention is to apply linear algebra in
analysis, one has to start by studying linear spaces and linear maps, and
this is done here in Chapters 3 to 7 and in the first part of Chapter 8.
Next one has to set up the theory of topological spaces and continuous
maps. This is done in Chapter 16, this being prefaced, for motivational
and for technical reasons, by a short account of normed linear spaces in
Chapter 15. The main theorems of linear approximation are then stated
and proved in Chapters 18 and 19, paralleling Chapters 8 and 10,
respectively, of Prof. Dieudonné’s book [14].

The remainder of the book is concerned with the geometry. We risk
a brief consideration of the simplest geometrical examples here, leaving
the reader to come back and fill in the details when he feels able to do so.

Almost the simplest example of all is the unit circle, S, in the plane
R2. This is a smooth curve. It also has a group structure, if one interprets
its points as complex numbers of absolute value 1, the group product
being multiplication. This group may be identified in an obvious way
with the group of rotations of R?, or indeed of S! itself, about the
origin.

What about R3? The situation is now more complicated, but the
ingredients are analogous. The complex numbers are replaced, not by
a three-dimensional, but by a four-dimensional algebra called the
quaternion algebra and identifiable with R* just as the complex algebra
is identifiable with R?, and the circle group is replaced by the group of
quaternions of absolute value 1, this being identifiable with the unit

1



2 GUIDE

sphere, 83, in R4, the set of points in R at unit distance from 0. As for
the group of rotations of R?, this turns out to be identifiable not with S?
but with the space obtained by identifying each point of the sphere with
the point antipodal to it.

An example of how this model of the group of rotations of R? can be
used is the following.

Suppose one rotates a solid body continuously about a point. Then
the axial rotation required to get from the initial position of the body
to the position at any given moment will vary continuously. The initial
position may be represented on 52 by one of the two points representing
the identity rotation, say the real quaternion 1 which we may think of
as the North pole of S The subsequent motion of the body may then
be represented by a continuous path on the sphere. What one can show
is that after a rotation through an angle 2z about any axis one arrives
at the South pole, the real quaternion —1, After a further full rotation
about the same axis one arrives back at 1. There are various vivid
illustrations of this, one of the simplest being the soup plate trick, in
which the performer rotates a soup plate lying horizontally on his
hand through an angle 2» about the vertical line through its centre.
His arm is then necessarily somewhat twisted. A further rotation of
the plate through 25 about the vertical axis surprisingly brings the arm
back to the initial position. The twisting of the arm at any point in time
provides a record of a possible path of the plate from its initial to its
new position, this being recorded on the sphere by a path from the
initial point to the new point. As the arm twists, so the path varies
continuously. The reason why it is possible for the arm to return to the
initial position after a rotation of the hand through 4= isthat it is possible
to deform the path of the actual rotation, namely a great circle on S3,
continuously on the sphere to a point. This is not possible in the two-
dimensional analogue when the group of rotations is a circle (see
Exercise 16.106!). A great circle on S* is necessarily S* itself, and this
is not deformable continuously on itself to a point.

The thing to be noticed here is that the topological (or continuous)
features of the model are as essential to its usefulness as the algebraic
or geometrical ones.

It is natural to ask, what comes next? For example, which algebras
do for higher-dimensional spaces what the complex numbers and the
quaternions do for R? and R3, respectively? The answer is provided by
the Clifford algebras, and this is the motivation for their study here. Our
treatment of quadratic forms and their Clifford algebras in Chapters 9, 10
and 13 is somewhat more general, for we consider there not only the
positive-definite quadratic forms necessary for the description of the
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euclidean (or Pythagorean) distance, but also indefinite forms such as
the four-dimensional quadratic form

(%,9,2,t) w> % + y2 + 22 — t2,
which arises in the theory of relativity. The Lorentz groups also are
introduced.

Chapter 14 contains an alternative answer to the ‘what comes next’
question.

Analogues of the rotation groups arise in a number of contexts, and
Chapter 11 is devoted to their study. One of the principal reasons for
the generality given here is to be found towards the end of the chapter
on Clifford algebras, Chapter 13. On a first reading it might, in fact,
be easier to tackle the early part of Chapter 13 first, before a detailed
study of Chapter 11.

Besides the spheres and the rotation groups, there are other examples
of considerable interest, such as the projective spaces, their generaliza-
tion the Grassmannians, and subspaces of them known as the quadrics,
defined by quadratic forms. All these are defined and studied in Chapter
8 (the latter part) and Chapter 12.

There remain three chapters to consider, and all are strongly geo-
metrical in flavour. In Chapter 17 important topological features such
as the compactness or connectedness or otherwise of the examples intro-
duced earlier are studied, while Chapter 20 is devoted to the study of
the smoothness of the same examples. The latter chapter introduces the
very important concepts of smooth manifolds and their tangent spaces
and of Lie groups and Lie algebras. Chapter 21, on triality, is a new
chapter of which we have said something in the Foreword. It leads on
naturally from Chapters 13 and 14 and also from Chapter 20 and pro-
vides many important examples of transitive group actions and special
isomorphisms between groups as well as being an introduction to one
of the exceptional Lie groups, G,.

And now a word to the experts about what is not included. In the
algebraic direction we stop short of anything involving eigenvalues,
while in the analytical direction the exponential function only turns up
in an occasional example. The differential geometry is almost wholly
concerned with the first differential and there is nothing whatsoever on
integration. Riemannian metrics are nowhere mentioned, nor is there
anything on curvature, nor on connections. Finally, in the topological
direction there is no discussion of the fundamental group nor of the
classification of surfaces. All these topics are, however, more than
adequately treated in the existing literature.



CHAPTER 1

MAPS

The language of sets and maps is basic to any presentation of mathe-
matics. Unfortunately, in many elementary school books sets are dis-
cussed at length while maps are introduced clumsily, if at all, at a rather
late stage in the story. In this chapter, by contrast, maps are introduced
as early as possible. Also, by way of a change, more prominence than is
usual is given to the von Neumann construction of the set of natural
numbers.

Most of the material is standard. Non-standard notations include f,
and f*, to denote the forward and backward maps of subsets induced by
a map f, and X!, to denote the set (and in Chapter 2 the group) of per-
mutations of a set X. The notation w for the set of natural numbers is
that used in [21] and in [34]. An alternative notation in common use
is N.

Membership

Membership of a set is denoted by the symbol €, to be read as an
abbreviation for ‘belongs to’ or ‘belonging to’ according to its gram-
matical context. The phrase ‘x is a member of X" is denoted by » € X.
The phrase ‘x is not a member of X’ is denoted by x ¢ X. A member of
a set is also said to be an element or a point of the set. Sets X and Y are
equal, X =Y, if, and only if, each element of X is an element of Y and
each element of Y is an element of X. Otherwise the sets are unequal,
X Y. Sets X and Y intersect or overlap if they have a common mem-
ber and are mutually disjoint if they have no common member.

A set may have no members. It follows at once from the definition of
equality for sets that there is only one such set. It is called the null or
empty set or the number zero and is denoted by @, or by 0, though the
latter symbol, having many other uses, is best avoided when we wish to
think of the null set as a set, rather than as a number.

An element of a set may itself be a set. It is, however, not logically
permissible to speak of the set of all sets. See Exercise 1.60 (the Russell
Paradox).

4



MAPS 5

Sometimes it is possible to list all the members of a set. In such a case
the set may be denoted by the list of its members inside { }, the order
in which the elements are listed being irrelevant. For example, {x}
denotes the set whose sole member is the element x, while {x,y} denotes
the set whose sole members are the elements x and y. Note that {y,x} =
{#,y} and that {x,x} = {x}. The set {x} is not the same thing as the
element x, though one is often tempted to ignore the distinction for the
sake of having simpler notations. For example, let x = 0 (= 0). Then
{0} =0, for {0} has a member, namely 0, while 0 has no members at all.
The set {0} will be denoted by 1 and called the number one and the set
{0,1} will be denoted by 2 and called the number two.

Maps

Let X and Y be sets. A map f: X — Y associates to each element
x € X a unique element f(x) € Y.

Suppose, for example, that X is a class of students and that Y is the
set of desks in the classroom. Then any seating arrangement of the
members of X at the desks of ¥ may be regarded as a map of X to ¥
(though not as a map of Y to X): to each student there is associated the
desk he or she is sitting at. We shall refer to this briefly as a classroom
map.

Mapsf: X — Yand f': X' — Y are said to be equal if, and only if,
X' =X, Y’ =Y and, for each x € X, f'(x) = f(x). The sets X and ¥
are called, respectively, the domain and the target of the map f. For any
x € X, the element f(x) is said to be the value of f at x or the image of x
by f, and we say informally that f sends x to f(x). We denote this by
[ x ~w f(x) or, if the domain and target of f need mention, by f: X — Y;;

The arrow - is used by many authors in place of «w>. The arrow —
is also used, but this can lead to confusion when one is discussing maps
between sets of sets. For our use of the arrow >, and the term source
of a map, see page 39. The image of a map is defined below, on page 8.
The word ‘range’ has not been used here, either to denote the target
or the image of a map. This is because both usages are current. By
avoiding the word we avoid confusion.

To any map f: X — Y there is associated an equation f(x) = y. The
map f is said to be surjective or a surjection if, for each y € Y, there is
some x € X such that f(x) = y. It is said to be injective or an injection, if,
for each y € Y, there is at most one element x € X, though possibly none,
such that f(x) = y. The map fails to be surjective if there exists an
element y € ¥ such that the equation f(x) = y has no solution x € X,
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and fails to be injective if there exist distinct x, " € X such that f(x") =
Jf(x). For example, a classroom map fails to be surjective if there is an
empty desk and fails to be injective if there is a desk at which there
is more than one student. The map f is said to be constant if, for all
x, &' € X, f(x') = f(x).

If the map f: X — Y is both surjective and injective, it is said to be
bijective or to be a bijection. In this case the equation f(x) = y has a
unique solution x € X for each y € Y. In the classroom each desk is
occupied by one student only.

An injection, or more particularly a bijection, f: X — ¥ may be
thought of as a labelling device, each element » € X being labelled by its
image f(x) € Y. In an injective seating arrangement each student may,
without ambiguity, be referred to by the desk he occupies.

A map f: X — X is said to be a transformation of X, and a bijective
map « : X — X a permutation of X.

Example 1.1. Suppose that f: X — Y is a bijection. Then a second
bijection g: X — Y may be introduced in one of three ways; directly,
by stating g(x) for each x € X, or indirectly, either in terms of a permu-
tation o : X — X, with g(x) defined to be f(x(x)), or in terms of a per-
mutation : Y — Y, with g(x) defined to be p(f(x)). These last two
possibilities are illustrated by the diagrams

XLy x—7o

Y
a.' ’ and \ lﬁ
X Y .

(The maps f and g may be thought of as bijective classroom maps on
successive days of the week. The problem is, how to tell the class on
Monday the seating arrangement preferred on Tuesday. The example
indicates three ways of doing this. For the proof that g defined in either
of the last two ways is bijective, see Cor. 1.4 or Prop. 1.6 below.) O

Example 1.1 illustrates the following fundamental concept.

Let f: X— Y and g: W— X be maps. Then the map W —Y;
w -~ f(g(w)) is called the composite fg (read ‘f following g’) of f and g.
(An alternative notation for fg is fo g. See also page 30.) We need not
restrict ourselves to two maps. If, for example, there is also a map
h:V —> W, then the map V— Y; v »w» f(g(h(v))) will be called the
composite fgh of f, g and A.

Prop. 1.2. Foranymapsf: X—> Y, g: W—Xandh: V—> W
f(gh) = jgh = (fg)h.
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Proof ForallveV,

(flgM)@) = f(gh)(©)) = f(g(h(v))
and (M) = (R)h(@)) = fle((@). O
Prop. 1.3. Letf: X-— Y and g: W—> X be maps. Then
(i) fand g surjective = fg surjective
(ii) fand g injective = fg injective
(iif) fg surjective = f surjective
(iv) Jg injective = g injective.
We prove (ii) and (iii), leaving (i) and (iv) as exercises.

Proof of (i1) Let f and g be injective and suppose that a, b € W are
such that fg(a) = fg(b). Since f is injective, g(a) = g(b) and, since g is
injective, a = b, So, for all a, b € W, ‘

Je(a) = fg(b) = a=0b.
That is, fg is injective.

Proof of (iii) Let fg be surjective and let y € Y. Then there exists
w € W such that fg(w) = y. So y = f(x), where x = g(w). So, for all
y € Y, there exists ¥ € X such thaty = f(x). That s, fis surjective. [

Cor.1.4. Letf: X— Yandg: W-— X be maps. Then

(i) fand g bijective = fg bijective
(ii) fz bijective = f surjective and g injective. O

Bijections may be handled directly. The bijection 1x: X — Xj;
x > x is called the identity map or identity permutation of the set X
and a map f: X— Y is said to be invertible if there exists a map
g:Y — X such that gf = 1y and fg = 1y.

Prop. 1.5. A map f: X— Y is invertible if, and only if, it is
bijective.

(There are two parts to the proof, corresponding to ‘if” and ‘only if’,
respectively.) |

Note that 15f = f = f 1, for any map f: X — Y. Note also that if
g: Y — X is a map such that gf = 1x and fg = 1y, then it is the only
one, for if ¢’ is another such then g’ = g'l, = g'fg = 1xg = g. When
such a map exists it is called the inverse of f and denoted by f~1.

Prop. 1.6. Let f: X — Y and g: W — X be invertible. Then
f~% £-' and fg are invertible, (f-1)"'=f, (g~)"' =g and (fg)' =
& O
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Let us return for a moment to Example 1.1. The bijections f and g in
that example were related by permutations x: X — X and $: Y —> Y
such that g = fa = ff. It is now clear that in this case « and 8 exist and
are uniquely determined by f and g. In fact « = f-1gand g =g f-1.

Note in passing that if #: X — Y is a third bijection, then A f-! =
(hg=Y(g fY), while f~* b =(f-'g)(g~* k), the order in which the per-
mutations are composed in the one case being the reverse of the order in
which they are composed in the other case.

Subsets and quotients

If each element of a set I¥ is also an element of a set X, then W is said
to be a subset of X, this being denoted either by W < X orby X o W.
For example, {1,2} < {0,1,2}. The injective map W — X; w-ww is
called the inclusion of Win X.

In practice a subset is often defined in terms of the truth of some
proposition. The subset of a set X consisting of all ¥ in X for which
some proposition P(x) concerning x is true is normally denoted by
{x € X : P(x)}, though various abbreviations are in use in special cases.
For example, a map f: X — Y defines various subsets of X and Y. The
set {y € Y:y = f(x), for some x € X}, also denoted more briefly by
{f(») e Y:x € X}, is asubset of Y called the image of f and denoted by
im f. It is non-null if X is non-null. It is also useful to have a short
name for the set {x € X: f(x) = y}, where y is an element of Y. This
will be called the fibre of f over y. It is a subset of X, possibly null if f is
not surjective. The fibres of a map f are sometimes called the levels or
contours of f, especially when the target of f is R, the real numbers
(introduced formally in Chapter 2). The set of non-null fibres of f is
called the coimage of f and is denoted by coim f.

A subset of a set X that is neither null nor the whole of X is said to be
a proper subset of X.

The elements of a set may themselves be sets or maps. In particular
it is quite possible that two elements of a set may themselves be sets
which intersect. This is the case with the set of all subsets of a set X,
Sub X (known also as the power set of X for reasons given on pages 10
(Prop 1.11) and 21).

Consider, for example,

Sub {0,1,2} = {0,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2} },

where 0 = @, 1 = {0} and 2 = {0,1} as before. The elements {0,1}
and {0,2} are subsets of {0,1,2}, which intersect each other. A curious
fact about this example is that each element of {0,1,2} is also a subset
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of {0,1,2} (though the converse is not, of course, true). For example,
2 = {0,1} is both an element of {0,1,2} and a subset of {0,1,2}. We shall
return to this later in Prop. 1.34.

Frequently one classifies a set by dividing it into mutually disjoint
subsets. A map f: X — Y will be said to be a partition of the set X, and
Y to be the quotient of X by f, if f is surjective, if each element of Y is
a subset of X, and if the fibre of f over any y € Y is the set y itself.

For example, the map {0,1,2} — {{0,1},{2}} sending 0 and 1 to
{0,1} and 2 to {2} is a partition of {0,1,2} with quotient the set
{{0,1},{2}} of subsets of {0,1,2}.

The following properties of partitions and quotients are easily
proved.

Prop. 1.7. Let X be a set. A subset ¥ of Sub X is a quotient of
X if, and only if, the null set is not a member of ¥, each x € X belongs
to some 4 € & and no x € X belongs to more than one 4 € . 0

Prop. 1.8. A partition f of a set X is uniquely determined by the
quotient of X by f. O

Any map f: X — Y with domain a given set X induces a partition of
X, as follows.

Prop. 1.9. Let f: X — Y be a map. Then coim f, the set of non-
null fibres of f, is a quotient of X.

Proof By definition the null set is not a member of coim f. Also,
each x € X belongs to the fibre of f over f(x). Finally, x belongs to no
other fibre, since the statement that x belongs to the fibre of f over y
implies that y = f(x). O

It is occasionally convenient to have short notations for the various
injections and surjections induced by a map f: X — Y. Those we shall
use are the following:

Jine for the inclusion of im fin ¥,
Soar for the partition of X on to coim f,
Sfar for f ‘made surjective’, namely the map

X — im f; x w» f(x),
finy for f ‘made injective’, namely the map
coim f—> Y; fra (%) wo> f(x),
and, finally,
Sfuy for f ‘made bijective’, namely the map

coim f —> im f; fiue(2) o f(2).
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Clearly,
f = fincf sur = finjf par — fincf bijf par*

These maps may be arranged in the diagram

fxn:
fv-r Seur rfm

coim f-——-—— mf

Such a diagram, in which any two routes from one set to another
represent the same map, is said to be a commutative diagram. For ex-
ample, the triangular diagrams on page 6 are commutative. For the
more usual use of the word ‘commutative’ see page 15.

The composite fi: W— Y of a map f: X — Y and an inclusion
i: W— X is said to be the restriction of f to the subset W of X and
denoted also by f | W. The target remains unaltered.

If maps f: X— Y and g: Y— X are such that fg = 1y then, by
Prop. 1.3, f is surjective and g is injective. The injection g is said to be a
section of the surjection f. It selects for each y € Y a single x € X such
that f(x) =

It is assumed that any surjection f: X — Y-has asectiong: ¥ — X,
this assumption being known as the axiom of choice.

Notice that to prove that a map g: Y —> X is the inverse of a map
f: X — Yitis not enough to prove that fg = 1y. One also has to prove
that gf =

Prop. 1.10. Let g,¢': Y— X be sections of f: X — Y. Then
g=¢g < img=img'.

Proof = : Clear.

< : Let ye Y. Since img = im g, g(y) = g'(y’) for some y' € Y.
Butg(y) =£'(y) = fa(y) =fg'(y) = y =y Thatis, forally e ¥,
80)=80)-8eg=¢. O

A map g: B—> Xis said to be a section of the map f: X — Y over the
subset B of Y if, and only if, fg: B — Y is the inclusion of Bin Y.

The set of maps f: X — Y, with given sets X and Y as domain and

target respectively, is sometimes denoted by Y%, for a reason which will
be given on page 21.

Prop. 1.11. Let X be any set. Then the map
2X —>Sub X: fww» {x € X:f(x) =0}
is bijective. O
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Many authors prefer 2% to Sub X as a notation for the set of subsets
of X.

The set of permutations f: X — X of a given set X will be denoted
by X1. This notation is non-standard. The reason for its choice is given
on page 22.

Forwards and backwards

A map f: X — Y induces maps f, (f forwards) and f* (f backwards)

as follows:

f[i:SubX—Sub¥Y; A {f(x):xed}

fl:8ubY — Sub X; B-w» {x:f(x) € B}.
The set f,(A4) is called the image of A by fin Y and the set f(B) is
called the counterimage or inverse image of B by fin X.

The notations f, and f* are non-standard. It is the usual practice to
abbreviate f,(4) to f(4) and to write f~(B) for f(B), but this can, and
does, lead to confusion, since in general f* is not the inverse of f,. The
absence of a notation also makes difficult direct reference to the maps
£, and f1.

There are several unsatisfactory alternatives for f, and f* in circula-
tion. An alternative that is almost as satisfactory is to denote f, by fy and
f* by f*, but the ‘star’ notations are often wanted for other purposes.
The positions of the marks b and 1 or * have not been chosen at
random. They conform to an accepted convention that the lower position
is used in a notation for an induced map going ‘in the same direction’ as
the original map, while the upper position is used for an induced map
going ‘in the opposite direction’.

Prop. 1.12. Let f: X— Y be a map and let 4 be a subset of X
and B a subset of Y. Then
A<f(B) < fd<B O
Prop. 1.13. Letf: X — Y and g: W—> X be maps. Then

(fg)y = fig: Sub W—Sub Y,
(fe)Y! =g'f':SubY — Sub W
and (o)), = (g)(f), : Sub Sub Y — Sub Sub W. O

Prop. 1.14. Let f: X— Y be any map. Then
ffy = lswx < fis injective.

Proof Note first that ff, = 14, y if, and only if, for all 4 € Sub X,
f(4) = A. Now, for any 4 € Sub X, ff,(4) > 4. For let x € A4.
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Then f(x) € f,(A4); that is, x € ff,(4). So fY, = 14, x if, and only if,
for all 4 € Sub X, f,(4) < 4.

<= : Suppose that f is injective. By what we have just said it is
enough to prove that, for all 4 € Sub X, f.(4) < 4. So let x e
ff(A4). Then f(x) € f,(4). That is, f(x) = f(a), for some element
a € A. However, f is injective, so that x = @ and x € 4.
(Note here how the datum ‘f is injective’ becomes relevant only in the
last line of the proof!)

= : Suppose that f is not injective. Then it has to be proved that it is
not true that, for all 4 € Sub X, f¥,(4) = 4. To do so it is enough to
construct, or exhibit, a single subset 4 of X such that f1f,(4) ¢ 4. Now
Jf will fail to be injective only if there exist distinct a, b € X such that
f(a) = f(b). Choose such a, b and let 4 = {a}. Then b € fIf,(4), but
b¢ A. Thatis fif (4) & 4.
(There are points of logic and of presentation to be noted here also!)

This completes the proof. O

Prop. 1.15. Let f: X — Y be any map. Then
fif!' = 1wy <> flis surjective. O

As an immediate corollary of the last two propositions we also have:

Prop. 1.16. Let f: X — Y be any map. Then
f1=(f) < fis bijective. O
Notice that, forany map f: X — Y and any x € X, f..(x) = f{f(x)}.

.

Pairs

A surjection 2 — W is called an ordered pair, or simply a pair, any
map 2 —> X being called a pair of elements or 2-tuple of the set X. The
standard notation for a pair is (a,), where a = (a,5)(0) and & = (a,b)(1),
the image of the pair being the set {a,b}. Possibly a = 5. The elements
a and b are called the components of (a,b). We shall frequently be perverse
and refer to @ as the Oth component of (a,5) and to b as the 1st com-
ponent of (a,b). It is of course more usual to call a and b, respectively, the
first and second components of (a,b). Two pairs (a,b) and (¢',b’) are
equal if, and only if, ¢ = @’ and b = b'.

Let X and Y be sets. The set of pairs

XXY={xy):xeX, yeY}
is called the (cartesian) product of the pair (X,Y), often referred to

loosely as the product of X and Y. (The term ‘cartesian’ refers to
R. Descartes, who pioneered the use of algebraic methods in geometry.)
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The set X2 of maps 2 — X is identified with the set X x X in the
obvious way. (In particular, R X R is usually denoted by R2.)
Prop. 1.17. Let X and Y be sets. Then
XXY=0 < X=0o0r V=040 O

Prop. 1.18. Let X, Y, U and V be non-null sets. Then
XXxY=UxV - X=Uand Y=V, 0

If f: W— X and g: W— Y are maps with the same source W, the

symbol (f,g) is used to denote not only the pair (f,g) but also the map
W—XXxY; ww(fw),gw)).

Prop. 1.19. Let (fg): W— X X Yand (f,g): W— X X Y be

maps. Then
(f8)=(f8) = f=fadg=g. O
The maps f and g are called the components of (f,g). In particular,

the map lxxy has components p: X X Y — X; (x,y) w»x and
g: X XY —Y; (%) w> y, the projections of the product X x Y.

Prop.1.20. Let X and Y besets, not bothnull, andlet(p,g) = Ix.y.
Then the projection p is surjective < Y is non-null, and the projection
q is surjective <> X is non-null. |

Prop. 1.21. Let f: W— X X Y be a map and let (p,9)= 15, v.
Thenf = (pf,9f) O
The graph of a map f: X — Y is, by definition, the subset

{(xy)eX X Yy =fx)} = {(xf(x):x € X}
of X x Y.

Prop. 1.22. Let f and g be maps. Then
graphf = graphg < for =gur O

Prop. 1.23. Letf: X — Y be amap. Then the map X — X X Y;
x ~w (x,f(x)) is a section of the projection X x ¥ — X (»,y) w» x,
with image graph f. O

Equivalences

A partition of a set X is frequently specified by means of an equiva-
lence on the set. An equivalence on X is by definition a subset E of
X x X such that, for all @, b, c € X

(i) (a,a) € E
(i) (ap) e E = (ba)eE
and (iit) (a,b) and (b)) e E = (axc)€E,
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elements a and b of X being said to be E-equivalent if (a,b) € E, this
being denoted also by @ ~g b, or simply by a ~ b if the equivalence is
implied by the context. Frequently, one refers loosely to the equivalence
~gor ~on X,

Prop. 1.24. Any map f: X — Y determines an equivalence E on X
defined, for all (¢,b) € X x X, by

a~gb < f(@) =f0)

that is, @ ~g b if, and only if, @ and b belong to the same fibre of f.
Conversely, each equivalence E on X is so determined by a unique

partition f: X—Y of X, namely that defined, for all ¥ € X, by

f(x) = {aeX:a~gx}. |

The elements of the quotient of X determined by an equivalence E
on X are called the (equivalence) classes of the equivalence E. The
equivalence classes of the equivalence on X determined by a map
f: X — Y are just the non-null fibres of f.

Products on a set

Let G and H be sets. Amap of the form G X G — H is called a binary
operation or product on the set G with valuesin H,amap G x G — G
being called, simply, a product on G.

For example, the map X¥ x XX — XZX; (f,g) w» fg is a product
on the set XX of maps X — X, while the map X! X X!— X!;
(f,8) »» fg is a product on the set X! of invertible maps X — X, since
the composite of any two invertible maps is invertible.

Prop. 1.25. Let G x G— G; (a,b) »»> ab be a product on a set G,
and suppose that there is an element ¢ of G such that each of the maps
G — G; a »w»> ea and a w»> ae is the identity map 14. Then e is unique.

Proof Let e and ¢’ be two such elements. Then ¢’ = e’e = e. O

Such a product is said to be a product with u:iiy e.
A product G X G — G; (a,b) w» ab is said to be associative if, for all
a, b, c € G, (ab)c = a(bc).

Prop. 1.26. Let G X G — G, (a,b) »» ab be an associative product
on G with unity e. Then, for any g € G there is at most one element
k € G such that gh = e = hg.

Proof Lethand k' be two such elements. Then &' = h'e = h'(gh) =
(h'g)h = eh = h. O
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The element 4, if it exists, is said to be the inverse of g with respect to
the product. If each element of G has an inverse, the product is said to
admit inverses.

A product G x G —> G; (a,b) v ab is said to be commutative if, for
all a, b = G, ba = ab. »

Suppose, for example, that G is a subset of XX, for some set X, and
that the product is composition. Then the product is commutative if, and
?nly if, for each a, b € G, the diagram

X—">X
lb lb
X—X
is commutativ.. This example connects the two uses of the word
‘commutative’,
For examples of products on the set of natural numbers see page 20.

The detailed study of products on a set is deferred until Chapter 2.
Bilinear products are introduced in Chapter 3.

Union and intersection

Let & be any set of sets. We may then form its union |J&. An
element x € | J & if, and only if, x € X for some X € &. If & =0 we
may also form its intersection (1.%. An element x € (| & if, and only if,
x € X for all X € &. This latter set is clearly a subset of any member
of . If & = {X,Y} we write

U =Xu Y, theunionof Xand ¥V
and NS =XnNY, theintersection of X and Y.

If XnY =0, X intersects Y, while, if XN Y =0, X and Y are
mutually disjoint. The difference X \ Y of sets X and Y is defined to be
the set {x € X:x ¢ Y }. Itis a subset of X. (¥ need not be a subset of
X.) When Y is a subset of X, the difference X\ Y is also called the
complement of Y in X.

Prop. 1.27. Let f: X — Y be a map, let 4, B €Sub X and let
& < Sub X. Then f,(9) = 0,

4 < B = f(4) < fu(B), [(UZ)=U)\s
and f,(4 N B) < f(4) N f(B), with f(4d N B) = f,4d n f.B for all
A, B € Sub X if, and only if, f is injective.
(All but the last part is easy to prove. The proof of the last part may
be modelled on the proof of Prop. 1.14.) |
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It is easier to go backwards than to go forwards.

Prop. 1.28. Let f: X— Y be a map, let 4, BeSub Y and let
& < Sub Y.
Then f}{(@) =0, f(Y)=2X,
4 = B = f{(d) = fi(B),
UL =UIM)
and, if & =0, N = NI (W

Prop. 1.29. Letf: X—> Y be a map, let 7 < Sub X be such that
for all ¥ <7, UL €T and let ¥ = (f)(7). Then, for all
U<y, YueV.

Proof
X<V =(YI)=> (f)(%) < T, byProp.1.12,
= U2 = U(f)()eT
=> Uz e(fHY(IT)="7". O
To conclude this section there is a long list of standard results, all
easy to prove.

Prop. 1.30. Let X, Y and Z be sets. Then

XvuY=YuX
XvuZ)=XuY)uZ
XuX=X
Xud=X
XcXvuY
XcY«XuY=Y
XcZand YcZ e XuYclZ,
XnY=YnX
Xn(YnZ)y=XnY)nZ
XnX=X
Xng=9
XnYcX
XcYeXnY=X
XuY)nZ=(XnZ)u(Yn2)
XnY)uZ=XvuZ)n(YuZ),
X\ X=9
X\X\Y)=XnY
X\&XnY)=X\Y
X\(Y\Z)=(X\Y)u(Xn2Z)
(X\YN\NZ=X\(YuZ)=X\Y)n(X\ 2
X\(YNn2Z)=(X\Y)u(X\2)
YcoZ= (X\2)c(X\Y),
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Xx(YuZ)=(XxY)u(X x 2)

Xx(YNnZ)=(XxY)n(X x 2)

Xx(Y\2)=(X x )\ (X x 2)
XxY)ce(XxZ)<X=0 or Yc=Z O

Prop. 1.31. Let X be a set and let % be a non-null subset of Sub X,
Then

X\N(UZ) =N{X\4;4e &}
X\N(N) =U{X\4;4dex}. O

Exercise 1.32, Let X, Y, Z, X’ and Y’ be sets. Is it always true
or is it in general not true

() that Y x X =X x Y,

(i) that X x (Y x Z) =(X x Y) x Z,

(iii) that (X x Y) U (X' x ¥Y)=(XU X') x (YU ¥,

(iv) that (X x V)Nn(X' x Y)=(XNnX)x(YnY)? 0O

Natural numbers

We have already encountered the sets, or numbers, 0 = 9,1 = {0} =
O0u {0} and 2 = {0,1} =1 uU {1}. It is our final assumption in this
chapter that this construction can be indefinitely extended. To be pre-
cise, we assert that there exists a unique set w such that

(i):0ew
(i)inew => nu {n}ew

(iii) : the only subset ' of w such that 0 € »’ and such that n € 0" =

nV {n} € 0 is o itself.

The elements of w are called the natural or finite numbers. For any
n € w the number n U {n}, also written n + 1, is called the successor of
n, and 7 is said to be the predecessor of n U {n}—we prove in Prop. 1.33
below that every natural number, with the exception of 0, has a pre-
decessor, this predecessor then being proved in Cor. 1.36 to be unique.
The number 0 clearly has no predecessor for, for any n € w, n U {n} is
non-null.

Prop. 1.33. Letn € w. Then n = 0 or n has a predecessor.

Proof Letw' = {n €w: n =0, or n has a predecessor}. Our aim is
to prove that ' = w and by (iii) it is enough to prove (i) and (ii) for the
set w'.

(i) : We are told explicitly that 0 € w’.

(i) : Let n e w." Then n U {n} has n as a predecessor. So n U {n} €
o' O
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Axiom (iii) is known as the principle of mathematical mductzon, and
any proof relying on it, such as the one we have just given, is said to be
an inductive proof, or a proof by induction. The truth of (i) for the set
o' is called the basis of the induction, and the truth of (ii) for o’ is called
the inductive step.

The set w \ {0} will be denoted by w*, and an element of w* will be
said to be positive.

The next proposition develops a remark made at the foot of page 8.

Prop. 1.34. Letm,ncw. Thenmen = m < n.

Proof Letw = {new:men = m < n}. Since 0 has no members,
0 € w’. This is the basis of the induction.

Letn € »' and let m e n U {n}. Then either m € n or m = n. In either
case m < n, and therefore m < n U {n}. That is n U {n} € ’. This is
the inductive step.

So @' = w, which is what we had to prove. 0

Cor. 1.35. Letnew. Then |J (n U {n}) =n. ]

Cor. 1.36. The predecessor of a natural number, when it exists, is
unique. O

Cor. 1.37. The map w —> w*; nw»> n U {n} is bijective. O

Prop. 1.38. Let m and n € w and let there be a bijection f: n —m.
Then m = n.

Proof Let o' = {n€w :mecwand f: n—> mabijection = m = n}.
Now, since the image by any map of the null set is the null set, a map
f:0—>m is bijective only if m = 0. So 0 € '.

Let n €’ and let f:n U {n} — m be a bijection. Since m =0,
m =k U {k}, for some kew. Define f':n—k by f'(i) =f(i) if
f(@) =k, and f'(¢) = f(n) if f(Z) = k. Then f’ is bijective, with f'-(j) =
f7Yg) if j = f(n) and f'-Y(5) = f-Y(k) if j = f(n). Since n € ' it follows
that &£ = n. Therefore n L {n} =k U {k} =m. Thatis, n U {n} c '

So 0’ = w. O

A sequence on a set X is a map w — X. A sequence on X may be
denoted by a single letter, a, say, or by such notations as # w» a,, or
(a,: n € w) or (ay)ne, Or simply, but confusingly, a,. The symbol a,
strictly denotes the nth term of the sequence, that is, its value a(n) at n.
In some contexts one avoids the single-letter notation as 2 name for the
sequence, the letter being reserved for some other use, as for example to
denote the limit of the sequence when it is convergent. For convergence
see Chapter 2, page 42.
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A sequence may be defined recursively, that is by a formula defining
the (n 4 1)th term, for each # € w, in terms either of the nth term or of
all the terms of the sequence up to and including the nth. The Oth and
possibly several more terms of the sequence have, of course, to be
stated explicitly.

A map n—> X, or n-tuple of X, where n € w, is often called a finite
sequence on X, the word finite frequently being omitted when it can be
inferred from the context.

A set X is said to be finite if there is, for some natural number #, a
bijection n — X. By Prop. 1.38 the number =, if it exists, is uniquely
determined by the set X. It is denoted by #.X and called the number of
elements or the cardinality of the set X. If X is not finite, we say X is
infinite.

Prop. 1.39. The set  is infinite. O

A set X is said to be countably infinite if there is a bijection w — X.
A set is said to be countable if it is either finite or countably infinite.

Prop. 1.40. A set X is countable if, and only if, there is a surjection
w — X or equivalently, by the axiom of choice, an injection X —

w. O

Cor. 1.41. 1If a set is not countable, then the elements of @ or of
any subset of w cannot be used to label the elements of the set. O

Prop. 1.42. 'The set 2* is not countable.

Proof Suppose that there is an injection 7:2” —> @. Then each
n € w is the image of at most one sequence b, :  — 2. Now let a
sequence

a:w—>2; n-wa,
be constructed as follows. If n ¢ im ¢, let a, = 0, while, if 7 = i(bw)),
let a, = 0 if (b(y)), = 1 and let a, = 1 if (b)), = 0. By this construc-
tion, some term of a differs from some term of b, for every b € 2°. But

a €2, so that there is a contradiction. There is, therefore, no such
injection 7. So 2¢ is not countable. |

Products on o

There are three standard products on , addition, multiplication and
exponentiation. In this section we summarize their main properties. For
a full treatment the reader is referred, for example, to [21].
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Addition: o X & —> w; (m,n) w» m - nis defined, forall (m,n) € »» X o,
by the formula

m b= #(m x {0) U (n x {1})
or recursively, for each m € w, by the formula
m+0=m m+1=#mu {m})

and, forallk ew,m + (k + 1) = (m 4 k) + 1, m + n being said to be
the sum of m and n. It can be proved that these alternative definitions are
in agreement, that addition is associative and commutative, and that, for
any m, n, p € o,

m-it-p=n-t+p => m=n,
this implication being commonly referred to as the cancellation of p. The
number 0 is unity for addition and is the only natural number with a
natural number, namely itself, as additive inverse.

If m, n and p are natural numbers such that » = m + p, then p,
uniquely determined by m and n, is called the difference of m and n and
denoted by n — m. The difference n — m exists if, and only if, m € n or
m=n.

Multiplication: o X o — w; (mn)~w»mn is defined, for all
(mn) € ® X w, by the formula

mn = #(m X n),
mn being called the product of m and n. The number mn is denoted also
sometimes by m X n. This is the original use of the symbol x. Its use

to denote cartesian product is much more recent. Multiplication may
also be defined, recursively, for each # € w by the formula

On =0, In=mn and, forallkew, (k+ )n="Fkn +n

It can be proved that these two definitions are in agreement, that
multiplication is associative and commutative, and also that it is
distributive over addition, that is, for all m, n, p € w,

(m + n)p = mp + np,
and that, for any m, n € w and any p € 0™,
mp =np = m=n,

this implication being referred to as the cancellation of the non-zero
number p. The number 1 is unity for multiplication and is the only
natural number with a natural number, namely itself, as multiplicative
inverse.

For any n, p € w, n is said to divide p or to be a divisor or factor of p if
p = mn, for some m € w.
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Exponentiation: w X o — w; (mn) w» m" is defined, for all
(mn) € ® X w, by the formula,
mr = #(m").

The notation m” is here used in two senses, to denote both the set of
maps n—> m and the cardinality of this set. The latter usage is the
original one. The use of the notation YX to denote the set of maps
X — Y is much more recent and was suggested by the above formula,
by analogy with the use of X to denote cartesian product. The number

m" is called the nth power of m. It may be defined recursively, for each
m € w, by the formula

m=1 m'=m
and, for all k € w, w* 11 == (m*)m. For all m, n, p € o,
(mn)? = mPn®, m"*? = m"m® and m"? = (m").

Exponentiation is neither associative nor commutative, nor is there a
unity element.

Y and T

Let n—> w; i+ a; be a finite sequence on w. Theny, a,, orE a;, the
n—1 ien t=0

sum of the sequence, and I'_[ a;, or H a;, the product of the sequence, are

1€n

defined recursively by
Ya,=0, [Ta;=1.
€0 1€0

and foralljen — 1,

Ta;,=(Xa)+a and TJa =(I]a)a.
i€j+1 i€j iej+1 ©€j
Prop. 1.43. Let n— w; ¢ ~w» a; be a finite sequence on w and let
ken + 1. Then

na _(Za)_{_(zalr"})

jen—k

and iiIa = (1] 4) (IIa:m) O

ien

Prop. 1.44. Let n— w; i+ a; be a finite sequence on w and let
7 n—> n; { > 7l be any permutation of z. Then

Tay=Xa and JJa,;=T]a. 0

Prop. 1.45. Let n € w. Then
2AXk)=n*—n

ken
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and 2Tk =2 (k+1))=n+n O
ken+1 ken

Prop. 1.46. Let n € w. Then
,;['[ (k + 1) = #(n!). O
The number T (¢ + 1) is denoted also by #! and is called # factorial.

ken
This is the original use of the symbol ! in mathematics, the earlier

notation |n for #! having fallen into disuse through being awkward to
print. As we remarked on page 11, our use of X! to denote the set of
permutations of X is non-standard.

Similar notational conventions to those introduced here for 3 and T
apply in various analogous cases. For example, let 7 v A4; be a finite
sequence of sets with domain #, say. Then U4, = U{4;:7en}and

N4; = N{4;:7 en), while X 4, = {(a;:i en): a; ¢ 4.}

icn

Order properties of »

If m, n and p are natural numbers, the statement m € # is also written
m < n or, equivalently, » > m, and m is said to be less than n or,
equivalently, » is said to be greater than m. Both notations will be used
throughout this book, the notation m € n being reserved from now on
for use in those situations in which # is thought of explicitly as the
standard set with # elements. The symbol < means less than or equal to
and the symbol > means greater than or equal to.

Prop. 1.47. For any m, n € o,

m<mn m=mn or m>n

(or, equivalently, m €n, m = n, or n €m), these possibilities being
mutually exclusive. O

This proposition is referred to as the trichotomy of < (or, equiva-
lently, €) on w. The word is derived from the Greek words ‘tricha’
meaning ‘in three’ and ‘tomé’ meaning ‘a cut’.

Cor. 1.48. For any m, n € w,
m<n < mPn and m>n < mLn O

Note that it is #rue that 0 < 1, this being equivalent to the statement
that 0 > 1.
Prop. 1.49. Foranym,necw U {w},
men, m=mn or mem,
these possibilities being mutually exclusive. O
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Prop. 1.50. Tor any m, n, p € o,

m<nandn<p => m<p
(or, equivalently,
men and nep => mep). O

This is referred to as the transitivity of < (or, equivalently, €) on w.

Prop. 1.51. Foranym, n, p € w U {0},
men and n€p => mep. O

Let A be a subset of w. Then there is at most one element @ of 4 such
that, for all x € A, a < x. This element q, if it exists, is called the least
element of A. The greatest element of A is similarly defined.

Prop. 1.52. Every non-null subset of o has a least element. O
Proposition 1.52 is called the well-ordered property of w.
Prop. 1.53. A subset 4 of w has a greatest element if, and only if,

it is finite and non-null. O
The remaining propositions relate < to addition and multiplication,
w* denoting, as before, the set w \ {0} of positive natural numbers.
Prop. 1.54. For any m, n, p € o,
m<n > m+p<n-+p. il
Prop. 1.55. For any m, n € w and any p € o+,
m<n => mp<mnp. O
Prop. 1.56. Tor any m, n e 0+,
mi+necwt and mncot. O

Prop. 1.57. For each a € w and each b € w+ there exists # € w such
that #b > a. O

Proposition 1.57 is called the archimedean property of w.

Prop. 1.58. For each @ ew and each b e w* there exist unique
numbers % € w and k2 €b such that a = A + k. 1

The number % in Prop. 1.58 is called the remainder of a modulo b.
(‘Modulo’ is the ablative of ‘modulus’, meaning ‘divisor’.)

An infinite sequence on w, a: — w, can be summed if all but a
finite number of the terms are zero or, equivalently, if a, = 0 for all
sufficiently large », say for all # > m. One sets

2 a, = Ean-

nem
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In a similar way one can form the product of an infinite sequence on w,
provided that all but a finite number of the terms are equal to 1.

Prop. 1.59. Let b € w+*. Then any finite number can be uniquely

expressed in the form ¥} a,b", where a,, € b, for all n, and a, = 0 for all

sufficiently large 7. O

It is common practice to set b equal to ten.

FURTHER EXERCISES

1.60. A set is said to be normal if it does not contain itself as a member.
Otherwise it is said to be abnormal. Is the set of all normal sets normal or
abnormal? (Cf. [52], page 76.) O

1.61. Show that any map f: X — Y may be expressed as the com-
posite gh of an injection g: W — Y following a surjection &: X — W.
(First construct a suitable set I.) 0O

1.62. Mapsf: W—X,g: X— Yand h: Y — Z are such that gf
and hg are bijective. Prove that g is bijective. O

1.63. Let f: X— Y be a surjection such that, for every ye Y,
f{y} = y. Prove that f is a partition of X. O

1.64. Let f: X— Y be a map. Prove that, for all 4 < X and all
B<Y, f(Anfi(B) =f(H)nB. O

1.65. Give examples of maps f: w — o which are (i) injective but not
surjective, (ii) surjective but not injective. 0

1.66. Show by an example that it is possible to have a bijection from a
set X to a proper subset Y of X. O

1.67. LetXand Y be finite sets, with #X = #Y. Prove that then a map
f: X — Y is injective if, and only if, it is surjective. O

1.68. Let X and Y be sets and let f: X~ Y and g: Y — X be
injections. Then, for any x € X, call x the zeroth ancestor of x, g,;;* (x),
if xeimg, the first ancestor of x, f,7'gur! (%), if x €imgf, the
second ancestor of x and so on. Also let X, X; and X, respectively,
denote the set of points in X whose ultimate ancestor lies in X, lies in Y,
or does not exist. Similarly for Y: denote by Y,, Y; and Y, the set of
points whose ultimate ancestor lies in Y, lies in X, or does not exist.

Show that f(X,) = Y;, g(Y,) = X, and f,(X,) = Y, and con-
struct a bijection from Y to X. (Schréder-Bernstein.) O
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1.69. Let X be a set for which there is a surjection f: X — X2, First
construct a surjection X — X? and then construct a surjection X —
X, for any finite n. (Here X" denotes the cartesian product of # copies
of X.) |

1.70. Let S be a non-null subset of w such that, for any a, b € S, with
a < b, it is true that @ + b and b — a € S. Prove that there exists
d e w such that S = {nd: n € w}. |

1.71. Let X and Y be countable sets. Prove that the product X x YV
is countable. 3



CHAPTER 2

REAL AND COMPLEX NUMBERS

In this chapter we discuss briefly the definitions of group, ring and field
and the additive, multiplicative and order properties of thering of integers
Z and the rational, real and complex fields Q, R and C. Since there are
many detailed accounts of these topics available, most of the proofs are
omitted. For more details of the construction of R see, for example, [12].

Groups

Products on a set were defined in Chapter 1, and we have already en-
countered several specimens, for example, composition either on XX or
on X!, where X is any set. Further examples are union and intersection
on Sub X, and addition, multiplication and exponentiation on the set
of natural numbers w.

A group consists of a set, G, say, and a product with unity on G that
is associative and admits inverses, such a product being said to be a
group structure for the set G.

For example, composition is a group structure for X !. This group is
called the group of permutations of X. On the other hand composition is
not a group structure for XZ, unless # X =0 or 1, for in all other
cases there exist non-invertible transformations of X.

A set may have many group structures. When we are only interested
in one such structure it is common practice to use the same letter, G,
say, to denote both the group and the underlying set, and to use the
notational conventions of ordinary multiplication or of composition. For
example, the product of a pair (a,b) of elements of G is usually denoted
by ab, unity is denoted by 1), or simply by 1 when there is no risk of
confusion, and the multiplicative inverse of any element a € G is de-
noted by a—1. Exponential notations are in common use. Foranya e G
and any 7z € w, a" is defined recursively by setting

a® =1, a'=a and,forallkecw, a*+! = (a%aq,

the inverse of a” being denoted by a~". The element a" is called the nth

power of a, a® also being called the square of a. The properties of the

exponential notation are summarized in Prop. 2.29, later in the chapter.
26



GROUPS 27

A group G is said to be abelian if its product is commutative, that is if,
for any a and b € G, ba = ab, the word ‘abelian’ being derived from the
name of N. Abel, one of the founders of modern group theory.

An additive group G is just an abelian group with the product of any
two elements a and b of the eroup denoted by a -+ & and called the sum
of a and b. The unity element is then denoted by O (or simply by 0
when there is no risk of confusion) and is called zero. The additive
inverse or negative of an element a is denoted by —a and the additive
analogue of a", for any 7 € w, is denoted by na, with 0a = O and
la = a, the negative of na being denoted simply by —na. For any
a, b € G, a + (—b) may also be denoted by a — b.

A group map t: G— H is a map between groups G and H that
respects the products on G and H, that is, is such that, for all @, b € G,
K(ab) = t(a) 1(b)

or, equivalently, is such that, for all @, b, c € G,
ab=c = t(a)t(b) = t(c).

Prop.2.1. Lett: G — H be agroup map. Then #(1(s) = 1 and,
forany g€ G, (H(g))™ =Hg™). O

A group reversing map t: G — H is a map between groups G and H
that reverses multiplication, that is, is such that, for all a, b € G,
t(ab) = t(b) t(a).

Prop. 2.2. Let G be any group. Then the map G — G; gw»>g-1is
a group reversing map. O

There is ¢ 1 important criterion for a group map to be injective.

Prop. 2.3. A group map ¢: G — H is injective if, and only if, for
allg € G,
Hg) =lun = g=1len
that is if, and only if, ¢! {1(}1)} = {l(a)}.

Proof = : Suppose that ¢ is injective. Then, by Prop. 2.1,
He) =1 = #g) =Hl@) = &=1le-
<= : Suppose that ¢ is not injective. Then there are distinct elements
a and b of G such that #(a) = #(b). Since ¢ is a group map, #(a b-1) =
t(a) t(b"l) == t(a) t(b)‘l = 1@. But ab-! £ 1y. So t(g) = 1y =
g=le. O

Prop. 2.4. (Cayley) Let G be a group. Then, for any a € G, the
map ar,: G — G; g »w»> ag is bijective and the map G — G!; a~w» ay,
is an injective group map.
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Proof Let a,beG. Then, for all g €G, a(bg) = (ab)g. That is,
ayby, = (ab)y. In particular, for any a € G, ag'a;, = (a'a), = l¢ and,
similarly, a ap? = 1¢. That is, for each a € G the map ay, is bijective and
the map a-w» ay, is a group map. To prove injectivity it is enough, by
Prop. 2.3, to remark that, if ag = g for all, indeed for any, g € G, then
a = l. ™

A group map ¢: G— H is said to be a (group) isomorphism if it is
bijective and if the inverse map ¢-1: H — G also is a group map. The
second condition is redundant and is inserted here only for emphasis.

Prop. 2.5. A group map t: G — H is an isomorphism if, and only
if, it is bijective. d

The word isomorphism is derived from two Greek words, ‘isos’, mean-
ing ‘equal’, and ‘morphé’, meaning ‘form’. T'wo groups G and H are said
to be (mutually) isomorphic if they have the same form, that is, if there
exists an isomorphism ¢: G — H.

The word homomorphism or simply morphism is frequently used to
denote a map preserving structure, in the present context to denote a
group map. The prefix is derived from a Greek word ‘homos’ meaning
‘same’. The word morphism is also used with other prefixes. For example,
a group isomorphism ¢: G — G is said to be an automorphism of G.
A more complete list is given later, on page 59.

A subset F of a group G is said to be a subgroup of G if there is a group
structure for F such that the inclusion F — G is a group map. Such a
structure is necessarily unique, the product in F of a pair of elements
(a,d) in F coinciding with the product ab in G.

For example, for any n € w, the subset of the permutations of the set
n -+ 1 that leave the element 7 fixed is a subgroup of the group (n + 1)!
isomorphic to n!.

The following proposition enables one in practice to decide readily
whether a given subset of a group is a subgroup.

Prop. 2.6. Let G be a group and F a subset of G. Then F is a sub-
group of G if, and only if,
(i) 1 eF,
(ii) forall a,b e F, ab e F,
(iii) forallae F,a-'eF.

Proof The three conditions are satisfied if F is a subgroup of G. It
remains to prove the converse.
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Suppose, therefore, that they are satisfied. Then by (ii) the map
F2— F; (a,b) > ab
is well-defined. This product is associative on F as on G, 1 € F by
(i) and is unity for the product on F, while, for all a € F, a-* € F by (iii)
and is the inverse of a. a

(The case F = @ shows that (i) is not deducible from (ii) and (iii).)

Prop. 2.7. Lett: G—> H be a group map. Then t'{1} is a sub-
group of G and im ¢ is a subgroup of H.

Proof In either case conditions (i), (ii) and (iii) of Prop. 2.6 follow
directly from the remark that, for any @, b € G, (1) = 1, t{ab) = t(a) t(b)
and t(a~1) = (¢(a))~L. O

The group #{1} is called the kernel of t and denoted by ker ¢.

The product G x H of groups G and H is defined to be the group
consisting of the set product G x H with multiplication defined, for
any (g,h), (¢',h') € G x H by the formula (g,h)(g’,h’) = (gg',hh'). It is
readily verified that this is a group and that lexm = (Lie),1un)-

In particular, a group structure on a set G induces a group structure
on G2

Rings

Frequently one is concerned at the same time with two or more
products on a set and with the interrelationships of the various products
with each other.

A ring consists of an additive group, X, say, and a product X2 — X;
(a,b) »»> ab that is distributive over addition, that is, is such that, for all
a, b, ceX, (a+ b)c=ac+ bc and ab + ac = a(b + ¢). The pro-
duct is also required to be associative unless there is explicit mention to
the contrary, in which case the ring is said to be non-associative. The ring
is said to be commutative (the word abelian not being used in this con-
text) if its product is commutative, and to have unity if its product has
unity. Frequently, when there is no risk of confusion, one uses the same
letter to denote both the ring and the underlying abelian group or the
underlying set.

Example 2.8. Let 7 € w, and let addition and multiplication be
defined on the set n, by Prop. 1.58, by defining the sum of any a,b en
to be the remainder (a+ &), of their sum @ + b in » modulo # and
by Jefining their product to be the remainder (ab),) of their productab in
o modulo n. Forn > 1, the set # with this addition is an additive group
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with O as zero, and with either n — @ or 0 as the additive inverse of
a, according as @ # 0 or a = 0, while, for n > 2, this group with the
stated multiplication is a commutative (and associative) ring with unity,
namely 1, distinct from 0. O

The ring constructed in Example 2.8 is called the ring n, or the ring
of remainders modulo n, or, most commonly, the ring Z,.

In working with the ring Z, it is usual to use the ordinary notational
conventions to denote addition and multiplication, adding the phrase
‘modulo #’ or ‘mod #’ in parentheses wherever this is necessary to pre-
vent confusion.

A ring is said to be without divisors of zero if the product of any two
non-zero elements of the ring is non-zero.

For example, the rings Z, and Z, are without divisors of zero, as is
easily verified, but the ring Z, is not, since 2 X 2 =0 (modulo 4).

Prop. 2.9. Let X be a commutative ring without divisors of zero.
Then, for any a, b € X,

at="50> = qg=bor —b O

The product X x Y of rings X and Y is defined to be the ring con-
sisting of the set product X x Y, with addition and multiplication de-
fined, for any (x,y), (',y") € X X Y by the formulae (»,y) + (x',)') =
(x + «',y + ') and (x,y)(x’,y") = (xx’,3y’). It is readily verified that
this is a ring and that if X and Y have unity elements 1(x) and 1y
respectively, then the ring X X Y has (1(x),1(x)) as unity.

In particular, a ring structure on a set X induces a ring structure on
the set X2

The set YX of maps from a set X to a ring ¥ becomes a ring when the
sum f + g and the product f-g of any pair (f,g) of elements of YX are
defined by the formulae

(f + &)(®) = f(x) + g(x), for all x € X,
and (f-&)(®) = f(x) g(x), for all x € X.

(We have to write f. g here rather than fg, since fg denotes the compo-
site of f and g wherever f and g are composable, as would be the case if
X = Y. An alternative convention is to denote the product of f and g by
Jg and the composite by f o g. We prefer the former convention.)

The ring structure just defined is the standard ring structure on Y'X,

Let X and Y be rings. Then amap ¢: X — Y is said to be a ring map
if addition and multiplication are each respected by ¢, that is if, for any
a,belX,

ta + b) =ta) + t(b) and t(ab) = t(a) t(b),
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and to be a ring-reversing map if, for any a, b € X,
Ha + b) = t(a) + ¢(b) and t(ab) = 1(b) t(a).

A ring map need not respect unity.

Prop. 2.10. Let X and Y be rings with unity and let £: X — Y be

a ring map. Then
o) =1y <= 1y €imt. |

An example of a ring map that does not respect unity is the zero map
X — X; x~w»> 0, where X is any ring with unity different from zero.

Aringmap ¢: X — Yissaid to be a (ring) isomorphism if it is bijective,
for this implies, as was the case with a group bijection, that the inverse
map £-1: ¥ — X also is a ring map.

Subrings of a ring are defined in the obvious way. (For ideals see
page 89.)

The use of the symbols ¥ and [] and the conventions governing their
use carry over from sequences on  to sequences on any ring X, the
definition in either case being the obvious recursive one.

Polynomials

Let X be a ring with unity. A polynomial over X is a sequence
a: w — X, all but a finite number of whose terms are zero. The greatest
number m for which a,, is non-zero is called the degree, deg a, of the
polynomial, a,, being called the leading term or leading coefficient of the
polynomial. The degree deg a exists, provided that a 0.

The ring of polynomials over X, which will be denoted by Pol X,
consists of the set of polynomials over X with addition and multipli-
cation defined, for any two polynomials 4 and 5, by the formulae

(@ + by =a,+ b, for all k € w,
and (ab)y = X aby-; forallkeow.

iek+1
It is readily verified that this is a ring.

The polynomial, all of whose terms, including the Oth, are zero,
except for the 1st, which is 1, will usually be denoted, without further
comment, by the letter x. This is often indicated in practice by writing
X[x] for Pol X.

Prop. 2.11. Let X be a ring with unity. Then, for any polynomial

a over X, a = Y, a;x*. (The sum is well-defined, since all but a finite
kew
number of the terms of the sequence to be summed are zero.) O

Prop. 2,12. Let a and b be non-zero polynomials over a ring with
unity. Then deg ab = deg a + deg b, the leading term of the polynomial
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ab being the product of the leading terms of the polynomials a and
b. O

Cor. 2.13. Let X be a ring with unity and without divisors of zero.
Then Pol X is a ring with unity and without divisors of zero. O

Prop. 2.14. Let X be a ring with unity. Then the map
X — Pol X; avw> a (= ax?)
is a ring injection. |

As has already been anticipated by the notations, this map is normally
regarded as an inclusion.

Prop. 2.15. Let X be a ring with unity. Then the map
Pol X — X; 3 agx* > a,
keo
is a ring map. 0
Any polynomial @ = ¥, a;x* over a ring with unity X induces a

kew

polynomial map, or a polynomial function, X — X; x w3, a;x*, the

kew
sum being well-defined, for each x € X, since all but a finite number of
the terms of the sequence to be summed are zero. Note that we have just
used the letter x in two quite distinct ways, to denote a particular, and
rather special, polynomial over X and to denote an element of X. The
double use of the letter x in this context is traditional.

Prop. 2.16. Let X be a ring with unity. Then the map Pol X — X%
associating to any polynomial over X the induced polynomial map is a
ring map. O

The ring map defined in Prop 2.16 need not be injective. For example,
if X = Z; the polynomial #* — x is not the zero polynomial, but the
map Zg —> Z;; x »w»- x3 — x is the zero map, since, for all x € Z,

2% —x = x(x — 1)(x + 1) = x(x — 1)(x — 2) (mod 3).
However, if X is commutative and if the set X is infinite, then the map is
injective, by Prop. 2.3 and by Prop. 2.18 below. In this case the formal

distinction between polynomials and polynomial maps may be ignored.
We need a preliminary lemma.

Prop. 2.17. Let X be a commutative ring with unity, letc = 3 ;4"

kew

be a polynomial over X of degreen + 1, and leta € X. Then ¥ ¢,a* = 0

kew
if, and only if, there exists a polynomial d of degree n such that ¢ =
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(x —a)d. (1f Z ca® = 0, then 2 ot = Z cx(x* — a*). Also, for any

positive &, xk —at=(x —a) 2 xia" 1") O
ick
Prop. 2.18. Let X be a commutative ring with unity and let ¢ be
a non-zero polynomial over X of degree m. Then there are at most m

elements of X at which the induced polynomial map x w»> 3} ¢x* is
kew

zero.
The proof is by induction, using Prop. 2.17. O

Ordered rings

An ordered ring (X, X +) consists of a ring X and a subset X + of X such
that, for all @, be X+,a + b and abe X+and, forallaec X, ac X+
or a=0or —a € X+, these three possibilities being mutually exclusive.

The statement a — b € X + is also written a > b or b < a, while the
statement @ — b ¢ X * is also written @ < b or > a. An element a of
X is said to be positive if a € X+ and negative if —a e X +.

Prop. 2.19. Let (X,X *+) be an ordered ring. Then, for alla, b, c € X,

()a>bandb>c = a>c¢,
(iya>b => at+c>b+te,
(i) a >band ¢ >0 = ac> bcand ca > ¢cb,
and (iv) @ > b, b > a or a = b, these three possibilities being
n-utnally exclusive. 0

When there is no risk of confusion one speaks simply of the ordered
ring X.

Prop. 2.20. The square a® of any non-zero element a of an ordered
ring X is positive. O

Cor. 2.21. Let X be an ordered ring with unity, 1, distinct from
zero. Then 1 > 0. O

Cor.2.22. Letn—> X;i-w a;be afinite sequence on X, an ordered
field, such that ¥ a? = 0. Then, for allien, a; =0. O

ten

Prop. 2.23. An ordered ring is without divisors of zero. O

Absolute value

Let X be an ordered ring. Then a map X — X; x w»| & | is defined
by setting |0 | =0, |x | =x,ifx > 0,and | x| = —xif —x > 0. The
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element | x | is said to be the absolute value of x and, for any a, b € X,
| b — a | is said to be the absolute difference of a and b.

Prop. 2.24. Let X be an ordered ring. Then, for all 4, b € X,
la] >0,
la|=0 <« a=0,
|a|2=a2,
la]<|b] < a>< b
a+b]<|al+/5]
la—b]>|lal —|b],
and |ab|=]al|d]| O

An element b of an ordered ring X is said to lie between elements a and
cof Xifa<b<corifc <b<a.

Prop. 2.25. An element b of an ordered ring X lies between elements
a and ¢ of X if, and only if, 4, b and ¢ are mutually distinct and

|la—¢cl=]a—b|+]b—c]| Od

Prop. 2.26. Let a and b be elements of an ordered ring X and let
e X+ Then |a — b | < ¢ if, and only if, b lies between a — ¢ and
a -+ e O

Let X and Y be ordered rings. Then a ring map f: X — Y is said to
be an ordered ring map if, for any ae X+, f(a) e Y+, and to be an
ordered ring isomorphism if it is also bijective, the inversemapf—1: Y-> X
being then also an ordered ring map.

Prop. 2.27. Letf: X — Y be a ring map, X and Y being ordered
rings. Then f is an ordered ring map if, and only if, for all 4, b € X,

a<b= flay<f®). O

An ordered subring, or more correctly, a sub-ordered-ring, of an ordered
ring is defined in the obvious way.

The ring of integers

It has been rather difficult to avoid explicit mention of the ring of
integers before now. The ring of integers Z is an ordered ring with unity
which contains the set of natural numbers o in such a way that addition
and multiplication on w agrees with addition and multiplication on Z
and which has the property that the map

0:0o X w—Z; (mn)w>m —n



THE RING OF INTEGERS 35

is surjective. Each element of Z is called an integer. (The letter Z is the
initial letter of the German word ‘Zahl’, meaning ‘number’.)

Prop. 2.28. Z+ = o™, 0 being zero in Z and 1 unity in Z. |

The ordered ring Z exists and is unique up to isomorphism. The
usual method of proof is to construct from w an ordered ring Z iso-
morphic as an ordered ring to Z. We omit the details, observing only
that it is usual to define Z to be the coimage of 6 and that the various
stages of the construction are based on the following statements about
any m, n, m’ and n’ belonging to w, namely

m—n=m —n < m+n=m4n,
which enables us to define the fibres of 0 as the classes of an equivalence
on w X w, defined in terms of w alone,

m—n)+@m —n)y=@m-+m)—(n+n),
m—m=0 and —(m—n)=n—m,
leading to the additive structure,
(m —n)(m' —n') = (mm’ + nn’) — (mn' + m'n),
leading to the multiplicative structure,
m—n>0 < m—necowt

leading to the order structure, and, finally,

m—0=m,
leading to an injection w — Z that preserves addition, multiplication
and order.

In most applications the precise method of constructing the ring of
integers Z is unimportant. It is its structure as an ordered ring which is
vital.

Much of the terminology introduced for w extends in an obvious way
for Z. For example, a map Z — X; n-w> a, is often called a doubly-
infinite sequence on the set X.

The exponential notations introduced for groups make more sense if
the indices are interpreted as elements of Z.

Prop. 2.29. Let G be a group and let the map Z x G— G
(n,a) »»> a" be defined by defining a" to be the nth power of q, for all
non-negative # and by defining a” to be the (—»)th power of a—? for all
negative n. Then, for all a € G and all m, n € Z,

am™t" = q"q" and 4™ = (a")",
while if G is also abelian, then, for all ¢, b € G and all n € Z,
(ad)» = amb. O
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It is useful to see the form this proposition takes for an additive
(abelian) group.

Prop. 2.30. Let X be anadditive group. ThenthemapZ x X — X;.

(n,a) »» na, defined by defining za to be the nth additive power of a,
for all non-negative # and by defining na to be (—»)(—a) for all negative
n, 1s also such that, for all @, be X and all m, n € Z,

n(a 4+ b) =na + nb, (m + n)a =ma + na and (mn)a = m(na).
If X also has a ring structure, then also, for all a, 5 € X and all
m, ncl,

(mn)ab = (ma)(nb). ]

It is a corollary of the last part of Prop. 2.30 that if X is without
divisors of zero and if, for some # € w and a € X\ {0}, na = 0, then, for
every be X, nb = 0. The least positive number n such that, for all
a € X, na =0 is said to be the characteristic of the ring X. If such a
positive number does not exist, then X is said illogically to have
characteristic ero.

Prop. 2.31. Let X be a ring with unity. Then the map
Z—>X;nw>nlx
is a ring map. O
Prop. 2.32.  Let X be a ring with unity and without divisors of zero.

Then X has characteristic zero if, and only if, the ring map Z — X;
n~w n 1(x) is injective. O

Prop. 2.33. Any ordered ring with unity has characteristic zero. [

Fields

A field K is a ring such that multiplication is a group structure for the
subset K* = K\{0}; that is, a ring with unity distinct from zero such
that each non-zero element of K has a- multiplicative inverse. A field is
also required to be commutative unless there is express mention to the
contrary, in which case the field is said to be non-commutative.

An ordered field is a field K which is ordered as a ring.

Prop.2.34. Let K be an ordered field and let a be a positive element
of K. Then a-* > 0.

Proof Suppose that a-1 < 0. Then 1 < 0, a contradiction. O

Prop. 2.35. Let K be an ordered field. Then 2-* exists and
0<21<1., |
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Prop. 2.36. Let a, an element of an ordered field K, be such that,
for all positive ¢ in K, a < ¢. Then a < 0.

Proof Suppose a> 0. Then a> (2-1a > 0, contrary to the
hypothesis that a is not greater than any positive element of K. So
a<0. O

Exercise 2.37. Let a and b be elements of an ordered field K.
Determine the truth or the falsity of each of the statements:

() a<b+e foralle>0 = a<},
(i) a<b+4¢ forale>0 = a<b
The most effective method of disproof is a well-chosen counter-
P
example.) O

Proposition 2.36 will be used repeatedly later, as one of the standard
methods of proving that two elements a and b of an ordered field are
equal is to prove that their absolute difference is not greater than each
positive &. For examples, see the proofs of Prop. 2.56, Prop. 15.38 and
Lemma 18.11.

Finally, two remarks about fields in general.

Prop. 2.38. Let K and L be fields. Then a ring map ¢: K— L
either is the zero map or is injective.

Proof In any field the only elements x of the field satisfying the
equation x2 = x are 0 and 1. For if ¥ = 0 we may multiply either side
of the equation by x~*. So, if ¢ is not the zero map, (1) = 1. But it
follows in this case that no non-zero element of K can be sent by # to 0.
For suppose #(a) =0, where a 20. Then 1 =#(1) = #aa"?) =
t(a) t(a—') = 0, a contradiction. The injectivity then follows from the
additive form of Prop. 2.3. O

Prop. 2.39. The ring product of two fields is not a field. O

The rational field

It has been almost as difficult to avoid mention of the rational field as
it has been to avoid mention of the ring of integers.

The rational field Q is an ordered field which contains Z as an ordered
subring and which has the property that the map

Z x Z+— Q; (mu)w>mn-?
is surjective. Each element of Q is called a rational number, the number

mn-'alsobeing denoted by m/n or by ™ and called the quotient of m by n,
n
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(The letter Q is the initial letter of the word ‘quotient’, R being reserved
as a notation for the real field.)

The ordered field Q is unique up to isomorphism. The usual method
of proof is to use Z to construct an ordered field Q isomorphic as an
ordered field to Q. The details are again omitted. We observe only that
the various stages are based on the following statements about any
m, m’ € Z and any n, n’ € Z+, namely that

m m , ,

—=— <= mn =mn,

n

I 1 !
m m mn' +m'n 0 m —m
—+—7_ 7 ) —=0 and _("‘):'—',
n  n nn n n
m

and, finally,

Prop. 2.40. The rational field is archimedean; that is, for any
a, b € Q* there exists # € w such that na > b.

Proof Let a =a'/a"’ and b = b'/b"' where a’, a”’, b’ and b" e w+.
Thenna > b < na'd” > ba’.
Since w is archimedean, the proposition follows. O

Cor. 2.41. Leta € Q*. Then there exists n € w such that’l—z <a. [

Prop. 2.42. The rational field is not well-ordered; that is, a subset
of Q* need not have a least member.

Proof Qt itself does not have a least member. O

Bounded subsets

A subset 4 of an ordered field X is said to be bounded above if there
exists b € X such that, for all x € 4, x < b. The element b is then said to
be an upper bound for A. An element ¢ € X is said to be the supremum of
A, denoted sup 4, if every b > ¢ is an upper bound for Aandno b < ¢
is an upper bound for 4. It may readily be proved that the supremum of
a subset 4, if it exists, is unique (justifying the use of the definite article)
and is itself an upper bound for 4, the least upper bound for A.
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A bounded subset of Q may or may not have a supremum in Q. For
example, the subset {x € Q: x < 0} has supremum 0, as has the subset
{x € Q:x < 0}, the latter example showing that the supremum of a
subset need not itself belong to the subset.

Prop. 2.43. The subset {a/bcQ:4a,b € Z and @* < 2%} has no
supremum in Q.

Proof 'This falls into two parts. First it can be shown that if s were
a rational supremum for this set, then s? = 2. For if s? < 2 then, by

) 2
Cor. 241, for suitably large new, s* < s2<l +%) < 2, while if

2
s2 > 2 then, for suitably large n e 0, 2 < s2(1 — %) < 2, this leading

in either case to a contradiction.

Secondly, by an argument attributed to Euclid, it can be shown that
there is no rational number a/b such that a2/b% = 2. For suppose such
a number exists. Then it may be supposed that the integers @ and b are
positive and have no common integral divisor greater than 1. On the
other hand, since a? = 2b?, a is of the form 2k, where % € w, implying
that b2 = 2k2, that is that b is of the form 2k, where k € w. So both
a and b are divisible by 2, a contradiction. O

The terms bounded below, lower bound and infimum (abbreviated to
inf) or greatest lower bound are defined analogously in the obvious way. A
subset 4 of an ordered field X is said to be bounded if it is both bounded
above and bounded below.

Prop. 2.44. The supremum, when it exists, of a subset 4 of an
ordered field X is the infimum of the set of upper bounds of A4 in
X. a

The > notation

Often in the sequel we shall be concerned with maps whose domain is
only a subset of some set already known to us and already named. To
avoid having continually to introduce new notations, it will be con-
venient to let f: X >> Y denote a map with target ¥ whose domain is
a subset of X. The subset X will be referred to as the source of the map.
We are then free to speak, for example, of the map Q >> Q; x ww» x-1,
the convention being that in such a case, unless there is an explicit
statement to the contrary, the domain shall be the largest subset of the
source for which the definition is meaningful. In the above instance,
therefore, the domain is Q *,
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It is often convenient also to extend the concept of the composite of
two maps to include the case of maps f: X>> Y and g: Wr>> X.
Their composite fg is then the map W > Y; w w» f(g(w)), with
domain g*(dom f). For any map f: X >> Y and any subset 4 of X, the
set f(4) is, by definition, the same as the set f,(4 N dom f).

The first place where the >»> notation is convenient is in the state-
ment of Prop. 2.47. It is of considerable use in some of the later chapters.

The real field

We are at last in a position to describe the field of real numbers.

The real field R is an ordered field containing Q as an ordered subfield
and such that each subset A of R that is non-null and bounded above
has a supremum (this last requirement is known as the upper bound
axiom). Each element of R is called a real number.

The power of the upper bound axiom is illustrated by the proof of the
following proposition.

Prop. 2.45. The ordered field R is archimedean; that is, for any
a, b € R+ there exists n € w such that na > b.

Proof Consider the subset {ka cR:k cw, ka <b} of R. Since
0 = 0a belongs to it, the subset is non-null. It is also bounded above. So
it has a supremum which, in this case, must be a member of the subset,
that is, of the form ma, where m € w. Then (m + 1)a > b. 0

Cor. 2.46. Between any two distinct elements @ and b of R there lies
a rational number.

Proof By Corollary 2.41 there is a natural number n such that
1/n<|b—al O

The real field exists and is unique up to isomorphism. Yet once again
we omit proof. Some clues may be afforded by the following proposition,
which indicates one of the several ways in which a copy of R may be built
from the rational field Q.

Prop. 2.47. Let f be the map Sub Q>>R; 4w sup 4, with
domain the set of non-null subsets of Q with upper bounds, Q being
regarded as a subset of R. Then the map R — Sub Q; x w» |J f({x})
is a section of f.

(Corollary 2.46 may be of help in proving that f is surjective.) O

Other methods of constructing a copy of R from Q are hinted at in the
section on convergence below.
The geometrical intuition for R is an unbounded straight line, each
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point of the line corresponding to a real number and vice versa, with the
order relation on R corresponding to the intuitive order in which the
representative points lie on the line. The correspondence is uniquely
determined once the positions of 0 and 1 are fixed. The absolute
difference | a — b | of a pair of real numbers (a,b) is defined to be the
distance between a and b, the distance between any two successive
integers being 1 and the absolute value | @ | of any real number a being
its distance from 0. This corresponds to the ordinary concept of distance
on a line when the distance between the points chosen to represent 0 and
1 is taken as the unit distance. The upper bound axiom for R corresponds
to the intuition that the line has no gaps. It is, in fact, the prototype of a
connected space (cf. Chapter 16).

The correspondence between the field of real numbers and the
intuitive line is central to the building of intuitive geometrical models of
mathematical concepts and, conversely, to the applicability of the real
numbers and systems formed from them in physics and engineering.
(‘Geometry’ is, etymologically, the science of earth measurement.) The
other central idea is, of course, the Cartesian correspondence between
R? and the plane and between R? and three-dimensional space.

Standard figures in any text on geometry are the line itself, and
figures based on two lines in the plane. For example, the figure

~—lg-bl 16-cl

3 1 il
T T T

a b c R
la-e¢l

illustrates Prop. 2.25, with X chosen to be R, while the figure

a-e 7 b ate R
illustrates Prop. 2.26 likewise. Numerous diagrams based on ‘two lines
in the plane’ illustrate the concepts and theorems of linear algebra in the
chapters which follow.

'The following proposition illustrates the application of the upper
bound axiom.

Prop. 2.48. Let x be a non-negative real number. Then there exists
a unique non-negative real number @ such that w? = x.

(The subset 4 of R consisting of all the non-negative reals whose
square is not greater than x is non-null, since it contains 0 and is
bounded above by 1 + 1x. Let w = sup 4, and prove that w? = x. The
uniqueness is a corollary of Prop. 2.9 applied to R.) 0
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Cor. 2.49. Any field isomorphic to the field R can be made into an
ordered field in only one way. O

The unique non-negative number w such that w? = x is called the
square root of x and is denoted by 4/x. No negative real number is a
square, by Prop. 2.20. Therefore the map R »> R; x ~w 4/x has as its
domain the set of non-negative reals.

A subset 4 of R is said to be an interval of R if, for any a, b € 4, and
any x lying between a and b, x also is an element of 4. The following
proposition lists the various possible types of interval.

Prop. 2.50. For any q, b €R, the subsets

[a,8] = {xeR:a <x <b},
la, b = {xeR:a < x < b},
[a,b] = {xeR:a < x < b},

Ja,b] = {xeR:a < x <b}

[a,+oof = {xeR:a <«x},
Ja, + o[ = {xeR:a < x},
]—0,b] = {x eR: x < b},
and ]—0,b[ = {xeR:x < b}

are intervals of R, and any interval of R other than 9, or R itself, is of
one of these eight types. O

The symbol oo, called infinity, is used here purely as a convenient
notation. There is no number + o0, nor any number — 0.

Convergence

A sequence n -w»> x,, on an ordered field X is said to be convergent with
limit x if x € X and, for each positive element ¢ of X, there is a natural
number m such that, for any natural number #,

n=m > |x—ux,|<s
that is, such that the absolute difference | x — x, | can be made as small
as we please by choosing 7 to be sufficiently large.
(Recall that | x — x,, | < e if,and only if, x — & < x, <x + &

X

x-€ x Xp xte

Prop. 2.51. Letn - x, be a convergent sequence on R with limit x.
Then

x = sup {a eR:x, < a for only a finite set of numbers n}.
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Proof Let A = {aeR: x, < a for only a finite set of numbers 7}.
Then A4 is non-null, since x — ¢ € 4 for all ¢ > 0 and A4 is bounded
above by x + ¢forall ¢ > 0. So sup 4 exists, necessarily equal tox. [

Cor. 2.52. The limit of a convergent sequence on R is unique. [J

Prop. 2.53. For any real number » between 0 and 1 the sequence
n-w»> " is convergent, with limit 0.
Proof For any real s > 0 and any n > 0,
(14+s5)»>1+mns>ns (byinduction).

1 —r

1 . 1 -
Sorm < o foranyn > 0, provided thatr = s thatis, if s =
The proposition follows. O

Cor. 2.54. For any real number » such that | | < 1, the sequence
n-w-7* is convergent, with limit 0. 0

Prop. 2.55. For any real number 7 such that | r | < 1 the sequence

nw> 3 7% is convergent with limit (1 — 7)—1,
ken

Proof For any n € w,
Q-n7=Trr=>1-7"1—-1-7(Z"")
ken ken
=(1 -7

The proposition follows, by Cor. 2.54. |

Prop. 2.56. Let n-ww» x, be a convergent sequence on an ordered
field X, with limit x, let ¢ > 0 and let m € w be such that, for all
prg>m,|x, — x| <e Then, forallg>m, |x —x,| <e

Proof For any 5 > 0 there exists p > m such that |x — x, | < 7.

This implies that, for all ¢ > m and for all > 0,
e —x | <|ao—a |+ |2 — 2| <7y +e

Hence the proposition, by Prop. 2.36 or, rather, by the true part of
Exercise 2.37. |

A sequence n-w»> ¥, on an ordered field X such that for each ¢ > 0
there is a natural number m such that, for all p, ¢ € w,

pg=m = [x,—x|<e

is said to be a Cauchy sequence on X.

Prop. 2.57. Any convergent sequence on an ordered field X is
Cauchy.
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Proof Letn~w»x,be aconvergent sequence on X, with limitx. Then,
for any & > 0, there exists a number m such that
P>m = Ixm"‘xl <%8’
and therefore such that
pg=m = la, —x| <|w—x|+|xn—x|<e U

Prop. 2.58. Let k> g, be a sequence on an ordered field X such

that the sequence n~w» 3} | g, | is Cauchy. Then the sequence 7 >
ken

3 a; is Cauchy. O
ken

Prop. 2.59. Every real number is the limit of a Cauchy sequence
on Q.

(Show first that any positive real number is the limit of a Cauchy

sequence on Q of the form n-ww» 3 u;, where u;, = a;b~%, with b a fixed
ken
natural number greater than 1 (so that 5-! < 1), with g, € w and with

a; € b, for all positive k.) |

This leads to the following proposition, to be compared with the con-
trasting situation for the field of complex numbers described on page 48
below.

Prop. 2.60. Let f: R — R be a field isomorphism. Then f = 1.

Proof Necessarily fsends 0 to 0 and 1 to 1, from which it follows by
an easy argument that f sends each element of Q to itself. Also, by
Props. 2.20 and 2.48, the order of the elements of R is determined by the
field structure. So f also respects order and, in particular, limits of
sequences. Since each real number is, by Prop. 2.59, the limit of a con-
vergent sequence of rational numbers and since, by Cor. 2.52, the limit
of a convergent sequence on R is unique, it follows that f sends each
element of R to itself. 0

When b = 2, a sequence of the type constructed in Prop. 2.59 is said
to be a binary expansion for the real number, and when & = 10 the
sequence is said to be a decimal expansion for the real number.

Exercise 2.61. Discuss to what extent the binary and the decimal
expansions for a given real number are unique. O

Exercise 2.62. Prove that the set of real numbers is uncountable.
(A proof that the interval [0,1] is uncountable may be based on Prop.
1.42, taking the conclusions of Exercise 2.61 into account.) [l

Various constructions of the field of real numbers may be based on
Prop. 2.59.
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The following proposition, together with the archimedean property
(Prop. 2.45), is equivalent to the upper bound axiom for R, and in
some treatments of the field of real numbers it is preferred as an
intuitive starting point. (Cf. [12], p. 95.)

Prop. 2.63. (The general principle of convergence.)
Every Cauchy sequence on R is convergent. (In the language of
Chapter 15, R is complete with respect to the absolute value norm.)

Proof 'The method of proof is suggested by Prop. 2.51.

Let n+w> x, be 2 Cauchy sequence on R, andlet 4 = {a eR;x, < a
for only a finite set of numbers 7n}. Since the sequence is Cauchy,
there exists a number # such that, forall p > n, | x, — x, | <1, that
is %, —1 <x, <x, + 1. Sox, — 1 € 4, implying that 4 is non-null,
while x,, 4+ 1 is an upper bound for A.

Let x = sup A4, existing by the upper bound axiom. It then re-
mains to be proved that x is the limit of the sequence. Let ¢ > 0. Then,
for some number m and any A

pg=m = pr_ql<%e’
while, for some particular r > m, |x — x, | < }e. So, for all p > m
lx—xpl <Ix-xrl +lxp_xr| <e
That is, x is the limit of the sequence. O

Cor. 2.64. Let k> g, be a sequence on R such that the sequence

n-w 3 | ap | is convergent. Then the sequence n +w» ¥ @, is conver-
ken ) ken

gent.

Proof This follows at once from Prop. 2.57, Prop. 2.58 and Prop.
2.63. O

The complex field

There is more than one useful ring structure on the set R2

First there is the ring product of R with itself. Addition, defined, for
all (a,6), (c,d) € R2, by the formula (a,6) + (¢,d) = (@ + ¢,b + d) isan
abelian group structure with zero (0,0); multiplication, defined by the
formula (a,b)(c,d) = (ac,bd), is both commutative and associative, with
unity (1,1); and there is an injective ring map R — R?; 1-w»> (Z )
inducing a multiplication

R x R2— R? x R2— R2; (1,(a,5)) w> ((1,2),(a,B)) s> (Aa,Ab).

This ring will be denoted by 2R. Though R is a field, the ring *R is not.
For example, the element (1,0) does not have an inverse.
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Secondly, and more importantly, there is a field structure on R2 that
provides the solution to the problem of finding a field containing R as a
subfield, but such that every element of the field is a square.

Experience, as fossilized in the familiar formula for the roots of a
quadratic equation, suggests that it may be sufficient to adjoin to R an
clement whose square is —1 in such a way that the field axioms still hold.
Then at least every real number will be a square.

Suppose i is such an element. Then the new field must contain all
elements of the form a - ib, where a and b are real, and if @ 4 1 and
¢ + id are two such elements, then we must have

(a +1ib) + (c +-id) = (a + ¢) + i(b + d)
and (a 4 ib)(c + id) = (ac — bd) + i(ad + bc)
with, in particular, (¢ 4 ib)(@ — 1b) = a® + b2

In fact, it may be readily verified that R2 is assigned a field structure
by decreeing that, for all (a,b), (c,d) € R?, (a,b) + (¢,d) = (a + ¢ b+4d)
and (a,b)(c,d) = (ac — bd , ad + bc). Unity is (1,0) and the inverse of
any non-zero element (a,d) is ((a? -+ bz)‘la —(@® + b2) 1p). As with the
previous ring structure for R?, there is an injective ring map R — R?;
A (4,0), inducing a multiplication

R X R?— R? x R2— R?; (,(a,b)) »w» ((1,0),(a,b)) »w»> (1a,4b),
the same one as before, though composed differently. Moreover, if C is
any ring consisting of a set of the form {a + ib: a,b € R} with addition
and multiplication as stated above, then the map

R?— C; (a,b) w>a + ib
is a bijective ring map. That the map is a surjective ring map is clear.
That it is also injective follows from the fact that, if @ + ib = 0, then,
since (a + ib)(a — ib) = a® + b? a* + b% = 0.and therefore, since a
and b eR, (a,b) = 0 by Cor. 2.22. The map is, therefore, a field iso-
morphism.

To conclude, such a field C exists and is unique up to isomorphism. It
may be constructed by first constructing the above ring structure on R?
and then by identifying (,0) with a, for each a € R. The field C is called
the field of complex numbers and any element of C is called a complex
number.

The map C — C; a + ib ww» a — ib, where (a,b) € R?, is called
conjugation, a — ib being called the conjugate of a + ib. The conjugate
of a complex number 2 is denoted by 2.

Prop. 2.65. Conjugation is an automorphism of the field C. That is,
for any 2,2 €C, 2+2 =2+%, 28 =27, 1 =1 and, for any
% 70,37 = (8)-% Also, forany 2 € C, (%) = #; § 4 zand i(§ — 2)are
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real numbers and £ 2 is a non-negative real number, Z being equal to 2
if, and only if, z is real. O

Forany z = & + iy € C, withx, y € R, x = (& + 2) is said to be the
real part of 2 and y = }i(§ — 2) is said to be the pure imaginary part of
2. The real part of 2 will be denoted by re zand the pure imaginary part of
z will be denoted by pu 2 (the letters im being reserved as an abbrevia-
tion for ‘image’). The square root of the non-negative real number £ 2z
is said to be the absolute value (or modulus or norm) of z, and denoted by
2.

Prop. 2.66. Yor any 2, 3" € C,
|2 >0,with |[2| =0 <« =2=0,

gz=|z|[%
|8] ==
|3 +2" | <|z|+]5]
=] =12 <|z—2,
lz2'| =22}
and, if 2 >0, [21] =]=]"L
Also, for any z €R, | 2| = 4/(2?), in agreement with the earlier
definition of | | on an ordered field. (Note that 2% = | 2 |?, unless

zeR) O

It will be proved in Chapter 19 that any non-zero polynomial map
C — C is surjective (the fundamental theorem of algebra). An ad hoc
proof that every complex number is a square runs as follows.

Let 2 be a non-zero complex number, and let w = 2/| 2 |. Then
2 =|2|w, with | 2| a non-negative real number and w a complex
number of absolute value 1. Since | 2 | is a square, it is enough to prove
that w is a square. However,

(I +w2=1+ 2w+ w?
=ww+ (1 +Tww - w?
= (1 4 @)(1 + w)w
=1+ w|?w,

from which it follows that if w 5« —1, then w = ((1 + w)/| 1 + w |)2
Finally, —1 = i2. ‘

Convergence for a sequence of complex numbers is defined in the
same way as for a sequence of real numbers, the absolute value map on
R being replaced in the definition by the absolute value map on C. The
definition of a Cauchy sequence also generalizes at once to sequences of
complex numbers.
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Prop. 2.67. A sequence w — C; nw» ¢, = a, + ib, is convergent
or Cauchy if, and only if, each of the sequences w — R; n w» a, and
n~w b, is, respectively, convergent or Cauchy. O

However, unlike the real field, the field C cannot be made into an
ordered field. For Prop. 2.20 implies that, if C were ordered, then both
1 =12 and —1 = i* would be positive, contradicting trichotomy.

Unlike R also, the field C has many automorphisms. (Cf. [53], and
also [15], page 122.) Conjugation has already been noted as an example.
This map sends each real number to itself and is the only field iso-
morphism C—> C with this property other than the identity, since i
must be sent either to i or to —i. However, a field isomorphism C — C
need not send each real number to itself. It is true, by part of the proof
of Prop. 2.60, that each rational number must be sent to itself, but the
remainder of the proof of that proposition is no longer applicable.
Indeed, one of the non-standard automorphisms of C sends 4/2 to
—4/2. What is implied by these remarks is that the real subfield of C is
not uniquely determined by the field structure of C alone. The field
injection or inclusion R—> C is an additional piece of structure. In
practice the additional structure is usually taken for granted; that is, C is
more usually thought of as a real algebra—see page 67 for the definition
—rather than as a field. It is unusual to say so explicitly!

The relationship between the complex field and the group of rotations
of R?is best deferred until we have discussed rotations, which we do in
Chapter 9. The matter is dealt with briefly at the beginning of Chapter
10.

The exponential maps

Occasional reference will be made (mainly in examples) to the real
and complex exponential maps, and it is convenient to define them here
and to state some of their properties without proof. A full discussion
will be found in mostbooks on the analysisof real-valued functions of one
real variable.

3",
Prop. 2.68. Let z e C. Then the sequence w —> C; nw»> z—’a 18

ken""*
convergent. O

zﬂ
The limit of the sequence 7 w» Z 1 is denoted, for each 2 € C, by

ken **
€%, the map R—> R; x> e® being called the real exponential map (or
real exponential function) and the map C— C; zw» ¢* the complex
exponential map.
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The following theorem states several important algebraic properties
of these maps, R+ being a notation for the multiplicative group of
positive real numbers and C* a notation for the multiplicative group of
non-zero complex numbers.

Theorem 2.69. For any x € R, e* € R+ and, for any z € C, * € C*.
The map R— R+; x> e® is a group isomorphism of the additive
group R to the multiplicative group R+, while the map C— C*;
2z €* is a group surjection of the additive group C to the multipli-
cative group C*, with kernel the image of the additive group injection
Z — C; n~w»> 2nin, 7 being a positive real number uniquely determined
by this property. For any z € C, ¢ = 2. The image by the complex
exponential map of the additive group of all complex numbers with zero
real part is the multiplicative subgroup of C* consisting of all complex
numbers with absolute value 1. 0O

The map R — R*; x «w»> €7 is not the only such group isomorphism.
For example, the map R — R*; x w» ¥ also is a group isomorphism,
for any £ € R* = R\ {0}. The reason for singling out the former one
only becomes clear when one looks at the topological and differential
properties of the map (cf. Chapters 15, 16 and 18). What one can show
is that the only continuous isomorphisms of R to R+ are those of the
form x ww» €2, where & 2 0. Each of these is differentiable, the differ-
ential coefficient of the map x> e* at any x € R being ke*®. The
exponential map x «w- e? is therefore distinguished by the property that
its differential coefficient at 0 is 1, or, in the language of Chapter 18, that
its differential at 0 is the identity map R — R: x> x. It is an order-
preserving map.

The exponential maps may be used to define several others which have
standard names. For example, for any x € R, one defines

cos x = §(e"” — e~), the real part of ¥,
. 1, . ) . )
sin x = 2—.-(6‘” — €7, the pure imaginary part of eV,
i

cosh x = §(e® + e~®) and sinh x = }(e® — e~®).

The maps R — R; x .« cos x and x > sin x are periodic, with mini-
mum period 2r; that is, for each n € w,

cos (x + 2nnx) = cosx and sin(x - 2nz) = sinx, for all x R,
no smaller positive number than 2z having this property. Moreover,
since cos?x +sin?x =1, |cosx| <1 and |sinx| <1, for all
x € R. The maps [0,7] — [-1,1]; & ~> cos x and [ —37,3=] — [—1,1];
x-~w> sin x are bijective, the former being order-reversing and the latter
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order-preserving. By contrast, cosh? ¥ — sinh?x = 1, with coshx > 1,
for all x e R. The map [0, + oo — [1,+ oo[; x> cosh x is bijective
and ordetr-preserving. The map R — R; x-w»> sinh x also is bijective
and order-preserving, with sinh 0 = 0.

FurRTHER EXERCISES

2.70. Let G be a group, let @, b, c € G and let x = ba~', y = ab~1¢c
and 2 = ¢~b. Express 4, b and ¢ in terms of x, y and 2. Hence express
ba—*cac—b in terms of x, y and z. 0

2.71. Let a, b, ¢, x, y be elements of a group G and let ax =by =¢.
Express a—cb—'ac'b in terms of x and y. O

2.72. Let G be a group such that, for all x € G, ¥* = 1. Prove that G
is abelian, O

2.73. Let G be a finite group. Prove that, for all a € G, the set
{a": n € »}, with a® = 1, is a subgroup of G. O

2.74. The cardinality of the underlying set of a group G is said to be
its order, denoted by #G.

Let F be a subgroup of a group G and, for any a € G, let aF =
{af: f € F}. Prove that, for any a € G, the map F— aF; f-» afis
bijective and that, for any q, b € G, either aF = bF or aF N bF = 0.
Hence prove that, if #G is finite, #F divides #G. O

2.75. A natural number p, not 0 or 1, is said to be prime if its only
divisors are 1 and p. Prove that any finite group of prime order p is
isomorphic to the additive group Z,. O

2.76. Prove that any group of order 4 is isomorphic either to Z, or to
Z, X Z,. O

2.77. Prove that any group of order 6 is isomorphic either to Zg or
to 3! O

2.78. For any n € w let a € n! be the map sending each even k e to
its successor and each odd % to its predecessor, except that, when # is
odd, a(n — 1) =n — 1, and let b e #! be the map sending each odd
k en to its successor and each even % to its predecessor, except that
5(0) = 0 and, when # is even, b(n — 1) = n — 1. Prove that 4®> = b =
(ab)* = 1 and that the subset {(ab)*: ke n} U {(ab)*a: k en} is a sub-
group of n! of order 2n. O

2.79. Let S be a non-null subset of Z such that, for any q, b€ S,
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a-+b and b —acS. Prove that there exists d € w such that S =
{nd:n € Z}. (Cf. Exercise 1.70.) O

2.80. Let p be a prime number and let z be a positive number that is
not a multiple of p. Prove that there exist 4, k& € Z such that kn 4 kp =1.
(Apply Exercise 2.79 to the set {hn + kp: hk € Z}.) O

2.81. Let p be a prime number. Prove that, for all g, b € w, if p divides
ab, then p divides either a or b. 0

2.82. Let p be a prime number. Prove that, for any non-zero a € Z,,
the map Z, — Z,: n -~ na is injective, and therefore (by Exercise 1.67)
surjective. (Use 2.81.) O

2.83. Prove that Z, is a field if, and only if, p is a prime. O

2.84. Prove that any field not of characteristic zero has prime character-
istic. O

2.85. Give examples of injections ]—1,1[ — [—1,1] and [—1,1] —

]—1,1[. Hence construct a bijection ]-—1,1[ — [—1,1]. (Cf. Exercise
1.68.) O

2.86. Prove thatthemaps]—1,1[—R;xw»> i—L and x w»> T
are bijective. O ~ || -

2.87. Let 4, Band C be intervals of R with at least one common point.
Prove that one of the intervals is a subset of the union of the other two, [J

2.88. Let a and b be real numbers such that, for all real numbers
xand y, ax 4 by = 0. Prove that a = b = 0. (Choose (»,y) = (1,0) and
©1,) O

2.89. Let a and b be real numbers such that, for all real numbers

% and y, ax + by < +/(x% + »?). Prove that a| <1 and |b] < 1.
Show by an example that the converse is false. O

2.90. Let a be a real number. Prove that
ab+1>0 forallreald <1
if, and only if, —1 < a < 0. O

291. Expressthesets {x eR: > xz} and{x eR: A < xz}

1
(2 — %) 3 —x

as unions of intervals. 1

292. Let n-w» x, be a convergent sequence on R. Prove that the
sequence n# w»> | x, | also is convergent. |
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2.93. Which of the following are subfields of R:
{a +by/2:ab e},
{a +by2:abeQ},
{a + by/2 + c/3:abceQ},
{a 4+ b4/2 + ¢+/3 + dv/6:a,bc,d €Q}? O
2.94. Find the modulus of each of the following complex numbers:

311 14de
9171’ 1+é%

(Don’t start by reducing the given expressions to the form x 4 iy as you
are doubtless conditioned to do. There is a quicker way!) |

(4 — 3)(8 + 151), (x, BER).

2.95. Let a and b be complex numbers. Show that if @ -+ b and ab
are both real, then either a and b are real or a = b. O

2.96. Prove that multiplication is a group structure for the set of com-
plex numbers of modulus 1. (For reasons discussed later, at the begin-
ning of Chapter 10, this group is called the circle group and denoted
by SL) O
2.97. A product on C? is defined by the rule

(%0:%0)(21,%01) = (2021 — Wty , Ry + WyF))
where 2, 2;, w,, w, € C. Prove that this product is associative and has

unity, butis not commutative. Show also, by consideration of (2,w)(%, —w),
that if z and w are not both zero, then (2,) has a unique inverse. O

For further exercises on complex numbers, see page 195.



CHAPTER 3

LINEAR SPACES

At the end of Chapter 2 two ring structures for R2? were introduced,
there being in each case also a natural ring injection R — R2% What
both these structures have in common, apart from the additive struc-
ture, is the map
R x R?2— R?; (1,(a,b)) w> (Aa,Ab).

"This map s known as the scalar multiplication on R?, and addition and
scalar multiplication together form what is known as the standard
linear structure for R%. Addition is naturally an abelian group structure
for R, while, for any 4, u € R and any (a,b), (c,d) e R?,

A(a,b) + (c,d)) = Ma,b) + A(c,d)

(2 + p)(a,b) = Ma,b) + u(ad)

and (Au)@b) = A(ab)).
Note also that the restriction of the scalar multiplication to Z x R?
coincides with the multiplication Z X R? — R?induced by the additive

{O}X R

(g,0)
{atc,btd)

R0}

(0,0)

{c,d)

53
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group structure on R?2, according to Prop. 2.30. In particular for any
(a,b) eR?, 1(a,b) = (a,b), 0(a,b) = (0,0) and (—1)(a,b) = (—a, —b).

The word linear derives from the standard intuitive picture of R?, a
plane of unbounded extent, with the cartesian product structure induced
by two lines, each a copy of R, intersecting at their respective zeros and
each lying in the plane.

In this picture the set {A(a,b) : 2 € R} is, for any non-zero (4,b) € R?,
a line through the origin (0,0), and any line through (0,0) is so des-
cribable. The sum (a2 4-¢, b+ d) of any two elements (a,6) and (¢,d)
of R2? not lying on the same line through (0,0) also has a geometrical
interpretation, this point being the vertex opposite (0,0) of the parallelo-
gram whose other three vertices are (a,d), (¢,d) and (0,0).

The practical benefits of this intuition are fourfold. First, we have a
method for bringing algebra to bear on geometry. Secondly, we have
available a large geometrical vocabulary for use in any situation where
we are concerned with a structure analogous to the linear structure for
R?, that is, any situation where we have objects which can be added
together in some reasonable way and be multiplied by elements of some
given field. Thirdly, many general theorems on linear structures may be
illustrated vividly by considering in detail the particular case in which
the linear structure is taken to be the standard linear structure on R2.
Finally, and more particularly, we have a serviceable intuitive picture
of the field of complex numbers.

This chapter is concerned with those properties of linear spaces and
linear maps that follow most directly from the definition of a linear
structure. The discussion of dimension is deferred until Chapter 6, for
logical reasons, but most of that chapter could usefully be read con-
currently with this one, since many of the most vivid examples of linear
spaces and maps involve finite-dimensional spaces. Further examples on
the material of this chapter and the two which follow are scattered
throughout the book, the interest of linear spaces lying not so much in
themselves as in the more complicated geometrical or algebraic struc-
tures that can be built with them, as in Chapters 8, 9 and 12, or in their
applicability, as in the theory of linear, or more strictly affine, approxi-
mation in Chapters 18 and 19. Various features are highlighted also in
generalizations of the material, such as the theory of modules touched on
briefly at the end of this chapter and, in particular, the theory of quater-
nionic linear spaces outlined in Chapter 10.

It should be noted that concepts such as distance or angle are not
inherent in the concept of linear structure. For example, if X is a linear
space isomorphic to R? (that is; a two-dimensional linear space), then
it is not meaningful to say that two lines of X are at right angles to (or
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orthogonal to) one another. For this, extra structure is required (see
Chapter 9). It requires a little practice to use R? as a typical linear space
for illustrative purposes and at the same time to leavé out of considera-
tion all its metric features.

Linear spaces

Let X be an (additive) abelian group and let K be a commutative
field. A K-Zinear structure for X consists of a map
K X X — X; (4,x) w> Ax,

called scalar multiplication, such that for all x,x" € X, and all 4, ' € K,

(i) Mx + ') =Ax + A&’

(i) (4 -+ Ay = Ax + V)" distributivity,
(1ii) M(Ax) = (A'A)x, associativity,
(iv) Ix =, unity.

A K-linear structure for a set X consists of an abelian group structure
(addition) for X and a K-linear structure for the abelian group.

Examples 3.1.

1. The null set has no linear structure.
2. For any finite n, a K-linear structure is defined on K" by the
formulae
(x + &) =2, +x; and (Ax); = Ax,,
where x, ' € K*, A €K, and f e n.
3. Let A be a set and X a linear space, and let X4 denote the set of
maps of 4 to X. A linear structure is defined on X4 by the formulae

(f +&)a) = f(a) + g(a) and (¥f)(a) = 4f(a)
where f, g€ X4, 1 €K and a € 4. O

The linear structures defined in Examples 2 and 3 are referred to as the
standard or canonical linear structures on K" and X4 respectively, the
linear structure on R? described in the introduction to this chapter being
its standard linear structure. Note that Example 2 is a special case of
Example 3.

An abelian group with a prescribed K-linear structure is said to be a
K-linear space or a linear space over K. In applications the field K will
usually be either the field of real numbers R or the field of complex
numbers C. While much of what we do will hold for any commutative
field, except possibly fields of characteristic 2, we shall for simplicity
restrict attention to fields of characteristic zero, and this will be assumed
tacitly in all that follows.
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Since an abelian group is rarely assigned more than one linear struc-
ture, it is common practice to denote a linear space, the underlying
abelian group and, indeed, the underlying set all by the same letter;
but care is required in working with complex linear spaces, for such
a space can also be regarded as a real linear space by disregarding part
of the structure (as in Prop. 7.32). When several linear spaces are under
discussion at the same time it is assumed, unless there is explicit men-
tion to the contrary, that they are all defined over the same field. The
elements of the field are frequently referred to as scalars. (Hence the
term ‘scalar multiplication’.) The elements of a linear space may be
referred to as points or as vectors. A linear space is often called a vector
space, but we prefer to use this term only in the context of affine spaces,
as discussed in Chapter 4.

The (additive) neutral element of a linear space X is called the origin
or zero of X and is denoted by O(x), or simply by 0. From the context
one can usually distinguish this use of the symbol 0 from its use as the
scalar zero, as for example in the statement and proof of the next
proposition.

Prop. 3.2. Let X be a K-linear space, let x € X and let A ¢ K. Then
A=0 < A=0o0rx=0.

Proof <= : Ox +0x = (0 4 0)x = 0x = 0x + 0.

Cancelling Ox from each side, Ox = 0.

20+4+20=20-+0) =20 =120 +0.

Cancelling A0 from each side, 10 = 0.

= : Let Ax = 0. Then either A =0 or x = A-!(Ax) = 4-10 =0, as
we have just shown. O

Note that in proving ‘=’ we have made use of the existence of a
multiplicative inverse of a non-zero scalar.
The additive inverse of an element x is denoted by —x.

Prop.3.3. LetX bealinear space and letx € X. Then(—1)x = —a.

Proof x4 (—1)x = 1x + (—1)x = (1 + (—1))x = Ox = 0. There-
fore (—1)x = —x. O

By definition " — x = &' + (—x) (= &’ 4+ (—1)x), for all x, " € X.
The map X x X — X; («',x)»w» x' — x is called subtraction.

Let x be any element of the linear space X and # any natural number.
Then, for n > 1, nx may be defined either by means of addition or by
means of scalar multiplication, by regarding » as a scalar. The unity
axiom guarantees that the two definitions agree, as one sees from the
next proposition.
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Prop. 3.4. Let X be a linear space, let x € X and let n € . Then
(n + 1)x = nx + x.
Proof (n+ Dx =nx + lx = nx + x. O

This is the necessary inductive step. The basis of the induction may
be taken to be Ox = 0 or 1x = x.

Linear maps

A group map was defined in Chapter 2 to be a map from one group to
another that respected the group structure. A linear map is defined
analogously to be a map from one linear space to another that respects
the linear structure. To be precise, a map ¢: X — Y between linear
spaces X and Y is said to be Znear if, and only if, for any q, b € X and
any scalar 4,

t(a + b) =t(a) + t(b) and t(ia) = Ai(a).
The following proposition provides some elementary examples.

Prop. 3.5. Let X be a K-linear space. Then, for any a € X and any
u# €K, the maps ag: K— X; 1-w»>Ag and px: X — X; & w> ux are
linear. In particular, the identity map 1x is linear. 0

When K = R, the map ag: R —> X can be thought of intuitively as
laying R along the line in X through 0 and @, with 0 laid on 0 and 1
laid on a.

%R

R

A linear map from K” to K™ is defined by a set of m linear equations
in n variables. Consider, for example, the particular case where X = R,
Y = R? and let £: R® — R?2 be linear. Then for all x = (x,,%,,%,) € R?
we have

1(x) = ¥(xy,%5) = t(%4(1,0,0) + 2,(0,1,0) + x,(0,0,1))
= x,8(1,0,0) + x,#(0,1,0) - x,2(0,0,1),
by the linearity of ¢.
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Let #(1,0,0) = (fo0st10)s 8(0,1,0) = (Zo1,t1;) and #(0,0,1) = (Z40,%13)-

Then, writing #(x) = (¥,,Y,), we have
(Yory1) = %o(toostro) + Xi(fovstu) + Falfonstia)s

that is, Yo = too¥p + L1 + Lo,
and Y1 = hig¥o T Iy + Lok

It is easy to see, conversely, that any pair of equations of this form,
with 2;;eR for all (4j) €2 X 3, determines a unique linear map
t:R3— R

The next few propositions are concerned with the role of 0 and with
the composition of linear maps.

Prop. 3.6. Lett: X — Y be a linear map. Then #(0) = 0.
Proof #0) = 0¢(0) = 0. O

Cor. 3.7. A linear map ¢: X — Y is constant if, and only if, its sole
value is 0. 0

Prop.3.8. Let?: X — Y and u: W-> X be linear maps such that
the composite tu = 0. Then if u is surjective, £ = 0, and if ¢ is injective,
u=0. O

Prop. 3.9. Let ¢t: X— Y and u: W— X be lincar maps. Then
the composite tu: W—> Y is linear.

Proof For any a, b € W and any scalar 4,

tu(a + b) = t(u(a) + u(d)) = tu(a) + tu(b)
and tu(la) = t(Au(a)) = Atu(a). O

Prop. 3.10. Let W, X and Y be linear spaces and let £: X — Y
and u: W—> X be maps whose composite fu: W — Y is linear. Then
(1) if ¢ is a linear injection, u is linear;

and (ii) if « is a linear surjection, ¢ is linear.

Proof (i) Let ¢ be a linear injection. Then for any a, b € W, and any
scalar 4,
tu(a + b) = tu(a) + tu(b), since tu is linear,
= #(u(a) + (b)), since ¢ is linear,
and fu(Aa) = Atu(a) = t(Au(a)), for the same reasons. Since ¢ is injec-
tive, it follows that u(a + b) = u(a) + u(b) and u(Aa) = Au(a). That is,
u is linear.
(ii) Exercise. O

Cor. 3.11. The inverse t-! of a linear bijection ¢: X — Y is
linear. O
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Such a map is called an invertible linear map or linear isomorphism.
Two linear spaces X and Y are said to be (mutually) isomorphic, and
either is said to be a (linear) model or copy of the other if there exists a
linear isomorphism ¢ : X — Y. This is denoted by X ~ Y. One readily
proves that the relation & is an equivalence on any set of linear spaces.

The terms morphism or homomorphism for linear map, monomorphism
for injective linear map, epimorphism for surjective linear map, endo-
morphism for a linear transformation of a linear space and automorphism
for an invertible linear transformation of a linear space, or isomorphism
of the space to itself, are all in common use, the adjective hnear being
implied in each case by the context.

For any linear space X the maps 1x and —1x are automorphisms of
X. Indeed, Ax is an automorphism of X for any non-zero scalar .

An automorphism £: X — X of a linear space X such that 2 = 1x
is also called a (linear) involution of X. The maps 1x and —1x are
involutions of X.

Linear sections

Lett: X— Y and u: Y — X be linear maps such that tu = ly.
Then u is said to be a linear section of t, t in such a case being necessarily
surjective and u injective by Cor. 1.4.

For example, the linear injection 7: R — R2; x-w»> (x,0) is a linear
section of the linear surjection p : R2— R; (x,y) w» .

(x,0)

5 7
Prop. 3.12. Let meR. Then the map R — R2; x> (x,mx) is a

linear section of the linear surjection R2 — R; (x,y) »w> x. |

This is a special case of Prop. 3.26 below.



60 LINEAR SPACES

Linear subspaces

Let X be a K-linear space and W a subset of X. The set W is said to
be a linear subspace of X if there exists a linear structure for I# such that
the inclusion W — X; w-w» w is linear.

The linearity of the inclusion is equivalent to the statement that, for
any w, w' € W and any 1 €K, w + @’ and Aw are the same, whether
with respect to the linear structure for W or with respect to the given
linear structure for X. The linear structure for a linear subspace W of X
is therefore unique; it is called the natural linear structure for W, A
linear subspace of a linear space is tacitly assigned its natural linear
structure.

The next proposition provides a practical test as to whether or not a
given subset of a linear space is a linear subspace.

Prop. 3.13. A subset W of a linear space X is a linear subspace of
X if, and only if,
(i) 0 e W,
(i) foralla,beW,a +be W,
(iii) for any @ € W and any scalar 4, Aa € W.

Proof The three conditions are satisfied if W is a linear subspace of
X. It remains to prove the converse.

Suppose therefore that they are satisfied. Then, by (ii) and by (iii),
the maps

W2— W; (a,b)v»>a + b

and K x W— W; (4,a) w> Aa
are well-defined, K being the field of scalars. This addition for W is
associative and commutative as on X, 0 € W by (i), while, for all
a€eW, —a=(—1)ae W by (iii). Also, all the scalar multiplication
axioms hold on W as on X. So W has a linear structure such that the
inclusion W —» X is linear. |

Note that we may not dispense with (i), for #, which has no linear
structure, satisfies (ii) and (iii). Note also that (i) and (ii) by themselves
are not a guarantee that addition is an abelian group structure for W.

Examples 3.14.

1. For any (a,b) € R?, the set of scalar multiples of (a,) is a linear
subspace of R2. In particular, {(0,0)} is a linear subspace of R2.

2. For any (a,b) € R?, the set {(x,y) eR2:ax + by = 0} is a linear
subspace of R2.

3. The interval [—1,1] is not a linear subspace of R.
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4. The set complement X \ W of a linear subspace W of a linear space
X is not a linear subspace of X. Neither is the subset (X \ W) u {0}.

w

O

The linear union or sum V -+ W of linear subspaces ¥V and W of a
linear space X is the subset {v + we X:veV,we W} of X.

Prop. 3.15. Let ¥V and W be linear subspaces of a linear space X.
Then V + W also is a linear subspace of X. By contrast, V' U W, the
set union of  and W, is a linear subspace of X if, and onty if, one of the
subspaces 7/ or W is a subspace of the other. O

Intersections of linear spaces behave more nicely.

Prop. 3.16. Let #” be a non-null set of linear subspaces of a linear
space X. Then (¥ is a linear subspace of X. (Note that there is no
assumption that the set #” of linear subspaces is finite, nor even
countable.) 0O

Linear injections and surjections

Prop. 3.17. Let:: X — Y be a linear map. Then #'{0} is a linear
subspace of X and im ¢ is a linear subspace of Y.

Proof In either case conditions (i), (ii) and (iii) of Prop. 3.13 follow
directly from the remark that, for any a, b € X and any scalar 4, #(0) = 0,
H(a + b) = t(a) + () and #(Aa) = At(a). O

The linear subspace #'{0} is called the kernel of ¢ and is denoted
by ker z.

Prop. 3.18. A linear map ¢: X~ Y is injective if, and only if,
ker t = {0}. O

This is in fact just a special case of the criterion for injectivity which
was noted for group maps (Prop. 2.3).

Prop. 3.19. Let z: X — Y be a linear map. Then ¢, : X — im ¢
is linear.
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Proof This immediately follows from the fact that, for all » € X,
tow(%) = t(x). Alternatively, since ? = #;,t, and since #,, is a linear
injection, the linearity of #,,. follows from Prop. 3.10. |

Prop. 3.20. Let u: X — X be a linear map such that #* = u and
let s = #y, 7 = #yp,. Then

st = 1, , = sui,

Proof By two applications of Prop. 3.8, si = 1, since #(s — 1)s =

w2 —u=20.
X— e X —"wX
N/ N/
A 1 .

muy—1mimu

AV
. 1 A 1 .
mu 1M U mu

This is of use in the proof of Theorem 11.32.

Then sui = sisi = 1.

O

Prop. 3.21. Let t: X—> Y be a linear map. Then there exists a
unique linear structure for coim ¢, the set of non-null fibres of ¢, such
that the maps #,,, : X —- coim ¢ and #,;; : coim ¢ —- im # are linear.

Proof The requirement that the bijection #,; be linear determines
a unique linear structure for coimt. Then, since f,,, = (tyy) Zoun
2par also is linear. O

The further study of linear injections and surjections, and in par-
ticular the study of linear partitions, is deferred until Chapter 5.

Linear products

The product X X Y of two linear spaces X and Y has a natural
linear structure defined by the formulae

(29) + (*',) = (¢ +- 2"y +5)
My) = (Axhy)
for any (x,y), (¥',¥") € X X Y and any scalar 4, the origin of X X Y
being the element (0,0). The set X X Y with this linear structure is
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said to be the (linear) product of the linear spaces X and Y. The product
of any positive number of linear spaces is defined analogously.

The product construction assigns the standard linear structure to K»,
for any positive number 7.

The notation used in the next proposition to denote a map to a
product is that first used in Chapter 1.

Prop. 3.22. Let W, X and Y be linear spaces. Then a map
(4,9): W— X X Yislinearif,and onlyif,u: W— Xandv: W— Y
are linear.

Proof For any a, b € W and for any scalar 4,

(@2)(a + b) = (u0)(a) + (4,0)(b)
< (ua +b),9(a + b)) = (w(a)v(a)) + (u(b),v(B))
(w(a) + u(b), v(a) + ()
and (u,0)(2a) = Mu,v)(a)
< (u(2a),v(Aa)) = A(u(a),v(a))
= (Au(a),Av(a)). O
Cor, 3.23. For any linear spaces X and Y the maps
i: X— X x {0}; x~w- (2,0),
j:Y— {0} x Y; 5w (0,),
P X X Y—>X; (%) > x
and g: X X Y—>Y,; (%,y) >y are linear.

Proof i = (1x0),j =(0,1y) and (p,q) = lxxy. O

Prop. 3.24. Let X, Y and Z be linear spaces. Then each linear map
from X X Y to Z is uniquely expressible as a map (x,y) ~w» a(x) + b(y),
where a is a linear map from X to Z and b is a linear map from Y to
Z. O

This linear map will be denoted by (a 5).

These last two propositions generalize in the obvious way to n-fold
products of linear spaces, for any positive number 7.

|

Prop. 3.25. Let X and Y be linear spaces. Then the natural linear
structure for X X Y is the only linear structure for X X Y such

that the projection maps p: XX Y—> X and g: X X Y— Y are
linear. 0

Prop. 3.26. Let ¢t: X-—> Y be a linear map. Then the map

X—> X X Y; x~w (x,t(x)) is a linear section of the projection
p:XxXxY—->X O

Prop. 3.27. A map ¢: X —> Y between linear spaces X and Y is
linear if, and only if, graph ¢ is a linear subspace of X x Y. O
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The study of linear products is continued in Chapter 8.

Linear spaces of linear maps

Let X and Y be linear spaces. Then the set of linear maps of X to Y
will be denoted by #(X,Y) and the set of invertible linear maps or
linear isomorphisms of X to Y will be denoted by 4.£(X,Y). An alter-
native notation for #(X,Y) is Hom (X,Y), ‘Hom’ being an abbrevia-
tion for ‘(linear) homomorphism’.

Prop. 3.28. Iet X and Y be linear spaces. Then #(X,Y) is a linear
subspace of YX. O

Prop. 3.29. Let X and Y be linear spaces. Then the natural linear
structure for £(X,Y) is the only linear structure for the set such that
for each x € X the map

L(XY)—>Y; twiH(x)
is linear. O

Prop. 3.30. Let X be a K-linear space. Then the maps
X — Z(K,X); aw>ag and L(K,X) — X; uw>u(1)
are linear isomorphisms, each being the inverse of the other. O

In practice one frequently identifies Z(K,X) with X by these iso-
morphisms. In particular .?(K K) is frequently identified with K, and
Y2 (K,K) with K*,

The linear space £(X,K) is of more interest. This space is called the
(linear) dual of the K-linear space X for reasons that will be given later
(cf. page 100). The dual space £(X,K) will be denoted also by X<,
(More usual notations are X*, X or X. The reason for adopting the
notation X< here will become clear only in Chapter 15, where we draw
a distinction between £(X,Y), the set of linear maps from the real
linear space X to the real linear space Y, and the linear subspace
L(X,Y) of #(X,Y), consisting of the continuous linear maps from
X to Y. The notation X% is then available to denote L(X,R).)

Any linear map ¢: X — Y induces a map t¥: Y¥ — X¥, defined
by t%(B) = pt for all B € YZ. This definition is more vividly displayed
by the diagram

X- -V

¢
‘\.A{w
% - ﬂ:\t“’ A

K
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where the arrow labelled 8 represents an element of Y and the arrow
labelled +#(B) represents the image of 8 in X< by the map #¥. The map
12 is called the (kinear) dual of the map t.

Prop. 3.31. The linear dual #¥: Y¥ — X¥ of a linear map
t: X — Y is linear.

Proof Forany B, 8 € Y¥, any scalar 1 and any x € X,

B + B)x) = (B + B)H(x) = pt(x) + f't(x) = t7B(x) + t7B'(x)
and 17(A8)(x) = Apt(x) = At¥p(x).

Therefore t4(8 + ') = t¥p + B’ and t¥(A8) = At¥p. O

Prop.3.32. Let X and Y be linear spaces. Then the map #(X,Y) —
L(Y¥%,X%); t > t€ s linear. [

Prop. 3.33. Lett: X— Yandu: W— X be linear maps. Then
()% =u?t?. O

The ordered pair notation for a map to a product is further justified in
the case of linear maps by the following proposition.

Prop. 3.34. Let X, Y,, Y, be linear spaces. Then the map

L(X,Y,) X L(X,Y,) > ZL(X,Y, X Y);  (toty) v (tety)

is a linear isomorphism. O

There is a companion proposition to this one, involving linear maps
from a product.

Prop. 3.35. Let X,, X, and Y be linear spaces. Then the map

L(X,Y) X L(X,Y) > (X, X X1,Y); (apa) > (a, ay)

is an isomorphism. O

In the particular case that ¥ = K, this becomes an isomorphism
between X¢ X X¥ and (X, x X,)%.

Bilinear maps

A map 8: X X Y— Z is said to be bilinear or 2-linear if for each
a € X and each b € Y the maps

X—Z; xw»p(xb) and Y —Z; y-w»>f(a,y)
are linear, X, Y and Z being linear spaces.
For example, scalar multiplication on a linear space X is bilinear.
For further examples see Exercise 3.55. It should be noted that a bi-

linear map is, in general, not linear, the only linear bilinear maps being
the zero maps.
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The definition of an n-kinear map, for any n € w, is the obvious
generalization of this one, a multilinear map being a map that is
n-linear, for some n.

Prop. 3.36. Let IV, X and Y be linear spaces. Then composition
LX)Y) x (W, X)—>2L(W,Y);, (tu)w>tu
is bilinear.

Proof For all t, t' e Z(X,Y), for all u, u' € Z(W,X), for any
w € W and any scalar 4,
(t + thu(w) = tu(w) + t'u(w) = (tu + t'u)(w)
and (At)u(w) = A(tu)(w) = (A(tu))(w),
that is,
t+twu=1tu+tu and (At)u = A(tu),
while, since ? is linear,
t(u + u')w) = tu(w) + v'(w)) = tu(w) + tu'(w)
= (tu + tu')(w)
and t(Au)(w) = tAu(w)) = A(tw(w)) = (A(tw))(w),
that is,
Hu+u)=1tu-+td and t(Au) = A(tu). O

Prop. 3.37. Let X be a K-linear space. Then the composition map
Z(X, X)) — F(X,X); (tu)w>tu is associative, with unit lx, and
distributive over addition both on the left and on the right. Also, the
map K — #(X,X); A Ax is a linear injection such that, for all
2, peKandall t e Z(X,X), Axux = (Au)x and Axt = At.

Proof Routine checking. 1

This shows that #(X,X) not only is a linear space with respect to
addition and scalar multiplication but is also a ring with unity with
respect to addition and composition, the ring injection K — £(X,X)
sending 1 to 1x and transforming scalar multiplication into ring mul-
tiplication.

The linear space £(X,X) with this additional structure is denoted
by #(X) and called the algebra of endomorphisms of X. The notation
End X is also used.

It is a corollary of Prop. 3.37 that composition is a group structure
for the set 9.#(X) of invertible linear endomorphisms of the linear
space X, that is, the set of automorphisms of X. The group of auto-
morphisms 9£(X) is also denoted by Aut X. See also page 106.
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Algebras

The word algebra has just been used in its technical sense. The pre-
cise definition of a linear algebra runs as follows.

Let K be a commutative field. Then a knear algebra over K or
K-linear algebra is, by definition, a linear space A4 over K together with
a bilinear map A% — A, the algebra product or the algebra multiplication.

An algebra 4 may, or may not, have unity, and the product need be
neither commutative nor associative, though it is usual, as in the case of
rings, to mention explicitly any failure of associativity. By the bilinearity
of the product, multiplication is distributive over addition; that is,
multiplication is a ring structure for the additive group 4. Unity, if it
exists, will be denoted by 1(4), the map K— 4; A w» 114 being
injective. It frequently simplifies notations to identify 1 e K with
1.4 € A4, and, more generally, to identify any A € K with 114 € 4.

Examples of associative algebras over R include *R and C, as well as
the algebra of linear endomorphisms End X of any real linear space X.

Examples of non-associative algebras include the Cayley algebra,
discussed in Chapter 14, and Lie algebras, discussed in Chapter 20.

The product A X B of two K-linear algebras 4 and B is a K-linear
algebra in the obvious way. Other concepts defined in the obvious way
include subalgebras, algebra maps and algebra-reversing maps, algebra
isomorphisms and algebra anti-isomorphisms, an algebra anti-isomorphism,
for example, being a linear isomorphism of one algebra to another that
reverses multiplication. The sth power of a K-algebra 4 will be denoted
by 4, not by A4°, which will be reserved as a notation for the under-
lying K-linear space.

There will be interest later, for example in Chapters 10, 11 and 13, in
certain automorphisms and anti-automorphisms of certain linear alge-
bras. An automorphism of an algebra A is a linear automorphism of 4
that respects multiplication, and an anti-automorphism of the algebra A
is a linear automorphism of A that reverses multiplication. An auto-
morphism or anti-automorphism ¢ of 4 such that #2 = 1,4 is said to be,
respectively, an tnvolution or an anti-involution of A.

The centre of an algebra A is the subset of A consisting of all those
elements of 4 that commute with each element of 4.

Prop. 3.38. The only algebra automorphisms of the real algebra C
are the identity and conjugation. Both are involutions. C

Prop. 3.39. The centre of an algebra 4 is a subalgebra of 4. O

A subset of an algebra A that is a group with respect to the algebra
multiplication will be called a subgroup of A.
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Matrices

Let X, X, Yoand Y, be K-linear spaces and let ¢: Xy, x X; —
Y, x Y, be a linear map. Then, by Prop. 3.24, there exist unique

linear maps t;; € £(X;,Y,), for all 7, j€2 X 2, such that, for all
(%0%y) € Xy X X;,

to(%gy%1) = tog¥o + For%y
and t)(%0%1) = t1p%o + ¥y
The array (too tm) of linear maps is said to be the matrix of ¢. Strictly
t10 tll
speaking, this is a map with domain the set 2 X 2, associating to each
(7,j) €2 X 2 an element t; of £(X,,Y,). Conversely, any such matrix
represents a unique linear map of X, X X, to Y, x Y.

The matrix notation just introduced is analogous to the notation
(g u,) for a linear map of the form #: X, X X;— Y and it may be
further generalized in an obvious way to linear maps of an n-fold pro-
duct to an m-fold product of K-linear spaces, for any finite m and =,
such a map being represented by a matrix with m rows and n columns. In
particular, a linear map (Z,,2,): X — Y, X Y, is represented by a
column matrix (to). Moreover, if the linear spaces X, X, and X, x X,

4L
are identified with the spaces Z(K,X,), Z(K,X,) and Z(K, X, x X;),
respectively, in accordance with the remark following Prop. 3.30,
then any point (x,,%;) € X, X X, also may be represented as a column
matrix, namely the matrix (xo , there being an analogous matrix repre-
X1
sentation for a point of an n-fold product of linear spaces, for any
finite .

The matrix representation of a linear map # is most commonly used
when the source and target of ¢ are both powers of the field K. In this
case each term of the matrix is a linear map of K to K, identifiable with
an element of K itself. The matrix of a linear map ¢: K» — K™ may
therefore be defined to be the map

m X n—>K; (5,7)w>t;
such that, for all x € K, and for all i e m,
tix) = X ti%

jen
or, cquivalently, such that, for allj ez and all e m,

ti(e;) = tis
where ¢; € K is defined by (¢;); = 1 and (¢;), = 0, for allk en \ {j}.
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In particular, the identity map 1gs: X* — K" is represented by the
matrix, denoted by "1, or sometimes simply by 1, all of whose diagonal
terms (1gn)y;, ¢ € m, are equal to 1, the off-diagonal terms (1gn)y, 1, j €1,
i 7, all being zero. For example, 31 = /1 0 0\.

(0 1 0)
0 01

Prop. 3.40. Let C be identified with R? in the standard way. Then,
for any ¢ = a + ib € C with (a,b) € R?, the real linear map C — C;
2w ¢z has matrix <a -b). O

b a

The operations of addition, scalar multiplication and composition for
linear maps induce similar operations for the matrices representing the
linear maps, the matrix representing the composite of two linear maps
normally being referred to as the product of the matrices of the linear
maps in the appropriate order.

Prop. 3.41. Let ¢, t' € (K" K™), u € Z(K?K") and 1 € K. Then,
for all (5,5) em X n,

(¢ + ) =t + b
and (lt),; = }'tih
while, for all (3,k) e m x p,

(tuw)a, = PIRA O
jen

As an example of this last formula,

a d au +dv ax + dy
(b e )(u x) = (bu J-ev bx + ey>,
c f vy caw+fo cx+ fy
for any a, b, ¢, d, e, f, u, v, x, y € K.

It often simplifies notations to identify the elements of K* with the
n X 1 column matrices in accordance with the remarks on column
matrices above. It is usual at the same time to identify the elements of
the dual space (K»)¥ with the 1 X n row matrices representing them.
Then, for any x € K* and any « € (K*)¥, «(x) becomes, simply, ax, the
product being matrix multiplication.

To the endomorphism algebra End K* there corresponds the matrix
algebra K***, Like the algebra End K” to which it is isomorphic, this is
an associative algebra with unity. Each of these algebras will also be

denoted ambiguously by K(z), and »1 will denote the unity element of
either.
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Prop. 3.42. For any finite n, the centre of the algebra K(#) consists
of the scalar multiples of the identity, the subalgebra

{A(*1): 1 eK}. O

One map that is conveniently described in terms of matrices is
transposition. Let ¢t € £(K*,K™). Then the transpose t* of ¢ is the linear
map of K™ to K*, with matrix the transpose of the matrix for ¢, that is,
the #n X m matrix (¢;: (j,f) en X m).

For example, for any a, b, ¢, d € K, (u c)’ = (a b).

b 4, c d
Prop. 3.43. For any finite m, n, the map
Z(K»Km™) — Z(K"K"); t-w»t*
is a linear isomorphism, with
(&) =¢, forall t e Z(K"K™).
In particular, for any finite 1 the map
K @ Z(KK") — (K" = Z(K"K); x-w» x”

is a linear isomorphism. O

Prop. 3.44. Let t ¢ £(K"K™) and let « € #(K?,K"), m, n and p
being finite. Then (uf)* = t*u*. O

Cor. 3.45. For any finite n the map

Z(KK") — L(K*K"); tw>1°

is an anti-involution of the algebra £ (K»Kn). O

The algebras °K

For any commutative field K and any s € w, the sth power of K, °K,
is a commutative K-linear algebra.

Prop. 3.46. For any s € w, the map «: °K — K(s) defined for all
A €°K, by the formula
((A)gs = Ay forallies,
((A))is =0, foralls jes,i=j,
is an algebra injection. O

One-sided ideals

Let A be an associative K-linear algebra with unity. A left ideal # of
A is a linear subspace # of A such that, for all x €.# and all a € 4,
ax € S. Right ideals are similarly defined.
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Example 3.47. Let X be a K-linear space and let ¢ € End X. Then
the subset

J(t) = {at €eEnd X:a e End X}
is a left ideal of End X. O

A left ideal of A is said to be minimal if the only proper subset of 4
which is a left ideal of 4 is {0}. The minimal left ideals of the endo-
morphism algebra of a finite-dimensional K-linear space are described
at the end of Chapter 6.

Two-sided ideals are defined on page 89.

Modules

In later chapters we shall be concerned with various generalizations
of the material of this chapter. It is convenient here to indicate briefly
one such generalization, involving the replacement of the field K either
by a commutative ring with unity or, more particularly, by a commuta-
tive algebra with unity.

Let X be an additive group and let A be either a commutative (and
associative) ring with unity or a commutative (and associative) algebra
with unity. Then a map

AXX—>X; (hx)wsdx

is said to be a A-module structure for X if the same four axioms hold
as in the definition of a K-linear space on page 55, the field K being
replaced simply by the ring or algebra A. The reader should work
through the chapter carefully to see how much of it does in fact gen-
eralize to commutative ring or algebra modules. In Chapter 8 we con-
sider in some detail the particular case where A is the commutative
algebra 2K over the field K.

Modules may also be defined over non-commutative rings or algebras.
We shall have something to say about this in Chapter 10.

FurTHER EXERCISES

3.48. Lett: R?— R be a linear map. Prove that there are unique real
numbers @ and & such that, for all (x,y) € R, #(x,y) = ax + by. Des-
cribe the fibres of ¢, supposing that @ and b are not both zero. Prove that
if z € R? is such that, for all € Z(R%R), {(2) =0, then ¥ = 0. O

3.49. Lett: X — Y be alinear map such that, for any linear space W
and any linear map u: W— X, tu =0 = u = 0. Prove that ¢ is
injective, O
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3.50. Maps ¢: R?— R? and #: R® — R? are defined by
1(x) = 3wy — 2, , 229 — %5, — X + Xy)
and wy) = (—2y0 + 391 — ¥2, 390 — 291 + 52),
for all x e R%, y € R3, Verify that ¢ and « are linear, that ut = 21 but
that tu =31, O

3.51. Show, by an example, that it is possible for the composite ut of
a composable pair of linear maps ¢, # to be 0 even if neither ¢ nor u is

0. g

3.52. Let U and V be linear subspaces of a linear space X, with
X = U + V, and suppose that ¢t: X — Y is a linear surjection with
kernel U. Prove that ¢ | V is surjective. O

3.53. Let U, V and W be linear subspaces of a linear space X. Prove
that Un V' + U W is a linear subspace of U (V + W). Show,
by an example, that UnV + Un W and U n (V + W) need not
be equal. d

3.54. Let X be a K-linear space and, for each x € X, let ¢, € X< be
defined by the formula
&(t) = #(x), for all # € X¥.
Prove that the map
ex: X—> X¥; xw>g,
is a K-linear map.
Let u: X — Y be a K-linear map. Prove that the diagram

X X, xee

lu l wZZ
YL yee

is commutative. (Cf. Exercise 6.44.) O
3.55. Prove that the maps
R3? x R*—R;
((%3,2), (x"y",8")) o 2" + yy" + 22"
and R3 x R3— R3;
((%3,%), (¥'5",2)) o (y3' — y'%, 20" — &2, xy" — 2y)
are bilinear. O

3.56. Let X, Y, Z be linear spaces. Prove that a bilinear map
X X Y —> Z is linear if, and only if, X = {0} or Y = {0}. O
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3.57. Let 8: Xy x X;— Y be abilinear map and ¢: Y — Z a linear
map. Prove that the map #8 is bilinear. O

3.58. Let Z¥(X x Y, Z) denote the set of bilinear maps of X x Y to
Z, X, Y and Z being linear spaces. Prove that ZL(X x Y ,Z) is a
linear subspace of the linear space ZX¥*¥, O

3.59. (For practice!) Write down an example of a2 X 3 matrix a, two
3 x 3 matrices b and ¢ and a 3 X 2 matrix d. Compute all possible
products of two possibly equal matrices out of the set {a,b,c,d}. Check
also, by evaluating both sides, that (ab)d + a(cd) = a((b + ¢)d). O

3.60. Give an example of a 3 x 3 matrix @ such that a2 20, but
a® = 0. O
3.61. Prove that the set of all matrices of the form (a a), where

a a
a € R¥*, forms a group with respect to matrix multiplication. 0

3.62. Find the inverse of each of the matrices a, b, ab and ba, where

1 2 -1 1 -3 2
a= ( 2 -1 1>, b= (——2 4 —3).
-1 1 2 3 -7 4

(Solve the equations y = ax and y = bx.) O
3.63. Let ¢: R® — R3 be the linear map with matrix

-1 3 2
< 13 1).
2 41

Find #{(0,0,0)}, £#{(0,1,2)} and #'{(1,2,3)}. O

3.64. A principal circle in C = R? is defined (for the purposes of this
exercise) to be a subset of C of the form {2 C:| 2| =r}, whererisa
non-negative real number (we include the case r = 0). Prove that, if
t: C— Cis linear over C, then the image by ¢, of any principal circle is
a principal circle.

If, conversely, ¢ is linear over R and ¢, sends principal circles to
principal circles, does it follow that ¢ is also linear over C? 0

3.65. An element s of R(n) is said to be skew if s* = —s. Show that if s
is a skew element of R(n) then, for any x € R”, x7sx = 0. Deduce that,
for such an element s, the linear map »1 — s: R* — R*is injective.  []



CHAPTER 4

AFFINE SPACES

Roughly speaking, an affine space is a linear space with its origin
‘rubbed out’. This is easy to visualize, for our picture of a line or plane
or three-dimensional space does not require any particular point to be
named as origin—the choice of origin is free. It is not quite so simple
to give a precise definition of an affine space, and there are various
approaches to the problem. The one we have chosen suits the applica-
tions which we make later, for example in Chapters 18 and 19. For
further comment see page 81.

In the earlier parts of the chapter the field K may be any commutative
field. Later, in the section on ines, it has to be supposed that the charac-
teristic is not equal to 2, while in the section on convexity, which involves
line-segments, the field must also be ordered. For illustrative purposes
K is taken to be R throughout the chapter. This is, in any case, the
most important case in the applications.

Affine spaces

Let X be a non-null set and X, a linear space. An affine structure for
X with vector space X, is a map

0: X X X—> Xy; (x,@)w>x—-a
such that

(i) for all @ € X, the map 0,: X — X,; xw»> x — a is bijective,
(ii) for all a, b, xe X, (x ~b) + (b ~a) =x — a.

Axiom (ii) is called the triangle axiom (see the figure on page 75).
Setting @ = b = x in (ii) we have (iii) forall xe X, x — x = 0.
Setting ¥ = a we have (iv) foralla,be X, b ~a = — (a = b).

The map 0 is called subtraction and the elements of X, are called
vectors or increments on X. The vector x — a is called the difference
(vector) of the pair (x,a) of points of X.

An affine space (X,0) is a non-null set X with a prescribed affine
structure 6, (X,0) being frequently abbreviated to X in practice.

Frequently capital letters are used in elementary texts to denote points
74
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of an affine space and bold-face lower-case letters to denote vectors.
The difference vector B = A4 of two points 4 and B of the space is then

—
usually denoted by AB, this symbol also being used to denote the
corresponding tangent vector at 4 (see below).

Normally, in subsequent chapters, the ordinary subtraction symbol —
will be used in place of —. However, to emphasize logical distinctions,
the symbol — will continue to be the one used throughout the present
chapter.

0

There are various linear spaces associated with an affine space X, each
isomorphic to its vector space X,. For example, axiom (i) and (iii) pro-
vide a linear structure for X itself with any chosen point ¢ € X as
origin, the linear structure being that induced by the bijection
0,: X — X,; x w> x =~ a. The choice is indicated in practice by saying
that the point @ has been chosen as origin or set equal to 0. With this
structure chosen it follows, by axiom (ii), that, for any x, b € X,

Oa(x — B) = 0,(x) — 0,(0) =(x —a) — (b ~a) =x - b;
that is, x — b may be identified with x = .

The map X X {a} — X,; (x,a) > x = a also is bijective, for any
chosen « € X, and induces a linear structure on X X {a}, with (a,a) as
origin. The induced linear space is called the tangent space to X at a
and denoted by T'X,. Its elements are called tangent (or bound) vectors
to X at a. The reason for the term ‘tangent’ will become apparent in
Chapters 19 and 20, when tangent spaces to manifolds are discussed.

Lastly, the map 6 : X x X — X, is surjective, by axiom (i), and so the
map Oy, : coim § — X is bijective, inducing a linear structure on coim 4,
the set of fibres of the affine structure §. The induced linear space is

called the free vector space on X, and its elements are called free vectors
on X.
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Tangent vectors (x',a") € X x {a'} and (x,a4) € X X {a} are said to
be equivalent (or parallel) if they are representatives of the same free
vector. This is written (x',a") | | (x,@). Clearly,

*,a)||(xa) = &' —a' ' =x —a.

Prop. 4.1. Let (x',a) | | (x,a), where &', @', x and a belong to the
affine space X. Then

(@) (=) || (@0); (i) (x',0) = (%) + (d0). [

Prop. 4.2. A free vector of an affine space X has a unique represen-
tative in every tangent space to X. O

Translations

Let X be an affine space, let a € X and let s € X,,. By axiom (i) there
is a unique ¥ € X such thatx — a = k. The point x is denoted by % + a
(or a + k), and the map v*: X — X; aw>h + a is called the translation
of X by k. By Prop. 4.3 below, each translation of X is induced by a
unique vector and the set of translations of X is an abelian subgroup of
the group X! of permutations of X,

Prop. 4.3. Let X be an affine space, let X, be the vector space of X
regarded simply as an additive group and let € X,. Then 7% is bijective,
the map 7 : X, — X!; 2w 7 is an injective group map and, for all
a,be X, t™a) - b)) =a - b.

Proof For any h, k € X, t*t* = v%1*; for, if ae X, if b=h }+ a
and if x =k + b, then, by (i), x ~a =%k + h; that is, (R + %) + a
=k + (h + a). Also, 7° = 14, by (iii). So, forany & € X, 77" = (v*)71;
that is, 7" is bijective.

From the equation 7*+* = t*z* jt also follows that 7 is a group map.
This map is injective, for, if he Xy andif ae X, thenkh + a =a =
h=a-~a=0;thatis,»» = 1x = k =0, from which the injectivity
of 7 follows by Prop. 3.18.

Finally, for all 4, b € X and & € X,

hita=h+((a=05)+b=(a-=5b)+ (h+Dd).
that is,
™a) - ™b) =k +a) —(h+b)=a-=0b O

The next proposition relates translations to parallel tangent vectors.

Prop. 4.4. Let x, a, ¥’ and a’ belong to an affine space X. Then
(%) | | (+',a") if, and only if, for some & € X, ' = t*(x) and @’ = *(a).
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Proof < : The equations &" = 7*(x) and @’ = 1*(a) imply that
® —a =1x) =~ 1™a)=x~a.
= : Suppose that (x,a)|]|(+',@’), and let %z e X, be such that
2 =h+x.Thena ~a=x ~x=~h. Thatis,a’ =h + a. O

Finally, by Prop. 4.5, a translation of X may be regarded as a change
of origin.

Prop. 4.5. Let a and b belong to an affine space X and let 6, and
6, be the maps X — X,; ¥ w» x -~ a and x-w»> x = b, corresponding
to the choice of a or b, respectively, as 0 in X. Then 6,19, = 7%, [J

The image (7*),(4) of a subset A of an affine space X is said to be a
translate of A.

Affine maps

A map t: X — Y between affine spaces X and Y is said to be affine
if there exists a linear map ¢, : Xy — Y, such that, for all », a € X,

t(x) = t(a) = ty(x = a).
The map 2, if it exists, is unique—for all # € X, and any a € X,
ty(h) = t(a + h) = t(a)—and is called the linear part of the affine map ¢.
For example, if £: X —> Y is constant, ¢, =0andift: X — Xisa
translation of X, t, = 1x. Indeed, these conditions are necessary as well
as sufficient.

Prop. 4.6. Lett: X— Y and u: Y — Z be affine maps. Then ut
is affine and (uf)y == u,ty.
Proof Forallx, ackX,
ut(x) = ut(@) = uy(1(x) = 1a)} = upty(x = a),
and u,?, is linear, by Prop. 3.9. O
Prop. 4.7. Lett: X — Y be an affine bijection. Then ¢~ is affine,
and (£71)y = (24) %
Proof Forally, beY,
t(t(y) = ) = t1-4y) = 117B) =y = b
= ty(tx) (¥ = b).
Since 2, is injective, £=Y(y) = t=1(b) = (t4)~(y = d). O
An affine bijection is said to be an affine isomorphism.

Two affine structures on a set X are said to be equivalent if the set
identity map from either of the affine spaces to the other is an affine
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isomorphism. In particular, if (X,0) is an affine space with vector space
X, and if y: X, — Y is a linear isomorphism, then the affine space
(X,y8) with vector space Y is equivalent to the affine space (X,0). It is
often convenient to replace an affine space by an equivalent one in the
course of an argument. For example, when a point a of an affine space
X is chosen to be 0 it is common practice to replace X, tacitly by the
tangent space to X at a4, with which X also has been identified, y, in this
case, being the inverse of 6,.

Prop. 4.8. An affine map £: X — Y between linear spaces X and
Y is linear if, and only if, #(0) = 0.

Proof = : Prop. 3.6.
<= : Suppose #(0) = 0. Then for all x € X

(x) = t(x) < 10) = ty(x = 0) = f4(x). DI

Cor. 4.9. Lett: X —> Y be a map between affine spaces X and Y.
Then ¢ is affine if, and only if, for some choice of 0 in X and with
$(0) =0 in Y, ¢t is linear, O

Since, for all x € X, #(x) = #(0) + #4(x), any affinemap t: X — YV
between linear spaces X and Y may be regarded either as the sum of a
constant map and a linear map or as the composite of a linear map and
a translation. Conversely, by Prop. 4.6, any such map is affine.

For example, any map of the form

R?— R%: (x,y)w»> (ax + by + ¢, a’x + by + ¢')
is affine, a, b, ¢, @', b’ and ¢’ being real numbers. This map may
be regarded either as the sum of the linear map R? — R2; (x,y) w»>
(ax + by, a’x 4 b'y) and the constant map R? — R2; (x,y) w» (¢,¢’), or
as the composite of the same linear map

R2— R2: (x,9) wo (x,y") = (ax + by ,a’'x + b'y)
and the translation
R2— R2: (x',9")wo> (&' + ¢,y + ') = (&) + (e,c).

Affine subspaces

A subset W of an affine space X is said to be an affine subspace of X
if there is a linear subspace W, of the vector space X, and an affine
structure for W with vector space W such that the inclusion W— X
is affine. Such an affine structure, if it exists, is unique—for any w,
¢ € W, the vector w ~ c¢ is the same, whether with respect to the affine
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structure for W or with respect to the affine structure for X—and the
subspace W is tacitly assigned this structure. (Cf. Exercise 4.22.)

W Wa

Prop. 4.10. A subset W of an affine space X is an affine subspace
of X if, and only if, for some choice of a point of Was 0in X, Wis a
linear subspace of X. O

Prop. 4.11. Let £: X — Y be an affine map between affine spaces
X and Y. Then im £ is an affine subspace of ¥ and each non-null fibre
of ¢ is an affine subspace of X. O

Intuitively the affine subspaces of R? consist of all the points of R2,
all the lines of R? and the plane R? itself, while, similarly, the affine
subspaces of R? consist of the points, the lines and the planes of R®
and the space R3 itself.

Affine subspaces of a linear space

The following proposition characterizes the affine subspaces of a
linear space.

Prop. 4.12. A subset W of a linear space X is an affine subspace of
X if, and only if, it is a translate of a linear subspace of X. O

The set of translates of a linear subspace W of a linear space X is
denoted by X/W, and called the lnear quotient of X by W.

For example, let X = R2 and let W = R X {0}, the ‘vertical axis’ in
the figure below.

The elements of the linear quotient X/W are then the lines parallel
to Win X. Note that each point of X lies on exactly one of the elements
of the quotient. That this is true in the general case is proved in the
next proposition.
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w=R x {0} (. (w)
x'=(x+w)
x= ("'o' x‘)
w
0 {0} xR
Xx=R?

Prop. 4.13. Let W be a linear subspace of the linear space X. Then
the map

w: X— X/W;, x> (1%)(W)
is a partition of X.

Proof Each element of X/W is a non-null subset of X. Also, for
any x, &’ € X,
®e(@)(W) <« forsomeweW, s =x +w
< (@) W) = @)W).
That is, = is a partition of X, by Prop. 1.9. O

Prop. 4.14. Lett: X-— Y be a linear map, X and Y being linear
spaces. Then each translate of ker ¢ in X is a fibre of ¢, and conversely
each non-null fibre of ¢ is a translate of ker £in X. M

In practical terms this states that if x = a is any particular solution
of the linear equation #(x) = b, where b € Y, then every solution of the
equation is of the form x = a 4 w, where ¥ = w is a solution of the
equation #(x) = 0. Conversely, for any w e ker ¢, x = a 4 w is a solu-
tion of the equation.

Further discussion of linear quotients, and in particular the possibility
of assigning a linear structure to a linear quotient, is deferred until the
next chapter.
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Lines in an affine space

The next proposition is concerned with the description of the line
through two distinct points @ and b of an affine space in terms of the
affine structure. This leads on to an alternative definition of affine maps
and affine subspaces (valid for any field K of characteristic other than 2).

Prop. 4.15. Let X be an affine space. Then, for any a, b € X and
any A, u € Ksuchthat 1 + p =1,

a+AMb--a)=b+ ua = b)

Proof With the point a set equal to 0 the equation reduces to
Ab = (1 — ub. O

When A + u = 1 we define pa + 1b to be either side of the above
equation, the subset {ua + Ab: 1 + p = 1} being called the /ine through

a and b, whenever @ and b are distinct,

Prop. 4.16. A map t: X — Y between affine spaces X and Y is
affine if, and only if, for all @, 6 € X and all 4, u e Ksuchthat 1 4 u
=1,

t(ua + Ab) = ut(a) + At(b).

Proof = : Choose 0 in X and set #(0) = 0 in Y. The map ¢ is then
linear and the equation follows.

< : Again choose 0 in X and set #(0) = 0 in Y. Then, with a =0,
HAb) = At(b), for all be X and all AeK. Also with 1 = u =} we
find that #(}a + 3b) = 3t(a) + 3£(). Together with what we have just
proved, this implies that t(a + b) = #(a) -+ #(b), for all a,b € X. So ¢t

is linear and therefore affine. |

Prop. 4.17. A subset W of an affine space X is an affine subspace
of X if, and only if, for alle, b € Wand all 4, u e Ksuch that1 4+ y = 1,
pa + AbeW. O

Convexity

Until now the only restriction on the field K that we have had to
make has been that it be of characteristic not equal to 2. In this section
it is supposed that K also is ordered—so K may be R, but not C.

Let X be an affine space over such a field and let @, b € X. The subset

[ab] = {(1 — A)a + 2b: 4 €[0,1]}
of the line through a and b is called the line-segment joining a to b.
When a = b, [a,b] = {a}. A subset A of X is said to be convex if, for
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all a, b € 4, [a,b] is a subset of 4. For example, any affine subspace of X
is convex. On the other hand, in the figure which follows, the subset 4

of the affine space X is not convex.

[a.6]

Prop. 4.18. Let?: X — Y be an affine map and let 4 be a convex
subset of X. Then #,(4) is a convex subset of Y.

Proof It has to be proved that, for any a, b€ 4 and 1 €]0,1],
(1 — )t(a) + At(b) € t,(A4). For any such a, bseta =0 in X, #(a) =0
in Y. What then has to be shown is that, for any 4 € [0,1], 2#(d) € ¢,(4);
but A¢(b) = #(Ad), since ¢ is now linear, and Ab € 4 for any such 4, by
hypothesis, and this proves the statement. O

Prop. 4.19. Let?: X — Y be an affine map and let B be a convex
subset of Y. Then #!(B) is a convex subset of X. O

Further examples of convex sets will be given later, for example in
Chapter 15, where it is remarked that any ball in a normed affine space
is convex.

Affine products

The product X X Y of two affine spaces X and Y has a natural
affine structure, with vector space X, X Y,, defined by the formula

(#y) = (@) = (" ==,y =)
for all (x,y), («,y") € X X Y. The various axioms are verified at once.
If X, Y and W are affine spaces, a map (t,u): W— X X Y is affine
if, and only if, ¢ and u are affine. In particular, the projection maps
p and ¢, where (p,9) = lxxy, are affine.
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Comment

There are many points of view on affine spaces in the literature. To
some the term affine space is just another name for a linear space, used
when considering properties of the linear space invariant under the
group of translations. For example, any translate of a convex set is
convex, and therefore in discussions involving convexity such a trans-
lation may be made at any time without affecting the argument essen-
tially. We feel that it is simpler to have the origin out of the way at the
start of such a discussion. This has the advantage that at the appropriate
stage the origin can be chosen (not shifted) in such a way as to make the
subsequent algebra as simple as possible. This is the procedure we
adopt in Chapter 18.

An alternative satisfactory definition of affine space axiomatizes the
linear space of translations. This has the disadvantage of putting over-
much emphasis on the translations. A vector on an affine space is of
course frequently thought of as a translation, but not always.

FUuRTHER EXERCISES

4.20. Justify the use of the word ‘equivalent’ in the term ‘equivalent
tangent vectors’. )

4.21. Express the definition of an affine map by means of a commuta-
tive diagram. O

4.22. Let X be an affine space with vector space X, let W be a subset
of X, let W, be a linear subspace of X, and let there be an affine struc-
ture for W with vector space Wy, such that the inclusion j: W— X is
affine. Prove that j, is the inclusion of W, in X,. O

4.23. Let X be a set, let V be a linear space, and for each 2 € V' let
there be a map 7*: X — X such that, for all b, ke V,

=1y, ¥ =q1k* and " =1* < h =k

Show that there exists a unique affine structure for X with vector space
V and translations {z*: h e V}. O

424, Let X be an affine space over a field K with vector space X, K*
denoting the group of non-zero elements of K. Show that the set
(K* x X) U X, has a linear structure with respect to which X, is a
linear subspace and {1} x X is an affine subspace parallel to X,. |
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4.25. Let A and B be subsets of an affine spacc X with vector space
X, and let

A-B=1{a-beX,:acd beB}
Prove that, if 4 and B are affine subspaces of X, 4 -~ B is an affine

subspace of X, and is a linear subspace of X, if, and only if, 4 and B
intersect, O

4.26. Let 4 be a subset of the real affine space X. The intersection of
all the convex subsets of X containing 4 as a subset is called the
convex hull of A in X. Prove that the convex hull of 4 is convex. O

4.27. A line in R? is said to pass between two subsets 4 and B of R?
if it intersects neither set but intersects the line segment [a,b] joining
any a € A to any b € B. A triangle in R? is the convex hull of a set of
three distinct non-collinear points of R2.

Prove that a line can be drawn between any two disjoint triangles in
R?, O



CHAPTER 5

QUOTIENT STRUCTURES

Topics discussed in this chapter include linear quotients, quotient
groups, quotient rings and exact sequences. Group actions and orbits
are defined at the end of the chapter.

Professor S. MacLane [39] traces exact sequences back to a paper by
W. Hurewicz in 1940. The arrow notation for a map developed about
the same time.

Linear quotients

Linear quotients were briefly introduced in Chapter 4. In practice
they often occur in the following way.

Suppose that £: X — Y is a linear map constant on a linear subspace
W of X. Then ¢ must be constant on each of the affine subspaces of X
parallel to W; for since #(0) = 0 and since 0 € W, #(w) = 0 for each
w € W and therefore, for any x € X and anyw e W, t(x + w) = t(x);
that is, ¢ has the value #(x) at every point of the parallel to W through «.

It follows from this that £ has the decomposition’ X — X/ W Y,
where X /W is the set of translates of W in X and # is the partition
defined in Prop. 4.13, the map #’ being uniquely defined by the require-
ment that #'z(x) = #(x) for all x € X. If there is a linear structure for
X /W such that the surjection 7 is linear, then by Prop. 3.10 the map
t' also will be linear. What we shall now prove is that such a linear
structure does exist and that it is unique.

To define a linear structure, the operations of addition and scalar
multiplication have first to be defined and then the axioms for a linear
structure have to be checked. This checking is usually straightforward—
the main interest lies in the definition. '

Theorem 5.1. Let W be a linear subspace of a linear space X. Then
there is a unique linear structure for X/W such that the partition
n: X— X/W; xw> (v%)(W) is linear, with ker z = W.

Proof Suppose first that such a structure exists. Then it must be
unique, for the linearity of z provides formulae both for addition and for
TG—D 85
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scalar multiplication, namely, for any n(x) and =(x") € X/W and for any
i€k,

(%) + n(x') = a(x + &') and An(x) = n(dx).

w
X \

(o} '

X+x
; \ l
X

7 (x) w(x") 7 (x+x")
=r(x) +w(x’)

To prove the existence of such a structure, it has first to be checked
that these formulae define n(x) + #(x") and An(x) independently of the
choice of x to represent n(x) and »’ to represent n(x"). However, by the
commutativity of addition,

x+w) -+ +2)=(x+ =)+ (w+ ),
for any w, w’ € W.
So, for any x + w € n(x) and any x' + @’ € ('),
al(x + w) + (& + W) = afx + )
and a(Ax + w)) = n(Ax + Aw) = n(Ax).

It remains to verify that the addition and scalar multiplication so
defined satisfy all the axioms. As we have already remarked, this is a
routine check. The origin in X/W is a(0) = W since, for any #(x) €
X/W,

7(x) + 7(0) = n(x + 0) = n(x),
while the additive inverse of any n(x) € X/W is n(—x), since
7(x) 4 n(—x) = a(x — x) = =(0).
The verification of the remaining axioms is left to the reader. (|

The linear quotient X/W of a linear space X by a linear subspace W
is tacitly assigned this linear structure.

Cor. 5.2. Every linear subspace W of a linear space X is the kernel
of some linear surjection 2: X — Y. ]
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By Prop. 4.14 the coimage of any linear map ¢#: X — Y is a linear
quotient of X, namely X/ker t. A second linear quotient, associated to
the map ¢, to which it is also convenient to give a name, is its cokernel,
cokert = Y/im¢.

Quotient groups

The preceding discussion can be regarded as an analysis of the
structure of a linear surjection. Such a surjection ¢: X~ Y has a

canonical decomposition X X /ker t l Y, with X /ker t = coim ¢,
tpar being a linear partition of X.

Surjective group maps can be similarly analysed. Although only one
operation, the group product, is involved rather than two, the failure of
commutativity highlights some of the details of the argument in the
linear case.

We begin by defining the analogues, for a group G, of the translates in
a linear space X of a linear subspace W of X.

Let G be a group and F a subgroup of G. Then, for any g € G the sets

gF = {gf:feF}
and Fg = {fg:feF}
are called, respectively, the left and right cosets of F in G, the sets of left
and right cosets of F in G being denoted respectively by (G/F);, and
(G/F.

For example, let G be the group of permutations of the set {0,1,2}
and let a denote the transposition of 0 and 1 and b the transposition of 1
and 2. Then the elements of the group are 1), a, b, ab, ba and aba =
bab. The left cosets of the subgroup {l(g,a} are {l(g),a}, {b,ba} and
{ab,aba}, while the right cosets are {l(g),a}, {b,ab} and {ba,aba}. It
follows from this example that a left coset is not necessarily a right coset,
and vice versa.

Prop. 5.3. Let G be a group and F a subgroup of G. Then the maps
G—(G/F), g~w»>gF
and G — (G/F)y g~ Fg
are partitions of G. O
Prop. 5.4. Let?: G— H be a surjective group map, G and H being

groups. Then each fibre of ¢ is both a left and a right coset of ker ¢ in G.
Conversely, each left or right coset of ker ¢ in G is a fibre of 2.
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Proof Forallg, g'eG
g') = Ug) = (He)"'Hg") =1 = tg')(t(g))™*
= #g7g) =1=1gg™)
= glg' g'g-1ckert
= g egF and g elg
where F = ker ¢, and conversely, if g’ e gF or Fg, then ¥(g') = #(g).
So, for all g € G,
ti(g)} =gF =Fg. O
A subgroup F of G such that each left coset of F is also a right coset
of Fin G is said to be a normal subgroup of G. The set of cosets in G of a
normal subgroup F is denoted simply by G/F.
The analogue of Theorem 5.1 is now the following.

Theorem 5.5. Let F be a normal subgroup of a group G. Then
there is a unique group structure for G/F such that the partition
n: G— G/F; g~ gF is a group map, with ker # = F.

Proof The first part of the proof is as before. If such a structure
exists it must be unique, for the requirement that & be a group map
provides a formula for the group multiplication, namely, for any 7(g) and
n(g') e G/F,

(&) n(g) = (gg’)-

The next part is slightly trickier, because of the absence of com-
mutativity. To prove existence it has to be checked that the formula
defines 7(g) (g’) independently of the choice of g to represent n(g) and
g’ to represent n(g’). However, for any f, f' € F,

(efXef") = s(fe)f’

and since Fg’' = g'F there exists an element f'’ € Fsuch that fg' = g'f”

so that
&NES) = (& Xf7F)
That is, for any gf € n(g) and any g'’f’ € a(g’),
(g Ng ') = n(gg).
Finally, there is the routine check that the axioms for a group structure
are satisfied, that # is a group map, and in particular that ker # = F is
the neutral element for the group structure. O

’

Cor. 5.6. A subgroup F of a group G is the kernel of some group
surjection ¢ : G — H if, and only if, F'is a normal subgroup of G. O

"The group quotient G/F, where F is normal in G, is tacitly assigned
the group structure defined in Theorem 5.5 and is then called the
quotient group of G with kernel F.
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One point to watch in the case of normal subgroups is that the con-

cept is not transitive. One can have groups F, G and H such that Fis a
normal subgroup of G and G is a normal subgroup of H, but F is not
a normal subgroup of H. (Cf. Exercise 5.35.)
- Non-normal subgroups are not unimportant in practice. As we shall
see later, for example in Chapter 12 and in Chapter 17, many spaces of
interest are representable as the set of left cosets (G/F), of a not
necessarily normal subgroup F of some larger group G. In these later
applications we shall abbreviate notations, writing simply G/F in place
of (G/F),,.

Ideals

Surjective ring maps can be subjected to a similar analysis.

Let z: A — B be a surjective ring map and let C = ker ¢. Then C'is
a subring of 4. Moreover, for any a € 4 and any ¢ € C,

t(ca) = t(c) t(a) =0

and t(ac) = t(a) t(c) = 0,
since #(c) == 0.

Therefore CA < C and AC < C. A subring C of A with this
property is said to be a two-sided ideal of A.

Prop. 5.7. Let A4 be a ring and C a two-sided ideal of 4. Then the
(additive) abelian group 4/C has a unique ring structure such that the
natural projection n: A — A/C is a ring map.

Proof For any a, a’ € A we must have
({a} + C){a} + C) = ({aa} + ©),
and this is legitimate, since for any ¢, ¢’ € C,
(a+c)@ +¢)=aa + ",

where ¢’ = ca’ + ac’ 4+ ¢’ €C.
The remaining details are readily checked. O

Two-sided ideals of an algebra are similarly defined, but with the
additional condition that the ideal be a linear subspace of the algebra.

One-sided ideals of an algebra have been introduced already, at the end
of Chapter 3.

Exact sequences

Let s and ¢ be linear maps such that the target of s is also the source of
t. Such a pair of maps is said to be exact if im s = ker 2. Note that this is
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stronger than the assertion that s = 0, which is equivalent to the con-
dition im s < ker ¢ only. A possibly doubly infinite sequence of linear
maps such that the target of each map coincides with the source of its
successor is said to be exact if each pair of adjacent maps is exact.

Suppose, for example, that s is the map R — R?; y w» (0,%) and that
t is the map R?— R; (x,5) w»> x.

ims= kert

(0,0)

o

o
Then the sequence of linear maps

{0} > R>R*5>R—> {0}
is exact. Here, as in the following propositions, {0} denotes the linear
space whose sole element is 0. For any linear space X, the linear maps

{0} - X and X — {0} are uniquely defined and it is not usually
necessary to name them.

Prop. 5.8. The sequence of linear maps
OB —-wS>X
is exact if, and only if, s is injective.

Proof The sequence is exact if, and only if, ker s = {0}; but, by
Prop. 3.18, ker s = {0} if, and only if, s is injective. O

Prop. 5.9. The sequence of linear maps
X5 V- {0}
is exact if, and only if, ¢ is surjective.

Proof The sequence is exact if, and only if, im ¢ = Y; but this is
just the assertion that ¢ is surjective. O

Cor. 5.10. The sequence of linear maps
{0} —> X -> Y — {0}
is exact if, and only if, ¢ is an isomorphism. O
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Prop. 5.11. Let X and Y be linear spaces, let
i=(Ix0): X—>XxY, j=0ly): Y—=>X XY
and let (p,9) = 1x  y. Then the sequences
O>XS5>XXxYSY— {0}
and O—>Y5Xx V75X {0
are exact, with p7 = 1x and ¢j = 1r. O
Prop. 5.12. Let X and Y be linear subspaces of a linear space V.
Then the sequence
O—>XnYSXXYS>X+Y— {0},
where, for all we X N Y, s(w) = (w,—w) and, for all (x,y) e X X Y,
Hx,y) = x + y, is exact. O
Prop. 5.13. Let W be a linear subspace of a linear space X. Then
the sequence of linear maps
0} — w5 X5 X/W—> (0},
where 7 is the inclusion and z the partition, is exact.

Proof The sequence is exact at W, since 7 is injective, exact at X,
since im ¢ = W = ker =, and exact at X/ W, since 7 is surjective. O

An exact sequence of linear maps of the form
0} —> WS> X5 Y — (0}
is said to be a short exact sequence.
Prop. 5.14. Let {0}—> W > X =Y — {0} be a short exact
sequence. The diagram of maps
OM—>w Sx57 —{0

{0} > ims 3 X % coim £ — {0}
is commutative (cf. page 10). The vertical maps are isomorphisms, and

the lower sequence is an exact sequence of the type discussed in Prop.
5.13, with coim ¢ = X/im s, O

In practice one often takes advantage of this proposition and regards
any short exact sequence as being essentially one involving a subspace
and a quotient space. Given the short exact sequence

{0} > W—>X—Y— {0},
one thinks of W as a subspace of X and of Y as the quotient space X/W.



92 QUOTIENT STRUCTURES
Diagram-chasing

The following proposition is a slight generalization of the remarks
with which we opened this chapter, and it may, in fact, be proved as a
corollary to Prop. 5.14. Instead, we give a direct proof, as the argument
is typical of many arguments involving exact sequences. The proposition
will be useful in Chapter 19.

Prop. 5.15. Let¢: X — Y be a K-linear surjection, let W = ker ¢,
and let 8 : X — K be a linear map whose restriction to W is zero. Then
there exists a unique linear map y : ¥ — K such that § = yt.

Proof During the proof we ‘chase around’ the diagram of linear
maps
O} —= W X ——V— {0}
/"
P
K

0

where 7 is the inclusion map, the row is exact and i = 0.

Since t is surjective, any element of Y is of the form #(x) where
x € X. Also, for any x, € X, #(x,) = #(x) if, and only if, #(x; — x) = 0,
that is if, and only if, #, — x € W. From the first of these remarks it
follows that if there is a map y such that 8 = y¢, then, for all t{(x) € Y,
yt(x) = B(x), that is, y is unique. The existence of such a map then
follows from the second remark, since x, —x e W = f(x, —x) =0
= f(») = B(x), implying that if t(xl) = t(x), then f(x,) = (x)

Finally, by Prop. 3.10, ¥ is linear, since ¢ is surjective and since ¢ and
p are linear. O

The dual of an exact sequence

Prop. 5.16. Let {0} — W-3> X % Y — {0} be an exact sequence
of linear maps. Then the dual sequence

X’ &£
0 > v¢5 x2 5 we s (0

is exact at Y and at X¥. In particular, the dual of a linear surjection
is a linear injection.

(We shall prove in Chapter 6 that when the linear spaces involved are
finite-dimensional, the dual of a linear injection is a linear surjection,
implying that the dual sequence is exact also at W¥.)
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Proof Exactness at Y<:

X——th
/-
K
What has to be proved is that #¥ is injective, or equivalently that if, for
any y € Y¥, yt = t%(y) = 0, then y = 0, the map ¢ being surjective.
This is just Prop. 3.8.
Exactness at X< there are two things to be proved. First, im ¥ <

ker s%, for s¥t¥ = (t5)¢ = 0¥ = 0. Secondly, kers? < im#¥, by
Prop. 5.15. So ker s¥ = im %, O

More diagram-chasing

Proposition 5.15 is a special case of the following proposition, also
proved by diagram-chasing.

Prop. 5.17. Let
0} — WS> X5 Y {0}
o B :v
0y — NS G TIN {0}
be a diagram of linear maps such that the rows are exact and fs = s«
that is, the square formed by these maps is commutative. Then there

exists a unique linear map y: Y — Y’ such that yt = #'8, and if « and
B are isomorphisms, then y also is an isomorphism.

Proof—Uniqueness of y Suppose y exists. By hypothesis y#(x) =
t'f(x), for all x € X. Since for each y € Y there exists x in #'{y},
y(y) = t'B(x) for any such x; that is, y is uniquely determined.

Existenceof y Lety € Yand letx, x, e #'{y}. Thenx;, — x €kert =
im s and so x; = x + s(w), for some w € W. Then
v'f(x) = t'(x + s(w)) = £'B(x) + ¢'Bs(w)
= t'B(x) + t's’a(w)
= t'f(x), since t's’ = 0.

The prescription p(y) = t'f(x), for any x in #!{y}, does therefore
determine a map y: Y — Y such that y¢ = #'8. Since #'8 is linear and
t is a linear surjection, y is linear, by Prop. 3.10.

Now suppose « and f are isomorphisms and let 5: Y’ — Y be the
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unique linear map such that 5’ = ¢#-2. Then applying the uniqueness
part of the proposition to the diagram

0> WS X5 Y {0}
1y 1y ny
0} > WHX5>Y— {0},

yields ny = 1y. Similarly yn = 1y-. That is, # =y~ and so y is an
isomorphism. 0 '

Extensive practice in diagram-chasing is provided by the following
extension of Prop. 5.17:

Prop. 5.18. The commutative diagram of Prop. 5.17 extends to the
diagram of linear maps

0 {0

{0} — Ker o —> W > W' —> coker « — {0}

{0} —~ ke;ﬂ x5 x coker g — {0}

b

{0} — ke;‘y —>Y — Y’ —> coker y —> {0}

{0} {0} {0}

with exact rows and columns and commutative squares, the map from
ker f# to ker y being surjective if, and only if, the map from coker o to
coker f} is injective. O

An instructive example is the case in which X = ¥ = W' = X', with
f=1x and W = Y’ = {0}. The development of the theory of exact
sequences is known as homological algebra (cf. [39]).

There are clearly many special cases of Prop. 5.18. For example, if
« is an isomorphism then ker « and coker o are both zero. Since coker «
is zero, coker f and coker y are isomorphic. But also, since the map from
coker « to coker f#is then trivially injective, it follows that the map from
ker B toker yis not only injective (since ker « is zero) but also surjective.
So ker 8 and ker y also are isomorphic. If also f is injective, then so is y.

Suppose in particular that W—~2»X and X—2»X" are linear inclusions
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and that W’ = W, with « = 1;;. Then the diagram of Prop. 5.18

becomes:
{0} {0}

o — W o o w_

ine inc
0 — X & X', X'/X—{0}
par par =

{0} —> X/ W —>X'|W —> X'/ X —> {0}

|

0} {0} 0}

An example of this occurs in Chapter 9 (page 163), with W* and X
in place of X and X'.

Sections of a linear surjection

Prop. 5.19. Lett : Y —> X be a not necessarily linear section of a
surjective linear map £: X — Y and let s: W — X be an injective map
with image ker 2. Then the map

(s ): WX Y—>X; (wy)wsw)+t'(y)
is bijective.

Proof Let x € X. Then x = (x — t't(x)) + t't(x), and #(x — t't(x))
=0, since #t' = ly. That is, x = s(w) -+ #'(y) where w = x — t'#(x)
and y = #(x). So (s t’) is surjective.

Suppose next that, for any w, w' e W, y,y' € Y,

s(w) + £'(y) = s(@) + ().
Then, since ¢ is linear, since ts = 0, and since #’ = ly, y = y'. So
s(w) = s(w’) and, since s is injective, w == w’. That is, (s ¢') is injective.
So (s ¢') is bijective. O
Cor. 5.20. If, in addition, s and ¢’ are linear, then (s ¢') is a linear

isomorphism and there is a unique linear surjection s’ : X — W such
that (s #) = (s ¢')~. Moreover, im ¢’ = ker s’ and §'s = 1. a

A short exact sequence of linear maps
{0} > W-> X Y— {0}

with a prescribed linear section ¢’ : Y—> X of ¢ is said to be a split exact
sequence, the map ¢’ being the sphitting of the sequence.
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Prop. 5.21. Let u, u' be linear sections of a surjective linear map
t: X— Y. Thenim (u' — u) < ker ¢.

Proof ForallyeV, t(u' — u)(y) = tw'(y) — tu(y) = 0. |

We shall denote by #" = u the map u’ — u with target restricted to
ker ¢.

Prop. 5.22. Let U denote the set of linear sections of a surjective
linear map ¢: X — Y with kernel W. Then, provided that U is non-
null, the map

0:Ux U—>Z(Y,W); @Wu)w>ru =u
is an affine structure for U, with linear part Z(Y,W).

Proof

(1) For all , W’ eUand al veL(Y W), v=u' ~u < jo=
¥ —u < u =u-+jo, where j: W— X is the inclusion.
That is, the map U — Z(Y,W); «' -w» u’ = u is bijective.

(ii) Forallue U, u = u = 0, since u — u = 0.

(iii) For all u, o', " e U, (' — u') + (' — u) = (" — u), since
W —v)+ @ —u)y=u"— u O

Cor.5.23. Thesetof linear sections of alinear partitionz : X — X/ W
has a natural affine structure with linear part £(X/W, W), provided
that the set of linear sections is non-null. O

The study of linear sections is continued in Chapter 8.

Analogues for group maps

The definition of an exact sequence goes over without change to
sequences of group maps as do several, but by no means all, of the
propositions listed for linear exact sequences. The reader should check
through each carefully to find out which remain valid.

In work with multiplicative groups the symbol {1} is usually used in
place of {0} to denote the one-element group.

Certain results on surjective group maps even extend to left (or right)
coset partitions. In particular the following extension of the concept of
a short exact sequence is convenient.

Let F and G be groups. Let H be a set and let

F5>G5H
be a pair of maps such that s is a group injection and ¢ is a surjection
whose fibres are the left cosets of the image of F in G. The pair will then
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be said to be left-coset exact, and the bijection #,: G/F — H will be
said to be a (left) coset space representation of the set H. Numerous ex-
amples are given in Chapter 11 (Theorem 11.55) and in Chapter 12.

The following are analogues for left-coset exact pairs of maps of part
of Prop. 5.18 and of Prop. 5.19 and Cor. 5.20 respectively.

Prop. 5.24. Let F, G, F' and G’ be groups, let H, H', M and N be
sets and let

FLsG > H

Ll
j SN N - [
o)
M N

be a commutative diagram of maps whose rows and columns are left-
coset exact. Then if there is a (necessarily unique) bijection u: M — N
such that uu = »s’, there is a unique bijection y : H — H’ such that
yt = t'p. If, moreover, H and H' are groups and if ¢ and ¢’ are group
maps, then y is a group isomorphism. O

Prop. 5.25. Let F and G be groups, let H be a set, let F' 5G5S H
be a left-coset exact pair of maps and let ¢’ : H— G be a section of ¢.
Then the map F X H— G; (f,h) w> t'(k) s(f) is bijective.

Moreover, if H is a group, if ¢ and ¢’ are group maps and if each
element of im ¢’ commutes with every element of im s, then the bijection
F x H— G is a group isomorphism. O

A short exact sequence of group maps
{1} > F5> G5 H— {1}
with a prescribed group section ¢’ : H— G of ¢ satisfying the condition
of the last paragraph of Prop. 5.25 is said to be a split exact sequence, the
map ¢’ being the splitting of the sequence.

For examples of Prop. 5.24 and Prop. 5.25, see Exercises 9.38, 9.39,
11.63 and 11.65.

Group actions

Let G be a group and X a set. Then amap GX X — X; g wo> g is
said to be a (left) action of G on X if, for all x € X, and g, g’ € G,

(g8) x =g'(gx) with lgx = x.
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For any a € X the subset G, = {g € G: ga = a} is then a subgroup of G
called the isotropy subgroup of (the action of) G at a or the stabiliser of a in
G. It is easy to verify that the relation ~ on X defined by
x ~ &' < for some g€ G, &' = gx
is an equivalence. Each equivalence set is said to be an orbit of the action.
If there is only a single orbit, namely the whole of X, then the action of
G on X is said to be transitive. In this case, for any a € X, the sequence
G, G225 X
& > ga
is left-coset exact. Moreover, for any a, b € X there is an element k€ G
such that b = ha and if g € G, then hgh~' € G}, the map G,—> G,;
g v hgh™! being a group isomorphism. We then speak loosely of the
isomorphism type of G, as the isotropy subgroup of the action.
Similar remarks apply to group actions on the right. Consider, in
particular, the case of a subgroup G of a group G’ acting on G’ on the
right by the map G’ X G — G’; (g’, g) ~» g'g. In this case the set of
orbits of the action coincides with the set of left cosets of G in G, G'/G.
For this reason the set of orbits of a group G acting on a set X on the
right may without confusion be denoted by X/G.

FurtHER EXERCISES

5.26. Let X and Y be linear spaces and let #: X — Y be a linear map
such that, for each linear space Z and each linear map u: Y — Z,
ut =0 = u =0, Prove that ¢ is surjective. (Let Z = Y/im ¢, and
let u be the associated linear partition.) O
5.27. (The Four Lemma.) Let
W—sX-5>Y—>Z
l,, lb l ld
W—X-Y 27
be a commutative diagram of linear maps with exact rows, a being sur-
jective and d injective. Prove that ker ¢ = ¢ (ker 4) and that im b =
wi(im c). O
5.28. (The Five Lemma.) Let
Vo W-—>X—>Y—>2Z
poeo bl
ViesW X' —>Y —2Z
be a commutative diagram of linear maps with exact rows, a, b, d and e
being isomorphisms. Prove that ¢ is an isomorphism. !
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529. Let W—> X > Y -5 Z be an exact sequence of linear maps.
Find an isomorphism coker s — ker u. O

5.30. Let #: G— H be an injective group map. Prove that, for any
group F and group maps s, s': F— G, ts = ts’ if, and only if, s =",
Prove, conversely, that if 2: G — H is not injective, then there are a
group F and distinct group maps s, s’ : F'—> G such that s = #5’. O

5.31. Let t: G— H be a group map, with image H', leti: H' — H
be the inclusion, and let = : H— H'' be the partition of H to the set
of left cosets H"' = H/H' of H' in H. Let &' be a section of . Prove
that there exists a unique map ¢’ : H—> H’ such that, for all 2 € H,
#'(h)yn'n(k) = h and verify that,for all h e H, b’ e H', {'(h'h) = h'i' (k).

Suppose that « is a permutation of H'’ whose only fixed point is H'.
Prove that the map f: & ww ii'(B)n’oan(h) is a permutation of H, and
verify that, for all 2 € H, hyf = phy, if, and only if, h € H'. (Cf. Prop.
2.4.) Show that the maps H—> H!; hw» hy, and h w> -1 8 are
group maps that agree for, and only for, 2 € H'. O

5.32. Prove that a group map ¢t: G — H is surjective if, and only if,
for all groups K and group maps u, ' : H— K, ut = u't if, and only if;
u=u.

(There are two cases, according as im ¢ is or is not a normal subgroup
of H. In the former case note that the partition n: H— H/im ¢ is a
group map. In the latter case apply Exercise 5.31, remembering to
establish the existence of « in this case.) O

5.33. Let F be a subgroup of a finite group G such that #G = 2(#F).
Prove that F is a normal subgroup of G. O

5.34. Let G be the group of order 8 defined in Exercise 2.78, when #
is taken to be equal to 4. Show that this group has four subgroups of
order 4, one isomorphic to Z, and two to Z, X Z,.

Find a subgroup H of G and a subgroup K of H such that H is
normal in G and K is normal in H but K is not normal in G. Hence
show that normality for subgroups is not transitive. (Cf. Theorem 7.9
and Theorem 7.11.) O

5.35. LetG x X — X; (g, x) »» gxbe aleft action of a group G on a
set X. Prove that the subset G, = {g € G: ga = a} is a subgroup of G
and that the relation ~ on X defined by x ~ x’ < for some ge G,
&' = gx is an equivalence on X. Prove also that if the action is transitive,
then, for any a € X, the sequence G, In¢ G 25 X is left-coset exact,
while, for any a, b € X with b = ha, where & € G, and for any g € G,
then hgh~! € G,, the map G,—> Gy; g~ hgh™! being a group iso-
morphism. |



CHAPTER 6

FINITE-DIMENSIONAL SPACES

A finite-dimensional linear space over a commutative field K is a linear
space over K that is isomorphic to K*, for some finite number ». For
example, any linear space isomorphic to R2 is finite-dimensional. Among
the many corollaries of the main theorem of the chapter, Theorem
6.12, is Corollary 6.13 which states that, for any finite m, n, the K-linear
spaces K™ and K* are isomorphic if, and only if, m = z. It is therefore
meaningful to say that a K-linear space isomorphic to K* has dimension
n or is n-dimensional, and, in particular, to say that a real linear space
isomorphic to R? is two-dimensional.

The theory of finite-dimensional linear spaces is in some ways simpler
than the theory of linear spaces in general. For example, if X and Y are
linear spaces each isomorphic to K*, then a linear map #: X — Y is
injective if, and only if, it is surjective (Cor. 6.33). Therefore, to prove
that ¢ is an isomorphism it is necessary only to verify that X and Y have
the same dimension and that ¢ is injective. Any finite-dimensional linear
space has the same dimension as its dual space and may be identified
with the dual of its dual (Exercise 6.44), this being the origin of the
term ‘dual’ space.

We begin with a discussion of linear dependence and independence.

Linear dependence

Let A be any subset of a K-linear space X, there being no assumption
that 4 is finite, nor even countable. A coefficient system for A is defined
to be a map 1: 4 — K; a »w» 4, such that the set (K \ {0}) is finite.
A point x € X is then said to depend (linearly) on A if, and only if, there
is a coefficient system A for 4 such that

x = 3 Aa.

acd
(Strictly speaking, the summation is over the set A'(K\{0}).) For
example, the origin 0 of X depends on each subset of X, including,
by convention, the null set. The point x € X is said to depend uniquely
on A is the coefficient system 2 is uniquely determined by x.
100
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The subset of X consisting of all those points of X dependent on a
particular subset 4 will be called the lnear image of A and be denoted
by K4, the subset 4 being said to span K4 (linearly). It is readily
proved that K4 is a linear subspace of X. If KA = X, that is, if
A spans X, then A4 is said to be a spanning subset of X.

For example, the set {(1,0,0), (1,1,0), (1,1,1)} spans R?, since, for any
(%,3,2) €R3,

(%,9,2) = (* — ¥)(1,0,0) + (¥ — 2)(1,1,0) + =(1,1,1).
On the other hand, the set {(2,1,3), (1,2,0), (1,1,1)} does not span R?,
since (0,0,1) does not depend on it.

A point x € X which is not linearly dependent on a subset 4 of X is
said to be linearly free or linearly independent of A. A subset 4 of a
linear space X is said to be Lnearly free or linearly independent in X, if,
for each a € 4, a is free of A\ {a}.

For example, the set {(1,0,0), (0,1,0)} is free in R3, since neither
element is a real multiple of the other. On the other hand, the set
{(1,0,0), (0,1,0), (1,2,0)} is not free in R3, since (1,2,0) = (1,0,0) 4+
2(0,1,0).

There are various details to be noted if error is to be avoided. For
example, there can be points 4, b in a linear space X such that a is free of
{0}, yet b depends on {a}. For example, (1,0,0) is free of {(0,0,0)} in
R3, but (0,0,0) depends on {(1,0,0)}.

Another common error, involving three points 4, b, ¢ of a linear space
X, is to suppose that if ¢ is free of {a}, and if ¢ is also free of {4}, then ¢
is free of {a,b}. That this is false is seen by setting a = (1,0), b = (0,1)
and ¢ = (1,1), all three points being elements of the linear space R=.

The null set is a free subset of every linear space.

Prop. 6.1. Let X be a linear space, let B be a subset of X, and let
A be a subset of B. Then
(i) if B is free in X, 4 is free in X
(ii) if 4 spans X, B spans X. O
The following propositions are useful in determining whether or not
a subset 4 of a linear space X is free in X.

Prop. 6.2. A subset 4 of a linear space X is free in X if, and only if,
for each coeflicient system A for 4,
Zila=0 => A=0.
aed
Proof = : Suppose that 4 is free in X and that 1 is not zero, say
Ay # 0, for some b € A. Then X A.a = 0; for otherwise

aed

==X I la),

acA\fb}
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that is, 4 is dependent on 4 \ {8}, and 4 is not free in X. The implica-
tion follows.
<= : Suppose that 4 is not free in X. Then there exists an element

be A and a coefficient system A for 4 such that b= 3 4,4 and
acd\{b}

2y = —1, that is, such that 3 1,4 =0, but 4520. The implication
acd
follows. O

In other words, a subset 4 of X is free in X if, and only if, 0 depends
uniquely on 4.

Prop. 6.3. A subset A4 of a linear space X is free in X if, and only if,
each element of K4 depends uniquely on A4.

Proof Let A befreein X and let 4, u: 4 — K be coefficient systems
for A such that ¥ A,a = ¥ w.a. Then (1 — y): A—> K is a system

acd acd

of coefficients for 4 and X (A — p)ua = X (A, —pg)a = 0. Therefore,
acAd acd

by Prop. 6.2, A — u = 0. That is, 2 = u.
Conversely, as we have just remarked, if 0 depends uniquely on 4,
then A4 is free in X. 0O

Exercise 6.4. Suppose that a, b and ¢ are three distinct elements of
a linear space X such that {a,b}, {b,c} and {c,a} are free subsets of X.
Is {a,b,c} necessarily a free subset of X?

Prop. 6.5. Let X be a K-linear space and let A4 be free in X. Then,
for any x € X free of 4, A U {x} is free in X. (To prevent any possible
confusion we remind the reader that {x} denotes the set whose sole
element is x.)

Proof Suppose that 4 U {x} is not free of X. Then there existsanon-
zero coefficient system 4: 4 U {x} — K such that ¥ A,a + 2,x = 0.
acd

Now 1, =0, for otherwise X 1,a =0 with 1| A4 520, contrary to the
acd

hypothesis that 4 is free in X. So x = —(4,)~%( X 2,4), and x depends
acd

on A.
The truth of the assertion follows. O

A free subset 4 of a linear space X is said to be maximal if there is no
x € X\ 4 such that 4 U {x} is free.

A spanning subset 4 of X is said to be minimal if there is no a € 4
such that 4\ {a} spans X.
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A subset 4 of X is said to be a basis for X if A is free and spans X,
that is, if each x € X depends uniquely on 4.

For example, the set {(1,0), (0,1)} is a basis for R? and the set
{(1,0,0), (0,1,0), (0,0,1)} is a basis for R3, these bases being the most
obvious bases to choose for R2 and R3. Similarly, for any field K and any
positive number 7, the set E = {¢;:j e n} is a basis for K", where for
each jen, ¢; = (e;;: i e n), with ¢;; = 0 for £ 525, and ¢;; = 1, for all
i € n. This basis is defined to be the standard basis for K».

In the sequel we shall mostly be concerned with linear spaces with a
finite basis.

Exercise 6.6. Leta,b, cand ¢’ € R3 be such that neither of the sets
{a,b,c}, {a,b,c’} is a basis for R3. Prove that {a,b,(c 4 ¢’)} is not a basis
for R3, O

The following proposition shows how a basis for a linear space X may
be used to construct linear maps with the linear space X as source.

Prop. 6.7. Let X and Y be linear spaces, let 4 be a basis for X and
let s: A — Y be any map. Then there is a unique linear map ¢ from X
to Y such that ¢ | 4 = s, namely the map

t: X—Y; 2 laws 3 As(a),
acd acd
where A denotes a coefficient system for 4. O

This is very clear in the case that X = K* and ¥ = K™, with 4 the
standard basis for K", For in this case any linear map ¢: X — Y is
uniquely determined by its matrix and, for each j € #, the jth column of
this matrix is the column matrix representing the image in Y of the jth
basis vector e; of the standard basis 4. This is worth emphasizing: the
columns of the matrix of a linear map t : K» — K™ are the images in K™ of
the vectors of the standard basis for K». If the columns are determined,
then so is the matrix, and so is the map.

An application of Prop. 6.7 is to the construction of sections of a
linear map.

Prop. 6.8, Let z: X — Y be a linear surjection and let there be a
basis B for Y. Then there exists a linear map ¢': ¥ — X such that
it =1y,

Proof Lets: B— X be a section of ¢ over B, that is, a map such
that (¢|B)s = 15. Then define #': Y — X to be the unique linear map
such that #'| B = s. This is a section of ¢. For let ¥ p,b be any element

beB

of YV; then t'( X wd) = 2 upts(b) = X pb. O
veB beB veB
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Prop. 6.9. Lett: X — Y be a linear map, let 4 be a free subset of
X and B a spanning subset of X. Then, if ¢ is injective, #,(4) is free in
Y and, if ¢ is surjective, ¢,(B) spans Y. O

Prop. 6.10. Let X and Y be linear spaces and let 4 be a basis for
X and B be a basis for Y. Then (4 x {0}) u ({0} x B) is a basis for
X xY. ]

Prop. 6.11. 'The following conditions on a subset A of a linear space
X are equivalent:
(a) A is a basis for X;
(b) A4 is a maximal free subset of X;
(c) A is a minimal spanning subset of X.

Proof (a) < (b): Let A be a basis for X. Then, for any x € X\ 4,
x depends on 4 and 4 U {x} is not free. That is, 4 is a maximal free
subset of X. Conversely, let 4 be a maximal free subset of X. Then 4
spans X, for otherwise, by Prop. 6.5, 4 U {x} is free, for any x free of 4.
That is, A is a basis for X.

(a) <> (c): Let 4 be a basis for X and let a € 4. Since A4 is free in X,
a is free of A\ {a} and so 4\ {a} does not span X. That is, 4 is a
minimal spanning subset of X. Conversely, let A be a minimal spanning
subset of X. Then, for all a € 4, ais free of A\ {a}. Thatis, 4 is a free
subset of X and so a basis for X. O

The basis theorem
The following theorem is the central theorem of the chapter.

Theorem 6.12. Let X be a linear space, let 4 be a free subset of X
and suppose that B is a finite subset of X spanning X. Then A is finite
and #A4 < #B. When #A4 = #B, both 4 and B are bases for X.

Proof For the first part it is sufficient to prove that #4 > #B
implies #A4 = #B. Suppose, therefore, that #A4 > #B. The idea is
to replace the elements of B one by one by elements of 4, ensuring at
each stage that one has a subset of 4 U B spanning X. One eventually
obtains a subset of 4 spanning X. This must be A itself, and so
#A = #B.

The details of the induction are as follows: Let P, be the proposition
that there exists a subset B, of 4 U B spanning X such that

(i) #B, = #B, (i) #(B, N A) > k.

P, is certainly true—take B, = B. It remains to prove that, for all
kG#B,Pk = Pk+1'
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Suppose therefore Py, let a;, 7 € k, be k distinct elements of B, N 4
and let g, be a further element of 4. If , € B, define B+, = B;. If not,
let B, = B, U {a;}. Since B, spans X, By spans X, but since it is not a
minimal spanning subset it is not free in X. Therefore, if the elements of
B, are ordered, beginning with those in 4, there exists some element
by, say, linearly dependent on those preceding it, for otherwise B is
free, by Prop. 6.5. Since any subset of A4 is free, b, ¢ 4. Now define
By = B\ {b:}. In either case, By, spans X, #B;.; = #B and
#(Biey N A) > k + 1. That is, Py s,

So P,, where n = #B. That is, there is a subset B, of 4 UB
spanning X, such that #B, = n and #(B, N 4) > n. It follows that
B, < A. Since A is free, no subset of 4 spans X other than A4 itself. So
B, = A, A is a basis for X and #4 = #B.

Since, by what has just been proved, no spanning subset of X has
fewer than 7 elements, B is a minimal spanning subset of X and so is a
basis for X also.

This concludes the proof of the theorem. O

Cor. 6.13. Let X be a K-linear space isomorphic to K" for some
finite number #. Then any basis for X has exactly » members.

Proof Let t: K"— X be an isomorphism, let E be the standard
basis for K”, let A = t,(E) and let B be any basis for X. Since ¢ is
injective, #A4 = n. By Prop. 6.9, A4 is a basis for X and therefore spans
X, while B is free in X. Therefore, by Theorem 6.12, #B < #A,
implying that B also is finite. It then follows, by the same argument, that
#A < #B. That is, #B = #A = n. O

In particular, K™ is isomorphic to K" if, and only if, m = n.

A finite-dimensional K-linear space X that is isomorphic to K» is
said to be of dimension n over K, dimg X = n, the subscript K being
frequently omitted.

Prop. 6.14. Let X be a finite-dimensional complex linear space.
Then
dimg X = 2 dim¢ X,
dimg X being the dimension of X regarded as a real linear space. O

A one-dimensional linear subspace of a linear space X is called a line
through O or a linear line in X and a two-dimensional linear subspace of
X is called a plane through O or a linear plane in X.

An affine space X is said to have finite dimension # if its vector space
X, is of finite dimension 7. A one-dimensional affine space is called an
affine line and a two-dimensional affine space an affine plane.
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An affine or linear subspace of dimension k of an affine or linear space
X of dimension # is said to have codimension n — k in X, an affine or
linear subspace of codimension 1 being called, respectively, an affine or
Iinear hyperplane of X.

The following proposition gives the dimensions of some linear spaces
constructed from linear spaces of known dimension.

Prop. 6.15. Let X be an n-dimensional linear space and let Y be
a p-dimensional linear space, # and p being any finite numbers. Then

dim(X X Y)=n+p and dimZ(X,Y) = np.
In particular, dim X¥ = dim X.
These results follow from Props. 6.10, 6.7, and Cor. 6.13. |

When we are dealing only with finite-dimensional linear spaces, we
frequently write L(X,Y) in place of £(X,Y) for the linear space of
linear maps of the linear space X to the linear space Y, and we fre-
quently write X* in place of X for the linear dual of the linear space X.
The reason for this is that in Chapter 15 a distinction has to be made
between linear maps X —> Y that are continuous and those that are not,
in the case that X and Y are not finite-dimensional. The notation
L(X,Y) will then be used to denote the linear subspace of £(X,Y) of
continuous linear maps of X to Y. It is a theorem of that chapter
(Prop. 15.27) that any linear map between finite-dimensional linear
spaces is continuous.

It is convenient also in the finite-dimensional case to extend the use
of the GL notation and to denote by GL(X,Y) the set of injective or
surjective linear maps of the finite-dimensional linear space Y. In par-
ticular, GL(X,X), often abbreviated to GL(X), denotes the group of
automorphisms of X. For any finite n, GL(K") is also denoted by
GL(n;K) and referred to as the general linear group of degree n.

Just as L(K,X) is often identified with X, so also GL(K,X) is often
identified with X'\ {0}, to simplify notations.

Prop. 6.16. Any free subset of a finite-dimensional linear space X is
a subset of some basis for X.

Proof Let A be free in X. By Theorem 6.12, #A4 < n, where
n = dim X. Let #4 = k. Now adjoin, successively, # — k members of
X to A, each being free of the union of 4 and the set of those already
adjoined. This is possible, by Prop. 6.5, since by Theorem 6.12 a free
subset of X is maximal if, and only if, it has » members. The set thus
formed is therefore a maximal free subset and so a basis for X. This
basis contains A4 as a subset. O
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Another way of expressing this is to say that any free subset of X can
be extended to a basis for X.

Cor. 6.17. Let W be a linear subspace of a finite-dimensional linear
space X, with dim W = dim X. Then W = X. O

Cor. 6.18. Any linear subspace W of a finite-dimensional linear space
X is finite-dimensional, with dim W < dim X, O

Cor. 6.19. Let s: W—> X be an injective linear map, X being a
finite-dimensional linear space. Then W is finite-dimensional and
dim W < dim X. O

Prop. 6.20. Let s: W—> X be an injective linear map, X being a
finite-dimensional linear space, and let « : W —> Z also be linear. Then
there exists a linear map f: X — Z such that « = gs.

Proof Let A be a basis for . Then this can be extended to a basis
5,(4) v B for X, with s(4) N B = @. Now send each element a of 4
to a(a) € Z and each element of B to 0 and let § be the linear extension
of this map. Then § is a map of the required type. ]

Note that 8 is not in general unique. It depends on the choice of the
set B.

Cor. 6.21. Let s: W— X be an injective linear map, X being finite-
dimensional. Then the dual map s* : X*—> W is surjective.

Proof This is just the particular case of Prop. 6.20 obtained by
taking Z = K. O

Cor. 6.22. Let {0} > W->X SY—> {0} be an exact sequence
of linear maps, X being finite-dimensional. Then the sequence

0 — V25 x2S wr s (o)
is exact.

Proof This follows from the preceding corollary, together with
Prop. 5.16. O

Prop. 6.23. Let X be a finite-dimensional linear space and let B be
a subset spanning X. Then some subset of B is a basis for X.

Proof Let A be a free subset of B, maximal in B. Since the null set is
free in X and since by Theorem 6.12 no free subset of X contains more
than » members where dim X = #, such a set A can be constructed in at
most 7 steps, one new member of B being adjoined at each step. Then
B = KA and so KA = X. That is, 4 is a basis for X. |
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Cor. 6.24. Any quotient space Y of a finite-dimensional linear space
X is finite-dimensional, and dim Y < dim X.

Proof Letn: X — Y be the linear partition and let A be a basis for
X. Then, by Prop. 6.9, 7,(4) spans Y and #(#,(4)) < #4 = dim X.
Hence Y is finite-dimensional and dim ¥ < #(n(4)) <dimX. [

Cor. 6.25. Let t: X— Y be a surjective linear map, X being a
finite-dimensional linear space. Then Y is finite-dimensional and
dim Y < dim X, O

Prop. 6.26. Let

0} > WS x5 Y — {0}
be an exact sequence of linear maps, W, X and Y being finite-dimen-
sional linear spaces. Then

dim X = dim W + dim Y.

Proof The linear space Y has a (finite) basis and this can be used
to construct a linear section ¢': Y — X of ¢, as in Prop. 6.8. Then, by
Cor. 5.20, the map

(s £):WxY—>X; (wy)wss(w)+t'(y)
is a linear isomorphism. So, by Prop. 6.15,
dim X = dim W + dim Y.

An alternative proof consists in taking a basis A for W, extending the
free subset s5,(A) of X to a basis s,(4) U B of X, wheres,(A) N B =90
and then proving that ¢,(B) is a basis for Y, with #(¢,(B)) = #B. The

injectivity of s implies that #s,(A4) = #A, and the result then follows
at once. O

Cor. 6.27. Let W be a linear subspace of a finite-dimensional linear
space X. Then

dim X/W = dim X — dim W. O
The dual annihilator W@ of a linear subspace W of a linear space X is,

by definition, the kernel of the map ¢ dual to the inclusioni: W— X.
That is, W@ = {$ € X2 : for all w € W, f(w) = 0}.

Prop. 6.28. Let IV be a linear subspace of a finite-dimensional linear
space X. Then

dim W@ = dim X — dim W.
Proof By Prop. 6.26 and Prop. 6.15,
dim W@ = dim X* — dim W* = dim X — dim W. [
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The annihilator of a linear subspace has a role to play in Chapters 9
and 11.

Prop. 6.29. Let X and Y be linear subspaces of a finite-dimensional
linear space. Then

dm(XNY)+dim(X + Y)=dimX 4 dim Y.
(Apply Prop. 6.26 to the exact sequence of Prop. 5.12, or, alterna-
tively, select a basis 4 for X N Y, extend it to bases 4 U Band 4 U C

for X and Y respectively, where 4 N B = 4 N C = §, and then show
that BN C = @ and that 4 U B U C'is a basis for X + Y). O

For example, the linear subspace spanned by two linear planes X and
Y in R4 is the whole of R# if, and only if, the intersection of X and Y is
{0}, is three-dimensional if, and only if, the intersection of X and Y is
a line, and is two-dimensional if, and only if, X = Y.

Exercise 6.30. Let X and Y be linear planes in a four-dimensional
linear space V. Prove that there exists a linear plane W in ¥V such that

V=W+X=W+Y. O

For affine subspaces of an affine space, the situation is more compli-
cated. The analogue of the linear sum X + Y of the linear subspaces
X and Y of the linear space V is the affine join jn (X,Y) of the affine
subspaces X and Y of the affine space V, this being, by definition, the
smallest affine subspace of V" containing both X and Y as subspaces, the
intersection of the set of all the affine subspaces of V7 containing both
X and Y as subspaces. The dimension of jn (X,Y) is determined pre-
cisely by the dimensions of X, Y and X n Y only when X N Y is non-
null.

Prop. 6.31. Let X and Y be affine subspaces of a finite-dimensional
affine space. Then if X and Y intersect,

dm(XNnY)+ dimjn(X,Y) =dim X 4 dim Y,
while if X and Y do not intersect, then
sup {dim X, dim Y} < —1 + dim jn(X,Y) < dim X + dim Y,
either bound being attained for suitable X and Y. O

Rank

A linear map ¢: X — Y is said to be of finite rank if im ¢ is finite-
dimensional, the number dim im # being called the rank of ¢t and denoted
by rk £. The map ¢ is said to be of finite kernel rank if ker ¢ is finite-
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dimensional, the number dim ker ¢ being called the kernel rank, or
nullity, of t and denoted by kr ¢.

Prop. 6.32. Let t: X— Y be a linear map, X being finite-
dimensional. Then ¢ has finite rank and kernel rank and

dim X =rk¢ 4+ krt.

Proof The formula follows, by Prop. 6.26, from the exactness of the
sequence of linear maps

{0} — ker t —> X — im t — {0},

ker ¢t and im ¢ being finite-dimensional, by Cor. 6.18 and Cor. 6.25,
respectively. O

Proposition 6.32 has the following very useful corollary.

Cor. 6.33. Lett: X — Y be a linear map, the linear spaces X and
Y being finite-dimensional with dim X = dim Y, Then ¢ is injective
if, and only if, £ is surjective. (Cf. Exercise 1.67.)

Proof Suppose ¢ is injective. Then krt = 0. So tk¢ = dim X =
dim Y, by hypothesis, from which it follows, by Cor. 6.17, that ¢ is
surjective. Conversely, if ¢ is surjective, rtkf = dim ¥ = dim X. So
kr ¢ = 0 and ¢ is injective. O

This corollary can be reformulated as follows.

Cor. 6.34. Lettec L(X,Y) and u € L(Y,X) be such that ut = 1x,
X and Y being finite-dimensional linear spaces, with dim X = dim Y.
Then tu = 1y. In particular, when X = Y, ut = 13 if, and only if,
t is invertible and ¢! = u. O

In particular, when X is finite-dimensional, any linear injection
X — X" is a linear isomorphism. Such isomorphisms will be studied
in detail in Chapters 9 and 10. An example, for X = K*, is the trans-
position map K» — (K"Z; x > #7, introduced in Chapter 3.

In the following proposition the rank and kernel rank of the compo-
site of two linear maps are related to the rank and kernel rank of the
components.

Prop. 6.35. Lett: X— Y and u: W—> X be linear maps, W, X
and Y being finite-dimensional. Then
rk tu + kr (¢ | im u) = rky,
tk tu <inf {rk ¢, rk u}
and kritu <krt 4+ kru.



MATRICES 111

If also dim W = dim X, then
kr tu > sup {kr ¢, kr u}. ]

Prop.6.36. Letu: X — Whealinearsurjectionandleto: W— Y
be a linear injection, where W is finite-dimensional. Then
rk (vu) = dim W.
Proof Since u is surjective,
rk (v4) = dim (im (v#)) = dim (im v)
and since v is injective,
dim (im v) = dim W. O
Prop. 6.37. Let t: X— Y be a linear map, where X and Y are
finite-dimensional. Then rk ¢ = rk ¢.

Proof The map ¢ is equal to the linear surjection #,,,: X —> im ¢
followed by the linear injection #,,, : im  — Y. Hence the dual map #*
is the composite of the linear surjection #,.5: Y*—> (im £)* and the linear
injection £,,.”: (im £)¥ — XZ. Therefore, by Prop. 6.36, rk t* = dim
(im £)%. Since, by Prop. 6.15, dim (im £)* = dim (im#) = rk¢, the
result follows. a

Matrices

Matrix notations are of great use in discussing particular examples of
linear maps between finite-dimensional linear spaces X and Y. For, for
each choice of isomorphisms o : K* — X and §: K™ — Y, any linear
map ¢: X — Y may be identified with the map -1« : K* — K™, the
map

L(X,Y)— L(K*"K™); tw -1«
being a linear isomorphism. It is however important to notice that the
map f~ta, and, clearly, the m X n matrix representing it, both depend
on the choice of the isomorphisms « and §. Nevertheless, for different
choices «, o’ and B, ', the maps -« and p'-'ta’ will share many
properties, They will, for example, have the same rank. These remarks
prompt the following definitions.

First, let ¢ and u be linear maps of K* to K™ for some finite # and m.
Then t and u are said to be equivalent if, for some « € GL(K") and for
some f € GL(K™), u = f~ta, that is, if the diagram of linear maps

K» — > Kn
T
K* —»Km
is commutative.
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Secondly, let £ and  be linear maps of K" to K" for some finite 7. Then
t and u are said to be similar if, for some « € GL(K"), u = a—t«, that is,
if the diagram of linear maps

Kn t > Kn

Ta TG
Kﬂ _.L) K’l
is commutative. Note that ‘similarity’ is a stronger equivalence relation

on the set L(K",K") than ‘equivalence’. Two elements of L(K"K*) may
well be equivalent and yet not be similar.

Finite-dimensional algebras

A K-linear algebra A4 is said to be of finite dimension # if the linear
space 4 is of finite dimension # over K. For example, the dimension
over R of the real matrix algebra R(2) is 4, each of the sets

{0, (o), @), ()
e 6 @) ()

being a basis.

In practice, for example in Chapter 13, one often wishes to construct
an algebra map of one algebra, 4, to another, B, and such a map, in so
far as it must be linear, will be determined by its restriction to any basis
for 4, by Prop. 6.7. However, the converse is no longer true—we are not
free to assign arbitrarily the values in B of a map of the basis for 4 to B
and then to extend this to an algebra map of the whole of 4 to B. In
general such an extension will not be possible.

There is, in fact, no easy answer here. What one normally starts with
is a subset S of 4 that generates 4 either as a ring or as a K-algebra, the
subset S being said to generate A as a ring if each element of A is
expressible, possibly in more than one way, as the sum of a finite
sequence of elements of 4 each of which is the product of a finite
sequence of elements of S, and as an algebra if the word ‘sum’ in the
above definition is replaced by the words ‘linear combination’. For
example, the set of matrices /1 0\ /0 1\] generates R(2) as an

{-.G o))
algebra. The following is then true.

Prop. 6.38. Let 4 and B be algebras over a field K and let S be a
subset of A that generates A as an algebra. Then any algebra or algebra-
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reversing map ¢: A— B is uniquely determined by its restriction
t]S. (]

Since a subset S of an algebra A4 generating 4 as an algebra can
normally be chosen to be a proper subset of a basis, the chances of a map
defined on S being extendible to an algebra map with domain 4 are
thereby increased.

Minimal left ideals

Minimal left ideals of an associative algebra with unity were defined
at the end of Chapter 3.

Theorem 6.39. Let X be a finite-dimensional K-linear space. Then
the minimal left ideals of the K-algebra End X are the left ideals of
End X of the form

J(t) = {at: a €End X},
where t e End X and tk ¢ = 1.

Proof Suppose first that £ is a minimal left ideal of End X. Then,
for any t € #, #(¢t) is a left ideal of End X and a subset of .£. Since .# is
minimal, it follows that # = #(¢) for any non-zero ¢t € ..

Now, suppose tk ¢ > 1. Then, for any s € End X with rk (st) =1,
#(st) is a proper subset of .#(¢). Since there is such an s, it follows that
#(t) is not minimal. So #(¢) is minimal if, and only if, rk = 1. O

The minimal left ideals remain the same even if End X is regarded as
an algebra over any subfield of the field K.

Similar remarks may be made about minimal right ideals.

For an application see the proof of Theorem 11.32.

FURTHER EXERCISES

6.40. Let?: X— Y and #: W—> Y be linear maps, I¥ being finite-
dimensional, and ¢ being surjective. Prove that there exists a linear map
s: W~ X such that u = ts. 0O

6.41. Let X and X' be two-dimensional lineaxz subspaces of a four-
dimensional linear space V. Prove that there exists a two-dimensional
linear subspace Y of X suchthat V =X+ Y = X' 4 V. 0O

6.42. Let X and Y be finite-dimensional linear spaces, and, for each
x € X, let 5, denote the map

LX,Y)— Y x L(X,Y); tw(Hx),0).



114 FINITE-DIMENSIONAL SPACES

Prove that, for each non-zero a € X
Y X L(X,Y) =im s, 4 im s, O
6.43. Let A and B be affine subspaces of a finite-dimensional affine

space X. Is there any relationship between dim (4 = B), dim 4, dim B
and dim X ? (Cf. Exercise 4.22.) ]

6.44. Let X be a finite-dimensional real linear space, and for each
% € X, let ¢, be the map X* —> R; t > t(x). Prove that the map

ex: X— XY xw»g,

is an injective linear map, and deduce that ex is a linear isomorphism.
(See also Exercise 3.54.) O
6.45. Let X, Y and Z be finite-dimensional K-linear spaces. Verify
that the map

7: XEXY—>LX,Y); (ay)wyca
is bilinear, and prove that the map

L(L(X,Y),Z)— BL(X* X Y ,Z); s~w»sn ’
is a linear isomorphism, where BL(X™ x Y, Z) denotes the linear space
of bilinear maps X* x Y—Z. [

6.46. Let ¢ be a linear endomorphism of K* of rank 1, n being any
positive number. Find » € L(K,K*) and v € L(K",K) such that tuv = 1.

6.47. Find the centre of the subalgebra of R(4) generated by the
matrices of the form

O QU e
SO O
a = oo
-0 0o

where a, b and ¢ are real numbers. ]

6.48. Prove that the algebra R(n) has no two-sided ideals other than
itself and {0}, and therefore has no quotient algebras other than itself
and {0}, » being any finite number.

(Prove, for example, that the two-sided ideal generated by any non-
zero element of R(n) contains, for each (7,5) en X n, a matrix all of
whose entries are zero other than the (7,f)th entry which is non-zero. The
result follows, since these matrices span R(n).) O

6.49. Let U, VV and W be linear subspaces of a linear space X, and
letu e U,v e Vand w € W be such that # - v 4+ w = 0 and such that
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ugUNnV 4 Un W. (Cf. Exercise 3.53.) Prove that v ¢ V n W +
Vna U. |

6.50. Let U, V and W be linear subspaces of a finite-dimensional linear
space X. Prove that
dim(UnV+W)/(UnV+UNW)=
dm(Vna(W+ U)/(VAW+VnU).

(Choose a basis for U n V' N W and extend this to bases for U N V,
UNn W and eventually to a basis for UN (V + W). Then use an
appropriate generalization of Exercise 6.49 to deduce an' inequality one
way.) O

6.51. Let W and X be finite-dimensional real linear spaces, with
dim W < dim X, and let ¢:X — W% and t: W —> XT be linear maps
such that, for all we Wand all x € X,

o (%) (w) =7() (»).
Prove that o is surjective if, and only if, 7 is injective. O

6.52. (Cf. Exercise 3.65.) Let s be a skew element of R(#). Prove that
1—s is invertible. O

6.53. Let s be a skew element of R(n). Prove that, for all », v e R?,
(1—s)v = (1+s) u=> vrv = um. O



CHAPTER 7

DETERMINANTS

This chapter is concerned with the problem of determining whether
or not a given linear map K» — K* is invertible, and related problems.
Throughout the chapter the field K will be supposed to be commutative.

Frames

In the study of a K-linear space X, K being a commutative field, it is
sometimes convenient to represent a linear map a:K*— X by its
k-tuple of columns

cola = (a;:j €k) = (ale;): j €R),
k being finite. The use of the term ‘column’ is suggested by the case
where X = K*, # also being finite, in which case g; is the jth column
of the » X k matrix for a. By Prop. 6.7, the map

col: L(K*,X)— X*;, a-wcola.
is a linear isomorphism.,

Prop. 7.1. Let a: K¥ — K* and b: K* — X be linear maps. Then,
for each jen, (ba); = X ai;b,

1€n

Proof For eachjen,
(ba); = ba(e;) = (X ai;e;) = X ai;bles) = X aishs. a
An injective linear map a : K*— X will be called a k-framing on X
and col a will then be called a k-frame on X. When a is an isomorphism
both a and col a will be said to be basic.

Prop. 7.2. A linear map a: K*— X is a framing on X if, and only
if, for each 1 € K¥,
aly =X 1ja;=0 = 1=0.
jek
This is just a particular case of Prop. 3.18. ]

Cor. 7.3. A k-tuple (a;:j € k) of elements of X is a frame on X if,
and only if, the set {a;:j € k} has k elements, and is free in X.
116
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Proof When {a;:j € k} has k elements, which will, in particular, be
the case when a is injective, any 4 € K* may be regarded as a system of
coefficients for {a;: j € k}, and we may apply Prop. 6.2. O

The free subset {a;:j €k} of X is said to be represented by the
framing a, and any finite free subset of X may be so represented.

By Cor. 7.3 a k-frame on X is just an ordered free subset of X of
cardinality k. A basic frame on X is just an ordered basis for X.

A basic framing on K, for any finite #, is just an automorphism of K=,
an element of the general linear group GL(n;K).

Elementary basic framings

The standard basic framing on K* is the identity e = "1 : K» — K*,
with col e = (¢;: 7 e n).
For any A € K and any 7 € n let %, : K» — K” be the map defined in
terms of its columns by the formula
Ces = Ae;, whenk =1
7] e, whenk 1.
For example, if n = 2, %, is the map with matrix (l 0).
01

Prop. 7.4. If 120, %, is a basic framing on K*,
Proof When 1 0, the map %; has inverse *7e;. O
The map %¢;, when 1 520, will be said to be an elementary framing
on K» of the first kind.
For any u € K and any 7, j € n, with ¢ ¢, let #¢;;: K* — K" be the
map defined in terms of its columns by the formula
(Pess)s = ue; + e;, whenk =j
I when k #j.
For example, if n = 2, “e,, is the map with matrix (1 ,u).
0 1

Prop. 7.5. The map “e;; is a basic framing on K".
Proof 'The map *e;; has inverse ~¥e;;. ]

The map “;; will be said to be an elementary framing on K* of the
second kind. Any element of K(n) that is the composite of a finite number
of elementary framings of the second kind is said to be unimodular.
When # = 1 no elementary framings of the second kind exist. In this
case the identity is defined to be unimodular.
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Prop. 7.6. For any y €K and 7, j e n with 7 # j,
(Pes)(Ress)(*es) = e
Proof 'The ith and jth columns transform as follows:
(eires) v (pesse;) o (pie; , pie; + ;) wo (e, pe; + e). a
Prop. 7.7. Forany a€K(n), 1, p €K and i, j e n, with ¢ 3,
aler)s — {lai, whenk =1

a,, whenk %1,
w, \ _ J#a;+ a; whenk=j
(e = { a, when k 7,

and
a;, whenk=1{
a(Ye;s)(Tte)(e)(Tle)(Yes)(les) = a;, whenk =j
a, whenk =2iorj. O

Theorem 7.8. Any basic framing & on K* is of the form bu, when b
is an elementary framing on K* of the first kind, and # is unimodular.

Proof The proof is by induction, the theorem being obvious when
n=1.

Suppose the theorem true for K™, where m > 1, and let a be a basic
framing on K™+!, Now by composing a with elementary framings of the
second kind on the right, it is possible to alter the framing a step by
step, some multiple of any column of a being added at each step to
some other column. At each stage the set of columns is free. We claim
that by a finite succession of such steps we can make @, = 1 and
Qi = ;= 0 for all 7 < m,

This may be done as follows. First make a,, % 0. Then, by adding
(1 — apm)ay,, times the Oth column to the mth column, replace the
original a,,, by 1. Next, by adding a suitable multiple of the last
column to each of the others, make the last row consist entirely of Os,
with the exception of a,,,, which remains as 1.

Finally, let b, = (a;;: i € m), for all jem + 1. Since (a;:jem) isa
frame on K™+1, and since a,,; = O for all j e m, (b;: § € m) is a frame on
K™, So b+, is a linear combination of the set {b;:j em} and may
therefore be killed by a further series of elementary framings on K»+1
of the second kind that leave the mth row untouched.

That is, there exists a unimodular map v : K — K™ such that av is
of the form fa’ 0\, where 4’ is a basic framing of K™, K™+1 here being

0 1
identified with K™ x K. By the inductive hypothesis, a’ = '’ where
b’ is an elementary framing on K™ of the first kind and #’ is unimodular.
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“= (0’ (1))(3 (1))

That is, a = bu, where b = <g (1)) and u = (u (1))21‘1. OJ

So

Permutations of n

Let n be any finite number, and let = : # — 1 be a permutation of #,
the group of permutations of n being denoted by !, as in Chapter 2. For
each 7, j e n with ¢ = j, let ,(7,5) = 1 or —1 according as the product
(—9)@(j)—=(2)) > 0 or < 0 and define the sign of =, sgn =, by

sgnn = ]___[ Cn(i’j)’
icjen
7 being said to be even if sgnz == 1 and odd if sgnw = —1.

This definition may be made more vivid by an example. Consider

the permutation of 5:

0 0
1 1
2 2
3 3
4 4

'T'he sign of the permutation is the parity of the number of intersections
of arrows in the diagram. In the example there are six intersections, so
the permutation is even.

A practical method for computing the parity of a permutation is out-
lined in Exercise 7.38. "The method relies on Theorem 7.9 or, rather,
its generalization, Theorem 7.11.

Theorem 7.9. For any finite number # the map
nl— {1,—1}; mw>sgnn
is a group map.
Proof Letm, n’ €n!. Then for any i, j € n, With ¢ ==j,
Cﬂ’n(i’j ) = Cn’(ni’nj ) Cn(i’] )'
Therefore
sgnw'mw = sgna’ sgn . O
The kernel of the group map in Theorem 7.9 is called the alternating
group of degree n.
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Cor. 7.10. For any = € n!, sgn 7! = sgn «. |

Theorem 7.11 extends the definition of the sign of a permutation to
permutations of an arbitrary finite set.

Theorem 7.11. Let X be a set of finite cardinality » and let
«:n— X be a bijection. Then the map

X!— {—1,1}; 7> sgn(a~lna)

is a group map, and is independent of the choice of «.

Proof For any n, n’ € X!,

sgn (e~ n'nx) = sgn (a~1w'a)(a~Yrx)
= sgn (x~'7'«) sgn (x~Ine).

So the given map is a group map.

Now suppose f:n—> X also is a bijection, inducing a2 map
70w sgn (8175

a1 X—Z_’X B

FoX

Since, for any = e X!, % = (a71f)~}(a~tnx)(x~?p), and since
{1,—1} is an abelian group and sgn a group map, it follows that
sgn (f~nf) = sgn (a~'ne). So the maps coincide. O

The map defined in Theorem 7.11 is also denoted by sgn,
sgn @ (= sgn («~'wa)) being called the sign of x.

The determinant

The practical problem of determining whether or not a given linear
map a:K"—> K» is invertible, or whether or not the corresponding
n-tuple col a of K" is a basic frame for K, is solved by the following
theorem in which K(n) denotes, as before, the algebra End K*
== L(K" Kn), with unity 1, whose elements may be represented, if one
so wishes it, by # X n matrices over K.

Theorem 7.12. For any finite number # there is a unique map
det: K(n) > K; a-w>deta,
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such that

(1) for any 1 €K and any 7 € n, det a(’e;) = 1 det a,
(ii) for any distinct 7, j € n, det a(e;;) = det a,
(iii) det »1 = 1.
The map is defined, for all a € K(n), by the formula
deta = Y sgna[] a.p, 5
aen! jen

and has the following further properties:

(iv) for any a, b € K(n), det ba = det b det q,

(v) for any invertible a € K(#n), det a-! = (det a)~!,

(vi) for any a € K(n), a is invertible if, and only if, det a is invertible,
that is, if, and only if, det @ == 0.

The map det is called the determinant on K(n).

Plan of the proof The proof occupies pages 121-124. From (i), (ii)
and (iii) it is easy to deduce several further properties which det must
possess and so to construct the formula stated in the theorem. This
establishes the uniqueness of det. To prove existence it only remains
to verify the three conditions for the unique candidate. The various
additional properties listed are proved by the way.

The proof is presented as a series of lemmas. Throughout these
lemmas it is assumed that det is a map from K(z) to K satisfying condi-
tions (i) and (ii). Condition (iii) is first introduced in the crucial Cor.
7.20

Some of the proofs may appear formidable on a first reading, because
of the proliferation of indices and summation signs. The way to master
any of them is to work through, in detail, the special case when n = 3.
For example, Lemma 7.16 reduces, in that case, to Exercise 6.6.

Lemma 7.13. Let a and b be elements of K(#) differing only in that,
for some particular j € n, b; = pa; + a;, where i == j and u € K. Then
det b = det a.

Proof 1If u = 0, there is nothing to be proved. If x = 0, apply Prop.
7.6 and axioms (i) and (ii). |

Lemma 7.14. Let a € K(n) be such that, for some particular 7, j e n,
a, = a; with j = 7. Then deta = 0.

Proof Setyu = —1in Lemma 7.13 and apply (i) with = 0. ]

Lemma 7.15. An element a of K(») is invertible if det a 5= 0. (That
is, if a is not invertible, then det a = 0.)
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Proof Suppose that a is not invertible. Then col a is not a frame on
K=, So, for some non-zero A € K*, 3, 4;a;, = 0. Suppose 1; 5= 0. Then,
ken

since

(§ liai) + 11(15 = O,

t#)
it follows, by (ii) and by Lemma 7.13, that 1,(det @) = 0. Since 4, = 0,
deta =0. O

Lemma 7.16. Let a, b, c € K(n) differ only in that, for one par-
ticular j € », their jth columns are not necessarily equal but are instead
related by the equation ¢; = a; + b;. Then, if col @ and col b are not
basic frames for K*, neither is col ¢.

Proof Let C be the set of columns of ¢ and let D = C\ {¢;}. Then
either a; and b; € KD, in which case ¢; € KD, or dim (KD) <n — 1.
In either case it follow: that rk ¢ = dim (KC) < »n andthat ¢ is not a
basic framing for K=, O

Lemma 7.17. Withq, bandcasinLemma7.16, detc =deta + detb.

Proof 1If a and b are not basic framings for K*, then neither is ¢, by
Lemma 7.16, and so det ¢ and det @ + det b are each zero, by Lemma
7.15. Suppose, on the other hand, that a is a basic framing for K". Then,
for some A € K*, b; = ¥ 4,4, from which it at once follows that both

ken

det c and det @ + det b are equal to (1 + 4;)det a, and therefore to each
other. O

Lemma 7.18. Let aand b be elements of K(n) differing only in that,
for two distinct 7, j €n, b, = a; and b; = a;. Then det b = —det a.

Proof Apply Prop. 7.7 and (i) and (ii). O

Lemma 7.17, with (i), implies that, if det exists, then det col-! is
n-linear, while Lemma 7.18 implies that det col-1 is alternating, that is,
transposing any two components of its source changes its sign.

We are now in a position to establish the formula for det, and hence
its uniqueness.

Lemma 7.19. For any q, b e K(n)
det ba = (det b)(X sgn = T a;;)-
! jen

TEN

Proof Let a, b € K(n). Then, by Prop. 7.1, for any j € n,
(ba); = X aisb,,

ien
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or, writing nj for 4,

(ba); = X Gg,5b,.

njen
Since det col—? is n-linear, it follows that
det (ba) = det col-*(col ba)
= X (TT @.j;) det col-Y(b,;:j € n),
jen

nent

where #* denotes the set of maps n — n.
For example, when 7 = 2,

4 (ba)o = aoohy + @by and (ba)y = anby + aynby,
an

det col~Yagby + a1ob; , oo + asb;)
= ayeaq, det col=Y(b,by) -+ agoa,, det col—1(by,b,)
+ ayea0 det col=2(by,b,) + ay4ay; det col=1(by,b,).
If » is not a permutation of n, then ni = 7§ for some 7 j and
det col-%(b,;:j €n) = 0, by Lemma 7.14. If = is a permutation of 7,
then, by Lemma 7.18, and by Theorem 7.9,

det col-1(b,;:j € n) = sgn x det col~1(d,:j € n)
= sgn 7 det b.
In conclusion, therefore,

det (ba) = (det b)(X sgnz [T a,;;)-
. nent jen
For example, when n = 2,
det (ba) = (det b)(apa11 — @10801)- d

The above argument should also be written out in detail for the case
n=3.

Cor. 7.20. 'The map det, if it exists, is unique, with
deta = X sgnz [ a5

nen! en
for any a € K(n). ’
Proof Set b =1 in Lemma 7.19, and use (iii). O

Cor. 7.21. For any a, b € K(n),
det ba = det b det a.

Proof Combine Lemma 7.19 with Cor. 7.20. O

Cor. 7.22. For any invertible a € K(n),
det a-! = (deta)~L.
Proof Set b = a~!in Cor. 7.21. O
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Cor. 7.23. For any invertible a € K(n), det @ = 0. (This is the con-
verse of Lemma 7.15.)

Proof Apply Cor. 7.22. O

Cor. 7.24. An element a of K(n) has determinant 1 if, and only if,
it is unimodular.

Proof Apply Theorem 7.8, (i), (ii) and Cor. 7.21. |

The group of unimodular maps in K(n) is called the unimodular
group of degree n and denoted by SL(n;K).

To prove the existence of det, one has only to verify that the map
defined by the formula satisfies axioms (i), (ii) and (iii). To prove (i)
and (iii) is easy.

Proof of (1) What has to be proved is that det & — det @ = 0, where
a €K(n) and b = a('e;;), ¢ and j being distinct elements of ».

Let ¢ € K(n) be formed from a by replacing a; by a;. Both b and ¢ then
differ from a in one column only, the jth, with ¢; = b; — a;, and two
columns of ¢, namely ¢; and ¢;, are equal. Then

detb—deta—zsgnnﬂbnu ngnyzHa,,H

nen! ken nen!
= XYsgnz H Cat
nen!
=3 ITewr— 2 TI €
evenn ken oddn  ken
Now }—_[cnl E H cm'k vk T H lec ks
vEN ken

where v: 7 —> n is the permutation of # interchanging 7 and j and
leaving every other number fixed. Since » is odd, =» is even when =z is

odd. So
Y e = 2 1T carge

odd z ken evens ken

Therefore det b — deta = 0.
This also should be followed through in detail for n = 2 and n = 3,
This completes the proof of Theorem 7.12. O

Transposition

Prop. 7.25. Let a €eK(n) and let b be the transpose of a. Then
det b = det a.

Proof Since sgn n~! = sgn =, for each » € n!, by Cor. 7.10,
detb = 3 sgnz ] by,

nen! jen
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= Y sgnxn 1'[ ;i

nen! jen
= Y sgnn~'[] a,;; = deta. O
7 'ent jen

Determinants of endomorphisms

Any basic framing a: K" — X on an n-dimensional linear space X

induces a map
End X = L(X,X) — K; t+w»> det(a"'ta)

called the determinant on End X and also denoted by det. This map is
independent of the choice of basic framing on X, as the following
proposition shows.

Prop. 7.26. Let a and b : K" — X be basic framings on the n-
dimensional linear space X and let # € End X. Then

det (b-tb) = det (a~'ta).

Proof
n\ atta K»
a-1b X__t__.,X b-ta
£
K» Kn
bith
Since b-1th = (b~'a)(a~ta)(b'a)~?,

det (b-1tb) = det (b~'a) det (a—'ta)(det (5—'a))~?
= det (a~ta). O
Prop.7.27. LetteEnd X, where X ~ K Thendet? # 0 if, and
only if, ¢ is invertible, and the map
Aut X — AutK (= K¥); t-w>det?
is a group map. O

The absolute determinant

In some applications it is the absolute determinant that is important,
and not the determinant. For simplicity we suppose that K = R or C.

Theorem 7.28. Let n be any finite number. Then there exists a
unique map
A:K(n)— R; a-w»Aa)
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such that
(i) for each a € K(n), each i e n and each 1 € K,
Afa(’e)) = A(a) | 1|
(ii) for each @ € K(n), and each distinct 7, j € n,
A(a(Pey5)) = Aa)
(iii) A("1) = 1.

Proof The existence of such a map is a corollary of Theorem 7.12,

for the map
K(n)—>R; txw|dett|
satisfies (i), (ii) and (iii).

The uniqueness argument we gave before for det depended on first
showing that det, if it existed, was alternating multilinear, from which
a formula could be deduced. However, Lemma 7.17 fails when A replaces
det, since, in general, for A eK, 1 4 |1 |1 4+ 2]

There is, fortunately, an alternative argument, which is also valid
applied to det, but which we found it convenient to suppress earlier on!
It is based on Theorem 7.8, and the reader is invited to find it for
himself. O

The map A will be called the absolute determinant on K(n).

Applications

The two basic operations K(n) — K(n); a w» a(*¢,) and a w» a(le;;)
which we have used to characterize the determinant and the absolute
determinant on K(»), occur, thinly disguised, in many situations.

For example, the set of solutions of a set of m linear equations over K

Tbyx; =y, iem,
jen

where, for all f em and all (5,j) em X m, y; and b;; € K, is unaltered if
one of the equations is multiplied by a non-zero element of K, or if
one of the equations is added to another.

Again, to take a particular case of a more general situation which we
shall shortly discuss in detail, if W is a two-dimensional real linear
subspace of a real three-dimensional linear space X and if ¢ is a basic
framing for X such that W = R{c,,¢;}, then, for any w € W and any
» > 0, ¢, + w and rc, both lie on the same side of W in X as c,, while,
for any » < 0, »c, lies on the opposite side.

Finally, to take again a particular case, and without being precise
about the definition of area, for to be precise would lead us too far afield,
let A(a) denote the area of the convex parallelogram with vertices 0,
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v¢,
Ctw

-2 [~

ay, a, and a, + a,, where a is any basic framing of R2 Then, for any
non-zero real 4,

A(a(%e;)) = | 4| A(a), forie2,
while A(a(teq)) = A(a(Peyy)) = A(a)
and A(*l) = 1.
The following diagram illustrates the assertion that A(a(’ey)) = A(a).

These examples indicate that the determinant may be expected to play
an important role in the solution of sets of linear equations, in the
classification of basic framings on a finite-dimensional real linear space
and in the theory of area or measure on finite-dimensional real linear
spaces and therefore in the theory of integration.

As we have just hinted, the third of these applications is outside our
scope, while the first is an obvious application of Theorem 7.12(vi).
The second of the applications requires further study here.

The sides of a hyperplane

A linear hyperplane in a finite-dimensional real linear space X has
two sides. This is clear when dim X = 1. In this case the only linear
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hyperplane of X is {0} and the sides of {0} in X are the two parts into
which X'\ {0} is divided by 0. Two points a and b of X lie on the same
side of {0} if, and only if, 0 ¢ [a,5).

Now let dim X > 1 and suppose that W is a linear hyperplane of X.
Then points 2 and b of X\ W are said to lie on the same side of W if,
and only if, [a,b] " W = 0, or equivalently, if, and only if, n(a) and
7(b) lie on the same side of #(0) in X/W, n: X — X/W being the
linear partition of X with kernel W. Otherwise they are said to lie on
oppostte sides of W,

Prop. 7.29. Let W be a linear hyperplane of a finite-dimensional
real linear space X and let a € X\ W. Then, for all positive real 2 and
all w € W, both Aa and a 4 w lie on the same side of W as a, while
—Aa lies on the opposite side of W. O

The two sides of an affine hyperplane in a finite-dimensional real
affine space are defined in the obvious way.

Exercise 7.30. Is there any sense in which a two-dimensional linear
subspace W in a four-dimensional real linear subspace X can be said
to be two-sided? 0

Orientation

Let X ~ R~ for any finite #. Then the following proposition shows
that the set of basic framings of X divides naturally into two disjoint
subsets,

Prop. 7.31. 'There is a unique map
¢:R(n)— {-1,0,1},
namely the map defined by the formula

—1 when deta < 0
{(a@) =< O whendeta =0
1 when deta > 0,
such that
(i) {(a) =0 <> ais a basic framing on R"
(i) £(1) = 1
(iii) if @ and b are basic framings of R* such that each column of
a is equal to the corresponding column of 4, with the exception of one,
say the jth, then {(b) = {(a) if, and only if, @; and 4, lie on the same side
of the linear hyperplane Rfa,: k e n\ {j}} in R".
Moreover, the map
GL(n;R) — {1,—1}; a-~ww»{(a)
is a group map.
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Proof That the map defined by the formula has properties (i), (ii)
and (iii) is clear from Theorem 7.12, and the final statement is also true
for this map.

The uniqueness of { is a corollary of Theorem 7.8 and Prop. 7.6,
which together imply that any basic framing of R” is the composite of
a finite number of elementary framings of R" either of the form %;,
where 4 0 and j € n, or of the form le;;, where 7, j € n, with 7 =£j.
Now, for any basic framing a of R*, if 1 > 0, then both la; and a; 4 a;
lie on the same side of R{a,: ken\ {j}} as a;, while —1q; lies on the
opposite side, and therefore, by (iii),

t(aC’es)) = {(a(ter)) = {(a) and (a(~e;)) = —L(a).
It follows from this that { is uniquely determined. 0

The sets {1} and ¢'{—1} are called, respectively, the positive and
negative orientations for R”, two basic framings a and b on R” being said
to be like-oriented if [(a) = {(b), that is, if det (b~ a) > 0, and oppositely
oriented if {(a) = —((b), that is, if det (b-' a) < 0.

The same holds for an arbitrary n-dimensional real linear space X.
Two basic framings 4@ and b on X are said to be ke-oriented if
{(b-1a) =1, that is, if det(b—ta) >0, and oppositely oriented if
{(b-1a) = ~1, that is, if det (b—*a) < 0, and the two classes of basic
framings on X so induced are called the orientations of X. Only this
time, unlike the case where X = R®, there is no natural preference for
either against the other. An automorphism #: X — X of the linear
space X is said to preserve orientations if for one, and therefore for every,
basic framing a on X the basic framings a and #a are like-oriented.

'To round off this string of definitions, a finite-dimensional real linear
space with a chosen orientation is said to be an oriented linear space,
while, if X and Y are oriented linear spaces of the same dimension, a
linear isomorphism ¢ : X — Y is said to preserve orientations if, for one,
and therefore for every, basic framing a of the chosen orientation for X
the framing za belongs to the chosen orientation for Y.

The orientations for a line are often referred to as the right and the
left orientations for the line, the orientations for a plane are said to be
positive and negative, while the orientations for three-dimensional space
are said to be right-handed and left-handed. In every case one has in mind
a basis for the space, with the elements of the basis taken in a particular
order.

Prop. 7.32. Let X be a finite-dimensional complex linear space and
let Xg be the underlying real linear space. Then if £: X — X is a
complex linear map,

detp t = | detc ¢ |2,
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where det ¢ is the determinant of ¢ regarded as a complex linear map,
and dety ¢ the determinant of ¢ regarded as a real linear map.

Proof By Cor. 7.21, Theorem 7.8 and Prop. 2.66 it is enough first
to assume that X = C" and then to check the formula for the elementary
complex framings on C». This is easily done, by Prop. 3.40. O

Cor.7.33. Let X beasinProp.7.32,and letz: X — X be a complex
linear map. Then detg ¢ > 0. O

Cor. 7.34. Let X and Xy be as in Prop. 7.32, and let £ : X — X be
a complex linear isomorphism. Then ¢ preserves the orientations of

Xp O

FurRTHER EXERCISES

7.35. Letn > 3, let 4, j, k en, no two of ¢, j, k being equal, and let
2, u € K. Prove that

Yeifen e ey = ey,
Hence, by setting A = 1, prove that, if A : K(n) — K is a non-zero map
such that, for all a, b € K(n), A(ab) = A(a) A(d), n being not less than 3,
then, for any unimodular a € K(n), A(a) = 1. O

7.36. For any m, n € w and any a € K(m), b e K(n) let a X b denote
the element of K(m + n) with matrix [a O), K=+# having been
0 b
identified with K™ x K, to simplify notations. Let
A: U Kn)—~K

new

be a map such that
(i) for any # € w and any a, b € K(n), A(ab) = A(a) A(b)
(ii) for any m, n € w and any a € K(m}, b € K(n),
Aa x b) = A(a) A(d)
(iii) for any 2 e K(1) = K, A(1) = A.
Prove that A is unique. O

7.37. Let X be a finite set and let # = #X. A permutation = of X is
said to be c¢yclic if there is a bijection s:n—> X such that, for all
ken — 1,n(s(k)) = s(k -+ 1)and n(s(n — 1)) = $(0). Prove that a cyclic
permutation of X is even or odd according as 7 is odd or even. ]

7.38. A permutation x of a finite set X is said to be a cycle if
(| W)gue: W— W is cyclic, W being the complement in X of the
elements of X left fixed by . We might call W the wheel of the cycle.
Show that any permutation of X may be expressed as the composite of
a set of cycles whose wheels are mutually disjoint.
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(The construction of such a decomposition is, in practice, the most
efficient way of computing the parity of a permutation. Given the
decomposition, one applies Exercise 7.37 and Theorem 7.11.) O

7.39. (Pivotal condensation.) Prove that, for any finite » and any
a e K(n -+ 1) with a,, (the pivot) non-zero,

(@) 1det a = det b,
where b € K(n) is defined, for all 7, j e n, by

bis = @i;Qun — Ainlnj.
Formulate an analogue of this, with the (7,f)th entry as pivot, for any
i,jen+1.
(This is an extremely efficient method of computing determinants. The

reader should write down a 4 X 4 matrix and compute its determinant in
several ways, trying different terms as pivot.) O

7.40. Compute the determinant of the matrix

c 0 a b
0 ¢ b —a
—a-b ¢ O)
—b a 0 ¢
a, b and ¢ being complex numbers. O

741, Let{0} > W->X A N {0} be an exact sequence of linear
maps, W, X and Y being finite-dimensional, and let « € End W,
B €End X and y € End Y be such that 8s = s« and y¢ = #f. Prove that
det 8 = det e det y. O

7.42. Consider the product K2» x K" — K; (x, y) > x A y, defined
by the formula

XNy =E'ﬂ (¥n1Ys — XgYnti)-
Verify that the product is bilinear and that, for any x, y € K*#,
YAX=—XAY.
Now, define 6: K(2n) — K by the formula,

1

0(a) = 5 2 sgn H(a,,(i» A Qrp)-
n12% aegmyt - den

Verify that 0 col* is an alternating 2n-linear map, with 6(*1) = 1, and

therefore that det a = 0(a).

(This has application in Table 11.53. Cf. Exercise 11.67.) O



CHAPTER 8

DIRECT SUM

In this chapter the field K remains commutative and may be taken, for
simplicity, to be either R or C. The algebra ‘K, for any s € o, is the
product of s copies of K according to the definition at the end of
Chapter 3. The algebra 2K will be called a double field.

A K-linear space with a prescribed direct sum decomposition may be
regarded as a 2K-module. From this, later in Chapter 11 on page 215,
we show how the general linear groups GL(n; K) may be regarded as
strict analogues of the orthogonal, unitary and symplectic groups.

The Grassmannians and projective spaces introduced in the later part
of the chapter are studied further in Chapters 12, 17 and 20.

Direct sum

A linear space V is the sum X 4 Y of two of its linear subspaces X
and Y if the linear map

a: XX Y—->V; (xy)wx+y

is surjective. If « is also injective, that is, if « is a linear isomorphism,
V is said to be the direct sum X @ Y of its subspaces X and Y. That is,
V is the direct sum of X and Y if, and only if, each element v € V' is
uniquely expressible in the form x + y, wherex e X,y € Y.

A pair (X,Y) of linear subspaces X and Y of Vsuchthat V = X® Y
is said to be a direct sum decomposition of V. Abuses of language, as in
‘Let X @ Y be a direct sum decomposition of the linear space V. ..’
are common and should not lead to confusion.

If V = X @ Y is finite-dimensional, then dim V' = dim X 4- dim Y,
by Prop. 6.15, since «: X X ¥ — X @ Y is an isomorphism.

Direct sum decompositions of a linear space V, with a number of com-
ponents greater than 2, are defined analogously. For direct sum decom-
positions with only two components one has:

Prop. 8.1. Let X and Y be linear subspaces of a linear space V.
Then V=X@Y if, and only if, (i) V=X+ Y and (ii)
XnY={0}.
132
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Proof By Prop. 3.18 the map « is injective if, and only if, XN Y
= {0}. d

When V' = X @ Y there is a natural tendency to regard the iso-
morphism «: X X Y—> X @ Y as an identification. In the reverse
direction, also, there is a tendency, with a linear product X x Y, to
identify X with X x {0} and Y with {0} X Y, and to write X @ Y in
place of X x Y, ignoring the distinction between them. Strictly speak-
ing, of course,

XX Y=(X x {0)® {0} x Y).

Most of us have been conditioned to make these identifications ever
since we were first introduced to ‘graphs’ at school. There is a benefit
from both sides, for X ® Y is easier to picture than X x Y, while
notationally (x,y) is less confusing than x + y (or x @ ). So we draw
the diagram

3% (xy)

/O X X

X®Ys=XxXxY

and shift from the one aspect to the other as and when it suits us. For
example if ¢ € L(X,Y) it is often convenient to think of graph ¢ as a
subset of X @ Y rather than as a subset of X x Y.

This ambivalence is, however, only possible when the direct sum
decomposition is fixed throughout the argument. Later in this chapter
we shall be involved in a comparison of different direct sum decompo-
sitions of the same linear space. In such a context we have sometimes
to forgo cartesian product habits.
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?K-modules and maps

Modules over a commutative ring with unity were defined on page 71.
A direct sum decomposition X, ® X; of a K-linear space X may be
regarded as a ?K-module structure for X by setting, for all x € X and
all (A,p) € K,

(Ap)x = Axg + psty.

The various axioms are readily verified. Conversely, any 2K-module
structure for X determines a direct sum decomposition X, @ X, of X
in which X, = (1,0)X (={(1,0)x:x€X}) and X, =(0,1)X. For
X =X, + X,, since (1,1) =(1,0) + (0,1), while X, X, = {0},
since (1,0)(0,1) = (0,0).

Prop. 8.2. Let t: X —> X be a linear involution of the K-linear
space X. Then a 2K-module structure, and therefore a direct sum
decomposition, is defined for X by setting, for any x € X,

(1,0)x = 4(x 4 t(x)) and (0,1)x = §(x — #(x)).

Proof 'The various axioms have to be checked. In particular, for
any x € X and any (4,u), (A',x') € K,

W) (A)e) = A+ WA + wx + 3 — ) 1)
Y — WY — ) + A + ) ()
since #? = 1x
= 3 + W) + B — ) ()
= (A4p'p)x
while (LDx = ¥(x + t(x)) + ¥z — ¢(x)) = «. O

*K-module maps and *K-submodules are defined in the obvious ways.
The set of 2K-module maps of the form ¢: X — Y, where X and ¥
are *K-modules, will be denoted by .#Z.x(X,Y). This set is assigned the
obvious 2K-module structure. For any ?K-module X, the ?K-module
Zug(X,’K) is called the ?K-dual of X and is also denoted by X%, or
simply by X when thereis no danger of confusion (see Prop. 8.4 below!).

In working with a 2K-module map ¢: X — Y it is often convenient
to represent X and Y each as the product of its components and then
to use notations associated with maps between products, as, for example,
in the next two propositions.

Prop.8.3. Lett: X —> Y be a 2K-module map. Then ¢ is of the form
(ao 0 ) where a, e £(X,,Y,) and a, € £(X,,Y,). Conversely, any map
0 a
of this form is a 2K-module map. O
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Prop. 8.4. Let X be a 2K-module, with 2K-dual X%, and let X be
the K-linear dual of X formed by regarding X as a K-linear space.
Then the map

0
X XG (0 0) (@ @)

is a K-linear isomorphism. O

Chapter 6 does not generalize directly to 2K-modules. To begin with,
it is necessary to make a distinction between ‘linearly free’ and ‘linearly
independent’, ‘linearly free’ being the stronger notion. The definitions
of linear dependence and independence run as before, but we say that
an element x of a *K-module X is Fnearly free of a subset 4 of X if,
and only if, (1,0)x is free of (1,0)4 in the K-linear space (1,0)X and
(0,1)x is free of (0,1)4 in the K-linear space (0,1)X. For example, in
K itself, (1,1) is linearly independent of the set {(1,0)}, but is not free
of {(1,0)}.

With this definition of freedom, the ?K-analogues of Prop. 6.3 and
Prop. 6.7 hold. On the other hand, the implications (b) = (a) and
(c) = (a) of Prop. 6.11 fail. For example, let X be the 2R-module
R2 x R with scalar multiplication defined by

(Au)(a,b) = (Aa,ub), for all (A,u) e?R,acR? beR.
Then {((1,0), 1)} is a maximal free subset of X and {((1,0),1),

((0,1) , 0)} is a minimal spanning subset of X. Yet neither is a basis for X.
The following is the basis theorem for 2K-modules.

Theorem 8.5. Let X be a 2K-module with a basis, 4. Then (1,0).X
and (0,1)X are isomorphic as K-linear spaces, the set (1,0)4 being a
basis for the K-linear space (1,0)X and the set (0,1)4 being a basis for
the K-linear space (0,1).X.

Moreover, any two finite bases for X have the same number of
elements.

Any ?K-module with a finite basis is isomorphic to the *K-module
2K = (?K)", n being the number of elements in the basis. O

A ?K-module X such that the K-linear spaces (1,0)X and (0,1)X are
isomorphic will be called a 2K-knear space. A *K-module map X — Y
between 2K-linear spaces X and Y will be called a *K-lnear map.

It should be noted that not every point of a 2K-linear space X spans
a 2K-line. For this to happen, each component of the point must be
non-zero. A point that spans a line will be called a regular point
of X. Similar considerations show that if £: X — Y is a 2K-linear
map, with X and Y each a ?K-linear space, then im ¢ and ker ¢, though
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necessarily ?’K-submodules of Y and X respectively, are not necessarily
2K-linear subspaces of Y and X.

All that has been said about 2K-modules and maps and 2K-linear
spaces extends in the obvious way, for any positive s, to ‘K-modules
and maps and *K-linear spaces.

Linear complements

When V = X @ Y we say that X is a linear complement of Y in V.
Distinguish between a linear complement of Y and the set complement
V'\'Y, which is not even a linear subspace of V. Confusion should not
arise, provided that one’s intuition of direct sum is firmly based on the
figure on p. 133.

Prop. 8.6. Every linear subspace X of a finite-dimensional linear
space V has a linear complement in V.

(Extend a basis for X to a basis for V.) O

Prop. 8.7. Let X and X’ be linear subspaces of a finite-dimensional
space ¥, with dim X = dim X’. Then X and X’ have a common linear
complement in V.

Proof Extend a basis A for the space X N X' to bases 4 U B,
AvB,AuBUB and4AuBuUB UCforX, XX + X'and V,
respectively, the sets 4, B, B’ and C being mutually disjoint. Since
dim X = dim X', #B = #B’. Choose some bijection f; B— B’
and let B = {b + p(b): b € B}. Then B” U C spans a linear comple-
ment both of X and of X' in V. O

Complements and quotients

A linear complement X of a linear subspace Y of a linear space V
may be regarded as a model of the quotient space V/Y, as the next
proposition shows.

Prop. 8.8. Let X be a linear complement of the linear subspace Y of
the linear space V. Then the map # | X: X — V/Y is a linear isomor-
phism, @ : V' — V/Y being the linear partition with kernel Y.

Proof

Since = is linear, 7| X is linear. Secondly, ¥V = X + Y. So for any
v € V there exist x € X and y € Y such that v = x + y, and in par-
ticular such that #(v) = n(x + y) = n(x). Sox|X issurjective. Finally,
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X NnY = {0}. So, for any x € X,
n(x) =0 < x€Y « x=0.
That is, 7| X is injective. So = |.X is a linear isomorphism.

Y {x)

+ 4 ‘/’y O

(o} 1r'(x)

Another way of putting this is that any linear complement X of YV
in V is the image of a linear section of the linear partition 7, namely
(w| X)-*. The following proposition is converse to this.

Prop. 8.9. Let Y be a linear subspace of the linear space V" and let
s: V/Y — V be a linear section of the linear partition #: V— V/Y.
Then V =ims@® Y.

Y

ims

/0 Viims @7

0
Prop. 8.10. Let X and W be linear complements of Y in V. Then
there exists a unique linear map #: X — Y such that W = graph ¢.

O

Yy
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Proof

w=ims

X=imr

By Prop. 8.8, X =im7r and W = ims, where r and s are linear
sections of the linear partition m: V' — V/Y. Define t: X — Y by
H(x) = sr~1(x) — «, for all x € X. Then W = im s = graph t.

Uniqueness is by Prop. 1.22. O

Spaces of linear complements

It was proved at the end of Chapter 5 that the set of linear sections
of a linear partition w : ¥V — /Y has a natural affine structure, with
linear part #(V/Y,Y), and we have just seen that the map s w»im s
is a bijection of the set of sections of 7 to the set of linear complements
of Y in V, so that the latter set also has a natural affine structure. The
affine space of linear complements of Y in V| so defined, will be denoted
by &(V,Y).

It follows at once, from Prop. 8.10, that for any X € &(V,Y’) the map

y: Z(XY)—> O(V,Y); twgrapht
is an affine isomorphism, sending 0 to X.

When V is finite-dimensional, the dimension of &(V,Y) is k(n — k),

where 2 = dim Y and # = dim V.

Prop. 8.11. Let X and X’ be linear complements of Y in V and let
teL(X,Y) and ¢’ e L(X",Y). Then
graph ¢’ = grapht < t' =1 —¢q
where (p,9): X' — X @ Y is the inclusion map.
Proof

The result is ‘obvious from the diagram’, but has nevertheless to be
checked.

= : Let graph ¢’ = graph ¢ and let »' € X'. Then there exists x € X
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y 1
grapht = groph ¢

t(x)

¢t x'H

q ) x

0 x=plx’)

such that " + #(x") = & 4 #(x). Since &' = p(x’) + ¢(x’) it follows
that x = p(x’) and that #(x) — #'(x') = g(x'). So, for all »’ € X",
t(x') = tp(x') — g(x'); that is, ' =tp —gq.

< : Suppose t'(x) = tp(x") — q(»"), where x’ € X', and let x = p(x’).
By reversing the steps of the above argument, &’ + #(x') = x + #(x).
Since p is bijective, it follows that graph #' = graph ¢. O

To put the result in another way, this says that
)y =1 —¢
where y(¢) = graph ¢ and »’(#') = graph ¢'. The fact that the map
@)1y L(X,Y)— L(X",Y); twwtp—q

is affine is just another manifestation of the affine structure for O(V,Y).

grapht = grapht’

NS

E y'=q' )

t{x)z=y

) 0 x x X
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Prop. 8.12. Let Y and Y” be linear complements of the linear sub-
space X of the linear space V' andlett € L(X,Y)and ¢’ € L(X,Y’). Then

grapht’ = grapht < ' = g¢'t(lx + p't)-1
where (p',¢): Y — V = X x Y’ is the inclusion.

Proof = : Let graph ¢’ = graph ¢ and let »" € X. Then, for some
xeX, & + t'(x") = x + t(x). Since #x) = p'#(x) + ¢'t(x) it follows
that &’ —x = p'#(x) and that #'(x") = ¢'t(x). So, for all x€X,
¢'t(x) = t'(x + p't(x)); that is, ¢'t = #'(1x + p¢). Finally, 1x + p't is
invertible, with inverse 1x + pt’, where p(x + y) = «x for all x € X
yeY. 80t =qt(lx +p't)-t.

<= : Suppose ¢'t(x) = t'(x + p't(x)), where x € X, and let x’ =
x + p't(x). Then x' + t'(x") = x + t(x). Since 1x + p't is bijective,
it follows that graph ¢’ = graph ¢. O

Grassmannians

The last few propositions have application to the description of the
Grassmannians of a finite-dimensional K-linear space V, the set 4,(V),
consisting of all the linear subspaces of V' of a given dimension % not
greater than the dimension of V, being, by definition, the Grassmannian
of (linear) k-planes in V. When K is ordered, in particular when K = R,
there is also interest in the set %7 ('), consisting of all the oriented
linear subspaces of V of a given dimension %, this set being, by definition,
the Grassmannian of oriented (linear) k-planes in V.

An important example is the Grassmannian (V') of lines in V
through 0, also called the projective space of the linear space V.

Since any two linear complements in V" of a linear subspace Y have
the same dimension, the set @(V,Y) of all the linear complements in
V of Y is a subset of 4,(V'), where k is the codimension of ¥ in V. By
Propositions 8.6 and 5.22 or 8.11, ¢,(V') may therefore be regarded as
the union of a set of overlapping affine spaces, each of dimension
k(dim V — k). The same is true of %;(V), when K =R.

In particular, the projective space of an (# + 1)-dimensional linear
space V is the union of a set of overlapping #-dimensional affine spaces,
each of the form ®(V,Y), where Y is a linear hyperplane of V. Such
a projective space is said to be n-dimensional. The projective space
Z,(K»t1) is also denoted by KP~ or by P*K). A zero-dimensional pro-
jective space is called a projective point, a one-dimensional projective
space is called a projective line and a two-dimensional projective space
is called a projective plane.

Proposition 8.7 may be applied in two ways to the description of
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(V). It implies, first, that if X and X' are any two points of % (V),
then there is an affine subspace (V,Y) of 4,(V) to which they both
belong. Secondly, if the roles of X and Y are interchanged, the propo-
sition implies that any two of the affine subspaces &(V,Y) and &(V,Y")
intersect, Y and Y’ being linear subspaces of Y of codimension k.
Proposition 8.12 describes their intersection in terms of the linear struc-
tures on @(V,Y) and O(V,Y’) with common origin some common
point X of O(V,Y) n O(V,Y").

Exercise 8.13. Apply Propositions 8.6, 8.7, 8.11 and 8.12 to the
description of ¥ (V). O

As we shall see in Chapters 17 and 20, it follows at once from the
above remarks that any Grassmannian %,(V') or ¢ (V) is in a natural
way a smooth manifold.

Each point of the projective space %,(X) of a linear space X is a line
through 0 in X, this line being uniquely determined by any one of its
points x other than 0. The line, or projective point, K{x} will also be
denoted by [x]. When X = K»+!, withx = (x,:7 en 4 1), [x] will also
be denoted by [x;:7€n + 1], or by [xy, %1, . . ., ¥,], these notations
being particularly convenient in examples when one is working with
some particular small value of n. For example, [x,,%,] denotes a point
of %,(K?), namely the line in K2 through 0 and (x,,x,). (Confusion
here with the closed intervals of R, which are similarly denoted, is
most unlikely in practice.)

The projective line KP! = %,(K?) is often thought of simply as the
union of two copies of the field K, glued together by the map K »» K;
x > x~1, for KP! is the union of the images of the maps

7: K— KPl; yw-[1,y]
and 7 : K—KPY;  xw» [x,1],
with [1,y] = [»,1] if, and only if, y = x~1. In this model only one point
of the first copy of K fails to correspond to a point of the second. This
point [1,0] is often denoted by co and called the point at infinity on the
projective line. Every other point [x,y] of KP! is represented by a
unique point xy-! in the second copy of K. When we are using this
representation of KP?! we shall simply write K U {0} in place of KP1.

Example 8.14. Let Z a ‘»; be a polynomial of positive degree 7 over

the infinite field K. Then the polynomial map K — K; x w» X a;x¢
ien+1
may be regarded as the restriction to K with target K of the map

KU {0} —>KuU {0}; [xy]w[3 axiy—iy"],
ien+41
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for this map sends [¥4,4] = [x,1] = x to
[ 3 axidnir] =[ 3 afxl] = 3 apt
ien+1 ten+1 ien+l
and [4,0] =[1,0] = o to [4,A",0] = [1,0] =c0, for any x and any
non-zero 4 in K. O

This will be useful in the proof of the fundamental theorem of algebra
in Chapter 19, in the particular case when K = C.

The projective plane KP? = &,(K?) may be thought of, similarly, as
the union of three copies of K2 suitably glued together, for KP2 is the
union of the images of the maps

io : K2 KPZ; (ymzo) > [lyyO:zO])

7, : K2 KP2;, (x,2;) w» [%,1,2]
and 1, K2 KP2;  (x,,y,) > [%5,75,1].
In this representation, (y,,2,) in the domain of 7, and (x,2;) in the
domain of 7, represent the same point of ,(K?) if, and only if, x, = y5?!
and 2z; = 2,95 . (Cf. the construction of the Cayley plane on page 285.)

As was the case with KPY, it is often convenient in working with
KP:? to regard one of the injections, say i,, as standard and to regard
all the points of ¢,(K?) not lying in the image of 7, as lying at infinity.
Observe that the set of points lying at infinity is a projective line,
namely the projective space of the plane {(»,y,2) e K3:2 =0} in K3,

Similar remarks apply to projective spaces of dimension greater than
2. The following proposition formalizes the intuition concerning ‘points
at infinity’ in the general case.

Prop. 8.15. Any projective space of positive dimension # may be
represented, as a set, as the disjoint union of an n-dimensional affine
space and the (» — 1)-dimensional projective space of its vector space
(the hyperplane at infinity).

k{d

/ ! /x / "
offine copy of K
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Proof It is sufficient to consider KP" = %,(K"+1) and to show that
KP* may be regarded as the disjoint union of an affine copy of K* and
KP»-1 = @,(K").

To do so, set K»+1 = K* @ K. Then each line through 0 in K»+1
is either a line of K or a linear complement in K»+! of K», these
two possibilities being mutually exclusive. Conversely, each line of
K and each linear complement in K»+1 of K* is a line through 0 in
K»+1, That is, KP" is the disjoint union of KP*~! = &,(K") and the
affine copy of K=, O(K"+1,K"). 0

Suppose now that X and Y are finite-dimensional linear spaces. Each
injective linear map ¢ : X — Y induces a map

for each number % not greater than the dimension of X.
In particular, if dim X > 0, ¢ induces a map

Z,(2) = 1, | 9(X) : Gy(X) —> %(Y).
Such a map is said to be a projective map.

Prop. 8.16. Let ¢ and u: X — Y induce the same projective map
G(X)—> %(Y), X and Y being K-linear spaces of positive finite
dimension. Then there is a non-zero element 1 of K such that u = At. [

Projective subspaces of a projective space ¥;(V') are defined in the
obvious way. Each projective subspace of a given dimension % is the
projective space of a linear subspace of ¥ of dimension £ 4 1. Con-
versely, the projective space of any linear subspace of V of dimension
greater than zero is a projective subspace of %,(V). It follows that,
for any finite %k, the Grassmannian %;+,(V), the set of linear subspaces
of dimension k + 1 of the linear space V, may be identified with the
set of projective subspaces of dimension % of the projective space Gy(V').
For example, the Grassmannian %,(K*) of linear planes in K* may be
identified with the set of projective lines in KP3,

There is a projective version of Prop. 6.29.

Prop. 8.17. Let X and Y be linear subspaces of a finite-dimensional
linear space V. Then
dim g(X 4 Y) + dim (Z(X) N gy(Y)) = dim &,(X) + dim ¢,(Y),
where, by convention, dim § = dim %,{0} = —1. O

The projective subspace ¥,(X + Y) of V is said to be the join of the

projective subspaces ¢,(X) and %,(Y).
The Grassmannian %,(X) of k-planes in a finite-dimensional K-linear
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space X is related to the set of k-framings of X, GL(K* X), by the
surjective map
h: GL(K*X)— @,(X); t->imt.
Now L(K,X) is naturally isomorphic to X and in this isomorphism
GL(K,X) corresponds to X \ {0}. Therefore in the case that & =1
the map % may be identified with the map
X\ {0} > 9(X); x> K{x}.

The latter map is called the Hopf map over the projective space %,(X).

It is not our purpose to develop the ideas of projective geometry.

There are many excellent books which do so. See, in particular, [20],

which complements in a useful way the linear algebra presented in this
book.

FURTHER EXERCISES

8.18. Let V be alinear space and let X, Y and Z be linear subspaces of
Vsuchthat V=(X@ Y) ® Z. Prove that V=X ®(Y ®2). O

8.19. Letu: X ® Y —> Z be alinear map such that #| Y is invertible,
and let « denote the isomorphism X X ¥ — X @ V; (xy) w>x + 3.
Prove that there exists a unique linear map ¢: X — Y such that
ker u = a,(graph ?). O

8.20. Lett: X — X be alinear involution of a linear space X (that is,
t is linear and 22 = 1x). Prove that

X=im(lx + ) ®im(lx —?)
and that ¢ preserves this direct sum decomposition, reducing to the
identity on one component and to minus the identity on the other.

Interpret this when X = K(n), for any finite #, and ¢ is transposi-
tion. )

8.21. Let t: X — X be a linear map, X being a finite-dimensional
linear space. Prove that X = ker # @ im ¢if, and onlyif, tk ¢t =tk 2. [J

8.22. Let t: V— V be a linear map, V being a finite-dimensional
linear space, and suppose that, for each direct sum decomposition
X@® YoV,

L(V) = 1(X) + 1,(Y).
Prove that ¢ is an isomorphism. |
8.23. Verify that the map
gl(Ra) — Z(R%);  [%3,2] v [yz,32,29]
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is well-defined, and determine the domain, the image and the fibres of
the map. O

8.24. Verify that the map

2z
4. (R3) — R3;  [x,y,2] w»> s pe g (x,7,%)

is well defined, with image
{(w0,w) eR3: 0 4 2 + (w — 1)2 = 1},
and determine the fibres of the map. [}



CHAPTER 9

ORTHOGONAL SPACES

As we have already remarked in the introduction to Chapter 3, the
intuitive plane, the plane of our intuition, has more structure than the
two-dimensional affine (or linear) space which it has been used to
represent in Chapters 3 to 8. For consider two intersecting oriented
lines Iy, /; in the intuitive plane.

N 6
™~

~ (.

Then we ‘know’ how to rotate one line on to the other, keeping the
point of intersection 0 fixed and respecting the orientations, and we
‘know’ how to project one line on to the other orthogonally. Both these
maps are linear, if the point of intersection is chosen as the origin for
both lines. There are two special cases, namely when /, = /, and when
I, = —1I, (—1, is the same line as /;, but has the opposite orientation).
If I, = I, each map is the identity, while if /, = —IJ, one is minus the
identity (after 0 has been chosen!) and the other is the identity, If
I, %1, or —I, neither map is defined by the affine structure alone.
The first intuition, that we can rotate one oriented line on to another,
acquired by playing with rulers and so forth, is the basis of our concept
of the length of a line-segment or, equivalently, of the distance between
two points, since it enables us to compare line-segments on lines which
need not be parallel to one another. The only additional facts (or
experiences) required to set the concept up, other than the fundamental
correspondence between the points of a line and the real numbers

already discussed in Chapter 2, are first that the rotation of oriented
146
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lines is translation-invariant: that is, if I; and Jj are the (oriented) images
of /, and /; by some translation of the plane, then the rotation of /; on to
1, followed by the translation of /; on to /] is equal to the translation of
Iy on to [, followed by the rotation of /; on to J;; and secondly that it is
transitive: that is, given three oriented lines, [y, /;, /,, say, with a common
point of intersection, then the rotation of /, on to /, is the composite of
the rotation of /, on to /; and the rotation of /; on to /,.

In what follows, the oriented affine line joining two distinct points
a and b of the plane, with b = a taken to be a positive tangent vector
at a, will be denoted by ab. The length of a line segment [a,b] (with
respect to some unit line-segment assigned the length 1) will be denoted
by|a—b]|

The second intuition, that we can project one line on to another
orthogonally, is derived from the more fundamental one that we know
what is meant by two lines being at right angles or orthogonal to one
another. Through any point of a line in the plane there is a unique
line through that point orthogonal to the given line and distinct from
it. Orthogonality also is translation-invariant: if two lines of the plane
are at right angles, then their images in any translation of the plane also
are at right angles. The orthogonal projection of /; on to /; is then the
restriction to /; of the projection of the plane on to /, with fibres the
(mutually parallel) lines of the plane orthogonal to /.

The final observation, which leads directly to Pythagoras’ ‘theorem’,
is that if we are given two intersecting oriented lines /; and I, with
Iy 21y or —1,, then the linear map obtained by first rotating /; on to
/, and then projecting /, orthogonally on to /, is a linear contraction of
ly, that is, multiplication by a real number, the cosine of the angle
(lo,1y), of absolute value < 1. Moreover, the contraction coefficient, the
cosine, remains the same if the roles of /, and /, are interchanged.

To deduce Pythagoras’ theorem, consider three non-collinear points
a, b, ¢ of the plane, such that the lines ac and bc are at right angles,

c
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and let d be the image of ¢ by the orthogonal projection of the plane
on to the line ab.
Let 4 be the cosine of the angle (ac, ad) and let u be the cosine of
the angle (bc, bd). Then
la—d|=Ala—-c|=2A4%|a—b]
and |ld —b|=plc—b|=p2la—0|
Since 42 and u? are each less than 1, d lies between ¢ and &, and so
la —bl=|a—~d|+1d—b}|
implying that
la—b2=|a—c|®+]c—b]|
If R2 is taken as a model for the intuitive plane, with R x {0} and
{0} x R representing mutually orthogonal lines, and with (1,0) and
(0,1) each at unit distance from the origin, then it follows that the
distance of any point (x,y) of R? from the origin is 4/(x* 4 y?). The
geometry therefore provides a motivation for studying the quadratic form
R2—R; (x,y)w> x2 4 y2
As we shall see in detail in this chapter, we can reconstruct all the
phenomena which we have just noted on the intuitive plane by starting
with a real linear space and a distinguished quadratic form on the space.
To begin with, we consider arbitrary real-valued quadratic forms on
real linear spaces, positive-definite ones, such as (x,y) »w»> x% - y2, being
considered specially later on. A final section is concerned with analogues
over the complex field. Other generalizations are deferred until Chap-
ter 11. Geometrical applications of both chapters will be found in
Chapter 12, while some of the deeper properties of the orthogonal
groups and their analogues are discussed in Chapters 13, 17 and 20.

Real orthogonal spaces

A quadratic form on a real linear space X is most conveniently intro-
duced in terms of a symmetric scalar product on X. This, by definition,
is a bilinear map

X2—R; (ab)w>ab
such that, for all 4, b € X, b-a = a-b. The map
X—R; awra-a
is called the guadratic form of the scalar product, a® = a-a being

called the square of a. (The notation a2 is reserved for later use in
Chapter 13.) Since, for each g, b € X,

2a-b = a® + b® — (a — b)®,
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the scalar product is uniquely determined by its quadratic form. In
particular, the scalar product is the zero map if, and only if, its quad-
ratic form is the zero map.

The following are examples of scalar products on R2:

((x), (x",y)) >0, xx', xx’ + yy', —xx’ 4 yy’ and xy’ 4 &/,
their respective quadratic forms being
(%,7) w0, 22, x2 4 32, —x® 4 y®and 2xy.
It is a consequence of the symmetry of the scalar product that, for all
a,beX, bra=0 < ab=0.

When a-b = 0 the elements @ and b of X are said to be mutually
orthogonal. Subsets A and B of X are said to be mutually orthogonal if,
foreachaeA,beB,a'b=0.

A real linear space with scalar product will be called a (real) ortho-
gonal space, any linear subspace W of an orthogonal space X being
tacitly assigned the restriction to W?2 of the scalar product for X.

An orthogonal space X is said to be positive-definite if, for all non-
zero a€ X, a® > 0, and to be megative-definite if, for all non-zero
ac X, a® < 0. An example of a positive-definite space is the linear
space R? with the scalar product

((29), (¢',37)) o 22" 4 35",
An orthogonal space whose scalar product is the zero map is said to be
isotropic (the term derives from its use in the special theory of rela-
tivity), and an orthogonal space that is the linear direct sum of two
isotropic subspaces is said to be neutral.

It is convenient to have short notations for the orthogonal spaces
that most commonly occur in practice. The linear space R?+? with the
scalar product

(a’b) W — 2 a; bi + 2 Ayt bp+.1'
iep jeq
will therefore be denoted by R?4, while the linear space R?* with the
scalar product
(a.b) wor 3 (@i byt i + s i b))

1€n

will be denoted by R}, or by R, when #n = 1. The letters hb are an
abbreviation for hyperbolic, R}, being the standard hyperbolic plane. The
linear space underlying R?? will frequently be identified with R? x R?
and the linear space underlying REZwith R* x R", The linear subspaces
R* x {0} and {0} x R"of R* x R" are isotropic subspaces of R2}. This
orthogonal space is therefore neutral. The orthogonal spaces R%" and
R™? are, respectively, positive-definite and negative-definite.
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When there is only one orthogonal structure assigned to a linear space
X, the dot notation for the scalar product will normally be most con-
venient, and will often be used without special comment. Alternative
notations will be introduced later.

Invertible elements

An element a of an orthogonal space X is said to be invertible if
a® =20, the element a(-9 = (a(®)~1a being called the inverse of a.
Every non-isotropic real orthogonal space X possesses invertible ele-
ments since the quadratic form on X is zero only if the scalar product is
Zero.

Prop. 9.1. Let a be an invertible element of an orthogonal space X.
Then, for some 1 € R, (1a)® = 41,

Proof Since (Aa)-(Aa) = A2a® and since a®® 20 we may choose
A= (v(a®))-t O
Prop. 9.2. If a and b are invertible elements of an orthogonal space

X with a® = 53, then a -+ b and a — b are mutually orthogonal and
either a 4 b or a — b is invertible.

Proof Since (a + b)'(a —b) =a® —b®» =0, a+ b is ortho-
gonal to a — b. Also

(a+5)® + (@ —b)® =a® + 24-b + b + a® — 2a-b + b®

— 4a(2)’

so, if at® 20, (a + b)® and (@ — b)® are not both zero. O

The elements @ 4 b and a — b need not both be invertible even
when a % +b. Consider, for example, R2, In this case we have
(1,1,1)®» =(1,1,—-1)®» =1, and (0,0,2) = (1,1,1) — (1,1,—1) is inver-
tible, since (0,0,2)» = 4 == 0. However, (2,2,0) = (1,1,1) 4 (1,1,—1)
is non-invertible, since (2,2,0)¢» = 0.

For a sequel to Prop. 9.2, see Prop. 9.40.

Linear correlations

Let X be any real linear space, with dual space X. Any linear map
£: X— X¥%; x> af = &(x) is said to be a kLnear correlation on X.
An example of a linear correlation on R” is transposition:

7: R — (RM)E; 2 v &7,
(In accordance with the remark on page 106, we usually write X in
place of X¥ whenever X is finite-dimensional.)
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A correlation £ is said to be symmetric if, for all a, b € X, a*(b) = b%(a).
A symmetric correlation & induces a scalar product (a,b) «~w- a*b = a*(b).
Conversely, any scalar product (a,b) w» a-b is so induced by a unique
symmetric correlation, namely the map a > (@ -), where, for all q, b € X,
(a*)b = a-b. A real linear space X with a correlation & will be called a
real correlated (linear) space. By the above remarks any real orthogonal
space may be thought of as a symmetric real correlated space, and con-
versely.

Non-degenerate spaces

In this section we suppose, for simplicity, that X is a finite-dimen-
stonal real orthogonal space, with correlation &. For such a space, ¢ is,
by Cor. 6.33, injective if, and only if, it is bijective, in which case X,
its scalar product, its quadratic form, and its correlation are all said to
be non-degenerate. If, on the other hand, £ is not injective, that is if
ker & 3= {0}, then X is said to be degenerate. The kernel of &, ker &, is
also called the kernel of X and denoted by ker X. An element a € X
belongs to ker X if, and only if, for all x € X, a-x = a*x = 0, that is
if, and only if, @ is orthogonal to each element of X. From this it at
once follows that a positive-definite space is non-degenerate. The rank
of £ is also called the rank of X and denoted by rk X. The space X is
non-degenerate if, and only if, rk X = dim X.

Prop. 9.3. Let 4 be a finite set of mutually orthogonal invertible
elements of a real orthogonal space X. Then the linear image of 4, R4,
is a non-degenerate subspace of X.

Proof Let A be any set of coefficients for A4 such that 3 1,a 0.

acd

Then, by the orthogonality condition,
( 3 20)%( I Aat) = T 17 > 0,
acd acd

aed

where & is the correlation on X. So ZAlaa ¢ ker (RA4). Therefore
ker (R4) = {0}. That is, R4 is non-degenerate. O

Cor. 9.4. For any finite p, g, the orthogonal space R?! is non-
degenerate. O

Prop. 9.5. Let X be a finite-dimensional real orthogonal space and
let X’ be a linear complement in X of ker X. Then X’ is a non-
degenerate subspace of X. O
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Orthogonal maps

As always, there is interest in the maps preserving a given structure.

Let X and Y be real orthogonal spaces, with correlations & and 7,
respectively. A map ¢: X — Y is said to be a real orthogonal map if it is
linear and, for all a,b € X,

Ha)" H(b) = a’b
or, informally, in terms of the dot notation,
t(a)-t(b) = a-b.
This condition may be re-expressed in terms of a commutative dia-
gram involving the linear dual ¢ of ¢, as follows.

Prop. 9.6. Let X,Y,& and # be as above. Then a linear map
t: X — Y is orthogonal if, and only if, ¥t = &, that is, if, and only if,
the diagram X —*> ¥ commutes.

| ol

X¥<—Y*%

Proof t¥nt =& < foralla,beX, tZnt(a)b) = &(a)(d)
< foralla,beX, (yi(a)t(b) = Ea)d)
<« foralla,beX, ta)y't(d) = a’b. O

Cor. 9.7. If X is non-degenerate, then any orthogonal map
t: X — Y is injective.

Proof Let ¢ be such a map, Then (#¥7)t = & is injective and so, by
Prop. 1.3, ¢ is injective. O

Prop. 9.8. Let W, X and Y be orthogonal spaces andlet #: X — Y
and u : W - X be orthogonal maps. Then 1x is orthogonal, #« is ortho-
gonal and, if ¢ is invertible, ¢~ is orthogonal. O

An invertible orthogonal map ¢: X — Y will be called an orthogonal
isomorphism, and two orthogonal spaces X and Y so related will be said
to be isomorphic.

Prop. 9.9. For any finite n the orthogonal spaces R*" and R} are
isomorphic.

Proof 1t is convenient to identify R* with R* X R" and to indicate
the scalar products of R*® and R%" by - and the scalar product of
R2? by 13- Then the map

R*™ —REE (x,) > (V2 (=% + 3,2 +3)
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is an orthogonal isomorphism; for it is clearly a linear isomorphism,
while, for any (x,y), (x',y") e R*",

v +y, o+ k(=o' + 952" +5y) o

=K +3) (=2 +5) + (=% +3) (" +5)

—X" x' + y . y'
(®9)-(='»)- O

Any two-dimensional orthogonal space isomorphic to the standard
hyperbolic plane R}, will be called a hyperbolic plane.

o

Prop. 9.10. Let X be an orthogonal space. Then any two linear
complements in X of ker X are isomorphic as orthogonal spaces. O

An invertible orthogonal map ¢: X — X wiil be called an orthogonal
automorphism of the orthogonal space X. By Cor. 9.7 any orthogonal
transformation of a non-degenerate finite-dimensional orthogonal space
X is an orthogonal automorphism of X.

For orthogonal spaces X and Y the set of orthogonal maps: X — Y
will be denoted by O(X,Y) and the group of orthogonal automorphisms
t: X — X will be denoted by O(X). For any finite p, ¢, n the groups
O(R?1) and O(R*") will also be denoted, respectively, by O(p,q;R) and
O(n;R) or, more briefly, by O(p,q) and O(n).

An orthogonal transformation of a finite-dimensional orthogonal space
X may or may not preserve the orientations of X. An orientation-
preserving orthogonal transformation of a finite-dimensional ortho-
gonal space X is said to be a special orthogonal transformation, or
a rotation, of X. The subgroup of O(X) consisting of the special
orthogonal transformations of X is denoted by SO(X), the groups
SO(R??) and SO(R%") also being denoted, respectively, by SO(p,9)
and by SO(n).

An orthogonal automorphism of X that reverses the orientations of X
will be called an antirotation of X.

Prop. 9.11. For any finite p, g, the groups O(p,q) and O(g,p) are
isomorphic, as are the groups SO(p,q) and SO(g,p). O

Adjoints

Suppose now that #: X — Y is a linear map of a non-degenerate
finite-dimensional orthogonal space X, with correlation £, to an ortho-
gonal space Y, with correlation #. Since £ is bijective there will be a
unique linear map t*: ¥ — X such that &* = %%, that is, such that,
for any x € X, y € Y, t¥(y)x = y-#(x). The map t* = £-1t%y is called
the adjoint of ¢t with respect to & and #.
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Prop. 9.12. Let W, X and Y be non-degenerate finite-dimensional
real orthogonal spaces. Then
(1) the map L(X,Y)— L(Y,X); ¢~ t*is linear,
(ii) for any t € L(X,Y), (#*)* = ¢,
(iii) for any ¢ € L(X,Y), u € L(W,X), (tu)* = u*t*. O

Cor. 9.13. Let X be a non-degenerate finite-dimensional real ortho-
gonal space. Then the map

End X — End X; ¢ t*
is an anti-involution of the real algebra End X = L(X,X). O

Prop. 9.14. Let t: X—> Y be a linear map of a non-degenerate
finite-dimensional orthogonal space X with correlation & to an ortho-
gonal space Y with correlation #. Then ¢ is orthogonal if, and only if,
t*t = 1x.

Proof Since & is bijective,
thyt = & <« £ Uipt = t% = 5. O

Cor. 9.15. A linear automorphism ¢: X — X of a non-degenerate
finite-dimensional orthogonal space X is orthogonal if, and only if,
* =t A

Prop. 9.16. Let ¢: X — X be a linear transformation of a finite-
dimensional non-degenerate orthogonal space X. Then x-#(x) = 0, for
all x € X, if, and only if, t* = —¢.

Proof x-t(x) =0, for all x € X,

< xei(x) + &} x) — (x — &) Hx — &)
=x-#(x') + x"t(x) =0, forall x, x’ € X

< Hx')x -+ t*¥x)x =0, forall x, ' €X

< (t -+ t*)(x') =0, for all »" € X, since ker X =0

< t+t*=0, O

Cor. 9.17. Let t: X — X be an orthogonal transformation of a
finite-dimensional non-degenerate orthogonal space X. Then x-#(x) =0,
for all x € X, if, and only if, t? = —1x. |

Exercise 9.18. Let f: X— X be a linear transformation of a
finite-dimensional orthogonal space X, and suppose that #2 is orthogonal.
Discuss whether or not ¢ is necessarily orthogonal. Discuss, in particular,
the case where X is positive-definite. O
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Examples of adjoints

The next few propositions show what the adjoint of a linear map
looks like in several important cases. It is convenient throughout these
examples to use the same letter to denote not only a linear map
t:R?—> R? but also its ¢ X p matrix over R. Elements of R are
identified with column matrices and elements of (R?)Z with row matrices,
as at the end of Chapter 3. (We write (R?)* and not (R?)¥, since R? is
finite-dimensional.) For any linear map #: R? — RY, #* denotes both the
transpose of the matrix of ¢ and also the linear map R? — R? repre-
sented by this matrix.

Prop. 9.19. Let ¢: R%” — R% be a linear map. Then t* = ¢,
Proof For any x €R?, y €RY,

yix) = ytx = (Fy)x = £(y) .
Now R%? is non-degenerate, implying that the adjoint of ¢ is unique.
So t¥ = . O

The case p = ¢ = 2 is worth considering in more detail.

Example 9.20. Let £: R*?— R%Z be a linear map with matrix
(a c). Then #* has matrix (a b)and t is therefore orthogonal if, and
b d c d

only if,
a b\fa ¢\ (1 0\,
c d)\b d/ \0 1

that is, if, and only if, 4% + b% = ¢ 4+ d*® = 1 and ac + bd = 0, from
which it follows that the matrix is either of the form (a -—b) or of
b a
the form (a b), with a? + b% = 1. The map in the first case is a
b —a
rotation and in the second case an antirotation, as can be verified by
examination of the sign of the determinant. O

To simplify notations in the next two propositions R?? and R} are
identified, as linear spaces, with R? x R? and R* x R~ respectively.
The entries in the matrices are linear maps.

Prop. 9.21. Let ¢: R»?— R?? be linear, and let ¢ = (a c). Then

b d
t* = a— b\.
- d
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Proof For all (x,y), (x",y") € R?4,

(%) (ax’ + ¢y’ , bx'" + dy')

—s(ax’ + cv) + 5 (b + dy)
—(@x)x’ — (%)Y + (By)a" + (dy)y'
—(@x — by)’x" + (—cx + d¥y)y’
(¢ — by, —c*x + dy)-(x",y'). O

Cor. 9.22. For such a linear map ¢, dett* = dett, and, if ¢ is
orthogonal, (det ¢)? = 1. O

Prop. 9.23. Let ¢: R} —s R}? be linear, where t = (a c). Then
t* = (d° ). O b d
T af

Orthogonal annihilators

i

Let X be a finite-dimensional real orthogonal space with correlation
£: X — XL and let W be a linear subspace of X. In Chapter 6 the
dual annihilator W@ of W was defined to be the subspace of X% anni-
hilating W, namely

{# € XL for all w e W, p(w) = 0}.

By Prop. 6.28, dim W® = dim X — dim W. We now define
Wt = E(W®). That is,
Wt ={aeX:aw=0,foralwe W}

This linear subspace of X is called the orthogonal annihilator of Win X.
Its dimension is not less than dim X — dim W, being equal to this
when £ is bijective, that is, when X is non-degenerate.

A linear complement ¥ of W in X that is also a linear subspace of W+
is said to be an orthogonal complement of Win X. The direct sum decom-
position W @ Y of X is then said to be an orthogonal decomposition of X.

Prop. 9.24. Let W be a linear subspace of a finite-dimensional real
orthogonal space X. Then ker W = W n W+, O

Prop. 9.25. Let W be a linear subspace of a non-degenerate finite-
dimensional real orthogonal space X. Then X = W @ W+ if, and only
if W is non-degenerate, W+, in this case, being the unique orthogonal
complement of Win X.

Proof < : Suppose W is non-degenerate. Then W n Wt = {0}.
Also, since the correlation on X is injective, dim W+ = dim W@
= dim X — dim W, implying, by Prop. 6.29, that

dim (W + W) = dim W + dim W' — dim (W n W) = dim X,
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and therefore, by Cor. 6.17, that W + W' = X. It follows that
X=W® WL,

= : Suppose W is degenerate. Then W n W+ 3 {0}, implying
that X is not the direct sum of W and W<. 0

Cor. 9.26. Let a be a non-zero element of a non-degenerate finite-
dimensional real orthogonal space X. Then X = (R{a}) ® (R{a})* if,
and only if, a is invertible. O

Prop. 9.27. Let W be a linear subspace of a non-degenerate finite-
dimensional real orthogonal space X. Then (W1)+ = W. O

Prop. 9.28. Let V and ¥ be linear subspaces of a finite-dimensional
orthogonal space X. Then V =« W+ <« W< Vi, O

A first application of the orthogonal annihilator is to isotropic sub-
spaces.

Prop. 9.29. Let W be a linear subspace of a finite-dimensional real
orthogonal space X. Then Wis isotropicif, and onlyif, W <« W+. [J

Cor. 9.30. Let W be an isotropic subspace of a non-degenerate
finite-dimensional real orthogonal space X. Then dim W < } dim X. [J

By this corollary it is only just possible for a non-degenerate finite-
dimensional real orthogonal space to be neutral. As we noted earlier,
R and therefore also R™", is such a space.

The basis theorem

Let W be a linear subspace of a non-degenerate real orthogonal space
X. Then, by Prop. 9.25, X = W @ W+ if, and only if, W is non-
degenerate. Moreover, if W is non-degenerate, then, by Prop. 9.27,
W+ also is non-degenerate.

These remarks lead to the basis theorem, which we take in two stages.

Theorem 9.31. An n-dimensional non-degenerate real orthogonal
space, with # > 0, is expressible as the direct sum of 7 non-degenerate
mutually orthogonal lines.

Proof By induction. The basis, with n = 1, is a tautology. Suppose
now the truth of the theorem for any n-dimensional space and consider
an (n + 1)~-dimensional orthogonal space X. Since the scalar product
on X is not zero, there exists an invertible element 4 € X and therefore
a non-degenerate line, R{a¢}, in X. So X = (R{a}) ® (R{a})*. By
hypothesis, (R{a})*, being n-dimensional, is the direct sum of » non-
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degenerate mutually orthogonal lines; so the step is proved, and hence
the theorem. O

A linearly free subset S of a real orthogonal space X, such that any
two distinct elements of .S are mutually orthogonal, with the square of
any element of the basis equal to 0, —1 or 1, is said to be an orthonormal
subset of X. If S also spans X, then S is said to be an orthonormal basis
for X.

Theorem 9.32. (Basis theorem.) Any finite-dimensional orthogonal
space X has an orthonormal basis.

Proof Let X’ be a linear complement in X of ker X. Then, by
Prop. 9.5, X’ is a non-degenerate subspace of X and so has an ortho-
normal basis, B, say, by Theorem 9.31 and Prop. 9.1. Let 4 be any
basis for ker X. Then 4 U B is an orthonormal basis for X. 0

Cor. 9.33. (The classification theorem, continued in Cor. 9.48.)
Any non-degenerate finite-dimensional orthogonal space X is iso-
morphic to R?? for some finite p, g. O

Cor. 9.34. For any orthogonal automorphism ¢: X — X of a non-
degenerate finite-dimensional orthogonal space X, (det #)2 =1, and,
for any rotation ¢ of X, det? = 1.

Proof Apply Cor. 9.33 and Cor. 9.22. O

Reflections

Prop. 9.35. Let W@ Y be an orthogonal decomposition of an
orthogonal space X. Then the map
X—>X; wt+yww—y,
where w € W and y € Y, is orthogonal. 0O

Such a map is said to be a reflection of X in W. When Y = W+ the
map is said to be the reflection of X in W. A reflection of X in a linear
hyperplane W is said to be a hyperplane reflection of X. Such a reflec-
tion exists if dim X > 0, for the hyperplane can be chosen to be an
orthogonal complement of R{a}, where a is either an element of ker X
or an invertible element of X.

Prop. 9.36. A hyperplane reflection of a finite-dimensional ortho-
gonal space X is an antirotation of X. a

Cor.9.37. Let X be an orthogonal space of positive finite dimension.
Then SO(X) is a normal subgroup of O(X) and O(X)/SO(X) is
isomorphic to the group Z,. O
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Here Z, is the additive group consisting of the set 2 = {0,1} with
addition mod 2. The group is isomorphic to the multiplicative group
{1,—1}, a group that will later also be denoted by S°.

Exercise 9.38. Let n: O(X)— Z, be the group surjection, with
kernel SO(X), defined in Cor. 9.37. For which values of dim X is
there a group injection s: Z, — O(X), such that #s = 1z, and such
that im s is a normal subgroup of O(X)? O

Exercise 9.39. Let X be an orthogonal space of positive finite
dimension. For which values of dim X, if any, is the group O(X) iso-
morphic to the group product SO(X) x Z,? (It may be helpful to
refer back to the last section of Chapter 5.) O

If a is an invertible element of a finite-dimensional orthogonal space
X, then the hyperplane (R{a})* is the unique orthogonal complement
of the line R{a}. The reflection of X in this hyperplane will be denoted

by p,.

Prop. 9.40. Suppose that a and b are invertible elements of a finite-
dimensional orthogonal space X, such that a(® = b(?. Then a may be
mapped to b either by a single hyperplane reflection of X or by the
composite of two hyperplane reflections of X.

Proof By Prop. 9.2, either a — b or a + b is invertible, @ — b
and a + b being in any case mutually orthogonal. In the first case,
Pa_p €xists and

pa-1(@) = pa_y(3(@ — b) + $(a + b))
= —§(a —b) + }a + b) =b.

In the second case, p,,, exists and
PrPa+(@) = pi(—b) = b. a

Theorem 9.41. Any orthogonal transformation ¢ : X — X of a non-
degenerate finite-dimensional orthogonal space X is expressible as the
composite of a finite number of hyperplane reflections of X, the number
being not greater than 2 dim X, or, if X is positive-definite, dim X.

Indication of proof This is a straightforward induction based on
Prop. 9.40. Suppose the theorem true for n-dimensional spaces and let
X be (n + 1)-dimensional, with an orthonormal basis {e;: ¢ e n + 1},
say. Then, by Prop. 9.40, there is an orthogonal map u : X — X, either
a hyperplane reflection or the composite of two hyperplane reflections
of X, such that ut(e,) = e,. The map ut induces an orthogonal trans-
formation of the n-dimensional linear image of {¢; : 7 € n} and the induc-
tive hypothesis is applicable to this. The details are left as an exercise. [
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By Prop. 9.36 the number of reflections composing ¢ is even when
tis a rotation and odd when ¢ is an antirotation. The following corollaries
are important. To simplify notations we write R? for R%2 and R? for
R0’3.

Cor. 9.42. Any antirotation of R? is a reflection in some line of
R2, O

Cor. 9.43. Any rotation of R? is the composite of two plane reflec-
tions of R3. 0

Prop. 9.44. The only rotation ¢ of R? leaving a non-zero point of R?
fixed is the identity.

Proof Let a be such a point and let b, = Aa, where 1! = 4/(a®).
Then there exists a unique element b, € R?such that (b,,b,) is a positively
oriented orthonormal basis for R2. Since # is a rotation leaving b, fixed,
b, also is left fixed by ¢. So ¢ is the identity. O

Prop. 9.45. Any rotation ¢ of R3, other than the identity, leaves
fixed each point of a unique line in R3.

Proof Let t = pyp,, where a and b are invertible elements of R2.
Then either & = Aa, for some 4 € R, in which case p, = p, and £ = 1,
or there exists an element ¢, orthogonal to the plane spanned by a and 4.
Since p,(c) and py(c) are each equal to —c¢, it follows that #(c) = ¢ and
therefore that each point of the line R{c} is left fixed by ¢.

If each point of more than one line is left fixed then, if orientations
are to be preserved, ¢ must be the identity, by an argument similar to
that used in the proof of Prop. 9.44.

Hence the result, O

The line left fixed is called the axis of the rotation ¢ of R3.
These spectal cases of Theorem 9.41 will be studied further in
Chapter 10. Theorem 9.41 has an important part to play in Chapter 13.

Signature

Prop.9.46. Let U@ Vand U’ @ V' be orthogonal decompositions
of an orthogonal space X such that, for all non-zero #’ € U’, #'®» < 0,
and, for all v € ¥, v > 0. Then the projection of X on to U with
kernel ¥ maps U’ injectively to U.

Proof Letu' = u+ v beanyelementof U’. Then#'(? =u? 4 ¢,
so that, if # = 0, #'(® = 2, implying that 4'(®» = 0 and therefore that
u =0. O
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Cor. 9.47. If, also, u® < 0, for all non-zero u € U, and v'® > 0,
for all o’ € V', then dim U = dim U’.

Proof By Prop. 9.46, dim U’ <dim U. By a similar argument
dim U <dim U’. O

Cor. 9.48. (Continuation of the classification theorem, Cor. 9.33.)
The orthogonal spaces R?? and RP*? are isomorphic if, and only if,
p=p andg=g¢. U

Cor. 9.49. Let fa c¢\:R?”— R?? be an orthogonal automor-

b d
phism of R?¢, R?? being identified as usual with R? x R% Then
a:R? — R? and d: R? — R? are linear isomorphisms. O

The orientations of R? and R? will be called the semi-orientations of the
orthogonal space R”?, and an orthogonal automorphism fa ¢\ of R??
b d
will be said to preserve the semi-orientations of R?? if a preserves the
orientations of R? and d preserves the orientations of R’

Exercise 9.50. Let SO*(1,1) denote the set of orthogonal automor-
phisms of R1:* that preserve both the semi-orientations of Rt Prove
that SO+(1,1) is a normal subgroup of SO(1,1) with quotient group
isomorphic to Z,.

(Show first that any element of SO+(1,1) may be written in the form

coshu sinhu
(sinh u cosh u)’ where # €R,

Note that it has to be proved that SO+(1,1) is a subset of SO(1,1).) O

Groups SO+*(p,q) analogous to SO+(1,1) exist for arbitrary finite p
and ¢. These groups, the proper Lorentz groups, are discussed on pages
268 and 427 (Prop. 20.96).

It follows from Cor. 9.33 that the quadratic form x-ww» x(® of a
finite-dimensional orthogonal space X may be represented as a ‘sum of
squares’

x = w0, 3 L]
ien ien

with respect to some suitable orthonormal hasis {e;: ¢ € n} for X, with
L= e =0, —1, or 1, for each 7 € n. By Cor. 9.48, the number, p,
of negative squares and the number, ¢, of positive squares are each
independent of the basis chosen and dimker X + p + ¢ = dim X;
that is, rk X = p + ¢. The pair of numbers (p,q) will be called the
signature of the quadratic form and of the orthogonal space. The number
inf {p,q} will be called the index of the form and of the orthogonal space.
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(The definitions of ‘signature’ and ‘index’ are not standard in the
literature, and almost all possibilities occur. For example, the signature
is frequently defined to be —p 4 ¢ and the index to be p. The number
we have called the index is sometimes called the Witt index of the
orthogonal space.)

The geometrical significance of the index is brought out in the next
proposition.

Prop. 9.51. Let W be an isotropic subspace of the orthogonal space
R?4, Then dim W <inf{p,q}.

Proof There is an obvious orthogonal decomposition R?*? = X @ Y,
where X =~ R??, and Y = R%. As in the proof of Prop. 9.46, the
restrictions to W of the projections of R?? on to X and Y, with kernels
Y and X respectively, are injective. Hence the result. O

The bound is attained since there is a subspace of R?? isomorphic
to R™", where r = inf {p,¢}, and R"" is neutral.

Witt decompositions

A Witt decomposition of a non-degenerate finite-dimensional real
orthogonal space X is a direct sum decomposition of X of the form
WeW @ (W W')L, where W and W’ are isotropic subspaces of
X. (Some authors restrict the use of the term to the case where dim W
= index X.)

One application of a Witt decomposition X = W@ W' @ (W W')L
is to the representation as linear subspaces of X of the various quotient
spaces and dual spaces involving the isotropic subspace W and its
annihilators W@ and W+:

(wow)
H W/W
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namely, W< /W may be represented by (W @ W')+
X/W may be represented by W’ @ (W @ W’)*+
and X/W+ and WL may be represented by W".

We shall return to this in Chapter 12.

The exact sequence of linear maps
{0} > WL/ W— X/W— X/ W+ — {0}

relating the various quotient spaces is a particular case of an exact
sequence between quotient spaces which we encountered in Chapter 5
on page 95.

Prop. 9.52. Let X be a non-degenerate finite-dimensional real
orthogonal space with a one-dimensional isotropic subspace W. Then
there exists another one-dimensional isotropic subspace W' such that
the plane spanned by W and W’ is a hyperbolic plane.

Proof Let w be anon-zero element of W. Since X is non-degenerate,
there exists ¥ € X such that w-x 20 and x may be chosen so that
w-x = 1. Then for any 4 e R, (¥ 4 Aw)® = x(® 4 21, this being zero
if 2 = —3x®, Let W’ be the line spanned by @' = x — 3x®w. The
line is isotropic since (w')®» = 0, and the plane spanned by w and @' is
isomorphic to R'?! since w-w' = w'-w = 1, and therefore, for any
a,beR, (aw 4 bw') w = b and (aw + bw')-w’ = a, both being zero
onlyifa=56=0. O

Cor. 9.53. Let W be an isotropic subspace of a non-degenerate
finite-dimensional real orthogonal space X. Then there exists an iso-
tropic subspace W' of X such that X =W W' @ (WD W')* (a
Witt decomposition of X). O

Cor. 9.54. Any non-degenerate finite-dimensional real orthogonal
space may be expressed as the direct sum of a finite number of hyper-
bolic planes and a positive- or negative-definite subspace, any two
components of the decomposition being mutually orthogonal. O

Neutral spaces

By Prop. 9.51 a non-degenerate finite-dimensional orthogonal space
is neutral if, and only if, its signature is (n,n), for some finite number 7,
that is, if, and only if, it is isomorphic to R%, or, equivalently, to R™,
for some n. The following proposition sometimes provides a quick
method of detecting whether or not an orthogonal space is neutral.
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Prop. 9.55. A non-degenerate finite-dimensional real orthogonal
space X is neutral if, and only if, there exists a linear map 2: X — X
such that #*¢ = —1.

(t*t = —1 < forall x € X, (#(x))® = —x®.) O

The next will be of use in Chapter 13.

Prop. 9.56. Let W be a possibly degenerate n-dimensional real
orthogonal space. Then W is isomorphic to an orthogonal subspace of

an. D

Positive-definite spaces

By Cor. 9.33 any finite-dimensional positive-definite orthogonal
space is isomorphic to R%” for some n. Throughout the remainder of
this chapter this orthogonal space will be denoted simply by R~

Let X be a positive-definite space. For all a, b € X the norm of a is,
by definition,

la| = +v(a®),
defined for all a € X since at® > 0, and the distance of a from b or the
length of the line-segment [a,b] is by definition | @ — & |. In particular,
for all 1 e R(= R%1), 1 = 22, and | 1 | = +/(A®) is the usual absolute
value.

Prop. 9.57. Let a, b, c € R. Then the quadratic form
f:R2—>R; (xy) > ax® + 2bxy + cy?
is positive-definite if, and only if, 2 > 0 and ac — 52 > 0.

Proof = : Suppose that fis positive-definite. Then f(1,0) = a > 0
and f(—b5,a) = a(ac — b%) > 0. So a > 0 and ac — 52 > 0.
< : If a > 0, then, for all x, y e R?,
f®y) = a~'((ax + by)® + (ac — b%)y?).
It follows that, if also ac — b% > 0, then f(x, y) is non-negative, and is

zero if, and only if, ax + by =0 and y = 0, that is, if, and only if,
x=0and y =0. O

Prop. 9.58. Let X be a positive-definite space. Then for all ¢, b € X,
A€R,

(1) |e] >0,

@) la]=0 = a=0,

B)le—5|=0 <« a=1b,

() [2a]=]2]]a],

(5) a and b are collinear with 0 if, and only if, |6 |a = J-|a |,
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(6) @ and b are collinear with 0 and not on opposite sides of 0 if,
and only if, |b|a=|alb,

(7) la:bl<|a]lbl,

(8 ab<lal]b],

) |la+b|<|a]|+]|b]| (the triangle inequality),

(10) |[lal—18]I<|a—2),

with equality in (7) if, and only if, @ and b are collinear with 0 and in
(8), (9) and (10) if, and only if, @ and & are collinear with 0 and not on
opposite sides of 0.

Proof (1), (2) and (3) are immediate consequences of the positive-
definiteness of the quadratic form and the definition of the norm.

(4) Forallaex, A R,
|da |2 = (Aa)® = A%a® = |2 |2 |a |
So |Ada|=]4]]a].
(5) <= :If a = b = 0 there is nothing to prove.
If either a of b is not zero, then either
_ 4 lal _ . 18l
a—ilblb or b——:lzlala.
In either case a and b are collinear with 0.
= : If a and b are collinear with 0, then either there exists
2 €R such that b = Jq, in which case | 5| = +4|a ]| and
|bla=HA|a|a=L|a]b,
or there exists 4 € R such that a = ub, from which it follows,
similarly, that [a | b = 4| b | a.
(6) This follows at once from (5).
(7) Forall », y R,
0 <|xa+ yb|* = (va + yb)® = a®x? 4 2(a-b)xy + by,
Therefore, by Prop. 9.57, (a-5)? < a®b® = |a|?| b |? and so
lab]<|alld]
(8) This follows by transitivity from the inequalities a-b < |a-b |
and |a'b| < |a]|b]|.
) la+b|<|a|+]b]
< (@+yh® < (la|+]b])?
< a® 4+ 2ab4+0D<a® +2]al|b]+b®
< ab < lalld],
which is (8).
(10) For all q, b € X,
lal=](e-b+b|I<|a—b|+]b]
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and
o) =10¢—a)+a|<|a—b]|+]a]
Sola]|—|b|<|a—~bland |b|—|a]|<|a—b];thatis,
[la]l—Tb]|<|a—2bl
Finally,
|bla=]alb < |bla—|alb=0
<(bla —|a|d)®» =0
< |b|*lal*—2]allblab + |a|?|b]*=0.

So
|bla=|al|b < ab=]|a||bl (8)
< |la+b|=|al+]b], 9
while |b|a= —|a|b < ab= —|a|]b],s0
la-b|=lal|b]| < |b]a=t]a]b 7

Also |a|=|a—b|+|b]
< |bl(@a—b)=]a—-blb=(la]|—|b])p
< |bla=]albd
and, similarly, |b]=]a—b]|+|a] < |bla=|alb. So
[la|—1b]|=]a—b] < |bla=lalb O (10)

Inequality (7) of Prop. 9.58 is known as the Cauchy-Schwarz in-
equality. It follows from this inequality that, for all non-zero a, b € X,
L <1
lal]b] =~

a-b being equal to 1 if, and only if, b is a positive multiple of q,
lallb]
and equal to —1 if, and only if, b is a negative multiple of a. The abso-
lute angle between the line-segments [0,a] arid [0,5] is defined by

a-b
08l =—F—, 0<06<m,
lallbd]
witha'b =0 < cos@ =0 <« 0 ==/2, this being consistent with
the ordinary usage of the word ‘orthogonal’.

A map 2: X —> Y between positive-definite spaces X and Y is said
to preserve scalar product if, for all a, b € X, t(a)-1(b) = a-b, to preserve
norm if, for all a€ X, |#Ha)| = | a|, to preserve distance if, for all
a,beX, |ta) —t(d)| =|a — b, and to preserve zero if t(0) = 0.

According to our earlier definition, # is orthogonal if it is linear and
preserves scalar product.

Of the various definitions of an orthogonal map proved equivalent in

_1<
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Prop. 9.59, (iii) is probably the most natural from a practical point of
view, being closest to our intuition of a rotation or antirotation.

Prop. 9.59. Let z: X— Y be a map between positive-definite
spaces X and Y. Then the following are equivalent:

(i) t is orthogonal,

(it) # is linear and preserves norm,
(iii) 2 preserves distance and zero,
(iv) t preserves scalar product.

Proof (i) = (ii): Suppose ¢ is orthogonal. Then ¢# is linear and, for
any a, b € X, t(a)-t(d) = a-b. In particular, (f(a))® = a(®, implying
that | t(a) | = | a |. That is, ¢ is linear and preserves norm.

(it) = (iii): Suppose ¢ is linear and preserves norm. Then for any
a,beX, |t(a) —t(d)| =|ta — b)| =|a — b |, while #(0) = 0. That
is, t preserves distance and zero.

(iif) = (iv): Suppose t preserves distance and zero. Then, for any
aeX, |tla)]=|ta) —0|=|ta) —t0)|=|a—0]=|al]. Sot
preserves norm. It follows that, for all a, b € X,

Ya)-1(b) = H((a)® + #(b)® — (Ha) — t(b))®)
= %(a(z) + 5 — (a — b)(z))
= a-b.
That is, ¢ preserves scalar product.

(iv) = (i): Suppose that ¢ preserves scalar product. Then, for all
a,be Xandall 1R,

(ta + ) — a) — (B)® = (@ +b) —a — B)® =0

and (t(Aa) — At(a))® = ((Aa) — Aa)® =0,
implying that #(a + ) = t(a) + #(b) and #(Aa) = A#(a). That is, ¢ is
linear, and therefore orthogonal. O

Euclidean spaces

A real affine space X, with an orthogonal structure for the vector
space X, is said to be an orthogonal affine space, the orthogonal affine
space being said to be positive-definite if its vector space is positive-
definite. A finite-dimensional positive-definite real affine space is said to
be a euclidean space.

Prop. 9.60. Let X be a euclidean space, let ¥ be an affine subspace
of X and let @ € X. Then the map W— R; @ w»> | w — a| is bounded
below and attains its infimum at a unique point of W.

Proof 1If a € W the infimum is 0, attained only at a.
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Suppose now that a ¢ W. Since the problem concerns only the affine
subspace of X spanned by W and {a} in which W is a hyperplane, we
may, without loss of generality, assume that I is a hyperplane in X.
Set @ =0 and let W have equation b-x = ¢, say, where b € X and
c € R, with b = 0 and ¢ > 0. By Prop. 9.58 (8),

c=bx<|b||x], forallxeW,
with equality if, and only if, | 5 | x = | x | b; thatis, [x | > ¢ | b |-, for
all x € W, with equality if, and only if, x = ¢ b(-. O

The unique point p at which the infimum is attained is called the
foot of the perpendicular from a to W, the perpendicular from a to W
being the line-segment [a,p].

Spheres

Let X be a euclidean space, and let a € X and r € R+, Then the set
{xeX:|x — a| =r} is called the sphere with centre a and radius r in
X. When X is linear, the sphere {x € X: | x| = 1} is said to be the
unit sphere in X. The unit sphere in R"*! is usually denoted by S»,
and called the unit n-sphere. In particular,

S°={xeR:x? =1} = {-1,1},
St = {(x,y) e R?: 2 + y? = 1}, the unit circle,
and S2%= {(»y,2) eR3: %2 4 y? 4 22 = 1}, the unit sphere.
In studying S* it is often useful to identify R*+! with R* x R. The

points (0,1) and (0,—1) are then referred to, respectively, as the North
and South poles of S».

Prop. 9.61. Let S be the unit sphere in a linear euclidean space X,
and let ¢: X — X be a linear transformation of X such that #,(S) < S.
Then ¢ is orthogonal, and #,(S) = S. O

Prop. 9.62. Let S be a sphere in a euclidean space X, and let W be
any affine subspace of X. Then W N S is a sphere on W, or a point,
or is null.

Proof Let a be the centre and 7 the radius of Sand let T = S n W.
Then w e T if, and only if, w e W and | w — a | = ». Let the foot of
the perpendicular from a on W be 0. Then, for all we W, w-a =0
and |w — a | = r if, and only if,

ww—2wa-t+aa=ww-+aa=r?
that is, if, and only if, w(®» = r? — a(®,
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The three cases then correspond to the cases
2> a®, r2=a® and r?<a®, |

In the particular case that W passes through the centre of S, the set
S N W is a sphere in W with centre the centre of S. Such a sphere is
said to be a great sphere on S. If also dim W = 1, S N W consists of a
pair of points on S that are mutually antipodal, that is, the centre of S'is
the mid-point of the line-segment joining them. Either of the points is
said to be the antipode of the other,

Prop. 9.63. For any finite #, the map
u

1 -7

undefined only at the North pole, (0,1), is invertible.

St >R (u,9) wo>

Proof Since (u,2) € S*, |u|? 4 92 = 1. 80, if x =

1—0o’
149 2
2 I
%] 1—2 1-—w 1,
and v, and therefore u, is uniquely determined by x. O

The map defined in Prop. 9.63 is said to be the stereographic projection
of S* from the North pole on to its equatorial plane, R* x {0}, iden-

tified with R". For, since (#,2) = (1 — 'v)(ri‘—_—v ,0) + ©(0,1), the three

points (0,1), (#,v) and (1—_11—7},0) are collinear.
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Similarly the map S">>R"; (1,0) wi——j—_;, undefined only at the

South pole, is invertible. This is stereographic projection from the
South pole on to the equatorial plane.

Prop. 9.64. Let f: S" »> R" be the stereographic projection of S*
on to R from the North pole, and let T be a sphere on S*. Then f,(T)
is a sphere in R* if T does not pass through (0,1), and is an affine
subspace of R" if T does pass through (0,1). Conversely, every sphere
or affine subspace in R» is of the form f,(T"), where T is a sphere on S*.

Indication of proof Let x = l—i——z;’ where (#,9) e R* x R, with

v #1,and | |* + v? = 1, and where x € R*. Then, for any q, c eR
and b e R?,
alx|2+2bx4c=0
lwl® oy oo
< a(1 —vz+2b 1—v+c—0
< a(l+v)+2bu+t+c(l —92)=0
< 2but+(a—cw+(a+c)=0.
The rest of the proof should now be clear. O
The following proposition will be required in Chapter 20.

Prop. 9.65. Let ¢, u:R*+l— R*+1 be linear transformations of
R7+1, Then the following statements are equivalent:

(i) For each x € S*, (»,2(x),u(x)) is an orthonormal 3-frame in R#+!
(i) ¢ and u are orthogonal, t? = u* = —1,4, and ut = —tu.

(Use Props. 9.16 and 9.61 and Cor. 9.15.) O

Complex orthogonal spaces

Much of this chapter extends at once to complex orthogonal spaces,
or indeed to orthogonal spaces over any commutative field K, R being
replaced simply by C, or by K, in the definitions, propositions and
theorems. Exceptions are the signature theorem, which is false, and the
whole section on positive-definite spaces, which is irrelevant since
positive-definiteness is not defined. The main classification theorem for
complex orthogonal spaces is the following.

Theorem 9.66. Let X be a non-degenerate n-dimensional complex
orthogonal space. Then X is isomorphic to C* with its standard complex
scalar product

Cr x C*— Cr:(a,b) wo 3 ab;. O
ien ‘



FURTHER EXERCISES 171

As in the real case, a neutral non-degenerate finite-dimensional
orthogonal space is even-dimensional, but in the complex case we can
say more.

Prop. 9.67. Let X be any non-degenerate complex orthogonal
space, of even dimension 2z. Then X is neutral, being isomorphic not
only to C?», but also to C*# and to C3%. [OJ

Note that the analogue of Prop. 9.55, with C replacing R, is false.
Finally, an exercise on adjoints.

Prop. 9.68. Let X be a non-degenerate finite-dimensional complex
orthogonal space. Then the maps

X X X—>R; (ab)»w»re(ab) and (a,b) wo> pu (a-d)
(cf. page 47) are symmetric scalar products on X, regarded as a real
linear space. Moreover the adjoint #* of any complex linear map
t: X —> X with respect to the complex scalar product, coincides with

the adjoint of ¢ with respect to either of the induced real scalar pro-
ducts. O

Complex orthogonal spaces are not to be confused with wunitary
spaces, complex linear spaces that carry a hermitian form. These are
among the other generalizations of the material of this chapter to be
discussed in Chapter 11.

FURTHER EXERCISES
9.69. Let X be a finite-dimensional linear space over K, where K = R
or C. Prove that the map
(X X XEP =K ((x0),(354)) o 1(y) + u(x)
is a neutral non-degenerate scalar product on the linear space X x XZ~.

a
9.70. Prove that R(2) with the quadratic form

R(2)— R; t-w»dett
is isomorphic as a real orthogonal space with the space R*?2, the subset

1 0\, /1 0}, /0 —1\, /0 1\} being an orthonormal basis.
01 0 —1 1 0 10

Verify that £ € R(2) is invertible with respect to the quadratic form if,

and only if, it is invertible as an element of the algebra R(2). 0O
9.71. For any fa c¢\€R(2), define fa ¢\~ =( d —c), the space
b d b d —-b a

R(2) being assigned the determinant quadratic form, and let any 2 e R
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be identified with (A O)G R(2). Verify that, for any teR(2), t7t =t
0 2

and that the subset T = {t e R(2): ¢ + ¢t~ = 0} is an orthogonal sub-
space of R(2) isomorphic to R?1, 0

9.72. Letu €R(2) and let ¢ € T, where T is as in Exercise 9.71. Sup-
pose also that ¢ is orthogonal to # — »#~. Show that tu € T. Hence prove
that any element of R(2) is expressible as the product of two elements

of T. O

9.73. With T as in 9.71, prove that, for any invertible # € T, the map
T— T; tw» —utu-! is reflection in the plane (R{u})*. O

9.74. Prove that, for any # € SL(2;R), the maps R(2) — R(2); t w»> ut
and ¢ w» tu are rotations of R(2). (It has to be shown not only that the
quadratic form is preserved but also that orientations are preserved.) []

9.75. For any u, v € SL(2;R), let
Puy: R(2)— R(2); tw>utp-1
and let p, denote the restriction of p,, with domain and target T.
Prove that the maps
SL(2;R) — SO(T); u-wsp,
and SL(2;R) x SL(2;R) — SOR(2)); (u,0) w>p,,
are surjective group maps and that the kernel in either case is isomorphic

to Z,. ]

9.76. Let X and Y be positive-definite spaces, let Z be a linear space
and let a: X — Z and b: Y —> Z be linear maps such that, for all
xeX,yeY, a(x) =b(y) = x® = y®, Prove that a and b are injec-
tive and that, if X and Y are finite-dimensional,

dim {(x,y) e X X Y:a(x) = b(y)} <inf {dim X,dim Y}. O

9.77. Prove that the graph of a linear map ¢ : R* — R* is an isotropic
subspace of R} if, and only if, ¢ + #* = 0. O

9.78. Find linear injections «: R — R(2) and 8: R*' — R(2) such
that, for all x e RM, (B(x))?2 = —a(x™). 0

9.79. Lett: R?-— R?be the orthogonal projection of R? on to the line
{(x,y) eR®: ax + by = 0}, where a, b €R, not both zero. Find the
matrix of ¢ and verify that #2 = ¢, O

9.80. Let 7 and j:R*—> S” be the ‘inverses’ of the stereographic
projection of S*, the unit sphere in R*+1 = R" x R, from its North
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and South poles respectively on to its equatorial plane R* = R* x {0}.
Prove that, for all x e R\ {0},

fyir (%) = jour i(%) =% O
9.81. Let (RP1HY) = {x e R?4*1: 4 = 1}, Prove that, for any
(%) €R? X 89, (x,4/(1 + x@)y) € L(R??*1), and that the map
R? x §?— FSRP); (x,) wo- (2,0/(1 + x)y)
is bijective. O
9.82. Determine whether or not the point-pairs (or O-spheres)
{xeR:x?—8x —12=0} and {xeR:x*—10x + 7 =0}
are linked. |

9.83. Determine whether or not the circles

{(xy,2)eR3: 22+ y* + 22=5 and x+y—1=0}
and

{*y2) eR3: 224 3>+ 22+ 2y —42=0 and x—z+ 1 =0}
are linked. O

9.84. Let A and B be mutually disjoint circles which link in R3, Prove
that the map

A X B—S% (ab)yw»>(b—a)/|b—al
is surjective, and describe the fibres of the map. O

9.85. What was your definition of ‘linked’ in the preceding three
exercises? Can two circles in R4 be linked, according to your definition?
Extend your definition to cover point-pairs on S* or circles on S3. Also
try to extend the definition to curves other than circles, either in R3
or on S3 (You will first have to decide what is meant by a curve!
The problem of obtaining a good definition of nking is a rather subtle
topological one. This is something to follow up after you have read
Chapters 16 and 19. An early discussion is by Brouwer [6] and an even
earlier one by Gauss [16]! See [50], page 60 and page 66, and also
[13) O

9.86. Show that any two mutually disjoint great circles on S? are
linked. O

9.87. Where can one find a pair of linked 3-spheres? O

9.88. [61.] Let X and Y be isomorphic non-degenerate orthogonal
spaces, let U and V" be orthogonal subspaces of X and Y respectively
and suppose that s: U— V is an orthogonal isomorphism. Construct
an orthogonal isomorphism #: X — Y such that s = (2| U)gy,. O



CHAPTER 10

QUATERNIONS

Certain real (and complex) algebras arise naturally in the detailed
study of the groups O(p,q), where p, ¢ € w. These are the Clifford
algebras, defined and studied in Chapter 13. As we shall see in that
chapter, examples of such algebras are R itself, the real algebra of
complex numbers C and the real algebra of quaternions H. The present
chapter is mainly concerned with the algebra H, but it is convenient first
of all to recall certain properties of C and to relate C to the group of
orthogonal transformations O(2) of R(2).

The real algebra C was defined at the end of Chapter 2, and its
algebraic properties listed. There was further discussion in Chapter 3. In
particular, it was remarked in Prop. 3.38 that there is a unique algebra
involution of C different from the identity, namely conjugation

C—>C; z2=x4+iywi=x —1,
where (x,y) € R2. Now since, for any 2 =x - iy eC, |2 =52 =
x% 4+ 2, C can in a natural way be identified not only with the linear

space R2 but also with the positive-definite orthogonal space R%:2.
Moreover, since, for any 2 € C,

[2]=1 < x2+y2=1,
the subgroup of C*, consisting of all complex numbers of absolute
value 1, may be identified with the unit circle S* in R2

In what follows, the identification of C with R? = R?%2 ig taken for
granted.

It was remarked in Chapter 3, Prop. 3.31, that, for any complex
number ¢ =a + ib, the map C—- C; 2 ~w» ¢z may be regarded as a real
linear map, with matrix fa —b\. Moreover, asweremarked in Chapter 7,

b a
le]? =Ec=det(a —b). Now, for all ¢, 2€C, [ez]=]c][2]; s0
b a
multiplication by ¢ is a rotation of R? if, and onlyif, | ¢| = 1. Con-
versely, it is easy to see that any rotation of R? is so induced. In fact,
this statement is just Example 9.20. The following statement sums this
all up.
174
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iR

sl

Prop. 10.1 St =~ SO(2). |

The group S is called the circle group.

Antirotations of R? can also be handled by C, for conjugation is an
antirotation, and any other antirotation can be regarded as the compo-
site of conjugation with a rotation, that is, with multiplication by a com-
plex number of absolute value 1.

By Theorem 2.69, any complex number of absolute value 1 may be
expressed in the form €. The rotation of R? corresponding to the
number € is often referred to as the rotation of R2 through the angle 6.
In particular, since —1 =€ = 77, the map C— C; 2 w» —z is also
referred to not only as the reflection of R2in {0} but also as the rotation
of R? through the angle z or, equivalently, through the angle —az.

Note that, for any @, b € S?, with b = ge?

a-b = Yab + ba) = }(e” + e) = cos 6,
in accordance with the remarks made on angle following Prop. 9.58.

In any complete discussion of the complex exponential map, the
relationship between angle and arc length along the circle S1 is de-
veloped. It may be shown, in particular, that 2z is the circumference of
the circle S

The algebra of quaternions, H, introduced in the next section, will be
seen to be analogous in many ways to the algebra of complex numbers
C. For example, it has application, as we shall see, to the description of
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certain groups of orthogonal transformations, namely O(3) and O(4).
The letter H is the initial letter of the surname of Sir William Hamilton,
who first studied quaternions and gave them their name [23].

The algebra H

Let 1, i, j and k denote the elements of the standard basis for R4, The
quaternion product on R* is then the R-bilinear product
Rt x R*—R%; (a,b) w> ab
with unity 1, defined by the formulae
i?=jr=k = —1
and ij=k= —ji, jk=1i= —kj and ki=j= —ik.
Prop. 10.2. The quaternion product is associative. O

On the other hand the quaternion product is not commutative. For
example, ji == ij. Moreover, it does not necessarily follow that if
a? = b? then a = +b. For example, i2 = j?, but i = 4j.

The linear space R%, with the quaternion product, is a real algebra H
known as the algebra of quaternions. In working with H it is usual
to identify R with R{1} and R?® with R{i,jk}, the first identification
having been anticipated by our use of the symbol 1. The subspace
R{i,j,k} is known as the subspace of pure quaternions. Each quatenion
¢ is uniquely expressible in the form re ¢ 4 pu ¢, where re ¢ €R and
pu ¢ € R?, re ¢ being called the real part of q and pu g the pure part of gq.

Prop. 10.3. A quaternion is real if, and only if, it commutes with
every quaternion. That is, R is the centre of H.

Proof = : Clear.
< : Letq =a + bi + ¢j + dk, where a, b, c and d are real,
be a quaternion commuting with i and j. Since ¢ commutes with i,
ai — b+ ck —dj=iqg =qi = ai — b — ck + dj,
implying that 2(ck — dj) = 0. So ¢ = d = 0. Similarly, since ¢ com-
mutes with j, b = 0. So ¢ = a, and is real. O

Cor. 10.4. The ring structure of H induces the real linear structure,
and any ring automorphism or anti-automorphism of H is a real linear
automorphism of H, and therefore also areal algebra automorphism or
anti-automorphism of H.

Proof By Prop. 10.3 the injection of R in H, and hence the real
scalar multiplication R x H— H; (4,9) w»1g, is determined by the
ring structure.
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Also, again by Prop. 10.3, any automorphism or anti-automorphism ¢
of H maps R to R, this restriction being an automorphism of R and
therefore the identity, by Prop. 2.60. Therefore ¢ not only respects
addition and respects or reverses ring multiplication but also, for any
AeRand geH,

HAg) = H2) Hq) or g)(A)
=2g) or g}
=2Mg). O
This result is to be contrasted with the more involved situation for the

field of complex numbers described on page 48. The automorphisms and
anti-automorphisms of H are discussed in more detail below.

Prop. 10.5 A quaternion is pure if, and only if, its square is a non-
positive real number.

Proof = : Consider ¢ = bi + ¢j + dk, where b, ¢, de€R. Then
q* = —(b% + c? + d?), which is real and non-positive.
< : Consider ¢ = a + bi + ¢j + dk, where a, b, ¢, d €eR. Then
g% = a?® — b? — ¢® — d? + 2a(bi + ¢j + dk).
If g2 is real, either 2 = 0 and ¢ is pure, or b =c =d =0 and a=0,
in which case ¢? is positive. So, if ¢* is real and non-positive, ¢ is pure. [J

Cor. 10.6. The direct sum decomposition of H, with components
the real and pure subspaces, is induced by the ring structure for H.  [J
The conjugate § of a quaternion ¢ is defined to be the quaternion
req — pugq.
Prop. 10.7. Conjugation: H— H; g~ § is an algebra anti-
involution. That is, for all g, 5e Hand all 1 R,
a+tb=a+bla=a,
d=a and ab = ba.
Moreover, aeR < d=a and aeR? <« g=
¥a + @) and pua = }(a — a). O

Now let H be assigned the standard positive-definite scalar product
on R4, denoted as usual by -.

—a, while rea =

Prop. 10.8. Forall q, beH, a-b = re(ab) = }(ab-ba). In particular,
for any a € H, @a = a-a, so aa is non-negative.

In particular also, for all a, b€ R3, a-b = —}(ab + ba) = —re(ab),
with a® = a-a = —a® and with a-b =0 if, and only if, @ and b
anti-commute. ]
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The non-negative number |a| = 4/(da) is called the norm or
absolute value of the quaternion a.

Prop. 10.9. Let x € H. Then
x2+bx +¢ =0,
where b = —(x + &), and ¢ = &, b and ¢ both being real. 0

Cor. 10.10. Let x be a non-real element of H. Then R{l,x} is a
subalgebra of H isomorphic with C. In particular, R{l,x} is com-
mutative. O

Prop. 10.11. Each non-zero a € His invertible, witha~! = |a |24
and with [ g1 | = | a|-L O

Note that the quaternion inverse of a is the conjugate of the scalar

product inverse of 4, at-" = |a |2 a.
By Prop. 10.11, H may be regarded as a non-commutative field. The
group of non-zero quaternions will be denoted by H*. Ml

Prop. 10.12. Foralla,becH,|ab| =|al|b].
Proof Foralla,beH,
| ab |* = ab ab = baab
= gabb, since da € R,
=|al*[b|%
Therefore, since | g | > 0 for all g e H,
lab| =|allb]l. O
A quaternion ¢ is said to be a unit quaternion if | q¢| = 1.
Prop. 10.13. The set of unit quaternions coincides with the unit
sphere S® in R¢ and is a subgroup of H*. d
Prop. 10.14. Let g € H be such that g = —1. Then ¢ € S?, the
unit sphere in R3,

Proof Since g2 is real and non-positive, g € R3, and, since ¢? = —1,
lg] =1.S0qge S a

The vector product a x b of a pair (a,b) of pure quaternions is defined
by the formula

a X b = pu (ab).
Prop. 10.15. For all q, b e R3,
ab=—a-b+axb and aXxb==%ab—ba) =—(b X a),
while a X a =a+(a X b) = b-(a x b) =0.
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If @ and b are mutually orthogonal elements of R3, ¢ and & anti-
commute, that is, ba = —ab, and a X b = ab. In particular,

i(Gxk)=i@Gk)=ii=—i2=1. [

Prop. 10.16. Let g be a quaternion. Then there exists a non-zero
pure quaternion b such that ¢b also is a pure quaternion.

Proof Let b be any non-zero element of R? orthogonal to the pure
part of g. Then

gb = (re )b + (pugq) X beR3. O
Cor. 10.17. Each quaternion is expressible as the product of a pair
of pure quaternions. O

Prop. 10.18. For all a,b,c€R3, a X (b X ¢) = (a‘c)b — (a*b)c,
sothata X (b X ¢)+b X (cXa)+cXxX(axb=0.

Proof For all a,b,ceR3, 4a X (b X ¢) = a(bc — cb) — (bc — cb)a
while

4a-c)b — 4(a-b)c
= — (ac + ca)b — b(ac + ca) + (ab + ba)c + c(ab + ba). O
Prop. 10.19. For any
a,b,ceH, re(abc) = re(bca) = re(cab).
Moreover, for any
a,b,ceR3 re(abc) = — a-(b X ¢) = — det col~Y(a, b, c),
the map (R3)2 — R?; (g, b, ¢) ww» a-(b X c) being alternating trilinear.

Proof 1f a = 0 in the first part there is nothing to do. So let @ # O.
Then
aa(re(abc)) = ya(abc+bed) a = Yaa(bca+abc) = aa(re(bea)).
So re(abc) = re(bca). Similarly re(bca) = re(cab).
Whena, b, c € R3, re(abc) = — a*(bc) = a-(cb) = —a*(b X ¢). O

We call the real number re(abc) = a- be the scalar triple product of the
quaternions &, b, ¢, in that order. (In the case that a, b, c € R3 it is more
usual to take the negative of this as the scalar triple product.)

Automorphisms and anti-automorphisms of H

By Cor. 10.4 the field automorphisms and anti-automorphisms of H
coincide with the real algebra automorphisms and anti-automorphisms
of H. In this section we show that they are also closely related to the
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orthogonal automorphisms of R3. The relationship one way is given by
the next proposition.

Prop. 10.20. Any automorphism or anti-automorphism u of H is of
the form H— H; a w» re a + #(pu a), where ¢ is an orthogonal auto-
morphism of R3,

Proof By Cor. 10.4, Prop. 2.60 and Prop. 10.5, # is a linear map
leaving each real quaternion fixed and mapping R? to itself. Also, for
each x € R3, (u(x))® = u(x?) = x?, since x*> € R, while | x |2 = —x2. So

t:R*—R?;  xw»> u(x)
is linear and respects norm. Therefore, by Prop. 9.59, it is an orthogonal
automorphism of R3, O

In the reverse direction we have the following fundamental result.

Prop. 10.21. Let ¢ be an invertible pure quaternion. Then, for any
pure quaternion x, gxg~! is a pure quaternion, and the map
—ps: RE—>R3 xw> —quxg?
is reflection in the plane (R{g})*.

Proof Since (gxg~—')* = x?, which is real and non-positive, gxg-!
is pure, by Prop. 10.5. Also —p, is linear, and —pq(q) = —g¢, while, for
any r € (R{g})*, p(r) =—gqrg = rqq~* = r. Hence the result. O

Proposition 10.21 is used twice in the proof of Prop. 10.22.

Prop. 10.22. Each rotation of R? is of the form p, for some non-zero
quaternion ¢, and every such map is a rotation of R3.

Proof Since, by Prop. 9.43, any rotation of R3 is the composite of
two plane reflections it follows, by Prop. 10.21, that the rotation can be
expressed in the given form. The converse is by Cor. 10.17 and Prop.
10.21. O

In fact, each rotation of R? can be so represented by a unit quaternion,
unique up to sign. This follows from Prop. 10.23.

Prop. 10.23. The map p: H* — SO(3); g »»> p, is a group sur-
jection, with kernel R¥*, the restriction of p to S? also being surjective,
with kernel S° = {1,—1}.

Proof The map p is surjective, by Prop. 10.22, and is a group map
since, for all ¢, » e H*, and all x e R?,

Par(%) = qra(gr)~! = pop,(x).
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Moreover, g € ker p if, and only if, g x ¢~ = x, for all x € R3, that is,
if, and only if, g» = xq, for all x € R% Therefore, by Prop. 10.3,
kerp = R n H* = R*,

The restriction of p to S? also is surjective simply because, for any
2 €R* and for any g e H*, p,, = p,, and 1 may be chosen so that
|Ag| = 1. Finally, ker (p | S?) =kerp n S =R* N §3 = S0, O

Prop. 10.24. Any unit quaternion ¢ is expressible in the form
aba-1b-1, where a and b are non-zero quaternions.

Proof By Prop. 10.16 there is, for any unit quaternion ¢, a non-zero
pure quaternion b such that gb is a pure quaternion. Since ¢ ] =1,
| gb | = | b |. There is therefore, by Prop. 10.22, a non-zero quaternion
a such that gb = aba~?, that is, such that ¢ = aba—15-1. O

Proposition 10.22 also leads to the following converse to Prop. 10.20.

Prop. 10.25. For each ¢ € O(3), the map
u:H—H; aw»>rea + t(pua)

is an automorphism or anti-automorphism of H, # being an auto-
morphism if # is a rotation and an anti-automorphism if ¢ is an anti-
rotation of R3.

Proof For each t € SO(3), the map u can, by Prop. 10.22, be put in

the form
H—>H; aw»gag-! =rea + g(pua)g?,
where ¢ € H*, and such a map is an automorphism of H.

Also —1g. is an antirotation of R?, and if ¢ = — 1., u is conjugation,
which is an anti-automorphism of H. The remainder of the proposition
follows at once, since any anti-automorphism of H can be expressed as
the composite of any particular anti-automorphism, for example, con-
jugation, with some automorphism. O

Cor. 10.26. An involution of H either is the identity or corresponds
to the rotation of R3 through x about some axis, that is, reflection in some
line through 0. Any anti-involution of H is conjugation composed with
such an involution and corresponds either to the reflection of R? in the
origin or to the reflection of R? in some plane through 0. O

It is convenient to single out one of the non-trivial involutions of H
to be typical of the class. For technical reasons we choose the involution
H — H; a w» jaj—, corresponding to the reflection of R3 in the line
R{j}. This will be called the main involution of H and, for each ac H,
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d = jaj—* will be called the involute of a. The main involution com-
mutes with conjugation. The composite will be called reversion and, for
eacha e H, & = 4 = 4 will be called the reverse of a. A reason for this is
that H may be regarded as being generated as an algebra by i and k, and
reversion sends i to i and k to k but sends ik to ki, reversing the multi-
plication. (Cf. page 252.)

It is a further corollary of Prop. 10.25 that the basic frame (i,j,k) for
R? does not hold a privileged position in H. This can also be shown
directly as follows.

Prop. 10.27. Let a be any orthogonal basic framing for R3, inducing
an orthonormal basis {ag,a;,4,} for R3. Then, for all i €3, a;2 = —1,
and, for any distinct 7, j € 3, a,a; = —a,a;. Also

aga,a, = deta = +1 or —1,

according as a respects or reverses the orientations of R3, If the framing
a is positively oriented, then

ay = &,4;, a, = axa, and a, = a.a,,
‘while if the framing a is negatively oriented, then
ay = a,a;,, @ = aua, and a, = a,a,. O
The following proposition is required in the proof of Prop. 11.24.
Prop. 10.28. The map H-— H; x w»> & x has as image the three-
dimensional real linear subspace {y € H: § = y} = R{1,i,k}.

Proof Itisenoughtoprovethatthe map S3— S3;xw»>Fx =£-1x
has as image the unit sphere in R{1,ik}.
So let y € H be such that jy = 1 and § = §. Then
l+y=3gy+y=0+1)p
So,if y 2 —1, y = £-' x, where

x=(1+(1+y)' Finaly, -1 =1ii. [

Rotations of R*

Quaternions may also be used to represent rotations of R,

Prop. 10.29. Let g be a unit quaternion. Then the map ¢;, : R* — R¢;
x> gx, where R* is identified with H, is a rotation of R?, as is the map
g : R*— R%; x> xq.

Proof The map ¢y, is linear, and preserves norm by Prop. 10.12; so
it is orthogonal, by Prop. 9.59. That it is a rotation follows from Prop.
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10.24 which states that there exist non-zero quaternions & and b
such that ¢ = aba—1b1, and therefore such that ¢, = ayb(ar)~Y(by)"?,
implying that dety (g) = 1. Similarly for gs. 0

Prop. 10.30. The map
p:S3x 83— SOM4); (g,r) w> gifg
is a group surjection with kernel {(1,1),(—1,—1)}.

Proof Foranygq, ¢',7,7 € S3and any x € H,

i ORI CT
= ¢'qxi7" = p(¢'r') p(g:7)(%)
Therefore, for any (¢,7), (¢',¥') € S% x S8,

g ') gm) = p(q'') p(g:7);

that is, p is a group map. That it has the stated kernel follows from the
observation that if g and 7 are unit quaternions such that gx# = x for
all x € H, then, by choosing x == 1, ¢ = 1, from which it follows that
gxg~! = x for all x € H, or, equivalently, that gx = xq for all x e H.
This implies, by Prop. 10.3, that g € {1, —1} = R N S3.

To prove that p is surjective, let ¢ be any rotation of R* and let
s =1#(1). Then |s| =1 and the map R*—> R%; xw»§(#(x)) is a
rotation of R¢ leaving 1 and therefore each point of R fixed. So, by
Prop. 10.22, there exists a unit quaternion r such that, for all x e R,

5(t(x)) = rar—t
or, equivalently, #(x) = gx7, where g = sr. ]
Antirotations also are easily represented by quaternions, since conju-

gation is an antirotation and since any antirotation is the composite of
any given antirotation and a rotation.

Linear spaces over H

Much of the theory of linear spaces and linear maps developed for
commutative fields in earlier chapters extends over H. Because of the
non-commutativity of H it is, however, necessary to distinguish two
types of linear space over H, namely right linear spaces and left linear
spaces.

A right linear space over H consists of an additive group X and a map

X xH—>X; (%4)w>xi
such that the usual distributivity and unity axioms hold and such that,

forallxe X,2,1 €H,
(2A)A" = %(A4").
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A left linear space over H consists of an additive group X and a map
HXx X— X; (p,x) w>ux
such that the usual distributivity and unity axioms hold and such that,
for allxeX, u, # EH, ,u'(,ux) — (Iur”)x.

The additive group H", for any finite #, and in particular H itself, can
be assigned either a right or a left H-linear structure in an obvious way.
Unless there is explicit mention to the contrary, it will normally be
assumed that the right H-linear structure has been chosen. (As we shall
see below, a natural notation for H* with the obvious left H-linear
structure would be (H")" or (H")").

Linear maps ¢t: X — Y, where X and Y are H-linear spaces, may be
defined, provided that each of the spaces X and Y is a right linear space
or that each is a left linear space. For example, if X and Y are both
right linear spaces, then ¢ is said to be linear (or right linear) if it
respects addition and, for all x € X, 4 € H, ¢(x1) = (¢(x))4, an analogous
definition holding in the left case.

The set of linear maps : X — Y between right, or left, linear spaces
X and Y over H will be denoted in either case by Z(X,Y), or by
L(X,Y) when X and Y are finite-dimensional (see below). However,
the usual recipe for £(X,Y) to be a linear space fails. For suppose we
define, for any t € £(X,Y) and 1 € H, amap 24 : X — Y by the formula
(tA)x = t(x), X and Y being right H-linear spaces. Then, for any
te Z(X,Y)and any x € X,

Ha)k = (tj)(x) = ()(x) = Hxj)i = —t(x)k,
leading at once to a contradiction if ¢ <0, as is possible. Normally
Z(X,Y) is regarded as a linear space over the centre of H, namely R.
In particular, for any right H-linear space X, the set End X = Z(X,X)
is normally regarded as a real algebra.

On the other hand, for any right linear space X over H, a left H-linear
structure can be assigned to #(X,H) by setting (ut)(x) = u(#(x)), for all
t e Z(X,H), x e H and u € H. This left linear space is called the linear
dual of X and is also denoted by X¥. The linear dual of a left H-linear
space is analogously defined. It is a right H-linear space.

Each right H-linear map #: X— Y induces a left linear map
t?: Y¢ — X< by the formula

t¥(y) = yt, foreachye Y¥,
and if te Z(X,Y) and u e L(W,X), W, X and Y all being right
H-linear spaces, then (t0)% = u%t®

The section on matrices in Chapter 3 generalizes at once to H-linear
maps. For example, any right H-linear map ?: H* — H™ may be
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represented in the obvious way by an m X n matrix {t;;: (7,j) em X n}
over H. In particular, any element of the right H-linear space H™ may
be represented by a column matrix. Scalar multipliers have, however,
to be written on the right and not on the left as has been our custom
hitherto.

For example, suppose that ¢t € End H?, and let x, y € H? be such that
y = #(x). Then this statement may be written in matrix notations in the

form (yo) _ (too tm)("’o)

1 fo ta/\%)
The statement that, for any x e H? and any 4 € H, #(x1) = (¢(x))4,
becomes, in matrix notations,

(2 06 (2 )
to tu/\%:A to tu/\xi//)

The left H-linear space (H")™ dual to the right H-linear space H* may
be identified with the additive group H" assigned its left H-linear
structure. Elements of this space may be represented by row matrices.
A left H-linear map u : (H”)" — (H")" is then represented by anm x #
matrix that multiplies elements of (H™)* on the right.

H(n) will be a notation for the real algebra of # X n matrices over H.

Subspaces of right or left H-linear spaces and products of such
spaces are defined in the obvious way. The material of Chapters 4 and 5
also goes over without essential change, as does the material of Chapter
6 on linear independence and the basis theorem for finite-dimensional
spaces and its corollaries, except that care must be taken to put scalar
multipliers on the correct side. Any right linear space X over H with a
finite basis is isomorphic to H” as a right linear space, #, the number of
elements in the basis, being uniquely determined by X. This number n
is called the quaternionic dimension, dimgy X of X. Analogous remarks
apply in the left case. For any finite-dimensional H-linear space X,

dimyg X* = dimy X.

Any quaternionic linear space X may be regarded as a real linear
space and, if X is finite-dimensional, dimg X = 4 dimy X. Such a
space may also be regarded as a complex linear space, once some repre-
sentation of C as a subalgebra of H has been chosen, with dimge X =
2 dimy X when X is finite-dimensional. In the following discussion C
is identified with R{1,i} in H, and, for each new, C* =C» X C is
identified with H* by the (right) complex linear isomorphism

C x C— K, (u,0) wo>u + jo.
Prop. 10.31. Let a + jb € H(n), where a and b € C(n). Then the

corresponding element of C(2z) is (a —5).
b a
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Proof For any u, v, u', " € C" and any a, b € C(n), the equation
u + jo' = (a + jb)(u + jv) is equivalent to the pair of equations
v = au — bv
and v = bu + dv. O

In particular, when # = 1, this becomes an explicit representation of
H as a subalgebra of C(2), analogous to the representation of C as a
subalgebra of R(2) given in Prop. 3.31.

Notice that, for any ¢ = a + jb € H, with 4,5 €C,

g% = gg = da + bb = det fa —b\.
b a
This remark is a detail in the proof of Prop. 10.33 below.

The lack of commutativity in H is most strongly felt when one tries

to introduce products, as the following proposition shows.

Prop. 10.32. Let X, Y and Z be right linear spaces over H and let
t: X X Y— Z; (x,y) »> x-y be a right bilinear map. Then ¢ = 0.

Proof For any (x,y)e X X Y,

(9)k = (-3 = (w9)j = 31 = (a9}
= (x)ji = —(x-y)k.
Since k = 0, x-y = 0. So ¢t = 0. O

It follows from this, a fortiori, that there is no non-trivial zn-linear
map X* — H for a right H-linear space X for any » > 1. In particular,
there is no direct analogue of the determinant for the algebra of endo-
morphisms of a finite-dimensional quaternionic linear space, in par-
ticular the right H-linear space H". There is, however, an analogue of the
absolute determinant.

In fact the material of Chapter 7 holds for the non-commutative
field H up to and including Theorem 7.8. This theorem can then be
used to prove the following analogue, for quaternionic linear endo-
morphisms, of Cor. 7.33 for complex linear endomorphisms.

Prop. 10.33. Let X be a finite-dimensional right H-linear space and
let £: X — X be an H-linear map. Then detc ¢ is a non-negative real
number. O

(Here, as above, C is identified with the subalgebra R{1,i} of H.)

Theorem 10.34 is the analogue, for H, of Theorem 7.28 for R and C.

Theorem 10.34. Let # € w. Then there exists a unique map

A:H(n)— R; a-> Aa)
such that

(i) for each a e H(n), i en and A € H, A(a(’e,)) = Aa) | 2 |
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(ii) for each a e H(n), 7, j € n with ¢ 327, A(a(%e;;)) = A(a)
and (iii) A1) = 1.

Proof The existence of such a map A follows from the remark that,
by identifying C with R{l,i} in H, any element a € H(n) may be
regarded as an endomorphism of the complex linear space H*. As such
it has a determinant det; @ € C, and, by Prop. 10.33, this is a non-
negative real number. Now define A(a) = 4/(detc a), for all a € H(n).
Then it may be readily verified that conditions (), (ii) and (iii) are
satisfied. Moreover, for any a, b € H(n), A(ba) = A(b) A(a).

The uniqueness of A follows easily from the analogue of Theorem
7.8 for H, by the argument hinted at in the sketch of the proof of
Theorem 7.28. O

Prop. 10.35. Let ¢t € H(n), for some finite #. Then ¢ is invertible if,
and only if, A(f)=0. O

It is usual to write simply det? for A(z), for any #n € w and any
t e H(n). The subgroup {t e H(n): dett = 1} of GL(n;H) is denoted
by SL(n;H).

Right and left H-linear spaces are examples of right and left A-
modules, where A is a not necessarily commutative ring with unity, the
ring A simply replacing the field H in all the definitions. One can, for
example, consider right and left modules over the ring ‘H, for any
positive s, and extend to the quaternionic case the appropriate part of
Chapter 8.

The remainder of Chapter 8 also extends to the quaternionic case,
including the definitions of Grassmannians and projective spaces and
their properties. The only point to note is that, if Y is a subspace of a
finite-dimensional right H-linear space V, then ®(V,Y), the set of
linear complements of Y in V, has in a natural way a real affine struc-
ture, with vector space the real linear space L(V'/Y,Y), but it has not,
in general, a useful quaternionic affine structure.

Generalizing the ideas of Chapter 9 to the quaternionic case is a
bigger problem. This is discussed in Chapter 11.

Tensor product of algebras

Certain algebras over a commutative field K admit a decomposition
somewhat analogous to the direct sum decompositions of a linear space,
but involving the multiplicative structure rather than the additive
structure.

Suppose B and C are subalgebras of a finite-dimensional algebra
A over K, the algebra being associative and with unity, such that

(i) A4 is generated as an algebra by B and C
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(i) dim 4 = dim B dim C
and (iii) forany be B, c € C, ¢b = be.
Then we say that A4 is the tensor product B ®g C of B and C over K,

the abbreviation B @ C being used in place of B ®x C when the field K
is not in doubt.

Prop. 10.36. Let B and C be subalgebras of a finite-dimensional
algebra 4 over K, such that 4 = B® C, the algebra A4 being associative
and with unity. Then B N C' = K (the field K being identified with the
set of scalar multiples of 1.4)). |

It is tempting to suppose that this proposition can be used as an
alternative to condition (ii) in the definition. That this is not so is shown

by the following example.
> eRB):a,b,c ER},

let B ={<g ) eR(3):a,beR}
0
a

and let C= {(O 0> eR(3):aq,ce R}.
0 a

Then A4 is generated as an algebra by B and C, B N C = R, and any

element of B commutes with any element of C. But dim 4 = 3, while

dim B = dim C = 2, so that dim 4 3= dim B dim C. 0O

Condition (ii) is essential to the proof of the following proposition.

Example 10.37,

a
Let A= (0
0

O O O N O o
6 B SO 8 O

Prop. 10.38. Let A4 be a finite-dimensional associative algebra with
unity over K and let B and C be subalgebras of 4 suchthat 4 = B ® C.
Also let {¢;:iedim B} and {f;:jedim C} be bases for the linear
spaces B and C respectively. Then the set

{e:f;:i e dim B, j € dim C}
is a basis for the linear space A. O
This can be used in the proof of the next proposition.

Prop. 10.39. Let A and A’ be finite-dimensional associative algebras
with unity over K and let Band C besubalgebras of 4, and B” and C’ be
subalgebras of 4’ suchthat 4 = B ® C and 4’ = B'® C'. Then if
B~ B and if C & C’, it follows that 4 = A'. O
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Proposition 10.39 encourages various extensions and abuses of the
notation ®. In particular, if 4, B, C, B’ and C'’ are associative algebras
with unity over K such that

A=BQ®C, BB and C' = C,

one frequently writes 4 ~ B’ ® C’, even though there is no unique
construction of B’ @ C’. The precise meaning of such a statement will
always be clear from the context.

The tensor product of algebras is a special case and generalization of
the tensor product of linear spaces. We have chosen not to develop the
theory of tensor products in general, as we have no essential need of the
more general concept.

The following propositions involving the tensor product of algebras
will be of use in determining the table of Clifford algebras in Chapter 13.

Prop. 10.40. Let A be an associative algebra with unity over a
commutative field K and let B, C and D be subalgebras of 4. Then
A=BQ®C - A=CQ®B
and A=BQR(C®D) -+ A=BQC)QD. 0

In the latter case it is usual to write, simply, 4 = B @ C ® D,

Prop. 10.41. For any commutative field K, and for any p, ¢ € w,
K(pg) = K(p) ®x K(g)-

Proof Let K™ be identified as a linear space with K?*¢ the linear
space of p X ¢ matrices over K. Then the maps K(p)— K(pg);
a - ay, and K(q) — K(pg); b~ (b%)y are algebra injections whose
images in K(pq) satisfy conditions (i)-(iii) for ®, ay and (b%)y being
defined, for each a € K(p) and b € K(g), and for each ¢ e K**¢, by the
formulae

ai(c) =ac and (F)g(c) = cb".
For example, the commutativity condition (iii) follows directly from the
associativity of matrix multiplication. O

In particular, for any p, ¢ € w,

R(p9) = R(p) ®r R(g)-
In this case we can say slightly more.

Prop. 10.42. For any p, q € w, let R?, R?and R* be regarded as
positive-definite orthogonal spaces in the standard way, and let R?*? be
identified with R?. Then the algebra injections

R(p)—>R(pg); a-way
and R(¢) > R(pg); b-w>(b)r
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send the orthogonal elements of R(p) and R(g), respectively, to ortho-
gonal elements of R(pq). O

Cor. 10.43. The product of any finite ordered set of elements
belonging either to the copy of O(p) or to the copy of O(q) in R(pg) is an
element of O(pg). O

In what follows, C and H will both be regarded as real algebras, of
dimensions 2 and 4, respectively, and @ = Qg.

Prop.10.44. R®@R=R,C®R=C HRR=H, C®C = IC,
‘H® C ~ C2) and H® H ~ R(4).

Proof The first three of these statements are obvious. To prove that
C® C = 2C it is enough to remark that 2C is generated as a real algebra

by the subalgebras {fz 0\:2€C) and [/ 0\:2€C), each iso-
0 = 0 2

morphic to C, conditions (i)-(iii) being readily verified.

To prove that H® C = C(2), let C? be identified with H as a right
complex linear space by the map C2— H; (2,w) w»> 2 -+ jw, as before.
Then, for any ¢ € H and any ¢ € C, the maps

go:H—>H; xwgx and czg:H—>H; xw>axc
are complex linear, and the maps
H—C2); gw»rgq, and C—C(2); cw>cp
are algebra injections. Conditions (ii) and (iii) are obviously satisfied by

the images of these injections. To prove (i) it is enough to remark that
the matrices

6969690
6OCDENED

representing
1 ’ iL’ j Ly kL

iB’ iLilil.’ jLiR) kLiR,
respectively, span C(2) linearly.
The proof that H ® H ~ R(4) is similar, the maps
¢o:H-—>H; xw>gx and 7fz:H—>H; x> F
being real linear, for any ¢, r € H and the maps
H—R#4); gw»gq and H—>RH#); 7 m7y
being algebra injections whose images satisfy conditions (1)-(iii). |
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In this last case it is worth recalling Prop. 10.29, which states that the
image, by either of these injections, of a quaternion of absolute value 1
is an orthogonal element of R(4). At the end of Chapter 11 we make a
similar remark about the isomorphism of H ® C with C(2) and draw an
analogy between them both and Prop. 10.42.

It is an advantage to be able to detect quickly whether or not a sub-
algebra of a given real associative algebra A is isomorphic to one of the
algebras

R, C, H, °R, C, *H, R(2), C(2) or H(2),
or whether a subalgebra of a given complex associative algebra A4 is
isomorphic to one of the algebras C, 2C or C(2). The following proposi-
tion is useful in this context.

Prop. 10.45. Let A be a real associative algebra with unity 1. Then

1 generates R;

any two-dimensional subalgebra generated by an element e, of A
such that ¢,2 = —-1 is isomorphic to C;

any two-dimensional subalgebra generated by an element e, of 4
such that ¢, = 1 is isomorphic to 2R;

any four-dimensional subalgebra generated by a set {e,,e; } of mutually
anticommuting elements of A such that ¢)> = ;2 = —1 is isomorphic
to H;

any four-dimensional subalgebra generated by a set {e,,¢, } of mutually
anticommuting elements of A such that ¢,2 = ;2 = 1 is isomorphic
to R(2);

any eight-dimensional subalgebra generated by a set {e4e;,e,} of
mutually anticommuting elements of 4 such that ¢,2 = ¢,2 = ¢, = —1
is isomorphic to 2Hj;

any eight-dimensional subalgebra generated by a set {e,e;e,} of
mutually anticommuting elements of A such that ¢,2 = ¢,2 = ¢, =
is isomorphic to C(2).

(Sets of elements meeting the required conditions include

@ o)l ) erren
{0 0.6 5.6 A6 6 )6 W)
(burnor {(o 5,6 5), (o w)br{e 5).65).6 —)})
for *H and {(‘1) é) ((1) _?), (? ”‘B)} for C2)) [

In particular we have the following results, including several we have
had before.
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Prop. 10.46. The subset of matrices of the real algebra K(2) of the
form
b\ is a subalgebra isomorphic to *R, 2C or 2H,
a
—b)\ is a subalgebra isomorphic to C, 2C or C(2),

(i) (

(if)
(1if) b'\ is a subalgebra isomorphic to 2R, R(2) or C(2),
al
(iv) (a ——b') is a subalgebra isomorphic to C, H or *H,
b a
according as K = R, C or H, respectively, where for any a €K, o’ = a,
a or d, respectively. O
Each of the algebra injections listed in Prop. 10.46 is induced by a
(non-unique) real linear injection. For example, those of the form (iii)
may be regarded as being the injections of the appropriate endomor-
phism algebras induced by the real linear injections
R —R?%,  (2y) w> (2 + 3,2 — ),
R:— C%  (x,y) > (x + iy,x — 1y)
and C:— H?; (2w) w» (2 + jw,g + j0).
Real algebras, A4, B, C and D, say, frequently occur in a commutative
square of algebra injections of the form
A—>C

L

B——D

SR e e

the algebra D being generated by the images of B and C. Examples of
such squares, which may easily be constructed using the material of
Prop. 10.46, include

R —> R R —»R(2)
I
—> R(2) R(2) —> ®R(2)
C —R(Q) C —>2C i —> C(2)
I A A I
— C(2) )¢ —>C(2) C(2) —> %C(2)
H —>C(2) *H —» H(?2)

| ] e

*H —> H(2) H(2) —> *H(2)
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The emphasis, in these last few pages, has been on algebras over R.
The reader is invited to consider how much of what has been said holds
for the complex field C.

Automorphisms and anti-automorphisms of ‘K

Some knowledge of the real algebra automorphisms and anti-auto-
morphisms of °K, where K = R, C or H and s is positive, is required in
Chapter 11.

The problem is reduced by considering the primitive idempotents of
K. An idempotent of an algebra A is an element @ of 4 such that a® = q,
and a primitive idempotent of 4 is an idempotent of A4 that is not the
sum of two non-zero idempotents of 4.

Prop. 10.47. Any automorphism or anti-automorphism of a real
algebra 4 permutes the primitive idempotents of 4. O

Prop. 10.48. For any positive s the elements of the standard basis
for ’K are the primitive idempotents of °K. 0

A permutation  of a finite set S is said to be reducible if there is a
proper subset T' of S such that 7 (T) < T, and an automorphism
or anti-automorphism of a real algebra A is said to be reducible if the
induced permutation of the primitive idempotents of 4 is reducible. A
permutation or automorphism or anti-automorphism that is not redu-
cible is said to be irreducible.

Prop. 10.49. Let s be a positive number such that °’K admits an
irreducible involution or anti-involution. Then s =1 or 2. dJ

Any automorphism or anti-automorphism of K is irreducible. By
Prop. 2.60 the only automorphism of R is 1z and, by Prop. 3.38, the
only (real algebra) automorphisms of C are 1 and conjugation, both of
which are involutions. The automorphisms of H are represented, by
Prop. 10.22, by the rotations of the space of pure quaternions, while the
anti-automorphisms of H are represented, similarly, by the antirota-
tions of that space. By Cor. 10.26 the involutions of H are 1y and those
corresponding to reflection of the space of pure quaternions in any line
through 0, while the anti-involutions are conjugation, which corresponds
to reflection in 0, and those corresponding to reflection of the space of
pure quaternions in any plane through 0. Notations for certain involu-
tions and anti-involutions of H have been given earlier in the chapter.

Prop. 10.50. An automorphism or anti-automorphism of 2K is
reducible if, and only if, it is of the form

K — K;  (4,u) w> (A%u”),
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where y, v: K-> K are, respectively, both automorphisms or anti-
automorphisms of K. It is an involution or anti-involution of 2K if, and
only if, both y and p are, respectively, involutions or anti-involutions of
K. O
Such an automorphism or anti-automorphism is denoted by ¥ X .
More interesting are the irreducible automorphisms and anti-auto-
morphisms of 2K.

Prop. 10.51. An automorphism or anti-automorphism of 2K is
irreducible if, and only if, it is of the form
K—K;  (Lp)w> (1¥,47),
where ¥ and y are, respectively, both automorphisms or anti-auto-
morphisms of ?K.
An involution or anti-involution of 2K is irreducible if, and only if,
it is of the form
K—K; () v (u,2°7),
where y is an automorphism or anti-automorphism (not necessarily an
involution or anti-involution) of K. ]

The involution
K—>K; (A,p) o (p,2)
will be denoted by hb, the involution (y X y~1)hb = hb (p-! X v)
being denoted also, more briefly, by hb y. The letters hb are an abbre-
viation for the word Ayperbolic, the choice of word being suggested by
the observation that, when K = R, the set {(1,x) € 2K : (A,4)™(A,u) = 1}
is just the rectangular hyperbola {(1,4) e R?: A = 1}.

The symbols R, C, C, H, A, | and H denote R, C or H with the in-
dicated involution or antl-mvolutlon distinguished, this being taken to
be the identity when there is no indication to the contrary. The symbols
hb K¥ and (2K)"™ ¥ will both denote the algebra K with the involution
or anti-involution hb .

Two automorphisms or anti-automorphisms f, y of an algebra 4 are
said to be sémilar if there is an automorphism « of A4 such that ya = af.
If no such automorphism exists, § and « are said to be dissimilar.

Prop. 10.52. The two involutions of C are dissimilar. O

Prop. 10.53. The sets of involutions and anti-involutions of H each
divide into two equivalence classes with respect to similarity, the iden-
tity, or conjugation, being the sole element in one class, and all the rest
belonging to the other class. O

Prop. 10.54. For any automorphisms or anti-automorphisms y and
x of K the involutions or anti-involutions hb y and hb y of 2K are similar.
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Proof Leta = y~'y. Then
(hb x)(1 x &) = (1 X «)(hb y),
since, for any (4,u) € ’K,
(hb %)(1 x «)(A,u) = (hb x)A,u") = (W)
and (1 x a)Bb p)(ha) = (I X @A) = (@), O
Cor. 10.55. Let p be an irreducible anti-involution of °K, for some
positive s. Then yp is similar to one and only one of the following:
Iz, 1, C—C; Aw>4,
H —>H; Aw, H—>H;iw ],
R — R; (L) w> (1,4), 2C—2C; (Ap)w(&,A)
or *H— H; (1) w> (3,A),
eight in all. O

FURTHER EXERCISES

10.56. Prove that the complex numbers 9 + i, 4 4 13i, —8 + 8i and
—3 — 4i are the vertices of a square, when C is identified with the
orthogonal space R2 |
10.57. Show that any circle in C is of the form
{2eC: 28 + az +af +¢ =0}

for some a € C and ¢ € R, @ and ¢ not being both zero. O
10.58. Find the greatest and least values of |2z 4+ 2 + 3i| if 2€C
and [z —1| < L. O
10.59. The point @ describes the circle

{zeC:|z2—2—1i| =2}
in an anticlockwise direction, starting at @ = i. Describe the motion
of 1/z. O
10.60. Find the domain and image of the map
241
iz 41
and find the image by the map of the interior of the unit circle. O
10.61. Let C be identified withR X R x {0} in R®and let f: C — S?
be the inverse of stereographic projection from the South pole. So f
maps 0 to the North pole and maps the unit circle to the equator of the

sphere. In terms of this representation, describe the map of Exercise
10.60. (A ping-pong ball with some complex numbers marked on it may

C—C; 2w




196 QUATERNIONS

be of assistance!) If two points on the sphere are antipodal to one
another, how are the corresponding complex numbers related?

(The map f: C U {0} — S%, which agrees with f on C and which
sends oo to the South pole, is called the Riemann representation of
CP' = C u {00} on S2 Cf. page 141.) O

10.62. Let g be a map of the form

az + ¢

bz + d’

where a, b, ¢, d € C and where the conventions governing the symbol oo
are the obvious extensions of those introduced on page 141. Verify that
g corresponds by the Riemann representation of Exercise 10.61 to a
rotation of S if, and only if, ¢ = —b and d = G, and show that every
rotation of S may be so represented. O

CuU {w0}—=>Cu {x0}; zw»

10.63. Verify that the matrix < 1 i > is invertible in H(2), but that the
j k
matrix (1 j is not. O
i k

10.64. Does a real algebra involution of H(2) necessarily map a matrix
of the form (a 0), where a € H, to one of the same form? 0
0 a

10.65. Verify that, for any pair of invertible quaternions (a,b),

(5 96 )6 2N

and, for any invertible quaternion ¢,

6 )6 )= Do )= Dt Do 1)

Hence, and by Prop. 10.24 and the analogue for K = H of Theorem
7.8, prove that, for any # > 2, an element ¢ of GL(n;H) is unimodular
if, and only if, det ¢ = 1. O

10.66. Verify that the map «: C? — H; x «w» x4 4+ j¥; is a right C-
linear isomorphism, and compute
oc‘l(o?x) «(y)), for any x,y e C2
Let @ = {(x,y) € (C?)?: %0y, + %131 = 1}.
Prove that, for any (a,b) e H* x C,
(a7%(@), «HaY(1 + jb))) € Q



FURTHER EXERCISES 197

and that the map

H* X C— Q; (a,b) w»> (2~1(a), a=Y(a"Y(1 + jb)))
is bijective. ]
10.67. Extend Chapter 8 to the quaternionic case. O

10.68. Show that the fibres of the restriction of the Hopf map |
C2— CP1; (24,2 > [2g,21]
to the sphere S = {(2,2,) € C?: Zy2, + £;2, = 1} are circles, any two
of which link. (Cf. page 144 and Exercise 9.85.) O
10.69. Show that the fibres of the restriction of the Hopf map
H?—>HPY;  (¢og1) > [gog1]
to the sphere S7 = {(¢5,9:) € H?: §ogo + G19» = 1} are 3-spheres, any
two of which link. O

(The map of Exercise 10.68 is discussed in [28]. Analogues, such as
the maps of Exercise 10.69 and Exercise 14.22, are discussed in [29].
The major topological problem raised by these papers was solved by
Adams [1].)

10.70. Prove that the map pyy: RP? = H*/R* — SO(3), induced by
the map p: H* — SO(3); ¢ “w> p, of Prop. 10.23, is bijective. In this
representation of SO(3) by RP? how are the rotations of R® about a
specified axis through 0 represented? O

10.71. Reread Chapter 0. O



CHAPTER 11

CORRELATIONS

Throughout this chapter A denotes some positive power ‘K of
K =R, C or H. We distinguish between right and left linear spaces
over A even when A is commutative, regarding the dual X of a right
A-linear space X as a left A-linear space and conversely.

The main result is Theorem 11.32, which states how any real algebra
anti-involution of A(r) (n € w) may be regarded as the adjoint involution
induced by some appropriate product on the right A-linear space A"
Theorem 11.32 and Theorem 11.25 together classify the irreducible
anti-involutions of A(z) into ten classes. The ten types of product, which
include the real and complex symmetric scalar products of Chapter 9,
are extensively studied, the analogies with the theorems and techniques
of Chapter 9 being close, in every case. For example, there are in each
case groups analogous to the orthogonal and special orthogonal groups
O(n) and SO(n). These include not only the unitary and symplectic
groups but also the general linear groups GL(n; K) which appear here
as groups of automorphisms of certain correlated spaces over the double
field %K.

Since one of our aims is to introduce various products on (right)
A-linear spaces analogous to the scalar products of Chapter 9, and since,
in the particular case that A is a power of H, no non-zero bilinear maps
exist, it is necessary at an early stage in the discussion to generalize the
concept of bilinearity suitably. We begin by defining semi-linear maps,
employing the notations for automorphisms and anti-automorphisms of
K and %K that were introduced on pages 193-5.

Semi-linear maps

Let X and Y each be a right or a left linear space over A. An R-linear
map t: X —> Y is said to be semi-linear over A if there is an auto-
morphism or anti-automorphism y: A — A; 1 w> ¥ such that, for all
xeX,and all Al €A,

t(xd) = t(x)2?, t(xd) = A%t(x),
tAx) = A¥t(x) or tAx) = t(x)A¥
198
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as the case may be, y being an automorphism if A operates on X and ¥
on the same side and an anti-automorphism if A operates on X and Y on
opposite sides. The terms right, right-to-left, left and left-to-right semi-
linear maps over A have the obvious meanings.

The semi-linear map ¢ determines the automorphism or anti-auto-
morphism ¥ uniquely, unless ¢ == 0. On occasions it is convenient to
refer directly to y, the map ¢ being said to be semi-linear over A with
respect to y or, briefly, A¥-linear (not ‘A¥ semi-linear’, since, when p =14,
A? is usually abbreviated to A and the term ‘A semi-linear’ could
therefore be ambiguous).

Examples 11.1. The following maps are invertible right semi-linear
maps over H:
H—H; xw»ux,
x> ax, for any non-zero a ¢ H,
x ~w-xb, for any non-zero b €H,
x ~w> axb, for any non-zero a4, b € H,
- (= a5 1)
and H?— H2?; (x,y) w» (ax,by), for any non-zero a, b € H,
(%,y) «w> (by,ax), for any non-zero a, b € H,
the corresponding automorphisms of H being, respectively,
Ly, Ly, A 8261, 4w bAb-1 2w 4 and 1y, 1y
By contrast, the map
H2— H?; (x,y) > (xa,yb), witha,beH,
is not right semi-linear over H, unless la = ub, with 4, y €R.
The maps
H2— H?; (x,y) > (%,7)
(%,3) wo> (7,%)
are invertible right-to-left H-linear maps. The first of these is also a
right-to-left *H-linear map, and the second a right-to-left hb F-linear
map. (See pages 193-6 for the notations.) O

Semi-linear maps over K are classified by the following proposition.
Prop. 11.2. Let X and Y be 2K-linear spaces. Then any (ZK)**¥-
linear map X — Y is of the form
Xo@ Xi—> Vo @ Y5 (wox) o (7(0),5(%1)),
where r: X,— Y, is K*linear and s: X; — Y, is K"-linear, while
any (?K)™ &*¥)_linear map X —> Y is of the form

Xe@ X, —> Y @ Yy;  (x9,%0) o> (s(1),7(x0)),
where 7 : Xy~ Y, is K*-linear and s: X; — Y, is K*-linear.
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Proof We indicate the proof for a (?K)"™@*¥)linear map ¢: X — Y,
assuming, for the sake of definiteness, that X is a right 2K-linear space
and Y a left 2K-linear space. Then, for all a € X,, b € Xj,

t(a,0) = #((a,0)(1,0)) = (0,1)#(a,0)
and 1(0,6) = #((0,5)(0,1)) = (1,0)(0,d).
So maps r: X,—> Y; and s: X; —> Y, are defined by
(0,7(a)) = t(a,0) and (s(b),0) = ¢(0,b), for all (a,0) € X.
It is then a straightforward matter to check that these maps r and s have
the required properties.
The proofs in the other cases are similar. O

The first of the two maps described in Prop. 11.2 will be denoted by
r X s and the second by hb (r X s).

A particular case that will occur is when ¥ = X¥. In this case Y, and
Y, are usually identified, in the obvious ways (cf. Prop. 8.4), with
X,Z and X, 7.

An AP-linear map ¢: X — Y is said to be érreducible if y is irreducible.
Otherwise, it is said to be reducible. If t is irreducible, and if y is an invol-
ution or anti-involution then, by Prop. 10.49, A = K or 2K. The map
r X sin Prop. 11.2 is reducible, while the map hb (r X s) is irreducible.

Prop. 11.3. The composite of a pair of composable semi-linear
maps is semi-linear and the inverse of an invertible semi-linear map is
semi-linear. 0

An invertible semi-linear map is said to be a semi-linear isomorphism.

Prop. 11.4. Let X be a right A-linear space, let « be an auto-
morphism of A and let X* consist of the set X with addition defined as
before, but with a new scalar multiplication namely,

X* X A— X% (x,4) v 227

Then X* is a right A-linear space and the set identity X — X%
x> x is an A%-linear isomorphism. O

Prop. 11.5. Let t: X— Y be a semi-linear map over K. Then
im ¢ is a K-linear subspace of Y and ker ¢ is a K-linear subspace of

X. O

The analogue of this proposition for a power of K greater than 1 is
false. The image and kernel of a semi-linear map over °K are ’K-modules
but not, in general, *K-linear spaces, if s > 1. (Cf. foot of page 135.)

Rank and kernel rank are defined for semi-linear maps as for linear
maps.
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Prop. 11.6. Let t: X—> Y be an AY-linear map. Then, for any
yeY¥, p-lyte X2,

Proof The map y~=? yt is certainly R-linear. It remains to consider
its interaction with A-multiplication. There are four cases, of which we
consider only one, namely the case in which X and Y are each right
A-linear. In this case, for each x e X, 1 €A,

Pl y(xl) = =t y(Hx)A) =y {(vH(*))A)
= (y~1 ye(*)2.
The proofs in the other three cases are similar. 0O

The map t¥: Y¥ — X¥, defined, for all y € Y¥, by the formula
t%(y) = p~1t, is called the dual of ¢. This definition is more vividly
displayed by the diagram.

Xts>Y

tf ng} 7‘l 4'5\, l'/
A—>A
Prop. 11.7. The dual ¢ of an A¥-lincar map¢: X — Y is A" -
linear. O

Many properties of the duals of R-linear maps carry over to semi-
linear maps over A.

Correlations

A correlation on a right A-linear space X is an A-semi-linear map
£: X — X¥%; x w» x* = &(x). The map X X X — 4; (a,b) «w> a*b =
a‘(b) is the product induced by the correlation, and the map X — A;
a > a*a the form induced by the correlation. Such a product is R-
bilinear, but not, in general, A-bilinear, for although the map

X—>A; xwd'x
is A-linear, for any a € X, the map
X—A; xwa%b,

r any b € X, is, in general, not linear but only (right-to-left) semi-
linear over A. Products of this kind are said to be sesqui-linear, the prefix
being derived from a Latin word meaning ‘one and a half’.

An Av-correlation £: X —> X< and the induced product on the
right A-linear space X are said to be, respectively, symmetric or skew
with respect to y or over A¥ according as, for each ¢, b € X,

ba = (a®b)* or —(a'b)".
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Symmetric products over C or H are called hermitian products, and their
forms are called hermitian forms.

Examples 11.8. Any anti-involution y of A may be regarded as a
symmetric A¥-correlation on A = A¥,
2. The product
Rz x R?—R; ((a,b),(a',b')) »» ba’ — ab’
is skew over R, with zero form,
3. The product
R X R— 2R; ((a,b),(a’,b)) > (ba',ab")
is symmetric over hb R.
4. The correlations previously studied in Chapter 9 were symmetric
correlations over R or C.
5. The product

Cz x C2—>C; ((a,b),(@',b)) w>aa’ + bb',
is hermitian. |

Prop. 11.9. Let & be a non-zero symmetric or skew A¥-correlation
on a right A-linear space X. Then y is an anti-involution of A. O

Symmetric and skew correlations are particular examples of reflexive
correlations, a correlation & being said to be reflexive if, for all @, b € X,
¥a=0 < a'b =0.

Not all correlations are reflexive.
Example 11.10. The R-bilinear product on R2:
R X R*—>R; ((a,b),(a’,b)) w> aa’ + ab’ + bb’
is induced by a correlation that is not reflexive. O
The next proposition is in contrast to Example 11.8, 2 above.

Prop. 11.11. Let & be a non-zero irreducible reflexive correlation on
a right ?K-linear space X. Then, for some x € X, x*x is invertible.

Proof Since £ is irreducible, & = hb (4 x {), where {: X; — X;¥
and 5: Xy,—> X, are semi-linear. Since £ is reflexive,
(@,0)%(0,6) =0 <« (0,6)%(a,0) = 0.
That is, 0,a") =0 < (3*a,0) =0
or b #£0 < ba #£ 0.
Since ¢ is non-zero, % or { is non-zero. Suppose 7 is non-zero. Then

there exists (a,b) € X, X X, such that a" # 0 and b*a =0, that is,
such that (a,b)*(a,b) is invertible. O

If £ is symmetric we can say more.
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Prop. 11.12. Let £ be an hb K¥ symmetric correlation on a right
?K-linear space X and suppose that, for some x € X, x%x is invertible.
Then there exists 1 € 2K, such that (xA)}(x1) = 1.

Proof As in the proof of Prop. 11.11, £ = hb ( X £&). Now & is
symmetric, so, for all (a,b) € X,
((a»b)s(a’b))hbw = (aab)é(a’b)’
that is, ((a"b)*, (b*a)r™") = (b*a,a™).
In particular, a" = 1 if, and only if, b’a = 1. Now, if x = (a,b) is
invertible, b%a # 0. Choose 1 = ((b*a)~1,1). O

An invertible correlation is said to be non-degenerate.

Prop. 11.13. Let & be a non-degenerate correlation on a finite-
dimensional right K-linear space X, and let x be any element of X.
Then there exists ' € X such that x%x’ = 1. O

Prop. 11.14. Let £ be a non-degenerate irreducible correlation on a
finite-dimensional right 2K-linear space X, and let x be a regular ele-
ment of X. Then there exists " € X such that x*x' = 1 (=(1,1)). O

Equivalent correlations

Theorem 11.25 below classifies irreducible reflexive correlations with
respect to an equivalence which will now be defined.

Semi-linear correlations &, 7: X — X< on a right A-linear space X
are said to be equivalent if, for some invertible 1 € A, n = A&. This is
clearly an equivalence on any set of semi-linear correlations on X.
Several important cases are discussed in the following four propositions.

Prop. 11.15. Any skew C-correlation on a (right) C-linear space X
is equivalent to a symmetric C-correlation on X, and conversely.

Proof Let & be a skew C-correlation on X. Then i£ is a C-correlation
on X since, forallx e X, 1 €C,

(i€)(x2) = i(&(x2)) = iAE(x) = A(iE)(x).
Moreover, for all @, b € X,
ba = ib'a = (—i)(—a'By = a%b.
That is, i£ is symmetric over C.
Similarly, if £ is symmetric over C, then if is skew over C. O

Prop. 11.16. Let y be an anti-involution of H other than conjuga-
tion. Then any skew HY-correlation on a right H-linear space X is
equivalent to a symmetric H-correlation on X, and conversely.
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Proof We give the proof for the case HY = H. Let £ be a skew

H-correlation on X, Then j& is an H-correlation on X, since, for all
xeX,AeH,

(36)(x2) = jA&(x) = A(&)(x).
Moreover, for all @, b € X,
Ba = j¥a = —ja’b = @b = a'b.
That is, j& is symmetric over H.
Similarly, if & is symmetric over H, then j& is skew over H 0

Prop. 11.17. Let p be as in Prop. 11.16. Then any symmetric
HP-correlation on a right H-linear space X is equivalent to a skew
H-correlation on X, and conversely. O

Prop. 11.18. Any irreducible skew correlation on a right ?K-linear
space X is equivalent to an irreducible symmetric correlation on X,
and conversely.

Proof Let & be an irreducible skew (?K)* correlation on X. Then
(1,—1)& also is an irreducible correlation on X, and, for all 4, b € X,
b1 = (1,—1)b'a = —(a*b)*(1,—1)
= (a’b)¥(1,—1)%, since y is irreducible,
= g,
That is, (1,—1)& is symmetric.
Similarly, if £ is symmetric, (1,—1)§ is skew. O

A correlation that is equivalent to a symmetric or skew correlation
will be called a good correlation. Good correlations are almost the same
as reflexive correlations, as the next theorem shows.

Theorem 11.19. Any non-zero reflexive irreducible correlation on
afinite-dimensional right A-linear space X of dimension greater than one
is a good correlation.

(A counter-example in the one-dimensional case is the correlation on H
with product H2 — H; (a,b) w» a(1 + j)b.)

Proof By Prop. 1049, A = K or K.

Consider first a reflexive K¥-correlation £ on a finite-dimensional
K-linear space X. Then, for all gbe X, (0%)" =0 < ba=0 <«
a*h = 0. That is, for any non-zero a € X, the kernel of the (surjective)
K-linear map X — K; b« (b%a)*" coincides with ker a*. Therefore,
by the K-analogue of Prop. 5.15, there exists 4, € K, non-zero, such
that, for all b € X,

(ba)"" = A.a'b.



EQUIVALENT CORRELATIONS 205

Now 1, does not depend on a. For let a’ be any other non-zero ele-
ment of X. Since dim X > 1, there exists ¢ € X, linearly free both of
a and of a’ (separately!). Then, since

b*a + b*c = b*(a + ),
it follows that
Ao @b + 2 c*b = 244 0(a + o),
for all b € X. So
aly”" + A = (a+ et
But a and ¢ are free of each other. So
lavﬂ = }*a+cw_‘ = }*cv_"
implying that 1, = 4,. Similarly 1,, = 4,. So 4,, = 1,. That is, there
exists A € K, non-zero, such that, for all ¢, b € X,
(b%a)*" = Aa'b.

There are two cases.

Suppose first that a’a = 0, for all a € X. Then, since 2(a’b + b%a) =
a*a + b — (a — b)%(a — b),

(b*a)?" = Aa’h = —Abfa,
for all g, b € X. Now any element of K is expressible in the form b,
for suitable @ and 4. In particular, for suitable @ and b, b%a = 1. So
A = —1 and p = 1. That is, the correlation is a skew K-correlation,
with K = Ror C.

The alternative is that, for some x € X, x’x 0, implying that, for
some invertible 4 € K, (u~1)*" = Au~! or, equivalently, x=1 = (u~1)¥A".
Then, for all ¢, b e x,

ba = u(Aa'b)’ = u(uab)(u-")"2"= u(pad)p-* = Wa@b)u1.
Moreover, for all A €K, (bAY*a = (uA*u-2)b**a. The correlation ué,

equivalent to &, is therefore a symmetric K¥-correlation, where, for
any » €K,

W= WL

The proof for an irreducible (*K)* reflexive correlation & on a 2K-
linear space X is basically the same, but care has to be taken, since a
non-zero element of 2K or of X is not necessarily regular. One proves
first that there exists an invertible 1 € 2K such that, for all regular
acXandall be X,

(6%a)*" = Aa’b.
It is then easy to deduce that this formula also holds for all @ € X. Next,
by Prop. 11.11, % is invertible, for some x € X. The remainder of the
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proof is as before. The conclusion is that any such correlation is equiva-
lent to a symmetric correlation. O

It is easy to verify that skew R- or C-correlations are essentially skew.

Prop. 11.20. Let & be a skew K-correlation on a finite-dimensional
K-linear space X, K being R or C, and let  be any correlation on X
equivalent to & Then # also is a skew K-correlation. 0O

The following corollary of Theorem 11.19 and Prop. 11.20 comple-
ments Prop. 11.11, both being required in the proof of the basis theorem
for symmetric correlated spaces (Theorem 11.40).

Cor. 11.21. Let £ be a non-zero symmetric correlation on a finite-
dimensional K-linear space X. Then there exists x € X such that
xtx 0. g

Corollary 11.21 may also be regarded as a corollary of the following
proposition, which may be proved, for example, by case examination.

Prop. 11.22, Let £ be a symmetric K¥linear correlation on a right
K-linear space X. Then £ is uniquely determined by its form X — K;
x - xb, O

The next proposition complements Prop. 11.12.

Prop. 11.23. Let X be a right K-linear space, let £ be a symmetric

K¥-correlation and suppose that x € X is such that x%¢>20. Then, if

=R, C or H, there exists 4 €K such that (x1)’(x2) =1 or —1,
while if K¥ = C or H, there exists 1 € K such that (x4)’(x1) = 1.

Proof Since, for all 2 € K, (xA)}(x2) = 1¥(x*x)4, it is enough to prove
that, for some 4 €K, (A-1)¥ A-1 = (1¥)-1 1-! = J-a’x, as the case may
be. Now, when v is conjugation, that is, when K* = R, C or H, x% =
x*x, by the symmetry of v, and x‘x is therefore real. So in these cases
A—1 may be taken to be the square root of | x°x |. When K¥ = C, x*x € C
and we may take A~ to be the square root of x*x. Finally, if K¥ = H,

% = &' and so, by Prop. 10.28, x*x belongs to the image of the map
H— H; p > fiu. ad

Methods similar to those used in the proof of Theorem 11.19 may be
used to prove the following.

Theorem 11.24. Let £ and # be non-degenerate correlations on a
finite-dimensional right K-linear space X of dimension greater than one
and suppose that the induced projective correlations 9(£) and ¥,(n) are
equal. Then £ and # are equivalent. |
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Because of Theorem 11.24, equivalent correlations are sometimes
said to be projectively equivalent. Note, however, the slight dimensional
restriction.

The final theorem of this section is a crude classification of good
irreducible correlations with respect to equivalence. There are ten
classes (assigned code numbers later, on page 270).

Theorem 11.25. Let £ be a good irreducible correlation on a right
A-linear space X. Then £ is equivalent to one of the following:

a symmetric R-correlation;

a skew R-correlation;

a symmetric C-correlation;

a skew C-correlation;

a symmetric or, equivalently, a skew C-correlation;

a symmetric H- or, equivalently, a skew H-correlation;

a symmetric H- or, equivalently, a skew H-correlation;

a symmetric or, equivalently, a skew hb R-correlation;

a symmetric or, equivalently, a skew hb C¥-correlation,
where C¥ = C or C; or, finally,

a symmetric or, equivalently, a skew hb H"-correlation,
where y is an anti-automorphism of H.

These ten possibilities are mutually exclusive.

Proof This is an immediate corollary of Cor. 10.55 and Theorem
11.19, together with Props. 11.15, 11.16, 11.17 and 11.18. O

Algebra anti-involutions

In Chapter 9 we noted how any non-degenerate real symmetric
scalar product on a finite-dimensional real linear space X induces an
anti-involution, the adjoint anti-involution, of the real algebra End X.
In a similar way any non-degenerate good correlation on a finite-
dimensional right A-linear space X induces an anti-involution of the
real algebra End X of A-linear automorphisms of X.

It is convenient to begin by considering several spaces. In the next
few propositions X, Y and Z will all be finite-dimensional right A-
linear spaces.

Prop. 11.26. Let & be a non-degenerate A¥-correlation on X, let g
be a non-degenerate AY-correlation on Y and let 2: X— Y be an
A-linear map. Then there exists a unique map t*: Y — X, namely
the A-linear map £-ly, such that, forallae X, be Y,

b't(a) = t*(B)fa. 0O
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The map t* is called the adjoint of ¢ with respect to & and 5. The
adjoint of a linear map u: X — X with respect to £ will be denoted
by #%. The map u is said to be self-adjoint if u* = u and skew-adjoint
if #* = —u. The real linear subspaces {#x €End X:uf =u} and
{u € End X : uf = —u} of the real linear space End X = L(X,X) will
be denoted by End:+(X,£) and End-(X,¢), respectively.

Prop. 11.27. Lett: X— Y and u: Y — Z be A-linear maps and
let &, 5 and { be non-degenerate A¥-correlations on X, Y and Z respec-
tively. Then (1x)* = 1x and (ut)* = t*u*, where #* is the adjoint of ¢
with respect to & and 7, u* the adjoint of u with respect to # and ¢, and
(ut)* the adjoint of u¢ with respect to £ and (. |

Prop. 11.28. Let & and % be equivalent non-degenerate correlations
on X. Then, for each A-linear map u: X — X, u" = uf,

Proof For some A € A, n = A&, Therefore, for any u € End X,
it = Afut = MuLE = ul(Af) = uln,
since u is left A-linear. So
" = ,7—1 uLn = uf, |
Prop. 11.29. Let & be an irreducible good correlation on X, Then,
for any A-linear map u: X — X,

@WY¥=u O
Prop. 11.30. Let £ be as in Prop. 11.29. Then the map
End X—End X; twtt
is a real algebra anti-involution. 0

There is an important converse to Prop. 11.30. The following propo-
sition is required early in the proof.

Prop. 11.31. Let X be a finite-dimensional A-linear space, let « be
an anti-automorphism of the real algebra End X and let # € End X,
withrk ¢ = 1. Then rk #* = 1.

Proof Consider first the case that A = K, where K =R, C or H.
Then, by Theorem 6.39, which holds also when K = H, ¢ generates
a minimal left ideal of End X. Since « is én anti-automorphism of End X,
the image of this ideal by « is a minimal right ideal of End X. This
ideal is generated by :*; so, by Theorem 6.39 again, or, rather, its
analogue for right ideals, rk #* = 1.

The case A = ?K is slightly trickier. In this case the left ideal gener-
ated by an element ¢ of End X, with rk ¢ = 1, is not minimal, but has
exactly two minimal left ideals as proper subideals. Moreover, this can
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only occur if rk ¢ = 1. Otherwise the proof goes as before. The details
are left to the reader. 0

Now the converse to Prop. 11.30.

Theorem 11.32. Let X be a finite-dimensional right A-linear space.
Then any anti-involution « of the real algebra End X is representable
as the adjoint anti-involution induced by a non-degenerate reflexive
correlation on X.

Proof The case dim X = 0 is trivial; so there is no loss of generality
in supposing that X = A" x A, for some 7 € .

Letu = <0 0\*. Then u®=wu, while, by Prop. 11.31, u has

0 1
rank 1. Let v :im u — A be an A-linear isomorphism and let s = vuy,,
i = uyv-'. Then by the analogue of Prop. 3.20 for A-linear maps
with image an A-linear space,
st =1, = sui,

while, for all (¢, d) € A* x A,
(0 N[0 0N0 N[0\
o d4) =\o 1)\ 4/ “\o 4/

The map
p:A—A; ,‘{ws(g g)ai

is a ring anti-automorphism of A; for it respects addition, while, for

any 4, u €A,
0 0\~
(uey? —S(O M) ’
=5 00 s 00 i
T\0 u 0 2
= o,
with 1Y = sui = 1.
Now define
E:A" x A—> (A" x A); (c,d)ws(g ‘)

Then &is A¥-linear; for it respects addition, while, for any (¢,d) € A® x A
and any 1 €A,

0. cA\*
&(cA,dR) = S(O dl)

(6 96 )
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_SO 0“.s0 c\*
=% 1/*\0 4

= A¥&(c,d).
Moreover § is injective; for if s(O c)“ =0, for any (c,d) € A" x A,
0 d
then (0 ¢\* =17s{0 ¢\* =0, implying that (¢,d) = 0, since a2 == 1.
0 d 0 d

So ¢ is a non-degenerate A¥-linear correlation on A* X A.
This correlation is reflexive; since, for all (¢,d), (¢’,d’) € A" X A,

(@@= 26 2
-0 (5o 00
- (@) (@)

where p €A, from which it follows that if (c,d)¥(c’,d’) =0, then
(¢’,d’)*(c,d) = 0, y being an anti-automorphism of A.
Finally, for any (c,d), (c’,d") € A® x A, and any ¢ € End (A" x A),
(B d")(ed) = (') Hed),
each side being equal to,s(() c’>°‘ t(c), since t** = {. That is, t* is the
0d) \d
adjoint of ¢ with respcct to the correlation &. O

Correlated spaces

An A*-correlated space (X&) consists of a right A-linear space X and
an A'-correlation & on X. Such a space is said to be non-degenerate,
irreducible, reflexive, good, symmetric or skew if its correlation ¢ is,
respectively, non-degenerate, irreducible, reflexive, good, symmetric or
skew, to be isotropic if its correlation is zero, and neutral if X is the direct
sum of two isotropic subspaces, each linear subspace of X being tacitly
assigned the correlation induced on it by £ in the obvious way.

Example 11.33. The right A-linear space A? with the A¥ sesqui-
linear product

A2 X A2— A; ((a,b),(a' b)) w> b¥a’ + a*b
is a symmetric neutral non-degenerate A¥-correlated space. 0

This space is denoted here by (A*)},, and called the standard A¥-
hyperbolic plane. [In the first edition it was denoted by A, .]
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Example 11.34. The right A-linear space A* with the A¥ sesqui-
linear product

A% x A2— A; ((a,b),(a' b)) w> b¥a’ — a"b’
is a skew neutral non-degenerate A¥-correlated space. 0

This space is denoted here by (A¥)%,, and called the standard A¥-
symplectic plane. [In the first edition it was denoted by A¥,.]

By analogy with Chapter 9, points a and b of a reflexive correlated
space (X, &) are said to be mutually orthogonal if a*h = 0, this being
equivalent to the condition that b°a = 0. Orthogonal annihilators of
subspaces are then defined just as before, a subspace of a non-degen-
erate correlated space being isotropic if, and only if, it is a subspace of its
annihilator and a non-degenerate subspace of a non-degenerate cor-
related space having a unique orthogonal complement.

The AY-product of two A¥-correlated spaces (X,£) and (Y,) is the
A¥-correlated space (X x Y, ) where, for all (a,d), (a',0') e X X Y,

(a,b)i(a' b)) = d*a’ + bb'.
Such a product of two non-degenerate, isotropic or neutral correlated
spaces is, respectively, non-degenerate, isotropic or neutral. The sub-
spaces X X {0} and {0} X Y of X X Y are orthogonal complements
of each other in (X' x Y, {). The negative of a correlated space (X,£) is
the correlated space (X, —§).

A correlated map t : (X,£) — (Y,n) is a (right) A%linear map, where o
is an automorphism of A, such that, for all ¢, b € X,

H(a)" 1b) = (a'b)",

an invertible map of this type being a correlated isomorphism. (We
omit the usual routine remarks.)

Prop. 11.35. Let £ be an A¥-correlation on a right A-linear space X
and let ¥ be any anti-automorphism of A similar to y, in the sense of
page 194. Then there exists a right A-linear space Y and an A*-corre-
lation 7 on Y such that (Y,n) = (X,8).

Proof Since y and y are similar, there exists an automorphism « of A
such that ap = yo. Let ¥ = X*(cf. Prop. 11.4) and let: ¥ — Y< be
defined for all 4, b € Y, by the formula

a'b = (a’b)~.
The image of 7 is genuinely in Y, since for any u € A,
a"(bu”) = (a'bp*")* = (a’b)'m.
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Moreover, for any 4 € A,
(al“_‘)"b —_ ((alu")Eb)a — (lwr’ aEb)a:
= A*a’h, since y = apa-l.
That is, # is A*-linear.
Finally, the set identity (X,&) — (Y,7) is a correlated isomorphism,
since it is a semi-linear isomorphism and, from its very definition,

a'b = (a*b)*, foralla,beX. [J

Prop. 11.36. Let (X,£) and (Y,7) be non-degenerate finite-dimen-
sional A¥-correlated spaces. Then an A-linear map ¢: (X&) — (Y,%)
is correlated if, and only if, #*# = 1y, where t* denotes the adjoint of ¢
with respect to & and 7. O

Cor. 11.37. Let (X,£) and (Y,7) be as in Prop. 11.36. Then any
correlated map ¢: (X,£) — (Y,n) is injective. O

Cor. 11.38. Let (X,£) be as in Prop. 11.36, and let ¢ € End X.
Then ¢ is a correlated automorphism of (X,£) if, and only if, # =
1x. O

Prop. 11.39. Let (X,§) and (Y,7) be as in Prop. 11.36 and suppose,
further, that £ and 5 are each symmetric, or skew. Then, for any
te L(X,)Y),

(t*)f = L%,
the + sign applying if & and % are both symmetric or both skew, and
the — sign if one is symmetric and the other skew. O

Detailed classification theorems

By Theorem 11.25 and Prop. 11.35 any irreducible good correlated
space is equivalent, up to isomorphism, either to a symmetric A¥-
correlated space, where A* =R, C,C,H, H,hb R, hb C or hb H, or
to a skew R- or C-correlated space. In each of these cases there are
classification theorems analogous to the classification theorems of
Chapter 9. We state them without proof whenever the proof is the
obvious analogue of a proof in that chapter.

Theorem 11.40. (The basis theorem for symmetric correlated
spaces.) Each irreducible symmetric finite-dimensional A¥-correlated

space has an orthonormal basis.
(Cf. Cor. 11.21, Prop. 11.11, Prop. 11.23 and Prop. 11.12.) O

Theorem 11.41. (Classification theorem.)
(i) Let (X,£) be a non-degenerate symmetric R-correlated space of
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finite dimension 7 over K, where K = R, C or H. Then there exists a
unique pair of natural numbers (p,9), with p 4 ¢ = #n, such that (X&)
is isomorphic to K?#4, this being the right K-linear space K?*¢, with the
hermitian product
(K22 > K; (ab)wo — T ab; + X 3,450,
iep jeg

(ii) Let (X,£) be a non-degenerate symmetric A¥-correlated space of
finite dimension 7 over A, where A* = C, H, hb R, hb &, or hb H.
Then (X,£) is isomorphic to (A¥)", this being the right A-linear space
A", with the product

(A")2— A;  (a,b) w> X a’b;. ]

In (i) the pair of numbers (p,g) is called the signature of the cor-

related space (X,$).

The following proposition concerns powers of hyperbolic planes.

Prop. 11.42. For any 7 € w there are the following isomorphisms of
correlated spaces:

= R where R =R, CorH
and (A¥)} = (A¥)», where A” = C, H, hb R, hb Cor hb H. O

The Witt construction of Prop. 9.52 generalizes to each of the ten
classes of correlated space as follows.

Prop. 11.43. Let (X,£) be a non-degenerate irreducible finite-
dimensional symmetric or skew A¥-correlated space, and suppose that
W is a one-dimensional isotropic subspace of X. Then there exists
another one-dimensional isotropic subspace W’ distinct from W such
that the plane spanned by W and W’ is, respectively, a hyperbolic or
symplectic A¥-plane, that is, isomorphic to (A”), or to (A¥)3,.

Proof In the argument which follows, the upper of two alternative
signs refers to the symmetric case and the lower to the skew case.
Let w be a regular element of W. Since X is non-degenerate there

exists, by Prop. 11.13 or Prop. 11.14, an element x € X such that
w'x = 1. Then, for any 1 € A,

(% + wA)(x + wid) = x'x + A+ A,
this being zero if A = Fiax, since a'x = +(xx)*. Let o' =
x F 3w a*x. Then w'nw’ =1, ww = 4+1 and w'*w’ = 0. Now let
W’ = A{w'}, a ZK-line in the 2K case, since w"%w = 41 (= 4(1,1)).
Then the plane spanned by W and W’ is, respectively, a hyperbolic
or symplectic A¥-plane. O
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Cor. 11.44. Let W be an isotropic subspace of a non-degenerate
irreducible finite-dimensional symmetric or skew AY-correlated space
X. Then there exists an isotropic subspace W' of X such that
X=WoWoWow). 0O

Such a decomposition of X will be called a Witt decomposition of X
with respect to the isotropic subspace W.

Cor. 11.45. Let X be a non-degenerate irreducible finite-dimen-
sional symmetric or skew A¥-correlated space. Then there is a unique
number k such that X is isomorphic either to (A?)E% X Y in the sym-
metric case, or to (A¥)% x Y in the skew case, where in either case ¥
is a subspace of X admitting no non-zero isotropic subspace. |

Cor. 11.46. (Classification theorem for skew R- or C-correlated
spaces.)

Let X be a non-degenerate finite-dimensional skew R- or C-cor-
related space. Then X is isomorphic to R or to C2k, where 2k = dim X,
dim X necessarily being even. O

Cor. 11.47. (Classification theorem for neutral correlated spaces.)
Any neutral non-degenerate irreducible finite-dimensional symmetric
or skew AY-correlated space X is isomorphic either to (A*)E or to
(A¥)2k, where 2k = dim X. Typical spaces of each of the ten types are
REpx R, RI,
Ci=Cv Cf, O O~ T
M~ R, Hp~ BB
(hbR)Z2 = (hbR)> s (hbR)2F,
(hbC)Z% = (hbC)™ ~ (hbC)2t  (hbH)E; = (hbH)* ~ (hbH)2n

8Dy

1 2 1 and Ny [ ne_
(hbC)ir = (hbC)* ~ (hbC)2r  (hbH)E ~ (hbH)*™ ~ (hbH)Z
where ~ denotes isomorphism up to equivalence. 0

The index of a non-degenerate finite-dimensional AP-correlated
space (X,£) is the dimension of the isotropic subspace of greatest
dimension in (X,$).

Prop. 11.48, The index of a non-degenerate finite-dimensional
AY-correlated space (X,&) is at most half the dimension of X. O

Prop. 11.49. The correlated spaces R*"*% R2r C*+1 Crntk Cin

=, f2e+1 Hontk (hbK¥)2 and (hbK¥)**1 all have index n, for any
finite » and k. O



PARTICULAR ADJOINT ANTI-INVOLUTIONS 215

Positive-definite spaces

A K-correlated space (X,£) is said to be positive-definite if, for each
non-zero a € X, a‘a is a positive real number, and to be negative-
definite if its negative (X, —£) is positive-definite.

Prop. 11.50. An n-dimensional K*-correlated space (X,£) is posi-
tive-definite if, and only if, (X,£) is isomorphic to R*, C» or Hr. 0

Prop. 11.51, Every non-zero linear subspace of a finite-dimensional
positive-definite correlated space is non-degenerate and has a unique
orthogonal complement. O

Particular adjoint anti-involutions

The following information on various adjoint anti-involutions will be
useful later. The information is given in tabular form. The notations
are all as before, with the additional convention that if, for any finite
m and »n, a € L(K",K™) and if v is any anti-involution of K, then a*
denotes the element of L(K"K™) whose matrix is obtained from the
matrix of a by applying the anti-involution y to each term of the
matrix, The map a* is then the transpose of a*,

Table 11.52.

Linear space, X | Correlated space, (X,£) | teEnd X ‘ t
' T
K= (KY iKé);r 7)) t £
K x K¢ &-ncam | G2 | (E7F
K* x K- (kg Ga | G
Kr x K> ® G2 | (-
x| w69 €9

It follows, for example, that the correlated automorphisms of (hb K¥)»
are the endomorphisms of 2K" of the form (a 0 ), where a is any
0 (a1
automorphism of K". In that case the group of correlated automor-
phisms is isomorphic to the general linear group GL(n,K).
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Groups of correlated automorphisms

There are various (nearly) standard notations for the group of corre-
lated automorphisms of each of the standard correlated spaces. These
are set out in the following table. For the fact that symplectic real or
complex matrices have determinant 1 see Exercise 11.67 or, rather,

Exercise 7.42. For determinants of quaternionic matrices see pages
186-7.
Table 11.53.

Correlated Group of correlated Subgroup
space automorphisms {t:dett =1}
R™ O(p,q;R) or O(p,q) SO(p,9)
with O(n) = O(0,n) =~ O(n,0)
R¥ Sp(2n;R) Sp(2n;R)
Cn O(n;C) SO(n;C)
c Sp(2n;C) Sp(2n;C)
Cre U(p.9) SU(p.q9)
with U(n) = U0,n) ~ U(n,0)
o O(n; H) O(n; H)
fire Sp(p,a; H) or Sp(p,q) Sp(6,9)
with Sp(n) = Sp(0,n) = Sp(n,0)
hbR* GL(n;R) SL(n;R)
hbC" =~ hbC» GL(n;C) SL(n;C)
hbfi» =~ hbi" GL(;H) SL(n;H)

The letter O stands for orthogonal, the letter U for unitary and the
letters Sp for symplectic. The rather varied uses of the word ‘symplectic’
tend to be a bit confusing at first. It is to be noted that when one speaks
of the symplectic group, of a given degree n, one is normally referring
to the group Sp(n;H). This usage tends to give the word quaternionic
overtones. In fact the word was first used to describe the groups Sp(2n;R)
and Sp(2n;C) and to indicate their connection with the sets of iso-
tropic planes in the correlated spaces R3} and C2%. Such a set of isotropic
planes, regarded as a set of projective lines in the associated projective
space %,(R?") or ¢,(C*), is known to projective geometers as a line
complex. The groups were therefore originally called complex groups.
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This was leading to hopeless confusion when H. Weyl [58] coined the
word ‘symplectic’, derived from the Greek synonym of the Latin word
‘complex’ | Whether the situation is any less complicated now is a matter
of dispute.

A final warning: some authors write Sp(z;R) and Sp(#;C) where we
have written Sp(2n;R) and Sp(2#r;C).

There are numerous relationships between the different groups.
Various group injections, namely those induced by the injections

R—C;, 1w}, H—>C?% 2+ jww(2,w)

and K— K; A-w»>(4,1) whereK =R, CorH,
are so standard as usually to be regarded as inclusions. In particular, the
groups O(n;C), U(p,q), with p + ¢ = n, and GL(n;R) are all regarded
as subgroups of GL(n;C), for any n, while Sp(2n;C) and GL(n;H) are
regarded as subgroups of GL(2n;C).

Prop. 11.54. For any finite n,
O(n) = O(n;C) N GL(n;R) = O(n;C) n U(n)
Sp(n) = Sp(2n;C) N GL(n;H) = Sp(2n;C)y N U(2n)
O(n;H) = O(2n;C) n GL(n;H)
and  Sp(2n;R) = Sp(2n;C) N GL(2n;R),
while, with rather obvious definitions of O(p,q;C) and Sp(2p,24,C), iso-
morphic respectively to O(n;C) and Sp(2r,C),
O(p,9) = O(2,4;C) 0 U(pg)
and Sp(p»9) = Sp(2p,2¢;C) N U(p,9).
(The equation Sp(n) = Sp(2n;C) N U(2n), for example, follows readily
from the observation that, for all 2 + jw, &’ + jw’ € H,
(z +jw)(2' + jw') = (8’ + dw') — j(wz’ — 2w').) O
There are analogues of the unit sphere S* in R*+! for the other non-

degenerate finite-dimensional correlated spaces. Suppose first that
(X,£) is a symmetric correlated space. Then
L(XE) =f{xeX: x'x =1}

is defined to be the unit quasi-sphere in (X,£). In particular, F(R"+1) ==
Sn, while #(Cr+1) and F(Hr+1) are identifiable in an obvious way with
S#+1 and S*=+3, respectively, for any number n. Note also that, for
(X,&) = hbKr+1, with K =R, Cor A,

F(X,&) = {x e Krtl:x'x = 1}
{x € K +1: (%0, %" x,) = (1,1)}
= {x € ’K+1: Fx, = 1},

since &,"x, = 1 if, and only if, %;"x, = 1.

P
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A slightly different definition is necessary in the essentially skew
cases. The appropriate definition is
FEp) = {(%y) e Bp)*: 2oy = 1},

where + denotes the product on K2, or, equivalently,

PRI = {(Z d) e (K")?*%: g-d — boc = 1}

where - denotes the standard scalar product on K*, K being R or C.
The verification of the following theorem is a straightforward check!

Theorem 11.55. For any p, ¢, 7 € o, let RP4+2, Crt1, Cpa+1, Fint,
Hpat, hb R*+, hb Cr+L, hbH"+!, R2**+2and C2+2 be 1dent1ﬁed with
R X R, C"x C, C“xC A x A, H“xH hbR® x hbR,
hbC» x hbC, hbH x hbH, R2 x R, and C2* x CZ,, respectively,
in the obvious ways. Then the pairs of maps

Op.)— Olpg + 1) — SR+,
SO(p,g)— SO(p,q + 1) — SR, p 4 ¢> 0,
O(n;C) — O(n + 1;C) —> FL(Crt1),
SOn;C) — SO(n + 1;C) — &(C*+Y), n> 0,
Up.g)— U(p,q + 1) — (TP,
SU(p,q) = SU(p,q +1) — FE+), p 44> 0,
O(n;f) — O(n + 1;H) — F(Hr+1),
Sp(p,g) —> Sp(p » ¢ + 1) —> F(HPIH),
GL(n;R) — GL(n + 1;R) — Z(hbR"+1),
SL(n;R) — SL(n + 1;R) — &L (hbR"+1), 2> 0,
GL(n;C) — GL(n + 1;C)— S (hbCr+1),
SL(n;C) — SL(n + 1;C) — &(hbC"+1), n> 0,
GL(n;H) — GL(n + 1;H)— £(hbHr+1),
SL(n;H) — SL(n + 1, H)— y(hbﬁ"“), n> 0,
Sp(2n;R) — Sp(2n+ 2;R) — L (RI+3),
and Sp(2n;C) — Sp(2n +2;C) — L(Cip+?
are each left-coset exact (page 97), the first map in each case being the

injection s ww»- ( s O) and the second being, in all but the last two cases,
0 1

the map £ ww»- £(0,1), the last column of ¢, and, in the last two cases, the map
> (#(0,(1,0)), 2(0,(0,1))), the last two columns of 2. O
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Note, in particular, the left-coset exact pairs of maps
Om)— O(m + 1)— S*
SO(n) — SO(n + 1) — S* (n> 0)
Umn)—> U+ 1)— S+t
SU@n) — SU@n + 1) —» S+t (n> 0)
and Sp(n) — Sp(n +- 1) — Stn+3,
For applications of Theorem 11.55, see Cor. 20.83 and Cor. 20.85.
Finally. some simple observations concerning the groups O(n), U(n)
and Sp(n) for small values of 7.
It is clear, first of all, that U(1) = S*, the group of complex numbers
of absolute value 1, and therefore that U(1) & SO(2). Also Sp(1) = S3,

the group of quaternions of absolute value 1.
Now consider C(2). Here there is an analogue to Prop. 10.30.

Prop. 11.56. For any ¢ € S? and any ¢ € S* the map
C2— C2; x> gxc
is unitary, C? being identified with H in the usual way. Moreover, any
element of U(2) can be so represented, two distinct elements (g,c) and
(¢',¢’) of S3 X S? representing the same unitary map if, and only if,
(¢'sc) = —(g0)-

Proof Themap x w» gxc is complex linear, for any (¢,c) € S3 X S,
since it clearly respects addition, while, for any A € C, g(xA)c = (gxc)4,
since Ac = cA. To prove that it is unitary, it then is enough to show that
it respects the hermitian form

Cz— R; x> &x,
However, since, for all (x,,%,) € C?,
Ry + Zyx = (Fo — &)} (%o + jo1) = | o + ju, [?
it is enough to verify instead that the map, regarded as a map from
H — H, preserves the norm on H, and this is obvious.
Conversely, let t € U(2) and let 7 = ¢(1). Then | 7 | = 1 and the map
C2— C2; x> fi(x)
is an element of U(2) leaving 1, and therefore every point of C fixed, and
mapping the orthogonal complement in €2 of C, the complex line
jC = {jz: 2 € C}, to itself. It follows that there is an element ¢ of S,
defined uniquely up to sign, such that, for all x e C?, 7t(x) = éxc or,
equivalently, #(x) = gxc, where ¢ = r¢, Finally, since ¢ is defined
uniquely up to sign, the pair (g,c) also is defined uniquely up to sign.
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An alternative proof of the converse goes as follows.
Let t € U(2). Then t = cgu, where ¢ = det ¢ and u € SU(2). Now
the matrix of u can readily be shown to be of the form ( a —5), from
b a
which it follows that u = ¢;, where ¢ = a 4 jb. The result follows at
once. |

Cor. 11.57. The following is a commutative diagram of exact
sequences of group maps:

{1 {1

1) —> S0 1y S,

inch incl.
incl. proj.

I} —> 83 —> 83 x St —» St— {1}
! squaring

incl. det.

U@Q2) —»81— {1}

{1} —> SUQ)

y Y
{ {U {1}
the map f being defined by the formula
f(q,6) == qi ey, forall (g,c) € S3 x St
In particular, Sp(1) = S3 = SU(2). O

Now, by Prop. 10.44, C(2) == H ® C, the representative of any
q € H being ¢;, and the representative of any ¢ € C being cg. It follows,
by Prop. 11.56, that the product of any finite ordered set of elements
belonging either to the copy of Sp(1) = 53 or to the copy of U(1) = S?
in C(2) is an element of U(2).

This result is to be compared with Prop. 10.42 and the remarks
following Prop. 10.44. Note also that in the standard inclusion of C
in R(2) the elements representing the elements of U(1) = S? are all
orthogonal.

For an important application of these remarks, see Prop. 13.27.

FURTHER EXERCISES

11.58. Classify semi-linear maps over °K, for any positive s. (Cf.
Prop. 11.2.) O
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11.59. State and prove the analogues of Props. 3.32 and 3.33 for semi-
linear maps. O

11.60 Let z-w»>t* be a real algebra automorphism of A(zn), where
A = Kor ZK. Prove that there is a semi-linear isomorphism ¢ : A" — A"
such that, for all ¢ € A(n), £* = $té—2. |
11.61. Let twK denote the twisted square of K, that is, K X K with
the product (K x K)?— (K x K); (A,u)(4’,u") w> (A ,u'x). Show
that, for any finite-dimensional K-linear space X, the K-linear space
X X XT may be regarded as a twK-linear space by defining scalar
multiplication by the formula
(#,0)(A,u) = (¥A,uw), for any (x,0)e€ X X X%, (A,u) € twK.

Develop the theory of twK-correlated spaces. Show, in particular,

that for any finite-dimensional K-linear space X, the map
(X x X5 — twK; ((a,2) , (5,8)) > («(b) , B(a))

is the product of a non-degenerate symmetric (twK)"™-correlation on
X X XT (hb being an anti-involution of twK). O

11.62. Let & be a symmetric C-linear correlation on a C-linear space X
such that, for all x € X, xx = 0. Prove that &£ = 0. O

11.63. Show
(i) that there is a group map SU(2) — S3? X S® making the
diagram S3 X §% commute,

SU(2) —> SO4)
and (ii) that there is no group map U(2)— S3 x S?% making the
diagram S3 x S3 commute,

U(2) — SO¢)
the vertical map in either case being the group map defined in Prop.

10.29 and the horizontal maps being the standard group injections
induced by the usual identification of C? with R*. ]

11.64. Let ¢t € SU(3). Show that
Zoa= det (’;10 tu)’ T, = —det <too t01>

20 Lo Ly In

to In

and e = det (t°° tm). O
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11.65. Show that the diagram of maps
Sp(l) = SU2) —> SU3) —> S*

Sp2) ——>SU@#)—>T

N —> &

where any 2 + jw in Sp(1) is identified with (z ——a')) in SU(2), is

w £
commutative, the top row and the two columns being special cases of the
left-coset exact pairs defined in Theorem 11.55, and the map = being
the surjection, with image T a subset of SU(4), defined, for all t € SU(4),
by the formula 7(f) = #t~, where

In ~in ty —in
r o= —ti0 too —130 230
tig —to3 tag —la3
~lig  leg —lsz Iy
Hence construct a bijection S® — T that makes the square
SU(3) — S*
SU@4)—> T

commute and show that this bijection is the restriction to S% with
target T of an injective real linear map

»: C*—> C(4).

(Exercise 11.64 is relevant at one point of the argument. We shall meet
this example again in Chapter 13, in Prop. 13.61, and again in Chapter 21,
as Diagram 21.6.) d

11.66. Let X and Y be isomorphic non-degenerate symmetric or skew
Ar-correlated spaces, let U and V be correlated subspaces of X and Y,
respectively, and suppose that s: U — V/ is a correlated isomorphism.
Construct a correlated isomorphism ¢: X — Y such that s = (£ | U)y,.
(Cf. Exercise 9.88.)

11.67. Prove that, for any a € Sp(2n; R) or Sp(2n; C), deta = 1. (Cf.
Exercise 7.42.) O

11.68. Prove that, for any a € Sp(n), det a = 1. (Cf. Prop. 10.33.) (O



CHAPTER 12

QUADRIC GRASSMANNIANS

The central objects of study in this chapter are the quadric Grass-
mannians of finite-dimensional correlated spaces. Particular topics in-
clude affine quadrics and their classification, parabolic charts on a
quadric Grassmannian and various coset space representations of quad-
ric Grassmannians.

There is no attempt to be exhaustive. The purpose of the chapter,
rather, is to provide a fund of examples that will illustrate the material
of later chapters, in particular Chapters 17 and 20.

All linear spaces will be finite-dimensional linear spaces over
A =K or 2K, where K =R, C or H. On a first reading one should
assume that A = R or C and that y is the identity, ignoring references
to the more complicated cases.

Grassmannians

Grassmannians of linear spaces have already been introduced in
Chapters 8 and 10, but it is convenient to recall the definitions here,
varying the notations slightly.

Let X be a right A-linear space. Then, for any finite , the set ,(X)
of linear subspaces of X of dimension % over A is the Grassmannian of
linear k-planes in X, the Grassmannian %,(X) of lines in X through 0
being called also the projective space of X. In the real case there are also
the Grassmannians %3 (X) of oriented linear k-planes in X.

As we saw in Chapter 8, and again in Chapter 10 in the quaternionic
case, various subsets of the Grassmannian ¢,(X) may be regarded in a
natural way as affine spaces. For any linear subspace Y of codimension
k in X, the inclusion &(X,Y) — #(X) will be called a natural chart
on %(X), O(X,Y) being, as before, the affine space of linear comple-
ments of ¥ in X. In this context it is convenient to regard as equivalent
injections 4 — %,(X) and B— %(X), where 4 and B are affine
spaces over A (or the centre of A), whenever there is an affine isomor-
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phism 4 — B such that the diagram
A \
l Z.(X)
B /

is commutative. A standard chart on %,(X) is then defined to be an
injection 4 — %, (X), with A4 affine, equivalent to one of the natural
charts.
Suppose, for example, that X =W Y (z W x Y) with W € 4,(X).
Then the map
LW, Y)— %,(X); t-w»>grapht
is a standard chart on %,(X), the map
L(W,Y)— 0(X,Y); t~w» grapht
being an affine isomorphism.
Standard charts on the projective space ¢,;(X) include maps of the
form
H— 9,(X); x> [x] = Alx},
where H is an affine hyperplane of X not passing through 0, and maps
of the form
Y—9y(X); yow[b+)]
where Y is a linear hyperplane of X and b e X\ Y.

[=[6+1]

/ el‘r(x )
4 H

xzbry

be

/ ol ./Y

A standard atlas on %,(X) is a set of standard charts on ¥,(X) such
that every point of %,(X) is in the image of at least one chart.

Example 12.1. The set of maps R*— %,(R3%); (x,y) w» [x,3,1],
(%,2) w» [%,1,2] and (y,2) > [1,y,2] is a standard atlas for 4,(R?). O
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Quadric Grassmannians

Now let £ be an irreducible symmetric or skew correlation on the
right A-linear space X. The kth quadric Grassmannian of the correlated
space is, by definition, the subset #,(X,£) of %,(X) consisting of the
k-dimensional isotropic subspaces of (X,¢).

Prop. 12.2. Let £ be such a correlation on X and let # be any
correlation equivalent to & Then, for each &, F(X,n) = S(X,é). In
particular, (X, —§) = F(X,&), for each k. 0

The counterimage of #,(X,£) by any one of the standard charts of
Z(X) will be called an affine form of #,(X,&) or simply an affine quadric
Grassmannian.

We shall mainly be concerned with the case when ¢ is non-degenerate.
In this case the dimension of an isotropic subspace is at most half the
dimension of X. When (X,£) is a non-degenerate neutral space, neces-
sarily of even dimension, isotropic subspaces of half the dimension of
X exist. Such subspaces will be termed semi-neutral (or, when (X, &)
~ R% or C%%, Lagrangian [63]) subspaces, and the set of semi-neutral
subspaces of (X,&) will be called a semi-neutral quadric Grassmannian.

There are isotropic lines in (X, £) unless (X&) is positive- or negative-
definite. The subset (X, &) of the projective space ¢,(X) is called the
projective quadric of (X,£). The counterimage of #,(X,&) by any one of
the standard charts of ¢,(X) will be called an affine form of #,(X,&) or
simply an affine quadric. When & is non-degenerate, an affine form of
J (X, &) will be called a non-degenerate affine quadric.

A line W in X is isotropic with respect to the correlation & on X or,
equivalently, is a point of the projective quadric if, and only if, for every
x € W, «*x = 0. This equation is frequently referred to as the equation
of the quadric J(X,£).

Just as the elements of ¢,(X) may, when % > 1, be interpreted as
(k — 1)-dimensional projective subspaces of the projective space ¢,(X)
rather than as k-dimensional linear subspaces of X, so the elements of
JF(X,6) may when k> 1, be interpreted as (¢ — 1)-dimensional pro-
jective spaces lying on the projective quadric #,(X,&) rather than as
k-dimensional isotropic subspaces of (X,£). We shall refer to this as the
projective interpretation of the quadric Grassmannians.

When (X, £) is isomorphic either to R or to C2*, every line in (X&)
is isotropic. In these cases, therefore, the first interesting quadric
Grassmannian is not #,(X,£) but £,(X,£), the set of isotropic planes
in (X,£). This set is usually called the (projective) line complex of (X,£),
the terminology reflecting the projective rather than the linear inter-
pretation of £,(X,£). (See also page 216.)
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Affine quadrics

Let & denote a symmetric or skew KY-correlation on the right
K-linear space X and let Y be a linear hyperplane of X (the 2K case
being excluded from the discussion because of complications when ¢ is
degenerate). Then the natural chart ©(X,Y) — %,(X) determines an
affine form of the quadric J(X,£).

There are various possibilities, which may be conveniently grouped
into four types, namely

(i) & non-degenerate, Y a non-degenerate subspace of X|
(if) & non-degenerate, Y a degenerate subspace,
(iii) & degenerate, ker (X&) < Y,
(iv) & degenerate, ker (X,&) ¢ Y.

We consider the various types in turn.

Type (i)—& non-degenerate, ¥ non-degenerate.

Since Y is non-degenerate, X = Y+ @ Y, the line W = Y1 also
being a non-degenerate subspace. We may suppose, without loss of
generality, that W & K, even in the cases where signature is relevant,
since J1(X,— &) = S1(X,£), and we choose such an isomorphism. Let
7 be the correlation induced on Y by &.

There is then an isomorphism K X ¥ — X determining an affine
isomorphism

Y— 0(X,Y); y-wK{(Ly)}
The equation of #,(X,£) with respect to the former isomorphism is
w’w -+ yly =0, with weKx W and ye¥,
and the equation of the affine form of .#,(X,¢) is
1+yy =0,
this being obtained by setting @ = 1 in the previous equation.

Such an affine quadric is said to be central, with centre 0, for if y is a
point of the affine quadric, so is —y.

Type (#i)—& non-degenerate, Y degenerate.

In this case dim (ker Y) = 1, by Prop. 9.24. Let W’ = ker Y and
let W be any isotropic line not lying in Y. Then since X is non-degener-
ate, WO W' is a hyperbolic or symplectic plane, for otherwise
W' = ker X. The line W therefore determines a Witt decomposition
WO®W @ Zof X inwhich Z = (W@W’)! also is non-degenerate.
Choose an isomorphism W @ W' — (K*)};, or (K¥)Z, and let { be the
correlation induced on Z by &.
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The isomorphism K X ¥ =K X K X Z — X determines an affine

isomorphism
Y — O(X,Y); y w» K{(1,y)}
as before. The equation of J,(X,&) with respect to the former iso-
morphism is
w4 w'w 4 2fz =0,

with weK ~ W, ' eK ~ W’ and = € Z, the sign being + if £ is
symmetric and — if & is skew.

The equation of the affine form of #,(X,£) is therefore

w +w?+2F2=0
obtained, as before, by setting @ = 1 in the previous equation.
Such an affine quadric is said to be parabolic.

Type (iit)—¢& degenerate, ker (X,£) < V.

Two subspaces Y, and Y of an affine space Y with vector space Y,
are said to be complementary if Yy = (Vo) @ (Yy)g- A subset Q of Y
is said to be a (non-degenerate) quadric cylinder in Y if there are com-
plementary subspaces Y, and Y, of ¥ and a non-degenerate affine
quadric Q, in Y, such that Q is the union of the set of affine subspaces
in Y parallel to Y, one through each point of Q.

Exercise 12.3. Show that any affine quadric of type (iii) is 2 quadric
cylinder. O

Type (iv)—& degenerate, ker (X,£) ¢ V.

A subset O of an affine space Y is said to be a quadric cone in Y if
there is a hyperplane Y’ of Y, a point v € Y\ Y’, and a not necessarily
non-degenerate affine quadric Q' in Y’ such that Q is the union of the
set of affine lines joining v to each point of Q’. The point v is said to
be a vertex of the cone. It need not be unique.

Exercise 12.4. Show that any affine quadric of type (iv) is a quadric
cone. [

Real affine quadrics

In this section we consider briefly the various types of non-degenerate
affine quadrics in the case that X & RP% As before, Y denotes a linear
hyperplane of X. There are two types.

Type (i)—In this case Y is non-degenerate, so isomorphic either to
R?4-1 or to R?~14, Without loss of generality we may suppose as before
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that the former is the case, and that the affine form of .#,(X,£) has the
equation
1 - Zyi2+ z y]+p =0
iep
or, equivalently,
Ty — B Yt =1
iep jeg—1
When # =p + ¢ — 1 =1, there is only one type of affine central
quadric, whose equation may be taken to be y? = 1. This is a pair of
points.
When n = 2 there are two types, the ellipse and the hyperbola with
equations

Yol +yi=1 and y2 —y*=1,

respectively. Each is an affine form of the projective quadric in %,(X)
with equation

—x02 + 2,2 + x,2 = 0.

When n = 3 there are three types, the ellipsoid, the hyperboloid of one
sheet, and the hyperboloid of two sheets, with equations

Yol + 1"+t =1
Yo + 3 — 3t =
and Yo — 3P —yf=1,
respectively.
The phrases ‘one sheet’ and ‘two sheets’ refer to the fact that the one
hyperboloid is in one piece and the other in two pieces. The subject of

connectedness is one which is discussed in more detail later, in Chapters
16 and 17.

Type (it)—In this case W 4 W’ is isomorphic to R}, and Z to
RP~14-1 "The equation of the affine form of #,(X,&) may therefore be
taken to be

2w—2z2—2+p1—0
iep—1 jeg—1
or, equivalently,
iepzl 22— Z Zjpp? = 20

Whenn=p +q¢g—1=1, there is one type, with equation @’ = 0.
This is a single point.

When 7z = 2, there is again one type, the parabola, with equation
2% = 2%, this being a third affine form of the projective quadric with
zquation

— %% + %% + 2,2 =
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When n = 3, there are two parabolic quadrics, the elliptic paraboloid
with equation

2t 4 = 2w,
this being an affine form of the projective quadric
—%o2 2,2 4 K2 - x32 =
whose other affine manifestations are the ellipsoid and the hyperboloid
of two sheets, and the Ayperbolic paraboloid, with equation
2?2 — 2,2 =20,
this being an affine form of the quadric
— o2 — 2,2 A+ a2 4 K% =
whose other affine manifestation is the hyperboloid of one sheet.

Exercise 12.5. Since R??2 is neutral, there are isotropic planes in
R?22, projective lines on #,(R?:2) and affine lines on each of its affine
forms. Find the affine lines on the hyperboloid of one sheet and on the
hyperbolic paraboloid and show that in each case there are, in some
natural sense, two families of lines on the quadric. (The existence of
such lines is one reason for the popularity amongst architects of the
hyperbolic paraboloid roof.)

Charts on quadric Grassmannians

Now let (X,&) be any non-degenerate irreducible symmetric or skew
A'-correlated space, and consider the quadric Grassmannian J,(X, ).

By Cor. 11.44 there is, for any W € £,(X,£) a Witt decomposition
WdW ® Z of X,where W € #(X,£)and Z = (W @ W')L. There
are, moreover, linear isomorphisms A*—» W and A* — W' such that
the product on X induced by £ is given with respect to these framings
by the formula

(a,bc)f(@’ b, c’) = b"a’ + a"b’ + ¢’
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where 7 is the (symmetric) correlation on (A¥)* and ¢ is the correlation
induced on Z by &, and where X has been identified with W x W' x Z
to simplify notations.

Both here and in the subsequent discussion, where there is a choice
of sign the upper sign applies when & (and therefore () is symmetric
and the lower sign when £ (and ) is skew.

Now let Y=W' @ Z ~ W x Z and consider the standard chart
on %(X)

LW,Y) = 9(X); (5) > graph (5,)
The counterimage by this chart of #(X,£) is given by the following
proposition.

Prop. 12.6. Let (s,t) € L(W,Y), the notations and sign convention
being those just introduced. Then
graph (s,2) € £, (X&) < s+ "+ t*t =0,
where t* is the adjoint of ¢ with respect to the correlations 7 on A* and
on Z.
: In particular, when Z = {0}, that is, when #;(X,£) is semi-neutral,
the counterimage of S ,(X,£) by the chart

L(W,)Y) —> 9(X); (st) > graph (s,¢)

is a real linear subspace of its source.

Proof Foralla,beW,

(a,5(a),t(a))® (b,5(0),1(B)) = s(a)"b + a"s(b) + t(a)*t(b)
= (s(a) & s"(a) + t*t(a))"b
by Prop. 11.26. Therefore
graph (s,t) € F(X,8) < s+ 5" + t*% = 0.
The second part of the proposition follows from the remark that

End_ (A*%) and End_(A¥%») (cf. page 208) are real linear subspaces of
End A¥, while ¢t = 0 when Z = {0}. a

Prop. 12.7. Let the notations be as above. Then the map
f:Endy(A%n) x L(A*%Z)— L(A%Y); (s,2) w> (s — $t*¢,1)
is injective, with image the affine form of #(X,&) in L(A%Y)
(= L(W,Y)).

Proof That the map f is injective is obvious. That its image is as
stated follows from the fact that, for any # € L(A*,Z), (t*t)" = 4-t*,
by Prop. 11.39. Therefore, for any (s,2),

(s—3*)L(—3*)+t*% =0
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That is, the image of f is a subset of .#;(X, &), by Prop. 12.6. Conversely,
if graph (s',t') € F(X,E), let s =" + $t'*' and let ¢t =¢. Then
s 4 §7 = 0; sos € Endz(A%7) and ¢t € L(A* Z), while s’ = s — }t*tand
=1t

That is, the affine form of #,(X,&) is a subset of im f. The image of
f and the affine quadric Grassmannian therefore coincide. O

The composite of the map f;,, with the inclusion of im f in £,(X,§)
will be called a parabolic chart on F(X,£) at W. A set of parabolic
charts on J(X,£), one at each point of #,(X,£), will be called a para-
bolic atlas for £ ,(X,&).

Grassmannians as coset spaces

Let X be a finite-dimensional real linear space. Then, as was noted
in Chapter 8, there is a surjective map

h: GL(R:EX) —> 9(X); u-wimu
associating to each k-frame on X its linear image.

Prop. 12.8. Let & be a positive-definite correlation on X. Then
h | O(R*,X) is surjective. a

The map introduced in the next proposition is a slight variant of this.

Prop. 12.9. Let R” be identified with R* x R*~*, Then the map
f:ORY)— Z,(R*);  t-wwt,(RF x {0})

is surjective, its fibres being the left cosets in O(R") of the subgroup
O(R*) x O(R"-*),

Proof With R" identified with R* x R*~*, any map ¢: R* —>R" is
of the form fa ¢\ where a € L(R*R*), b € L(R*,R*~*), ¢ € L(R"*~*, R¥)
b d
and d € L(R*-*R"-*), Since the first & columns of the matrix span
t.(R* x {0}), ¢,(R* x {0}) = R* x {0} if, and only if, 5 = 0. How-
ever, if ¢ is orthogonal with b = 0, then ¢ also is zero, since any two
columns of the matrix are mutually orthogonal. The subgroup
O(R*) x O(R*-*), consisting of all <a O) € O(R* x R*¥), is there-
0 d
fore the fibre of f over R* x {0}.

The map f is surjective by Prop. 9.25. (Any element of ¢,(R") is a
non-degenerate subspace of R" and so has an orthonormal basis that
extends to an orthonormal basis for the whole of R".)

Finally, if ¢ and # € O(R") are such that #,(R* x {0}) = u,(R* x {0}),
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then (z—1) (R* x {0}) = R* x {0}, from which it follows directly that
the fibres of the map f are the left cosets in O(R") of the subgroup
O(R*) x O(R"-¥). O

In the terminology of Chapter 5, page 97, the pair of maps
O(k) x O(n — k) =3 O(n) 2> g(R")

is left-coset exact, and fi,;: O(n)/(O(k) x O(n — k)) — F(R") is a
coset space representation of #,(R").

Prop. 12.10. For each finite #, k, with & < n, there are coset space
representations
Um)/(U(k) x U(n — k)) — g(C")
Sp(n)/(Sp(k) x Sp(n — k)) — %,(H")
and SO(n)/(SO(k) x SO(n — k)) — F;}H(R™),
analogous to the coset space representation
O(n)/(O(k) x O(n — k)) — %(R")
constructed in Prop. 12.9. O

Quadric Grassmannians as coset spaces

Coset space representations analogous to those of Prop. 12.10 exist
for each of the quadric Grassmannians.

We begin by considering a particular case, the semi-neutral Grass-
mannian #,(C3%)of the neutral C-correlated space CE%.

Prop. 12.11. 'There exists a bijection
O(2n)/U(n) — Lu(Ci3),
where O(2n)/U{(n) denotes the set of left cosets in O(2n) of the stan-
dard image of U(n) in O(2n).

Proof 'This bijection is constructed as follows.

The linear space underlying the correlated space C3}is C* x C#, and
this same linear space also underlies the positive-definite correlated
space C* x C». Any linear map ¢: C* x C* — Cr x C» that respects
both correlations is of the form fa b\, with a + b"a =0 and

b a
@a + b'b = 1, for, by Table 11.52, the respective adjoints of any such
map t = fa ¢\ are {d° ¢\ and [d& ¢\, and these are equal if, and
G 9™ G o)™ G )
only if, d = @ and ¢ = 5. By Prop. 10.46 such a map may be identified
with an element of O(2x) or, when b = 0, with an element of U(n), the
injection U(n) —> O(2n) being the standard one,
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Suppose that W is any n-dimensional isotropic subspace of C2¢. A
positive-definite orthonormal basis may be chosen for W as a subspace
of C» x Cr. Suppose this is done, and the basis elements arranged in
some order to form the columns of a 2n X n matrix fa\. Then W is the

b
image of the isotropic subspace C* x {0} by the map (a b\. Moreover,
a
a’b 4 b'a = 0, since W is isotropic for the hyperbolic correlation, while
@a + b"b = 1, since the basis chosen for W is orthonormal with respect
to the positive-definite correlation.
Now let f be the map

0(2n) — 7 ,(CEY); (Z 5) > im (Z)

The map is clearly surjective; so none of the fibres is null. Secondly,
fIC" x {0}) = U(n). Finally, by an argument similar to that used in
the proof of Prop. 12.9, the remaining fibres of f are the left cosets in
O(2n) of the subgroup U(n). O

Theorem 12.12. Let (X,£)=(A")%} or (A¥)2", where yisirreducible

8P
and 7 is finite. Then in each of the ten standard cases there is a coset

space representation of the semi-neutral Grassmannian ,(X,§), as
follows:

(O(n) x O(n))/O(n) — S (RE
U(n)/O(n) — £,(Ry
O(2n)/U(n) — 4,(CHy
(U(n) x U(n))/U(n) — (TR} = #u(C33
Sp(n)/U(n) — Fu(CE
U(2n)/Sp(n) — S (H3) = £, (H;
(Sp(n) x Sp(n))/Sp(n) — 2 (EE) = S (B}
O(2n)/(O(n) x O(n)) — Fa(hb R);
U(2n)/(U(n) x U(n)) — £,(hb C)&%
Sp(2n)/(Sp(n) x Sp(n)) — Fa(bb H)E,.
Proof The third of these is the case considered in Prop. 12.11. The

details in each of the other cases follow the details of this case, but
using the appropriate part of Prop. 10.46. O

This is a theorem to return to after one has studied Tables 13.66.
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Cayley charts

The first of the cases listed in Theorem 12.12 merits further discus-
sion in view of the following remark.
Prop. 12.13. Let f be the map
O(n) x O(n) — O(n); (a,b) w»>ab—1.
Then f*{"1} is the image of O(n) by the injective group map
O(n) — O(n) x O(n); a~w»>(a,a)

Sy 2 (O(n) x O(n))/O(n) —> O(n).
is bijective. O

and the map

It follows from this that O(n) may be represented as the semi-neutral
Grassmannian J,(RE}). The charts on O(n) corresponding to the para-
bolic charts on £, (RE?) will be called the Cayley charts on O(n). The
following is an independent account of this case.

Let (X,&) ~ R** &~ R}, and consider the quadric #,(X,&). Its
equation may be taken to be either

&x =y, where (x,y) eR* x R*
or wo =0, where (u,v) eR* x R?,
according to the isomorphism chosen, the two models being related,
for example, by the equations

u=x-+y, v=-—x-+y
Now any n-dimensional subspace of R* X R* may be represented
as the image of an injective linear map

(a,b) = (‘;) :R*—R* x R,

Prop. 12.14. The linear space im (a,b), where (a,b) is an injective
element of L(R”, R* x R*), is an isotropic subspace of R*" if, and only
if, @ and b are bijective and ba-* € O(n).

Proof =: Let im(ab) € S, (R""), let w € R* be such that
x = a(w) =0 and let y = b(w). Since (x,y) belongs to an isotropic
subspace of R*", x*x = y™, but x = 0, so that y = 0. Since (a,d) is
injective, it follows that w = 0 and therefore that a is injective. So
a is bijective, by Cor. 6.33. Similarly b is bijective.

Since a is bijective, a~1 exists; so, for any (x,) = (a(w),b(w)),
y = ba~1(x). But ¥y = x"x. So ba—* € O(n).

< : Suppose that @ and b are bijective; then, as above, for any
(%,y) € im (a,0) y = ba~-1(x). If also ba~! € O(n), then yy = x"x. [
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Cor. 12.15. Any n-dimensional isotropic subspace of R™" has an
equation of the form y = #(x), where ¢t € O(n), and any n-plane with
such an equation is isotropic. O

Prop. 12.16. Any element of .#,(R™") may be represented as the
image of a linear map (a,6): R* — R* X R* with @ and & each
orthogonal. 0

This leads at once to the coset space representation for 4,(R™")
whose existence is asserted in Theorem 12,12,

Note that £, (R™") = {graph ¢: ¢ € O(n)} divides into two disjoint
classes, according as ¢ preserves or reverses orientation.

So far we have considered the projective quadric J,(R""*). We now
consider the quadric £ (R§}:). Let s € End (R") be such that graph s
€ 4, (R{}). Then, for all u, 4’ e R~

s(u'Yu 4 u's(u) = 0,
implying that s 4 s* = 0, that is, that s € End_(R"), this being a par-
ticular case of Prop. 12.6.

Now graph s = im (1,5). We can transfer to #;(R™") by the map

L(l ——1) : RE?— R™", Then the image of graph s in R™", namely

V21 im %G "i)(:) —im G ;s>

is an element of £, (R™"). So, by Prop. 12.14 or by Exercise 6.52,1 — s
is invertible. By Prop. 12.14 again, or by Exercise 6.53, the product
(IT4+9)(1—5)teOm), 1-+s commuting with (1 —s)~! since
(I 4+ 51 —s)=1—s2=(1 —s)(1 4 s5). Moreover, since
l—s=1+s=(1+597, (1+s)1—s5)1eSOn).
The following proposition sums this all up.

Prop. 12.17. For any s € End-(R"), the endomorphism 1 — sis inver-

tible, and (1 4 s)(1 — 5)~t € SO(n). Moreover, the map
End_(R*) — SO(n); s~ (1 +s)(1 —s)*

is injective. O

The map of Prop. 12.17 is the Cayley chart on SO(#) (or O(n)) at *1.
For n > 2 it is not surjective even on SO(n). For example when n = 2
the rotation —21 does not lie in its image.

The direct analogue of Prop. 12.17, with R?? in place of R® and
SO(p,9) in place of SO(n), is not true when both p and ¢ are non-zero;

for (0 1\ € End_(R1), but( 1 ——1) is not invertible. There is,
10 -1 1

however, the following partial analogue.
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Prop. 12.18. For any s € End_(R??) for which 1 — s is invertible,
(1 + s)(1 — 5)~1 € SO(p,q). Moreover, the map

End_(R??) >> SO(p,q); s> (1 +s)(1 — )1
is injective. O

The map given in Prop. 12.18 is, by definition, the Cayley chart on
SO(p,g) (ot O(p,g)) at ™1

An entirely analogous discussion to that given above for the ortho-
gonal group O(n) can be given also both for the unitary group U(n) and
the symplectic group Sp(n).

It was remarked above that the semi-neutral Grassmannian 4, (R}7)
divides into two parts, the parts corresponding to the orientations of R*.
The semi-neutral Grassmannian £,(C%}) divides similarly into two
parts, the parts corresponding, in the coset space representation

O(2n)/U(n) — £ (CHy
to the two orientations of R?". (By Cor. 7.33, any element of U(n)
preserves the orientation of R?".)

Grassmannians as quadric Grassmannians

Another case from the list in Theorem 12.12 that merits further dis-
cussion is #,(hb R)Z%. It has already been remarked in Chapter 11 that

(hb R)? ~ (hb R)2".
The space (hb R)?* may be thought of as the R>-linear space R** x R
with the product
(R x R2)2— R2;  (a,d), (a',b') wo> (b-d’,a-b'),

where - is the standard scalar product on R

Now it is easily verified that the isotropic subspaces of this space,
of dimension n over R?, are the R%-linear subspaces of R** X R2" of
the form V' x VL, where V is a subspace of R?* of dimension 7 over R
and V1 is the orthogonal complement of 7 in R?* with respect to the
standard scalar product on R?*:. This provides a bijection between
%,(R*) and #,(hb R)f%. A coset space representation

O(2n)/(O(n) x O(n)) — F.(R")

was constructed in Prop. 12.9. The induced representation for .#,(hb R);?
can be made to coincide with the representation given in Theorem
12.12, by choosing the various isomorphisms appropriately.

A similar discussion can be carried through for the final two cases
on the list, #,(hb €)% and #,,(hb H)22.
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Further coset space representations

Coset space representations analogous to those listed above for the
semi-neutral quadric Grassmannians exist for all the quadric Grass-
mannians. The results are summarized in the following theorem.

Theorem 12.19. Let (X,£) be a non-degenerate #-dimensional irre-
ducible symmetric or skew A¥-correlated space. Then, for each %, in
each of the ten standard cases, there is a coset space decomposition of
the quadric Grassmannian £(X,£) as follows:

(0(p) x O@)/(O) x O(p — B) x O(q — k) — FR)
U)/(O(F) x Uln — k) — F1(RE
O(n)/(U(k) X O(n — 2k)) — #,(C")
(U(p) x U@)/UMH) x U(p — k) x Ulg — B)) — £(C?)
Spn)/(U(R) % Spln — k) —> F4(CE
U()/(Sp(k) x Uln — 28)) — 5,(E)
(S(p) % SP@)/(Sp(R) % Sp(p — ) % Splg — B)) — Fi(EP4)
O(n)/(O(k) x O(k) x O(n — 2k)) — S,(hb R)»
U(n)/(U(k) x U(k) x U(n — 2k)) — SF(hb C)»
Sp(n)/(Sp(k) x Sp(k) x Sp(n — 2k)) —> S1(hb H)~.
The resourceful reader will be able to supply the proof! O
Certain of the cases where k = 1 are of especial interest, and we con-
clude by considering several of these.
Consider first the real projective quadric #,(R™%), where p > 1 and
g> 1
Prop. 12.20. The map
SP1 X St > S (RPD); (,9) oo R(x, 9)}
is surjective, the fibre over R{(x,y)} being the set {(x,y), (—x, —)}. O
That is, there is a bijection
(8771 x S71)/S0 — £ (RP9),
where the action of S° on S?-1 x S?-1 is defined by the formula
(x»y)(—_l) = (_x’_y),
for all (x,y) € SP~! x S77L

This result is in accord with the representation of J,(R?9) given in
Theorem 12.19, in view of the familiar coset space representations

O(p)/O(p — 1) — 87! and O(g)/O(g — 1) — S**
of Theorem 11.55.
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The complex projective quadric #;(C”) handles rather differently.

Lemma 12.21. For any », let 2 = x + iy € C* where x,y e R".
Then 2® = 0 if, and only if, x(®» = y® and x-y = 0. a

Now let R(x,y) denote the oriented plane spanned by any ortho-
normal pair (x,y) of elements of R”,

Prop. 12.22. For any orthonormal pair (x,y) of elements of R~
C{x + iy} € #(C") and the map
I R")—>F(C");  R(x,y) > Clx + iy}
is well defined and bijective. 0

The coset space representation
SO(n)/(SO(2) x SO(n — 2)) — 45 (R*)
given in Prop. 12.10 is in accord with the coset space representation
O(m)/(U(1) x O(n — 2)) — #(C")
given in Theorem 12.19, since SO(2) ~ St ~ U(1).

Now consider #4(R%). In this case every line is isotropic; so .#;(R3y)
coincides with ¢,(R?"), for which we already have a coset space repre-
sentation O(2n)/(O(1) x O(2n — 1)), equivalent, by Theorem 11.55, to
S#-1/89 where the action of —1 on S2*-1 is the antipodal map. By
Theorem 12.19 there is also a representation U(n)/(O(1) x U(n — 1)).

This also is equivalent to S*~1/S° by the standard representation
(Theorem 11.55 again)
U(n)/U(n — 1) — S,

Finally, the same holds for .#,(C2p), which coincides with &,(C?"),
for which we already have a representation U(2z)/(U(1) x U(2n — 1)),
equivalent to S*~1/S, Here the action of S is right multiplication,
S$4-1 being identified with the quasi-sphere #(C**) in C2». Theorem
12.19 provides the alternative representation Sp(n)/(U(1) X Sp(n — 1)),
also equivalent to S**~1/S? via the standard representation (Theorem
11.55 yet again)

Sp(n)/Sp(n — 1) — Str-1,

FURTHER EXERCISES

12.23. Let s € End-(R"), for some finite number n. Prove that the
kernel of s coincides with the linear subspace of R” left fixed by the
rotation (1 — s)~Y(1 + s). Deduce that kr s is even or odd according as
n is odd or even. |
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12.24, Let s € End-(C"), for some finite number 7. Prove that, for
some non-zero A € C, 1 — As is invertible and that, for such a A, ker s is
the linear subspace of C* left fixed by the rotation (1 — 4s)~%(1 4 4s).
Hence show that krs is even or odd according as 7 is odd or even.
(Cf. Prop. 2.18.) O

12.25. Let X be a four-dimensional real or complex linear space, and
let O be the projective quadric of a non-degenerate neutral quadratic
form on X. Verify that the set of projective lines on Q divides into two
families such that two distinct projective lines on Q intersect (necessarily
in a single point) if, and only if, they belong to opposite families. Show
also that any point on Q lies on exactly one projective line on Q of each
family. 0

12.26. Let X be a six-dimensional real or complex linear space and let
O be the projective quadric of a non-degenerate neutral quadratic form
on X. Verify that the set of projective planes on Q divides into two
families such that two distinct planes of the same family intersect in a
point, while planes of opposite families either intersect in a line or do
not intersect at all. Show also that any projective line on Q lies in
exactly one projective plane on Q of each family. (Cf. Exercise 13.81.) O

12.27. Consider, for any finite #, the map
O(2n) — O(2n); t-ww»>t-1jt,
with j defined by the formula j(x,y) = (—y,x), for any (x,y) e R* X R",
Verify that the fibres of this map are the left cosets in O(2#) of a sub-
group isomorphic to U(n) and that each element in the image of the
map is skew-symmetric. Determine whether or not every skew-
symmetric orthogonal automorphism of R?* is in the image of the
map. M
12.28. Consider, for any finite &, n with 2 <, the map
f : RP* — O(RK, R™+1); R{a} «w> pg| R¥

where p¢ is the reflection of R** in the hyperplane (R{a})*. Show
that each fibre of f, with the exception of the fibre over the inclusion
R* — R"+1, consists of a single point, and determine the exceptional
fibre.

Discuss, in particular, the case that & = 1, O(R, R*+1) being iden-
tifiable with the sphere S”. Show that in this case f is surjective.

(This exercise played an important part in the solution of the vector
fields on spheres problem. See page 420 and the review by Prof. M. F.
Atiyah of Adams’s paper [2].) ]



CHAPTER 13

CLIFFORD ALGEBRAS

We saw in Chapter 10 how well adapted the algebra of quaternions is
to the study of the groups O(3) and O(4). In either case the centre of
interest is a real orthogonal space X, in the one case R3 and in the
other R%. There is also a real associative algebra, H in either case. The
algebra contains both R and X as linear subspaces, and there is an anti-
involution, namely conjugation, of the algebra, such that, for all x € X,

Xx = x(3),
In the former case, when R? is identified with the subspace of pure
quaternions, this formula can also be written in the simpler form
x% = —x(3),

In an analogous, but more elementary way, the algebra of complex
numbers C may be used in the study of the group O(2).

The aim of the present chapter is to put these rather special cases into
a wider context. To keep the algebra simple, the emphasis is laid at first
on generalizing the second of the two displayed formulae. It is shown
that, for any finite-dimensional real orthogonal space X, there is a real
associative algebra, A say, with unity 1, containing isomorphic copies
of R and X as linear subspaces in such a way that, for all x € X,

x% = —x(®,

If the algebra A4 is also generated as a ring by the copies of R and X or,
equivalently, as a real algebra by {1} and X, then 4 is said to be a
(real) Clifford algebra for X (Clifford’s term was geometric algebra [11]).
1t is shown that such an algebra can be chosen so that there is also on 4
an algebra anti-involution

A—A; aw»a-

such that, forall x € X, x— = —ux.

To simplify notations in the above definitions, R and X have been
identified with their copies in 4. More strictly there are linear injec-
tions «: R—> 4 and §: X — A4 such that, for all x € X,

(B(x))* = —afx®),

240

unity in 4 being «(1).
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The minus sign in the formula ¥* = —x(® can be a bit of a nuisance
at times. One could get rid of it at the outset simply by replacing the
orthogonal space X by its negative. However, it turns up anyway in
applications, and so we keep it in.

Prop. 13.1. Let A be a Clifford algebra for a real orthogonal space
X and let W be a linear subspace of X. Then the subalgebra of 4
generated by W is a Clifford algebra for W. O

By Prop. 9.56 and Prop. 13.1 the existence of a Clifford algebra for an
arbitrary n-dimensional orthogonal space X is implied by the existence
of a Clifford algebra for the neutral non-degenerate space R*". Such an
algebra is constructed below in Cor. 13.18. (An alternative construc-
tion of a Clifford algebra for an orthogonal space X depends on the
prior construction of the tensor algebra of X, regarded as a linear space.
The Clifford algebra is then defined as a quotient algebra of the (infinite-
dimensional) tensor algebra. For details see, for example, [4].)

Examples of Clifford algebras are easily given for small-dimensional
non-degenerate orthogonal spaces. For example, R itself is a Clifford
algebra both for R*® and for R, C, regarded as areal algebra, is a
Clifford algebra for R, and H, regarded as a real algebra, is a Clifford
algebra both for R%? and for R%3, it being usual, in the former case, to
identify R%? with the linear image in H of {i,k}, while, in the latter case,
R? has necessarily to be identified with the linear image of {i,j,k}, the
space of pure quaternions. Moreover, it follows easily from Exercises
9.71 and 9.78 that R(2) is a Clifford algebra for each of the spaces
R>°, R>! and R®!. Tt is provocative to arrange these examples in a table
as follows:

Table 13.2.
Clifford algebras for R?2, for small values of p and g

~p+qg —4 -3 -2 -1 0 1 2 3 4

p+aq
0 R
1 R C
2 R(2) R(2) H
3 ? R(2) ? H
4 ? ? ? ? ?

A complete table of Clifford algebras for the non-degenerate ortho-
gonal spaces R”? will be found on page 250. As can be seen from that



242 CLIFFORD ALGEBRAS

table, one can always choose as Clifford algebra for such a space the
space of endomorphisms of some finite-dimensional linear space over
R, C, H, *R or *H, the endomorphism space being regarded as a real
algebra.

Later in the chapter we examine in some detail how a Clifford alge-
bra A for an orthogonal space X may be used in the study of the group
of orthogonal automorphisms of X. Here we only make two preliminary
remarks.

Prop. 13.3. Leta,be X. Then, in 4,
a-b = —3(ab + ba).
In particular, @ and b are mutually orthogonal if, and only if, @ and b
anticommute.
Proof 2a-b=aa+5bb—(a—b)(a—0>)
—a® — b2 -+ (a — b)2
—ab — ba. O

Prop. 13.4. Let a € X. Then a is invertible in 4 if, and only if, it is
invertible with respect to the scalar product, when a=1 = —a(-1,

Proof = :Letb=a"" in 4. Then a®h=—a% = —a, implying
that @® 0 and that b = —a?.

< : Let b =a"h = —(a®)~1a. Then ba = —(a®)-1a? = 1.
Similarly, @b = 1. That is, } = a~1. J

Notice that the inverse in 4 of an element of X is also an element of X.

Orthonormal subsets

One of the characteristic properties of a Clifford algebra may be re-
expressed in terms of an orthonormal basis as follows.

Prop. 13.5. Let X be a finite-dimensional real orthogonal space
with an orthonormal basis {¢;: 7 e n}, where # = dim X, and let 4 be a
real associative algebra with unity 1 containing R and X as linear sub-

spaces. Then x? = —x(3, for all x € X, if, and only if]
el = —e®, forallien,
and ee; + eje; =0, for all distinct 7 and j en. O

This prompts the following definition.

An orthonormal subset of a real associative algebra 4 with unity 1is a
linearly free subset S of mutually anticommuting elements of 4, the
square a* of any element a € S being 0, 1 or —1.
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Prop. 13.6. Let S be a subset of mutually anticommuting elements
of the algebra 4 such that the square a2 of any elementa € Sis 1 or —1.
Then S is an orthonormal subset in 4.

(All that has to be verified is the linear independence of 4.) O

An orthonormal subset S each of whose elements is invertible, as In
Prop. 13.6, is said to be non-degenerate. If p of the elements of S have
square +1 and if the remaining ¢ have square —1, then S is said to be
of type (p,9).

Prop. 13.7. Let X be the linear image of an orthonormal subset S of
the real associative algebra A. Then there is a unique orthogonal struc-
ture for X such that, for all a € S, a® = —a?, and, if S is of type(p,9),
X with this structure is isomorphic to R?. If S also generates 4, then
A is a Clifford algebra for the orthogonal space X. a

The dimension of a Clifford algebra

There is an obvious upper bound to the linear dimension of a Clifford
algebra for a finite-dimensional orthogonal space.

It is convenient first of all to introduce the following notation.
Suppose that (¢;:Zemn) is an n-tuple of elements of an associative
algebra A. Then, for each naturally ordered subset I of n, J] e¢; will
denote the product T e;, with T] ¢5 = 1. In particular T] e, = [] e..

il ien

Prop. 13.8. Let A4 be a real associative algebra with unity 1 (iden-
tified with 1 € R) and suppose that (e;: 7 € #) is an n-tuple of elements
of A generating A such that, for any 7, j e n,

e;e; + e;e; R,
Then the set {[] ¢;: I < n} spans 4 linearly. 0

Cor. 13.9. Let A4 be a Clifford algebra for an n-dimensional ortho-
gonal space X. Then dim 4 < 2%, O

The following theorem gives the complete set of possible values for
dim A, when X is non-degenerate.

Theorem 13.10. Let A be a Clifford algebra for an n-dimensional
non-degenerate orthogonal space X of signature (p,g). Then dim 4
= 27 or 21, the lower value being a possibility onlyif p — g — 1is
divisible by 4, in which case # is odd and J] e, = +1 or —1 for any
basic orthonormal frame (¢; : ¢ € n) for X.

Proof Let (e;: i €n) be a basic orthonormal frame for X. Then, for
each I < n, T e; is invertible in 4 and so is non-zero.



244 CLIFFORD ALGEBRAS

To prove that the set {[] e;: I < n} is linearly free, it is enough to
prove that if there are real numbers 1;, for each I < n, such that
Y A(T] er) = 0, then, for each J < n, 4; = 0. Since, for any J < n,

Enll(n er) =0 < 12 MTT eI e =0,

thus making 1; the coefficient of ¢, it is enough to prove that
SA(JTe) =0 = 2 =0.

Icn
Suppose, therefore, that 35 2;(TT ;) = 0. We assert that this implies
Ien

either that 1, =0, or, if # is odd, that 43 + 4,(]T e.) = 0. This is
because, for each { enand each I < n, e; either commutes or anti-
commutes with JT e;. So

S(IIe) =0 = T ie([Tene ™ = ]Z SriAf(TTen) =0

Icn Icn

where {;; = 1 or —1 according as e; commutes or anticommutes with
T1 es. It follows that 3 2,(TT e;) =0, where the summationis now over
1

all I suchthat JT e; commutes with e,. After introducingeach e; in turn,
we find eventually that ¥ 2;(TT e;) = 0, with the summation over all /
1

such that TJe; commutes with each e;. Now there are at most only two
such subsets of #, namely @, since [] ¢; = 1, and, when = is odd, »
itself. This proves the assertion.

From this it follows that the subset {[Jes: I < n, #Ieven}is
linearly free in 4 for all # and that the subset {]] e;: I < n}is free for
all even . For n odd, either {J] e;: I < n}is free or [ ¢, is real.

To explore this last possibility further let » =p + ¢ = 2k + 1.
Then (TT en)? = (TT ez 41)2 = (—1)¥**+D+¢, But, since ] e, is real,
(TT ex)? is positive. Therefore (J] e.)? = 1, implying that J] e, = +1
and that (2% + 1) + ¢ is divisible by 2, that is, 4k2 + p + 3¢ — 1, or,
equivalently, p — ¢ — 1, is divisible by 4. Conversely, if p — ¢ — 1 is
divisible by 4, # is odd.

Finally, if J] e, = +1, n being odd, then, for each I < n with #I
odd, T] e = +TT €. Since, as has already been noted, the sub-
set {T] er: I < n, #I even} is free in A, it follows in this case that
dim4 = 27-1,

This completes the proof. O

The lower value for the dimension of a Clifford algebra of a non-
degenerate finite-dimensional orthogonal space does occur; for, as has

already been noted, R is a Clifford algebra for R™® and H is a Clifford
algebra for R%3.
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The following corollary indicates how Theorem 13.10 is used in
practice.

Cor. 13.11. Let A be a real associative algebra with an orthonormal
subset {e;:7en} of type (p,g), where p + ¢ = n. Then, if dim 4
=27-1 4 is a Clifford algebra for R?? while, if dim 4 = 2% and
if TTe, = 1, then A4 is again a Clifford algebra for R??, it being
necessary to check that ] e, = 41 only whenp — ¢ — 1 is divisible
by 4. O

For example, R(2) is now seen to be a Clifford algebra for R?: simply
because dim R(2) = 22 and because the set {(0 1), (1 0)} is an
1 0/ \0 —1
orthonormal subset of R(2) of type (2,0).

Prop. 13.12. 'The real algebra 2R is a Clifford algebra for R} ]

Universal Clifford algebras

The special role played by a Clifford algebra of dimension 2* for an
n-dimensional real orthogonal space X is brought out by the following
theorem.

Theorem 13.13. Let A4 be a Clifford algebra for an n-dimensional
real orthogonal space X, with dim 4 = 2", let B be a Clifford algebra
for a real orthogonal space Y, and suppose that ¢: X — Y is an ortho-
gonal map. Then there is a unique algebra map t4: 4 — B sending
14 to 1z and a unique algebra-reversing map t;: 4 — B sending
1¢4) to 15 such that the diagrams

X—>Y X—Lsy

|

linc linc and linc linc
t,{ t;

A—»>B A———>B

commute.

Proof We construct 24, the construction of #] being similar,
Let (e;: ¢ € n) be a basic orthonormal frame for X. Then if 24 exists,
ta(TT er) = TI (es), for each non-null I = », while £,(1 4) = 1), by
tel

hypothesis. Conversely, since the set {e;: I < n} is a basis for 4, there
is a unique linear map t4: A — B such that, for each I < n, 14(]] er)

= TT t(e;). In particular, since, for each ien, ti(e;) = t(e;), the
i€l
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. t .
diagram X —— Y commutes. It only remains to check that z4

Vlinc l inc
t

A—2>B

respects products, and for this it is enough to check that, for any

LJ<mn,
ta((IT exXIT e2)) = (T enta(IT en)-

The verification is straightforward, if slightly tedious and depends
on the fact that, since ¢ is orthogonal, ((e;))? = e,%, for any i en,
and t(e;)t(e;) = —t(e,)t(e;), for any distinct 4, jen. The final details
are left as an exercise. O

The uniqueness is useful in several ways. For example, suppose
that Y =X, B =4 and ¢t = 1x. Then t4 = 14, since the diagram

1
p.¢
X ——> X commutes.

b

A——>A4

Theorem 13.13 is amplified and extended in Theorem 13.31 in the
particular case that ¥ = X and B = 4. Immediate corollaries of 13.13
include the following.

Cor. 13.14. Let A and B be 2*-dimensional Clifford algebras for an
n-dimensional real orthogonal space X. Then 4 = B.

Proof Theorem 13.13 applied to the identity map 1x in four dif-
ferent ways produces the commutative prisms

1x__ o X~ _1x 1x_arX~_1x
XUy Y=y

1x 1x
and
, (Ix)4 B (1x)s ‘ (1x)s 4 (1x)a |
A/r ) p— 3]

18

These show that (l1x)4: 4-— B is an algebra isomorphism (with
inverse (1x)g). O

Cor. 13.15. Any Clifford algebra B for an n-dimensional orthogonal
space X is isomorphic to some quotient of any given 2"-dimensional
Clifford algebra A for X.

(What remains to be proved is that the map (Ix)a: 4 — B is a
surjective algebra map.) |
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A 2n.dimensional real Clifford algebra for an #-dimensional ortho-
gonal space X is said to be a universal real Clifford algebra for X. Since
any two universal Clifford algebras for X are isomorphic, and since the
isomorphism between them is essentially unique, one often speaks
loosely of the universal Clifford algebra for X. The existence of such
an algebra for any X has, of course, still to be proved.

It will be convenient to denote the universal real Clifford algebra for
the orthogonal space R*? by the symbol R, ..

Construction of the algebras

Corollary 13.11 may now be applied to the construction of universal
Clifford algebras for each non-degenerate orthogonal space R??, The
following elementary proposition is used frequently.

Prop. 13.16. Let a and b be elements of an associative algebra A
with unity 1. Then, if a and b commute, (ab)? = a%h?, so that, in par-
ticular,

a?=5b=—1 = (ab)®=1,
a?= —land > =1 = (ab)?= —1,

and a?=bt=1 = (ab)?=1,
while, if @ and b anticommute, (ab)? = —a??, and
a* =b*= —1 = (ab)*= —1,
a*= —landb*=1 = (ab): =1,
and a2 =bt=1 = (ab)*= —1. O

The first stage in the construction is to show how to construct the
universal Clifford algebraR,,, ,,, for R?*14*1 given R, , the universal
Clifford algebra for R??, This leads directly to the existence theorem.

Prop. 13.17. Let X be an A-linear space, where A = K or K and
K =R, Cor H, and let S be an orthonormal subset of End X of type
(p,9), generating End X as a real algebra. Then the set of matrices

{6 o) eesto G (7o)

is an orthonormal subset of End X2 of type (p + 1,¢ + 1), generating
End X? = End X ®yR(2) as a real algebra. O

Cor. 13.18. For each finite n, the endomorphism algebra R(2") is a
universal Clifford algebra for the neutral non-degenerate space R,
That is, R, ,, ~ R(2").

Proof By induction. The basis is that R is a universal Clifford
algebra for R, and the step is Prop. 13.17. O
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Theorem 13.19. (Existence theorem.)

Every finite-dimensional orthogonal space has a universal Clifford
algebra.

Proof This follows at once from the remarks following Prop. 13.1,
from Prop. 13.8 and from Cor. 13.18. 3

Prop. 13.20. Let S be an orthonormal subset of type (p + 1,9)
generating an associative algebra 4. Then, for any a € S with a? = 1,
the set

{ba:beS\{a}} U {a}
is an orthonormal subset of type (¢ 4 1,p) generating 4. O

Cor. 13.21. The universal Clifford algebras R,,,, and R, , are
isomorphic. 0

Prop. 13.22. For g <4, R, is isomorphic, respectively, to R, C, H,
*H, or H(2).

Proof By Cor. 13.11 it is enough, in each case, to exhibit an ortho-
normal subset of the appropriate type with the product of its members,
in any order, not equal to 1 or —1, for each algebra has the correct real
dimension, namely 2?. Appropriate orthonormal subsets are

¢ for R
{if for C
{i,k} for H

{<6 —?) ((J) —JQ > <l(; ~g>} for 2H
wt {3 DG 6 DE D) omo o

This completes the construction of the algebras R, , for p4-¢ < 4.
In particular, since Ry; ~ C, Ry = Ry, = COR(2) =~ C(2), while
R;; ~ R,, > R(4). Theoretical physicists (cf. [25]) call Ry, the Pauli
algebra and Ry, the Dirac algebra. Finally, a more sophisticated result,
leading to the ‘periodicity theorem’:

Prop. 13.23. Let S = {¢,: 7 €4} be an orthonormal subset of type
(0,4) of an associative algebra 4 with unity 1 and let R be an orthonormal
subset of type (p,q) of 4 such that each element of S anticommutes with
every element of R. Then there exists an orthonormal subset R’ of type
(p,q) such that each element of S commutes with every element of R’.
Conversely, the existence of R’ implies the existence of R.
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Proof Leta = e e,e5and let R’ = {ab: b € R}. Since a commutes
with every element of R and anticommutes with every element of S and
since a* = 1, it follows at once that R’ is of the required form. The
converse is similarly proved. O

Cor. 13.24. For all finite p, g,
Rp.q+4 = Rp,q ® R0,4 = RM ® H(Z) g

For example, by Prop. 10.44,
RO s 2 COH(2) = CH),

Ry > H®H(2) = R(3),
Ry, = *H®H(Z) = *R(3),
and R, ~ H(2) ® H(2) ~ R(16)

Cor. 13.25. (The periodicity theorem.)
For all finite p, ¢,

RM+8 =Ry, ® R(16)- O

By putting together Prop. 13.22, Prop. 13.12, Prop. 13.17, Prop.
13.20, and these last two corollaries, we can construct any R, .. Table
13.26 shows them all, for p + ¢ < 8. The vertical pattern is derived
from Prop. 13.17, and the horizontal symmetry about the line with
equation —p + ¢ = —1 is derived from Prop. 13.20.

Squares like those in the table have already made a brief appearance
at the end of Chapter 10. There are clearly (non-unique) algebra
injections R, ,— R, ., , and R, — R, ., for any p, ¢, such that the
squares commute.

Table 13.26 exhibits each of the universal Clifford algebras R, , as the
real algebra of endomorphisms of a right A-linear space V" of the form
A» where A =R, C, H, 2R or ?H. This space is called the (real)
spinor space or space of (real) spinors of the orthogonal space R??,

Prop. 13.27. Let R,, = A(m), according to Table 13.26, or its
extension by Cor. 13. 25 Then the representative in A(m) of any ele-
ment of the standard orthonormal basis for R?*? is orthogonal with
respect to the standard positive-definite correlation on A™.

Proof This follows from Prop. 10.42, and the remarks following
Prop. 10.44 and Cor. 11.57, and its truth, readily checked, for small
values of p and q. O

When K is a double field (*R or *H), the K-linear spaces V(1,0)
and V(0,1) are called the (real) half-spinor spaces or spaces of (real)



Table 13.26.
The algebras Ry,p, for p + g < 8

p\;\E“\If’ +¢ -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0 R
1 R C
2 R(2) R(2) H
3 C(2) 2R(2) C(2) *H
4 H(2) R(4) R(4) H(2) H(2)
5 2H(2) C4) 2R(4) C4) 2H(2) C4
6 H(4) Hi4) R(8) R(8) H(4) H(4) R(8)
7 C(8) H(4) C(8) R(8) C(8) *H(4) C(8)
] R(16) H(8) H(8) R(16) R(16) H(8) H(8) R(16)
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half-spinors, the endomorphism algebra of either being a non-universal
Clifford algebra of the appropriate orthogonal space.

Complex Clifford algebras

The real field may be replaced throughout the above discussion by
any commutative field—in particular by the field C. The notation C,
will denote the universal complex Clifford algebra for C* unique up to
isomorphism.

Prop. 13.28. For any n,p,qcw withn =p + ¢,C, 2 R,, ®r C,
~ denoting a real algebra isomorphism. 0

Cor. 13.29. For any k € w, Cy, = C(2¥) and Cy,q = 2C(2Y). O

The complex spinor and half-spinor spaces are defined analogously to
their real counterparts.

Involuted fields

A further generalization of the concept of a Clifford algebra involves
the concept of an involuted field. An ¢nvoluted field, L*, with fixed field
K, consists of a commutative K-algebra L with unity 1 over a commuta-
tive field K and an involution « of L, whose set of fixed points is the
set of scalar multiples of 1, identified as usual with K. (The algebra L
need not be a field.) Examples include R, C and hb R, each with fixed
field R, and C and hb C, each with fixed field C.

Let X be a finite-dimensional orthogonal space over a commutative
field K, let L* be an involuted field with fixed field K and let 4 be an
associative L-algebra with unity, the algebra L being identified with the
subalgebra generated by unity. Then A4 is said to be an L*-Clifford
algebra for X if it contains X as a K-linear subspace in such a way that,
for all x € X, 2 = —x®, provided also that 4 is generated as a ring
by L and X or, equivalently, as an L-algebra by 1 and X.

All that has been said before about real Clifford algebras generalizes
to L*-Clifford algebras also. The notations C, , and (hb R), , will denote
the universal C- and hb R-Clifford algebras for R??, and the notation
(hb C),, the universal hb C-Clifford algebra for C», for any finite p, g, n.

Prop. 13.30. Let L be an involuted field with fixed field K, let Xbe a
K-orthogonal space and let 4 and B be universal K- and L*Clifford
algebras, respectively, for X. Then, as K- algebras, B =4 Q¢ L. ([

Note that, as complex algebras, C,, and C, are isomorphic, for any
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finite n, p, g such that » = p + ¢. The detailed construction of the
tables of L*-Clifford algebras is left to the reader (cf. Tables 13.66).

Involutions and anti-involutions

The following theorem amplifies and extends Theorem 13.13 in
various ways, in the particular case that Y = X and B = 4.

Theorem 13.31. Let A be a universal L*Clifford algebra for a
finite-dimensional K-orthogonal space X, L* being an involuted field
with involution « and fixed field K. Then, for any orthogonal auto-
morphism £: X — X, there is a unique L-algebra automorphism
ta: A— A4, sending any 1 €L to 4, and a unique K-algebra anti-
automorphism 3 : 4 — 4, sending any 4 to A%, such that the diagrams

linc 1inc and liuc linc
t t~
A—2>4 A—2>4

commute. Moreover, (1x)4 = 14 and, for any £, u € O(X),
(utya =uqtqy =uj ty.
If ¢ is an orthogonal involution of X, then 24 is an algebra involution
of A and t7 is an algebra anti-involution of 4. .|

The involution of A4 induced by the orthogonal involution —1 5 will
be denoted by a «w» ¢ and called the main involution of A, d being called
the involute of a.

The anti-involutions of 4 induced by the orthogonal involutions
1x and —1x will be denoted by a s a4~ and aw a~ and called,
respectively, reversion and comjugation, a~ being called the reverse of
a and a~ the conjugate of a. (The reason for preferring a” to @ and a- to
a will become apparent on page 266.) Reversion takes its name from the
fact that the reverse of a product of a finite number of elements of X is
just their product in the reverse order.

For example, consider a =1 + ¢, + ¢,6, + ege,e; € Ry

Then a =1 — e, + eje; — eyeye,,
@ =14 e + ee; + 060 =1 + ey — &1, — €428y,
while a— =1 — ¢y + eye; — €10, =1 — e, — €165, + epe165.

Prop. 13.32. Let A be a universal L*Clifford algebra for a finite-
dimensional K-orthogonal space X, L* being an involuted field with

fixed field K. Then, for any a € 4, a- = (4)” = (;1\")
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Proof Each of the anti-involutions @« a-, (4)” and (fz\”) is
the unique anti-involution of A4 induced by —1x. O

The main involution induces, by Prop. 8.2, a direct sum decompo-
sition A @ A* of A, where
A*={acAd:d=a} and A'={acd:d = —a}.
Clearly A° is an L-subalgebra of 4. This subalgebra is called the even
Clifford algebra for X. It is unique up to isomorphism. Any element

a € A may be uniquely expressed as the sum of its even part a® € A°
and its odd part a' € A*. In the example above,

a® =1+ ee, and a' = ey + exe,.
The even Clifford algebras for the non-degenerate real or complex

finite-dimensional orthogonal spaces are determined by the next
proposition.

Prop. 13.33. Let 4 be a universal L*Clifford algebra for a non-
degenerate finite-dimensional K-orthogonal space X, L* being an in-
voluted field with fixed field K, and let S be an orthonormal basis for
X of type (p,9). Then, for any a € S, the set {ab:be S\ {a}}is an
orthonormal subset of A° generating A4° and of type (p,q—1) or
(¢, p—1), according as a> = —1 or 1. In either case, moreover, the
induced isomorphism of 4° with the universal L*-Clifford algebra of a
(p + g — 1)-dimensional orthogonal space respects conjugation, but
not reversion,

Proof The first part is clear, by Prop. 13.16. For the last part it
is enough to consider generators and to remark that if @ and b are anti-
commuting elements of an algebra sent to —a and —¥b, respectively, by
an anti-involution of the algebra, then, again by Prop. 13.16, ab is sent
to —ab. On the other hand, if a and b are sent to a and b, respectively,
by the anti-involution, then ab is not sent to ab. O

Cor. 13.34. For any finite p, ¢, n,

0
R1 =Ry R, =R

Cort 2 Cpp Coio = Cop
(hb R)p,q+(1) = (hb R)p,q’ (hb R)p+ 19 = (hb R)q,p’
C..izC, and (bbC),,5 = (hbC),. O
It follows from Cor. 13.34, in particular, that the table of the even
Clifford algebras R),9, with p + ¢ > 0, is, apart from relabelling, the same

as the table of the Clifford algebras R, ,, except that there is an addi-
tional line of entries down the left-hand side matching the existing line

oo

U 24

=]

=8y
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of entries down the right-hand side. The symmetry about the central
vertical line in the table of even Clifford algebras expresses the fact
that the even Clifford algebras of a finite-dimensional non-degenerate
orthogonal space and of its negative are mutually isomorphic.

So far we have considered only the universal Clifford algebras. The
usefulness of the non-universal Clifford algebras is limited by the fol-
lowing proposition.

Prop. 13.35. Let 4 be a non-universal Clifford algebra for a non-
degenerate finite-dimensional orthogonal space X. Then either 1x or
—1x induces an anti-involution of A4, but not both. |

If 1x induces an anti-involution of 4, we say that 4 is a non-universal
Clifford algebra with reversion for X, and if —1x induces an anti-

involution, we say that 4 is a non-universal Clifford algebra with
conjugation for X.

Prop. 13.36. The non-universal Clifford algebras for the ortho-
gonal spaces R%**3 have conjugation, but not reversion. O

The Clifford group

We turn to applications of the Clifford algebras to groups of ortho-
gonal automorphisms and to the rotation groups in particular. The
letter X will denote a finite-dimensional real orthogonal space and 4
will normally denote a universal real Clifford algebra for X — we shall
make some remarks at the end about the case where 4 is non-universal.
For each x € X, x® = x— % = £ x = —x2. Also, since A is universal,
R N X = {0}. The subspace R @ X will be denoted by Y and the
letter y will be reserved as a notation for a point of Y. The space ¥ will
be assigned the quadratic form

Y—R; yw»y-y.

It is then the orthogonal direct sum of the orthogonal spaces R and X.
If X ~ R? then ¥ ~ RPIFL

The first proposition singles out a certain subset of A4 that turns out
to be a subgroup of 4.

Prop. 13.37. Let g be an invertible element of A4 such that, for all
xeX, gx g e X Then the map
Prg: X—>X; xw>gxg-!

is an orthogonal automorphism of X.



THE CLIFFORD GROUP 255
Proof For each x € X,

N
(pro)® =gxfrgxf =fhglgag™ =fx =2
since £ x € R. So px, is an orthogonal map. Moreover, it is injective
since gxf—1=0 = x =0 (this does not follow from the ortho-

gonality of py, if X is degenerate). Finally, since X is finite-dimen-
sional, py, must also be surjective. O

The element g will be said to induce or represent the orthogonal
transformation py, and the set of all such elements g-will be denoted
by I' (X) or simply by I

Prop. 13.38. The subset I"is a subgroup of 4.

Proof The closure of I' under multiplication is obvious. That I
is also closed with respect to inversion follows from the remark that, for
any g € I, the inverse of py, is pyg. Of course 1, €I, So I'is a
group. O

The group I is called the Clifford group for X in the Clifford algebra
A. Since the universal algebra 4 is uniquely defined up to isomorphism,
I'is also uniquely defined up to isomorphism.

Prop. 13.39. R+ = {AcR:1 >0} and R¥*={1eR: 1 =0} are
normal subgroups of I |

By analogy with the notations for Grassmannians in Chapter 8, the
quotient groups I'/R* and I'/R* may conveniently be denoted by
%, (I") and %,(I"), respectively. The group &,*(I") is also called Pin (X)
for a comical reason which will be hinted at later, while the group
,(I") is called the projective Clifford group.

Following the same analogy, the image of an element g of I' in

4 *(I") will be denoted by R+{g}, while its image in % (I") will be
denoted by R{g}.

There are similar propositions concerning the action of 4 on Y.

Prop. 13.40. Let g be an invertible element of 4 such that, for all
yeY,gygeY, Then the map
Py Y—=>Y; ywgyg-t
is an orthogonal automorphism of Y. O

Prop. 13.41. The subset 2 = {ged:yeY = gyg-teY} isa
subgroup of 4. O

From now on we suppose that X is non-degenerate, and prove that in
this case every orthogonal automorphism of X is represented by an
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element of I'. Recall that, by Theorem 9.41, every orthogonal auto-
morphism of X is the composite of a finite number of hyperplane re-
flections.

Prop. 13.42. Let a be an invertible element of X. Then a € I', and
the map py , is a reflection in the hyperplane (R{a})*.

Proof By Prop. 9.24, X = R{a} ® (R{a})*, so any point of X
is of the form Aa + b, where A €R and b-a =0. By Prop. 13.3,

ba = —ab. Therefore, since d = —a.
pxaia + b) = —a(la + b)a~' = —la + b.
Hence the result. O

Prop. 13.43. Let ac€ A be such that ax = xd, for all xe X, 4
being a universal Clifford algebra for X. Then a € R.

Proof Let a = a° + a!, where a® € A° and a' € A'. Then, since

ax = xd,
a’ = xa® and a'x = —xal

for all x € X, in particular for each element ¢; of some orthonormal '
basis {e;:7 en} for X.

Now, by an argument used in the proof of Theorem 13.10, a® com-
mutes with each ¢, if, and only if, a° € R, and by a similar argument a!
anticommutes with each e; if, and only if, a' = 0. Soa €R. O

Theorem 13.44. The map

px: I'— O(X); g px,
is a surjective group map with coimage the projective Clifford group
Z(I"). That is, ,(I") and O(X) are isomorphic.

Proof To prove that py is a group map, let g, g’ € I'. Then for all
xeX,

! /\l
Pxor(x) = g8 % (gg")!

=gg' g 1!
= Pxg.Px.q-

So px .y = Px,¢Px,y»> Which is what had to be proved.

The surjectivity of py is an immediate corollary of Theorem 9.41
and Prop. 13.42.

Finally, suppose that py , = py ., for g, g’ €I, Then for all x € X,

gxgl =g x g1, implying that (g=1g')x = xg—lg , and therefore
that g-1g’ e R, by Prop. 13.43. Moreover, g~ ¢’ is invertible and is
therefore non-zero. So coim py = Zy(I). !
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An element g of I” represents a rotation of X if, and only if, g is the
product of an even number of elements of X. The set of such elements
will be denoted by I™. An element g of I represents an antirotation of
X if, and only if, g is the product of an odd number of elements of X.
The set of such elements will be denoted by I''. Clearly, I = I"n A4°
and I'' = I'n AL

Prop. 13.45. Let X be a non-degenerate orthogonal space of posi-
tive finite dimension. Then I is a normal subgroup of I', with
r/re~ iz, O

Since, for any a € A% d = a, the rotation induced by an element

g of I is of the form
X—>X; xwrgaxg-l

Similarly since, for any a € 4!, d = —a, the rotation induced by an

element g of I is of the form
X—>X;, xw —gxg-L

The quotient groups I"°/R+ and I'°/R* will be denoted by ¢,*+(I™)
and ¥,(I") respectively. The group ¢,*(I") is also called Spin X, this
name being somewhat older than the name Pin X for ¢,*(I")! The use
of the word ‘spin’ in this context is derived from certain quantum-

mechanical applications of the Spin groups. The group &,(I") is called
the even projective Clifford group.

Prop. 13.46. The map I — SO(X); g-w py, is a surjective
group map with coimage %,(I). That is, ¢,(I°) and SO(X) are
isomorphic. O

Prop. 13.47. 'The groups ¢,(I"°) and %,(I") are normal subgroups
of 4,7(I') and ¥,(I"), respectively, the quotient group in either case
bemg isomorphic to Z,, if dim X > 0. O

Prop 13.48. Let X be a non-degenerate orthogonal space of positive
finite dimension. Then the maps
Pin X —» O(X); RHg}w»px,
and Spin X — SO(X); RHg}w px,
are surjective, the kernel in each case being isomorphic to Z,. O

When X = R?¥, the standard notations for I', I', Pin X and Spin X
will be I'(p,9), F°( 2,9), Pin(p,g) and Spin (p,g). Since R,) ~ R, 9,
I'(q,p) ~ I'(p,q) and Spin (¢,p) = Spin (p,9). Finally, "0, n) is often
abbreviated to I'(n) and Spin (0,n) to Spin (n).

Ananalogous discussion to that just given forthegroup I" canbegiven
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for the subgroup £ of the Clifford algebra A consisting of those inver-
tible elements g of 4 such that, forally e Y, gy - € Y. However, the
properties of this group are deducible directly from the preceding
discussion, by virtue of the following proposition.

The notations are as follows. As before, X will denote an n-dimen-
sional non-degenerate real orthogonal space, of signature (p,q), say.
This can be considered as the subspace of R??*! consisting of those
elements of R»?*! whose last co-ordinate, labelled the nth, is zero. The
subalgebra R, , of R, .., generated by X is a universal Clifford algebra
for X, as also is the even Clifford algebra R, ..}, by the linear injection

X—>R,.. xwxe,
(Cf. Prop. 13.33.) The linear space ¥ = R @ X is assigned the quad-
ratic form y ww- y~ .
Prop. 13.49. Let6:R,,— R, . be the isomorphism of universal
Clifford algebras induced, according to Theorem 13.13, by 1x. Then
(i) the map
u: Y —RPHL yovsO(y)e,
is an orthogonal isomorphism,
(ii) for any g€ 2,0(g) e I'°(p,q + 1) and the diagram

’
[
Yy -4 Y
|
u u
Rpa+1 ﬂ)) Rpa+t

commutes,
(iii) the map  — I'%(p,q + 1); g ww» 0(g) is a group isomorphism.,
Proof (i) Since 6 respects conjugation, and since e,~ e, = 1,
O(y)en=)~(6(y)en') = y~y, foranyye?.
(ii) First observe that, for any g €R,,, 0(g)e, = ¢,0(8), for the

isomorphism 6 and the isomorphism gw e,0(f)e,~t agree on X.
Now let g € 2. Then, for any u(y) e R*?*1, where y € Y,

0(&)(6(x)en*)0(£)~* = 6(£)0()0(8) "en?
=0(gy & )en™ = upy(y)
So 6(g) e I'’(p,q + 1), and the diagram commutes.
(iii) The map is clearly a group map, sincef is analgebra isomorphism.

One proves that it is invertible by showing, by essentially the same
argument as in (ii), that, for any 2 € I'"°(p,q + 1), 6-%(%) € Q. O

Cor. 13.50. The orthogonal transformations of Y represented by
the elements of 2 are the rotations of Y. |
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Since conjugation, restricted to Y, is an antirotation of Y, the anti-
rotations of Y also are representable by elements of £ in a simple
manner.

It remains to make a few remarks about the non-universal case. We
suppose that 4 is a non-universal Clifford algebra for X. Since the main
involution is not now defined, we cannot proceed exactly as before.
However, in the case we have just been discussing, # = g or —g, for any
g €T, according as g € I'® or I"'. What is true in the present case is the
following.

Prop. 13.51. Let g be an invertible element of the non-universal
Clifford algebra A4 for X such that, for all x € X, g x g~-* € X. Then the
map X — X; x> g x g~ is a rotation of X, while the map X — X;
x> —g x g~ is an antirotation of X. O

In this case I' = I = I".,

The discussion involving ¥ = R @ X requires that conjugation be
defined, but if this is met by the non-universal Clifford algebra 4, then
A may be used also to describe the rotations of Y. The restriction to Y
of conjugation is, as before, an antirotation of Y.

The uses of conjugation

It could be argued that until now we have not made essential use of
the conjugation anti-involution on a universal Clifford algebra. This
omission will be rectified in the remaining sections of this chapter.

First we introduce a chart, the Pfaffian chart, on Spin (n) for any
finite #, analogous to the Cayley chart for SO(n).

Secondly, we show that the groups Pin X and Spin X associated to a
non-degenerate finite-dimensional real orthogonal space X may be
regarded as normal subgroups of I"and I', respectively, rather than as
quotient groups. In fact this is usually the most practical way to think of
these groups except that the expression for the Pfaffian chart on Spin »
then becomes a little bit more cumbersome (cf. Prop. 17.45). We deter-
mine the groups Spin (p,q) explicitly, for small p and ¢, as subgroups of
the appropriate Clifford algebras. Here and in the classification of the
conjugation anti-involutions of all the universal Clifford algebras in
Prop. 13.59, Prop. 13.64, Prop. 13.65 and Tables 13.66, much of Chapter
11 is relevant.

Finally, Table 13.26 is put to work with Prop. 13.59 to produce a
curious sequence of numbers, the Radon-Hurwitz sequence, on which
we shall have more to say in Theorem 20.68.

The map N on A4, sometimes called the norm on A, is a useful tool.
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The map N

Let N: A — A be defined, by the formula
N(a) =a-a, foranyacA,
A denoting, as before, the universal Clifford algebra of the non-degen-
erate finite-dimensional real orthogonal space X.

Prop. 13.52.
(1) Forany g eI', N(g) €R,
i) N(1) =1,
(iii) for any g, &’ € I, N(gg') = N(g) N(g),
(iv) for any g e I', N(g) = 0 and N(g~) = (N(g))~},
(v) for any g € I, there exists a unique positive real number A such
that | N(A4g) | = 1, namely 1 = /(| N(g) | )~

Proof That N(1) =1 is obvious. All the other statements follow
directly from the observation that, by Theorem 13.44, any ge ' is
expressible (not necessarily uniquely) in the form

IT % = 2oy . .« % o2y
ick

where, for all { € k, x; € X, k being finite; for it follows that
§ = g Xpa1_3 = Xp_1" X2 ™ - - - X1 X,
and that
N(g) =g =TI N(=),

where, for each ¢ e k, N(x;) = —x2eR. O

The Pfaffian chart

The Cayley chart at "1 for the group SO(n) was introduced in Chapter

12. It is the injective map
End-(R*) — SO(n); s> (1 4+ s)(1 —$)-L

The analogous chart on Spin (#) is the Pfaffian (or Lipschitz [62]) chart.

Let s e End_(R"), for any finite n; that is, s e R(n) and s* = —s.
The Pfaffian of s, pfs, is defined to be 0 if # is odd and to be the real
number
Zsgnm H Sn(2k),m(2k+1)

neP
if n = 2m is even, P being the set of all permutations 7 of 2m for which

() forany h,kem, h <k = n(2h) < 7(2F),
and (ii) for any k e m, n(2k) < n(2k + 1).
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For example, if n = 4, pf s = 51553 — So2513 + So3512- By convention
pfs =1if n = 0, in which case s =°1 = 0.

For any I < n, let s, denote the matrix (s;:4,j€l). Then
s; € End_(R¥), where k = #I. The complete Pfaffian of s, Pfs, is, by
definition, the element

12 Pfsl Hel

of the Clifford algebra Ry,. Since pfs; = 0 for #I odd, Pfs eR,3.
In fact Pf s € I'%(n). To see this we require the following lemma which
also has a role to play in Exercise 13.86.

Lemma 13.53. Let k € w and suppose that g = g, -+ g1¢;, with gge Ry §,
and g; e R}, is an element of I"%(k 4 1) such that g, is invertible, this
being the case in particular when p,, is of the form (1 4-s5)(1 —s)~?, where
s € End_(R¥+1). Then

(i) there exists a € R¥ such that g, = ag,,
(ii) go € I'°(k) and g, € I'\(k),
(iii) for any A e R, go+Ag,e,.€ (k4 1).

Proof Letg = g,+ giex, with g, Ry}, and g, € R, 1. Then, since ¢,
commutes with g, and anti-commutes with g,, it follows that

280 =g —exger = —erler+ gerg g, while 2g, = erg — gey.
Now e, +ge, g~ € R**1, so0 g, is invertible if, and only if, ¢, + ge, g is

non-zero and therefore invertible, this being the case in particular when
py = (1 4 5)(1 —s)2, with s € End_(R*+!), for then

e+ geug™t = e + (1 + 8)(1—9) e, = 2(1 —s) ey,

To prove (i) it is enough to note that g, g, is a real multiple of

(erg —ger)g Hex +8ers ™ er = gerd ™ — ergerg e,
which belongs not only to R¥! but also to R, ;, so belongs to R¥. That
is, gy = ag,, where a e Rk,
Now, for any x € R¥ there exists x’ € R* and A€ R such that

(go T+ g1e)x = (&' + Lex)(go + Zi6x)s

implying, in particular, that ggx = x'g, + Ag;. By (i) there exists ac R¥
such that g, = ag,. Therefore, for any x € R, there exists x” € R¥,
namely x” == x" + Aa, such that ggx = x"g,. This proves that g, € I"%(k)
and hence also that g, = ag, € I'}(k). This is (ii).

The proof of (iii) is similar to the proof of (ii) and is left to the
reader. O
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Theorem 13.54. Let s € End-(R"). Then PfseIn) and is the
unique element of I'%(z) inducing the rotation (1 + s)(1 — s)~! and with
real part 1.

Proof Let g € I'°(n) be such that p, = (1 + s)(1 — )~ After n
applications of Lemma 13.53, discarding one of the e; each time,
the real part of g is found to be invertible, and therefore non-zero.
There is, therefore, a unique element of 7'%(n) inducing the rotation
(1 + s)(1 — s)-* and with real part 1. We may suppose g to be this
clement.

Now suppose that, for each 7, j € n, the coeflicient of e;e; in g is 7.
Then r e End_(R"). Since g el°n), there exists, for any x € R",
x" € R" such that ¥'g = gx. The coeflicients of ¢; on either side of this
equation are equal. So, forall i e n,

x; — z ri%s = x; + 2 1%
Jen jen
That is, (1 —na" =1+

So x" = (1 — r)~Y(1 + »)x, since 1 — 7 is invertible, by Prop. 12.17.
Therefore (1 —7)~'(1 4+ 7) = (1 + s)(1 — 5)~, which implies that
r=s

Next, by Prop. 13.52(i) and by Lemma 13.53(ii), by equating to zero
the coefficients of highest degree either of g;g,~ or of g,e,g,~, where g, is
obtained from g by omitting all terms in the expansion of g involving any
e; for which 7¢I, it follows, for all I = n with #I > 2, that the
coefficient in the expansion of g of T ¢; is a polynomial in the terms of
the matrix s;. ‘

By Lemma 13.53(iii) each term of the polynomial coefficient of JTe;
contains exactly one term from each row and exactly one term from each
column of sy, so that the terms of the polynomial are, up to real multiples,
the terms of pfs;.

Finally, consider any one such term,

ASo1823845 €o€180058485, for example.
This term will be equal to the corresponding term in Pfs" where
s" € End_(R") is defined by
Sor = Sor = —Si0r a3 = Sp3 = —$3z and sz = S5 = —$54,

all the other terms being zero. However,

Pf S' = (1 + 5‘01 eoel)(l + 323 6263)(1 + 345 8465)

=1 + sor €061 + S23 €265 + Sg5 €85 + - . .
v o+ T So18238a5 €0€1€2€364€5,

since each of the factors is in 1"%(6), the real part is 1 and the coefficients
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of the terms e,e; are correct. So, in this case, 1 = 1 in accordance
with the theorem. The other terms are handled analogously. 0

The map
End_(R*) — Spin (n); s-w» R{Pfs}
will be called the Pfaffian chart at 1 on Spin (n).

The above account extends to a certain extent to the indefinite case,
as will be seen in Chapter 20, where the relationship between the Cayley
and the Pfaffian charts is studied further.

The following property of the Pfaffian is sometimes used to charac-
terize it. (Cf. for example [3].)

Theorem 13.55. For any s € End_(R"), (pf 5)? = dets.

Proof Let s € End_(R®). Then, for any ¢ € R(n), t’st € End_(R").
Now, for any such s and ¢,

pf (£°st) = det ¢ pf s.
To show this it is enough, by Theorem 7.8 and Cor. 7.21 o verify that,
for any i e n and 1 € R,

pf ((er)s(%e.)) = A pf s
and that, for any 7,j e n with¢ = j,

pf ((*es)"s(e:s)) = pf s,
where *¢; and le; are the elementary framings of R* defines on page
117. These verifications are left as exercises.
The matrix s induces a skew-symmetric correlation on R* with

product

R* x R*— R; (x,x") wo> x7sx’.
Let 2m be the rank of this correlation. Then, by a slight extension of
Cor. 11.46 to include the degenerate case, there exists u € GL(n;R)
such that

(Wst)oporyy =1 = —(Wst)g 110
for all kem, and (u"su); =0 otherwise. It follows from this that
Pf (usu) = l;[;{ (1 + exeopyy).

There are two cases. If 2m < n, pf u*su = 0, implying that pfs = 0,
since det # 7= 0, while det «"su = 0, implying that det s = 0, If 2m = n,
pfw'su=1 and detu’su =1, implying that (detu)*(pfs)*=1=
(det )2 det s.

In either case, (pf 5)? = det s. O
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Spin groups

The groups Pin X and Spin X for a non-degenerate finite-dimen-
sional real orthogonal space X are commonly regarded not as quotient
groups of I" but as normal subgroups of I'. This is made possible by the
following proposition.

Prop. 13.56. The maps
{gel':| N(g) | = 1} — Pin X; g w» R+{ g}
and {gel*:|N(g)| =1} — Spin X; g-w RH{g}
are group isomorphisms. O

The groups Pin X and Spin X will henceforth be identified with
these subgroups of I" and the maps of Prop. 13.48 identified with the
maps

pxl{gel':[N(g)| =1} and px|{gel":|N(g)| =1}
These maps also will be denoted loosely, from now on, by p.

Prop. 13.57. As subgroups of I" and I'® respectively, the groups
Pin X and Spin X are normal subgrouns, the quotient groups I"/Pin X
and I'*/Spin X each being isomorphic to R+. |

That Prop. 13.52(i) is a genuine restriction on g is illustrated by the
element 1 + [T ¢, € Ry, since

N +TIe) =21+ Ie) ¢R.
That the same proposition does not, in general, provide a sufficient
condition for g to belong to I' is illustrated by the element 1 + J] ¢,
€ Ry, for, since

N1 +1TIe) =1 —TIe)(1 + I ee) =2,
the element is invertible, but either by explicit computation of
(1 + TT es)eo(l + TT €6)?, or by applying Theorem 13.54, it can be
seen that the element does not belong to I'. However, the condition is
sufficient when p 4 ¢ < 5, as the following proposition shows.

Prop. 13.58. Let dim X < 5. Then
Spin X = {ge 4°: N(g) = +1}.

Proof The proof is given in full for the hardest case, namely when
dim X = 5. The proofs in the other cases may be obtained from this
one simply by deleting the irrelevant parts of the argument.

From the definition there is inclusion one way (<). What has to be
proved, therefore, is that, for all g € 4° such that N(g) = +1,

xeX > gxglelX
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Let {e;: 7 €5} be an orthonormal basis for X. Then, since X < A!
andg e A% x' = gx g-' € A%, for any x € X. So there are real numbers
a;, by, ¢ such that

x = Yae; + X bueee +cl]es.
t€d jekeles
Now (x')- = (gxg~')~ = —«, since g~ = 4-g~, while (¢;)- = —e,,
(ejere))™ = €8s, and (T e5)~ = —JJes. So, for all jekeles,
by = 0. That is,
® ="+ cT] e forsomex"eX.

The argument ends at this point if # < 5. Otherwise it remains to
prove that ¢ = 0. Now x2 = x? € R. Also J]e; commutes with each ¢,
and so with x”. So

&'t + 2ex" (T &) + ¢¥(I1 &5)% € R.
Since x”’2 and ¢¥(J] &;)2 €R, and [] ¢; ¢ R, either ¢ =0 or ¥ = 0.
Whichever is the correct alternative it is the same for every «, for, if

there were an element of each kind, their sum would provide a con-
tradiction. Since the map

X—>A4;, xwwgxg!
is injective, it follows that ¢ = 0. Therefore gxg-1€ X, for each
xeX. ]

To use Prop. 13.58 we need to know the form that conjugation takes
on the Clifford algebra. Now the Clifford algebra itself is representable
as an endomorphism algebra, according to Table 13.26. Also by Chapter
11, any correlation on the spinor space induces an anti-involution of
the Clifford algebra, namely the appropriate adjoint involution, and
conversely, by Theorem 11.32 and Theorem 11.26, any anti-involution
of the Clifford algebra is so induced by a symmetric or skew correlation
on the spinor space. So the problem reduces to determining in each
case which anti-involution it is out of a list which we essentially already
know. The job of identification is made easier by the fact that an anti-
involution of an algebra is uniquely determined, by Prop. 6.38, by its
restriction to any subset that generates the algebra.

For the Clifford algebras R,, the determination is made easy by
Prop. 13.59.

Prop. 13.59. Conjugation on R, is the adjoint anti-involution
induced by the standard positive-definite correlation on the spinor
space A™,

Proof By Prop. 13.27, &7e; = 1, for any element e; of the standard
orthonormal basis for R%", here identified with its image in the Clifford
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algebra A(m). Also, by the definition of conjugacy on R, ,, e, = —e..
But ¢,2 = —1. So, for all { e n, ¢;,~ = &, from which the result follows
at once, by Prop. 6.38. O

This indicates, incidentally, why we wrote a—, and not 4, for the
conjugate of an element 4 of a Clifford algebra A4, the reason for writing
a~ and not 4@, for the reverse of a4, being similar. The notation 4 is less
harmful in practice, for, in the context of Prop. 13.59 at least, 4 in
either of its senses coincides with 4 in its other sense.

Cor. 13.60.
Spin (1) = O(1) = S°, Spin (2) @ U(1) = S,

Spin (3) @ Sp(1) = S,  Spin(4) = Sp(1) x Sp(1) = 8% x S3,
Spin(5) =~ Sp(2) and  Spin (6) is a subgroup of U(4) 0.

In the case of Spin (n), for n = 1, 2, 3, 4, what this corollary does is
to put into a wider relationship with each other various results which we
have had before. It may be helpful to look at some of these cases in turn.

R2: The universal Clifford algebra R,, is H, while the universal
Clifford algebra R, is R(2), the even Clifford algebras Ry$ and R,§
each being isomorphic to C.

Suppose we use Ry, = H to describe the rotations of R2, R? being
identified with R{1,k} and R,9 = C being identified with R{L,i}.
Then the rotation of R? represented by g € Spin (2) = U(1) is the map

xwr-grgl =gxg,
that is, the map

(%o + ix1)j = (%ol + #:K) wo> (@ + 1b)*(xp + ixy)]
= (a + ib)(xel + x,k)(@ — ib),
where x = x,i + x,kand g = a + ib.
On the other hand, by Cor. 13.50, we may use C directly, R? being
identified with C. Then the rotation of R2 represented by g is the map

yw-gyEl=gyg=g%.

One can transfer from the one model to the other simply by setting
x =yj.

R?: The universal Clifford algebra R,; is 2H, while the universal
Clifford algebra R, is C(2), the even Clifford algebras R,3 and R;}
each being isomorphic to H. Besides these, there are the non-universal
algebras R, 3(1,0) and R, 5(0,1), also isomorphic to H. Any of these may
be used to represent the rotations of R3.

The simplest to use is R;3(1,0) =~ H, R? being identified with the
linear subspace of pure quaternions. An alternative is to use R, § =~ H,
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in which case R® may be identified, by Prop. 13.49, with the linear
subspace R{1,i,k}. In ither case Spin (3) = Sp(1) = S2.

In the first of thes: two cases the rotation of R? represented by
& € Spin (3) is the mag.

x-grgl=gxg,
while in the second case the rotation is the map
ywgygt=gyk
One can transfer from the one model to the other by setting x = yj,
compatibility being guaranteed by the equation
£yi8=28y5.

R*: The universal Clifford algebras R,  and R, ; are each isomorphic
to H(2), the even Clifford algebra in either case being isomorphic to 2H.
There are various identifications of R? with a linear subspace of 2H such
that, for any x € R3, ® = —x? = #x. Once one is chosen, R* may be
identified with R @ R3, with y® = 3y, for any y e R4,

One method is to identify R* with the linear subspace

@ 5)ren)

of 2H, R3 being identified with R{(O — ), (0 _?), (16 _g)}
Then, for any (q 0) € 2H,

0 »
N
g 0 (r O
0 /) \0 ¢/
while Spin4={(q 0>62H:|q|=lr[=1}. The rotation of R*
0 r

represented by (q O) € Spin 4 is then, by Prop. 13.49, the map

0 r
N

y 0\ (7 O\(y 0\(¢ O\*_ (g7 O

0 5 0 r)\0 §)\0O r/ ~—\O0 ry3)
yov-qyt,

which is what we had before, in Chapter 10.

This is essentially the map
An alternative is to identify R* with the linear subspace

{5 5):rem)

The rotation induced by ( ) € Spin 4 is then, by a similar
0 r
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y 0 @F 0
(& 5~ (7 )
and this reduces to the map y > gy7.

Prop. 13.61. Spin 6 = SU(4).

A proof of this may be based on Exercise 11.65. One proves first that
if Y is the image of the injective real linear map y: C* — C(4) con-
structed in that exercise, then, for each y € Y, 5y € R, and that if Y is
assigned the quadratic form ¥ — R; y .« 5%y, then y is an orthogonal
map and T is the unit sphere in Y. The rest is then a straightforward
checking of the things that have to be checked. (See page 258.) Note
that, for all 2 € Sp(2), t~ = ¢~L O

For any g € Spin (n), N(g) = 1. For g € Spin (p,q), on the other hand,
with neither p nor g equal to zero, N(g) can be equal either to 1 or to —1.

The subgroup {g €Spin(p,g): N(g) =1} will be denoted by
Spin* (p,q). By Prop. 2.7, the image of Spin* (p,q) in SO(p,q) by pisa
subgroup of SO(p,q). This subgroup, called the (proper) Lorentz group
of R?? will be denoted by SO+(p,q). In Prop. 20.96 the Lorentz group
of R??is shown to be the set of rotations of R?? that preserve the semi-
orientations of R??(cf. page 161).

argument, the map

Exercise 13.62. Let g € Spin (1,1). Prove that the induced rotation
p, of RY preserves the semi-orientations of R if, and only if,
N(g) =1, and reverses them if, and only if, N(g) = —1. O

The subgroup {g € Spin (p,q): N(g) =1} of Spin(p,q) will be
denoted by Spin+.(p,q).

The next proposition covers the cases of interest in the theory of
relativity, the algebra R; § = C(2) being known as the Pauli algebra.

Prop. 13.63.
Spin* (1,1) {(g 3) €R:ad = 1} ~ R* ~ GL(I{R)

Spin+ (1,2) = {(“ ;) eR(2): det (Z ;) = 1} — SL(2;R)

and Spin* (1,3) {(Z ;) € C(2): det (“ 2) = 1} = SL(2;C).

Proof It is enough to give the proof for Spin+ (1,3), which may be
regarded as a subgroup of R,, = C(2), since R,3 = R,;,. Now, by
Prop. 13.58 and Prop. 13.33,

Spin* (1,3) = {g eRyz: g = 1},

o

S~
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so that the problem is reduced to determining the conjugation anti-

involution on R, ;. To do so we have just to select a suitable copy of

R'"? in Ry, Our choice is to represent ¢, e, and e, in R“ by
(1 0), (O —1) and <0 i), respectively, in C(2), these matrices
0-1/\1 O i 0

being mutually anticommutative and satisfying the equations

10\ 0 —1\?
(0 —1) =1=-ab (1 o) =—l=-e

and {0 1\2= —1 = —e,? as is necessary. Now the anti-involution
i 0
a ¢ d —c\ sends each of these three matrices to its nega-
b d)™\-b a

tive. This, therefore, by Prop. 6.38, is the conjugation anti-involution.

Since, for any fa c¢\e€C2),( d —c\fa ¢\ =detfa ¢\, the
b d —b aJ\b d b d

proposition is proved.

It is natural, therefore, to identify the spinor space C2 for R, , with the
complex symplectic plane CZ, and, similarly, to identify the spinor space
R? for R, , with hb R and the spinor space R? for R, ; with R2,. When
this is done, the induced adjoint anti-involution on the real algebra of
endomorphisms of the spinor space coincides with the conjugation
anti-involution on the Clifford algebra.

Note, incidentally, the algebra injections

Spin (2) — Spin+ (1,2)
and Spin (3) — Spin+ (1,3)

induced by the standard (real orthogonal) injections
R*?—R“ and R% — R

the image of Spin (2) = U(1) in Spin*(1,2) being SO(2) and the
image of Spin (3) = Sp(1) in Spin+ (1,3) being SU(2).

The isomorphisms U(1) = SO(2) and Sp(1) = SU(2) fit nicely,
therefore, into the general scheme of things.

Proposition 13.64 is a step towards the determination and classifica-
tion of the conjugation anti-involutions for the universal Clifford
algebras R,, , other than those already considered.

Prop. 13.64. Let V be the spinor space for the orthogonal space
R?4, with R, = End V. Then if p > 0 and if (p,q) = (1,0), the conju-
gation anti-involution on R, , coincides with the adjoint anti-involution
on End V induced by a neutral semi-linear correlation on V.
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Proof By Theorem 11.32 there is a reflexive non-degenerate AY-
linear correlation on the right A-linear space ¥ producing the conjuga-
tion anti-involution on R, , as its adjoint. What we prove is that this
correlation must be neutral. This follows at once from the even-
dimensionality of ¥ over A unless A* = R, C, H, *R or 2H. However,
since p > 0, there exists in every case £ € End V such that t-¢ = —1,
namely t = e,; for ¢4~ ¢y = —ey? = ¢,{¥» = —1. The existence of such
an element guarantees neutrality when A¥ = R, by Prop. 9.55. The
obvious analogue of Prop. 9.55 guarantees neutrality in each of the
other exceptional cases. O

An analogous result holds for the algebras C, .

. Prop. 13.65. Conjugation on C,, is the adjoint anti-involution in-
duced by the standard positive-definite correlation on the spinor space.
Conjugation on C, ;, where p > 0 and (p,g) 5= (1,0), is the adjoint anti-
involution induced by a neutral semi-linear correlation on the spinor
space. |

The classification of the conjugation anti-involutions for each of the
algebras R, , C‘p,q, (hb R), ,, C, and (hb C), is completed if we know to

which of the ten types listed in Chapter 11 each belongs. In the tables
which follow we use the following code:

0= R, symmetric

1=hbR, symmetric or skew
2= R, skew

3= ( skew

4= H, skew or H, symmetric
5 =hbHor hb H, symmetric or skew
6= H, symmetric or H, skew
7= C(, symmetric

8= C symmetric or skew

9 — hb C or hb C, symmetric or skew.

k, k indicates that the algebra is of the form 4 X A with 4 of type k.
The verification of the tables is left as a hard exercise.

Tables 13.66.

The following are the types to which the various L*-Clifford algebras
belong, as classified by their conjugation anti-involution. The tables for
R,, (hbR),, and C, have periodicity 8, while those for C,, and
(hb C), have periodicity 2.
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Prof. C.'T. C. Wall has commented that these five tables may also
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44 4
4 5
8 6
0o 7

00 0
0 1
8 2
4 3

55 5
5 55
9 5
1 9

1,11
1 11
9 1
5 9

33 3

—= WO

H\omvamo'—‘

1,1

S

-

w
& —
= \O u w1 O

~

-

_F_-FOOO

[e=ie oBE

7,7 .

271

O

p—q+2 (modS8) (mod 2)
0 0 6 7
0,0 7 6,6 7 7,7
0 0 6 7
1 8 5 8 9
2 2 4 3
2,2 3 44 3 3,3
2 2 4 3
1 8 5 8 9
1 1 5 9
1,1 9 5,5 9 9,9
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and —_—
P —q + 2(mod4)
p+q+2|3 8
(mod 4)
8,8 9
8 8
9 8,8

where the horizontal projections from the R, , table to the C, table
and from the hbR,, table to the hb C, table are induced by tensoring
with C and the vertical projections from the R, , table to the hbR,,
table and from the C, table to the hb C, table are induced by tensor-
ing with hb R. There is an alternative route from the R, table to the
hb C, table via the C,, table by tensoring first with C and then with
hbR.

The Radon-Hurwitz numbers

An important application of the Clifford algebras for positive-

definite finite-dimensional orthogonal spaces, involving the non-uni-
versal algebras in an essential way, is to the construction of linear
subspaces of the groups GL(s;R), for finite s, a linear subspace of GL(s;R)
being, by definition, a linear subspace of R(s) all of whose elements, with
the exception of the origin, are invertible.
- For example, the standard copy of C in R(2) is a linear subspace of
GL(2;R) of dimension 2, while either of the standard copies of H in
R(4) is a linear subspace of GL(4;R) of dimension 4. On the other hand,
when s is odd, there is no linear subspace of GL(s;R) of dimension
greater than 1. For if this were so, there would exist linearly independent
elements a and b of GL(s;R), such that, for all 1 € R, a + 1b € GL(s;R)
and therefore such that ¢ + 11 € GL(s;R), where ¢ = b1 a. However,
as we prove later in Cor. 19.25, there is a real number 4 such that
det (¢ + A1) =0, the map R— R;1-w> det(c 4 Al) being a poly-
nomial map of odd degree. This provides a contradiction.

Proposition 13.67 provides a method of constructing linear subspaces
of GL(s;R).

Prop. 13.67. Let End K™ be a possibly non-universal Clifford
algebra with conjugation for the positive-definite orthogonal space R,
for any n € w. Then R @ R" is a linear subspace of Aut K» = GL(m;K)
and therefore of GL(m;R), GL(2m;R) or GL(4m;R), according as
K = R, C or H. Moreover, the conjugate of any element of R @ R" is
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the conjugate transpose of its representative in GL(m;K) or, equiva-
lently, the transpose of its representative in GL(m;R), GL(2m;R) or
GL(4m;R).

Proof Let y =1+ xeR@R", where AR and xR Then
y~y = (A —x)(A + x) = A% 4 % is real, and is zero if, and only if,
y = 0. Therefore y is invertible if, and only if, y 7= 0.

The last statement of the proposition follows at once from Prop.
13.59. O

The following theorem is an immediate corollary of Prop. 13.67
coupled with the explicit information concerning the Clifford algebras
R, contained in Table 13.26 and its extension by Cor. 13.25.

Theorem 13.68. Let y:w— w; k> y(k) be the sequence of

numbers defined by the formula
4p, forg =0,
_4p+1, forg=1,
X(8P+q)_4p+2, forg=2o0r3
4p + 3, forg=4,560r7.
Then, if 2*® divides s, there exists a k-dimensional linear subspace X of
GL(s;R) such that

(i) for each x € X, ¥* = —x, ¥"x = —x? being a non-negative real
multiple of *1, zero only if x = 0, and
(ii) R ® Xisa(k -+ 1)-dimensional linear subs_ace of GL(s;R). 0

The sequence y is called the Radon—Hurwitz sequence. It can be proved
that there is no linear subspace of GL(s;R) of dimension greater than
that asserted by Theorem 13.68(ii). There is a close relationship between
Theorem 13.68 and the problem of tangent vector fields on spheres
discussed in Chapter 20. References to the literature will be given
there, on page 420.

As a particular case of Prop. 13.67, there is an eight-dimensional
linear subspace of GL(8;R), since R(8) is a (non-universal) Clifford
algebra for R”. This fact will be used in Chapter 14.

FUrRTHER EXERCISES

13.69. Show how, for any finite s, the Clifford algebra C, may be
applied to the description of the orthogonal automorphisms of C#, and
define the Clifford, Pin and Spin groups in this case. 0

13.70. Discuss the Pfaffians of complex skew-symmetric matrices
(elements of End_(C"), for any finite #). Show, in particular, that, for
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a complex skew-symmetric matrix s, (pfs)? = dets. (Cf. Exercise
12.24.) O

13.71. Let A be a Clifford algebra for a finite-dimensional isotropic
real, or complex, orthogonal space X such that, for some basic frame
(e;:ien)on X, TT es 2 0. Prove that 4 is a universal Clifford algebra
for X. (Try first the case where n = dim X = 3.)

(The universal Clifford algebra, A X, for a finite-dimensional linear
space X, regarded as an isotropic orthogonal space by having assigned
to it the zero quadratic form, is called the exterior or Grassmann algebra
for X, Grassmann’s term being the extensive algebra for X [19]. The
square of any element of X in AX is 0 and any two elements of X
anticommute.

The notation [] ¢, is a shorthand for J] e;. Cf. page 243.) O
13.72. Let X be a real or complex n-dimensional linear space and let
a be an element of AX expressible in terms of some basis {¢;: 7 € n} for
X as a linear combination of k-fold products of the ¢;’s for some finite k.
Show that if {f;: ¢ € n} is any other basis for X, then a is a linear com-
bination of k-fold products of the f’s. Show by an example that the
analogous proposition is false for an element of a universal Clifford
algebra of a non-degenerate real or complex orthogonal space. O

13.73. Let X be as in 13.72. Verify that the set of elements of AX

expressible in terms of a basis {e;: 7 en} for X as a linear combina-

tion of k-fold products of the e’s is a linear space of dimension
(n), where (n) is the coefficient of x* in the polynomial (1 + x)~.
k k

(This linear space, which is defined by 13.72 independently of the

choice of basis for X, is denoted by A*X.) O

13.74. Let X be as in 13.72, let (a;: ¢ € n) be an n-tuple of elements of
X, let (e;: 2 € n) be a basic frame on X and let £: X — X be the linear
map sending e; to a,, for all € n. Prove that, in A X,

IT a. = (det 5)] ] e.. O
13.75. Let X be as in 13.72 and let (a;: ¢ € k) be a k-tuple of elements
of X. Prove that (a;:¢ € k) is a k-frame on X if, and only if, in A X,
II a, #0. |

13.76. Let X beasin13.72and let(a;: ¢ € k) and (d;: i € k) be k-frames

on X. Prove that the k-dimensional linear subspaces im @ and im b of X

coincide if, and only if, T b, is a (non-zero) scalar multiple of JT a; in
- NEX (where a = colY(a;: i € k) and b = col~Y(b;: i € k)).
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(Consider first the case k = 2. In this case
agd, = beb, = agaby =0 = b,e€ima,

since b;0, = — byb, and by? = 0. It should now be easy to complete the
argument, not only in this case, but in the general case.) O

13.77. Construct an injective map ¥(X) — ¢,(A*X), where X is as
in 13.72.

(Use Exercise 13.76. This is the link between Grassmannians and
Grassmann algebras.) O

13.78. Let p, be the rotation of R* induced by an element g of I"(R¢)
with real part equal to 1. Prove that p, is expressible as the composite
of two hyperplane reflections (cf. Theorem 9.41) if, and only if, g is of
the form

1 4 Soree€s -+ S02€0€2 + Sos€ofs + S12€1€2 + S1a€185 + Sa360€3
where (eq,¢,6,€5) is the standard basic frame on R%. Deduce that

1 + Soiee€y + S02€0€a + Soa€ofs + S12€1€2 + S13€1€5 + S2362€3
is the product in the Clifford algebra R, of two elements of R¢ if,
and only if,

pf s = So1523 — SozS13 + Soss12 = 0. d

13.79. Prove that an invertible element

1 + So1€061 + So2e€2 + Sos€ols t+ $19€182 + $15€1€5 + S230s€3
of the Clifford algebra C, is the product of two elements of C* if, and
only if, pfs = 0. O

13.80. Prove that an element
5018061 T So2€0€s T Se3of3 1 5126162 + $13€1€3 1 Sy3€0€5

of A¥K?), where K = R or C, is the product of two elements of K* if,
and only if, pf s = 0. Deduce that the image constructed in Exercise
13.77 of the Grassmannian %,(R?) in the projective space ;(A%(RY)) is
the projective quadric with equation
So123 — Sozf1s + Sosf1z = 0. O

13.81. Let X be a four-dimensional real or complex linear space, let
O = 9,(X) be regarded as a projective quadric in %;(A2X) as in
Exercise 13.80, let L be a line through 0 in X and let M be a three-
dimensional linear subspace of X. Prove that the set of planes contain-
ing L as a linear subspace is a projective plane lying on Q and that the
set of planes that are linear subspaces of M also is a projective plane
lying on Q. Show also that these projective planes belong one to each
of the two families of planes on Q. (Cf. Exercise 12.26.) (Consider first
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the case where X = L @ M. A suitable basis for X may then be chosen.
Separate L, L’ may be compared via some common linear comple-
ment M.) O

13.82. The definitions of ‘spinor space’ on pages 249 and 251 are
slightly dishonest. Why? O

13.83. On pages 264-9 various isomorphisms with particular matrix
groups are presented for each of the groups Spinn, 1< n <6 and
Spint(1,n), 1 < n < 3. Derive similar isomorphisms for each of the
following:

Spin*(1,4), Spint(1,5), Spin*(2,2), Spin+(2,3), Spin*(2,4), Spin*(3,3).
Verify that Spin*(2,2) acts transitively on #(R%2), the quasisphere of
unit vectors in R%2, and that all but one of the others acts transitively on
& (R*%). Determine the isotropy subgroup in each case. O

13.84. Show that Spin+(1,3) = Spin(3,C), and hence that SO*(1,3)
= S0O(3,C). O

13.85. Classify the orthogonal involutions of the orthogonal space R?¢
and the induced anti-involutions of the Clifford algebra R, ,, for each
p,q € w. (When the involution of R?¢ is — 1, the anti-involution of
R, , is given by Props. 13.59 and 13.64 and the first of Tables 13.66.
When the involution of R?4 is 1, the anti-involution of R , , is reversion
—a good case to start with.) O

13.86. Let R%%1 for any k € w, denote the real linear space R* @ R
assigned the positive quadratic form (x,y) aw» x-x of rank £, let Ry,
denote the induced universal Clifford algebra and let e denote the last
vector of the standard basis for R* @ R, anti-commuting in R, ; ; with
e;, for all e kand having e* = 0. Let g = g, + gy, € I'%(k - 1), with
2o Ry} and g, e R, 1, and suppose that g, is invertible. Use Lemma
13.53 to show that g’ = gy + gye is then invertible in Ry,J, with
Zog™ + £180~ = 0 and that, for any x € R%,

(80 + £16)(1 + xe)(go — 1) = 1 + f(x)e,

where f(x) € R¥, the map f: R¥—>R¥*; x v f(x) being a rigid motion of
R¥, that is an affine orientation-preserving isometry of R®, Show also
that any rigid motion of R¥ is so representable, two such elements of
R, 3 inducing the same rigid motion if, and only if, the one is a non-
zero real multiple of the other.

Discuss in detail the particular case that £ = 3. In this case R, is
Clifford’s algebra of biquaternions. (See Study’s account of this case in
[75], [76] and [77], one we return to at the end of Chapter 21.) O



CHAPTER 14

THE CAYLEY ALGEBRA

In this chapter we take a brief look at a non-associative algebra over R
that nevertheless shares many of the most useful properties of R, C
and H. Though it is rather esoteric, it often makes its presence felt in
classification theorems and can ultimately be held ‘responsible’ for a
rich variety of exceptional cases. Most of these lie beyond our scope,
but the existence of the algebra and its main properties are readily
deducible from our work on Clifford algebras in the previous chapter.

Real division algebras

A division algebra over R or real division algebra is, by definition, a
finite-dimensional real linear space X with a bilinear product X% — X;
(a,b) v ab such that, for all 4, b € X, the product ab = 0 if, and only
if, a = 0 or b = 0 or, equivalently, if, and only if, the linear maps

X—X; xwxb and x-w»ax

are injective when a and b are non-zero, and therefore bijective.

We are already familiar with three associative real division algebras,
namely R itself, C, the field of complex numbers, representable as a
two-dimensional subalgebra of R(2), and H, the non-commutative field
of quaternions, representable as a four-dimensional subalgebra of R(4).
Each has unity and for each there is an anti-involution, namely con-
jugation, which may be made to correspond to transposition in the
matrix algebra representation, such that the map of the algebra to R,

N; a~» N(a) =aa,
is a real-valued positive-definite quadratic form that respects the algebra
product, that is, is such that, for each a, b in the algebra,
N(ab) = N(a) N(b).
A division algebra X with a positive-definite quadratic form
N: X — R such that, for all @, b € X, N(ab) = N(a) N(b), is said to
be a normed division algebra.

277
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Alternative division algebras

An algebra X such that, for all a, b € X, a(ab) = a% and (ab)b = ab®
is said to be an alternative algebra. For example, any associative algebra
is an alternative algebra.

Prop. 14.1. Let X be an alternative algebra. Then for all 4, b € X,
(ab)a = a(ba).

Proof Forall g, be X,
(a + )% = (a + b)(@ + b))
= (a® + ab + ba + b¥a = (a + b)(a® + ba)
= a*a 4+ (ab)a 4 (ba)a + b%a = aa® + a(ba) - ba* + b(ba)
= (ab)a = a(ba). O

Prop. 14.2. Let X be an alternative division algebra. Then X has
unity and each non-zero @ € X has an inverse.

Proof If X has a single element, there is nothing to be proved. So
suppose it has more than one element. Then there is an element g € X,
with a £ 0. Let e be the unique element such that ea = a. This exists,
since the map x -~ xa is bijective. Then e2a = e(ea) = ea. So ¢* =e.
Therefore, for all x € X, e(ex) = e2x = ex and (xe)e = xe? = xe. So
ex = x and xe = x. That is, e is unity.

Again let @ 0 and let & be such that ab = e. Then a(ba) = (ab)a
= ea = age. S0 ba = e. That is, b is inverse to a. O

The Cayley algebra

There are many non-associative division algebras over R. Such an
algebra may fail even to be power-associative, that is, it may contain
an element a such that, for example, (a?)a = a(a®). A less exotic
example is given in Exercise 14.13. However, only one of the non-
associative division algebras is of serious interest. This is the alternative
eight-dimensional Cayley algebra or algebra of Cayley numbers [9] (also
known as the algebra of octaves or octonions). Despite the lack of associ-
ativity and commutativity there is unity, the subalgebra generated by
any two of its elements is isomorphic to R, C or H and so is associative,
and there is a conjugation anti-involution sharing the same properties
as conjugation for R, C or H.

The existence of the Cayley algebra depends on the fact that the
matrix algebra R(8) may be regarded as a (non-universal) Clifford
algebra for the positive-definite orthogonal space R7 in such a way that
conjugation of the Clifford algebra corresponds to transposition in R(8).
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For then, as was noted on page 273, the images of R and R? in R(8)
together span an eight-dimensional linear subspace, passing through 81,
such that each of its elements, other than zero, is invertible. This eight-
dimensional linear subspace of R(8) will be denoted by Y.

Prop. 14.3. Let u: R8&—Y be a linear isomorphism. Then the map
R® x R® — R?; (a,b) w» ab = (u(a))(b) is a bilinear product on RS
such that, for all a,b €R®, ab =0 if, and only if, @ =0 or b = 0.
Moreover, any non-zero element e € R® can be made unity for such a
product by choosing u to be the inverse of the isomorphism

Y —R8; ¥y w» ye. O

The division algebra with unity e introduced in Prop. 14.3 is called
the Cayley algebra on R® with unity e. It is rather easy to see that any
two such algebras are isomorphic. We shall therefore speak simply of
the Cayley algebra, denoting it by O (for octonions). Though the choice
of e is essentially unimportant, it is advantageous to select an element
of length 1 in R®, For definiteness we select e, the zeroth element of the
standard basis for R®. We then denote by v (upsilon): R® — Y the
inverse of the linear isomorphism Y —> R®; y s> ye,, which associates
to each y € Y its zeroth column.

Here we have implicitly assigned to RS its standard positive-definite
structure, with quadratic form

N:R8—>R; aw»N(a) =a-a=a".

The space Y also has an orthogonal structure, induced by conjugation,
namely transposition, on the Clifford algebra R(8), with quadratic form
Y —>R{e}; 3wy
The Cayley algebra O inherits both, the one directly and the other via

the isomorphism v. As the next proposition shows, the choice of e as an
element of length 1 guarantees that these two structures coincide.

Prop. 14.4. For all a € R8, (v(a))v(a) = N(a)(®1).
Proof For all aeR8, a =v(a)e. So
N(a) = a’a = e*(v(a)'v(a))e.
Since y*y € R(®1) for all y € Y and since e'e = 1, it follows that
v(a)'v(a) = N(@)(®1). [
Conjugation on R(8) induces a linear involution
0—0; aw»a=(v(a)e

which we shall call conjugation on O. This involution induces a direct
sum decomposition O = (R{e}) ® O’ in whichO' = {, € 0: 5 = — b}.
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The following proposition lists some important properties both of
the quadratic form and of conjugation on O. The product on R(8) and
the product on O will both be denoted by juxtaposition, as will be the
action of R(8) on O. It is important to remember throughout the discus-
sion that, though the product on R(8) is associative, the product on O
need not be.

Prop. 14.5. Foralla, b€O,
N(ab) = N(a)N(b), implying that O is a normed division algebra,
(a-b)e = }(ab + ba), implying that O’ = (R{e})*,
(N(a))e = da = aa,
and ab — ba, implying that conjugation is an algebra anti-involution.
Moreover, for all a,b,c, e O, @ bc = b-ca = ¢-ab.

Proof Forall a,beO,
N(ab) = N(v(a)b) = b v(a) v(a)b = b"(N(a) (°1))b = N(a)N(b).

Also @b + ba = a(be) + b(ae) = v(a) v(b)e + v(b)'v(a)e = 2(a-b)e,
implying that if a € R{e} and if b€ O, then 2(a-b)e = ab — ba = 0,
since e, and therefore any real multiple of e, commutes with any element
of O. It implies, secondly, since N(a) = a -a, that N(a) = da and, since
v(a)v(a)” = v(a) v(a), that a@ = N(a).

Next we prove that, for all a,b,c € O, @-bc = b-ca and this we do by
proving that each is equal to b d-¢. Firstly

a-bc = av(bye = a“v(b) c = (v(b)a)’c = ba-c.

Secondly, ba-c = b-ca when a € R{e}. On the other hand, when a € O/,

a’e =a-e=0and
bca—bac=cab-+bac

a-ch + a-be, by the argument used above,

a-(éb + be)

a-2(c-b)e

0.

ey

So, for all a € O, @:bc = b-ca. Permuting a, b and ¢ cyclically we also
obtain §-ca = ¢-ab. Finally we set ¢ = e in the equation ¢-ab = @-bc.

Then e(ab) + ab & = a(be) - be a.

That is, ab + ab = ab + ba, so ab = ba. O

The real number a-bc is said to be the scalar triple product of the
Cayley numbers a, b and ¢, in that order. This generalises the scalar
triple product on H, defined on page 179.
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The algebra O is clearly not commutative, since dim O’ > 1. Nor is it
associative, as we shall see. Nevertheless we have

Prop. 14.6. The Cayley algebra O is alternative.
Proof For any a,b € O, a(ab) = v(a)v(a)b = v(a)'v(a)b = (aa)b. So
a(ab) = (a + a)ab — a(ab)
= ((a + a@)a)b — (@a)b, since a + a € Rie},
= a%b.
By proving that their conjugates are equal it follows likewise that
(ab)b = ab®. (]

Throughout the remainder of this chapter we shall identify R with
R{e}. In particular we shall write 1 in place of e for unity in O, though
we must then be careful to distinguish the numeral 1 from the letter 1.

Hamilton triangles

It has been remarked that two elements a, 5 € O’ are orthogonal if,
and only if, they anticommute. An orthonormal 3-frame (i,j,k) in O,
withi = jk, j = ki and k = ij, therefore spans, with 1, a subalgebra of O
isomorphic with the quaternion algebra H. Such a 3-frame will be said
to be a Hamilton triangle in O and will also be denoted by the diagram

A\

—k

in which each vertex is the product of the other two in the order indi-
cated by the arrows,

Prop. 14.7. Let a and b be mutually orthogonal elements of O’ and
let ¢ = ab. Then ¢ € O’ and is orthogonal both to g and to b.

Proof First,
ab=0 = ab+ba=0

= € =ab =ba = (—b)(—a)= —c¢
= ce0,

Also a-c = §(@(ab) + (ab)a)
= }(N(a)b + bN(a)), by Prop. 14.6,
=0, sinced+ b =0.

Similarly, boc=0. 0O
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Cor. 14.8. Let (i,j) be an orthonormal 2-frame in O’ and let k = ij.
Then (i,j,k) is a Hamilton triangle in O', O

From this follows the assertion made earlier that the subalgebra
generated by any two elements of O is isomorphic to R, C or H and
so is, in particular, associative.

Cayley triangles

Finally, any Hamilton triangle in O’ may be extended to a useful
orthonormal basis for O’. We begin by defining a Cayley triangle in O’
to be an orthonormal 3-frame (a,b,¢) in O’ such that ¢ is also orthogonal
to ab.

Prop. 14.9. Let (a,b,c) be a Cayley triangle in O’. Then
(i) a(bc) + (ab)c = 0, exhibiting the non-associativity of O,
(ii) a-(bc) = 0, implying that the elements a, b, ¢ form a Cayley
triangle in whatever order they are listed,
(iii) @b -bc =0, implying that (a,b,bc) is a Cayley triangle,
and (iv) (ab)(bc) = ac, implying that (ab,bc,ac) is a Hamilton triangle.

Proof

(i) Since (a,b,c) is a Cayley triangle,
ab + ba = ac + ca = bc + cb = (ab)c + c(ab) = 0.

So  a(bc) + (ab)c = —a(chb) — c(abd)
= (a® + ¢%)b — (a + c)(ab + ¢b)
= (a 4+ ¢)® — (a + ¢){(a + c)b) = 0.

(ii) From (i) it follows by conjugation that (¢b)a@ + ¢(ba) = 0 and
therefore that (bc)a + c(ab) = 0. Since (ab)c + c(ab) =0, it
follows that a(bc) + (bc)a = 0, implying that a-(bc) = 0.

(iii) 2ab-bc = (ba)(bc) + (bc)(ba)

= (8a)* + (bo)* — (b(a — O)?
= —b%a® — b%? 4 b*a — c)?
= —b*ac + ca)

= 2b%-c = 0.

(iv) Apply (i) to the Cayley triangle (a,b,bc).

Then (ab)(bc) = —a(b(bc)) = ac, since b? = —1. O

We can reformulate this as follows (1 being the letter 1).

Prop. 14.10. Let (i,j,]) be a Cayley triangle in O’ and let k = ij.
Then {i,j,k,il,jLkI} is an orthonormal basis for O’, and if these seven
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elements are arranged in a regular heptagon as follows:

NG i\il
7
\k—l

then each of the seven triangles obtained by rotating the triangle
i
K
\

through an integral multiple of 2/7 is a Hamilton triangle, that is, each
vertex is the product of the other two vertices in the appropriate
order. O

This heptagon is essentially the multiplication table for the Cayley
algebra O.

From this it is easy to deduce that there cannot be any division
algebra over R of dimension greater than 8 such that the subalgebra
generated by any three elements is isomorphic to R, C, H or O. Such
an algebra A, if it exists, has a conjugation anti-involution, inducing a
direct sum decomposition R @ A’ of 4 in which A’ consists of all the
elements of 4 which equal the negative of their conjugate. Further
details are sketched in Exercise 14.15. The following proposition then
settles the matter.

Prop. 14.11. Let (i,j,]) be any Cayley triangle in 4’, let k = ij and
let m be an element orthogonal to each of the seven elements i, j, k, 1, il,
jl and ki of the Cayley heptagon. Then m = 0.

Proof We remark first that parts (i) and (ii) of Prop. 14.9 hold for
any a,b,ce A’ such that a-b =a-¢c =b-c = ab-¢ = 0. Using this
several times, we find, onmaking a circuit of the ‘rebracketing pentagon’,

that
(ij)(Im) —(u)(lm)
7
—((ij)l)m l(J(lm))

(l(Jl))m = *1((J1)m)
So (ij)(Im) = 0. But ij 7= 0; so Im =0, and therefore, since 1 0,
m = 0. O
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Further results

There are various stronger results, for example

(i) Frobenius’ theorem (1878) that any associative division algebra over
R is isomorphic to R, C or H;

(ii) Hurwitz’ theorem (1898) that any normed division algebra over R,
with unity, is isomorphic to R, C, H or O;

(iii) the theorem of Skornyakov (1950) and Bruck-Kleinfeld (1951) that
any alternative division algebra over R is isomorphic to R, C, H or O;
and

(iv) the theorem of Kervaire, Bott-Milnor, and Adams (1958), that any
division algebra over R has dimension 1, 2, 4 or 8.

The first two of these are little more difficult to prove than what we
have proved here and can be left as exercises. The starting point in the
proof of (i) is the remark that any element of an associative z-dimensional
division algebra must be a root of a polynomial over R of degree at
most 7 and therefore, by the fundamental theorem of algebra, proved
later in Chapter 19, must be the solution of a quadratic equation. From
this it is not difficult to define the conjugation map and to prove its
linearity. Result (iii) is harder to prove. The discussion culminates in
the following.

Theorem 14.12. Any real non-associative alternative division
algebra is a Cayley algebra.

Indication of proof Let A be a real non-associative alternative divi-
sion algebra, and, for any «x, y, 2 € 4 let

[vy] = 2y — yx
and [x,y,2] = (xy)2 — x(y%). It can be shown that if x and y are such
that # = [»,y] = 0, then there exists z such that v = [x,y,2] = 0. It
can then be shown that uv -+ vu = 0 and therefore, by the previous
remark, that there exists ¢ such that w = [u,7,f] # 0. One can now
verify that u2, o2 and w? are negative real numbers and that
i=u//—ud, j=ov/4/—v? and |=w/4/—w?

form a Cayley triangle. Then A contains a Cayley algebra as a sub-
algebra. It follows, essentially by Prop. 14.11, that 4 coincides with this
Cayley algebra.

The details are devious and technical, and the reader is referred to
[36] for a full account. 0

Finally, (iv) is very hard indeed. Its proof uses the full apparatus of
algebraic topology. Cf. 1], [35], (45].
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The Cayley projective line and plane

Most of the standard results of linear algebra do not generalize over
the non-associative Cayley algebra, for the very definition of a linear
space involves the associativity of the field. Nevertheless we can regard
the map

0" Xx 00— 0"; ((y::i€n)y)ws(yy:icn)
as a quasi-linear structure for the additive group O".

It is also possible to define a ‘projective line’ and a ‘projective plane’
over O.

The Cayley projective line OP! is constructed by fitting together two
copies of O in the manner discussed on page 141. Any point is repre-
sented either by [1,y] or by [x,1], with [1,y] = [x,1] if, and only if,
y = x~%, the square brackets here having their projective-geometry
connotation. There is even a ‘Hopf map’ 4: 0% >»> OP?! defined by
h(y0,y1) = [0y7"1], whenever y, > 0, and by h(ye,31) = [Lywys '],
whenever y, = 0. Since any two elements of O (for example, y, and
y,) generate an associative subalgebra, it is true that yey7* = (y,v5) 7%
and so the two definitions agree, whenever y, and y, are both non-
zero.

The Cayley projective plane OP? is similarly constructed by fitting
together three copies of O2. Any point is represented in at least one of
the forms [1,y0,2,], [*1,1,21] or [xs,¥5,1]. The obvious identifications are
compatible, though this requires careful checking because of the general
lack of associativity. What we require is that the equations

¥ =% % =2y, and x,=wx327Y, y,=27"
be compatible with the equations

Xy =25 Yo = o3 .
But all is well, since

_ - -1 _
x87 = Yo 1(""oyo 1) = 25!

and At = (20 ) = pesi
once again because the subalgebra generated by any two elements is
associative.
The further study of the Cayley plane is beyond the scope of this
book except for a few brief references later (cf. pages 401, 405 and 416).
Useful analogues over O of projective spaces of dimension greater
than 2 do not exist. The reader is referred to [8] for a discussion.
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FurTHER EXERCISES

14.13. Let X be a four-dimensional real linear space with basis
elements denoted by 1, i, j and k, and let a product be defined on X
by prescribing that
i2=j2=k?= —1,
jk+ki=ki+ik=1i+ji=0
and jk = «i, ki = fj and ij = 9k,
where «, f8, v are non-zero real numbers, all of the same sign. Prove
that X, with this product, is a real division algebra and that X is associa-
tiveif, and only if, a =f=y=1lora=f =y = —1. O

14.14. Prove that if a, b € O’ (cf. page 279) then ab — ba € O'. O

14.15. Let X be a division algebra over R such that for each x ¢ X
there exist «, § € R such that x2 — 2ax + 8 = 0 and let x” consist of
all x € X for which there exists g €R such that x2 -+ 8 = 0, with
g =>0.
Prove that X' is a linear subspace of X, that X = R @ X’ and that
the map
ROX' >RBEX"; 2442wl —4,

where 1 € R, ¥’ € X’, is an anti-involution of X. O

14.16. Let A be a real alternative division algebra, and, for any
x,y,2€4,let
(%] = xy—yx

and [%,3,2] = (xy)z — 2(y2).

Prove that the interchange of any two letters in [x,y,2] changes the
sign, and that

[xy,2] — x[y,2] — [x,2]y = 3[x,9,2].

Hence show that if A4 is commutative, then A is also associative.

(Note: For all x,y, z € 4,

[x+yx+y2=0=[y+2y+2) O
14.17. Let A be a real alternative division algebra, and, for any
w,x,y, 2€4,let
[o0,0,,3] = [wx,y,2] — x[w,y,2] — [x,y,3]w.
Prove that the interchange of any two letters in [ew,x,y,2] changes the
sign.
(Note: For all w, x, y, 2 € 4,

wlxy,2] — [w,9,3] + [wx9,5] — [w2,2] + [wxy]2 =0) [
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14.18. Let A be areal alternative division algebra, letx, vy, 2 € 4 and let
u = [x,5], v = [»,,2]. Prove that [v,x,y] = vu = —uv. O

14.19. Prove that the real linear involution O — O; a w» &, sending
j» L, jl to —j, —1, —jl, respectively, and leaving 1, i, k, il and ki fixed, is
an algebra anti-involution of O. O

14,20, Verify that the map f:H?— O; x> x, 4 Ix, is a right

H-linear isomorphism and compute ﬂ‘l(ﬁZx) B(y)), for any x, y e H2,
(Cf. Exercise 14.19.)

Let Q = {(x,y) € (H%?: &y, + &y, = 1}. Prove that for any
(a,b) € O* x H, (B-Ya), p~*(a~'(1 + 1b))) € O and that the map

0% x H—> Q; (ab)~w (Y@, B-"a"X(1 + 15))
is bijective. (Cf. Exercise 10.66.) O
14.21. Verify that the map y: Ct — O; x w»xy - jo; + lny + jleg
is a right C-linear isomorphism and compute y-l(yh('x)y(y)), for any

4
K {;;-= {(zy) € (C*)?: T x,y; = 1}. Prove that, for any (a,(b,c,d))
€ 0% 5 C3, (y=a), y~ a1 + jb + Ic + jld))) € O and that the map
0* x C*— Q;  (a)(bye,d)) wo> (y=1(@), y a1 +jb + Ic + jld)))
is bijective. O
14.22. Show that the fibres of the restriction of the Hopf map
0*— 0P (yo.31) w> [yoyil

to the sphere S = {(y,,51) € O%: Fyyo + F1y; = 1} are 7-spheres,
any two of which link. (See the comment following Exercise 10.69.) [
14.23. Let a,b,c € O. Prove that

a(b(ac)) = ((ab)a)e, ((ab)c)b = a(b(ch)), and a(bc)a = (ab)(ca).

These are known as the Moufang identities [72] for an alternative
product. They are most easily proved, for O, as exercises on the re-
bracketing pentagon. O



CHAPTER 15

NORMED LINEAR SPACES

Topics discussed in this chapter, which is independent of the four
which immediately precede it, include norms on real affine spaces, sub-
sets of such spaces open or closed with respect to a norm, continuity for
maps between normed affine spaces, and completeness for normed affine
spaces. These provide motivation for the study of topological spaces
and the deeper properties of continuous maps in Chapter 16, and also
provide concepts and techniques which will be extensively used in the
theory of affine approximation in Chapters 18 and 19. The material
is limited strictly to what is required in these chapters. For this reason
such basic theorems as the Hahn-Banach theorem, the open mapping
theorem and the closed graph theorem have been omitted. These
theorems would be required if we wished to extend the section on
smoothness in Chapter 19 to the non-finite-dimensional case. For them
the reader is referred to [54] or [18], or any other introduction to
functional analysis.

Norms

In Chapter 9 we defined the norm | x | of an element x of a positive-
definite real orthogonal space X to be /(] # |), and in Prop. 9.58 we
listed some of the properties of the map

X—>R; xw>|x]
These included the following:
(i) forallx e X, | x| > 0, with | x | = 0 if, and only if, x = 0;
(ii) forallx e X and all A eR, [Ax | = |1 ]| x|;
and (iii) for all », ¥’ € X, |x + &' | <|x| + | x| (the triangle in-
equality), this last being equivalent, by (ii), with A = —1, to
(i) forallx, x' e X, ||} — &' || < |2 — &' |.

When X is any real linear space, any map X — R; x «v> | » | satisfying
these three properties is said to be a norm on X, a norm being said to be
quadratic if it is one that is induced by a positive-definite quadratic

form on X.
288
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The | | notation is convenient, but we shall also sometimes use the
double-line notation | | | |, especially when there is danger of confusion
with the absolute value on R, or when two norms are under discussion
at the same time.

Prop. 15.1. Any norm || || on R is of the form x> m|x |
where m = ||1]|]| > 0, and conversely any such map is a norm on
R. O

There is a greater choice of norms for R? despite the fact that the
restriction of such a norm to any line through 0 is essentially the abso-
lute value on R, by Prop. 15.1. Examples include the sum norm (x,y) ~w
| x|+ | ¥], the product norm (x,y) ~w>sup {|x |, | ¥ [} and the quadratic
norm (x,y) ~w> 4/(x2 + y2), each of these being defined in terms of the
standard basis for R2. A reason for the term ‘product norm’ will
emerge presently. The check that the sum and product norms are
norms is left as an easy exercise.

The following proposition provides an example of a norm on a
possibly infinite-dimensiona! space. It may be regarded as a generaliza-
tion of the norm referred to above as the product norm.

Prop. 15.2. Let & be the linear space of bounded real-valued
functions on a set X and let || ||: % — R be defined, for all f € &#,
by the formula | | f]| = sup {| f(») |: x € X}.

Then || ||is a norm on Z. O

A normed linear space (X, | |) consists of a real linear space X and
anorm | | on X and a normed affine space (X, | |) consists of a real
affine space X and a norm | | on the vector space X,. In either case
(X,] |)is abbreviated to X wherever possible.

The restriction to a linear subspace W of the norm on a normed linear
space X is a norm on W, and W is tacitly assigned this norm.

Prop. 15.3. Let X and Y be normed linear spaces. Then the map
X X Y—R; (xy)w>sup {|x],}y]}
isanormon X X Y. 0
This norm is called the product norm on X x Y. The definition

generalizes in the obvious way to the product of any finite number of
normed linear spaces.

Open and closed balls

The intuition surrounding the quadratic norms provides several
descriptive terms which are also applied in using an arbitrary norm.
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For example, let X be a normed affine space, subtraction being
denoted simply by — and the norm by | |, and let @ and b € X. The
real number | b — a | is then called the distance from a to b, and a subset
A of X is said to be a neighbourhood of a in X if A contains all points of X
sufficiently close to a; that is, if there exists a positive real number J such
that, for all x € X,

| —a] <d = x€Ad,
or, equivalently, if there exists ' > 0 such that, for all x € X,

| —a]l<d = xed.
(The first statement clearly implies the second-—we may take ¢’ = ¢
—while the second implies the first on taking 6 = 44'.)

For any a € X and for any é > 0, the sets
fxeX:|x—a|<d}, xeX:|x—a|<d} and {xeX:|x—a|=5}
are called, respectively, the open ball, the closed ball and the sphere in X
with centre a and radius é.

Thus a subset 4 of X is a neighbourhood of a in X if, and only if,
there exists a ball (open or closed) B, with centre a, such that B < A4.

A subset 4 of X is said to be bounded if there is a ball B in X such
that 4 < B,

Prop. 15.4. Any ball, open or closed, in a normed affine space X is
convex, O

Consider for example the three norms on R? introduced above. A
quadratic ball with centre 0 is a circular disc, centre 0, a product ball
is a square disc with vertices the points (4-7,4-7), r being the radius,

-rr) (rr}

(-r-r) (r,~r)
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while a sum ball is also a square disc but with vertices the points
(7,0), (0,£7),  again being the radius. The various balls are illustrated
in the figure on page 290.

There may be some suspicion that any norm on a real linear space X
is a quadratic norm, induced by some suitable quadratic form on X.
That this is not so if dim X > 1 follows from the following proposition.

Prop. 15.5. Let a and b be distinct points of a positive-definite real
orthogonal space X, and suppose that |a|[ =[b]| =1, | | denoting
the quadratic norm. Then, for all 1 €R,

|(1 —2)a+2b|=1 if andonlyif, A =0o0rl.
(Recall that a*b = |a||b| < |bla=]|alb) 0

It follows at once, for example, that the product norm on R? is not a
quadratic norm.

Open and closed sets

A subset A4 of a normed affine space X is said to be oper in X if it is
a neighbourhood of each of its points, and to be closed in X if its set
complement in X, X\4, is open.

Prop. 15.6. Any open ball in a normed affine space X is open in X,
and any closed ball in X is closed in X. O

A subset of a normed affine space X need be neither open nor closed.
~ For example, the interval ] —1,1] is neither open nor closed in R with
respect to the absolute value norm. By contrast the null set and the
whole space X are each both open and closed in X.

Prop. 15.7. Let X be a normed affine space. Then, if 4 and B are
open subsets of X, A N B is open in X while, if & is a set of open
subsets of X, |J< is open in X. O

It is a corollary of the first part of this proposition that the inter-
section of any non-null finite set of open subsets of X is open in X.
However, the intersection of an infinite set of open subsets of X need
not be open, an example being the set of all bounded open intervals in
R with centre 0. By contrast, there is no requirement in the second part
that & be finite, nor even countable.

It is natural to suppose that any affine subspace I of a normed affine
space X is closed in X. This intuition is correct if X is finite-dimensional,
by Theorem 15.26 and Cor. 15.24, though it is false in general.

Prop. 15.8. Let X be a real normed affine space and let W be a
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closed affine subspace in X of codimension 1. Then each side of W is
open in X.

Proof Let A denote one of the sides of Win X and let a € 4. Since
W is closed in X, X\ Wis open in X. So X\ W contains a ball in X
with centre a. Since the ball is convez, it cannot lie partly on one side

l A

w

of W and partly on the other. So it lies entirely in 4. Therefore A4 is
open in X. 0O

Norms | |and || |]on an affine space X are said to be equivalent
if they induce the same neighbourhoods or, equivalently, the same open
sets on X, It follows at once that | |and || || are equivalent if, and
only if, each | |-ball in X contains as a subset a concentric | | | [-ball
and vice versa. For example, the standard product and quadratic norms
on R? are equivalent, since every square ball contains a concentric
circular ball and vice versa.

An alternative criterion for the equivalence of norms will be given
later (Prop. 15.18). It will also be proved later (Theorem 15.26) that

any two norms on a finite-dimensional affine space X are equivalent.

Continuity

Let X and Y be normed affine spaces. Amap f: X >»> Y (see page 39
for the notation) is said to be continuous at a point a of its domain if
every neighbourhood B of f(a) contains the image by f of some neigh-
bourhood A4 of a.

In more intuitive language f is continuous at a if it sends points
(sufficiently) close to a to points (as) close (as we please) to f(a), the
words in parentheses being strictly necessary if the statement is to be
meaningful, though they are often omitted in practice. Note that, since
the definition is in terms of neighbourhoods, the norm on either X or Y,
or on both, may be replaced by an equivalent norm without affecting
the continuity of f.
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A map f: X >» Y is said to be continuous if it is continuous at each
point of its domain.

For example, any constant map on a normed affine space X is con-
tinuous. Also, the identity map 1x is continuous.

imf

dom 7

Prop. 15.9. Let X and Y be normed affine spaces. Amapf: X — Y
(with domain X) is continuous if, and only if, the inverse image f(B)
of any open set B in Y is open in X. O

Exercise 15.10. Discuss possible extensions of the result of Prop.
15.9 to maps f : X >> Y whose domain need not be the wholeof X. [

The importance of Prop. 15.9 and Exercise 15.10 will become ap-
parent in Chapter 16, where we develop the study of topological spaces
and continuous maps between topological spaces. Meanwhile we
establish several further forms of the definition of continuity at a point,
each of which has certain technical advantages. We continue to assume
that X and Y are normed affine spaces.

Prop. 15.11; The map f: X >> Y is continuous at a € dom f if,
and only if, any ball B in Y with centre f(a) contains the image by f of
some ball 4 in X with centre a.

Proof = : Suppose f is continuous at a. Then, since any ball B in
Y with centre f(a) is a neighbourhood of f(a), there exists a neighbour-
hood A’ of a such that f,(4") < B. But since A’ is a neighbourhood of
a there exists a ball 4, centre a, such that 4 < 4’, that is, such that
f4) < B.

<= : Suppose that any ball B in Y with centre f(a) contains the
image by f of some ball 4 in X with centre a. Since any neighbourhood
B’ of f(a) contains a ball B with centre f(a) and since, by hypothesis,
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B contains the image of a ball 4 in X with centre q, this ball being a
neighbourhood of g, it follows that f is continuous at a. O

Prop. 15.12. The map f: X >»> ¥ is continuous at ¢ € dom f if,
and only if, for every positive real number ¢ there is a positive real
number J such that

|* —a|<dé and xedomf = |f(x)—f(a)] <e.

Proof The statement only differs from the statement of Prop 15.11
in that the balls B and A are required to be open. Since every open ball
contains a concentric closed ball, and vice versa, the content of the two
statements is the same. O

Clearly either or both of the symbols < in the statement of Prop. 15.12
may be replaced by <.

There follow several routine elementary results which we shall later
repeat in the wider context of topological spaces.

Prop. 15.13. Let W, X and Y be normed affine spaces and let
g: W > X and f: X >> Y be maps continuous at a € dom g and
b = g(a) € dom f, respectively. Then the map fg: W >» Y is con-
tinuous at a. O

Prop. 15.14. Letg: W >> X be an affine inclusion and let W have
the norm induced by a norm on X. Then, with respect to these norms,
g is continuous. |

Prop. 15.15. Let W, X and Y be normed affine spaces and let
X X Y be assigned the product norm. Then a map
(fe): W XxY
is continuous at a point a € dom f N dom g if, and only if f: W >> X
and g: W >> Y are each continuous at a. O

Cor.15.16. Let X and Y be normed linear spaces, let ¢ = (14,0):
X—>Xx%xY,j=(0ly): Y—>X X Y and let (p,g) = 1x.y. Then
1, /, p and ¢ are continuous.

Proof The identity maps 1y, 1y and 1y, and the constant maps
0: X— Yand 0: Y — X are all continuous. O

The next proposition is one which we shall frequently use and to
which we shall return later in the chapter.

Prop. 15.17. A linear map ¢: X — Y is continuous with respect to
norms ¥ w» | x | on X and y w» | y | on Y if, and only if, for some real
number K > 0,

[t(x)] <K|«x]|, forallxelX.
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Proof = : Suppose ¢ is continuous. Then by the continuity of ¢ at

0 there exists a positive real number ¢ such that, for all x € X,
x| <6 = |Hx)| < 1.

Now, if x = 0,]|20) | =0 =6-1]0}and,ifx=0,|6 |x |~*x | =4,
implying that 6 |x |1 | ¢(x) | = | #(é | x |~ &) | < 1. So, for all x € X,
[t(x) [<o-% | |.

<= : Suppose such a K exists. Then, for all », a € X,

ltx) —4a) | =[x —a) | < K|x —a|.
So, for any ¢ > 0,

| —a]< K-le = |tx) —ta)| <e
That is, ¢ is continuous. ]

As a corollary we have the following characterization of equivalent
norms.

Prop. 15.18, Let| |and || || be norms on a linear space X.
Then| |and || || are equivalent if, and only if, there exist positive
real numbers H and K such that for all x € X

[lx[|<H[x| and |2[<K][|x]].

Proof Let X'=(X,] |) and let X" =(X,|| |]), and consider
the identity maps X’ — X" and X" — X'. In view of the definition
of continuity by means of open sets, the norms | |and || || will be
equivalent if, and only if, each of these maps is continuous. The pro-
position follows, by Prop. 15.17, since the identity map on a linear space
is linear. 0

Complete normed affine spaces

Convergence has already been discussed, in Chapter 2, for sequences
on R. Recall that a sequence w —> R: 7w x,, is said to be convergent
with mit x if, and only if, for each & > 0 there exists a number n €
such that, for all p € w,

p=n = |x—x|<s
and to be Cauchy if, and only if, for each ¢ > 0, there exists a number
n such that
phgzn = |x,—x|<e
These definitions remain meaningful if R is replaced by any normed
affine space X. It can be proved, just as before, that a convergent sequence
has a unique limit and that every convergent sequence is Cauchy.
The limit of a sequence x ~w» %, on X is denoted by lim x,, though

lim x,, would be more logical. "

n—rw
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A normed affine space X such that every Cauchy sequence on X is
convergent is said to be complete. For example, R is complete, by
Prop. 2.63.

Prop. 15.19. The normed linear space R[x] of polynomials over R
in », with norm
> axtaw-sup {| a,| :ne w},
new
is not complete.
(The norm exists, since all but a finite number of the a, are zero.) [

A complete normed linear space is also called a Banach space.

Equivalence of norms
The following propositions are preparatory for Theorem 15.26.

Prop. 15.20. Let X be a real affine space, complete with respect to a
norm | | on X. Then X is complete with respect to any equivalent
norm || ||onX.

Proof The proof that follows is typical of many convergence and
continuity arguments. Its logic should be carefully studied.

What has to be proved is that any sequence on X that is Cauchy with
respect to | | || converges with respect to || ||. So let #ww»>x, bea
sequence on X that is Cauchy with respect to | | | [. The job is to find
in X a limit for this sequence with respect to the norm || |].

It is at this stage, and not before, that we turn to the data. What we
are told is

(a) that any sequence on X, Cauchy with respect to | |, converges
with respect to | |;
(b) that the norms | |and || || on X are equivalent.
This suggests the following strategy:
(1) to prove (using (b)?) thdt our sequence # > x,, is Cauchy, and
therefore (by (a)) convergent, with respect to | |;
(if) to guess that the limit in X of this sequence with respect to | |
is also the limit of the sequence with respect to | [ | |;
(iii) to verify our guess (using (b) again?).
Proof of (i) What has to be proved is that, for all £ > 0, there exists
n € w such that, for all p, ¢ € w,

pg=>n => |x, —x]<e
So let ¢ > 0. The job is to find n.



EQUIVALENCE OF NORMS 297

Look at the data. We have (b) and our original hypothesis that the
sequence 7 . x,, is Cauchy with respectto || ||.

Now, by (b) and by Prop. 15.18, there is a positive real number K
such that, for all xe X, |x| < K ||« ]|, and therefore such that for
alp,gew

[w, =2 || <K le = |2, — 2 | < K||%, ]| <e
However, since K-1¢ > 0, there exists # € @ such that, for all p, ¢ € w,
pg=n = ||x, —x || < K-'e

This number # is just what had to be found. So (i) is proved.

Proof of (iti) What has to be proved is that, for all ¢ > 0, there
exists # € w such that, for all p € w,

p>n = ||lx,—x|] <s
where x is the limit in X of the sequence n w»> x,, with respect to | |.
So once again let ¢ > 0. The job is fo find n.
What are we given? We have (b), as before, and the fact that x is the
limit of the sequence with respect to | |.
By (b) and by Prop. 15.18 once more, there is a positive real number

H such that, for all € X, ||« || < H | x|, and therefore such that,
for all p € w,

|2, — x| < H'e = ||a,—x]||<H|x, —x]|< e
However, since H-1¢ > 0, there exists # € w such that, for all p € w,
p=n = |x,—x|< H'le

So the required number # has been found.
This completes the proof of (iii) and therefore of the proposition. [

(Please note that again and again we have refrained from ‘mucking
around with the data’ until we knew what had to be found!)

Prop. 15.21. A subset 4 of a normed affine space X is closed in X if,
and only if, any sequence on A, convergent as a sequence on X, has its
limit in 4.

Proof = : Suppose that X\ 4 is open and that n-w»x, is a
sequence on 4 with limit x in X'\ 4. Since X \ 4 is-open, there exists
a ball B with centre x such that B = X\ 4, and since the sequence
converges to x, we have x, € B for n sufficiently large, a contradiction
since », ¢ X \ A, for any n.

< : Suppose that any sequence on 4, convergent as a sequence on X,
has its limit in A, let x € X \ 4 and let B, denote the ball with centre x
and radius 7. Then there exists 8 > 0 such that B, < X\ A. For, if
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not, we may choose, for each 7 € w, an element x, of B,~» N 4. The
sequence 7 . ¥, is then convergent with limit x € 4, contradicting the
hypothesis that x ¢ 4.

It follows that X \ 4 is open in X; that is, that 4 is closed in X. O

The theorem which follows is one of the most useful technical lemmas
in the theory of complete normed affine spaces. It plays a vital role in
the proof of Theorem 19.6, the inverse function theorem.

Theorem 15.22. (The contraction lemma.)

Let A be a non-null closed subset of a complete normed affine space X,
and suppose that f: A —> A is a map such that, for some non-negative
real number M < 1 and for all a, b€ 4,

|f@) —fl@) | < M[b —al

Then there is a unique point x of 4 such that f(x) = x.

Proof Let x, be any point of 4, and consider the sequence 7 «ww» x,
= f"(x,), where f%x,) = x,. This sequence is Cauchy, since, for any
n>1,

Xnyy — % = f(%n) — f(2n_1)
and so |x,.+1—x,,]<M|x,.—x,,_1|<M”Ix1—x0],
from which it follows that, for all %,
| Xpre — %a | < (ECM"M) | %y — 2 |
< (1 —M)-2Mr|x; — x|
Let x be the limit of this sequence. This exists, since X is complete,

and belongs to A4, by Prop. 15.21. Also, for any ¢ > 0 and for n suf-
ficiently large,
1f(x) — 2] < 1f(®) — @) | + | #pp1 — ]
<Mlx_xnl +Ixn+1_—xl
<A+ MYA+M)1e)=e
So f(x) = x.
Finally, » is the only fixed point. For if f(x') = &’ then
|’ —x| < M|x" — x|,
implying that
1—-—M|x —x]<0.
Therefore | ¥ — x| =0 and &’ = x. O
Cor. 15.23. Let X be a complete normed affine space and let
f: X —> X be a map such that for all x, ' ¢ X

Pa(x) — h(x) | < 3% — & |
where £ = f — 1x. Then f is bijective,
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(Note that, for any g, be X, f(a) =b <> b — h(a) = a.) O
Prop. 15.24. An affine subspace W of a normed affine space X is

closed if W is complete, the condition being necessary as well as suf-
ficient if X is complete. O

Prop. 15.25. Let X and Y be complete normed affine spaces. Then
X x Y is complete.

Strategy of proof Let n - (x,,y,) be a Cauchy sequenceon X x Y.
Deduce that the sequences 7 ~w> x,, and # «w» ¥, are Cauchy and there-
fore convergent with limits x and y, say. Then prove that the sequence
nw> (x,,y,) is convergent, with limit (x,y). O

This proposition extends in an obvious way to finite products of
complete normed affine spaces. In particular, R" is complete with respect
to the product norm, for any finite 7.

We are now in a position to prove the theorem on the equivalence of
norms on a finite-dimensional space, referred to earlier.

Theorem 15.26.
(a) Any two norms on a finite-dimensional affine space are equivalent,
(b) Any finite-dimensional normed affine space is complete.

Proof The proof is by induction on dimension. Let (a), and (b), be
the statements obtained from (a) and (b) by replacing the word ‘finite’
in each case by ‘n’, where # is any finite number. We prove

@e (@)n = (b)s and (b)y > (Dnyr-
(a)o: There is a unique norm on a zero-dimensional affine space.

(@), = (b),: Every n-dimensional affine space is isomorphic to R*, and
R* is complete with respect to the product norm and so, by (a), and
Prop. 15.20, with respect to any norm.

(b), = (a)n41: Since any (n - 1)-dimensional affine space is isomorphic
to R*+1 it is sufficient to prove that (b), implies that every norm on
R"+1 js equivalent to the standard product norm.
Let || || denote the product norm on R*+! and | | some other
norm. Then, for any x = 3 x;¢;eR*+1 |x| < L||x]||, where
ien+1
L=(n+1)sup {|e;|:7€n + 1}. From this it follows at once that
any | |-ball in R*+! contains a product ball with the same centre.
Conversely, any open product ball in R*+! is the intersection of a
finite number of open half-spaces, these being open, by Prop. 15.8,
with respect to any norm, since by (b), the bounding affine hyperplanes
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are complete and therefore closed in R*+!, by Prop. 15.24. Each open
product ball therefore contains a concentric | |-ball.
This completes the proof. O

An alternative proof of this theorem using compactness and the con-
tinuity of the map R »»> R:x w» x-1 is presented in Chapter 16
(page 328).

The theorem has the following important corollary.

Prop. 15.27. Let X and Y be finite-dimensional affine spaces and
let £: X — Y be affine. Then ¢ is continuous with respect to any norm
on X and any norm on Y.

Proof By Theorem 15.26 it is enough to show that # is continuous
for some norm on X and some norm on Y.

Choose 0 in X and set #(0) =0in Y. Let X, = ker tand Y, =im ¢
and let X be a lincar complement of X in X and Y a linear comple-
ment of Y, in Y. Choose any norms for X and X, give Y, the norm
induced by the bijection X; — Y,; %, w»> #(x;) and choose any norm
for Y,. Let X and Y have the sum norms with respect to these direct
sum decompositions. Then for all ¥ = x, + », € X, with x,€ X,,
% € Xl)

L) | = {#(xo + o) | = | 2(x)) | = [ @1 | < | %o | + |21 ] = |2 ].
It follows, by Prop. 15.17, that ¢ is continuous. 0

The norm of a continuous linear map

In the proof of the last proposition we used the fact, proved in Prop.
15.17, that a linear map ¢: X — Y between normed linear spaces X and
Y is continuous if, and only if, there is some real number K such that,
for all x € X, | #(x) | < K| x|. When such a number K exists the set
{] #(x) | : | | < 1} is bounded above by K. This subset of R also is non-
null, since it contains 0, and so it has a supremum. The supremum is
denoted by | 2 | and is called the absolute gradient or the norm of ¢.

Prop. 15.28. Letz: X — Y be a continuous map between normed
linear spaces X and Y. Then, for all x€ X, |t(x) | < |2}]|x]. Also,
| # |is the smallest real number K such that, forallx € X, | #(x) | < K | »|.

Proof For all x € X such that | x| < 1,

| ) | < | 2],
implying that, for all ¥ € X such that | x| == 0,
L) | = (x| @) [x || =[e(|x |7 @) ||=]<]t}]x]
Also [#(0) | < |2]]|0]. So, forallx e X, |t(x) | < |t]]|x].
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Finally, for any K < | ¢ | there exists x € X such that [x | < 1 and
[#x) | > K > K | « |, implying the last part of the proposition. m]

In the sequel | ¢ | will often be thought of as ‘the smallest K’.

The choice of the words ‘absolute gradient’ is motivated by the first
two of the examples which follow. The choice of the word ‘norm’ is
justified by Prop. 15.32 below.

Example 15.29. Let R be assigned the absolute value norm and
let ¢ be the map R —> R; x-w» mx, where m € R. Then

|t|=sup{|m]||x|:|x| <1} =]|m]|

tp—————

————— ¢t

a

Example 15.30. Let R have the absolute value norm and R? the
standard quadratic norm and let ¢ be the map R* — R; (x,y) w»-ax + by
where (a,b) e R2.

R

 groph t= {(x,y,é) : ax-Fb; =z} -

el (0,011

R x {0}
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Since, by Cauchy-Schwarz (9.58),

tax + by | = |(ab) (xy) | < |(ab) || (xy)|
for any (x,y) € R?%, with equality for any (x,y) when (a,6) = (0,0) and
for (x,y) = | (a,d) |~ (a,b) when (a,b) = (0,0), it follows that
|t]=sup {lax +by|:|(x3) | <1}=[(ab)|. O

Example 15.31. Let R[x] be the linear space of polynomials over
Rin x, with thenorm | | || defined in Prop. 15.19. Then, in particular,
1% || =1, for any n € w.

Now let ¢: R[x] — R[x] be the map (differentiation) defined for any
3, a;x* € R[x] by the formula #(}; a;x?) =ieZ tax'~1, Then ¢ is linear,
i€w iew wt
while, for any n e wt, [ #(x") | = | nx*1 | = n.

Since w has no supremum in R, it follows that ¢ does not have a
norm. |

The set of continuous linear maps from a normed linear space X to a
normed linear space Y is denoted by L(X,Y).

Prop. 15.32. Let X and Y be normed linear spaces. Then L(X,Y)
is a linear subspace of #(X,Y) and t w> | ¢ | is 2a norm on L(X,Y).

Proof 1Itis clear that |¢]| > 0 for all e L(X,Y) and that [#] =0
if, and only if, t = 0.

Moreover, for all ¢, ¢’ € L(X,Y), all A eR and all x € X,

[+ )@ | <[t | +17@I<(T2]+]F])]x],
so that ¢ 4 ¢' is continuous and |2 + ¢ | < |£| + | ¢ |, and
l@@) | <1211 | <|A|[2t]]%];
so At is continuous and |A¢| < |4 ||¢]. Also, |02]| =|0]]|#]and, if
A0,
2] < [Af[e] =]Al[A-2] 4] =[a],

so that in fact |4z | =[2]]¢]. O

For any normed linear space X the linear space L(X,R) is called the
continuous linear dual of X. We shall denote it by XL

When X and Y are finite-dimensional real linear spaces, it follows
from Prop. 15.27 that L(X,Y) = #(X,Y) and that X% = X%,

Prop. 15.33. Let¢: X — Y and u: W—> X be continuous linear
maps, W, X and Y being normed linear spaces. Then tu: W-— Y is
continuous, with | tu | < ||| u .

Proof ForalweW, |tu(w)| < |t]||uw(w)]| <|t]|u]|w] Sotu
is continuous and |tu | < | 2| | u].
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Cor. 15.34. For all t e L(X,Y), the map L(W,X)— L(W,Y);
u > tu is continuous. Also, for all ¥ € L(W,X), the map L(X,Y) —
L(W,Y); t aw» tu is continuous. O

.~ Cor. 15.35. Let u € L(X,X). Then, for all finite n, |u" | < |u |
(By convention, #°® = 1x.) O

Cor. 15.36. Let u e L(X,X), with [#] < 1. Then the sequence
n~wu® on L(X,X) is convergent, with limit 0. |

The inverse of a continuous linear map is not necessarily continuous.
See Exercise 15.60.

The continuous linear dual of a continuous linear map ¢2: X — Y is
by definition the map

th: YL — XL; BBt

Prop. 15.37. The continuous linear dual of a continuous linear map
t: X — Y is continuous. O

Prop. 15.38. Let X and Y be normed linear spaces and let ¥ be
complete. Then L(X,Y) is complete.

Proof Let n-ww»t, be a Cauchy sequence on L(X,Y). Then, for
any x € X, the sequence n w» £,(x) is a Cauchy sequence.
This is clear if x = 0, while if x = 0 the result follows at once from
the implication
lta —t, [ <|x|e = |t(x) —1,(x)]| <s
for any 7, p € », and any & > 0.
For each x € X, let #(x) = lim #,(x) and define #: X — Y to be the

map x ~w- #(x). Vatious things now have to be checked. Firstly, ¢ is
linear, as is easily verified. Secondly, ¢ is continuous. For let ¢ > 0.
Then, for any x € X,
[ #x) | < | tu(x) | + & for a sufficiently large,

< |t,||x]| 4 ¢ sincet, is continuous,

<sup {|t,]:n€ew}|x]| +e
the supremum existing by Prop. 2.63, since the sequence n w» | 2, | is
Cauchy, by axiom (iii)’, page 288. Let K =sup {|¢,|:7 € w}. Then,
since [#(x) | <K |x| 4+ & for all ¢ >0, it follows, by Exercise 2.37,
that | #(x) | < K | x |, for any x € X. That is, ¢ is continuous.

Finally, lim #, = ¢, with respect to the norm on L(X,Y). What has

to be proved is that, for any ¢ >0, |t — #,| < ¢, for n sufficiently
large. Now |t — #, | = sup {| #x) — t.(x)]|: | x| < 1} and, for any »
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and any p, | (%) = 1(x) | < | %) = 1,(8) | + | (x) = 1a(x) |. How-
ever, for p sufficiently large, depending on x, we have
| 1(x) — 1,(x) | < B,
and for p and #n sufficiently large, independent of x, we have
| 4(5) — tal) | < 11y — ta | |2 ] < Be |51,
and so if | x | < 1 we have, for n sufficiently large,
L#(x) — ta(x) | < de + (39)1 =&
Therefore, for n sufficiently large,

t—1,1<¢
as had to be proved. | <o

This completes the proof. O

Continuous bilinear maps

Prop. 15.39. Let X, Y and Z be normed linear spaces. A bilinear
map X X Y— Z; (»,y) w»> x-y is continuous if, and only if, there
exists a real number K > 0 such that, for all (»,y) e X X Y,

ey <K[x]|y]
Proof = : Suppose the map is continuous. Then by its continuity
at 0 there exists a positive real number J such that
@) | <é = |ey| <L
Now, if either x or y =0, then |x-y]| =0 = 6-2|0], while, if
neither ¥ nor y =0, then |d(|x|-*x, |y |~1y)| = 6, implying that
o x|ty [ ayl=]o]x|ad]y[y]< 1.
So, for all (x,) e X x Y, |2y <d-%|x]||y]

<= : Suppose such a K exists. Then, for all (x,y), (2,b) e X X Y,

|y —ab|<|(x—a)(y —b)|+]|a(y—b)|+|(x—a)b]

<K(lx—al+lal+15])](xy) —(ab)|.
For any & > 0, let = inf {1, ¢/K"}, where K'= K(1 + |a| + |b]).

Then |[(x,y) —(ab)| <bé= |xy—ad]<e O

Examples 15.40. Let I¥/, X and Y be normed linear spaces. Then
L(X,Y) x X—Y; (tx) > t(x)is continuous
since, for all (£,x), | t(x) | < |t |« |;
L(X,)Y) x L(W,X)— L(W,Y); (tu)~» tuis continuous
since, for all (,u), |tu| < ||| u|; and
R x L(X,Y)— L(X,Y); (4,2) > Atis continuous
since, for all (4,1), |t = |21 |¢].
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Finally, if X is a positive-definite real orthogonal space and if | |
denotes the induced norm, then
X x X—R; (xx") w»>x-x’is continuous
since, for all (x,x’), |x-&" | < | & || &" | ]

Prop. 15.41. Let X X Y — Z; (x,y) »»>x-y be a bilinear map,
X, Y and Z being finite-dimensional normed linear spaces. Then the
map is continuous.

Proof Forall (x,y)eX X Y,

eyl =[E)DI<I@E)yI<Klx[|yl
for some real K, since (x*): Y — Z and X — L(Y,Z); x - (x*) are
linear maps between finite-dimensional normed linear spaces, and are
therefore continuous. O

Analogous results hold for multilinear maps.
Prop. 15.42. Let f: X X;—> Z be an n-linear map, the spaces X,
ien
for all i € n, and Z being normed linear spaces. Then f is continuous if,
and only if, there exists a real number K > 0 such that, for all
(ei:ien)e X X,
ien
|f(xiien) | < KT || 0

1En

Prop. 15.43. Let f: .X X;—> Z be an n-linear map, the spaces X,

for all i € n, and Z being finite-dimensional normed linear spaces. Then
f is continuous. O

Prop. 15.44. Let X2 — Z; (x,&") ~» x-x" be a continuous bilinear
map, X and Z being normed linear spaces. Then the map X — Z;
X > X+ x IS continuous. O

Prop. 15.45. Let K = R or the real algebra of complex numbers C.
Then any polynomial map K — K; & w» ¥ a? is continuous. (Since

tew

the map is a polynomial map, a; = 0 for all sufficiently largei e w.) O

Inversion

We have already remarked that the inverse of a bijective continuous
linear map is not necessarily continuous. It can, however, be proved
that if X and Y are complete then the inverse of a bijective continuous
linear map £: X — Y is also continuous. (See any of the references
given on page 288.) The set of bijective continuous linearmaps¢: X — Y
with continuous inverse will be denoted by GL(X,Y).
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The next three propositions are concerned with the continuity of the
inversion map L(X,Y) »» L(Y,X); t w» ¢! with domain GL(X,Y).
The spaces X and Y may on a first reading be taken to be normed real
linear spaces. However, the propositions and their proofs all remain
valid if the real field is replaced either by the real algebra of complex
numbers C or by the real algebra of quaternions H, with L(X,Y) and
GL(X,Y) denoting respectively the spaces of complex or quaternionic
linear or invertible linear maps of X to Y. (In every case the linear
spaces X and Y are normed as real linear spaces.)

Prop. 15.46. Let X be a complete normed linear space, let
u € L(X,X) and suppose that | # | < 1. Then 1x — u € GL(X,X) with
(lx — ) =S utand | (Ix — )| < (1 — [u])~
keo

Proof Since |u | < 1 the sequence n »w» ¥ | u |¥ on R is convergent
ken

and therefore Cauchy.
Now, forallp,gew withp =g +r >
lZu" Euk|—|2u4+’°|<Z]ul‘”"(byCor 15.35)
and 2‘, ]u |2+ = Z |u e — Z | |%. So the sequence 7 ww» 2 #* on

en

L(X, X ) is Cauchy and therefore convergent by Prop. 15.38.

Also, for any n e w, (1 — u)(Z‘, w)=1—u;so(l — u)(Z u) =1,
if | u | < 1. Similarly, (Z u’”)(l —u)=1if|u} <1 Thati 1s, (1 —u)~?
exists for |u ] < 1 and (1 —u)~1l = 2, u* € L(X,X).

Finally, since | E uk | < Z | u |* for all 7 ew,

I(l—u)ll<§3lul" I—=l«D)* O

Prop. 15.47. When X is a complete normed linear space, inversion
1 L(X,X) > L(X,X); tw»t-1
is defined on a neighbourhood of 1 (=1x) and is continuous at 1.

Proof Yet teL(X,X) and let u=1—¢. Then, if |u]| <],
t=1—ueGL(X,X), by Prop. 15.46. That is, y is defined on a
neighbourhood of 1.

Lete>0.1Iflu] <1,

20 —2() = (1 =)~ = (1 =)l — )= = u(l - )"
and, if | u | < 3, by the estimate of Prop. 15.46,

2@ =2 | <[u]|A =) | <|u|( —|u]) <2]ul.
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So
|t —1]=]u| <inf {§3e} = [x(1) —x(D)[<e
That is, ¥ is continuous at 1. O

Prop. 15.48. Let X and Y be complete normed linear spaces. Then
the map v : L(X,Y) >»> L(Y,X);t -w-t-1is continuous and GL(X,Y),
the domain of y, is open in L(X,Y).

Proof For any t and u € GL(X,Y), (u~1#)-*u—? = t. Therefore,
for any u € GL(X,Y), the map y is the composite of the maps
L(X,)Y)—> L(X,X); tw>ult,
which by the inequality | u=1¢#| < | #~1| | #| is continuous linear, since
u-1 is continuous, and which sends u to 1x;
2 L(X,X) > LX,X); twst-l,
which is defined in a neighbourhood of 1x and is continuous at 1; and
L(X,X)— L(Y,X); t~wtu?},
which also is continuous linear. In diagram form y decomposes as
follows:
L(X,Y)— L(X,X) ¥ L(X,X) — L(Y,X)
t v utlt we t7ly w1
u w1 w1 s u?

It follows that, for each u € GL(X,Y'), the map y is defined on a neigh-
bourhood of # and is continuous at #. So the domain of y is open in
L(X,Y), and y is continuous. O

In particular, by taking X = Y = K, where K =R, C or H, and
by identifying L(K,K) with K, it follows that the map K — K; x w» x—1
is continuous, though this can of course easily be proved directly.

The statement that GL(X,Y') is open in L(X, Y ) means, in elementary
terms, and in the particular case where X = Y = K#, that if we have
a set of n linear equations in # variables with a unique solution, and
we vary the coefficients, then, provided that we do not alter the co-
efficients too much, the new set of equations also will have a unique
solution.

In the last proposition of the chapter the use of the notation GL(X,Y)
is extended in the case where X and Y are finite-dimensional, just as
in Chapter 6. Here again, K may be R, C or H.

Prop. 15.49. Let X and Y be finite-dimensional K-linear spaces,
and let GL(X,Y) denote the set of linear maps ¢: X — Y such that
tk ¢ = inf {dim X,dim Y'}. Then GL(X,Y) is an open subset of
Lx,y). 0O



308 NORMED LINEAR SPACES

FURTHER EXERCISES
15.50. Let X be a normed linear space and let 4, b € X. Prove that, if

la—b|<%i|al,then|a—b|<|bland |a|<2]|8] 0
15.51. Let X be areal linear space,| |and || || norms on X, and
r and s real numbers such that, forallx e X, |x| =7 = ||x]|]| >
Provethat | |x || =5 = [x| <

Illustrate this by choosing | | and || || to be two of the familiar
norms on R2 0

15.52. Lett: X — Y be a linear map between normed linear spaces
X and Y such that, for every & > 0, there exists 6 > 0 such that, for
all x € X,

2| <o = [Hx) ]| <e|x]
Prove that, for each x € X and for all e >0, | #x) | < ¢|x|. Hence
prove that £ = 0. 0

15.53. Let t: R? — R?; (¥,y) w» (#,9) be the linear map defined by
the equations # = ax + ¢y, v = bx + dy, a, b, c and d being real, and
let the domain of ¢ be assigned the norm (x,y) w» | ® | 4 | ¥ | and the
target of £ the norm (u,v) w»>sup {|u |, | v |}. Show that ¢ is continuous
with respect to these norms and that | ¢ | =sup {|a|,|b],|c],|d|}

(Don’t forget to show that the stated norm is the smallest K for the
map £.) O

15.54. Why is it wrong, in the proof of Prop. 15.46, to deduce directly
from the fact that, for any u € L(X,X) such that |u | < 1,

lim (1 —%) Z ok = lim (T #*)(1 —u) =1

n—>0 ken n—w ken
the conclusion that 1 —u e GL(X,X)? Why was it necessary to
establish first that lim ¥ u* € L(X,X)? O

n-»o0 ken

15.55. Let X, Y and Z be normed linear spaces, and let X x Y — Z;
(%,y) ~»> u(x) + v(y) be a continuous linear map such thatv: ¥V — 7
is a linear homeomorphism. Prove that the map

XX Y—>XXZ; (%y)w(x,ux)+ o(y))
is a linear homeomorphism. O

15.56. Let X be a complete normed linear space and let f: X — X be
a map such that, for all », x" € X, | h(x) — A(x") | < } | x — &’ |, where
h = f — 1x. Prove that f is bijective.

(Note that, forall x, ye X, f(x) =y < 3y — h(x) = x.) O

15.57. Let X be a normed linear space and let u, v € L(X,X). Prove
that 4o — vu cannot be equal to 1x.
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(Prove that, if uv — vu = 1, then uv"+! — v*+ly=(n 4 1)o", for
all n > 1. Use this to show that | v" | = 0, for n sufficiently large. Hence
show that © = 0, a contradiction. For the history of this exercise and
its relation to the Heisenberg uncertainty principle, see [22].) O

15.58. Let Y be a normed real linear space. Prove that, for any # € o,
the map

LR"Y)— Y*;, tww(t(e;):i€n)
is a linear homeomorphism. O

15.59. Let W, X and Y be normed real linear spaces, X being finite-
dimensional, and consider a map

[ W — L(X)Y).
Prove that f is continuous if, and only if, for each x € X, the map
[: W > Y; ww f(w)(x) is continuous. (Use Exercise 15.58.) O

15.60. Let the linear space of polynomials R[x] have the norm assigned
to it in Prop. 15.19. Prove that the map

u: R[x] — R[x]; Zax"wz
[ ] [ ]’ “~ ' n + 1
is linear and continuous, with gradient norm [ u | = 1, that u is bijective,
but that #—1 is not continuous, 0

15.61. (Polya’s Peano curve. Cf. page 384.)
For any right-angled triangle abc¢ in R?, with right angle at 5, let
p(abc) denote the base of the perpendicular from b to [a,c].

b

a c
P

Suppose that agbyc, is such a triangle and let s € 2°. Then we may
construct recursively a sequence of right-angled triangles 7 vw»> a,b,c,
and a sequence of points 7 «w» p,, by defining, for all k € n, p,, = p(aidicy)
and

Aty = {bk ifs, =1 bty =pry Crr1 = {L‘k ifs, =1°

Prove that the sequence n w» p,, is convergent.
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Hence, representing each number of the interval by its binary ex-
pansion or expansions (cf. Exercise 2.61), construct a surjective con-
tinuous map of the closed interval [0,1] to the convex hull of the triangle
aghoco, sending 0 to ay, £ to by and 1 to ¢, O

15.62. Construct a continuous surjection [0,1] — [0,1]%. Hence, con-
struct a continuous surjection [0,1] — [0,1]7, for any 7 € w. (Cf. Exer-
cise 1.69.) O

15.63. Let BL(X, x X,,Y) denote the linear space of continuous
bilinear maps X, X X; — Y, where X;, X; and Y are normed linear
spaces and, for each t € BL(X, X X,,Y), let

| 2] = sup {#(xer) : | (xo%r) | < 1}
Prove that the map
BL(X, X X1,Y)—R; tw»>|t]
is a norm on BL(X, X X,,Y), that, for all (x,%;) € X, X X,
| toier) | < 12|20 ] %],

that || =inf {KeR: for all (xy,%;) €X, X Xj, | t(x0,%1) | < K| x,] | 21}
and that the map

L(X,L(X,,Y)) — BL(X, X X,Y); twt
defined, for all (x,,x;) € Xy X X, by the formula
t'(%0,%1) = Hxo)(%1),
is a normed linear space isomorphism. O



CHAPTER 16

TOPOLOGICAL SPACES

In Chapter 15 the concept of continuity has been defined for maps
between normed linear spaces. The purpose of this chapter is to deepen
and widen the discussion of continuity, by showing that the case so far
considered is a particular case of a much more general concept, that of
continuity for maps between topological spaces. The initial definitions
of a topology and of a topological space are strongly motivated by the
properties of the set of open sets of a normed linear space, as listed, for
example, in Props. 15.7 and 15.9.

The most important new concepts introduced in the chapter are
compactness and connectedness.

This chapter contains all the topology necessary for the reading of
Chapters 18 and 19, with the exception of one detail of the proof of
Theorem 19.20, where the reference is to Chapter 17.

Topologies

Cohesion may be given to a set X by singling out a subset I of
Sub X such that
i) 9 XeT;
(ii) forall 4, B e 7, A N B € 7, that is, the intersection of any two
and therefore of any non-null finite set of elements of 7~ belongs
0 J;
(iii) for all ¥ <« 7, U &L €7, that is, the union of any set of
elements of 7~ belongs to 7.

The set 7 is said to be a topology for X, and the elements of J are
called the open sets of the topology.

Proposition 15.7 states that for any normed affine space X the set of
subsets of X open with respect to the norm is a topology for X. In par-
ticular, the absolute value on R induces a topology for R which we shall
refer to as the standard topology for R.

A set X may have many topologies. Examples include the trivial topo-
logy {0,X}, the cofinite topology {4 < X; A =0 or X\A finite}

311
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and the discrete topology, Sub X itself. A reason for using the word
‘discrete’ in this context willl be given later, on page 329.

Prop. 16.1. The sets 0 = {#} and 1 = {0} each have a unique
topology, the set 2 = {0,1} has four topologies, and the set 3 = {0,1,2}
has twenty-nine topologies. O

A topological space (X, ) consists of a set X and a topology 7 for X.
When there is no danger of confusion it is usual to abbreviate (X,7)
to X and to speak, simply, of the topological space X. In the same spirit
the open sets of 7 are then referred to as the open sets of X.

An open neighbourhood of a point x of a topological space X is, by
definition, an open subset A of X such that x € 4. A neighbourhood of x
is a subset of X with an open neighbourhood of x as a subset. An open
set is a neighbourhood of each of its points.

Unless there is an explicit statement to the contrary, a normed affine
or linear space will tacitly be assigned the topology induced by its norm.
A finite-dimensional affine or linear space will be assigned the topology
induced by any of its norms, this being independent of the choice of
norm, by Theorem 15.26, while a finite set will normally be assigned
the discrete topology. Each of these topologies will be referred to as the
standard topology for the set in question. A further standard example is
provided by the next proposition.

Prop. 16.2. Let @ = 0 U {0},  being as usual the set of natural
numbers, and let a subset A of @ be defined to be open if either 4 < w
or @ \ A4 is finite. Then the set of open sets of @ is a topology for @. [

This topology will be called the standard topology for é&.

It is most important to note the distinction between axioms (ii) and
(iii) for a topology. To prove (iii) in a particular case it is not enough to
consider pairs of open sets and their unions and then to argue by induc-
tion, for this would yield only a statement about finite sets of open sets,
whereas the axiom makes a statement about every set of open sets. A
set of open sets may well be infinite and possibly not even countable,
For a finite topological space X the distinction disappears. In this case
it is, for example, true that the intersection of the set of open neigh-
bourhoods of a point x € X is itself an open neighbourhood of x. The
corresponding statement for an arbitrary topological space is false. For
example, the intersection of all the open neighbourhoods of 0 in R is
the set {0}, which is not open in R.
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Continuity

Let (X,77) and (Y, %) be topological spaces. By analogy with the case
where X and Y are normed affine spaces a map f: (X, ) — (Y, %) is
said to be continuous if, and only if, (f*) (%) < 7, that is, if, and only
if, for each open subset B of Y, f(B) is open in X. (For the notations,
see page 11.)

The proofs of the following elementary propositions are left as
exercises.

Prop. 16.3. Let X and Y be topological spaces and let f: X — ¥
be constant. Then f is continuous. |

Prop. 16.4. Let X be atopological space. Thenthemaply: X — X
is continuous. O

Prop. 16.5. Let I¥, X and Y be topological spaces and letg: W —X
and f: X — Y be continuous. Then fg: W —> Y is continuous. O

The inverse of a bijective continuous map need not be continuous.
For example, let X be any set with more than one element. Then the
map

Ix: (X,Sub X) — (X,{0,X})
is continuous, but its inverse is not continuous.

A bijective continuous map whose inverse is also continuous is said
to be a homeomorphism. (The word ‘homeomorphism’ is essentially
synonymous with ‘isomorphism’, the prefixes being the Greek adjectives
‘homoios’ = ‘like’ and ‘isos’ = ‘equal’, respectively.)

Two topological spaces X and Y are said to be homeomorphic, X ~ Y,
and either is said to be a homeomorphic or topological model of the other,
if there exists a homeomorphism f: X — Y. The relation =~ is an
equivalence on any set of topological spaces.

Exercise 16.6. Put the four topologies on {0,1} and the twenty-
nine topologies on {0,1,2} into homeomorphism classes. [J

Subspaces and quotient spaces

Let X be a topological space and let g: W— X and f: X —Y be
maps. The next proposition states that if a subset of W is defined to
be open in W if it is of the form g%(4), where 4 is open in X, and if
asubset C of Y is defined to be open in Y if f1(C) is open in X, then
the sets of open sets so defined for Wand Y are topologies for Wand Y.

Prop. 16.7. Let g: W— X and f: X — Y be maps and let 7 be
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a topology for X. Then (g1),(7) is a topology for W and (f)(7)isa
topology for Y.

Proof To prove that (g%),(7) is a topology for W it is enough to
remark that
(i) 9 = g'(0) and W = £'(X),
(ii) for all 4, B € Sub X, g'(4) N g(B) = g'(4 n B),
and (iii) for all ¥ < Sub X, U (g')(¥) =g'(U ¥),
while to prove that (f")}(7") is a topology for Y it is enough to remark
that
(@) @) = 9 and fY = X,
(ii) for all C, D € Sub Y, f1(C n D) = f(C) n fY(D),
and (iii) for all < Sub Y, fY(U %) = U (f)«(%).
(Here, and elsewhere, the axiom of choice will be used without com-
ment.) O

The topologies defined in this way are said to be induced from the
topology 7~ on X by the maps g and f respectively. The induced topo-
logy on W is the smallest topology for W such that g is continuous,
while the induced topology on Y is the largest topology for Y such that
f is continuous.

When g is an inclusion, the topology (g%),() is said to be the sub-
space topology on W relative to (X,7), and (W,(g").(7)) is said to be a
(topological) subspace of (X,7). A subset C of W is open with respect
to the subspace topology for W if, and only if, there is some open subset
A of X such that C= A4 n W. Any subset of a topological space is
tacitly assigned the subspace topology unless there is explicit mention
to the contrary.

When f is a partition, the topology (f)(") is said to be the quotient
(or identification) topology on Y relative to (X,7) and (Y,(f)Y(7)) is
said to be a (topological) quotient space of (X,7°). A subset B of Y is
open with respect to the quotient topology for Y if, and only if, f(B)
is open in X. Any quotient of a topological space is tacitly assigned the
quotient topology unless there is explicit mention to the contrary.

As an example of the subspace topology consider X = R with its
usual topology and let W = [4,b], where a, b € R; thatis, Wis a bounded
closed interval of R. Any open set of X is the union of a set of open
intervals of X. Any open set of W is therefore the union of a set of
intervals, each of which is of one of the three types:

[ac[, 1de[, or 114},
where ¢, d, e and f € ]a,b[ and where d < e. This example shows that a
set which is open in a subspace ¥ of a topological space X need not be
open in X.
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Prop. 16.8. Let I be an open subspace of a topological space X.
Then a subset B of Wis open in W if, and only if, B is open in X. O

Prop. 16.9. Let f: X — Y be a continuous map and let W be a
subspace of X. Then the map f|W: W— Y is continuous. O

These induced topologies have particular relevance to the canonical
decomposition

!
X——Y
finj

fnlf flur‘flnc
coim f L2 Nm f

of a continuous map f: X —Y, im f being assigned the subspace
topology and coim f the quotient topology.

Prop. 16.10. Let f: X — Y be a continuous map, X and Y being
topological spaces. Then f,,, fin; and fi;; are continuous.  []

The map f; need not be a homeomorphism. It is at first sight tempt-
ing to single out for special study those continuous maps f for which
Joy is 2 homeomorphism. However, the composite of two such maps
need not have this property. Consider, for example, the inclusion map

g:[02[ —-R
and the map
[:R—>C; xw»>e™,
with image S, the unit circle. Clearly, gy,;; is a homeomorphism, and it
is easily verified that f,;; also is a homeomorphism. However, fz, though
bijective, is not a homeomorphism, for [0,1[ is open in [0,2], but
(f2).([0,1]) is not open in S1,

Later, in Cor. 16.44, we state sufficient, though not necessary, con-
ditions for the map f;;, induced by a continuous map f, to be a
homeomorphism.

A continuous injection f: X — Y such that f;, or equivalently f,,,
is a homeomorphism is said to be a (topological) embedding of X in Y.

Prop. 16.11. Let s: Y — X be a continuous section of a con-
tinuous surjection f: X — Y. Then s is a topological embedding. O

A continuous surjection f: X — Y such that fi;;, or equivalently
fip is @ homeomorphism is said to be a (Zopological) projection of X
onto Y.

Prop. 16.12. Let W, Xand Y be topological spaces and letg: W— X
and f: X — Y be maps, whose composite fg: W—> Y is continuous.
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Then, if fis an embedding, g is continuous and, if g is a projection,
f is continuous.

Proof Suppose that f is an embedding and let 4 be any open set
in X. Then, since f is an embedding, A = f(B) for some open subset
B of Y. It follows that g'(4) = g'f(B) = (fg)'(B), which is open in
W since fg is continuous. Therefore g is continuous.

The other part of the proposition is similarly proved. O

For the relationship between topological projections and product
projections, see Cor. 16.53.

Closed sets

A subset B of a topological space X is said to be closed in X if its
complement X\ B is open. A point x € X is said to be closed if the
subset {x} is closed in X.

Prop. 16.13. A map f: X — Y between topological spaces X and Y
is continuous if, and only if, for each closed subset B of Y, f(B)is
closed in X. O

Examples 16.14. Any closed interval of R (with 1ts standard topo-
logy) is closed.

Any finite subset of R is closed. In particular, any point of R is
closed.

The set f1{0} of zeros of a continuous map f: X — R is closed in X.

Prop. 16.15. Let X be a topological space. Then @ and X are closed
in X, the union of any finite set of closed sets is closed, and the inter-
section of any non-null set of closed sets is closed. O

Note that a subset of a topological space X may be both open and
closed or neither open nor closed.

A point x of a topological space X is said to be in the closure ClxA of
a subset 4 of X if every open neighbourhood of x in X intersects 4.

Prop. 16.16. 'The closure ClyA of a subset 4 of a topological space
X is closed in X, and if B is any closed subset of X with 4 < B,
then Cly4 < B.If V is an open subset of X such that 4 N V is closed
inV,thenAnNnV =ClxANnV. ]

Prop. 16.17. A map f: X — Y is continuous if, and only if, for
each subset 4 of X, f,(ClxA4) = Cly(f.(4)), X and Y being topological
spaces. O

A subset 4 of a topological space X is said to be locally closed in X
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if, for every a € A, there is an open neighbourhood ¥V of a such that
A N Vis closed in V. For example, the set {(#,0) eR2: —1 <« <1}
is locally closed in R2.

Prop. 16.18. Any locally closed subset of a topological space X is of
the form B N C, where B is open in X and C is closed in X, and any
subset of this form is locally closed. ad

Limits

Let g: W>> X be a continuous map with domain a subset of the
topological space W and let @ € W\ domg. Then, by definition, the
map g has a limit b at a if the map f: W>—»> X defined by f(w) = g(w)

for all w € dom g and by f(a) = b is continuous. If the limit is unique,

then we write lim g = & or lim g(w) = b.
w—ra

a
It is left to the reader to verify that this definition of limit agrees with
the earlier definition in the case that W =&, a4 = wand X is a
normed affine space, g being a sequence on X.
The uniqueness of the limit is discussed further in Prop. 16.36 below.

Covers

An open cover or cover for a topological space (X,7") is, by definition,
a subset &% of  such that J& = X,

Prop. 16.19. Let B be a subset of a topological space X and let
& be a cover for X. Then B is open in X if, and only if, for each
Ae &, Bn Aisopenin A.

Proof = : by the definition of the induced topology;
<= : by axiom (iii) for a topology, since
B=BnX=Bn(U¥)=U{BnA4:4¢c %},
B n A4 being open in X as well as in 4, for any A € &, by Prop.
16.8. O

Cor. 16.20. Let f: X — Y be a map between topological spaces
X and Y and let & be a cover for X. Then f is continuous if, and only
if, for each 4 € &, f| A is continuous. O

Cor. 16.21. Two topologies on a set X are the same if, and only if,
the induced topologies on each of the elements of some cover for X are
the same. O

It follows that in studying a topological space X nothing is lost by
choosing a cover for X and studying separately each element of the



318 TOPOLOGICAL SPACES

cover. This perhaps gives some insight into the way in which a topology
gives cohesion to a set. Note, in particular, the role of axiom (iii).

Prop. 16.22. Let f: X — Y be a continuous injection and let & be
a cover for Y. Then f is an embedding if, and only if, for each Be %

the map
fIf'B:f(B)—~Y
is an embedding. O

Prop. 16.23. Let f: X— Y be a continuous sutjection and let #
be a cover for Y. Then f is a projection if, and only if, for each B € &

the map
o (f | /(B £1(B)— B
1s a projection. O
Let W be a subspace of a topological space X. A set & of open sets
of X such that W < |J& will be called an X-cover for W. The set
{ANW:A4e &} is then a cover for W, called the induced cover.
For example, the set {]—1,1[,]0,2[} is an R-cover for the closed
interval [0,1]. The induced cover is the set {[0,1],]0,1]}.
It follows from the definition of the induced topology that every
cover for W is induced by some X-cover for I (generally not unique).

Prop.16.24. Let W be a subspace of a topological space X, let & be
an X-cover for W and let & be the induced cover for . Then there
is a finite subset &’ of #Z covering W if, and only if, there is a finite
subset &’ of & covering W. O

Theorem 16.25. (Heine-Borel.)

Let & be an R-cover of a bounded closed interval [¢,b)] < R. Then
a finite subset &’ of & covers [a,b].

Proof Let A be the set of points x € [a,b] such that a finite subset
of & covers [a,x]. It has to be proved that b € 4.

Since a € 4, A is non-null. Also, 4 is bounded above by 4. So, by
the upper bound axiom, s = sup 4 exists.

Now s € 4. For there exists an open set U € & such that s € U, and
therefore, since U is the union of a set of open intervals of R and since
s = sup A4, there exists r <s such that r € 4 and [r,s] = U. Let Z be
a finite subset of & covering [a,r]. Then £ U {U}, also finite, covers
[a,s]. That is, s € 4.

Also, s = b. For suppose s < b. Then there exists 7, s < t <, such
that [s,£] = U. So £ U {U } covers [a,f], contradicting the definition of
s. That is, s = b.

Therefore b € A. O
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Cor. 16.26. Let & be any cover for [a,b]. Then there exists a finite
subset &' of & covering [a,D]. O

Compact spaces

A topological space X is said to be compact if for each cover & for X
a finite subset &’ of & covers X. For example, any finite topological
space is compact (the topology need not be discrete). The Heine-
Borel theorem states that every bounded closed interval of R is com-
pact. By contrast, the interval ]0,1] is not compact, since no finite subset
of the cover {](n + 1)~41]; n € w} covers ]0,1].

We shall eventually prove that a subset A of a finite-dimensional
normed affine space X is compact if, and only if, A4 is closed and bounded
in X. The Heine-Borel theorem is the first stage in the proof. Propo-
sitions 16.27 and 16.37 are further stages, and the final stage is Theorem
16.60.

We recall that a subset 4 of a normed affine space X is bounded if
there is a ball B in X such that 4 < B.

Prop. 16.27. A compact subspace 4 of a normed affine space X is
bounded.

Proof Consider the set & of all balls of radius 1 with centre a point
of A. Since A is compact, a finite subset &’ of & covers 4. It follows
easily that A4 is bounded. 0

Prop. 16.28. A closed subset A of a compact space X is compact.

Proof Let & be an X-cover for 4. Since 4 is closed, X \ 4 is open
in X. So & U {X\ 4} covers X. Since X is compact, a finite subset
S U{X\ 4}of & U {X\ A} covers X, where X \ 4 ¢ &', Discard-
ing X\ A again, we find that &’ covers 4; that is, a finite subset of &%
covers 4. So A4 is compact. O

The next proposition relates compactness to continuity.

Prop. 16.29. Letf: X — Y be a continuous surjection and let X be
compact. Then Y is compact.

Proof Let # be any cover for Y. Then & = (f1) (%) is a cover
for X and, since X is compact, there is a finite subset &/’ of &7 covering
X. Since f is surjective, f,(f1(B)) = B for any B < Y, in particular for
any B € #. It follows that (f,),(«/') is a finite cover for Y contained
in 4. So Y is compact. O
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Cor. 16.30. Let f: X — Y be a continuous map and let 4 be any
compact subset of X. Then f,(4) is a compact subset of Y. a

Cor, 16.31. Let X be a compact space and let f: X— Y be a
partition of X. Then the quotient Y is compact. |

Hausdorff spaces

A topological space X is said to be a Hausdorff space if, given any
distinct points a, b € X, there exist mutually disjoint open neighbour-

A B

X

hoods A4 and B of a and b respectively in X. (The figure is due originally,
we believe, to Professor M. F. Atiyah!)

The proofs of the following elementary propositions are left as
exercises.

Prop. 16.32. Any normed affine space is a Hausdorff space. O

Prop. 16.33. The only Hausdorff topology for a finite set is the
discrete topology. O

Prop. 16.34. Any subspace of a Hausdorff space is a Hausdorft
space. ]

By contrast, a quotient of a Hausdorfl space need not be a Hausdorff
space.

Consider, for example, the partition #: X — Y of the subspace
X = {~1,1} x ]—1,1[ of R? which identifies (--1,x) with (1,x), for
all x e]—1,0[.

(=1 (L0 {t-11)) i

{-1,0) ] 11,00 ————a {100 {0,0%

1k La-n {-1-0,01,-n}
Y
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(The diagram is necessarily inadequate, since any subset of R? is
Hausdorff.)

The points {{—1,0)} and {(1,0)} of the quotient Y are then distinct
but, since any open neighbourhood of 0 in]—1,1[ contains as a subset an
open interval ]—4,0[ where 0 < é < 1, any open neighbourhoods of
{(—1,0)} and {(1,0)} in Y intersect. That is, Y is not a Hausdorff
space.

The space Y will be referred to in the sequel as the Y space.

Prop. 16.35. Letg and 2: W — X be continuous maps, X being a
Hausdorff space and let
M = {weW:g(w) = h(w)}.
Then M is closed in W. |

Prop. 16.36. Let g: W >> X be a continuous map with domain
a proper subset of the topological space W, X being a Hausdorff space,
and let a be an element of the closure of dom g in W not belonging to .
Then if g has a limit b at q, b is unique. O

(This is in practice one of the most important features of a Hausdorff
space.)

Prop. 16.37. Let W be a non-null compact subspace of a Hausdorff
space X. Then W is closed in X.

(If W = 9 the proposition is trivially true.)

Proof Let J be the topology on X and let x€ X\ W. Let
¢={A4B)ecT:xeA,AnB=0}andlet & = {B €I : for some
AeT,(A,B)e¥%}.

8

X

Since X is Hausdorff, # covers W. The set W is compact and so
a finite subset {B;: i en} of # covers W, with n =0 since W is non-
null.

For each ¢ € n, choose 4; € 7 such that (4;,B;) € €. Since n 7= 0 we
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may form U = [ 4,, this being an open neighbourhood of x in X,

since n is finite. Also since, for eachien, UNB; =0, UN W = §;
thatis, U <« X\ W.
It follows that X \ W is open in X; that is, Wis closed in X. O

Cor. 16.38. A compact subset ¥ of a normed affine space X is
closed. O

Putting together Cor. 16.26, Props. 16.27, 16.28 and Cor. 16.38, we
obtain the following characterization of compact subsets of R.

Prop. 16.39. A subset 4 of R is compact if, and only if, it is closed
and bounded.

Proof = : Let A be compact. Then, by Prop. 16.27, 4 is bounded
and, by Cor. 16.38, 4 is closed.

< : Let 4 be closed and bounded. Since 4 is bounded, there exists
a bounded closed interval [a,b] such that 4 < [4,b]. By Cor. 16.26,
[a,b] is compact. Also, 4 is closed in [a,b], since [a,b] is closed in R.
So, by Prop. 16.28, 4 is compact. O

Cor. 16.40. Let f: X — R be a continuous map, and let 4 be a
compact subspace of X. Then f,(A4) is closed and bounded in R. 0

In particular, let f: R>>R be a continuous map with domain a
closed bounded interval [a,b]. Then f is bounded and ‘attains its
bounds’.

Open, closed and compact maps

Let f: X — Y be a continuous map. Then f* sends open sets in ¥
to open sets in X and closed sets in Y to closed sets in X, while f,
sends compact sets in X to compact sets in Y. The map f is said to be

open if f, sends open sets in X to open sets in Y
closed if f, sends closed sets in X to closed sets in ¥
and compact if f! sends compact sets in Y to compact sets in X.

The map p: R2— R; (x,y) »w> x is open, since any open subset of
R2 is the union of open squares, and the image by p of an open square
is an open interval of R. On the other hand p is not closed, since the set
{(x,y) e R2: xy = 1} is closed in R?, it being the fibre over 1 of the map
R2?— R; (x,y) »w> xy, but its image in R by p isR\ {0}, which is not
closed in R. (By Cor. 16.30 and Theorem 16.60 below, any closed subset
of R2? with an image which is not closed must necessarily be unbounded.)
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The restriction of p to the subset (R X {0}) U ({0} x R) of R? is
closed, but not open.

Prop. 16.41. Lets: Y — X be a continuous section of a continuous
surjection f: X — Y. Then s is open or closed if, and only if, im s is,
respectively, open or closed in X. il

Exercise 16.42. Let B = {(x,y) e R?: %% — y2 = —1 or 0}. Show
that p: B— R; (x,y)w> & has six continuous sections, all of which
are closed, but only two of which are open.

DN A
—

RZ

lp
; R
0 O
The following two propositions are frequently used in determining
whether or not a continuous map is an embedding or a projection.

Prop. 16.43. Let f: X — Y be a continuous map. Then, if f is
either open or closed, fi;; is a homeomorphism. O

Prop. 16.44. Let X be compact, ¥ Hausdorff and f: X — Y con-
tinuous. Then f is closed and compact.

Proof Let A be closed in X. Then 4 is compact, by Prop. 16.28,
fi(4) is compact, by Prop. 16.29, and f,(4) is closed, by Prop. 16.37.
That is, f is closed. (This implies, by Prop. 16.43, that f,; is a homeo-
morphism.)

The proof of the compactness of f is similar. O

Theorem 16.45. A closed continuous map f: X — Y is compact
if, and only if, each fibre of f is compact.

Proof = : ForeachyeY, {y} is compact.
<= 1 Let W be any compact subset of Y, let V' = f4(W) and
let &7 be any X-cover for V. It has to be proved that if each fibre of f
is compact a finite subset of &7 covers V.
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Let w € W. Then by hypothesis f*{w} is compact and is therefore
covered by a finite subset of &7, &', say. Let 4 = |J &' and let
B = Y\f(X\ A).

Since fis closed, B is open in Y and, since fi(B) < 4, the set f1(B)
is covered by «7'.

Now let # = {B € 7 : f}(B) covered by a finite subset of =/}, where
J is the topology on Y. By what we have just proved, # covers W.
But W is compact, and so a finite subset of & covers W. It follows at
once that a finite subset of &7 covers V. O

A closed compact map is called a proper map. For a full account of
proper maps see [7].

Product topology

The following proposition generalizes the construction of the sub-
space topology.

Prop. 16.46. Let W be a set, X and Y topological spaces and
p: W— X and ¢: W—> Y maps. Define a subset C of W to be open
in W if, and only if, C is the union of a set of subsets of W each of the
form p*A N ¢'B, where A4 is open in X and B is open in Y. Then

(i) the set of open subsets of W is a topology for W;
(ii) this topology is the smallest topology for W such that both p and ¢
are continuous. |
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The topology so defined is said to be the topology for W induced by
the maps p, ¢ from the topologies for X and Y.

When W = X X Y and (p,g) = 1y, the topology induced on W by
p and q is called the product topology for W.

Prop. 16.47. Let X and Y be topological spaces and let X X ¥
have the product topology. Then a subset of X X Y is open if, and
only if, it is the union of a set of subsets of X X Y each of the form
A x B where A4 is open in X and B is openin Y.

Proof This proposition is just a reformulation of the definition of
the product topology. For let (p,9) = 1x,y. Then

AXB=(AXxY)n(X X B)
=p'4 n ¢'B. O

For example, let R2 = R x R have the product topology. Then a
subset U of R? is open if, and only if, it is the union of a set of subsets
of R? each of the form A4 x B where 4 is open in R and B is open in R.
Now a subset of R is open if, and only if, it is the union of bounded
open intervals. It follows that A X B and therefore U is the union of
bounded open rectangles, of the form Ja,b[ X ]c,d[, where a, b, ¢, d € R.

From this last remark it follows that the product topology on R2?
coincides with the topology induced by the product norm (the standard
topology on R2). This is a special case of the following proposition.

Prop. 16.48. Let X and Y be normed affine spaces. Then the
product norm on X X Y induces the product topologyon X x Y. [0

The product X X Y of two topological spaces will tacitly be assigned
the product topology.

Prop. 16.49. A map (f,2): W— X x Y is continuous if, and only
if, each of its components f: W-— X and g: W-— Y is continuous,
W, X and Y being topological spaces.

Proof Let (p,q) = lxxy. Thenf = p(f.8), & = 9(f.8)-

= : Let (f,g) be continuous. Since p is continuous and since
f =2p(f.g), f is continuous. Similarly, g is continuous.

<= : Any open set of X X Y is the union of sets of the form
A X B = p(A4) N ¢q'(B), where A is open in X and B is open in Y.
Suppose f and g are continuous. Then

(f:8)'(4 x B) = (f.£)'p}(4) 0 (f.£)'7'(B)
— f(4) ng'(B

which is open in W. It follows that (f,g) is continuous. O



326 TOPOLOGICAL SPACES

Prop. 16.50. Let X and Y be topological spaces, let A be a subspace
of X and let B be a subspace of Y. Then 4 x Bisasubspace of X x Y.

Proof What has to be proved is that the product topology on 4 x B
coincides with the topology on A X B induced by the inclusion
A X B— X x Y. Now, for any subset C = X and any subset D < Y,

AXBNCXxD)y=@AnNC)x(BnND).
The further details are left as an exercise. 1

Cor. 16.51. Let X and Y be topological spaces and let y € Y. Then
the injection X — X X Y; x .« (,y) is an embedding. O

Prop. 16.52. Let X and Y be topological'spaces. Then the product
projection p: X X Y -— X; (x,y) »w»> x is an open map.

Proof Let A be any open subset of the topological space X x Y.
Then A= {AN(Xx{y}): yeY }. Since, forany y € Y, p | (X x {3})
is open, and since p.4 = UY{p(4 N (X x {y})):y € Y}, the result
follows. O

Cor.16.53. If Yisnon-null, the product projectionp: X X ¥V — X
is a topological projection. O

A continuous surjection f: X — Y is said to be trivial if there is a
topological space W and a homeomorphism 4: Y X W - X such that
themapfh: Y x W—> Yisthe product projectionof Y x Wonto Y.
A continuous map f: X — Y is then said to be locally trivial at a point
y € Y if there exists an open neighbourhood B of y in Y such that the

map
(fLF(B)sus: f1(B)— B
is trivial, and to be locally trivial if it is locally trivial at each y € Y.

Prop. 16.54. A locally trivial continuous surjection f: X — Y is a
topological projection. 0

Prop. 16.55. Let f: X —~Y be a continuous map of a Hausdorff
space X to a topological space Y such that each fibre is finite and, for
each x € X, there is an open neighbourhood 4 of x in X such that
(f | A)sur is a homeomorphism. Then f is locally trivial. 0

Prop. 16.56. Let X and Y be topological spaces, Y being compact.
Then the projection
P: XX Y—-X; (xy)wx
is closed.

Proof 1If Y is null the map trivially is closed. Now suppose ¥ = §.
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Let V be a closed subset of X x Y and let W = p (V). It has to be
proved that W is closed in X.

Let x € X\ Wand let ¥ = {4 x B: A an open neighbourhood of
x#in X, Bopenin Yand (4 X B)nV = §}.

Since p'{x} is a subset of the open set (X X Y)\ V, € covers
p'{x} and so, by the compactness of p'{x} (homeomorphic to Y), a
finite subset {A4; X B;:i en} of ¥ covers p?{x}. Since Y is non-null,
n # 0 and we may form U = [ 4,. This is an open neighbourhood of

ien
x in X, since » is finite,

Y

7 {x}
XxY
) I I
e ———— | {
E
E[.
e e e e [}
| |
K1 |
X,,,. 1 ” X
| i

Also, p(U)Y NV =0, so that UNn W =@. Thatis, U = X\ W.
It follows that X\ W is open in X and therefore that I is closed
in X. O

Theorem 16.57. Let X and Y be non-null compact topological
spaces. Then X x Y is compact.

Proof By Prop. 16.56 the projection p: X X ¥ — X; (x,y) w» x is
closed, and therefore compact, by Theorem 16.45. But X x Y = pi(X)
and X is compact. Therefore X X Y is compact. O

Cor. 16.58. Any finite product of compact topological spaces is
compact. O

For example, a closed product ball in R”, being the product of a finite
number of closed bounded intervals in R is compact.

(This last result can also be proved by constructing as in Exercise
15.62 a continuous ‘Peano curve’ of the interval [0,1] with image the
closed product ball in R". Since [0,1] is compact in R its image in R*
will be compact.)

Prop. 16.59. Any closed bounded subset of R is compact.
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Proof Any bounded subset of R* is a subset of some closed product
ball in R", and such a ball is compact, as has just been proved. More-
over, since the ball is closed, any subset of it that is closed in R” is
closed also in the ball. Since, by Prop. 16.28, any closed subset of a
compact space is compact, the proposition follows. O

Theorem 16.60. A subset of R is compact if, and only if, it is
closed and bounded.

Proof = : Prop. 16.27 and Cor. 16.38.
< : Prop. 16.59. O

The characterization of the compact sets of a finite-dimensional affine
space to which we alluded earlier on page 319 is an immediate corollary.

Prop. 16.61. Let X be a finite-dimensional normed linear space,
with norm || |]. Then the sphere {x € X:||x ]| = 1} is compact
with respect to the topology induced by the norm.

Proof 'The map x w> || x| | is continuous with respect to || ||,
implying that the sphere is closed, since {1} is closed in R. Also, the
sphere is bounded. Hence the result. 0

The notion of compactness provides an alternative proof of the equiva-
lence of norms on a finite-dimensional linear space X, Theorem 15.26,

We suppose, as in Theorem 15.26, that we have two norms on X,
denoted respectively by | | and |} |}, the norm || || being the
product norm induced by some basic framing (e;: 7 € n) for X. Then,
as before, it follows at once that, for all xe X, |x|<L||x]|],
where L = nsup{]e; |: 7 € n}, and therefore that the map x «w> | x| is

continuous, with respect to || ||. To obtain a similar inequality with
the roles of | | and || || reversed, we remark first that the sphere
{xeX:||x]|| =1} is compact with respect to || ||, and the map

x ~w | ® |~1, with domain the sphere, is continuous, since inversion is
continuous. It follows, by Cor. 16.40, that there is a real number K
such that | # |-! < K for all x € X such that | | » | | = 1, and therefore
such that [ |x]]| < K|« |, for all x € X.

The existence of K and L implies, as before, that the two norms are
equivalent.

Prop. 16.62. Let X and Y be positive-definite finite-dimensional
orthogonal spaces. Then O(X,Y) is compact in L(X,Y).

Proof By Prop. 9.14, O(X,Y) = {te L(X,Y):¢* = 1} and the

map L(X,Y)— L(X,Y); t »> t*t is continuous. So O(X,Y) is closed
in L(X,Y).
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Also, since | ¢(x) | = |« |, for all x € X, | | denoting in either case
the quadratic norm, it follows that |#| = 1, for all € O(X,Y). So
O(X,Y) is bounded, and therefore compact, in L(X,Y). O

Exercise 16.63. Prove that SL(2;R) is not compact in R(2).
(Consider, for example, the map R(2) — R2; t-»1(0,1), that is

the map (a c) > <c>, and apply Cor. 16.30.) |
b d d

Connectedness

The simplest intuitive example of a disconnected set is the set
2 = {0,1}, the standard set with two elements. Of the four topologies
for 2 only the discrete topology is Hausdorff. Let 2 have this topology,
its standard topology.

A non-null topological space X is said to be disconnected if there is a
continuous surjection f: X — 2, and to be connected if every con-
tinuous map f: X —- 2 is constant.

Any non-null topological space is easily seen to be either connected
or disconnected, but not both. The null space is neither connected nor
disconnected. Any set with at least two members is connected with
respect to the trivial topology, disconnected with respect to the dis-
crete topology, a reason for using the term ‘discrete’ (cf. Exercise 16.94).

Prop. 16.64. A topological space X is disconnected if, and only if, it
is the union of two disjoint non-null open sets of X.

Proof = : Let X be disconnected. Then there exists a continuous
surjection f: X —- 2. Now the sets {0} and {1} are open in 2. Since f
is continuous, f1{0} and f{1} are open in X and since f is surjective
they are non-null. Also

0} nf {1} =9 and fHO} U1} =X
That is, X is the union of two disjoint non-null open sets.
< : Suppose A and B are non-null open sets of X such that
ANnB=¢ and AU B = X. Then the map f: X —2 defined by
f(x) =0 for all x € 4 and by f(x) = 1 for all x € B is surjective and is
continuous, for the inverse image of each of the four open sets of 2 is
open in X. That is, X is disconnected. O

Prop. 16.65. Any bounded closed interval [a,b] of R is connected.

Proof Suppose that f : [a,b] — 2 is continuous and let C be the set
{c € [a,b] : f,[a,c] = {f(a)}}. Since a € C and since b is an upper bound
for C, s = sup C exists.



330 TOPOLOGICAL SPACES

Now s € C. For since f is continuous there is an open neighbourhood
of s on which f is constant. In particular, f is constant on an open
interval around s. But since s = sup C there is a point of C in this
open interval. So f,[a,s] = f(a) and s € C.

Also, s = b; for otherwise, by the same remark, there is a point
x € s,b] such that f is constant also on [s,x], contradicting the definition
of s.

So f is constant. That is, [#,b] is connected. O

Theorem 16.66. A non-null subset C of R is connected if, and only
if, it is an interval, that is, if, and only if, it is convex.

Proof < : Suppose C is convex and let f: C — 2 be a continuous
map. Then, for any a, b € C, [a,b] = C and f| [a,b]: [a,b] — 2 is con-
tinuous. So f(a) = f(b); that is, f is constant. So C is connected.

= : Suppose C'is not convex. Then there exist a, b € C and ce R\C
such that a < ¢ < b. Let 4 = C Nn]—oo,c[ and let B = C N ]c,o0[.
Then 4 and B are open and non-null, AN B =0and 4 VB =C.
That is, C is disconnected. O

In particular, R itself is connected.

Prop.16.67. Letf: X — Y be a continuous surjection, and suppose
that X is connected. Then Y is connected.

Proof Since X is non-null, Y is non-null. Also, if Y is disconnected
there exists a continuous surjection g: ¥ —> 2 and hence a continuous
surjection gf : X — 2. So X is disconnected. Hence the result. O

Cor. 16.68. Let f: X —> Y be a continuous map and let 4 be a
connected subset of X. Then graph (f|4) is a connected subset of
X X Y and f,(4) is a connected subset of Y. O

Cor. 16.69. Let f: X — R be continuous, let X be connected and
let a, b € f(X). Then the interval [a,b] is a subset of f(X). (This is
sometimes called the intermediate-value theorem.) O

Prop. 16.70. Let X be a topological space such that for any @, b ¢ X
there exists a continuous map
f:[0,1] > X
such that f(0) = @ and f(1) = b. Then X is connected. O

Prop. 16.71. For any finite # > 0 the unit sphere S™ is a connected
subset of R+, |

Prop. 16.72. Let X and Y be non-null topological spaces. Then
X x Yis connected if, and only if, X is connected and Y is connected.
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Proof = : Let X x Y be connected and let (p,q) = lx,y. The
map p is continuous and is surjective since Y is non-null. Therefore X
is connected, by Prop. 16.67. Similarly, Y is connected.

<= : Let X be connected, let Y be connected, let f: X x Y — 2 be
continuous and let (x,y), (¥',¥") be any two points of X x Y. Since
X X {y} is homeomorphic to X, X x {y} is connected, and therefore
f(x,9) = f(«',y). Similarly {x'} X Y is connected, and f(x",y) = f(+',»").
So f(x,y) = f(x',y'). It follows that f is constant and that X X Y is
connected.

{x'}x)’
XxY
4y’ Ty’
1 (x5} ) i}
Y
1y x X 0

Proposition 16.72 may also be regarded as a particular case of the
following proposition, whose proof is reminiscent of the proof of
Prop. 5.15.

Prop. 16.73. Let f: X — Y be a topological projection of a topo-
logical space X on to a connected topological space Y, each of the
fibres of f being connected. Then X is connected.

Proof Let h: X —> 2 be a continuous map.

Since the fibres of f are connected, the restriction of % to any fibre is

constant. So there exists a map g: Y —> 2 defined, for all y € Y, by

the formula g(y) = h(x), for any x € f*{y}, such that 2 = gf. Since &

is continuous and since f is a projection, g is continuous, by Prop. 16.12,

and therefore constant, since Y is connected. So % is constant.
Therefore X is connected. O
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Prop. 16.74. Let A be a connected subset of a topological space X.
Then ClzA is connected. O

A component of a topological space X is defined to be a maximal
connected subset of X, that is, a connected subset 4 of X such that any
subset of X with A as a proper subset is disconnected.

Any component of a topological space X is closed in X, by Prop.
16.74. Surprisingly, a component need not be open. Consider for
example @ = w U {w} with its standard topology. The set {w} is a
component of @ but is not open in &.

A topological space for which each point is a component is said to be
totally disconnected. The above example shows that a totally discon-
nected space need not be discrete.

Finally, we prove a uniqueness proposition, which will find applica-
tion in Theorem 19.6.

Prop. 16.75. Let f: X — Y be a continuous surjection of a Haus-
dorff space X on to a connected space ¥,letg: Y — Xandh: Y —> X
be continuous sections of f, let g be an open map and let there be a
point ¥ € Y such that k(y) = g(y). Then h = g.

Proof Let B = {yeY:h(y)=g(y)} Since X is Hausdorff, B is
a closed subset of Y, by Prop. 16.35. Now, since g and 4 are sections of f,
h(y) = g(¥') only if y = y'. It follows from this that
B={yeY:h(y)=g(y') for somey € Y} = hig(Y).
Since g is an open map, g,(Y) is open in X and so, by the continuity
of k, B is open in Y. Finally, B is non-null. So B =Y, since Y is
connected. That is, 2 = g.

(For an example of a map with continuous open sections, see Exer-
cise 16.42.) 0

FURTHER EXERCISES

16.76. In which of the twenty-nine topological spaces, with under-
lying set the set 3, is each subset of the space either open or closed (or
both)? O

16.77. Let X be a topological space whose topology is the cofinite
topology for the underlying set. Prove that every permutation of X is a
homeomorphism. O

16.78. Sketch the subset {(x,x~): x € R+} of R2. Prove that the map
R+—> R; & ww»> x — x~1 is a homeomorphism. O
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X —

16.79. Prove that if x ¢ R+ then oy i €]—1,1] and that the map

R+—1-1,1[; xw: 1 is a homeomorphism. O

16.80. Prove that the map ]—1,1[ > R; ¥ w» is a homeo-

x
1 — «®
morphism.

(This map may be visualized in terms of the ‘stereographic’ projec-
tion from (0,1) € R? of the piece of parabola {(x,y) eR2:x e]—1,1],
y = x% on to the line R x {0}.) O

16.81. Let A and B be disjoint compact convex subsets of R2 Prove
that a line may be drawn between them. Is the corresponding statement
true if the word ‘compact’ is replaced by (a) ‘open’ or (b) ‘closed’? [J

16.82. Let f: X —> Y be a continuous map such that, for any space
Z and any continuous maps g,h: Y — Z, gf = hf = g = h. Prove
that f is surjective.

(Let Z be the quotient of Y obtained by identifying all the points of
im f, let g be the partition of Y and let % be an appropriate constant
map.) O

16.83. A subset 4 of a topological space X is said to be dense in X if
Cixyd = X.

Let f, g: X— Y be continuous maps that agree on some dense
subset A of the topological space X, the topological space Y being
Hausdorff. Prove that f = g. O

16.84. Let f: X —- Y be a continuous map such that, for any Haus-
dorff space Z and any continuousmaps g, h: Y — Z,gf = hf = g=h.
Show by an example that f need not be surjective. 0

16.85. Let X and Y be non-null topological spaces. Prove that X X Y
is Hausdorff if, and only if, X is Hausdorff and Y is Hausdorff. O

16.86. A map f: X — Y between topological spaces X and Y is said
to be locally a homeomorphism at a point a € X if there is a neighbour-
hood 4 of a in X such that B = f (A4) is a neighbourhood of f(a) in ¥
and such that the map (f|4)y: 4— B; x-w»> f(x) is a homeo-
morphism.

Suppose that b e Y is such that f!({6}) is finite and, for each
a € f1({b}), f is locally a homeomorphism at a. Prove that f is locally
trivial at b. O

(This will be required in the proof of Theorem 19.20.)
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16.87. Let X and Y be topological spaces. Prove that if X x Y is
compact, then both X and Y are compact, and that if either X or Y
is non-compact, then X X Y is non-compact. O

16.88. Show, by an example, that the intersection of two compact sets
need not be compact. [J

16.89. Let X be a topological space, 4 a compact subset of X and S a
locally finite cover for X, this meaning that each point x € X has an
open neighbourhood intersecting only a finite number of the elements
of S. Prove that A intersects only a finite number of elements of S. [0

16.90. Let Y be a Hausdorff topological space such that each point
of Y has a compact neighbourhood in Y, and let f: X —Y be a com-
pact continuous map. Prove that f is closed, and therefore proper.  [J

1691, Let f: X — Y be a map of a Hausdorff space X to a compact
topological space Y. Prove that f is continuous if, and only if, graph f
is closed in X X Y. (Use Prop. 16.56.) ]

16.92. Prove that an open continuous map f: X — Y is compact if,
and only if, each fibre of f is compact. (This provides an alternative
proof of Theorem 16.57.) O

16.93. Let X be a compact topological space. Prove that the number of
components of X is finite. O

16.94. Let X be a topological space. Then a map f : X — Y, where
Y is a set, is said to be locally constant if, for every x € X, there exists
a neighbourhood N of x such that f | N is constant. Prove that, for any
topology on Y, a locally constant map f: X — Y is continuous. Prove
also that the only topology for Y such that every continuous map X —Y
is locally constant is the discrete topology. O

16.95. Let X be a non-null topological space. Prove that X is con-
nected if, and only if, every locally constant map X — Y with domain
X is constant. 0O

16.96. Rewrite the section of Chapter 16 on connectedness, basing
connectedness on locally constant maps. (]

16.97. Prove that the map f: R—R, defined by f(x) =0 when
x <0 and by f(x) =sin1/x when x > 0, is discontinuous at 0, but
that graph fis a connected subset of R2. Show, however, that there is no
continuous map g:[0,1] — graphf with (g(0)) <0 and with
(2(1))o > 0. (This shows that the converse to Prop. 16.70 is false. A
space X satisfying the hypothesis of Prop. 16.70 is said to be path-
connected.) O
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16.98. Determine whether or not the maps g and %2 : R — R defined by

3, x<0 -}, %<0
£(x) ={ 1 and h(x) = { 1

—3+sin—, x>0 3 +sin—, x>0,
x x

have connected graphs. Sketch both the graphs in different colours on
the same diagram. O

16.99. Prove that the complement in R? of a finite subset of points is
connected. 0

16.100. Let [a,b] beaclosed bounded intervalof R and let & be a set of
open intervals of R covering [a,b]. Prove that there exists a finite ordered
set of elements of & covering [a,b] such that two of the elements inter-
sect if, and only if, they are adjacent in the ordering. (Cf. Exercise 2.87.)
Hence, deduce, from the compactness of [,b], that [a,b] also is connected.

(For any continuous map f: [a,b] — 2, construct a cover of [a,b] by
open intervals on each of which f is constant.) O

16.101. Prove that the intervals ]—1,1] and [—1,1] are not homeo-
morphic.

(There are various proofs. One uses compactness. Another, which
considers the complements of points of the space, uses connected-
ness.) O

16.102. Are R and R? homeomorphic, or not? (One of the hints to
Exercise 16.101 is relevant here also.) O

16.103. Are S?! and S? homeomorphic, or not? O

16.104. Let E = S* x {0} be the equator of S?, the unit sphere in
R3 =R? X R, and let f:[0,1] — S2 be a continuous map such that
£(0) = (0,0,1) and f(1) = (0,0,—1). Prove that fi(E) == 0. O
16.105. Suppose that f:[0,1]1*— RP? is a continuous map and let
n:S2—> RP? be the standard projection. Prove that there exists a
continous map g:[0,1]>—> S2 such that f = mg, but that & has no
continuous section.

(To prove the last part, show that if there were such a section, then

S? would be homeomorphic to 2 X RP?, a contradiction, by Prop.
16.71.) O

16.106. One of the most intuitive properties of a circle, one that we
have already remarked in Chapter 0, is that it cannot be continuously
deformed within itself to a point. More precisely, there is no continuous
map of the unit disc {(x,y) € R2: x% 4 y2 < 1} to the unit circle whose
restriction to the circle is the identity. Try to prove this! Then read
Chapter 6 of [7]. O



CHAPTER 17
TOPOLOGICAL GROUPS AND MANIFOLDS

As we have seen, there is an ‘obvious’ topology for a finite-dimen-
sional real linear space X, the standard topology induced by any norm
on X. It is a fair supposition that there should be more or less obvious
topologies also for the general linear groups, groups of automorphisms
of correlated spaces, Spin groups, Grassmannians and quadric Grass-
mannians, all of which are closely related to finite-dimensional linear
spaces. In this chapter these examples are discussed in some detail.
They provide good exercise material on the propositions and theorems
of Chapter 16.

There are two new concepts of importance, the concept of a topo-

logical group and of a topological manifold.

Topological groups
A topological group consists of a group G and a topology for G such
that the maps
GxG—G; (ab)~»ab and G—G; awsra?!
are continuous. An equivalent condition is that the map G X G — G;
(a,b) »w» a—1 b is continuous.

Example 17.1. Any finite group, assigned the discrete topology,
is a topological group. O

Example 17.2, Any normed linear space, with addition as the
group product, is a topological group. O

Example 17.3. Let X be a complete normed real linear space. Then
the group GL(X), regarded as a subspace of the topological space
L(X), is a topological group. This follows, by Props. 16.9 and 16.10,
from Props. 15.33 and 15.48 which assert the continuity of the maps
L(X) x L(X)— L(X); (t,u) »»> tu and L(X) >> L(X); £t w> -1

In particular, for each # € w, the general linear group of degree n
over R, GL(n;R), is a topological group. O

Topological group maps, isomorphisms and embeddings and topo-
logical subgroups are defined in the obvious ways. Suppose that G and
336
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H are topological groups. Then a map ¢: G — H is a topological group
map if it is both a group map and a continuous map, it is a topological
group isomorphism if it is both a group isomorphism and a topological
isomorphism (or homeomorphism), and it is a topological group embedding
if it is both an injective group map and a topological embedding. A
subset I of G is a topological subgroup of G if there is a topological
group structure, necessarily unique, for F such that the inclusion
F — G is a topological group embedding.

Prop. 17.4. Any subgroup of a topological group is a topological
group. O

Cor. 17.5. For any n, p, ¢ € w the groups listed in Table 11.53
are topological groups. In particular, U(1) = S and Sp(1) = S3 are
topological groups. O

Prop. 17.6. For any p, ¢ € w, the group Spin (p,q), regarded as a
subgroup of the Clifford algebra R, ,, is a topological group and the map

Spin (p,q) — SO(p,9); &> py,

defined in Prop. 13.48 and Prop. 13.56, is a topological group map. [J

Prop. 17.7. The map R* — SL(2,R); 1 «vw)(l 0 ) is a topo-

0 2t

logical group embedding. O

The compactness, or otherwise, of the group- listed in Table 11.53
and of the Spin groups is easily settled.

Prop. 17.8. For any n € w, the topological groups O(n), SO(n),
U(n), SU(n) and Sp(n) are compact.

Proof The compactness of O(n) was proved in Prop. 16.62. Each of
the other groups is isomorphic to a closed subgroup of O(#), O(2#) or
O(4n), and is therefore compact, by Prop. 16.28. O

Prop. 17.9. For any n €w, the topological group Spin (n) is
compact. ()
Prop. 17.10. Al the groups listed in Table 11.53, with the exception

of those listed in Prop. 17.8, are non-compact (unless n or p + ¢ = 0).
(Show, for example, that each contains an unbounded copy of R*.) O

Cor. 17.11. For any p, g € w, with p -+ ¢ > 0, the group Spin (p,q)
is non-compact. 0
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Homogeneous spaces

Closely related to the concept of a topological group is the concept
of a homogeneous space.

A Hausdorff topological space X is said to be a homogeneous space for
a topological group G if there is a transitive continuous action of G on
X, that is, a continuous map G X X — X; (g,x) ~w»> gw, such that

(i) forallg, g’ € G and all x € X,
(g'g)x = g'(gx), with 1x = «,
and (ii) (¢ransitivity) for each a, b € X, there is some g € G such that
b = ga.

Prop. 17.12. Let G X X — X; (g,x) »w> gx be a continuous action
of the topological group G on the topological space X. Then, for each
g €G, the map X — X; x w» gx is a homeomorphism. O

Cor. 17.13. Let X be a homogeneous space for a topological group
G and let a, b € X. Then there is 2 homeomorphism % : X — X such
that h(a) = b. O

Hence the use of the word ‘homogeneous’ in this context.

Example 17.14. For any n € w, S* is a homogeneous space for
O(n + 1). In particular S° is a homogeneous space for O(1) and S is
a homogeneous space for O(2). The action one has in mind is the obvious
one, the map

On + 1) X S*— S*; (t,x) w> (%),
which is well defined by Prop. 9.61. The continuity of the action follows,
by Prop. 16.9 and Prop. 16.10, from the continuity of the bilinear map

R(n + 1) x Rrtl— R+ (1,x) we #(x).
Also, S* is Hausdorff. Finally, (i) is clearly satisfied, while (ii) follows
from Prop. 9.40. O

Example 17.15. For any n € w, S+ is a homogeneous space for
U(n + 1) and S*+2 is a homogeneous space for Sp(n + 1), while, for
any n € w*, S* is a homogeneous space for SO(n + 1) and for Spin
(n + 1), while S+ is a homogeneous space for SU(n -+ 1). The
action in each case is the obvious analogue of the action of O(n + 1)
on S* described in Example 17.14. 0

The next few propositions explore the relationships between homo-
geneous spaces and coset space representations,

Prop. 17.16. Let G be a topological group, let X be a homogeneous
space for X and let a € X. Then the map ap: G— X; g w>ga is
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surjective, the isotropy subgroup G, = {g € G: ga = a} of the action
of G at a is a closed subgroup of G and the fibres of ap are the left
cosets of G, in G—in the terminology of Chapter 5 the sequence

inc. a .
G,— G 33 X is left-coset exact.

Proof The map ay is surjective, by axiom (ii) for a homogeneous
space.

Secondly, since la = a, since (g'g)a = g'(ga) = a, for any g,¢’' € G,,
and since ga = a only if g~la = q, for any g € G,,, it follows that G, is a
subgroup of G. (This is, of course, part of Exercise 5.35.) Since the
point {a} is closed in X, X being Hausdorff, G,, is closed in G.

Finally, since ay is surjective, none of the fibres is null and, for any
g2 eG, ga=ga < glgeG, < g egG, It follows that the
fibres of ay are the left cosets of G, in G. (This also is part of Exercise

535) O

Prop. 17.17. Let F be a subgroup of a topological group G. Then
the partition % : G — G/F; g s gF is open.
(Show first that, for any 4 < G, a'n(4) = U {4f:feF}) O

Prop. 17.18. Let F be a closed subgroup of a topological group G.
Then the space of left cosets G/F is a homogeneous space of G with
respect to the action

G % (G/F)— G/F; (g,g'F)~wgg'F.

Proof First, the space G/F is Hausdorff. For let gF, g'F be distinct
points of G/F, where g, g’ € G. Since F is closed and since g-1g' ¢ F
there exists an open neighbourhood 4 of g-1 ¢’ in the set complement
G\ F. It then follows from the continuity of the map G x G — G;
(g,&") > g1 g’ that there exist open neighbourhoods B of g and C of
g in G such that, for all 5eB and ceC, b-1c ¢ F. Now define
U = n(B) and V = z,(C), where = is the partition G — G/F. Then
UnV =0, while, by Prop. 17.17, U is an open neighbourhood of
gF and V is an open neighbourhood of ¢'F in G/F.

Secondly, the action is continuous, for in the commutative diagram
of maps

GxG ===,

product
1x=xn n

action

G x (G/F) -2 > G/F
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where, for each (g,g') e G x G, (1 X #)(g,g') = (g(g")), each of the
maps denoted by an unbroken arrow is continuous, while 7, and there-
fore also 1 X =, is a projection. The continuity of the action then
follows by Prop. 16.12.

Finally (i) and (ii) are readily checked. O

Prop. 17.19. Let X be a homogeneous space for a compact topo-
logical group G. Then, for any a € X, the map (ag)py;: G/G, —> Xisa
homeomorphism. O

Examples 17.20. Let K"+ be identified with K» x K, where R=R,
C or H. Then, for any n €w, O(n + 1)/0(n), U(n + 1)/U(n) and
Sp(n + 1)/Sp(n) are homeomorphic, respectively, to S”, S2*+1and §4+3,
while, for any positive n, SO(n + 1)/SO(n), Spin (n -+ 1)/Spin (z) and
SU(n 4 1)/SU(n) are homeomorphic, respectively, to S», S* and
S2n+1, (Recall Prop. 11.55.) O

Prop. 17.21. Let F be a connected subgroup of a topological group
G and suppose that G/F is connected. Then G is connected.

Proof Apply Prop. 16.73 to the partition G — G/F. O

Cor. 17.22. For each new the groups SO(n), Spin (n), U(n),
SU(n) and Sp(n) are connected.

Proof By Prop. 16.71, S™ is connected, for any positive n. Now
argue by induction, using Examples 17.20. O

Prop. 17.23. For each positive # € w, the group O(n) is discon-
nected, with two components, namely SO(#), the group of rotations of
R”, and its coset, the group of antirotations of R~

Proof The map O(n) — S0 tw»dett, bemg the restriction of a
multilinear map, is continuous, and for n > 0 it is surjective, ]

It is harder to discuss the connectedness or otherwise of the various
non-compact groups. The difficulty is in proving the appropriate
analogue of Prop. 17.19, Prop. 16.44 no longer being applicable. The
problem will be solved in Chapter 20 (pages 424 and 425).

What we can discuss here, with a view to their application in Chap-
ter 20, is the connectedness and compactness, or otherwise, of the various
quasi-spheres (cf. pages 217 and 218). By the following proposition, the
ten cases reduce to four, namely F(RP¢*Y), F(C**Y), F(H"+1) and
&(hb H"*Y), for all p and ¢ and all #. The symbol =~ denotes homeo-
morphism,



HOMOGENEOUS SPACES 1

Prop. 17.24. For anyn, p,qc o,
&(hb R™1) = {(a,h) € R"*Y)?: @%b = 1} = PRI
~ ,SV(R”"'I’"'I'I),
&(hb C**1) = {(ab) € (C**)*: a'b = 1} = F(Cipt?)

~ y(c2n+2)’
FRE) = {(ab) e R*"?: 0 =1} = FRH
~ y(R2n+2,2n+2)’
PCIHH) = {(ab) e(C*)?: 0 = 1} = F(CHH
~ ey(cdn+4)
y(CMH) ~ y(RZp,Zﬁz)’
and LAY x FRPUHY), O

The next four propositions cover the four outstanding cases.

Prop. 17.25. For any p,gew, F(R?*+1) ~ R? x S% and so is
connected for any positive g, but disconnected for ¢ = 0, and non-
compact for any positive p, but compact for p = 0.

Proof Cf. Exercise 9.81. It is not difficult to show that the bijection
constructed in that exercise is a homeomorphism, by verifying that the
map and its inverse are each continuous. O

Prop. 17.26, The quasi-sphere &(C"+!) is connected and non-
compact, for any positive number 7.

Proof By definition, F(C**') = {zeC**+1:2"2 =1}. For any
zeCrtl, let 2 = x + iy, where x and y e R*+, and let R**! have its
standard positive-definite orthogonal structure. Then, since

2= (x +iy)(x +iy) = @ — y@ 4 2ix-y,
it follows that 2 € £(C*+1) if, and only if, x(® — y® =1 and x-y = 0.
In particular, since x =1 + y®, » == 0.

Now S™ is a subset of #(C"+!). Consider the continuous map
w: F(Crt) — S*; 2w x/| x| It is surjective, with & | S = 1,
For any b € S*, the fibre of = over b is the image of the continuous
embedding

R{p} —> F(C*); g (V{1 + 30, )
where (R{d})* denotes the orthogonal annihilator of R{b} in R+,
This image is connected, since (R{b})* is connected. It is also non-

compact, since (R{b})* is non-compact, n being positive. Since each
fibre of = is connected and since S” is connected, for » > 0, it follows
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at once that &#(C»*?) is connected. Finally, since any fibre of = is a
closed subset and is non-compact, £(C"+1) is non-compact. O

It is tempting to suppose that &(C#+1) is homeomorphic, for any #,
to R* x S*, but this is not so except in a few special cases. See Exer-
cises 17.54 and 20.43 and the remarks on page 420.

Prop. 17.27. The quasi-sphere F(HI*+1) is connected and non-
compact, for any number 7.

Proof This follows the same pattern as the proof of Prop. 17.26.
Here it is convenient to identify C*+! with {a + jb e H*+!: q,b e R*+1}
and to assign Cr+! its standard orthogonal structure, just as R"+! was
assigned its standard positive-definite orthogonal structure in the proof
of Prop. 17.26.

By definition, S (FI*+1) = {g e H*+1: §°¢ = 1}. For any ¢ € Ho+1,
let ¢ = x + iy, where x, y € C*+L, Then, since

7g =&+ 5 +iy) = &x — Fy + i(y* + %)
= &% — yy + 2i(x-y),
it follows that ¢ € &#(Hr+1) if, and only if,
Fx—Fy=1 and x-y=0.
The rest of the proof consists of a consideration of the map
m: P(HP+T) — S?+1: g s 5x/4/(#%) closely analogous to that given
for the corresponding map in Prop. 17.26, the sphere S?2'+! being
identified with Y(C"“) in this case. 0

The final case is slightly trickier.

Prop. 17.28. The quasi-sphere & (hb Hr+1) is connected and non-
compact, for any number 7.

Proof By definition, #(hb Hr+1) = {(¢,r) € (H"+Y)%: §r = 1}. Let
u=4¢+7r v=43—r Then it easily follows that S(hbHr+1) is
homeomorphic to

I = {(up) e H1)2: iy - Tv = 1, T'u = #'v}.
Now consider the map
7w ' — Sint3; (u,0) W u/+/ ().
This is handled just like the corresponding maps in Props. 17.26 and
17.27. ]

The various cases may be summarized as follows.

Theorem 17.29. Let (X,£) be an irreducible, non-degenerate,
symmetric or essentially skew, finite-dimensional correlated space over
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K or 2K, where K = R, C or H. Then, unless (X,£) is isomorphic to R,
hb R or C, the quasi-sphere &(X,£) is connected and, unless (X,§) is
isomorphic to R#, C or H, for any =, or to C or H, #(X,£) is non-
compact. O

Topological manifolds

A topological space X is said to be locally euclidean if there is a cover
& for X such that each 4 € & is homeomorphic to an open subset of a
finite-dimensional real affine space.

This definition may be reformulated as follows. A pair (E,i), where
E is a finite-dimensional real affine space, and 7: E >> X is an open
embedding with open domain, will be called a chart on the topological
space X, and a set & of charts whose images form a cover for X will
be called an atlas for X. Clearly, the topological space X is locally
euclidean if, and only if, there is an atlas for X.

A chart at a point ¥ € X is a chart (E,7) on X such that x eim 7.

A locally euclidean space need not be Hausdorfl. For example the
Y space (page 321) is locally euclidean, but not Hausdorff. A Hausdorff
locally euclidean space is said to be a topological manifold.

A topological manifold is often constructed by piecing together finite-
dimensional real linear or affine spaces or open subsets of such spaces.
It may help in understanding this process to consider first a slightly
more general construction.

Prop. 17.30. Let X be a set and let % be a set of topological spaces
such that X = |J &. Then

{U eSub X: for each 4 € &, UnN Aisopenin 4}
is a topology for X. O

The topology defined in Prop. 17.30 is said to be the topology
tnduced on X by the set <.

If X, in Prop. 17.30, is assigned the topology induced on it by %, it
does not follow that & is a cover of X. In fact, for some 4 € &, the
inclusion 4 — X need not even be an embedding. The topologies on
A in its own right or as a subspace of X may well differ. For example,
let ¥ consist simply of two spaces, the set X with the discrete topology
and the set X with the trivial topology. Then the induced topology on
their union, X, is the trivial topology and the inclusion

(X, discrete) — (X, trivial)
is not an embedding. The case where % is a cover for X is covered by
the next proposition,
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Prop. 17.31. Let X be a set, let & be a set of subsets of X, each
assigned a topology, and let X be assigned the topology induced by <.
Then & is a cover for X if, and only if, for each 4, B € &, the map
A >»> B; x > x is continuous, with open domain. O

Cor. 17.32. Let X be a set and let & be a set of finite-dimensional
affine spaces or open subsets of such spaces such that X = |J & and
such that, for each 4, B € &, the map A >> B; x «» x is continuous,
with open domain. Then the topology for X induced by & is locally
euclidean, the inclusions 4 — X, where 4 € &, being open embed-
dings. dJ

A variant of this construction involves the concept of an atlas for a
set,

An atlas & for a set X is a set of pairs, each pair (E,z) consisting of a

finite-dimensional affine space E and an injective map ¢: E >»> X, with
open domain, such that

(1) X =U{imi:(Ei)e &},
(ii) for each (Ey), (F,j) € & the map
Julli E o> By awwe jurti(a)
is continuous with open domain.
I3

dom /.

\
e P o/
‘sur /I I/sur / II

dom /
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Prop. 17.33. Let & be an atlas for a set X, for each (E;) € & let
im 7 be assigned the topology induced from E by the map 7, and let X
be assigned the topology induced by the set of topological spaces
{imi: (E,{) € &} Then & is an atlas for the topological space X. O

The topology defined in Prop. 17.33 is said to be the topology induced
on the set X by the atlas &.

Two atlases on a set X are said to be equivalent if their union is
also an atlas for X, or, equivalently, if they induce the same topology
on X.

Grassmannians

A first application of Cor. 17.32 or of Prop. 17.33 is to the Grass-
mannians of finite-dimensional linear spaces. The natural charts on a
Grassmannian were defined on page 223.

Prop. 17.34. Let X be a finite-dimensional linear space over R, C or
H. Then, for any k&, the set of natural charts for the Grassmannian
Z(X) of k-planes in X, is an atlas for %,(X), and the topology on
%,(X) induced by this atlas is Hausdorff.

Proof Axiom (i) follows from Prop. 8.6 and axiom (ii) from the
explicit form of the ‘overlap maps’ in Prop. 8.12. Finally, by Prop. 8.7
any two distinct points a and & of ,(X) belong to the image of some
common chart. Since @ and b can be separated by open sets in this
affine space and since the affine space is an open subset of %,(X), they
can be separated by open sets in %,(X). O

Exercise 17.35. Extend Prop. 17.34 to the Grassmannians ¥;(X),
where X is a real linear space. O

In the following two propositions the Grassmannian (V) of
k-planes in a real finite-dimensional linear space V is related first to
GL(R%V), the set of all k-framings on V, and then, for any choice of a
positive-definite scalar product on V, to O(R% V'), the set of all ortho-
normal k-framings on V. The set GL(R*, V) is an open subset of L(R%, V),
while O(R%,V') is a compact subset of L(R*,1'). Both are topological
manifolds, GL(R¥, V') obviously, since it is an open subset of a finite-
dimensional real linear space, and O(R*, V) by an argument given in
Chapter 20, and both are referred to as real Stiefel manifolds for V.

Prop. 17.36. For any finite-dimensional real linear space V" and any
k, the map n: GL(R:V) — G(V); t w»> im £ is locally trivial.
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Proof Let V=X®Y, where X e %(V), let t € L(X,Y) and let
u € GL(R% 1) be such that im u = graph ¢ = im (1,#), where 1 = 1x.
Then, since « and (1,#) are injective there exists a unique s = (1), W
€ GL(R*,X) such that u = (1,f)s. Conversely, for any s € GL(R*,X),
im (1,t)s = graph .

Y
imu = graph¢
tH{x) (xe(0)
X=ims
0 x
VXxY
s u=(1,8)s
; R
o]

Now consider the commutative diagram of maps
GL(R%,X) x L(X,Y) ——> GLR*X @ Y)
g n
LX,)Y) ——— @(V)

where, for all (s,t) e GLR*X) x L(X,Y), q(s,t) = ¢, ¥(t) = graph ¢
and «(s,f) = (s,t5) = (1,2)s.

The chart y is an open embedding, the map ¢ is a projection and,
by what has just been proved, #'(im ) = im a.

Finally, the continuous injection «; (s,£) ~w> (s,25) is an open embed-
ding, since the map a,r *; (#,9) w» (u,0u~1) is continuous, with domain
open in GL(R*,V'), GL(R*,V) itself being open in L(R%,V).

The assertion follows. O

The simplest case of this proposition is for & = 1, when GL(R,V)
may be identified with ¥\ {0} and = is the map associating to each
non-zero point of V¥ the one-dimensional linear subspace of V' which it
spans.
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(On setting X = R and Y = R" the commutative diagram reduces to
(R\{0}) x R* ——— R*+1\ {0}

(=) (x,%y)
R —— (R
¥y {(x,xy): x €R}.
{O}x Y
1 0) T8%) ()
XY
xx{o
0 5 0,00 x.0) o}
- ' —— X
[0} i X )

Note, in passing, that the injection « commutes with the obvious
action of GL(k) on the domain and target of «. For let g € GL(k). Then

(5:)g) = a(sz,t) = (1,1)() = (a(sD)e.
(The map = is an example of a principal fibre bundle [27].)
Now choose a positive-definite scalar product on V.
Prop. 17.37. For any finite-dimensional non-degenerate real ortho-
gonal space ¥ the map
7't OREV)— G(V); tww>imt
is a projection.
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Proof 'The map #’ is the restriction to the compact subset O(R*,V)
of the locally trivial map
7w: GLR,V) —> 9(V); t-wwimt.
It is surjective, by Theorem 9.32, and (V) is Hausdorff, by Prop.
17.34. The result follows by Prop. 16.44. ]

Cor. 17.38. The space (1) is compact.

Proof The space O(R*, V) is compact and # is a continuous surjec-
tion. O

The simplest case of Prop. 17.37 is for £ = 1, when O(R,V') may be
identified with the unit sphere in V, and ¢ (V) is the projective space
of V.

The next proposition presents %,(R") as a homogeneous space.

Prop. 17.39. The map f: O(n) — ¥(R") of Prop. 12.9 is a con-
tinuous surjection and the map f,;;: O(n)/(O(k) X O(n — k)) — F(R")
is 2 homeomorphism.

Proof 'The map f admits the decomposition
O(n) — O(R:R") =5 @,(R")
where the first map is restriction to R¥, It is therefore continuous, and

we know already that it is surjective. Finally, since O(n) is compact and
since (R) is Hausdorff, fi;; is a homeomorphism. O

The natural topology on %,(R") is frequently defined to be that
induced on %,(R") by the surjection f or, equivalently, the bijection f,;
of Prop. 17.39. This is, however, open to the objection that a particular
orthogonal structure for R” has first to be chosen. The atlas topology
seems a much more natural starting point. There is further propaganda
for this point of view in Chapter 20 where the smooth structure for
%.(R") is introduced.

There are entirely parallel treatments of the complex and quatern-
ionic Grassmannians obtained simply by replacing R by C and O by U
in the former case and R by H and O by Sp in the latter case.

Prop. 17.40. For any %, n € w, with k <n,
G4C") = Um)/(U(k) x Uln — b))
and G(H") =~ Sp(n)/(Sp(k) x Sp(n — k)),
= denoting homeomorphism. O

In the real case there are also the Grassmannians of oriented k-planes.
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Prop. 17.41. For any &, n € v, with k <=,
ZH R ~ SO(n)/(SO(k) x SO(n — k)),
the map %H(R*) — &(R") that forgets orientation being locally
trivial. O

Quadric Grassmannians

The quadric Grassmannians of Chapter 12, being subsets of Grass-
mannians, are all Hausdorff topological spaces.

Prop. 17.42. Each of the parabolic charts on a quadric Grassman-
nian is an open embedding.

Proof In the notations of Prop. 12.7 the chart f and the map f;1
are each continuous. So f is an embedding. Finally, since any affine
form of a quadric Grassmannian is an open subset of the quadric
Grassmannian, f is an open embedding. O

Cor. 17.43. The quadric Grassmannians are topological mani-
folds. O

Cor. 17.44. For any n € w, the groups O(n), U(n) and Sp(n) are
topological manifolds.

Proof The Cayley charts are open embeddings. O

Since SO(n) is a component of O(n), it follows at once that, for any
n, the group SO(n) is a topological manifold.

Next, Spin (7). As it will again be convenient to regard Spin (r) as a
subgroup of the even Clifford algebra R, rather than as a quotient
group of I'%n), we begin by redefining the Pfaffian chart on Spin (n)
at 1 (cf. page 263) to be the map

End_(R") — Spin (n); s« Pfs/4/(N(Pfs)).
For any g € Spin (n), the Pfaffian chart on Spin (n) at g is then defined
to be the Pfaffian chart at 1 composed with left multiplication by g.

Prop. 17.45. For any finite n, the group Spin (n) is a topological
manifold and the group surjection p: Spin (n) — SO(n) is locally
trivial.

Proof The Pfaffian charts are open embeddings. For example, since
the components of the map s «wPf s are polynomial maps and since
N : I'%(n) — Spin () is continuous, the Pfaffian chart on Spin (n) at 1 is
continuous, while its ‘inverse’, the map

Spin (n) — End_(R"); g (go7%2;: (4]) €n X n),
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where g =gy + ¥ gie6, + ..., with g;; = —g;;, is also continuous
i<j

and has open domain. So this chart is an open embedding.
Moreover, for any g € Spin (n), the diagram of maps

/ Spin (n)

End_ (R")\ e
(0
SO(n)

where p, isthe Pfaffian charton Spin (#) at g, and ¢, is the Cayley chart
on SO(n) at p(g), is commutative, from which the second assertion
readily follows. O

A direct proof that all the groups listed in Table 11.53, including the
groups SU(p,q), SL(n;R) and SL(n;C), are topological manifolds is
given in Prop. 20.72, together with Cor. 20.76.

Prop. 17.46. Each of the coset space representations listed in Prop.
12.12 and in Theorem 12.19 is a homeomorphism. O

Particular cases of interest have already been considered in Chapter 12.
Two of these are recalled in Prop. 17.47.

Prop. 17.47. TFor any positive p, g, the real projective quadric
J1(R?) is homeomorphic to the set of antipodal pairs of points of
SP=1 x 8171, (8771 x S?°1)/Z,, while, for any positive 7, the complex
projective quadric J#,(C") is homeomorphic to the Grassmannian of
oriented 2-planes in R*, 3 (R"). O

There are two interesting special cases:

Prop. 17.48. J,(R%2) = S x Stand J,(R%%) = S% x RP3,

Proof The maps St x S'— St x S8%; (g,h) > (ghh) and
S3x83— S2xS2; (g,h) ~w>(gh,h) are homeomorphisms, S* and S?3
being topological groups. Factorization by the actions of Z, then pro-
duces the required homeomorphisms. O

The topological group S* x St is known as the torus. The pro-
jective quadric ,(R%4) also features in Exercises 17.58 and 17.59.

Invariance of domain
We conclude by stating one of the fundamental theorems of topo-
logy. For the proof see, for example, [30].

Theorem 17.49. (Brouwer’s ‘invariance of domain’.)
If 4 and B are homeomorphic subsets of R*, and if 4 is open in
R", then B is open in R”. O
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Cor. 17.50. For m > n, R™ is not homeomorphic to R~

Proof Suppose n =m 4 p, where p > 0. Then R* = R™ x R~,
Since R™ is homeomorphic to R x {0}, which is not open in R» X R?,
it follows that R™ is homeomorphic to a subset of R* which is not open
in R», Hence the result. O

A direct proof of Cor. 17.50 is indicated in Exercise 16,102 in the
particular case that m = 1 and n = 2.

By Theorem 17.49 one can define the dimension of a connected
topological manifold.

Prop. 17.51. Let X be a connected topological manifold. Then the
sources of the charts on X all have the same dimension. 1

The common dimension of the sources of the charts on a connected
topological manifold is said to be the dimension of the manifold. A
manifold is said to be n-dimensional if each of its components has
dimension #.

FurTHER EXERCISES

17.52. Prove that the map R? — S* ‘inverse’ to the stereographic
projection of S” on to R from its North pole is a topological embed-
ding. O

17.53. Prove that the extension of a polynomial map f:C—>Cto a
map f: CU {00} — C U {0} as described in Example 8.14 is con-
tinuous. |

17.54. Construct the following homeomorphisms:
o)z R") =z §°, FR"?) xS, SR) =R xS
R* ~ Y(hbR) 2 R x S° Z(hbR)? = R2 x S1;
Sp(2R) ~ #(R3) = R? x S8,  Z(Ry,)= Rt x §3;
Sp(2,0) = F(C) = R? x 8%,  HL(C,)= R” x §%;
Sp(l) @ F(H) = §3, F(H™) ~ S, FEHY) xR x S3;
H* ~ #(hbH) ~ R x S3, #(hbH)? ~ RS x §7;
O(1H) ~ ¥(HY) ~ S, (A2 =~ R? x §3
0(1,0) x #(C) ~ S°, F(CH xR xSy
UQl) ~ #(C1) » 81, £(C*?) ~ 83, F(Cr1) ~ R2 x S1
C*> #hbC) xR x 8, F(hbC)? = R® x S3.
(Exercises 10.66, 14.20 and 14.21 may be of assistance in constructing
several of the harder ones.) O
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17.55. Verify that, for any x e R¥, 1/x 4+ 21 x — x~1\ € SO(1,1)
x —x1 x4+ x?
and that the map R* — SO(1,1); x w» }fx 4+ x~1 x — x~1\ is both
x —x-1 x4 x1

a group isomorphism and a homeomorphism. O
17.56. Verify that, for any x e R, [4/(1 +%%)  x e SO+(1,1)
x AL+

and that the map R — SO+(1,1); x w» (4/(1 + x?) x is a
( x V(1 + xz))
homeomorphism. O
17.57. Prove, in several ways, that RP!, CP! and HP! are homeo-
morphic, respectively, to S, S? and S*
Prove also that OP! is homeomorphic to S8. (Cf. page 285.) ]

17.58. Prove that SO(2) ~ RP?, that SO(3) =~ RP? and that
SO#4) =~ £, (R*) = S (R, the symbol =~ denoting homeomorphlsm
(Cf. Prop. 12.20.) O

17.59. Prove that J (R}}) and J,(CEL) are each the union of two
disjoint connected components, and that either component of J,(R},)
is homeomorphic to J;(R}y,).

Is either component of %(C$,) homeomorphic to 4(C8,)? (We give
the answer eventually at the end of Chapter 21.) O

17.60. Prove that, for any k, n € w, with & <#, each of the Grass-
mannians %,(C") and %,(H") is a compact Hausdorff topological
space. O

17.61. Prove that, for any k, n € w, with & <n, each of the Grass-
mannians Z,(R"), 4F(R"), %,(C*) and %,(H") is connected, with one
exception, namely Z;"(R). O

17.62. Reread Chapter 0. O



CHAPTER 18

AFFINE APPROXIMATION

The maps studied in this chapter have normed affine spaces as source
and target. The domain of a map may be a proper subset.of the source,
though when the map is affine the domain and source usually coincide.
The vector space of an affine space X will be denoted, as in Chapter 4,
by X, and the linear part of an affine map z: X — Y will be denoted
by t4. Subtraction in an affine space will be denoted simply by —.

The chapter falls naturally into two parts. The first part introduces
the concept of tangency for pairs of maps from a normed affine space X
to a normed affine space Y. The second part is concerned with the
development of the concept of the differential of a map. The central
theorem of the chapter is the chain rule, first proved as Theorem 18.7
and then reformulated, and extended, as Theorem 18.22. Deeper
theorems on differentials are deferred to Chapter 19.

Tangency

Let f: X >»> Y and £: X >> Y be maps between normed affine
spaces X and Y, and let @ € X, We say that f is tangent to t at a, or
that f and ¢ are mutually tangent at a if

(i) dom f and dom ¢ are neighbourhoods of a in X,
(i) f(a) = #(a),
/=1 .

and (iii) lim ;

s |X—al]
that is, in more technical language, but with all three axioms combined
in one, if

(iv) for each £ > 0 there exists 6 > 0 such that (for all x € X)
| —a]|<é = (f(x)and t(x) exist and) | f(x) — #(x) | < e |x —a|,
the phrases in parentheses usually being omitted for brevity.

The inequality symbol < before d could be replaced by < without
changing the definition, but this is not the case with the symbol <
before ¢, for when x = a the right-hand side, and therefore also the
left-hand side, of the inequality is equal to 0.

353
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The diagram above illustrates the definition in the special case where
X=Y=R

For example, the map R — R; x «w %% is tangent at a € R to the
map R — R; x w» —a? 4 2ax, since, for any ¢ > 0,

| —a|<e = |2 —(—a>+2ax)|=|(x —a)?| < e|x —al

In discussing the tangency of a pair of maps f: X >> ¥ and
t: X >»> Y at a particular point @ € X it often simplifies notations to
begin by setting @ = 0 in X and f(¢) = #a) =0in ¥, Then X and Y
become linear while, if either of the maps, say ¢, is affine, it will, by this
device, be identified with its linear part #,. If either X or Y already has
a linear structure, the procedure is equivalent to making a change of
origin.

The next two propositions depend, for their proof, on the triangle
inequality alone.

Prop. 18.1. Letf, g and & be maps from X to Y, and let f be tangent
to g and g tangent to % at @ € X. Then f is tangent to % at a.

Proof By hypothesis dom fand dom % are neighbourhoods of a in X.
Also f(a) = g(a) = h(a). Seta = 0 in X and f(a) = 0 in Y. Then what
remains to be proved is that for any ¢ > 0 there exists § > 0 such that

2] <8 = [flx) —hx)]|<e|x].
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Now |f(x) — h(x)| < |f(x) —&(*) | + | g(x) — h(x)| and for any
& > 0 there exist 8, ¢’ > 0 such that
e[ <0 = |f(x) —g(x)| < de|x|
and |l < 6" = |glx) —h(x)| < 3e|x|.
On setting 6 = inf {§,6"'} we obtain the required inequality. O

Prop. 18.2. Let f and ¢ be maps from X to Y, tangent at a € X.
Then f is continuous at « if, and only if, ¢ is continuous at a.

Proof 1t is enough to prove one of the implications, say =>. Set
a = 01in X and f(a) = t(a) = 0 in Y. Suppose f is continuous at 0 and
let ¢ > 0. Then there exists § > 0 such that 6 <1 and such that

Ja] <0 = |f(x) —#x)[<$elx| and |f(x)]| < e
Therefore

2] <d = |tx)|<ielx]+ie<e
That is, ¢ is continuous at 0. O

We next consider maps whose target or source is a product of normed
affine spaces, the product in each case being assigned the product norm.
In each case the proposition as stated involves a product with only two
factors. Their generalization to products with any finite number of
factors is easy and is left to the reader.

Prop. 18.3. Maps (f,g) and (#,u): W >> X X Y are tangent at
¢ € Wif, and only if, fand ¢ are tangent at ¢ and g and « are tangent at c.

Proof 1In either case (f(c),g(c)) = (¢(c),u(c)). So set ¢ =0 in W,
fl©)=1tc)=0in X and g(c) = u(c) =0in Y.
<= : For any ¢ > 0 there exists § > 0 such that
lw] <o = |f(w)—tw)| <s|w]
and |g(ew) —u(w) | < e|lwl
Therefore
lw|<d = |(fg)w) — (tu)(w) ]
= sup {| f(w) — Hw) |, | g(w) —w(w) |} < elw].
That is, (f,£) and (¢,u) are tangent at 0.
= : Reverse the above argument. O

In Prop. 18.4 it is convenient to introduce the notations (—,b) and
(a,—) for the affine maps
X—>XxY, aw(xb) and Y—>X X 7Y; yw(ay),
a being any point of X and b any point of Y.
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Prop.18.4. Letf: X X ¥V >> Zbetangenttot: X x Y >> Zat
(a,b). Then
J(—,b) is tangent to #(—,b) at a
and f(a,—) is tangent to #(a,—) at b.

Proof By hypothesis f(a,b) = #(a,b). Set (a,b) = (0,0)in X X Y and
f(a,b) = t(a,b) = 0 in Z. Then, for any ¢ > 0, there exists 4 > 0 such
that

[(@2) | <6 = [flxy) —Hxy) | <el@®y)]
In particular,
2] =1@®0)[<d = [f(x0) —t(x0)|<e|®0)|=c¢]x].
That is, f(—,0) is tangent to #(—,0) at 0.
Similarly £(0,—) is tangent to #(0,—) at 0. O

Proposition 18.4 may also be regarded as a special case of Prop. 18.6
below. Propositions 18.5 and 18.6 lead directly to the central theorem
of the chapter, Theorem 18.7.

Prop. 18.5. Let f and £: X >> Y be tangent at a € X and let
u: Y — Z be continuous affine. Then uf is tangent to ut at a.

Proof Set a=0in X, f(a) =ta) =0 in Y and uf(a) =0 in Z.
Then u becomes linear. If # = 0 there is nothing to prove. So suppose
u 0 and let ¢ > 0.

Since u is linear, uf(x) — ut(x) = u(f(x) — (x)), since % is continuous,
| u(f(x) — t(x)) | < |u||f(x) — t(x) | and, since f is tangent to ¢ at 0,
there exists 6 > 0 such that
le]<d = [f(x) —tx) [ <elul-|x]
(we assumed that u 5= 0), from which it follows that
2] <6 = luf(x) —ut(x)| <e|x] O

Prop. 18.6. Let f: X >> Y be tangent to a continuous affine map
t:X— YataeXandletgand u: Y >> Z be tangent at b = f(a).
Then gf is tangent to uf at a.

Proof Seta =0inX,b = f(a) = t(a) = 0in Yand g(b) = u(b) =0
in Z. Then t becomes linear. Let &, K > 0. Then K¢ > 0 and, since
g is tangent to u at 0, there exists # > 0 such that

lyl<n = 1&gy —u() | < Kely|.
Since ¢ is continuous at 0, f is continuous at 0, by Prop. 18.2, and, since
fis tangent to ¢ at 0, f is defined on some neighbourhood of 0; so there
exists 6’ > O such that

x| <o = |f) <
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Also, since f is tangent to ¢ at 0 and since ¢ is continuous, there exists
6" > 0 such that

2] <& = |f(®) —#x)| <|x]
= |f@)] =11 | < x|
= [f@I<@+[2])]=].

In particular, such ¢’ and 6" exist when K = (1 4 |#|)-1 Setting
6 = inf {¢’, 8"}, we obtain

x| <6 = |gflx) —uf(x) | <elx|. O

Theorem 18.7. (The chain rule.)

Let f: X >> Y be tangent to the continuous affine map z: X — Y
ata€ X and let g: Y >> Z be tangent to the continuous affine map
u:Y— Zatb = f(a).

Then gf is tangent to ut at a.

Proof By Prop. 18.6 gf is tangent to uf at @ and by Prop. 18.5 uf is
tangent to ut at a. Hence the result, by Prop. 18.1. O

An important special case of Prop. 18.6 is when f = and, in particular,
when f = ¢ is an inclusion map, X being an affine subspace of ¥ with
the induced norm. Then the conclusion is that g| X is tangent to u| X
at a. The direct proof of this is very simple. By contrast, restriction of
the target can be a tricky matter, as the remark after the next proposition
indicates.

Prop. 18.8. Letf: X »> Y betangenttoanaffinemapz: X — Y
at a point a of X, X and Y being normed affine spaces, and suppose that
W is a closed affine subspace of Y such thatim f < W. Thenim¢ <« W
and the maps X >> W; x w»> f(x) and X — W; x w»> I(x) are tangent
to one another at a.

Proof Set a =0 in X and f(a) = #(a) =0 in Y and suppose that
x € X is such that #(x) ¢ W. Certainly x 5<0. Since W is closed in Y,
there exists ¢ > 0 such that the closed ball in Y with centre #(x) and
radius ¢ | x | does not intersect WW. On the other hand, since f is tangent

to ¢ at X, there exists a positive real number 4 such that f is defined at
Ax and

| f(Ax) — 2(Ax) | < & | 2x |
and therefore such that
| (fAx)/2) — tx) | < e |x].
This implies that f(Ax)/A ¢ W, and therefore that f(Ax) ¢ W, contrary
to the hypothesis that im f < W. O
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One can give an example of a normed linear space Y, a linear sub-
space W of Y that is not closed in ¥ and a map f: R — Y tangent at 0
to a linear map ¢: R — Y such that im f < W, but im ¢ ¢ W. Such a
phenomenon cannot occur if Y is finite-dimensional, since any affine
subspace of a finite-dimensional affine space is closed.

Until now in this chapter we have supposed that the sources and
targets of the maps under discussion are normed affine spaces. The next
proposition shows that the concept of tangency depends only on the
topologies induced by the norms and not on the particular norms them-
selves.

Prop. 18.9. Let X and Y be affine spaces, each assigned a pair of

equivalent norms, denoted in either case by | |and by || ||, and let
f: X > Yand t: X >> Y be maps from X to Y. Then f and ¢ are
tangent at a point @ € X with respect to the norms || || if, and only

if, they are tangent at a with respect to the norms | |.

Proof It is sufficient to prove the implication one way. Let X', X"’
and Y’, Y denote X and Y furnished with the norms | |, || ]|,
respectively, and suppose that f and ¢: X’ >> Y’ are tangent at a.
Since f: X" >> Y’ admits the decomposition

rx 3 xshy Ly
and z: X"’ >»> Y"' the decomposition
X' B3 x5y Sy
and since 1x: X"~ X’ and 1y: Y’ — Y’ are continuous affine, the

norms on X and Y respectively being equivalent, it follows, by Prop.
18.5 and by Prop. 18.6, that fand : X'* — Y are tangent at a. O

From this it follows that, in discussing the tangency of maps between
normed affine spaces, we are free at any stage to replace the given norms
by equivalent ones. In the case of finite-dimensional affine spaces any
norms will serve, since, by Theorem 15.26, any two norms on a finite-
dimensional affine space are equivalent. There will always be a tacit
assumption, in the finite-dimensional case, that some choice of norm
has been made.

For an alternative definition of tangency depending only on the
topological structure of the source and target, see Exercise 18.43.

Theorem 18.10 concerns an injective map f: X >> Y between
normed affine spaces X and Y, that is, amap f: X >> Y such that the
map f,.: dom f—im f is bijective. In the present context it is con-
venient, to keep notations simple, to denote by f~*: Y >»> X the map
g: Y >»> Xwithdom g =im fandim g = dom fand with g, = (four) %
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Theorem 18.10. Let f: X >> Y be an injective map between
normed affine spaces X and Y, tangent at a point @ € X to an affine
homeomorphism ¢: X — Y, and let f-1: ¥ >> X be defined in a
neighbourhood of b = f(a) = #(a) and be continuous at 4. Then f-! is
tangent to £~ at b.

Proof Sincet: X — Y is an affine homeomorphism, the given norm
on Y is equivalent to that induced on Y from X by ¢ and there is no loss
of generality in assuming that ¥ = X and that £ = 1x. We may also
seta = 0 and b = 0. What then has to be proved is that f-*: X »» Xis
tangent to 13* = 1x at 0.

Let ¢ > 0. It has to be proved that there exists 6 > 0 such that

lyl<é = [f0) —yI<elyl
First, since f is tangent to 1x at 0, there exists 7 > 0 such that
x| <n = |x—f@@)]<ielx]
and e —f@) | < 3=
But then | x| — | f(%) | < % | x|, implying that | x | < 2| f(x) |, and so

lx[<n = |x—fx)]<elf®]
Finally, since f ! is defined in a neighbourhood of 0 and is continuous
at 0, there exists 6 > 0 such that

lyl<é = |f70) <7
= |f7) -yli<elyl O
Theorems 18.7 and 18.10 indicate the special role played by continu-
ous affine maps in the theory of tangency. This role is further clarified
by the following intuitively obvious proposition. We isolate part of the
proof as a lemma.

Lemma 18.11. Let t: X — Y be a linear map between normed
linear spaces X and Y and suppose that, for each ¢ > 0, there exists
é > 0 such that

x| <6 = [Hx)|<e]x]|
Thent = 0.

Proof Lete>0andletdbesuchthat|x|<d = |Hx)|<e|x]
For any x such that | x| > J, there exists a positive number 1, namely
6/ x |, such that | A | = & and therefore such that | #(x) | <& |Ax|. But
this inequality is equivalent to | #(x) | < & | x|, since positive reals com-
mute with linear maps and with norms. Therefore | #(x) | < & | x| for
all £ > 0, without any restriction on | x |. It follows by Prop. 2.36 that,
for each x € X, | #(x) | = 0, and therefore #(x) = 0. So ¢ = 0. O
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Prop. 18.12. Lettandu: X — Y be affine maps, mutually tangent
at a point 4 of X, X and Y being normed affine spaces. Then ¢ = u.

Proof Set a=0 in X and #a) =u(a) =0 in Y. Then ¢ and u
become linear.

Now apply the lemma to the map ¢ — w. O

Cor. 18.13. A mapf: X >> Yistangent at a point a to at most one
affine map ¢: X — Y, this map being uniquely determined by its
linear part. 0

It may seem from this that Theorem 18.10 is nothing more than a
corollary to Theorem 18.7. For if f: X >> Y is an injective map,
tangent at ¢ € X to the continuous affine map ¢: X — Y, and if
f~1:Y >> X is tangent at b = f(a) to the continuous affine map
u: Y — X, it follows, by Theorem 18.7, that f~! f is tangent to uf at
a and ff -1 is tangent to tu at b. Now f~f is also tangent to 1x at a, and
ff ~1is tangent to 1y at b, and therefore, by the above corollary, ut = 1x
and tu = 1y. That is, u = ¢!, However, Theorem 18.7 does not prove
the existence of an affine map u tangent to f~! but only determines it if
it does exist.

Differentiable maps

It has just been shown that a map f: X >» Y between normed
affine spaces X and Y is tangent at any given point @ € X to at most one
continuous affine map ¢t: X — Y, this map, if it exists, being uniquely
determined by its linear part by the condition that #(@) = f(a). This
linear part is called the differential, or more strictly the value of the
differential of f at a, and is denoted by the symbol dfa, the map f then
being said to be differentiable at a. For example, the differential at a of
the map R — R; x ~w» x2 is the linear map R — R; x «w» 2ax. The
differential, df, of f is the map

df: X > L(Xy, Yy); x> dfx,
the map f being said to be differentiable if dom (df) = dom f, that is,
if f is differentiable at every point of its domain.

In some applications, especially those considered in Chapter 19, maps
are required to be not only differentiable but also smooth, that is, con-
tinuously differentiable. To be precise, a map f: X >> Y between
normed affine spaces X and Y is said to be smooth at a € X if df is
defined on some neighbourhood of @ and is continuous at 4, the norm
on L(X,,Y,) being the gradient norm induced by the given norms on
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Xy and Y, the map f being said to be smooth if it is differentiable and
if df is continuous everywhere.

A smooth map is also said to be C*. The explanation of this notation
will be given at the end of Chapter 19, where differentials of higher
order are briefly discussed.

The notations and the terminology are not quite standard. What we
have called the differential, df, is called by some authors the derivative
and denoted by Df, and what we have denoted by dfa is denoted by
others by Dfa or df,. The word smooth is often reserved to describe a
map of class C®, this being one of the concepts discussed in Chapter 19.

In order to relate the definition of differentiability given here to one
which may be more familiar to the reader, let us consider in more detail
the special case where X = Y = R. The affine map # is then of the form
x> mx -+ ¢, where m and ¢ € R and, since f(a) = t(a), f(a) = ma + c.
Also in this special case,

1) = 1) | _|£6) = 1
|x —al| x—a
for any x» € dom f except a. Therefore f is differentiable at a if, and only

if, f is defined on a neighbourhood of a and there exists a real number
m such that the limit at a of

f(x) — f(a) — m(x — a)

X —a

’

_ |f®) —f(a)
x— a
exists and is equal to zero; that is, if, and only if, f is defined on a neigh-

—m

bourhood of a and the limit at a of S ; — /@ exists. This number,

usually denoted f'(a), is called the dzﬂerentzal coefficient of f at a, the
differential at q, dfa, being the map x ~w- f’(a)x. The map f'; x > f'(x)
is called the derivative of f, there being, in this case at least, no difference
of opinion on the terminology.

The sets graph f and graph ¢ are subsets of R2, graph ¢ being a line,
since ¢ is affine. This line is defined to be the tangent to graph f at (a,b),
where b = f(a). In making a sketch, we may identify R?, with R? either
by the identity map or by the map

(%) w>(a + %, b + )
sending 0 to 0' = (a,b). (See the figure on page 362.)

In the first case graph dfa is identified with the line through the
origin parallel to graph ¢, while in the second case graph dfa coincides
with graph ¢. The former identification is the standard one, the second
one being appropriate when we are particularly interested in the be-
haviour of f in the neighbourhood of a.
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{0} xR

graph ¢

graph 7

0,6 ————gfm—

o ~ N Rx(d

representations of graph dfo

Since our general theory is dimension-free, the above picture is a
useful illustration even in the general case.
In computational work the equation

¥y = (dfx)(x’), wherexeX, x' €X, and » €Y,

is often written as dy = d—idx, dx, dy and Z—-ﬁ being alternative notations
for x’, ¥’ and dfx respectively. These notations have a certain mnemonic
value, as we shall see later in the discussion following Theorem 18.22.

In examples we often have the special case where X = R” and
Y =R, for some finite 7 and p. In this case the linear map dfx may
be represented by its matrix. This will be a p X n matrix over R known
as the Jacobian matrix of f at x. The entries in this matrix are called the
partial differentialcoefficients of f at x. The (7,7 )th entry is usually denoted
dy./0x;, the virtue of this notation again being mnemonic, as we shall
see.

Complex differentiable maps

The concept of differentiability can easily be extended to maps
f: X >> Y, where X and Y are normed complex linear spaces (normed
as real linear spaces). For such a map to be complex differentiable all
that is required is that it should be real differentiable and that the
differential at each point should be a complex linear map. For example,
a map f: C > C is complex differentiable if, and only if, it is real
differentiable and the differential at each point is complex linear, that
is, is multiplication by an element of C. If we identify C with R2 and



PROPERTIES OF DIFFERENTIALS 363

let (u,0) = f(x,y), then it at once follows, by Prop. 3.31, that the dif-
ferential of f at (,y) is complex linear if, and only if, the Jacobian matrix

of f at (x,y),

ou du
ox 5; o« —p

, is of the form ( ),
ov v g«
ax

that is if, and only if du/0x = dv/dy and ou/dy = —dv/dx, equations
known as the Cauchy-Riemann equations.

Properties of differentials

Numerous properties of differentials follow from the propositions and
theorems already proved. In stating them it will be assumed, unless
there is explicit mention to the contrary, that the letters W, X, Y and Z
denote normed affine spaces.

Prop. 18.14. A continuous affine map ¢: X — Y is smooth, its
differential dt : X — L(X,,Y) being constant, with constant value the
linear part of ¢, 24 : Xy — Y.

In particular, any constant map is smooth, with differential zero, and
the differential at any x € X of a continuous linear map £: X — Y is
the map ¢ itself, X and Y in this case being linear spaces. O

The next proposition is just a restatement of Prop. 18.3 in the case
where ¢ and u are continuous affine maps, the extension to smooth maps
following at once from Prop. 15.15.

Prop.18.15. A map(f,g): W>> X x Y is differentiable, or smooth,
at a point w € W if, and only if, each of the maps f: W>» X and
g: W >> Y is, respectively, differentiable, or smooth, at w. In either

case
d(f.glw = (dfw,dgw). O
Next, a restatement of Prop. 18.4.
Prop. 18,16, Let f: X X Y >»> Z be differentiable, or smooth, at
apoint (a,b) € X X Y. Then the map f(—,b): X >> Zis, respectively,

differentiable, or smooth, at @ and the map f(a,—): Y >» Z is, re-
spectively, differentiable, or smooth, at b. In either case, for all x € X,

y € Y#)
df(a,b)(x.y) = u(*) + (),
where u = d(f(—,b))a and v = d(f(a,—))b.
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(Note that if ¢t = df(a,b) then

(%) = H(x,0) + £0,y)
= (((—0)*) + (#0,—)»)) O
The linear maps # and v are called the partial differentials of f at
(a,b). There is, regrettably, no completely satisfactory notation for them.
We shall denote them, for the moment, by d,f(a,b) and d, f(a,b). The
partial differentials of f are then the maps

dof : X X Y L(XsZy); (%,5) wody f(2,)
and dif: X X Yo>»r L(Yy,Zs); (%) v dy f(2,9).
The equation

(@ (@) >y} = (dof(@Y))) + (duf(xy)NY')

may be abbreviated to
df(x,y) = (do f(%,3))pw + (d1 f(%:3))qu,

where (p,q) = lxyy, and may then be abbreviated still further, since
Ps = dp(x,y) and gy = dg(x,), to

df = (dof) o (dp) + (duf) ° (dg),
where o denotes composition of values. Traditionally, this last equation
is often written

_of,

at least in the particular case that X = Y = Z = R, the letters x and y,
doing double duty by denoting not only individual points of X and ¥
but also the projection maps X X ¥Y—>Xand X X Y — Y.

An alternative practice is to write the equation

dz = df (x,y)(dx,dy),
where z = f(»,y) and dx, dy and dz are elements of X, Y, and Z,
respectively, in the form

oz oz

where 02/0x = d, f(x,y) and 02/9y = d, f(x,y).

In this case the letter f is no longer present in the formula, but this
need not be a disadvantage, since we know (or should know!) in any
computation which map we are at any instant working with.

The existence of two different interpretations of the symbols dx and
dy is a constant source of confusion. One must, however, learn to live
with both, since each has a sufficient number of advantages to justify
its retention.
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Both the last two propositions have obvious generalizations to the
case where the product of two affine spaces is replaced by a product of
n affine spaces, for any positive number 7.

An immediate corollary of Prop. 18.16 is the usual practical rule for
computing the partial differential coefficients of a differentiable map
f:R* >> R, namely, to differentiate with respect to each of the vari-
ables in turn, holding the remainder fixed. Propositions 18.15 and 18.16
together therefore provide a method for computing the Jacobian matrix
at a point x of a differentiable map f: R* >»> R?. Of the two interpreta-
tions of dx which have just been under discussion, it is the second which
is closest to common usage in computations involving Jacobian matrices.

The matrix notation is also valuable and appropriate in discussing the
differentiability of any map of the form

[: Xox Xy > Yyx Yy,

Xy Xy, Y, and Y, being normed linear spaces, the differential of this
map at a point (xy,%;) € X, X X, taking the form

%o %
Ox, Ox,
%1
Ox, Ox,

where dy,/dx; is an abbreviation for the partial differential

djf,'(xo,xl) M Xj —_— Y;
for all 7, j € 2. Again there is an obvious extension to products with any
finite number of factors.

The converse of Prop. 18.16 is not true in the sense that one can have
amapf: X X Y >»> Zthatisnotdifferentiableatapoint(ab) e X X ¥
even though the partial differentials d,f(2,b) and 4, f(a,b) exist.

An example is the map f: R? — R defined by the formula

f(0,0) =0 and f(xy) = 2xy/(x* +y%), for () #(0,0),
for the partial differentials of f exist at (0,0) although f is not differenti-
able there. In fact, f is discontinuous at 0, for if x = y 5= 0, f(»,y) = 1.

It will, however, be proved later, in Prop. 19.5, that if in addition
either d, f or d, fisdefined on a neighbourhood of («,b),and is continuous
there, then f is differentiable at (a,b), while if both d,, fand d, f have these
properties, then f is smooth at (a,b).

Meanwhile, though Prop. 18.16 may help us to formulate the next
proposition, it is of no help in its proof.

Prop. 18.17. Let 8: X X Y —> Z be a continuous bilinear map,
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X, Y and Z being normed linear spaces. Then, for any (a,b) e X X Y,
p is tangent at (a,b) to the continuous affine map
XX Y—Z; (xy)w>p(xb) + flay) — Blab),
that is, § is differentiable, and for all (a,b), (x,y) € X X 7,
dp(a,b)(x,y) = B(x,8) + B(a,y).

Also, df is a continuous linear map. In particular, § is smooth.

Proof Since 8 is continuous there exists a positive real number K
such that, for all (x,y) € X X Y, | f(»,y) | < K |||y |. Therefore, for
all (a,0) and (x,y)in X X Y,

| B@,y) — B(x:8) — Blay) + B(a,b) ]

=|px—ay—b)|<K[x—a]ly—bl

From this it follows that, for any ¢ > 0,

|(x —a,y —b) | < K- =

| B(x.y) — B(x,0) — Blay) + B(ad) | < el (x —a,y —b) |,

where | (x —a,y —8)| =sup { | —a|,|y —b]}.

This proves the first part. Also, since

dp(a,b)(x,y) = B(x,b) + B(a.y),
df(ab) = p(—,b)p + Bla,—)g, where (p,q) = lyxy,

implying that df is linear.

(Don’t confuse the linearity of df with the linearity of df(a,b).)

Finally, since

| dB(ab)(xy) | < K|x]|b| + Kla]|ly|<2K|(ap) ] (=),

| df(ab) | < 2K | (a,b) |, for all (a,b),

from which it follows at once, by Prop. 15.17, that df is continuous.
So § is smooth. 0

This result looks less formidable if x-y is written for f(x,y). What it
then states is that

dB(ab)xy) = 2B + a-y,
or, by an inevitable abuse of notation,
d(a-b)(x,y) = x-b + a-y.
It may also be written, in the differential notation, as
d(x-y) =dx-y + x-dy.
Since the map X — X X X; x w» (%,x) is continuous affine, Prop.
18.17 has, by Prop. 18.6, the following corollary.



PROPERTIES OF DIFFERENTIALS 367

Cor. 18.18. Let 8: X X X—> Z be a continuous bilinear map.
Then, for any a € X, the induced quadratic map 5 : X — Z; x w»> f(x,x)
is tangent at a to the continuous affine map

X — Z; X - ﬂ(x,a) + ,B(a,x) - ﬂ(a,a),
that is, # is differentiable, with, for all a, x € X,

dna(x) = f(x,a) + p(a,x).
Also, dn is a continuous linear map. In particular, # is smooth. O

A particular case of Cor. 18.18 is the example with which we opened
the chapter, the map R — R; x »w»> x2, whose differential at any aeR
is the map x w»> 2ax.

There is a similar formula for the differential of a continuous multi-
linear map.

Prop. 18.19. Let f: X {X;} — Y be a continuous k-linear map,

ek
k being some finite number. Then g is smooth and, for all (x;:7€k)

and (x;/:iek) e X {X:},

(dB(x;: i € k))(x‘ 1€R)
= B(%0' %1, « -+ Xp1) + B(Xos®1 s Xy -« o Xemy) o -
+ Bxo, -+ o) Bm2'i-1). O
Immediate applications include the following.

Prop. 18.20. Let K =R or C. Then the differential at any point
a €K of the map K-— K; x> x", for any »n € w, is the linear map
K — K; x ww> na®~1 x, this being the zero map when n = 0. 0

Prop. 18.21. Let X be a finite-dimensional K-linear space, where
K = R or C. Then the map

det: L(X,X)—K; t-w»>dett

is, respectively, real or complex differentiable, d(det) ¢ being surjective
if, and only if, rk t > dim X — 1. O

For any t € L(X,X) the field element (d(det) 1x)(z) is called the trace
of t. With respect to any basis for X
trace t = Z tis
where n = dim X.
The chain rule, Theorem 18.7, may be restated in terms of dif-
ferentials and extended as follows.

Theorem 18.22. Let f: X »> Y be differentiable, or smooth, at
aeX and let g: Y >> Z be differentiable, or smooth, at f(a). Then
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gf: X »> Zis, respectively, differentiable or smooth at @, with
d(gf)a = (dg(f(a))(dfa).
Proof The part of the theorem that concerns the differentiability
of gf is just a restatement of Theorem 18.7. The smoothness of gf

follows from Props. 15.13 and 15.15, since the restriction of d(gf) to
(dom df)N f(dom (dg)) decomposes as follows:

X5 (X4 Ys)
If " % composition L ( X*, Z*),
Y 5> (Y, Zy)

composition being, by 15.40, a continuous bilinear map. 0

The formula in Theorem 18.22 may be abbreviated to

d(gf) = ((9g)f) - 4f,

o denoting composition of values.

In terms of the abbreviated notation introduced on page 362 and
developed on pages 364 and 365, Theorem 18.22 states that if f and g
are differentiable maps and if y = f(x) and z = g(y), then

dz dzdy

de  dyadx
The whole purpose of the notation is to make this formula memorable
and to ‘mechanize’ the matrix multiplication which arises when X, YV
and Z are expressed as products, so that the computations can be per-
formed without knowledge of matrices. For example, if X = X, X X,,
Y=Y, x Yyand Z = Z, x Z, and if (y4,51) = f(%0,%1) and (2,,2,)
= g(¥0,y1) the formula becomes

B dmy 0 B\ D0

ox, Ox; 0ye 0Oy, 0x, Ox,

o o |\ om o\

Ox, Ox, 9ve Oy, Ox, 0x,
02 _ > 9

and , forallh je2.

Ox; i 0y, ox;
The extension of these notations and formulae to products with any
finite number of factors is easy and is left to the reader. When X = R",
Y = Rr and Z = R? the matrices may be taken to be the appropriate
Jacobian matrices, with entries in R, rather than in L(R, R).

The next two propositions are complementary to Props. 15.47 and
15.48.
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Prop. 18.23. Let X be a complete normed K-linear space, where
K =R, C or H. Then the map y: L(X,X) >»> L(X,X); t w»t-1is
differentiable at 1 (= 1y) and dyl = —1 (= —1y4 x)).

Proof For any u € L(X,X) such that |u | < 1,
e —u) —2() = (=D(=) | =[(1 —u)* =1 —u]
=lu¥(l —u) [ < [u (1 —[u])™,

by the estimate of Prop. 1546, and, if |u|< 4, (1 —|u]) 1< 2.
Therefore

lu| <inf (Bde} = |l —w) —x(1) — (—1)(—u) | <s|ul.
That is, y is differentiable at 1 and dyl = —1. O

Prop. 18.24. Let X and Y be complete normed K-linear spaces;
where K=R, C or H. Then the map y: L(X,Y) > L(Y,X),
t s> -1 is smooth, and, for all # € GL(X,Y), and all t € L(X,Y),

dyu(t) = du=(t) = —u-ttu"L

Proof Since, for any # € GL(X,Y), v admits the decomposition
L(X,Y) — L(X,X) 2> L(X,X) — L(Y,X)
t w» ulf o Tty s L
the first being left composition with #-1 and the third being right
composition with #~1, and since each factor is differentiable, the first
and third being continuous linear, dyu exists and admits, by Theorem
18.7, the decomposition
L(X,Y)— L(X,X) = L(X,X)—> L(Y,X)
t o uttt o —utt s —u~t iyl
That is, dyu(t) = —u=tu-1.
The map dyu is an element of the linear space L(L(X,Y),L(Y,X)).
Now let
n: L(Y,X)— L(L(X,Y),L(Y,X))
be the continuous quadratic map defined by the formula

n(e)t) = —otv,
where v € L(Y,X) and ¢t € L(X,Y). Then dy = ny, from which it fol-
lows at once that dy is continuous and therefore that y is smooth. O

In the particular case where X = ¥ = K, where K =R or C, and
with L(K,K) identified with K, this proposition reduces to the state-
ment that the map K >> K; x »w» x~1is differentiable, with differential
at a € K* the map K — K; x w» —a~2x, From this and Prop. 18.20
it follows at once that Prop. 18.20 holds not only for all # € w but also
foralln e Z.
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Theorem 18.10 also may be restated and extended, with the same
convention as before on the use of the notation -1,

Theorem 18.25. Let f: X >> Y be an injective map between
normed affine spaces X and Y, differentiable at a € X, dfa: Xy — Y
being a linear homeomorphism, and let f-*: Y >» X be defined in a
neighbourhood of f(@) in Y and continuous at f(a). Then f-1 is dif-
ferentiable at f(a) and

d(F-9(f(a)) = (dfa)"
Moreover, if df is continuous, if f~! is continuous with open domain,
and if X (and therefore Y') is complete, then d(f-*) is continuous.

Proof The first part is Theorem 18.10. The second part follows,
by Prop. 15.48 and Prop. 15.13, from the following decomposition of

d(f—l) : m daf inversion
Vi X o> L(X,,Yy) > L(YyXy),
the completeness of X and Y being required in the proof that the

inversion map in the decomposition is continuous. 0O

Note again that this theorem does not provide a criterion for a dif-
ferentiable function to be invertible. The provision of such a criterion,
based on the invertibility of the differential at a point, is one of the main
purposes of the next chapter.

The differential of a more complicated map can often be computed
by decomposing the map in some manner and then applying several of
the above propositions and theorems.

Example 18.26.

Let W, X, Y and Z be normed linear spaces, let (f,g): W >> X X Y
be differentiable and let X x Y — Z; (x,9) w> 2y be a continuous
bilinear map. Then the map f-g: W »»> Z; w > f(w)-g(w) is dif-
ferentiable and, for all w € dom (f-g2) and all @’ € W,

(d(f-gw)(w') = dfw(w’)-g(w) + f(w)- dgu(=’)
(a formula sometimes dangerously abbreviated to
d(f-g) = df-g + [ dg).

The diagram of maps is

X
! = fa)
w. P A
\ %y = f (w) - g(w)
’

y = g(w)
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and the diagram of differentials at w and at (x,y) is

X
e ' = dfu(w)
d(z+y)
W, X ——————
wlw xl .y + x .y’
Y
y' = dgu(w’)

The proof is a direct application of Props. 18.15, 18.17 and Theorem
18.22. O

Example 18.27. Let Y and Y’ be linear complements of a linear
subspace X of a finite-dimensional real, complex or right quaternionic
linear space ¥V, and let f be the map

L(X,)Y) > L(X,Y"); twq't(lx + p't)~?,
where (p',¢): Y —V 2 X x Y’ is the inclusion and L(X,Y) and
L(X,Y’) are regarded as real linear spaces. (Cf. Prop. 8.12.) Then f is
differentiable and, for # € dom f and all ¢ € L(X,Y),
dfu(t) = ¢'(ly — u(lx + p'u)=* p')i(1x + p'u)=2.
In particular, df0 is the map
L(X,Y)—> L(X,Y'); twq't. ]

Example 18.28. Let W, X and Y be finite-dimensional real, com-
plex or right quaternionic linear spaces. Then the map
a: L(W,X) X L(X,Y)—> LW, X X Y); (5,8) w>(s,1s),
where L(W,X x Y) is identified with L(W,X) x L(W,Y), is
smooth, and its differential at a point (s,?) is injective if, and only if,
s is surjective. (Cf. Prop. 17.36.)

Proof The first component is linear and the second bilinear and
both are continuous; so « is smooth and, for all (s',¢') € dom «,
(dafs,£))(s'\t') = (', 85" + ¥'s).
Clearly (s',2s' +1's) =0 <« s =0 and #'s = 0 and, by Prop. 3.8 and
Exercise 5.26, t's =0 = t'=0, forall t' € L(X,Y), if, and only if, s is
surjective, implying that df(s,t) is injective if, and only if, s is sur-
jective. |

Singularities of a map

A differentiable map f: X >> Y is said to be singular at a point
a € dom f if its differential at a, dfa: X — Y, is not injective, the point
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a being then a singularity of f. It is said to be critical at a if dfa is not
surjective, the point a being then a critical point of f.

Example 18.29. The Jacobian matrix of the map
frRE—>R% - (2,) o (3a%,y)
at a point (x,y) e R?is fx 0\. The set of singularities of f is therefore
1

the line {0} x R, the rank of df at each singularity being 1. The image
of the set of singularities is also the line {0} x R. 0

Exercise 18.30. Show that the set of singularities of the map
fiRE—RE (x,y) wo (§2° — 2y,9)
is the parabola {(x,y) e R2:y = &2}, the rank of df at each singularity
being 1. Sketch the image of the set of singularities. O

Exercise 18.31. Verify that the map
F:R—>R%  taw (82 — 1,1t — 1))
has no singularities. Sketch the image of f. O

Prop. 18.32. 'The critical points of a differentiable map f: X »> R
are just the zeros of df. O

A local maximum of a map f: X — R from a topological space X to
R is a point a € X such that, for some neighbourhood 4 of a,

f(a) = sup {f(x): x € 4}.
A local minimum of f is a point b € X such that, for some neighbourhood
B of b,

f(d) = inf {f(x): x € B}.

Prop. 18.33. Let f: X >> R be differentiable at a, X being a
normed affine space, and let a be either a local maximum or a local
minimum of f. Then a is a critical point of f.

Proof, in the case that a is a local maximum of f.

Set @ = 0 and f(a) = 0. Then, for all ¢ > 0, there exists 6 > 0 such
that

2] <8 = f(») <0 and #x) —f(x)<elx],
where ¢ = dfa. Therefore there exists > 0 such that
(2| <6 = tx)<e|x]
and so, by Lemma 18.11, ¢t = 0.
The proof in the other case is similar. O
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A critical point of f may of course be neither a local maximum nor a
local minimum of f. For example, 0 is a critical point of the map R — R;
x > x3 but is neither a local maximum nor a local minimum of the
map.

Exercise 18.34.

Let X be a finite-dimensional real linear space, let r e R+ and
let f: X >> R be a map continuous on the set {x e X:|x| <7},
differentiable on the set {x € X:|x| <7}, and zero on the set
{xcX:|x|=r} Show that there is a critical point a of f, with
lal <. O

The study of local maxima and minima is continued in Chapter 19,
page 386.

FURTHER EXERCISES

18.35. Prove that the map R — R; x -»> x2 is not open and that the
differential of this map at 0 is not surjective. O

18.36. Compute the differential at (x,y,2) of the map f:R3>— R3;
(%,3,2) w> (22 + ¥%,52 + 22, x2) and prove that df(x,y,2) is invertible if,
and only if, y is non-zero and either x or 2 is non-zero. O
18.37. Let f : R* — R3; (x,y,2) »w»> (#,9,w) be the map defined by the
equations
U404t w=ux
v+ w=uxy
w = xy2.
Find S and £, (S), S being the set of points in R? at which the differential
of f is not invertible.
(The neatest solution involves application of the chain rule.) O

18.38. Consider the map

[ L(X,X) x L(X,Y)> L(X,Y); (ab)w ba-},
where X and Y are normed linear spaces. Prove that f is differentiable
and that df(1x,0)(a',b') =b. [
18.39. Prove that the bijection

1-L1[ > R; xw»> T

(cf. Exercise 16.80) is a smooth homeomorphism, that is, that it and its
inverse are smooth. 0
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18.40. Let X and Y be finite-dimensional linear spaces over R, let
&: X — Y be alinear surjection and let f: X — R be a map differenti-
able at 0. Prove that f|W: W — R is differentiable at 0, where
W = ker g. Prove also that if f| W has a local maximum at 0, then there
exists a linear map 1: Y — R such that df0 = Ag. O
18.41. Investigate the critical points of the map
R2—>R; (%) w»>xy¥x +y — 1).

(Start by making a rough contour map, then verify your conjectures by
explicit computations.) |
18.42. Consider the map

F:R2—>R;  (x,9) w>(y — x2)(y — 2x2).
Prove that (0,0) is ot a local minimum of f but is a local minimum of
the restriction of f to any line through (0,0). O

18.43. Let X and Y be two linear spaces, each assigned a norm
topology, and let f: X — Y be a map. Prove that f is tangent to the
zero map at 0 if, and only if, for any neighbourhood B of 0 in Y, there
exists a neighbourhood 4 of 0 in X and a map ¢: R >> R defined on
some neighbourhood of 0, with ¢(0) = 0, such that

(i) lim qSLtt) =0
and (ii) for all £ € dom ¢, f,(t4) < ¢(¢)B. ]



CHAPTER 19

THE INVERSE FUNCTION THEOREM

Let X and Y be normed affine spaces and let 4 be a subset of X and B
a subset of Y. A map f: A — B is said to be a smooth homeomorphism if
it is a homeomorphism and if each of the maps X >»> Y; x w» f(x) and
Y > X;y > f~Y(y)is smooth (C*). Amap f : X >> Y issaid to be
locally a smooth homeomorphism at a point a € X if there are open
neighbourhoods A4 of a in X and B of f(a) in Y such that f,(4) = B and
the map 4 — B; x ~» f(x) is a smooth homeomorphism.

The main theorem of this chapter, the ‘inverse function theorem’, is
a criterion for amap f : X >> Y to be locally a smooth homeomorphism,
when X and Y are complete normed affine spaces. Important corollaries
include the ‘implicit function theorem’ and various propositions pre-
liminary to the study of smooth submanifolds. Another corollary is the
‘fundamental theorem of algebra’.

Higher differentials are considered briefly at the end of the chapter.

The increment formula

One of the main tools used in the proof of the inverse function theorem
is the ‘increment formula’ (‘la formule des accroissements finis’). This
inequality replaces the ‘mean value theorem’, which occurs at this stage
in many treatments of the calculus of real-valued functions of one real
variable. The relation of the inequality to the mean value thecrem is
briefly discussed below.

Theorem 19.1. (The increment formula.)

Let a and b be points of the domain of a differentiablemap f : X >»> Y
such that the line-segment [4,] is a subset of dom f, X and Y being
normed affine spaces, and suppose that M is a real number such that
| dfx | < M for all x € [a,b]. Then

[f(0) —fa) | < M|b—al

Proof Set a =0 in X and f(a) =0 in Y. What then has to be
proved is that | f(b) | < M | b |. To prove this it is sufficient to prove
that, foralle > 0, | f(B) | < (M + &) | b].

375
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Let ¢ >0, let A={1€[0,1]:|f(4b)| < (M +¢&)A|b]|} and let
o = sup A. The set 4 is non-null, since 0 € 4, and it is bounded above
by 1; so o exists. Our task is to prove that 1 € 4. To do so we prove
first that ¢ € 4 and then that ¢ = 1.

Since f is differentiable at ¢b there exists 6 > 0 such that

| —0b| <6 = |f(x)— f(ob) — dfob(x —ob) | < c|x — ob]

= |[f(®) —f(ed) | < (M + &) |x —ob]|.

Also by the definition of o there exists p, 0 < p < ¢, such that
| pb — 6b | < 8 and p € A. Therefore

| f(ab) | < | f(ob) — f(pb) | + | f(rb) |
SMA+efo—p) o] +(M+2)p|b]=(M+eolb].
Thatis, 0 € 4.
If ¢ <1, there exists 7,0 <t <1, such that |7 — b |< 4§, and
| f(xb) | < | f(zb) — f(ob) | + | f(ob) |
<M+ e)r—0) [ 5]+ (M + 6o |b| = (M + e [b].
That is, v € 4, contradicting the definition of ¢. So ¢ = 1. O

Cor. 19.2. Let f: X>> Y be a differentiable map with convex
domain, X and Y being normed affine spaces, and let M be a real num-
ber such that | dfx | < M, for all x € dom f. Then, for all @, b € dom f,

/) —f(@) | <M|b—al O

"The following proposition is a refinement of Cor. 19.2.

Prop. 19.3. Let X and Y be normed affine spaces, let 4 denote the
closure of an open convex subset 4 of X, let f : 4 —> Y be a continuous
map and let f| 4 be differentiable with |dfa| < M, for all ae 4, M
being a real number. Then, for any a, b € 4,

lf) —f(@ | < M|b—al

Proof Let ¢>0 and let a’, ¥’ €4 be such that M|a —d'|,
M|b—Vb|,|f(a) — f(a')| and | f(b) — (&) | are each <}e. Then, by
Cor. 19.2,

f(0) —f(@) | < |f(®) — f&) | + 1 f(0) — fl@) | + | f(@) — f(a) ]
<te+M|b —a'|
<e+M|b—al.
Since this inequality is true for each ¢ > 0, it follows that
If(®) —f(@| < M[b—al

(Note that it is possible for the segment [4,b] to lie entirely in the

boundary A\ 4of 4) 0O
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The classical ‘mean value theorem’ states that if f:R >> R is a
continuous map with domain a closed bounded interval [a,5] and if f is
differentiable on the open interval ]a,b[, then, for some ¢& € Ja,b[,

f@) —f(@) = (&) — a).
It follows from this that, if | f'(x) | < M for all x € ]a,b[, then
1f(®) —f@) | < M|b—al
Theorem 19.1 and its corollaries are therefore generalizations of part of

the classical theorem.
Next, a simple, but important, application of the increment formula.

Prop. 19.4. Letf: X >> Y be a differentiable map with connected
open domain, X and Y being normed affine spaces, and let df = 0.
Then f is constant.

(Show, for some y € f,(X), that f1{y} is both open, by the increment
formula, and closed in dom f.) O

As a further application of the increment formula we have the fol-
lowing partial converse to Prop. 18.16.

Prop. 195. Let f: X X Y >> Z be a map, defined on some
neighbourhood of (¢,6) e X X Y, X, Y and Z being normed affine
spaces, and suppose that of the two partial differentials of f at (a,b) the
one, say

dof : X X Y >> L(Xy,Zy),
exists on a neighbourhood of (a,b) and is continuous at (a,b) while the
other,

dif : X X Y >> L(YyZy),
exists at (a,b). Then f is differentiable at (a,b), while, if d, f also exists on
a neighbourhood of (a,b) and is continuous at (a,b), then f is smooth at
(a,b). In either case,

df(a,b) = (dof(ab) d,f(ab)).

Proof Seta=01in X, b=0in Y and f(a,b) =0 in Z, and let
¢ > 0. Since d, f exists on a neighbourhood of (0,0) and is continuous at
(0,0), there exists a real 6 > 0 such that

| (xy) | <& = |dof(xy) — dof(0,0) | < fe.
The increment formula may then be applied, for any y € Y, to the map
X > Z; x~w» f(x,y) — dof (0,0)(x)
with domain the ball {x:|x | < 8} and differential at x the linear
map dof(x,5) — dof(0,0), the norm of this differential being bounded
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by 3¢ if |y | < 4. This yields the inequality

| f(%,3) — F(0.3) — dof(0,0)(x) | < 3e [,

whenever | (x,3) | < 0.
By the existence of d, f at (0,0) we may suppose that é is so small that

lyl<é = [f(0p) —dif00)(») | < 3elyl.
It then follows that

[@y)| <8 = [flxy) — dof(0,0)(x) — & f(00)) | < & (%) ],
that is, f is differentiable at (0,0), with the stated map as differential
there.

Since df admits the decomposition

L(X 4 Z#)

XxY & —
af

L(Xy % Yy, Z4)

where o, defined by the formula

otu)(xy) = #(x) + u(y),
is continuous linear, the additional condition on d; f at once implies the
continuity of df, and hence the smoothness of f, at (a,b). O

The inverse function theorem

The ‘increment formula’ is one of the main tools used in the proof of
the inverse function theorem, which now follows. The other principal
ingredient in the proof is the ‘contraction lemma’, Theorem 15.22. This
requires that certain normed linear spaces are complete, this condition
being automatically fulfilled whenever these spaces are finite-dimen-
sional, as they will be in most of our applications.

Theorem 19.6. (The inverse function theorem.)

Let X and Y be complete normed affine spaces, let f : X >»> Y bea
smooth map and suppose that at some point @ € X, f is tangent to an
affine homeomorphism. Then f is locally a smooth homeomorphism
at a, that is, there exist open neighbourhoods 4 of @ in X and B of
b = f(a) in Y and a smooth map g: Y >» X with domain B such that

s = (f‘A)su;l-
If, moreover, C is any connected subset of B containing b, there is
a unique continuous map g’': C—> X such that (fg'),, = 1, with
&' () = a, namely g’ = g|C.
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Proof Set a=0 in X and f(a) = #(a) =0 in Y. Since the affine
map ¢ is a homeomorphism, there is no loss of generality in supposing
also that ¥ = X and that # = lx. (Strictly speaking we consider
t-1 fin place of fand £-1 ¢ = 1x in place of ¢.) With these conventions
df0 = 1x. The argument is now based on the remark that, for all
#y€X, f(x) =y < x=y — h(x), where b = f — 1x.

Since df0 = 1x, dh0 = 0 and, by the continuity of df and therefore
of dhat0, thereexistsapositivereal d suchthat |x | < 6 = |dhx|< }
The ball C; = {x € X:| x| < 8} is convex. Therefore, by the incre-
ment formula applied to the restriction of % to Cj,

el o 1<8 = ) —h) | < 3o -,
In particular, since 2(0) = 0,
lx]<é = |hx)|<i|x]| <3é

Let B be the ball {y:|y| <44} and let y € B. Since X is com-
plete, since |x]| <6 = |y — h(x)| <|y| + | k)| < 6 and since
], |2 | <6 = |(y —hx) — (v — k)| <%}|x — x|, the con-
traction lemma applied to the map x «w» y — A(x) of C; to itself implies
that there is a unique x € Cy such that y — h(x) = x or, equivalently,
such that f(x) = y. Indeed, | # | < 6, forif | x | < dand if f(x) € B then
lx|=]f(x) —h(x)| <8 Nowlet A = {x:|x] <8} nfi(B). Then
fi(4) =B and (f| A)sy: A — B is bijective. Also, since f is con-
tinuous, 4 is open in X.

Next, g = (f | A)sr 1 : B —> A4 is continuous. For, since

2], 16" <8 = [f(®) —f(*)] =|x+ hx) — 2" — h(x) ]
> % —a"| — [ Alx) — (=) |
= %' ‘ x — l)
it follows that

by 1< = le(y) —&()|<2]y =)',
and so, for all ¢ > 0 and for all y, ¥’ € B,

ly —=y'1<de = |2() —&¥)|<e
Since dom g is open in Y'it follows, by Theorem 18.25, thatg: ¥ >» X
with domain B, is smooth,
Finally, the uniqueness statement follows directly from Prop. 16.74,
since X is Hausdorff and g is an open map. O

The implicit function theorem

The inverse function theorem, which we have just been considering,
is concerned with the possibility of ‘solving’ the equation f(x) = y for
‘¢ in terms of y’, near some point @ € dom f. It states precise sufficient
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conditions for this to be possible in terms of the possibility of solving
the affine equation #(x) = y, where the affine map ¢ is tangent to f at a,
there being a unique solution x of the latter equation, for each y, if, and
only if, ¢ is invertible.

The implicit function theorem is an apparently slightly more general
theorem of the same type. The problem this time is to solve, near some
point (a,b) € dom f, an equation of the form f(x,y) = 2 for ‘y in terms
of x (and 2)’. As in the case of the inverse function theorem, sufficient
conditions for this to be possible are obtained in terms of the possibility
of solving the affine, or linear, equation #(x,y) = 2 for y in terms of
x (and 2), where ¢ is tangent to f at (@,b). Such an equation has a unique
solution of the required type if, and only if, the map y w» #(a,y) is
invertible.

Theorem 19.7. (The implicit function theorem.)

Let X, Y and Z be complete normed affine spaces and suppose that
f: X X Y>> Z is a smooth map tangent at a point (¢,0) € X X Y to
a continuous affine map #: X X Y — Z whose linear part is of the form

X X Ye—>Zy; (%) > u(x) + o(3),
where u: X, —> Z4 is a linear map and v: Y, — Z is a linear homeo-
morphism.

Then there exists an open neighbourhood 4 of (¢,b) in X X Y and a
smooth map 4: X >»> Y such that graph 2 = 4 n f{f(a,b)}.

Moreover, if C is any connected subset of dom % containing 4, there

4

, ' XY
Py

t{tta, )}

+ fla,b) =t(gd)
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is a unique continuous map A':C-— Y such that for all xeC,
f(x,h (%)) = f(a,b) with k'(a) = b, namely &' =k | C.

Proof Seta=0in X, =0 in Y and f(a,b) = (a,b) =0 in Z.
Then the map F: X X ¥V »» X X Z; (»,y) w» (x,f(x,y)) is smooth,
with dF(0,0): X X Y — X X Z; (%,y) > (x,u(x) + v(y)) 2 homeo-
morphism by Exercise 15.55, since v is a homeomorphism. So by
Theorem 19.6 there exist open neighbourhoods A of0in X X Y and B
of 0in X X Zand asmoothmap G: X X Z > X X Y with domain
B such that G, = (F | A)y

Since F(x,y) = (»,f(»,y)), for all (x,y) € 4, G(»,2) is of the form
(%,8(x,2)), for all (x,2) € B, where g: X X Z >» Y is smooth, with
domain B, and y = g(x,f(x,y)), for all (x,y) € 4, and = = f(x,8(x,2)),
for all (x,2) € B.

Now let & be the map X >»> Y; x> g(x,0). Then £ is smooth,
since g is smooth, and, for all (x,y) € 4,

fery) =0 = y=Hh)

and h(x) = g®0) =y = 0=/f(xy);
that is, graph 2 = 4 n f1{0}.
The proof of the uniqueness statement is left as an exercise. O

The inverse function theorem may be regarded as a particular case of
the implicit function theorem. The details are left to the reader.

Smooth subsets

The inverse function theorem is important for us since it provides us
with several practical criteria for determining whether a subset of a
normed affine space is ‘smooth’ in a sense that will shortly be defined.
To avoid certain technical difficulties we shall restrict attention in this
section to finite-dimensional affine spaces and subsets of such spaces.
For extensions of the definition and theorems to the non-finite-dimen-
sional case the reader is referred to [37].

Suppose, therefore, that X is a finite-dimensional affine space. A
subset M of X is said to be smooth at a € M if there exist an affine sub-
space W of X passing through 4, open neighbourhoods 4 and B of ¢ in
X and a smooth homeomorphism /%: 4 — B tangent to 1x at a, with
h(ANnW)=BnM.

The affine subspace W is easily seen to be unique (by Prop. 18.8!).
The tangent space to W at a, TW,, is said to be the tangent space to
M at a.

A subset M of X is said to be smooth if it is smooth at each of its
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X X

points. If each of the tangent spaces of a smooth subset M of X has the
same finite dimension, m, say, we say that M is a smooth m-dimensional
submanifold of X.

A one-dimensional smooth submanifold is also called a smooth curve,
and a two-dimensional smooth submanifold a smooth surface.

In practice the subset M of X is often presented either as the image
of a map or as a fibre of a map. For example, the unit circle in R? is the
image of the map

R—R2; 0wl

and is also a fibre of the map

R2—R; (x,y) w22 + y2
Proposition 19.8 is concerned with the former possibility. It is of assis-
tance in determining whether the image of a map is smooth.

Prop. 19.8. Letf: W >»> X be asmooth map, tangent at c € Wto
an injective affine map ¢: W X, Wand X being finite-dimensional
affine spaces. Then there exists an open neighbourhood C of ¢ in W
such that the image of f|C, f,(C), is smooth at f(c), with tangent
space the image of ¢, with f(c) chosen as origin, T(im ).

Proof Setc=0in Wand f(c) =0in X, let u: X — Y be a linear
surjection with kernel im #, let s: ¥ —> X be a linear section of # and
let

¢ u
0y = W;;:Xz Y= {0}
L
be the induced split exact sequence associated with the direct sum
decomposition X = im ¢ @ im s.

Now define & = fr +su: X >> X. (If X is thought of as the
product X, x X, with Xy =im¢, X; = ims, then 4 is defined by
h(xg,%y) = f 5 (o) + (0,%y), for all (xo,%,) € X, X X,.) Then ht =f,
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X =ims

since 7t = 1y and ut = 0; also, 2(0) and dh0 = #r + su = 1x, that is,
h is tangent to 1x at 0.

From the inverse function theorem it follows that there are open
neighbourhoods 4 and B of 0 in X such that (k| B),,:B—>A4isa
smooth homeomorphism. Let C = #!(B). Then f(C) = k(B N im ¢),
with % tangent to 1x at 0. That is, f,(C) is smooth at 0, with tangent space
T(im £),. O

Cor.19.9. Letf: W >> X be a smooth map, tangent at each point
of its domain to an injective affine map, W and X being finite-dimen-
sional affine spaces, and let f also be a topological embedding. Then the

image of f is a smooth submanifold of X with dimension equal to
dim W. O

As the diagram suggests, the simplest cases occur when W = R and
X = R?2 The map f then has two components

fo:R> R and fi:R >> R

and the map f has injective differential at a point @ € dom f unless the
differential coefficients (f,)'(2) and (f;)(a) are both zero.

In this context W is often called the parameter space and the map
f: W »>> X a parametric representation of its image.

This is a suitable place to remark that the word ‘curve’ is widely used
in two quite distinct senses, either to connote a one-dimensional subset
of an affine space, as here in the phrase ‘smooth curve’, or to connote a
continuous map of R or an interval of R to an affine space, as in the
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phrase ‘Peano curve’ (cf. Exercise 15.61). Peano’s discovery of the first
space-filling curve in 1890 caused a furore. It had been naively assumed
until then that the image of an interval of R by a continuous map must
be either a point or a one-dimensional subset of the target space. The
whole study of dimension is a subtle one, with various candidates for the
principal definitions. The classical work on the subject is [30]. For some
further remarks on space-filling curves, and another example, see [54],
page 341.

Example 19.10. Let Ly(X,Y) denote the set of elements of L( X, Y)
of rank k, X and Y being finite-dimensional linear spaces. Then L,(X,Y)
is a smooth submanifold of L(X,Y), with dimension k(n 4 p — k),
where dim X = n, dim Y = p.

Proof Let veLy(X,Y) and let X, = kerv, Y, = im v. Then we
may think of X as X, X X; and Y as ¥, X Y,, where X is some linear
complement of X in X and Y, is some linear complement of Y, in Y.
Moreover, v,| X, is bijective; so u,| X, is bijective for # sufficiently
close to v, by Prop. 15.45.

Consider the map

[ L(X,Y,y) X L(Yy,Y;) > L(X,Y); (s5,2) ww>(s,25),
with domain GL(X,Y,) X L(Y,,Y;), GL(X,Y,) denoting the subset of
surjective elements of L(X, Y,). This is injective, with image in L(X,Y).
It is also smooth, and the differential at any point of its domain is
injective, by Example 18.28. Moreover, if # in Ly(X,Y) is sufficiently
near v, then % is in the image of f; for it is easily verified that in that case
u == (s,ts), where s = u, and ¢ = (u,|X;)(%,| X;)~*. From this for-
mula it follows also that the map is an embedding. Finally
dim (L(X,Y,) X L(Y,,Y,)) = nk + k(p — k).
So, by Cor. 19.9, L(X,Y) is a smooth submanifold of L(X,Y), with
dimension k(n + p — k). 0
The next proposition and its corollary, which are complementary to
Prop. 19.8, enable us to determine whether a fibre of a map is smooth.

Prop. 19.11. Letf:X >> Y be a smooth map, tangentata e X to
a surjective affine map ¢: X — Y, X and Y being finite-dimensional
affine spaces. Then there exist open neighbourhoods 4 and Bof ain X
and a smooth homeomorphism % : 4 — B, tangent to 1x at a, with

h(4 0 £'{(a)}) = B N f*{f(a)}
and with fh = t| 4.



SMOOTH SUBSETS 385

Proof Set a =0 in X and f(a) =0 in Y, let X, = {0}, with
inclusion map 7: X, — X, let s: Y — X be a linear section of ¢, with
image X, and let

i ¢
0 ZX, ZXZ2YZ {0}
? 3
be the induced split exact sequence. The choice of s is equivalent to the
choice of the linear complement X; of X, in X.

'O el
Xzims ‘y
A

o

(L

Define g = ip + sf: X >»> X. (If X 1s identified with X, x X then,
for all x € X, g(x) = (x,5(x)).) Since ¢ is linear, i = 0 and ts = 1y,
tg = tip + tsf = f.

Also, g(0) = 0 and dg0 = ip + st = 1x; that is, g is tangent to 1y at 0.

From the inverse function theorem it follows that there are open
neighbourhoods B and A of 0 in X such that (g | 4), :B—>A4isa
smooth homeomorphism, tangent to 1x at 0. Define £ = (g | A)oz ™
This map has the requisite properties. O

Cor. 19.12. Letf: X >> Y be a smooth map, tangent at a € X to
a surjective affine map ¢: X — Y, X and Y being finite-dimensional
affine spaces. Then the fibre of f through q, f1{f(a)}, is smooth at q,
with tangent space the fibre of ¢ through a4, with a as origin,
T O
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Example 19.13. 'The sphere S2 is a smooth two-dimensional sub-
manifold of R3,

Proof Letf:R?— R be the map given by f(x,y,2) =x% 1+ y2+ 2%
Then S? = fi{1}. Now df(x,y,2): R®— R is the linear map with
matrix (2x,2y,2z), of rank 1 unless x =y = z = 0, and therefore of
rank 1 at every point of S2 Therefore S2 is a smooth submanifold
of R2. It has dimension 2 since the kernel rank of df(x,y,2) is 2 for every
point (x,9,2) € S2 O

It follows, by the same argument, that for any n, S* is a smooth
n-dimensional submanifold of R*+1,

Example 19.14. The group O(n) is a smooth submanifold of R(n),
of dimension {n(n — 1), for any =.

Proof Let f:R(ny— R (n) be the map defined by f(¥) = #*¢, t*
being the transpose of ¢ and R (n) being the subset {# € R(n): t* = t}
of symmetric elements of R(n). Then O(n) = f1{1}, where 1 is the
identity on R”. Now, since the map R(n) — R(#n); 2 w»> t* is linear, by
Prop. 9.12, it follows, by Prop. 18.17, that, for any ¢, u € R(n),

dft(u) = t*u + u*t.
If t* = t-*, then dft is surjective. For let v € R  (n). Then
dft(3tv) = §t*to + Jo¥*t*t = 0.

Also, since dim R, (n) = dn(n + 1), krdft = in(n — 1). The asser-
tion follows, by Prop. 19.11. O

Notice that the tangent space to O(n) at 1 is the translate through
1 of kerdfl = {t eR(n): t* + ¢ = 0}, the subspace of skew-sym-
metric elements of R(n). Analogous examples culled from Chapters
11, 12 and 13 are reserved for study in Chapter 20.

Local maxima and minima

The following corollary of Prop. 19.11 can be of value in locating the
local maxima and minima of a real-valued map whose domain is a
smooth subset of a finite-dimensional affine space.

Prop. 19.15. Letf:X >> Y be a smooth map, tangent at a € X
to a surjective affine map ¢: X — Y, X and Y being finite-dimensional
affine spaces, and let ¢ : X >> R be a map tangent at a to an affine map
B: X —R. Then, if the restriction of ¢ to the fibre of f through a
is locally a maximum or minimum at a, there exists an affine map
y: Y —> R such that § = y2.
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Proof Set a =0 in X, f(a) =0 in Y and ¢(a) =0 in R. Then,
since t is surjective, there exists, by Prop. 19.11, asmoothmap g : X >> X
tangent to 1x at O such that fg is the restriction to dom g of #. Let

¢ = dg.

Y

Then ¢’ is tangent to § at 0. Also the restriction of ¢ to {0} has locally
a maximum or minimum at 0 if, and only if, the restriction of ¢’ to
W = {0} has locally a maximum or minimum at 0. Since W is a
linear space, a necessary condition for this is, by Prop. 18.33, that
d(¢' | W)0 = (d¢p'0)|W = B| W shall be zero.

inc t
0} W X Y
) 7
BlW 'ﬁ /Y
R/

The existence of y then follows from Prop. 5.15. O

0

An equivalent condition to that stated in Prop. 19.15 is that there
exists a linear map y4: ¥ — R such that

dpa = By = ystsx = ysdfa.
When X == R* and Y = R?, the linear map déa is represented by the
Jacobian matrix of ¢ at a, the linear map dfa is represented by
the Jacobian matrix of f at @, and the linear map y, is represented
by the row matrix of its coefficients. For example, when n = 3 and
p =2, with (y9,91) = f(%0,%1,%2) and with 2 = ¢(x,,%1,%5), the condi-
tion is that there exist real numbers 4y, 4, such that

(& 2 2) g ay (B 2o 2
ox, 0%, Ox, = 4 ox, Ox, 0%,

1 %1
Ox, Ox; 0x,

The matrix equation dpa = yp,dfa is called the Lagrange equation and
the coefficients of y, are called the Lagrange multipliers.

Note that this method of locating possible local maxima and minima
may fail if dfa is not surjective. For example, the minimum value of
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the restriction of the map R2—R; (»,y) w»x, to the subset
{(x,y) e R%: y2 = x%} is clearly O, attained at (0,0). However, the
Lagrange equation
(1 0)=A43x* —2y),

that is, 3Ax2 = 1 and —2y4 = 0, admits no solution satisfying y2 = x2.
Here f has been taken to be the map R? — R; (x,y) v x* — y%and the
method fails because df0 = (0,0) does not have rank 1.

The Lagrange method of locating maxima and minima has heuristic
value, but it is not the only, nor necessarily the best, method in practice.

Example 19.16. Find the maximum value of 2, given that
(%,y,2) eR%® and that x> + 2* =2y andx —y +4 =0.

Solution

(a) (Direct): From the equations ¥% + 2% = 2yandx —y + 4 =0, we
obtain x2 + 22 =2x 4+ 8. S0 9 — 22 = 52 — 2x + 1 > 0. Therefore
|2 <3,and 2 =3 whenx =1andy = 5.

(b) (Lagrange): Since all the relevant maps are smooth, the equation for
possible local maxima and minima is

O 0 1)=@A p)2x —2 22
( 1 -1 0 )

That is, 0 = 2x + 4 = —24 — u and 1 = 242, implying that (1,5,3)
and (1,5,—3) are possible candidates. The 2 X 3 matrix has rank <2
only when x = 1 and 2 = 0, and therefore has rank 2 for all (»,y,2) such
that ¥ + 22 — 2y = x — y + 4 = 0. So there are no other candidates.
However, before we can conclude that 3 is the largest value attained by
2 we have to have some reason to suppose that on the set in question 2
is bounded and attains its bounds. We leave this to the reader and sus-
pect that in doing so he will find himself rediscovering solution (a)! ]

The rank theorem

The following proposition is the main ingredient in the proof of
Theorem 19.19, the rank theorem.

Prop. 19.17. Let f = (fof1): X >> Y, X Y, be a smooth map
tangent at 0 to a linear map ¢ = (,,2,): X — ¥, X Y,, where #, is
surjective and #; =0, X, Y, and Y, being finite-dimensional linear
spaces, and suppose that, for each a € dom f, im (dfa) is the graph of a
linear map from Y, to Y,. Then there exist an open neighbourhood
A of 0 in dom f and a smooth map ¢: Y, »> Y,, with d¢0 = 0, such
that im (f | 4) = graph ¢.
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Proof The map f, is tangent to £, at 0, and since #, is surjective there
exist, by Prop. 19.11, open neighbourhoods 4 and B of 0 in X and a
smooth homeomorphism g: B — 4, tangent to lx at 0, such that
fog = to | B. We may choose B so that it is of the form B, 4 B;, where
B, is a convex open neighbourhood of 0 in X, == ker #, and B, is an
open neighbourhood of 0 in some linear complement X; of X, in X.

Let f' = fg. Then im (f|4) = im f’. Also, since g is tangent to 1x
at 0, f' is tangent to # at 0. 'This implies, in particular, that df;0 = 0.

Let b € B. Since im (dfa) is the graph of a linear map from Y, to Y,
and since g is a smooth homeomorphism, im (df’d) is the graph of a
linear map from Y, to Y;. Since df'gb = ¢,, it follows that ker (df’b)
= ker t, = X,. Since this is true for all b € B, and since B, is convex,
the restriction of f’ to the intersection of B with any translate of X
in X has zero differential, and so is constant, by Prop. 19.4. So

imf = im ('| By).

)l' {0} x ); QIOPh ¢

Xo o) ox {0}

Y= x¥q

Y
B=648,

X=;\8®Xl

Now define ¢ = (fi|B)(t, | X1)~* Since f,|B;, =1t,|B,, it at
once follows that im (f’|B;) = graph ¢. That is, im (f|A4) = graph ¢.
Finally, since df;0 = 0, d¢0 = 0. O

Cor. 19.18. Letf:X >> Y (= Y, X Y,) be a map satisfying the
conditions of Prop. 19.17. Then there exist open neighbourhoods C and
D of 0 in Y and a smooth homeomorphism &: C — D, tangent to 1y
at 0, such that im (kf) < Y, the differential of the map

X > Yy x> kf(x)
at 0 being surjective. O

In particular, it follows that there exists a smoothmap k,: ¥ »»> Y,
defined on a neighbourhood of 0, and with surjective differential at 0,
such that &, f = 0. Therefore, when Y = R™and dim Y, = 1tk df0 =7,
and given the conditions of Prop. 19.17, there exists, a smooth map
G: Y>> R™ ", defined on a neighbourhood of 0, and with surjective
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differential at 0, such that Gf = 0. This is sometimes loosely referred
to as the functional dependence of the components of f at 0. (Cf. [47], in
particular Remark 2 on page 918.)

Theorem 19.19. (The rank theorem).

Letf : X »> Y beasmooth map such that the restriction of the map
rkf : X >»> o to some neighbourhood of a point a € dom f is constant,
X and Y being finite-dimensional affine spaces, and let £: X — Y be
the affine map tangent to f at a. Then there exist open neighbourhoods
4 and B of a in X, open neighbourhoods C and D of f(a) in Y, with
Ji(B) = C, a smooth homeomorphism 4: 4 — B tangent to 1x at q,
and a smooth homeomorphism k: C — D tangent to 1y at f(a) such
that the map &fi: X >»> Y is the restriction to A4 of the affine map ¢.

(Apply Cor. 19.18 and Cor. 19.12) O3

The fundamental theorem of algebra

In Chapter 2 we sketched a proof of the fact that any polynomial

map C—> C; 2z ww» a; 2* has at most n zeros. What we could not
P ken+1
(/3

then prove, except in trivial cases, was that if the polynomial has positive
degree then it has at least one zero. This we are now able to do.

Theorem 19.20. (The fundamental theorem of algebra.)
Any polynomial map over C
[:C—>Cizw> Y g 2%,
kew
of positive degree, is surjective.

Proof By Example 8.14 and Exercise 17.53, the map f may be re-

garded as the restriction to C with target C of a continuous map
f:CU {0} =CPl—CuU {0}

with f(o0) = co. Moreover, since CP! is compact and Hausdorff,
im f is compact and therefore closed in C U {co}, implying that the
complement in C of im f is open in C. Since CP! is connected, im f is
connected, implying that f is not constant. Finally, since C is connected,
im f is connected.

Now f is smooth and has bijective differential at all but a finite
number of points. For the differential at any z € C is multiplication

by the complex number ¥ ka; 2*-! and is therefore bijective unless
S kap 3*-1=0. Howevfct:;): since f has positive degree, the poly-
flegr:lial > ka, %1 is not the zero polynomial and so, by Prop. 2.18, it
is non-;::':) at all but a finite number of points.
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By the inverse function theorem it follows that f is locally a homeo-
morphism at all but a finite number of points, and therefore at all but a
finite number of values it is locally trivial, by Exercise 16.86, since each
of its fibres is finite, again by Prop. 2.18.

Since also the complement in C of im f is open, the restriction of the
map C—> w; ¢ w> #(f*{c}) to the complement in C of the finite set of
critical values of f is locally constant, that is, constant on some neigh-
bourhood of each point of its domain. Since the complement in C of a
finite subset is connected, by Exercise 16.99, this restriction is a constant
map. The constant value cannot be zero, since f is not constant and
im f is connected. Therefore each point of C is a value of f; that is, f is
surjective. O

Cor. 19.21. Let 3 a,2* be a non-zero polynomial of degree n over
keo
C. Then there exists « € C* such that ¥ a,2* = a, [] (z — «.).

kew ien
Proof Induction on the degree, with Theorem 19.20 as the induc-
tive step, the cases n = 0 and » = 1 being trivial. O

A field K that satisfies Theorem 19.20 or, equivalently, Cor. 19.21,
with K in place of C, is said to be algebraically closed. For example, C is
algebraically closed. The field R is not algebraically closed, since the
polynomial map R — R; x - &2 is not surjective.

Lemma 19.22. Let 3 4, 2* be a polynomial over C with real

kew
coefficients and suppose that, for some a €C, ¥ a,«* =0. Then
kew
Y a @k = 0.
kew
Proof Since the coefficients are real, Y, @, & = Y a; o*. O
kew kew

Cor. 19.23, Let 3 a; 2" be a non-zero polynomial of degree n over

kew
C, with real coeflicients. Then there exists m € w such that 2m < » and
« € C™ and f§ € R*—?" such that

kzakzk:an]:[(z—“i)(z_&i)_l_[z (2 — By O
€w iem jen—2m
Cor. 19.24. Let } a, " be a polynomial of odd degree over R.
kew
Then, for some § €R, Y, a; ,B" = 0. O

kew
Cor. 19.25. Any polynomial map of odd degree over R is sur-
jective. a
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Higher differentials

Until now the entire discussion in Chapters 18 and 19 has been of the
first differential df of maps f: X >»> Y, where X and Y are normed
affine spaces. Higher-order differentials of f are defined recursively, by
the formula ’

dntif = d(d"f), foralln € w,

where, by convention, d% = f. In general, the targets of these differ-
entials become progressively more complicated. For example, the first
three differentials of the map f : X >»> Y are of the form
df : X »» L(X\,Yy)
a1 X »> L(Xg (X4, Yy))
and d3¥f : X > L(X,L( X4 L( X4, Yy))),
respectively, though, in the particular case that X, = R, each of the tar-
gets has a natural identification with Y, by Prop. 3.30. The map f is
said to be k-smooth, or C¥*, at a point a € X, for some particular k& € w,
if d*f is defined on a neighbourhood of @ and is continuous at a, and to
be infinitely smooth, or C*, at a if, for each k € w, d*f is defined on a
neighbourhood of a. (Many writers use the term ‘smooth’ to mean
‘infinitely smooth’.)
When f is C®at a there is, for each x € X, a sequence on Y,

w2, (dfa)) . . (),

men 11 (m arguments)
known as the Taylor series of f at a with increment x. The map f is said
to be analytic, or C*, at a if, for some 6 > 0, this sequence is conver-
gent whenever | x | < 4, with limit f(a + x).

The map f is said to be C*, C* or C” if, for each a edom {, f is,
respectively, C*, C® or C* at a. Examples exist of maps which are C¥,
but not C¥+1, and C*, but not C*.

It is not possible here to prove any statements concerning analytic
maps. It is, however, possible to prove some simple properties of C* and
C* maps, and this we now do.

Prop. 19.26. Any continuous linear or bilinear map is C*.

Proof Let t be continuous linear. Then, by Prop. 18.14, dt is con-
stant and d*¢ = 0 for all k > 1.

Let $ be continuous bilinear. Then, by Prop. 18.17, df is continuous
linear. So 4?8 is constant and 4% = 0 for all & > 2. O

Prop. 19.27. Let (f,g): W >> X X Y be any map, where W, X
and Y are normed affine spaces. Then (f,g) is C* or C* at a point
a € Wif, and only if, fand g are each, respectively, C*or C* ata. O
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Prop.19.28. Letf: X >> YbeC*¥ataecXandletg: Y >> Zbe
C* at f(a), where kew or k = o, X, Y and Z being normed affine
spaces. Then gf : X >»> Zis C* at a.

Proof The proof is by induction on k, the basis being the case
k =1, which is Theorem 18.22. Suppose the proposition true for
k = m and let f and g be C™+! at a4 and f(a), respectively. Then, since
d(gf) admits the decomposition

XY S LX,Y)

composition
7 X — L(Xy,Zy),

Y2 s (Vi Za)
and since £, df, dg and composition are C™, composition being continuous
bilinear, it follows by Prop. 19.27 and two applications of the inductive
hypothesis, that d(gf) is C™. So gf is C™+1.
(The proof of Prop. 19.27 uses a special case of Prop. 19.28 and
conversely. Both inductions should therefore be carried out simul-
taneously.) O

Prop. 19.29. For any complete normed linear spaces X and Y the

inversion map
1 L(X,)Y) > L(Y,X); twst-?

is C*. O

Prop. 19.30. Letf:X >> Y be a map satisfying at a point a € X
the same conditions as in Theorem 18.25, with the same convention as
before on the use of the notation f-1, and suppose further that X (and
therefore Y) is complete and that f is C* at a, where 2 € w or k = 0.
Then f-1is C* at f(a). O

Finally, the second differential of a map is symmetric, in the following
sense.

Prop. 19.31. Letf: X >»> Y be a twice-differentiable map, X and
Y being normed affine spaces. Then, for any a edomf, and any

x, x' € Xy,
(@%a(x))(x) = (d*fa(x))(x").
Proof Set a=0 in X, f(a) =0 in Y and dfa(=df0) =0 in
L(X,Y). This last we may do by replacing the map f by the map
x - f(x) — df0(x),

which has the same second differential as f. The result then follows
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from the lemma, that, for any ¢ > 0, there exists > 0 such that
sup {|x],|#" [} <30 =
|flx + &) — flx) — f(*) — (@F0N) | < 3e(l 2] + 2" ]) 2]
Assuming its truth, we have at once that
| (d%0())(x) — (d%O0(x))(x") | <3e(| * | + | & )7,
provided that sup {| x |, | " |} < 4. But this last condition can now be
discarded, by the homogeneity of the previous inequality with respect

to multiplication by positive reals (the argument is similar to that used
in the proof of Lemma 18.11), from which it follows that

| (@FO0(x))(*) — (d*f0(x))(x) | =0

and therefore that (d30(x"))(x) = (d3f0(x))(').

Proof of the lemma Since df is differentiable at 0 it follows that,
for all & > 0, there exists § > 0 such that

x| <d = |dfx—d¥0x|<e|x].

Let | x|, | «’ | < 36. Then | x + &' | < 4. Now

| + %) = f3) — () = dHOEN | ,

< |flx + &) — f(%) — f(&) — dfx'(%) | + | dfx’ — df0(x") | | x .
To estimate the first of the two terms on the right-hand side we apply
the increment formula to the map

2 - f(2 + &) — f(x) — df’(x)
with domain the ball {x: | x | < 6}. The differential of this map at x,
the linear map df(x -+ x’) — dfx — dfx’, has norm
< [df(x + &) — d*f0(x + &) | + | dfx — d*f0(x) | + | dfs’ — d>fO(x") |
< 2(|x|+|x"]), sincealso|x’|< 6.
It follows from this that the left-hand side of the original inequality is
<2(|x|+ |« ) 2] +ela|]x]
< 3e(|x|+ |2 ])lx], asrequired. O
Cor. 19.32. Let f: X X ¥ >> Z be a twice-differentiable map,

X, Y and Z being normed affine spaces. Then, for any (a,b) € dom f
and any x € X,y € ¥,

didof(a,0)(y)(x) = dod1 f(ab)(*)(y)-
Proof For any (a,b) e dom fand any x € Xy, y € Y,
dod, f (a’b)(x)(y) = dgf(a,b)(x,O)(O,y)
and dido f@B)H)E) = dY@HON0. O



FURTHER EXERCISES 395

FurTHER EXERCISES

19.33. “The equation f(x,y) = 0 can be solved locally for y in terms of
x if the partial differential of f with respect to y is invertible.” How
accurate a version of the implicit function theorem is this? O

19.34. Deduce the inverse function theorem from the implicit func-
tion theorem. 0O

19.35. Letf: R?®>> R be a continuously differentiable map such that,
at each point (x,y,2) of f1({0}), each of its three partial differential
coefficients is non-zero. State and prove a precise version of the loosely
worded statement

PXDE 1 onfifo)),

explaining carefully the meaning to be assigned to the symbols on the
left-hand-side. O

19.36. What is the dimension of R(2), the real linear space of 2 X 2
real matrices?

Consider the map f : R(2) — R; a w» det a. Compute dfa(b), for each
a,b eR(2), and show that, for each & eR(2), (df1)(d) = by + by
Prove that SL(2;R), the set of 2 X 2 real matrices with determinant 1,
is a three-dimensional smooth submanifold of R(2). a

19.37. Consider the map f:R(2) — R(2); t-w>t-¢, where, for all

t= (a c) eR(2), t-= <d c\. Verify that, for every u, ¢ € R(2),
b d b a

dfu(t) = u~t + t~u. Describe the matrices in the kernel and image of

df1 and prove that f({1}) is a smooth submanifold of R(2). O

19.38. Find the maximum value of x — 2y — 22, given that(x,y,2) eR3?
and that x? + y% 4 22 = 9. 0

19.39. Find the maximum and minimum values of
(i) 2x% — 3y* — 2x
(ii) 2x% 4 y2 + 2x,

given that (x,y) e R? and that 2* + y2 < 1.

(The direct approach involves treating the interior and boundary of
the circle separately in the search for candidate points, there being
several ways of treating the boundary. An alternative is to regard the
maps involved as maps from the unit sphere S2 to R.) O
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19.40. Let f : R? — R? be defined by
u=ux%—9y*+ 2,
v = 2xy — 2y,
where (u v) = f(x,y). Show that the subset S of points (%,y) for which

df(x,y) is non-invertible is the circle {(x,y): x% + y* = 1}. Find the
maximum and minimum values assumed by #* 4 2 on S. O

19.41. Prove that the map (x,y,2,f) w» (%2 + 32 + 22 4 ¢2) restricted
to the set {(»,y,2,f) € R*: ¥t — y2 = 1} attains a minimum value. Find
this value and the set of points at which it is attained. O

19.42. Let X be a finite-dimensional real linear space. A critical point
a of a twice-differentiable map f : X — R is said to be non-degenerate
if the linear map d3%a: X — XL is bijective. By applying the inverse
function theorem to the map df, prove that if f is C'? each non-degen-
erate critical point of f is isolated, that is, that there is some neighbour-
hood of the critical point containing no other critical points. |

19.43. Letf: X -— R be a C2? map, where X is a finite-dimensional
real linear space, let a € X, let X, = ker d*a and let X; be a linear
complement of X, in X. Prove that the map
XO X Xl (= X) -_> Xo X XlL; X > (xo,d]_fx)
has bijective differential at @ and therefore that there are open neigh-
bourhoods 4 of a in X and B of (ay,d,fa) in X, x X,T such that the
map h: A—> B; x > (%,,d, fx) is a smooth homeomorphism.
Letg =fh-1: X, X X,¥— R. Prove that
(i) the critical points of g all lie on X, X {0}
(i) dof = (dog)h
(iil) g | (Xo x {0} is C2 O
19.44. Letf: X— R, g: X— R, and %: X — X be twice-differen-
tiable maps such that g = Af, each being defined on a neighbourhood
of 0 and sending 0 to 0. Suppose, moreover, that df0 = 0 and dg0 =0
and that dk0 is a linear homeomorphism. Prove that, for any &’ € X,
a°g0(x)(x") = d*f0(x)(),
where & = dh0(x"). O

19.45. Give an example of a commutative diagram
x>y

R

x Ly
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of twice-differentiable maps between normed linear spaces, with A,
and kg, smooth homeomorphisms, such that, for some 4’ € X’ and
a=ha)eX,

dfa=0 but d3f'a’=0. |

19.46. Let

X, X X0 Yo x Y,

R ) k

X, x X155 ¥ x v
be a commutative diagram of twice-differentiable maps between normed
linear spaces, each a product of normed linear spaces as indicated, each
map being defined on a neighbourhood of 0 and sending 0 to 0. Sup-
pose, moreover, that

0 ¢ [0 ¢
dfo = (O 0) and df'0 = (0 0)
where ¢: X,—> Y, and ¢’: X' — Y; are linear homeomorphisms,
and that dh0 and dkO are linear homeomorphisms. Prove that d2,0 = 0
and dgk,0 = 0, that doh0: X, — X, and d,k,0: Y, — Y} are linear
homeomorphisms and that, for any &’ € X',
d(dof1)0(x") = (dik:0)(d(dof)0(ARO(x"))doh0). [
19.47. Let X and Y be normal linear spaces, let f : X >> Y be twice

differentiable at some point @ € dom £, and let ¢ : X >> Y be defined
on dom f by the formula

$(x) = f(x) — f(a) — dfa(x — a) — }d’fa(x — a)(x — a).
Prove that, for any ¢ > 0, there exists 6 > 0 such that
|z —a|<d = [dx)]|<e|x—alt
(Since f is twice differentiable at a, df is differentiable at a and $isClat

a. Show first that | dé(x) | < ¢ | x — a|, for all x sufficiently near a.
Then apply the increment formula to ¢ near a.) O

19.48. (Taylor’s theorem—W. H. Young’s form.) Let X and Y be
normed linear spaces, let f: X >> Y be n times differentiable at some
point a edom f, n being finite, and let ¢: X >> Y be defined on
dom f by the formula

8e) = 1) = 2, dfalls — an.

€N

Prove that, for any ¢ > 0, there exists § > 0 such that
|* —a]<6 = [Hx)[<elx—al~ [
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19.49. Let X and Y be normed linear spaces, letf : X >»> Y be C"at
some point a € dom f, n being finite, and let p: X X X >> Y be
defined near (,a) by the formula

1
) = F5) — 2 dnft)e — by
men''v e
Prove that, for any ¢ > 0, there exists § > 0 such that
|(55) — (@) | <8 = |pd)|<elx—b O

19.50. Let X, Y and Z be finite-dimensional real linear spaces and let
f: X X Y—Z be a C? map such that, for each x € X, the map
f(x,—): Y — Z is continuous linear, p being any finite number greater
than 0, or co. Prove that the map

X—L(Y,Z); x> f(x,—)
is C?. (Recall Exercise 15.59.) O
19.51. Consider what difficulties might arise in generalizing the section

on smooth subsets to subsets of normed affine spaces which need not
be finite-dimensional. O



CHAPTER 20

SMOOTH MANIFOLDS

Consider again the definition on page 381 of a smooth submanifold M
of a finite-dimensional real affine space X. The subset M of X is smooth
(C?) at a point a € M if there is an affine subspace W of X passing
through @ and there are open neighbourhoods 4 and B of a in X,
and a smooth homeomorphism % : 4 — B, tangent to 1x at a, such that
h(ANnW)=BnM.

Let 7, in such a case, denote the map W >—»> M; w ww» h(w). Its
domain is 4 N W, which is open in W, and it is an open embedding,
since & is a homeomorphism and B N M is open in M. So (W) is a
chart on M in the sense of Chapter 17. Such charts will be called the
standard charts on M, as a smooth submanifold of X.

The following proposition follows at once from these remarks.

Prop. 20.1. Let M be a smooth submanifold of a finite-dimensional
real affine space X. Then M is a topological manifold. O

Now consider two standard charts on a smooth submanifold.

Prop. 20.2. Let i: V >> M and j : W>> M be standard charts
on a smooth submanifold M of a finite-dimensional real affine space X.
Then the map jr 'y, is 2 smooth homeomorphism.

Proof From its construction, the map f; %, is the restriction to an
open subset of the affine subspace ¥, with image an open subset of the
affine subspace W, of a smooth homeomorphism whose domain and
image are open subsets of X. O

These propositions provide the motivation for the following defini-
tions and their subsequent development. The chapter is concerned
mainly with the simplest properties of smooth manifolds and smooth
submanifolds of smooth manifolds. Tangent spaces are discussed in
detail, examples of smooth embeddings and smooth projections are
given and the chapter concludes with the definition of a Lie group and
the Lie algebra of a Lie group, and further examples,

399
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Smooth manifolds and maps

Let X be a topological manifold. Then a smooth (C*) atlas for a
topological manifold X consists of an atlas & for X such that, for each
(E)), (F,)) € &, the map

Jaur i E>>F; a~w»jti(a)

is smooth.

Since the map ,,; 'j must also be smooth, it is a corollary of the defini-
tion that o ‘s is a smooth homeomorphism.

Example 20.3. Let X be a finite-dimensional real affine space. Then
{ X,1x)} is a smooth atlas for X. |

Example 20.4. Let 4 beanopen subset of a finite-dimensional real
affine space X. Then {(X,1.4)} is a smooth atlas for 4. O

Example 20.5. Let X be a finite-dimensional real affine space and
let & be the set of maps k: X >» X with open domain and image and
with A, a smooth homeomorphism. Then & is a smooth atlas for

X. g

Example 20.6. Let M be a smooth submanifold of a finite-dimen-
sional real affine space X. Then the set of standard charts on M is a
smooth atlas for M. 0

Example 20.6 provides, in particular, a smooth atlas for the sphere
S, for any n € w, for, by Example 19.13, S” is a smooth submanifold of
R#+1, The next two examples also are of smooth atlases for the sphere S*.

Example 20.7. For any 7z € o, and for any &k e n + 1, let &, be the

map
R — S7;  x aw (%05%7, - « oy X1, 188 « « o %u_1)/v/(1 + x®).

Then the set of charts {(R*A):ken + 1} U {R*—k):ken + 1}
is a smooth atlas for S».

For example, for any k, I e n + 1 withk < I, (b)) "y is the smooth
map

R* HRn; e (xO)xD LIS ] xk—lylvxka e XXty - xn—l)/xl
with domain the half-space {x e R*: x, > 0}. O

Example 20.8. ILet 7 and j: R*-— 8™ be the inverses of stereo-
graphic projection onto the equatorial plane of the sphere S™ from the
North and South poles, respectively. (Cf. Prop. 9.63 and Exercise 9.80.)
Then {R*7), (R*j)} is a smooth atlas for X; for the maps

fr 1 = Jour iR R wwwu/u®
are smooth. 0
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The Grassmannians and, in particular, the projective spaces also
have smooth atlases.

Example 20.9. For any n-dimensional linear space V over K = R,
C or H and for any 2 < n, the standard atlases for the Grassmannians
%(V) and, in the real case, 4 (V') are smooth (see Example 18.27). In
particular the standard atlases on the projective spaces KP* are smooth.

O

Example 20.10. For any n € w, and for any ken 4 1, let g, be
the map

Kr— KP?; x> [xg,%5, o« o %p_1, 1,20+« o 2,_4],
K being R, C or H or, when n =1 or 2, even being O, the Cayley

algebra. Then {(K",g;): k € n 4 1} is a smooth atlas for KP", K» being
regarded as a real linear space. O

Two smooth atlases on a topological manifold X are said to be
equivalent, or to define the same smooth structure on X if their union
is smooth.

Example 20.11. The atlases for S, givenin Examples 20.7 and 20.8
are both equivalent to the standard atlas on S™ as a smooth sub-
manifold of R»+1, O

A topological manifold with a smooth atlas is said to be a smooth
manifold, smooth manifolds with the same under'ying topological space
and with equivalent atlases being said to be equivalent.

A chart (E\f) on a smooth manifold X, with atlas <, is said to be
admissible if & U {(E,i)} is a smooth atlas for X.

C*, C= and C® atlases and manifolds are defined by replacing the word
‘smooth’ in each of the above definitions by ‘k-smooth’, ‘infinitely
smooth’ or ‘analytic’ respectively. (Cf. page 392.) For example, the
atlases for the spheres, the Grassmannians and the projective spaces in
Examples 20.8, 20.9, 20.10 and 20.11 are C* (and in fact C*).

For most purposes the distinction between different, but equivalent,
manifolds is unimportant and may be ignored. It might seem to be more
sensible to define a smooth manifold to be a set with a smooth structure
rather than a set with a smooth atlas. The reason for choosing the
second alternative is in order to sidestep certain logical difficulties con-
cerned with the definition of the set of all admissible charts on a smooth
manifold. There are various ways around the difficulty, and each author
has his own preference. One place where it is logically important to have
a particular atlas in mind is in the construction of the tangent bundle
of a smooth manifold—see page 408 below —but even this turns out in
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the end to matter little since, by Cor. 20.41, the tangent bundles of
equivalent smooth manifolds are naturally isomorphic.

Proposition 20.12 is of importance both in defining the dimension of a
smooth manifold and in defining its tangent spaces. (Cf. Prop. 20.23
and page 407.)

Prop. 20.12. Let (E,¢) and (F,j) be admissible charts on a smooth
manifold X such that im i Nimj 5£ . Then, for any x eim ¢ N imj,
the map

d(fur 1) (%)) : Ex — Fi
is a linear isomorphism.

Proof Since gy four = (Jour ‘sur) " the given map is invertible, with
inverse the map
( sur ])(]aur l(x)) F* - E* (|
The next proposition leads directly to the definition of smooth maps
between smooth manifolds.

Prop. 20.13. Let f : X — Y be a map between smooth manifolds
X and Y, let (E,i) and (E’,i") be admissible charts on X, let (F,j) and
(F',j') be admissible charts on Y, and suppose that x is a point of
im ¢ N im 7’ such that f(x) eimj N imj’.

f #

i -t
T Fr'

Then the map j,, 1 fi': E' >> F'is smooth at 7,;'(x) if, and only if,
the map j; ' fi: E >> F is smooth at i,; '(x).

Proof Apply the chain rule (Theorem 18.22) to the equation
Jaae (@) = (Jouz "D sur ' ) iur i")(0)

for all a € E sufficiently close to i}(a). ]



SMOOTH MANIFOLDS AND MAPS 403

A map f: X — Y between smooth manifolds X and Y is said to be
smooth at a point x if the map j,;! fi: E >> F is smooth at 7,7 !(x) for
some and therefore, by Prop. 20.12, for any admissible charts (E,i) at
and (F,j) at f(x). The map is said to be smooth if it is smooth at each
point of X.

Example 20.14. For any n € w, let S» and RP" be assigned the
smooth atlases given in Examples 20.7 and 20.10. Then the map
S —> RP"; x> [x]
is smooth. O

Example 20.15. Let 7 be an n-dimensional real linear space. Then,
for any k < n, the map
GLR V) — 4(V); t-imt
is smooth, GL(R% V'), the Stiefel manifold of k-framings on V, being
an open subset of L(R% V) by Prop. 15.49, and the Grassmannian
Z(V) being assigned its standard smooth structure. O

Notice that the definition of the smoothness of a map f: X — Y
depends only on the smooth structures for X and Y and not on any
particular choice of an atlas of admissible charts.

A bijective smooth map f: X — Y whose inverse f~! also is smooth,
is said to be a smooth isomorphism or a smooth homeomorphism.

Example 20.16. Let X' and X'’ be equivalent smooth manifolds,
X being the underlying topological space. Thenthemap 1x: X' — X"
is a smooth isomorphism. O

Infinitely smooth and analytic maps and homeomorphisms are defined
analogously in the obvious ways.

Inequivalent smooth atlases for a topological space X may yet be
isomorphic. For example, let z: R — R be any homeomorphism of R
on to itself that is not smooth. Then the atlases {(R,1g)} and {(R,A)}
for R are not equivalent, yet the map 4 from R with the atlas {(R,1g)}
to R with the atlas {(R,%)} is a smooth isomorphism, since s-1 % 1z = 1y,
which is smooth. However, Milnor showed in 1956 [41] that there
were atlases for S7 which were not only not equivalent but not even
isomorphic.

Infinitely smooth manifolds are also called differentiable manifolds, or,
since Milnor’s paper, differential manifolds. According to this new usage
a differentiable or (infinitely) smoothable manifold is a topological mani-
fold possessing at least one (infinitely) smooth atlas. A differential or
(¢nfinitely) smooth manifold is then a differentiable manifold with a par-
ticular choice of (infinitely) smooth atlas or (infinitely) smooth structure.



404 SMOOTH MANIFOLDS

Submanifolds and products of manifolds

A subset W of a smooth manifold X is said to be smooth at a point
w € W if there is an admissible chart (E,7) on X at w and an affine sub-
space D of E through 7,7 *(w) such that i,(D) = W ni(E), and tobe a
smooth submanifold of X if it is smooth at each point of W.

e ,

/ 7 _
/ dom 7

E

X

This definition generalizes that given of a smooth submanifold of a
finite-dimensional real affine space in Chapter 19, page 381.

Prop. 20.17. Let W be a smooth submanifold of a smooth mani-
fold X and let (E,¢) be an admissible chart on X and D an affine sub-
space of E such that ¢ (D) = W ni(E). Then the restriction to D
with target W is a chart on W. Moreover, any atlas for W formed
from such charts is a smooth atlas for W, any two such atlases being
equivalent. O

That is, there is a well-determined smooth structure for each smooth
submanifold of a smooth manifold. Any atlas of admissible charts for a
smooth submanifold will be called an admissible atlas for the submani-
fold.

Prop. 20.18. Let f: X — Y be a smooth map, and let W be a
smooth submanifold of X. Then the restriction f| W : W — Y is
smooth. O

The product of a pair (X,Y) of smooth manifolds is the smooth
manifold consisting of the topological manifold X x Y together with
the atlas consisting of all charts of the form (E X F,i X j), where (E,7)
and (F,j) are charts on X and Y respectively, and where 7 X j is the map
E x F>> X X Y; (a,b) w> (i(a),] (b)).

Many of the theorems of Chapter 18 have analogues for smooth
maps between manifolds.

Prop. 20.19. Let W, X and Y be smooth manifolds. Then a map
(fig): W— X x Y is smooth if, and only if, its components f and g
are smooth. |
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Prop. 20.20. Let X, Y and Z be smooth manifolds, and suppose
that f: X X Y —> Z is a smooth map. Then, for any (a,6) e X X Y,
the maps f(—,b): X~ Z and f(a,—): Y — Z are smooth. 0

Prop.20.21. Let X, Y and Z be smooth manifoldsandletf : X — ¥
and g: Y — Z be smooth maps. Then gf: X — Z is smooth. O

Prop. 20.22. Let 7V be a smooth submanifold of a smooth manifold
X, let W be a smooth submanifold of a smooth manifold Y and let
f: X — Y be a smooth map, with f (V) = W. Then the restriction of
f with domain V" and target W is smooth. O

Dimension

As we saw at the end of Chapter 17, there are technical difficulties
in the definition of the dimension of a topological manifold. There is no
such difficulty for smooth manifolds, as Prop. 20.23 and Cor. 20.24
show.

Prop. 20.23. Let (E,:) and (F,j) be admissible charts on a smooth
manifold X, such that im 7 N im j = @. Then dim E = dim F.

Proof Apply Prop. 20.12. O

Cor. 20.24. Let (E;) and (F,j) be any admissible charts on a con-
nected smooth manifold X, Then dim E = dim F. O

A smooth manifold X is said to have dimension n, dim X = n, if the
dimension of the source of every admissible chart on X is n.

Examples 20.25. Letn, kew be such that k< nand leth =1,
2 or 4 according as K = R, C or H. Then dim S” = n, dim %,(K") =
hk(n — k), dim KP" = hn, dim OP? = 16.

The dimension of any open subset of a finite-dimensional real linear
space X is equal to dim X. In particular, for any n-dimensional right
K-linear space V, the Stiefel manifold of k-framings on V, GL(K%V),
has real dimension hkn. O

Prop. 20.26. Let I be a connected smooth submanifold of a con-
nected smooth manifold X. Then dim W < dim X. 0O

Prop. 20.27. Let X and Y be connected smooth manifolds. Then
dmX X Y =dimX + dim Y. a
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Tangent bundles and maps

The concept of the differential of a smooth map f: X »» Y, where
X and Y are finite-dimensional real affine spaces, does not generalize
directly to the case where X and Y are smooth manifolds. What does
generalize is the concept of the zangent map of the map f, as defined
below.

The tangent bundle of a finite-dimensional real affine space X is, by
definition, the real affine space TX = X x X, together with the projec-
tion gy : TX — X; (x,a) w»> a, the fibre wp{a} = TX, = X X {a},
for any a € X, being assigned the linear structure with (¢,a) as origin,
as in Chapter 4. According to the definition of that chapter, nz¢{a} is
the tangent space to X at a. The tangent bundle space TX may therefore
be thought of as the union of all the tangent spaces to X, with the
obvious topology, the product topology.

The tangent bundle of an open subset 4 of a finite-dimensional real
affine space X is, by definition, the open subset 74 = X X 4 of TX,
together with the projection sy, == gz | T4, the fibres of 7y, being
regarded as linear spaces, as above.

Now suppose that a map f: X >> Y is tangent at a point a of X to an
affine map £: X — Y, X and Y being finite-dimensional real affine
spaces. Then, instead of representing the map ¢ by its linear part
dfa: X, — Y,, we may equally well represent it by the linear map

Tf: TX, — TY;  (%,0) wo (Hx), fla)),

the tangent map of f at a. Its domain is the tangent space to X at @ and
its target the tangent space to Y at f(a). If the map f is differentiable
everywhere, there is then a map

Tf: TX > TY; (xa)w Tf(xa),

with domain T dom f, called, simply, the tangent map of f. Notice that,
for any (x,a) € T X, Tf,(»,a) may be abbreviated to Tf(x,a). Notice also
that the maps df and Tf are quite distinct. The maps dfa and Tf, may
be identified, for any a € X, but not the maps df and Tf.

Prop. 20.28. Let f: X >> Y be a smooth map, X and Y being
finite-dimensional real affine spaces. Then the map Tf is continuous,
with open domain.

Proof First of all, dom Tf = T dom f, which is open in TX, dom f
being open in X. The continuity of 7f follows at once from the decom-
position



TANGENT BUNDLES AND MAPS 407

X -y
7: df
b =f(a)
(X*, Yy) >< ~TY
(x,a Tf(x,a)
=+ (y —b),b)
—dfa(x — a)

x— a

and the continuity of each of the component maps. O

Prop. 20.29. Let f: X >> Y be a differentiable map for which Tf
is continuous, X and Y being finite-dimensional real affine spaces.
Then f is smooth. (Use Exercise 15.59.) O

Prop. 20.30. Let X be any finite-dimensional real affine space.
Then TIX = ITX' I:‘

The following two propositions are corollaries of the chain rule.

Prop. 20.31. Let f: X >> Y and g: W >> X be smooth maps,
W, X and Y being finite-dimensional real affine spaces. Then, for each
a € dom (fg) and each we W,

T(fg)(wya) = Tf Tg(wsa). I

Prop. 20.32. Let f: X >> Y and g: Y >» X be smooth maps,
with g, = fuur > X and Y being finite-dimensional real affine spaces.
Then, for any a € dom f and any x € X,

Tg Tf(x,a) = (v.a)
and, forany b edomgand any y € Y,
Tf Tg(y,b) = (y,b). O
Now consider a smooth manifold X with atlas .#, let x € X, and let
(E,7), (F,j) and (G,k) be charts at x with x = 7(a@) = j(b) = k(c). Then,
by Prop. 20.12, d(js,; 'i)a: E — F, or, equivalently, the tangent map
T(jour Y%)g: TE,—> TF,, is a linear isomorphism. Moreover
T (i ')s = 11z,
T (sur 7)o = (T(jous )a) ™
and T (ki '8)a = (T (sur* )X T (Joar '3)a)s
by Props. 20.30, 20.31 and 20.32. These remarks motivate and essen-
tially prove the following proposition.

Prop. 20.33. Let X be a smooth manifold with atlas & and let
& = U {T(dom<i) x {i}: (E,i) € &} (to be thought of as the disjoint
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union of the T(dom 7)). Then the relation ~ on &, given by the formula
((@',a),8) ~ ((V',b),1)if, and only if, j(b) = i(a) and d(j,,; 'i)a(a’) = ¥,
or, equivalently, T(j; ')(a’,a) = (b',b), is an equivalence. |

The tangent bundle of X, with atlas &, is defined to be the quotient

TX of the set & defined in Prop. 20.33 by the equivalence ~, together
with the surjection zpx : TX — X; [((d',0),t)] > i(a).

Prop. 20.34. The set of maps {T%: (E,i) € &}, where T is the map
T(dom i) — TX;(a',a) »w» [((@',a),t)]-, 1s an atlas for the set TX. [J

The set TX is assigned the topology induced by this atlas and called
the tangent bundle space of X.

Prop. 20.35. The map nqy is locally trivial.
Proof For any chart (E,7) the diagram

T(dom i) ——~ TX

Jj’r dom i l"'rx
i

domi —— X
is commutative, with im 77 = @;3(im ¢), the maps 7 and 7% being
topological embeddings. Since 7y 4., ; is 2 product projection, it follows
that spy is locally trivial. O

In particular, 775 is a topological projection. It will be referred to as
the tangent projection on X.

The next proposition examines the structure of the fibres of the
tangent projection.

Prop. 20.36. Let X be a smooth manifold with atlas &. Then, for
any x € X, the fibre mz3{x} is the quotient of the set
&, = U{TE, x {i}:(Ej4) € & and i(a) = x}
by the restriction to this set of the equivalence ~. Moreover there is a
unique linear structure for the fibre such that each of the maps
TE, —> npi{x}; (a',0) wo[((@',0)6)]~
is a linear isomorphism.

(The existence of the linear structure for the fibre follows directly
from the remarks preceding Prop. 20.33.) [

The fibre 7;3{x} is assigned the linear structure defined in Prop.
20.36 and is called the tangent space to X at x. It will be denoted also
by TX,. Its elements are the tangent vectors to X at x.
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The projection 7mpy always has at least one continuous section, the
=ero section, associating to any x € X the zero tangent vector to X at x.
By Prop. 16.11 the zero section of myyx is a topological embedding of
Xin TX.

As we remark in more detail later, the tangent bundle space T7X of a
smooth manifold X is not necessarily homeomorphic to the product of
X with a linear space. (See page 420.)

Notice that the definitions of tangent bundle, tangent projection and
tangent space for a smooth manifold agree with the corresponding defi-
nitions given earlier for a finite-dimensional real affine space X, or an
open subset 4 of X, provided that X, or 4, is assigned the single
chart atlas of Example 20.3, or Example 20.4.

A smooth map f: X — Y induces in a natural way a continuous
map Tf: TX — T, the tangent (bundle) map of f. It is defined in the
next proposition.

Prop. 20.37. Let X and Y be smooth manifolds and letf: X — ¥V
be asmooth map. Then there is a unique continuous map 7f: 7X — TY
such that, for any chart (E,7) on X and any chart (F,j) on Y,

(Tjoud) “MTFNT7) = T(jour ' i),
where T'(jor ! fi), Ti and Tj have the meanings already assigned to
them. O

It is readily verified that this definition of the tangent map of a
smooth map where domain and target are smooth manifolds includes
as special cases the tangent map of a smooth map with source and
target finite-dimensional real affine spaces, and also the map 7% induced
by an admissible chart (E,7) on a smooth manifold X, as previously
defined.

The tangent map of f maps any tangent vector at a point x of X to a
tangent vector at the point f(x) in X, as the next proposition shows.

Prop. 20.38. Let f: X — Y be a smooth map. Then the diagram

x 2 1Yy

l”z’x J"TY
!

X —— Y

commutes. That is, for any x € X, (Tf){TX,) < TYy,. Moreover, for
any x € X, the map Tf,: TX, — TYj,; v Tf(v)is linear. O

The map T is easily computed in the following case.
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Prop. 20.39. Let X be a smooth submanifold of an affine space V,
let Y be a smooth submanifold of an affine space Wandletg: V >»> W
be a smooth map, with X < dom g, such that g,(X) < Y. Then the
restriction f: X — Y; x> g(x) of g is smooth and, for any a € X,
Tf,: TX,—> TYy, is the restriction of Tg, with domain TX, and
target T'Y,. O

In the application we make of this proposition, V, W and g are fre-
quently linear.

Finally, Props. 20.30, 20.31 and 20.32 extend to smooth maps between
smooth manifolds.

Prop. 20.40. Let W, X and Y be smooth manifolds. Then
Ty = lyg,
T(fg) = Tf Tg, for any smooth maps
f: X—Y and g:W—>X,
and Tf-* = (Tf),
for any smooth homeomorphism f: X — Y. O

Cor. 20.41. Let X’ and X" be equivalent smooth manifolds with
underlying topological manifold X. Then T1y: TX' — TX" is a ‘tan-
gent bundle isomorphism’. O

Cor. 20.42. Let I¥ be a smooth submanifold of a smooth manifold
X, let W be assigned any admissible atlas, and let : W — X be the
inclusion. Then the tangent map 7%: TW — TX is a topological em-
bedding whose image is independent of the atlas chosen for W. O

The tangent bundle of W, in such a case, is normally identified with
its image by 77 in TX.

For example, for any # € w, the sphere S" may be thought of as a
smooth submanifold of R+, T'S* being identified with the subspace

{(x,a) e R"+1 x S":x-a = 0}
of TRn+1 — Rr+l x Rr+l,
Exercise 20.43. Prove that,for any # € w, the complex quasi-sphere

F(Cr+1) = {x e C*+1: x» =1} (cf. page 217 and Prop. 17.26) is homeo-
morphic to T'S™. O

Tangent bundles and maps are particular cases of vector (or linear)
bundles and maps. See, for example, [27].
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Particular tangent spaces

In many cases the tangent space to a smooth manifold at a point of
the manifold may usefully be identified with, or represented by, some
other linear space associated with the point. For example, as we have
seen, the tangent space at a point w of a smooth submanifold W of a
smooth manifold X may be identified with a subspace of the tangent
space to X at w, while the tangent space at any point (x,y) of the pro-
duct X x Y of smooth manifolds X and Y may be identified with the
product TX, X TY, of the tangent spaces TX, and TY,. For any
smooth manifold X, also, one can always choose some chart (4,7) on X
at the point of interest x, 4 being a linear space and x being equal to
i(0). Then the tangent space T°X, may be identified with the linear
space A by the linear isomorphism T%,: T4, (= A) — TX..

One important case where there is a natural candidate for the tangent
space is the following.

Example 20.44. Let X be a point of the Grassmannian %,(V) of
k-planes in an n-dimensional real linear space V. Then the tangent
space T(¥(V))x may naturally be identified with the linear space
L(X,V/X).

To see this, let Y and Y’ be linear complements of X in V. Then
the maps

L(X,)Y) —> 9(V); t ~w»grapht
and LX) Y')— 9(V); t > grapht
are admissible charts on (V') and each tangent vector at X has a
unique representative both in L(X,Y) and in L(X,Y’). By Prop. 8.12,
the one is mapped to the other by the differential at zero of the map

L(X,Y) »»> L(X,)Y'); tw»q't(lx + p't)-2
where (p',g'): Y — ¥V = X X Y’ is the inclusion. By Exercise 18.27
this differential is the map
L(X,)Y)— L(X,Y"); t-ww»q't.

Now, for any y € Y, y and ¢'(y) belong to the same coset of X in V,
from which it follows at once that ¢ € L(X,Y) composed with the
natural isomorphism ¥ — V/X of Prop. 8.8 (with the rolesof Xand ¥
interchanged) is equal to ¢'¢ composed with the analogous natural
isomorphism Y’ — V/X.

That is, each tangent vector at X corresponds in a natural way to an
element of the linear space L(X,V/X). O

When ¥V has a prescribed positive-definite real orthogonal structure,



412 SMOOTH MANIFOLDS

an alternative candidate for the tangent space T'(%,(V))x is the linear
space L(X, X4).

There are analogous natural candidates for the tangent spaces of the
other Grassmannians.

A definition of the tangent space at a point x of a smooth manifold X
that is popular with differential geometers, and which has the technical,
if not the intuitive, advantage that it is independent of the choice of
smooth atlas defining the given smooth structure for the manifold, may
be based on the following proposition, in which F = F(X) denotes
the linear space of smooth maps X - R, R¥ denotes the linear space
of maps F — R, and any tangent space TR, of R is identified with R
by the map TR, — R; (y,0) w>y — b.

Prop. 20.45. For any x € X the map
TX,—>RF; vw¢,

is an injective map, where, for any v € TX,, ¢, is the map F — R;
f v Tf(v). O

By Prop. 20.45 the tangent vector v may be identified with the map
¢,. For details of this point of view see any modern book on differential
geometry. For a discussion of certain technical points, see [56].

Smooth embeddings and projections

A smooth map f: X — Y between smooth manifolds X and Y is
said to be a smooth embedding if Tf: TX — TY is a topological embed-
ding, and to be a smooth projection if Tf is a topological projection.

Prop. 20.46. Let X and Y be finite-dimensional affine spaces. Then
any affine injection X — Y is a smooth embedding and any affine
surjection X — Y is a smooth projection. 0.

Prop. 20.47. Let X and Y be smooth manifolds. Then a smooth
map f: X — Y is a smooth embedding if, and only if, f is a topological
embedding and, for each x € X, TY, is injective.

Proof = : Suppose that Tf is a topological embedding. Then the
restriction of 7f to the image in TX of the zero section of nyx, with
target the image in T'Y of the zero section of myy, is a topological
embedding. But this is just f. Moreover, since Tf is injective, Tf, is
injective, for each x € X.

< : Let a be a point of X for which T¥, is injective. By Prop. 19.8
there exists, for any chart /: TX, >> X sending 0 to @, a chart
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J: TYy, >> Y sending 0 to f(a), such that the diagram
TX, »> X

-

TY; > Y

commutes. Therefore, since, by Prop. 20.46, Tf, is a smooth embedding,
f|im{ is a smooth embedding. It follows, by Prop. 16.22, that, if Tf,
is injective for each x € X, then f is a smooth embedding. ]

Prop. 20.48. The image of a smooth embedding f: X — Y is
a smooth submanifold of the smooth manifold Y, and the map
Jaur: X — im f is a smooth isomorphism. O

One commonly says that a smooth embedding f: X — Y embeds the
manifold X smoothly in the manifold Y.

A smooth map f: X— Y is said to be an immersion if, for each
x € X, Tf, is injective. An immersion need not be injective, nor need
an injective immersion be a topological embedding.

Example 20.49. The map
[:R—>R?% xw»(x2 — 1,5 —x)

is an immersion that is not injective, and the restriction of this map to

{O} xR

£(1-1,000)

£4-1) Rx{0}
)

RZ

the interval ]—1, 00 is an injective immersion that is not a topological

embedding. 0

Example 20.50. Let 7 be any irrational real number. Then the map
f:R—> 81 x S§1; x> (€,6") is an injective immersion that is not
a topological embedding.

(To see that f is not a topological embedding, it is convenient first
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to represent the torus as the quotient of R2? by the equivalence
(x -+ 2mm,y - 2nn) ~ (x,y), for any (»,y) €eR? and any (m,n) € Z2.
Then f is the composite of the map R —» R?; x ww» (x,rx) with the
partition induced by the equivalence.) O

By Cor. 16.44 the domain of any injective immersion that is not a
topological embedding is necessarily non-compact.

Prop. 20.51. Let f: X — Y be a smooth projection. Then f is a
topological projection and, for each x € X, Tf, is surjective. O

A smooth map f: X — Y is said to be a submersion if, for each
x € X, Tf, is surjective.

Prop. 20.52. A submersion f: X — Y is an open map. Its non-
null fibres are smooth submanifolds of X, the tangent space at a point
x € X to the fibre f1{f(x)} through x being the kernel of Tf,. A surjec-

tive submersion is a smooth projection.

Proof Letf: X — Y be a submersion. Then, by Prop. 19.12, there
exist, for any ¥ € X, admissible charts 7: TX, >> X, mapping zero to x
and j: TY,, >> Y, mapping 0 to f(x), such that the diagram

TX, »> X

TYf(;t) > Y

commutes. Since an affine surjection is open, it follows that x has a
neighbourhood in X whose image in Y is open, from which it follows
that f is an open map.

The statement concerning the fibres is an immediate corollary of
Prop. 19.11.

The final statement is a corollary of Prop. 20.46 and Prop. 16.23. []

Example 20.53 below is an important example of a smooth projec-
tion. In this example, and in the section which follows, a tangent vector
at any non-zero point of a real linear space X will be said to be radial
if it is of the form (x 4 Ax,x), for some 1 € R, or, equivalently, if it
is of the form Ax, when T'X, has been identified in the standard way
with X,

Example 20.53. For any finite # the map
iR > Sy xowe x/| x|
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defined everywhere except 0, is a smooth projection, the kernel of the
tangent map at any point consisting of the radial tangent vectors at that
point.

Proof Let g: R**! >»> R*+1 be the composite of the map n with
the inclusion of S in R*+1, For any non-zero a and any x € R*+1,
dga(x) = |a|7'x — |a|~x-a)a =|a| ¥,
where &’ = x — (x-g(a))g(a).

(x.gla})gla)

Moreover, for any non-zero 2 e R**+! and any 1 € R,

x=2MA = xa=2%aa => x=(xga)ga)
So dga(x) =0 if, and only if, ¥ = Aa, for some 1 €R. That is,
kr (dga) = 1, implying, by Prop. 6.32, that tk (Tn,) = rk (dga) == nand
therefore that = is a submersion. Since # is surjective it follows, by the
last part of Prop. 20.52, that = is a smooth projection. O

Embeddings of projective planes

It is a theorem of H. Whitney [59] and [60] that any compact smooth
n-dimensional manifold may be embedded smoothly in R?*. The proof
is hard, and even if onc is content with an embedding in R%"+3, the
proof, though much easier, is too long to be given here. If he can get
hold of a copy, the reader should refer, for a proof of the simpler
theorem, to Milnor’s notes on Differential Topology [42]. The proof of
the harder theorem may be extracted from [43].

It may be of interest to give an example of such an embedding for a
manifold which is not normally presented as a submanifold of a linear
space. The example chosen is the real projective plane RP? = % ,(R?),
which we shall embed in R¢. Since it requires little extra effort to do so,
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we construct at the same time embeddings of CP?2, of real dimension 4,
in R?, HP? of real dimension 8, in R!3 and even the Cayley plane OP?2
of real dimension 16, in R25,

Notice that in most of these cases the manifold is embedded in a
linear space whose dimension is less than twice the dimension of the
manifold. It can be shown that in each of these cases the dimension of
the target space is the lowest possible. The problem for a given mani-
fold X, and even for the projective spaces RP*, of determining the
least number p for which X may be embedded in R?, is a hard one
that has been the subject of many research papers in recent years. The
present example is in a paper by I. James [32].

In the discussion which follows, K will denote R, C, H or O and
conjugation will be the standard conjugation in each case, with
lx {2 = &x, for each x € K, and with & = x if, and only if, x e R. The
number k = dimg K.

To take account of the possibility that K = O, it is convenient to
let K3 denote the subset (not a linear subspace!) of K3 consisting of all
x € K2 such that the subalgebra K, of K generated by the set {xg,x,x5}
is associative. Clearly K§ = K? unless K = O. In every case x € K3}, if
one of the components of x is real. For each i € 3, the subset of K}
consisting of all x € K?® such that «; is real will be denoted by K}.
This is a real linear space of dimension (n -- 1)4 4- 1. The open subset
of K2 consisting of all x € K3 such that x; is real and positive will be
denoted by K?,, and the affine subspace of K}, consisting of all x € K3
such that »; = 1 will be denoted by K.

The construction makes use of the map

[:K2— R X K? X R; & wo (xofy, ¥o¥y, ¥ofy + X153, 2,55 , ¥555),
the smooth radial projection
7:R x K3 X R >»> S+, pawy/|y|
and the charts on KP?
hi: K —KP?; x> [x], whereie3.
The strategy is to embed KP? in the first instance smoothly in the
sphere S3+1. An embedding in R3+! is then readily obtained by com-
posing the embedding in the sphere with the stereographic projection

of the sphere to an equatorial hyperplane from some point of the sphere
not in the image of the first embedding.

The steps in the construction of the smooth embedding of KP? in
S3r+1 are as follows:

Step 1 'To show that, for all i € 3, f| K}, is injective.
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Step 2 'To show that, for all £ € 3, f | K}, is an immersion, mapping
radial tangent vectors to radial tangent vectors.

Step 3 'To show that, for all i €3, g, = a(f | K}) is an injective
immersion.

Step 4 'To show that there is a unique map g: KP? — S%*! such
that, for all 7 € 3, gh, = g,, and that g is an injective immersion.

Step 5 To show that g is a topological, and therefore a smooth
embedding.

The following lemma is used in Steps 1, 2 and 3.

Lemma 20.54. For any i €3, any x € K}, and any y e K}, f(y) =
f(x) if, and only if, y = +x.

Proof <« : Clear.
= : Forall x e K2, f(x) determines x up to multiplication on
the right by an element of K of modulus 1. For, if x4 520, x4%, so
determines xy, and x, and x, are then uniquely determined by x4, xo%,
and x%X, + %,%;; if ¥y = 0, but x, #0, x%; + 2, &, = %, &, and x, is
so determined, x, then being uniquely determined by x,%,; finally, if
%9 = x; = 0, x, %0 and is so determined by #,x,. (There are no snags
when K = O, since the computation takes place in the associative sub-
algebra K, of K\)
Now suppose that x € K}, , y € K and f(y) = f(x). By what has been
proved, y = x2, where 2 € K, with | 2| = 1. In particular, y, = x;2.
But x; and y, are real, and x; = 0. So 2 is real. Therefore 2 = +1. []

Cor. 20.55. For eachi €3, the map f | K} is injective. [
This completes Step 1.
Cor. 20.56. For any i €3, any » € K{,, any y € K] and any p € R,
f(») = uf(x) if, and only if, > 0 and y = =V ux. O
Cor. 20.57. For each i € 3, the map
gi: K3 — S%+! is injective. O

Corollary 20.57 will be used in Step 3.
In Step 2 the differential of f has to be computed.

Lemma 20.58. The map f is smooth and, for all », y € K3,
dfx(y) = $(f(x + ) — flx — ).
Proof Let F:K? x K2-> K5 be defined, for all (x,y) e K? x K3,

by the formula
F(x,p) = (%0F0,%0F1,%0F2 + X151, %172, %3 Vs)-
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Then F is a real bilinear map such that, for all x € K3, f(x) = F(x,x).
So f is smooth and, for all x, y e K3,

dfx(y) = F(x,y) + F(y,%)
=¥F(x +y,0+3) ~ Flx —y,5 —3))
=¥fx+y) —flx—=y) O

Lemma 20.59. Let f; = f| K},. Then f; is an immersion.

Proof Since K?, is an open subset of the real linear space K3 of
K3, f, is differentiable and, for all x e K}, , y € K},

dfe(y) = Hf(x +y) — flx — y))-
So, for any such x and y, df;%(y) =0 = f(x +- y) f(x —9)
by 20.54, for, if x; -} y;=a; — y; =0, x; = (), contrary to hypothesis,
= y =0, sincex:=0.
‘Therefore, for each such x, df;x is injective. That is, f, is an immer-
sion. O

'The next lemma completes Step 2 and leads on at once to Step 3.

Lemma 20.60. For any xeK},, (Tf,), maps radial tangent
vectors to radial tangent vectors.

Proof With F as in the proof of Lemma 20.58 we have, for all
x»eK?, andall 1 R,
dfayx (Ax) = F(x,Ax) + F(Jx,x)
= 2AF (x,x)
=2}(x). O
Cor. 20.61. For each i € 3, the restriction of f to K} is an immersion,
and in each case none of the tangent vectors of the image is radial. [
Lemma 20.62. For any i € 3, the map g; is an injective immersion.
Proof The injectivity of g; was Cor. 20.57. That g, is an immersion
follows at once from Cor. 20.61. O
This completes Step 3.
Step 4 is an easy corollary of the following remark.
Lemma 20.63. For any x €K}, and all 1 € K,,
fad) =121 f(x). O

We therefore have a map g: KP?—> S¥~! which is an injective
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immersion and is, in particular, continuous. Now KP? is compact and
$%-1 is Hausdorff. So, by Cor. 16.44, we finally have:

Lemma 20.64. 'The map g is a topological embedding, O
Cor. 20.65. The map g is a smooth embedding. [
This completes Step 5 and the construction is made.

Theorem 20.66. There exists a smooth embedding of the projec-
tive plane KP? in R**!. ]

Tangent vector fields

A tangent vector field on a smooth manifold X is a continuous section
X — TX of the tangent bundle projection 7y.

Example 20.67. The map
St— T8 a-w»(a-} ai,a)
is a nowhere-zero tangent vector field on the circle S

atai

ai

O

A set & of tangent vector fields on a smooth manifold X is said to be
free at a point a € X if the set {s(a): s € &} is a free subset of the tan-
gent space TX, and is said to be everywhere free if it is free at each point.

The problem of determining the maximum number of everywhere
free tangent vector fields on a smooth manifold X has played an impor-
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tant role in algebraic topology in recent years. Like the embedding
problem referred to above, it has been a test bed for new techniques.
For spheres the problem was solved by Adams in 1961 [2]. The easy
half is to construct, for any finite #, a free set of tangent vector fields on
S” of the asserted maximum number. This we do in Theorem 20.68
below. The proof that this number can never be exceeded is the
achievement of Adams. (See the comment following Exercise 12.28.)
Particular cases can sometimes be dealt with more easily. For example,
it is not so hard to prove that an even-dimensional sphere has no
nowhere-zero vector field. (Cf. [55], pp. 201-203.) The sphere S?is an
example of a smooth manifold whose tangent bundle is not homeo-
morphic to the product of the manifold with a linear space of the same
dimension.

Theorem 20.68. Let y:w — o be the Radon-Hurwitz sequence
(cf. Theorem 13.68). For any 7 € w, if 2*® divides n + 1, there exists
on S™ an everywhere free set of k& tangent vector fields.

Proof By 'Theorem 13.68(i), if 24P divides n -+ 1, there exists a
linear subspace X of GL(n + 1; R) of dimension % such that, for each
x € X, ¥ = —x. Then for any a € S”, the space {x(a):x € X} is a
k-dimensional linear subspace of R”+1  orthogonal to a; for, since
a-x(a) = x"(a)-a = —-x(a)-a, it follows that a-x(a) = 0, for all x € X,

Let {e;:7 €k} be any basis for X and for each i ek let E, be the
map:

S?— T8"; a-w»(a -} efa), a).
Then E, is a tangent vector field on S” and the set {E;: 7 € k} is free. [

It is easy to see in addition that if the basis {e;: 7 € k} for X is chosen
to be orthonormal with respect to the positive-definite quadratic form
x - x*x (cf. Theorem 13.68(i) again), then the values of the tangent
vector fields E; at any point a of S* form an orthonormal set of k tan-
gent vectors to S* at a.

Cor. 20.69. Forn =0,1,30r7, TS* 2 R* x S ]

It is a corollary of Adams’s theorem that these are the only values of #
for which T'S» is homeomorphic to R* x S». This particular result—
the ‘parallelizability’ of the spheres S?, S, S3and S7, and no others—
was proved by several people round about 1958 [1], [35], [45]. The
Radon-Hurwitz sequence dates from 1923 [51], [31].
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Lie groups

Numerous examples of smooth manifolds and smooth maps are to
be found in Chapters 11, 12 and 13. Those that are groups have already
in Chapter 17 been shown to be, in a natural way, topological groups.
What we now show is that these topological groups have a natural
smooth structure.

A Lie group is a topological group G with a specified smooth (C?)
structure, such that the maps

GxG—G; (ab)yw>ab and G—>G; awsa~?t

are smooth (C?)[38]. For some purposes it is desirable to insist on a
higher degree of smoothness than 1, but C* will do for the moment.
Elementary properties of Lie groups include the following.

Prop. 20.70. Let G be a Lie group. Then, for any 4, b € G the maps
G—>G; gwrag and g-w»gb
are smooth homeomorphisms.

Proof The map gw» ag is smooth, by Prop. 20.20, and its inverse,
the map G — G; g’ ~w» a~1g’, is smooth.
Similarly for the other map. O

A Lie group map is a smooth group map G — H, where G and H are
Lie groups, and a Lie group isomorphism is a bijective Lie group map
whose inverse also is a Lie group map.

Prop. 20.71. Let G be a Lie group. Then, for any a € G, the map
G — G; g »» aga~! is a Lie group isomorphism. O

Examples of Lie groups include all the groups in Table 11.53.

Prop. 20.72. Let (X,£) be a non-degenerate finite-dimensional
irreducible A¥-correlated space. Then the group of correlated auto-
morphisms O(X, &) is a smooth submanifold of End X and is, with this
smooth structure, a Lie group.

Proof By Cor. 11.38, O(X,¢) = {t eEnd X: #t = 1x}. Now, by
Prop. 11.31, the map End X — End X; t »w» # is real linear. It follows
that the map

7:End X — End(X,£); ¢t
(cf. page 208) is smooth.
For any # € End X,
dru(t) = ut + tu,
from which it follows, as in Example 19.14, that, for any u € O(X,$),
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dnu is surjective and, by Cor. 19.12, or by Prop. 20.52, that O(X,£) is a
smooth submanifold of End X of real dimension

dimg Endy — dimg End,, (X,£) = dimg End_(X,&). 0O

The tangent space to O(X,&) at 1x, being the affine subspace of
End X through 1x parallel to the real linear subspace End_(X,§), with
1x chosen as origin, is commonly and tacitly identified with this real
linear space.

Cor. 20.73. For any finite p, ¢, n, with p + ¢ = n,
dim O(p,q) = n(n — 1), dim O(n;C) = n(n — 1),
dim O(n;H) = n(2n — 1), dim U(p,q) = n?
dim Sp(2n;R) = n(2n + 1), dim Sp(2n;C) = 2n(2n + 1)
and  dim Sp(p,q) = n(2n + 1). O
The dimensions of the groups GL(n;R), GL(n;C) and GL(n;H)
could be computed similarly, but it is simpler to observe, as in Prop.
15.48, that these are open subsets of R(n), C(n) and H(z), respectively.

Cor. 20.74. For any finite »,
dim GL(n;R) = »%, dim GL(n;C) = 2n*
and dim GL(n;H) = 4n2 O
Prop. 20.75. For any finite p, ¢, # the maps
O(p,g) = S twwdett, U(p,g)—>S'; t-w>det?
GL(n;R) — R*; t-www»dett and GL(n;C)— C*; twwwdett
are smooth projections.

Proof Use Prop. 20.52, Prop. 20.39 and Prop. 18.21. O

Cor. 20.76. For any p, g, n withn = p + g,
SO(p,q) is a smooth submanifold of O(p,q), of dimension }(n — 1),
SU(p,q) is a smooth submanifold of U(p,q), of dimension 72 — 1,
SL(n;R) is a smooth submanifold of GL(rn;R), of dimension n? — 1,
SL(n;C) is a smooth submanifold of GL(n;C), of dimension 2(n®* — 1).
O

There are many examples of a Lie group acting smoothly on a smooth
manifold.

Prop. 20.77. Let G be a Lie group, X a smooth manifold and
G x X-— X; (g,x) »»> gx a smooth action of G on X. Then, for any
a € G, the map X — X; x > ax is a smooth homeomorphism. d

Prop. 20.78. Let G be a Lie group, X a smooth manifold and
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G x X — X; (g,x) »> gx a smooth action of G on X. Then, for any
b € X, the map
w:G—>X; gw»gh
is a submersion if, and only if, T, is surjective, where 1 = 1.5,
Proof For any a € G, the map x admits the decomposition

G—>GSH>X—>X; gawwa-lgwwalghwrgh
From this, and Prop. 20.70 and Prop. 20.40, it follows that if T, is
surjective then T, is surjective. This proves <. The proof of = is
trivial. |

The quasi-spheres (cf. page 217) are all smooth manifolds, and the
appropriate correlated group for each quasi-sphere acts smoothly on it.

Prop. 20.79. Let (X,§) be a symmetric non-degenerate finite-
dimensional irreducible A¥-correlated space. Then the quasi-sphere
L((X,£) x A¥)is a smooth submanifold of X x A with tangent space
at (0,1) the linear subspace

{cd)e X x A:d¥ +d =0}
(or, more strictly, its parallel through (0,1) with that point chosen as 0).

Proof The quasi-sphere is the fibre over 1 of the map
XXxA—{eA:*=1}; (c,d)~wc’c + d¥.
This map is easily proved to be a smooth submersion with tangent map
at (0,1) the map
X xA—{cA; »¥=1}; (cd)w(0,d”+ d). O
There is an analogue of Prop. 20.79 for the essentially skew cases. The
reader is invited to formulate the analogue and prove it.

Prop. 20.80. Let (X,£) be a non-degenerate finite-dimensional
symmetric irreducible A’-correlated space, and let G and S be the
group of correlated automorphisms and the unit quasi-sphere, respec-
tively, of the A¥-correlated space (X,£) x A¥. Then the map

G X S—S; (gx) w»g(x)
is smooth.

Proof This map is a restriction of the linear map
End (X x A) X (X X A) —> X X A; (t,x) w»> t(x). a

Prop. 20.81. Let G and S be as in Prop. 20.80. Then the map
7: G — S; g~ g(0,1) is a smooth projection.
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Proof By Theorem 11.55, 7 is surjective, with fibres the left cosets in
G of the group O(X,£) regarded as a subgroup of G in the obvious way.
By Prop. 20.80 and Prop. 20.20 the maps = and S — S; & «w»> u(x), for
any u € G, are smooth. By Prop. 20.78 it remains to prove that Tz, is
surjective.

Now [a ¢\ € TG, if,and onlyif,a* +a=0,b =cfandd* +d =0,
bd
and (c,d) € TSy if, and only if, d¥ 4+ d = 0, from which the surjec-
tivity of the linear map
Tn,: TGy, —> TSq,y; g wg(0,1)
is evident. |
Cor. 20.82. For any finite p, ¢, # the maps
O(p,q+1) — #(RP+)
O(n + 1;C) — &L(C**Y)
O(n + 1; H) — L(H"1)
U(p,q+1) — STt
Sp(p,q+1) — F(EPEHY)
GL(n + 1;R) — #(hbR" 1Y)
GL(n + 1;C) — &£(hbC**1)
GL(n + 1;H) — £(hbA"Y)
defined in Thereom 11.55 are open continuous surjections. O
Cor. 20.83. For any finite p, ¢, n the groups
O(m;H), U(p,9), Sp(p:9), GL(n;R) (n > 1), GL(n;C) and GL(n;H)
are each connected.
Proof Add the information in Cor. 20.82 to Theotem 17.29 and
apply Prop. 16.73. O
Similar methods prove the following.

Prop. 20.84. For any finite p, ¢, 7 the maps
SO(p,q+1) > F(RP+Y)
SO(n + 1;C) — F(C**)
SU(p,q+1) — F(CretY)
defined in Theorem 11.55 are open continuous surjections. O
Cor. 20.85. For any finite p, g, # the groups

SO(m;C) and SU(pg)
are connected. ]
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The groups SO(p,q), by contrast, are not connected unless p or
g = 0. See Prop. 20.95 below.

Once again there is an analogue for the essentially skew cases. The
conclusion is as follows,

Prop. 20.86. For any finite #» the groups Sp(27n;R) and Sp(2n;C)
are connected. O

Further examples of smooth manifolds and maps are provided by the
quadric Grassmannians studied in Chapter 12.

Prop. 20.87. Let (X,£) be any non-degenerate finite-dimensional
irreducible symmetric or skew AY-correlated space. Then, for any
k < dim X, the quadric Grassmannian J(X,£) is a smooth submani-
fold of %,(X). The parabolic atlas is a smooth atlas for #(X,£) and
determines the same smooth structure. (Cf. pages 229-231.) O

Prop. 20.88. Let G = {(a 5) e C(n): (b 2)5(21 g) = 1)},

where, for any fa b\eC(2n,) fa b\ @ b%\. Then G is a Lie
b a b a b &

group, with tangent space at 1 the real linear subspace of C(2n)

{(Z 2) €C(2n): acEnd_(C?), beEnd_ (Cn)},

isomorphic in an obvious way with End_(C") x End_(C"). Moreover
the map
f:0(2n) — C(2n); twec1tic,

with ¢ = Vlé(xl ll)’ is a smooth embedding, with image G, and f,,,
is a Lie group isomorphism. [

Prop. 20.89. For any n, the map
n b .
f: O@2n) — 4, (CEE): (Z a_)w im (Z)

(cf. page 233) is a smooth projection.

Proof In this instance O(2n) is embedded in C(2zr), as in Prop.
20.89. It is enough to prove that the map is smooth at 1, with surjective
differential there, the surjectivity of f having been already proved in
Chapter 12,

The image of 1 by fis im ((1)) and near this point of #,(C}}) one has
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the chart

End_(C%) = #,(C22); b ~oar im (11,)
with inverse

#,(C%)— End_(C"); im (“) s ba=1,

b

sending im , in particular, to 0.

1
0
Near 1, therefore, the map f is representable by the map

O(2n) — End_(C"); (“ 5) wo ba=,

b a

which is smooth, with tangent map at 1
End_(€") x End_(C*) — End_(C"); (a,b) ww»b.

(Cf. Exercise 18.38.) This tangent map is clearly surjective. O

There are nine other examples like this one and the reader is invited
to formulate and to discuss them! (Cf. Prop. 12.12.)

It remains to consider several examples from Chapter 13.

The Pfaffian charts on Spin (n), regarded as a subgroup of the even
Clifford algebra R,,9, were defined on page 349.

Prop. 20.90. The group Spin (n) is a smooth submanifold of Ry}
and is, with this structure, a Lie group.

Proof The Pfaffian charts on Spin (n) are open smooth embeddings.
The group operations are restrictions of maps that are known to be
smooth. O

The Cayley chart on SO(p,q) at 1, for any finite p,q, was defined on
page 236. For any t € SO(p,q) the Cayley chart on SO(p,q) at ¢t is
defined to be the Cayley chart at 1 composed with left multiplication
by .

Prop. 20.91. The Cayley charts on SO(p,q) are smooth. O

The section on the Pfaffian chart for SO(n) in Chapter 13 extends
to the indefinite case to the following extent.

Prop. 20.92. Let p,q be finite, let se€End-(R?), and let
s' e R(p + ¢) be defined by the formula
sg= —s; fp<i and j>p
and s; = Sy otherwise.
Then s € End_(R").
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If, moreover, | s | is sufficiently small,
Pfs' el(p,q) and ppry = (1 + s} (1 —s)~L O
The map
End_(R™) >> Spin (p,q); s> Pfs’A/| N(Pfs') |
is called the Pfaffian chart on Spin (p,q) at 1, while, for any g € Spin

(p,9), the Pfaffian chart on Spin (p,g) at g is the Pfaffian chart on Spin
(p,9) at 1 composed with left multiplication by g.

Prop. 20.93. For any finite p and g the group Spin (p,9) is a smooth
submanifold of R,§ and is, with this structure, a Lie group. O

Prop. 20.94. The group surjection p: Spin (p,q) — SO(p,q) is a
smooth locally trivial projection.
(Use Pfaffian and Cayley charts, as in Prop. 17.45.) D

Prop. 20.95. The groups Spin* (p,9) and SO+ ( p,q) (cf. page 268)
are Lie groups. All are connected, with the exception of Spin+*(0,0),
Spin+ (0,1), Spin+ (1,0) and Spin* (1,1), homeomorphic to S?, S¢, S°
and S° x R, respectively. O

Prop. 20.96. The Lorentz group SO+ (p,q) consists of the rota-
tions of R?? preserving the semi-orientations of R4, (Cf. page 161.)

Proof Since SO+ (p,q) is connected, by Prop. 20.95, the continuous
map SO+(p,q) — R¥; (a c) ~w- det a is of constant sign and, since
b d
its value at 1 is 1, it is always of positive sign. Similarly, det d is positive
on SO+ (p,q). By a similar argument det a and det d are negative on the
coset SO~ (p,q) of SO+(p,q) in SO(p,q). O

Lie algebras

In all the examples of Lie groups given above the standard atlases or
embeddings defining the smooth structure and the group operations
have been not only C%, but also C2%, C* and even C”. In this final
section all groups will be C2 at least. This is no restriction, since it can
be shown [49] that any C* Lie group admits a unique C?, C*® or even C®
Lie group structure compatible with the given C* Lie group structure,
By a theorem of Gleason, Montgomery and Zippin [17], [46] (Hilbert’s
5th problem [26]) it can even be shown that any topological group that
is also a manifold has a unique C* Lie group structure compatible with
the given structure.
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Prop. 20.97. Let G be a C? Lie group. Then the map
G xXG—>G; (ag)waga?
is C2. 0
In particular, the group map
pa:G—>G; gawwaga?
is C?, for any a € G. The map
Adg: G— Aut TGy;  a -w» (Tp,);,
where 1 = 14, is called the adjoint representation of the Lie group G.

Prop. 20.98. Let G be a C? Lie group. Then Adg is a C* group map.

Proof By Prop. 20.40, Ad, is a group map. To prove that it is C?
it is enough to prove that it is C'! at 1.

Let L = TG, and let A: L >> G be any C? chart on G with
h(0) =1 and Thy = 1;, the identity map on L. Such a chart exists.
Let f: L x L >> L be the map defined, for any (x,y) € L sufficiently
near to 0, by the formula

h(f(%,y)) = h(x) h(y) (h(x))~*.
Then, for any a € G sufficiently near 1,
(Tp.);: = dif(%,0), where h(x) = a,
so that (Adg) 2 = d,f(—,0), which is C? at 0. Therefore Adg is C*
at 1. O

The adjoint representation of a Lie group need not be injective.

Example 20.99. Let G = S*. Then Adg is the constant map with
value 1. ]

Example 20.100. Let G be any abelian Lie group. Then Ad, is the
constant map with value 1. [

Example 20.101. Let G = S3% Then Adg has image SO(3),
while the map (Adg),, : S3—> SO(3) is the familiar double covering
of Chapter 10 or Chapter 13. O '

The map
adg = T(Adg),: TG, — End TG,
is called the adjoint representation of TG;.
Prop. 20.102. For any C? Lie group G, the map
TG, x TG, —> TG,; (x,5) > [x,5] = adg (x)(y)
is bilinear. O
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The product defined in Prop. 20.102 is known as the Lie bracket,
and the linear space TG, with this product is known as the Lie algebra

of G. The Lie bracket is normally neither commutative nor associative.
(Cf. Theorems 20.106 and 20.110 below.)

Prop. 20.103. Let G be a C2 Lie group and let £ and f be defined as
in the proof of Prop. 20.98. Then, for any %, y € TG,,
[%y] = ddi f(0.0)(x)y). OO

Theorem 20.104. Lett: G — H be a C* group map, where G and
H are C? Lie groups. Then Tt, is a Lie algebra map; that is, for all
x,y€ TGy,

Tty([%.y]) = [Tt(x), Tt(y)]-
Proof For any a, g € G,

Hpa(8)) = Ha g a™') = puay) Ug),
and therefore, for any a € G, the diagram of maps

G—" G

.

H———H

is commutative. The induced diagram of tangent maps is

Adga

TG, —~ > TG,

Adg t(a)

TH]__—')T 1

leading, for any y € TG, to the commutative diagram

evaluation

G 2%, Aut TG, ™% 16,

lc lm,
Adg evaluation

H—" 5 Aut TH, =285 1y, |

at Tt,(y)
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The induced tangent map diagram this time is

adg evaluation
TG, ——> End TG, ——> TG,
T, thl
adg evaluation
Hl —_— End THI W TH1 .
g3

This also is commutative, That is, for all x,y € TGy,

Tty[x,y] = [Tty(x), Tts(¥)]
which is what had to be proved. 0O

Prop. 20.105. Let G be a C? Lie group and let L and % be defined
as in the proof of Prop. 20.98. For all x, y € L, let ¢(x,y) = x-y be
defined by the formula

h(xy) = h(x) h(y)

whenever h(x) h(y) eim k, and let y(x) = x(-» be defined by the
formula

h(x(-D) = h(x)-?,

whenever i(x)-! € im k. Then ¢ and y are C'2 maps with non-null open
domains,

dp(0,0) = 1;, di$(0,0) =1,
and dy0 = —1,.

(Note that, for any x € L sufficiently near 0, ¢(x,0) = x, ¢(0,x) = »
and (xz(#) =0 O
Theorem 20.106. Let G be a C? Lie group and let L = TG,.
Then, for all », y € L,
] = —[xy]. .
Proof Let h and f be defined as in the proof of Prop. 20.98 and let

¢ and x be defined as in Prop. 20.105. Then, for any x € dom y, since
the map f(x,—) admits the decomposition

L~ L > L

Yk y = ww e x(=1),
it follows that

d,f(x,0) = do(0,x-D) ds(,0).
From this, and from Prop. 20.105, it follows that, for any x € L,
dod £(0,0)(x) = (d1ds$(0,0)) (dx0()) d1$(0,0)
+ (do$(0,0)) (dod1$(0,0))()
= dod,$(0,0)(x) — dido$(0,0)(x),
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implying, by Prop. 20.103 and by Cor. 19.32 that, for any », y € L,
[%.] = dodi(0,0)(*)(y) — dodi$(0,0)(1)(),
and therefore that [y,x] = —[x,y]. O
Note that, though d,d, f(0,0) is independent of the choice of chart 4,

this is not so for dyd;¢(0,0). Consider, for example, G =R*. Then, if
h is the chart R >»> R*; xw»> 1 + x, ¢ is a restriction of the map

RxR—R; (xy)w>x-+y+axy

and dyd,$(0,0)(*)(y) = xy, while, if & is the chart R — R¥*; x .« €7,
¢ is the map
RXR—>R; () wrx+y

and dyd,$(0,0)(x)(y) = 0.
Cor. 20.107. Let X be a finite-dimensional real linear space. Then,
for any u, v € T(Aut X); = End X,
[,9] = uv — vu.
Proof Let h be the chart
End X»>>Aut X; tw»t.
Then, for any #,v € End X, since ¢(u,v) = uv,
dod (0,0 (u)(v) = uv. 0
Cor. 20.108. Let G be a Lie subgroup of Aut X, where X is a
finite-dimensional real linear space. Then, for any u, v € TG,,
[#,9] = uv — wu. d
Example 20.109. For any x, y € (T'S3),, the space of pure quater-
nions,
[,9] = xy — yx = 2x X ¥,
where X denotes the vector product. 0O

Theorem 20.110. Let G be a C? Lie group and let L = TG,.
Then, for all x, y, z € L,

[[xay]’z] = [x:[y’z]] - [y’[x)z]]'

Proof By Theorem 20.104 applied to the C'! group map Ad, ady
is a Lie algebra map. Therefore, for all x, y € L, by Cor. 20.107,

adg [x,y] = [adg x,adg y]
= (adg x)(adg ) — (ads y)(ade %),
and so, for all », y, 2 € L,

[((x,9],2] = [%:[3,31] — [3,[%,2]]. O
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The equation proved in Theorem 20.110 is known as the Facobi
tdentity for the Lie algebra L. By Theorem 20.106 this can also be
written in the more symmetrical form

[x,[,21] + [.le]] + [2[xy]] = 0.

A Lie algebra over a commutative field K is an algebra L over K
such that, for any x,y € L,

[y’x] = - [x’y ]

and, for any », y, 2 € L,

x[y:2]] + Dnlzx]] + [3[x2]] =0,
where L X L — L; (x,y) ~» [x,y] is the algebra product.
By Theorem 20.106 and Theorem 20.110 the Lie algebra of a Lie
group is a Lie algebra in this more general sense.
For a good survey article on Lie algebras see [33].

The theory of Lie groups is developed in many books. See, for
example, [58], [10], [49], [24], [67].

FURTHER EXERCISES

20.111. A smooth atlas % for a smooth manifold X is said to be
orientable if an orientation can be chosen for the source of each chart
in such a way that, for any two charts ky: Vy>> X, b : V> X of
& and for each v € dom (k) 'h,), the differential at v of (hy)er 4,
respects the orientations chosen.

Let % be an orientable smooth atlas for a smooth manifold X and
let &’ be any equivalent smooth atlas for X, the domain of any chart
in &’ being connected. Show that %’ also is an orientable smooth atlas
for X. O

20.112. Suggest definitions for the terms orientable smooth manifold
and non-orientable smooth manifold. O

20.113. Show that, for any odd 7 € w, RP" is orientable and that, for
any even n > 2, RP" is non-orientable. ]

20.114. Show that, for any n € w, CP" is orientable. 0
20.115. For which » is HP" orientable? 0
20.116. Show that any Lie group is orientable. ]

20.117. A complex smooth atlas for an even-dimensional smooth mani-
fold X consists of a smooth atlas for X, the sources of whose charts are
complex linear spaces, the atlas being such that the overlap maps are
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not only smooth but also complex differentiable (cf. page 362). A
manifold with such an atlas chosen is said to be a complex manifold.
Prove that any complex manifold is orientable. O

20.118. Two smooth submanifolds U and ¥ of a smooth manifold X
are said to intersect fransversally at a point w of their intersection W if
TX,=TU,+ TV,, and to intersect tranmsversally if they intersect
transversally at each point of W.

Prove that, if U and V intersect transversally, then W is a smooth
submanifold of U, V and X. (Recall Exercise 3.52.) O

20.119. Consider the map
[ RE— R & (9,2 — 2x,5(x) , A(x), 22, h(x)),
where h(x) = ((1 + x,%)(1 + x,%))~%

Prove that f is an immersion, injective except that £(0,1) = f(0,—1),
and show that any sufficiently small neighbourhood of (0,0,4,0) in im f
consists of two two-dimensional submanifolds of R? intersecting trans-
versally at (0,0,3,0). Show also that, for any ¢ > 0, there exists 6 > 0
such that, for | x | > §, |f(x) — (xo2,0,0) | <& O
20.120. Verify that the restriction to any line through 0 of the map
R — RE; o wo> (20 — 212, g¥y , XoXg — X33, X105 -+ XX, ¥a® — 232, X5%3)
followed by the radial projection R®\ {0} — S3; y > y/|y | is con-
stant and prove that the induced map RP3 — S5 is a smooth embed-
ding. O

20.121. Try to immerse RP2? in R3, (This was first done by Werner
Boy [5]. Such an immersion is essentially constructed in [48].) O

20.122. Let f: X— Y be a smooth map, X and Y being smooth
manifolds. Then a continuous map ¢ : X — T'Y such that swppd = fis
said to be a tangent vector field along f. Verify that a tangent vector field
along 1y is the same thing as a tangent vector field on X.

Suppose that F: R X X — Y is a smooth map such that F(0,—) =f.
Verify that the map

¢p: X—>TY; x-w> T(F(—,x))(1)

is a tangent vector field along f. O

20.123. Let X, Y and Z be smooth manifolds, let F:R x X — Y
and G: R X Y — Z be smooth maps and let H be the map

R x X—Z; (t,x)w> G(t,F(t,x)).
Prove that

¢r = dof + (T2)¢w
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where f = F(0,—) and g = G(0,—).

. Ty T
==
Xf/Y :G z 0

20.124. Let X and Y be smooth manifolds, andlet F : R X X — Y,
G:RXX->X and H:R X Y— Y be smooth maps such that
G(0,—) = 1x, H(0,—) = ly and, for all (¢,x) eR X X,

F(t,x) = H(t,fG(t,x)),
or, equivalently, for all ¢ € R,

F(t,—) =H(t —)fG (t,—),

where f = F(0,—). Prove that

b7 = duf + (Tf )be-

(This exercise is relevant to work on the structural stability of maps by

J. N. Mather [40].) O

20.125. Let G be a Lie group. Prove that TG is homeomorphic to
TG, x G. O

20.126. The dual tangent bundle of a finite-dimensional real affine
space X consists of the space TEX = U (X x {a})L, with the topology
aeX

induced by the obvious bijection U(X X {a})t— XL X X, to-
acX

gether with the obvious projection 72X — X. The space TLX may be
regarded as an affine space with vector space X«Z X Xx. Moreover the
linear space XsZ X Xy may be assigned the non-degenerate skew-
symmetric real bilinear product

(XaL X Xx)2 — R; ((1,0) , («',0")) wo 2(?') — o'(2).

Suggest a definition for the dual tangent bundle TLX of a finite-
dimensional smooth manifold X. On the assumption that X is C?, show
that there is a non-degenerate skew-symmetric product on each tangent
space of T'LX, inducing an isomorphism of the tangent space with its
dual, such that the induced bijection

T(TLX)— TKTLX)

is a homeomorphism.

(The dual tangent bundle plays the role of the phase space in modern
treatments of Hamiltonian dynamics. See, for example, [0] or [63].) [



CHAPTER 21
TRIALITY

At the beginning of Chapter 14 we remarked that the Cayley division
algebra O can ultimately be held ‘responsible’ for a rich variety of excep-
tional phenomena. Among these is the triality which we study in this final
chapter—an automorphism of order three of Spin 8 that does not project
to an automorphism of SO(8). As a byproduct we make acquaintance with
the fourteen-dimensional Lie group G,, the group of automorphisms of
the Cayley algebra O.

Triality has something of interest to say about the projective quadrics
#1(C8) and #,(R%4). This quadric triality seems first to have been noted
by Study [76), [77], though the word ‘triality” is due to Elie Cartan [65],
who placed the phenomenon in its proper Lie group context.

Transitive actions on spheres

To put the group Spin 8in context we begin by looking at all the groups
Spin n, with < 10. Recall that the universal Clifford algebra R,, , for the
orthogonal space RP2 contains RP? as a real linear subspace and is
generated by it. The even subalgebra R,,? consists of those elements of
R, , that are of even degree, and the even Clifford group I'%(p,q) consists
of those g € R, 9 such that, for all x € R?4, gxg— € R?2, (When g is even,
2 = g.) The group Spin (p,q) may then be represented either-as a quotient
group or as a normal subgroup of I'%(p,q). Here it is appropriate to do the
latter and, by Prop. 13.56 and by Prop. 13.59, to identify the group
Spin #, in particular, with the group

leeIOm):gg =1}
where g~ denotes the conjugate of g in R, ,,, the matrix representative of
g~ being the ordinary conjugate transpose of the matrix representative of g.
Explicitly
R

Spinl = 0O(1) < Ry}
= C <R(2

Spin2 = U(1) < Ry}
435

e m
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Spin3 = Sp(1) CRyY ~H <R#
Spin4 = Sp(1)xSp(l)< R,y = H < 2R(4)
Spin5 = Sp(2) < R,! 2 H(2)< R(3)
Spin 6 = SU(4)= U@#)< R, = C(4)< R(8)
Spin7 < O(8) < Ry} = R(3)

Spin8 < O(8)x0(8) < R,y = R(8)
Spin9 < O(16) < R, = R(16)

Spin 10 = U(16) < Ry,8 = C(16),

and so on. The induced Clifford or spinor actions of Spin 1 on S9 Spin 2
on S, Spin 3 and Spin 4 (in two ways) on S3, Spin 5, Spin 6, Spin 7 and
Spin 8 (in two ways) on 57 and Spin 9 on S?® are, moreover, all transitive,
although the Clifford action of Spin 10 on S3! is not, as we shall see—
a good reason for stopping at this point !

Apart from these Clifford actions of the groups Spin # on spheres there
are the standard orthogonal actions.

In studying the standard orthogonal action of Spin (n4-1) on S%, for
a positive integer n, it is appropriate to work in the Clifford algebra
R,, = Ry}, identifying R**! with Y = R @ R", R and R" being em-
bedded in R, in the standard way. (See Chapter 13 for details.) Then, for
anyye Y, =y,

S*={yeY:yy=1} and Spinn = {geSpin(n+1):2 =g}.

It is worth a passing mention that Y is closed under the operation of
squaring and therefore can be assigned the bilinear product

Y2 = Y5 (90.31) w31 + Y10

This gives Y the structure of a Jordan algebra [73]. Moreover the
squaringmap Y — Y;y w> y2 is surjective, since any element of ¥ with
non-zero real part (and there are such, since # > 1) generates a sub-

algebra of R, isomorphic to C. The standard orthogonal action of
Spin (n 4+ 1) on Yis

Spinn+1) XY = Y
(h,y) > hyh~,
the map Y —Y; y w»hyh~1 being a rotation of Y, for each
h e Spin (n + 1).

Prop. 21.1. Any element of Spin (n 4 1) is expressible in the form
zg, where x € 8", g € Spin n.
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Proof Leth €Spin (n + 1). Since 1 € $” so also does hh1e S». Let
z €Y be such that 22 = hh~land let g = z~th = 2h. Such # exists, since
squaring on Y is surjectnve while, since i1 € §", s0 also 5 € S". More-
overgfl= Wk z1=1. So g =8, implying that g € Spin #. O
It is easy to verify that the sequence

Spinn —Spin (n 4 1) = S* (n > 0)
inc, B s hi-1

is left-coset exact and projects to the left-coset exact sequence
SO(n) — SO(n + 1) = S* (n>0)

studied in Chapter 11 (see Theorem 11.55). Thus Spin (n + 1) acts
transitively on S, each isotropy subgroup of the action being isomorphic
to Spin #.

All these transitive actions of the groups Spin # on spheres bear closer
study, not only independently, but in relation to each other. Of particular
interest are the isotropy groups of the various Clifford actions.

The story is summarised in the following sequence of commutative
diagrams:

21.2 Spinl — Spin2 — S
112 R, N PR =6
SO o S s St
involving the Hopf map kg, the restriction to S* of the Hopf map
R2 — RP?, composed with a stereographic projection;
21.3 Spin 2 — Spin3 — S?
I IR I inRo, = H,
St $T o s

involving the Hopf map Ag, the restriction to S® of the Hopf map
C2—> CP!, composed with a stereographic projection;

214 § - 8
' I
Spin 3 —» Spin4 — S inR,; ¥ °®H,
i !
§ = s

involving various transitive actions of Spin 4 on S3, Spin 4 being iso-
morphic to Sp(1) X Sp(1) = §3x S3;
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21.5
§ = Sp((1)
' {
Spin 4 — Spin5 —» S%, inRy, = H(2),
' { l

$ - 5 Mo
involving the Hopf map kg, the restriction to S7 of the Hopf map

H?2 — HP?, composed with a stereographic projection, and the isomor-
phism Spin 5 = Sp(2);

21.6 Sp(1) — SUGB) — S8

| } I
Spin5 — Spin6 — S% inRy; = C®4),
! |
§ = &
involving the isomorphisms Sp(1) = SU(2), Spin5 = Sp(2) and
Spin 6 = SU(4);

21.7
SUB) - G, — S°
{ b I
Spin 6 —» Spin7 — 8%, inR,, = R(8),
! |
S7 — S7

introducing G,, the automorphism group of the Cayley division algebra O
and involving the transitive action of G, on S%;

21.8
G, — Spin7 — §°
' | [
Spin7 — Spin8 — §7, inRy; = 2R(8),

' }

S = 5

involving various transitive actions of Spin 8 on S7 and the associated
triality automorphism of Spin 8 or order 3; and, finally,
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21.9
Spin 7 — Spin7
} {
Spin 8 — Spin9 — S*% in Ry, = R(16),
| ' Il

s . s g

involving the Hopf map kg, the restriction to S5 of the Hopf map
02 — OP, composed with a stereographic projection.

The first few diagrams

Diagrams 21.2 to 21.6 can be dealt with fairly rapidly for much of the
detail has appeared above, in Chapter 13, or even earlier.

Diagram 21.2

We work in Ry, = C. The map Ag: S* —> St is the restriction to S*
of the map C— C; z > 2% or, equivalently, the map R*-— R%;
(%, y) > (22 — ¥2, 2yx), which admits the factorisation

St — RPL St

(%,9), ~~~- {x, ] D e (2x2—1, 2yx)

I I

with{x2+y? = 1 [2x2, 2yx] (x2—y?, 2yx),
(at least when x = 0)  with (x2—y?%)24(2yx)?
— (s =1

The map RP! —- S1may be interpreted as stereographic projection from
(— 1,0) in R%

2% = (a®—p%, 2yx) = (—1, 0)+(x, y) 2x
g = (x: y)

(=10 (0,0

Diagram 21.3

The Clifford algebra in which we work is Ry, = H, with the real linear
space R? = R @ C embedded in H < C(2) by the real linear map



440 TRIALITY
R®C—CQ2); (A43) w(i _f)

S2in R3 being represented bythose (4,2) such that 12 4 2z == 1. Themap
hg: S3 —> 82 is the restriction to S? of the map

w —2 s _(w —& (W —Z
H—H; q~(z w)wqq—(z E)(z w)

_ (ww — Zz —2wz )
T\ 2w ww—2z
or, equivalently, the map
C2— C%;  (w,2) W (W@ — 27, 22W),

which admits the factorisation

5 cp st. pr. S2
from(-1,0)eC?

(w, 2), VYN NNV [, 2] NNANNN(2uti—1, 22%)
i I

with w%4-28 =1 [2w®, 22w]
(at least when w == 0)

(w®—22, 23%)

Diagram 21.4

The Clifford algebra in which we work is Ry; = 2H, with the real
linear space R* & H embedded in *H < H(2) by the real linear map

) g 0
H — H(2); qw(o q),

S% in H being represented by those ¢ such that ¢ = 1. With this choice
R,3 = H is embedded in 2H by the real linear map

H—H(2); ¢ w(q (q))

0
The diagram is
$ . s
' Il
Spin3 — Spin4 — S3,
| |

$ = 5
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where the horizontal maps are

S8—> S3; r o> 7, whereri =1;

Spin 3 = Spin 4 ; ¢ ~w- (q 2),Whereqq= 1;

0
. s. (7 O g 0 r'O)__(qF 0).
Spin 4 =5 ’(o f)w’(o f)(O i =\o ¢

where ¢§ =7 = 1. The central vertical maps are, simply,

and

S2=>Spin4 ;r W((l) 2),

and Spin4 — S3 ; ((q) 2) - g,

The diagram relates one of the Clifford actions of Spin 4 on 53 to the
standard orthogonal action and in so doing relates two distinct product
structures on Spin 4, the group isomorphism Spin 4 = Sp(1) X Sp(1)
and the smooth homeomorphism Spin 4 = Spin3 x S* with (g,7)
corresponding to (¢,g7). A similar diagram relates the other Clifford
action of Spin 4 on S3 to the standard orthogonal action. O

One way in which the ‘vertical’ embeddings of S* = Spin 3 in Spin 4
differ from the ‘horizontal’ one is that they do not project to embeddings
of SO(3) in SO(4). We refer to these embeddings in the sequel as the
Clifford embeddings of Spin 3 in Spin 4. It is, in a sense, fortuitous that
the Clifford homogeneous space Spin 4/Spin 3 is homeomorphic to the
standard one, the real Stiefel manifold (cf. page 345)

O(R3R%) = O(4)/0(3) = SO(4)/SO(3) = Spin 4/Spin 3.

The force of this remark will become more evident in the sequel.

Diagram 21.5

The Clifford algebra in which we work is Ry, = H(2), with the real
linear space R®* = RO R* = R @ H embedded in Ry, by the real
linear map

ROH—~HQ) i (Lo~ () 7,
S%in R® being represented by those (4,9) such that 12 4 ¢§ = 1. With

this choice, R, § is the standard copy of 2H in H(2), namely the subalgebra
of diagonal matrices. The diagram
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o= 5
{ {

Spin 4 — Spin 5 —» St
{ ' If

$ o 5 Mo

relates one of the Clifford actions of Spin 4 on S3 and the Clifford action
of Spin 5 on S7 to the standard orthogonal action of Spin 5 on S4. The
horizontal maps are

Spin 4 = Sp(1) x Sp(1) — Spin 5 = Sp(2) ; (g 2) > (g g) ;

o (a ¢ a o\( a —b\__(2aa—1 —2ab
Spm5=SP(2)—’S4’(b d)‘w"(b d)(——c' E)_(Zbd zaa—l)’

(6 2)=6 D=6 G 2

S3c H— §"< H? ; a w» (4,0), withaa = 1;

and
st. pr.
S HP* from(-1,0) St
(@, B), ~rmnrnns [, ] (2a2—1, 2a)
I I
with az+bb = 1 [2aa, 2ba] (aa—bb, 2ba)

(at least when a = 0)

The vertical maps are, simply,

0 4y’
and this composed with the inclusion Spin 4 — Spin 5 ;

Spin 4 = Sp(1) x Sp(1) — % (g 3) > @

S8 = Sp(1) — Spin 4 = Sp(1) x Sp(1) ; d > (1 O)

and Spin 5 = Sp(2) —> S7; (Z 2) > (a,b).

The vertical embedding of Sp(1) in Sp(2) is a standard one, but the
induced embedding of Spin 3 in Spin 5 factors through one of the
Clifford embeddings of Spin 3 in Spin 4 and is not standard. We refer
to it as a Clifford embedding of Spin 3 in Spin 5. The Clifford homo-
geneous space Spin 5/Spin 3 is homeomorphic to Sp(2)/Sp(1) = S°.
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On the other hand it can be shown, by methods of algebraic topology (see,
for example, [74] Theorem 4.5 and [69]), that the standard homogeneous
space Spin 5/Spin 3, homeomorphic to the real Stiefel manifold

O(R3,R%) X SO(5)/SO(3),

is not homeomorphic to 7, nor to the product S% x S%.
There is, of course, an analogous diagram involving the other Clifford
action of Spin 4 on 53, ]

Diagram 21.6

We have already met this diagram in Exercise 11.65 and in Prop. 13.61
where we outlined a proof that Spin 6 = SU(4). We give below a slight
variant of that proof.

The Clifford algebra in which we work is Ry 5 = C(4), with the real
linear space R @ R® = R® = C3 embedded in it by the real linear
injection

Z, 0 =z z

0 By 2 —F

C3 = C4); (29,21,%2) > - 2 0
( )’ ( <1 2) —F, —F 2 0

—2 z 0 2

With this choice, Ry { is the standard copy of H(2) in C(4). The sphere S°
in R® is represented by those (24,2,2;) such that 2,5, + %3, +
2,5, = 1. The determinant of the matrix representing (2g,21,%,) 18
easily computed to be (2y%, + 2,8, + 2.%,)% which is equal to 1 when
(20,21,%3) € S%. Since, by Prop. 21.1, any element of Spin 6 < U(4) is
of the form zg, where € S® and g € Spin 5 = Sp(2), and since, by what
we have just proved and by Exercise 11.68, both z and g have determinant
equal to 1 (as elements of C(4)), it follows that Spin 6 = SU(4). Since
both these groups are connected and of the same dimension, namely 15,
it follows that they coincide.

Filling out the rest of the detail of the diagram is then straightforward.
For any te C(4), t~ = f~ is given as in Exercise 11.65. A direct computa-
tion (in which Exercise 11.64 is relevant) shows that, for any u € SU(3),

22 0 up Uy
(u 0\ fu O 0 Uy Uy —HUgy
0 1 0 1 - —aoa —alz u22 0 ’

—Uie up 0 Ugo

which is the identity matrix if, and only if, # = (3 (1)) , with v e SU(2)
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= Sp(1). So, finally, we obtain the commutative diagram

SUQ2) — SUB3) — S°

R

Spin 5 — Spin 6 - S%
=5p(2) = SUM@)

¢ |

S = &

where the maps not explicitly described above are all standard ones, each
row and each column being left-coset exact. d

The embedding of SU(2) in SU(4) here is the standard one. It is
therefore a corollary of the diagram that the complex Stiefel manifold
U(Ce,CY = SU4)/SU(2) is homeomorphic to S% x S7. Since SU(4)
= Spin 6 and SU(2) = Spin 3, this complex Stiefel manifold may also
be regarded as a Clifford homogeneous space Spin 6/Spin 3, the em-
bedding of Spin 3 in Spin 6 being a Clifford one, as it factors through
a Clifford embedding of Spin 3 in Spin 4. By contrast it can be shown,
by methods of algebraic topology, that the standard homogeneous space
Spin 6/Spin 3, homeomorphic to the real Stiefel manifold O(R3, RS)
= SO(6)/SO(3), is not homeomorphic to S5 x S7.

(Technical note: In order to link up with Exercises 11.64 and 11.65 we
have momentarily, while discussing Diagram 21.6, reverted to the con-
vention of Chapter 11 of identifying K**! with K» @ K, for K =R, C
or H, which results in the last coordinate slot playing a special role, as for
example in Theorem 11.55. In the present chapter it is generally more
natural to reverse things and to identify K»+! with K @ K», especially
when K = R. Accordingly it will usually be the initial coordinate slot
from now on that will be singled out from the others.)

Getting further

To get any further it is appropriate to jump a stage and to take a look
first at Spin 8. Any linear automorphism of R”* induces an automorphism
of Spin n, which projects to an automorphism of SO(z), since the original
automorphism of R® commutes with —*1. Of all the groups Spin 7 the
group Spin 8 is unique in that it possesses automorphisms of order 3 that
do not project to automorphisms of SO(8).

To construct such an automorphism we begin with Spin 8 as a sub-
group of O(8) X O(8) or rather, since Spin 8 is connected, as a subgroup
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of SO(8) x SO(8). The Clifford algebra in which Spin 8 lies is
Ry} = Ry, =2R(8), where we may suppose that R8 is embedded by the

N § —s 2T2(RY. v(@ O

injection R8 —2R(8); a w» ( 0 v (a)') ,

v: O = R8 — R(8) (upsilon) being the injection with image Y, with
which we became familiar in our discussion of the Cayley algebra O early
in Chapter 14. Here, as on that occasion, the product on R(8) and the
product on O will both be denoted by juxtaposition, as will be the action
of R(8) on O, unity in O being denoted by e. One technical detail is worth
isolating as a Lemma.

Lemma 21.10. Let x Y, let g R(8) and suppose that gye = xye,
for all y € Y. Then g = x and gye = (ge)(ye). O

Our purpose in singling this out is to emphasise that it is incorrect to
contract (ge)(ye) to gye nor to expand gye to (ge)(ye), unless we know that
geY,

The companion involution

Conjugation on the Cayley algebra O is associated not only with the

- conjugation anti-involution of the Clifford algebra R,? = R(8), namely
transposition, but also with an involution of R(8), which we term the
companion involution of R(8) and which restricts to an involution of
SO(8). This involution is defined by means of the element of O(8) which
induces conjugation on O (by left multiplication), namely the symmetric

ti-rotati 1 0
anti-rotation |\ _ ).

Prop. 21.11. The map
. 1 0 1 0
R(B)—>R(8); g w» § = (0 _71) 4 (0 _71)

is a linear involution of the algebra R(8) which commutes with trans-
position and restricts to a group involution of SO(8) and is such that
gye =gye, forall geR(8) andall yeY,

or, equivalently,

ghb=gb, forall geR(8) andall beO.
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In particular, by setting y =1, or b =e,

ge =ge, forall geR(8).
Moreover, for all ge SO(8),

=g = ge=e < fe=e,

g, in such a case, being of the form ((1) 2), where k € SO(7). O

The element ¢ will be called the companion of the element g.

The triality automorphism

Consider now an element (go gO) of Spin 8, g, and g, being elements
1

of SO(8) and #, being the companion of g;. Its action on R® and in par-
ticular on S7 is given by

O R [ [

where yeY or S7, that is by y w» g,yg7, since g =gi =g7'; the
corresponding action on O being given by ye v goy§7'e. In this way
the pair (g,,£;) of elements of SO(8) defines a third element g, € SO(8) by

goyfile = gyye, forall yeY.
An ordered triple (gq,£1,25) of elements of SO(8) such that
& o) e Spins
(5 5) = soime

or, equivalently, such that gyy#7*€Y for all yeY, and such that
goy8le = gyye, for all y € Y, will be called a f-triad of SO(8), 6, the
triality automorphism of Spin 8, being the automorphism of order three

0 0
6: Spin 8 —> Spin 8; (go )-vw)(gl ,,),
P R U VR G &
which exists by virtue of the following theorem:

Theorem 21.12. Let(g,,g,,£,) be a 6-triad of SO(8). Then (g,,£,.20)
and (g5,80,£,) are O-triads also, as also are (ggl,27%,23%), (g74,£35.80%) and
(g24g94.£11). Moreover
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. . 0 g O
6: Spin 8 — Spin 8; (go V)w(l )
P AR CURY VB (A

is an automorphism of Spin 8 of order three.

Proof Thekeytothe proofisthescalar triple product on O with which
we made acquaintance in Prop. 14.5. What we need to recall is that, for all
abc € O,

: abc="bca=7¢- ab,

where - denotes the standard scalar product on R®.
So, let (g4,21,£2) be a 6-triad. Then

goyETteY, with gyysile = gyye, forall yeV.
Then, by Lemma 21.10,
Loyé'ze = (goyfi'e)(ze) = (fye)(ze), forall yzeY.
Since g, is orthogonal it follows, by Prop. 21.11, that
xe- (ye)(&1'ze) =g, Xe-goysi ze
=gve- g, ye(ze), forall x,y5€Y,
and so, by Prop. 14.5 as we promised above,
52+ (§ize)(xe) = g, 7% (se)(dyxe)
= yé-gylzfyxe, forall x,y,2€Y,
g» being orthogonal. Therefore
(81'ze)(xe) = g3lzfyve, forall xzeY.
So, by Lemma 21.10 yet again,
g3i38,e Y, with g3lafe=¢7'%e, forall zeY.

That is, (g;%,25%,27") is a f-triad. Repeating the whole argument with
this 6-triad as starting point one deduces at once that(g,,£,,2,) is a 0-triad.

The rest of the proof, including the proof that § is a group map of order
three, is obvious. O

With this we also have the companion

Theorem 21.13. Let (g,,£;,£.) be a 6-triad of SO(8). Then so also is
(£1,80,.8:). (Note the change of order!)

Proof Let(g,,g:,85) be a 0-triad of SO(8). Then
ZoyiiteY, with gyydile = gyye, forall yeY.
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Then £1y7g¢" = (g347")” € Y, with
§1y7g3%e = (goyd1) e = goyéi’e = faye = gy,
forall y— €Y. Thatis, (£,,£,8,) is a f-triad. d
It is therefore appropriate to call (gl 0 ) the companion of (go O,, ) in
0 g 0 4
Spin 8.

Cor. 21.14. Suppose that (g, g, §)is a 6-triad of SO(8). Then g =g
and (g,8,£) is a O-triad of SO(8).

Proof Since(g,£,£)isaf-triad, sois( zg\r",g”,‘gr) =(g,8,£).S0f=¢g. O

Theorem 21.15. The triality automorphism 6 of Spin 8 does not

project to an automorphism of SO(8). However, it does project to an
automorphism of SO(8)/S°.

Proof Under the projection Spin 8 —> SO(8),

g 0 ) d (_go 0 )
2 = (7
. y 10 10
project to the same element g, of SO(8). However 6 (0 1) =\o 1)

while § (_(1) _(1)) = (_(1) (1)) , since (1,1,1) and therefore (—1,—1,1),

is a G-triad of SO(8). Since (é (1)) and (_(1) (l)) project to distinct

elements of SO(8), namely 1 and —1, it follows that 6 does not project
to an automorphism of SO(8).
Under the projection Spin 8 — SO(8), however, the four elements

(:t & 0 ) , which project to the same element + g, of SO(8)/S°% map

0 £4
under 8 to the four elements (j: gl n g, ) , which project to the same
2

element 4 g, of SO(8)/S°. The automorphism 6 therefore projects to the
automorphism

SO(8)/8° —> S0(8)/S% £ &~ £ & (and + gow £ g5),

where (g,,21,8,) is a §-triad of SO(8). O

It isincorrect to say that 6 and 6! are the only automorphisms of order
three of Spin 8 that do not project to automorphisms of SO(8), for if ¢is
the automorphism of Spin 8 induced by a change of coordinates on R8
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then ¢6¢~ will also be an automorphism of order three that does not
project to an automorphism of SO(8), and not all such ¢ commute with 6.
Essentially, however, 8 is unique. The proof that Spin 8 is the only one
of the groups Spin 7 to admit a triality automorphism depends on a much
deeper analysis of the structure of the groups Spinn and their Lie
algebras than it is possible to give here. See, for example, [70].

The group G,

Let Gbeany group and let : G — G be an automorphism of G. Then
the subset {g € G: y(g) = g} of elements of G left untouched by » is
clearly a subgroup of G.

Consider, in particular, the group Spin 8 and its triality automorphism
6. The subgroup of Spin 8 left untouched by 0 consists of those elements

(gf’ g) of Spin 8 such that
1
e(go 0):(& O)Z(go 0)
0 4 0 & 0 &/’

that is, those (f) g,) € Spin 8 such that (g,g,¢) is a §-triad of SO(8).

Clearly, this group is isomorphic to the subgroup of SO(8) consisting of
those g € SO(8) such that (g,g,2) is a 8-triad of SO(8). This group we
define to be the group G,.

Theorem 21.16. Letge G,. Theng =g andge =e.
Proof Letge G, Then
gyfteY, with gyftle =gye, forall yeY.

In particular, by setting y =1, g1 € Y and géle = ge, from which it
follows that §~'gé—le = ¢, so that, by the last part of Prop. 21.11,
g7 g1 = #1571, implying that (g&1)® =1. Let x =gg1. Then
x € G, and xy¥le = Xye, for all y € Y. But ¥ =x1 and ®* = 1. So
yxe = xye, for ally € Y; that is (ye)(xe) = (xe)(ye), for all ye Y. So
xe = + e;thatisx = 4 1. But (—1,—1,—1) is not a @-triad of SO(8)
Sox = 1. Thatis g = ¢. Then fe = e. Soge = e. d

The next theorem characterises G,.

Theorem 21.17. G, is the group of automorphisms of the Cayley
division algebra O.

Proof Suppose first that g € G,, acting on O by left multiplication.
Then, for all b = ye, ¢ = ze € O,
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8(be) = gyze = gyg—gze
= gyg—legze, since g =g,
= gyegze, againsince g =g,
= (gb)(ge)
with, in particular, ge = e. Thus g is an automorphism of O.
Conversely, by the argument of Prop. 10.20, applied to O rather than
to H, any automorphism or anti-automorphism g of O is of the form
((1) 2) R @ R R @ R7; aw»>re a + #(pu a), where ¢ is an ortho-
gonal automorphism of R”. That is g € O(8), with ge = eand § = g.
Suppose that that g is an automorphism of O. Then

2(bc) = (gb)(gc), forall b=ye, ¢=2zecO,
thatis gyze = gyegze, forall y,2€Y,
thatis  gy§lgze = Jyegze, forall y,ze€Y, since § =g,
thatis gygle = gye, forall yeY,
thatis geG,. d

Since § =g, for all g€ G,, it follows, from the last part of Prop. 21.11,
that G, actually is a subgroup of SO(7). We shall prove shortly that G, is
in fact a Lie group of dimension 14 (SO(7) and SO(8) being Lie groups of
dimension 21 and 28, respectively). This we can do after we have estab-
lished Diagrams 21.7 and 21.8. Before turning to these we prove one
further result about the way that the group G, lies in Spin 8. In doing so
it is helpful to think of Spin 8 as the group of f-triads of SO(8) them-
selves, under the group multiplication

(80 81,2:)(8081,82) = (8080:8181,8282),

with G, the subgroup of triads of the form (g,g,2). Now,
for any 0 -triad (g5,£1,82), Lfi' = 1< ge =e<fe=e.
Bearing this in mind, we define, for each i € 3,
H;={(g0g18:) € Spin 8: g;e = e}.

Theorem 21.18. For each 1€ 3, H; is a subgroup of Spin 8 iso-
morphic to Spin 7, the three subgroups being permuted cyclically by 6,

namely o g —H, 0,H,=H, and 8H,=H,
Moreover, HnH,=H,NnHy=HyN H, =G,.

Proof Tt is clear that H, is the isotropy subgroup at 1 of the standard
orthogonal action of Spin 8 on S7 this subgroup being isomorphic to
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Spin 7. It is clear also that the three subgroups are mutually isomorphic
and that they are permuted cyclically by 0.

To prove the last part, suppose that(g,,2,,2,) € H; N H,. Theng, = §,
and g, = §,, implying that (g,,£,,8:) = (g0:8080) and therefore, by Cor.
21.14, that g, = g, = g,. That is H, " H, < G,. Conversely it is clear
that G, is a subgroup of each of the H,. So H; N Hy = G,. Likewise
H,nHy=HyN H, = G,. O

We are at last in a position to appreciate Diagrams 21.7 and 21.8.
Paradoxically it is convenient to consider Diagram 21.8 first.

Diagram 21.8. The diagram is

G, — Spin7 — S

=I—[0
Loy
Spin7 — Spin8 — S’
— H,

;]

S = &

where, as has been explicit throughout the preceding discussion, except
momentarily in Theorem 21.18, Spin 8 lies in the Clifford algebra

R, ; = ?R(8), any element (go O) of Spin 8 being such that (g,,2,,2,) is

0 &
a f-triad of SO(8).
The diagram relates two of the three actions of Spin 8 on S7, the
standard orthogonal action and one or other of the two Clifford actions of
Spin 8 on S”. Suppose we choose the action

Spin 8 X S7 —> S

g O
(& 2)7) e

with isotropy subgroup at 1 the subgroup H, defined above. The central
vertical sequence of maps is then the corresponding left-coset exact
sequence, while the central horizontal sequence involves the standard
orthogonal action with isotropy subgroup at 1 the subgroup H,.

In view of Theorem 21.18, the whole structure of the diagram should
now be clear.

An analogous diagram relates the standard orthogonal action to the
other Clifford action of Spin 8 on §". O
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Note that under the standard projection p: Spin 8 — SO(8), with

p((l) (1)) = ,o( (1) —(l)) =1, p H, = SO(7), while p H, = p H,=
Spin 7. In line with our practice above we refer to the horizontal em-
bedding of Spin 7 in Spin 8, with image H,, as the standard embedding,
the vertical embeddings, with image H, or H,; being the Clifford
embeddings of Spin 7 in Spin 8.

It is a corollary of Diagram 21.8 that Spin 8/G, = §7 X S

Diagram 21.7. The details of Diagram 21.7 can now be inferred.
From Diagrams 21.6 and 21.8 and the standard left-coset exact sequence
Spin 6 — Spin 7 ~—> S°
we have the diagram
SUB) -= Gy -+ S8

{ | I
Spin 6 —» Spin 7 -—» S¢
! }

§ = &

where the elements of Spin 6 are those of Spin 7 which lie in C(4),
regarded as a subspace of R(8) in the standard way. It follows at once
that the group SU(3) coincides with the subgroup of G, consisting of all
those automorphisms of O which belong to C(4) rather than to R(8).
Moreover the sequence

SU@3) —=> G, — 8¢

is left-coset exact, the sphere S® being thus representable as the homo-
geneous space G,/SU(3). O

The action of Spin 9 on §15

Diagram 21.9, concerning Spin 9, is now easy to establish. The Clifford
algebra in which we work is Ryg = R(16), with the real linear space
R® = R @ R8 embedded by the real linear map

R ®R8 — R(16)

A —u(by
@5 = (1 7).
where v: O = R® — Y < R(8) is the standard embedding of O in R(8),
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the sphere S® being represented in R(16) by the matrices (; - f)

where AeR,yeY and 22+ yy"=1.

With this choice, R, is the standard copy of 2R(8) in R(16). Any element
of Spin 9 is of the form

}.—yngO) ; (goO) : 2
(y /‘I.)(O P with 0 4 €Spin 8, and A%4yy" =1.

The detail of the diagram, namely

Spin 7 = Spin 7

| '
Spin 8 — Spin9 —» S
| ol

5 - s 2 g
is then very similar to that of Diagram 21.5, with O replacing H. The map

. s. (2 —I\[(& O (l —y’)2
Spin 9 = 5% (y )6 #7702

with isotropy subgroup at 1 the subgroup Spin 8, determines the central
horizontal exact sequence. The lower vertical maps are

Spin 8 —> S7; (‘f;’ gl) W goe

. A f/
Spin 9 — S15; ( )(0 )w Agee,
pi y 0 4 (A802,780¢)

and the restriction of the latter to S8, while the lower horizontal maps are
S'c O —>SBc 0% goe w»(gee,0) and

S5 C 02 op: N
[Agoe, yg0e] [Agoe, y80e] v (2AAgoe) (Agoe)—1, 2(r80¢) (Agoe))
with 224(ye) (ye) = I N
[2(g0¢) (Agoe), 2720¢) (Rgo0)] (2421, 22ye)

(at least when 4 =+ 0) I
((A*—yy7)e, 24ye)

Here we have assumed, for the sake of definiteness, that the left-hand
column corresponds to the Clifford action of Spin 8 on §7 with isotropy
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group at 1 equal to Hj, one of the two Clifford Spin 7’s in Spin 8. There is
of course an analogous diagram involving the other Clifford action of
Spin 8 on §7.

It is a corollary of the diagram that the Clifford homogeneous space
Spin 9/8pin 7 = Spin 9/H, is homeomorphic to S*5. However Spin 9/
H,, which is homeomorphic to the real Stiefel manifold O(R?, R?)
= SO(9)/S0(7), is not homeomorphic to S5 (by [74], Theorem 4.5).

The action of Spin 10 on §*!

All the Clifford actions on spheres discussed up until now have been
transitive. By contrast, the Clifford action of Spin 10 on S is not, for the
isotropy subgroup at 1 at least contains a Clifford copy of Spin 7 as a
subgroup, from which it follows that the dimension of the orbit of 1 is at
most equal to

dim Spin 10 — dim Spin 7 = 45 — 21 = 24,

In fact the space of orbits, assigned the quotient topology, can be shown
to be homeomorphic to a closed interval, one end-point of which repre-
sents an orbit A,, of dimension 21, homeomorphic both to Spin 9/Spin 6
(the embedding of Spin 6 in Spin 9 being a Clifford one) and to Spin 10/~
SU(5), while the other end-point represents an orbit B,, of dimension 24,
homeomorphic to Spin 10/Spin 7 (the embedding of Spin 7 in Spin 10
being Clifford), Spin 7 = H, being indeed the isotropy subgroup at 1.
Each of the interior points of the interval represents an orbit of dimen-
sion 30, homeomorphic to

Cyp = Spin 10/Spin 6 = Ay, X S

(the embedding of Spin 6 in Spin 10 being Clifford).

More information about Spin 10, the orbit 4,; and various relation-
ships between 4,,, Cy, and B,, will be found in Exercises 21.29 to 21.31.
The standard text on differentiable group actions is [64], though the
above example is not to be found there. I am grateful to Christopher
Spurgeon and to Dr Hugh Morton for establishing many of the details
of the action.

G, as a Lie group

In our treatment of the groups Spin n so far we have regarded them
certainly as topological groups and not just as groups, but, apart from
one brief argument when discussing Diagram 21.6, we have disregarded
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the fact that they are Lie groups and that the various maps between them
and the homogeneous spaces formed from them are not only continuous
but smooth (in fact C*). What about G,?

Theorem 21.19. The group G, is a compact, connected Lie group
of dimension 14,

Proof Consider Diagrams 21.6 and 21.7. It is enough if we can prove
that the vertical map, the C* surjection,

Spin 7 —> §7; g w> ge

of Diagram 21.7, is a submersion (see page 414 for the definition) and to
prove this it is enough, by Prop. 20.78, to prove that the tangent map at 1
T(Spin 7), —> T(S7);; y “ ye is surjective. However, this map com-
posed with the injection T(Spin 6), — T'(Spin 7), is the tangent map at 1
of the standard submersion SU(4) —> 57 of Diagram 21.6.

Hence G, is a smooth submanifold of Spin 7, of dimension dim Spin 7
— dim 87 = 21 — 7 = 14. The group is clearly closed in the compact
group Spin 7, so is compact. Finally, since SU(3) and S are connected,
50 is G,. O

The group G, is one of a clutch of five compact exceptional simple Lie
groups all associated in one way or another with the Cayley algebra O, the
other four being known as F,, E, E, and E,, of dimensions 52, 78, 133 and
248, respectively. For the definitions of semi-simple and simple Lie
algebras and Lie groups the reader must refer to one of the standard
texts on Lie groups, such as [24], [67] or {68]. Most treatments construct
the exceptional groups by first constructing their Lie algebras. An
elementary account of them, as groups, is hard to find.

Other aspects of triality

For any positive integer 7 the group surjection p: Spin # — SO(n) is,
by Prop. 17.45 and Prop. 20.94, smooth (indeed C*) and locally trivial
and it therefore induces a Lie algebra isomorphism 7Tp, between
T(Spin n), and T(SO(n)),, the latter normally being identified with
End_(R"), by the remark following Prop. 20.72. What about 6?

Prop. 21.20. The triality automorphism 6: Spin 8 —Spin 8 is
smooth (indeed C=) and induces a Lie algebra automorphism

T6,: T(Spin 8); — T (Spin 8),

of order 3. Although 6 does not project globally to SO(8) its restriction
to a suitably small neighbourhood U of 1 in Spin 8 does project to a
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smooth map 6,: V — V, where V = p,(U), the diagram of Lie algebra
maps
T (Spin 8), ———+ T (Spin 8),
7a IR IR

T(SO®), — e T(SO®))

being commutative. ]
Triality may be formulated entirely in terms of the action of SO(8) on
the Cayley division algebra O as follows:

Theorem 21.21. The triple (g,,g:,8.) is a -triad of SO(8) if, and
only if, §(ab) = (g,a)(gsh), forall abeO.

Proof (gy,£1,82) is a f-triad of SO(8)
<forall yeVY, gyf7teY and goyfite = Sye,
< forall y,zeY, gyysiize = (§,ye)(ze), by Lemma 21.10,
< forall x,yeY, gyyxe=(gye)(f xe), setting
xe = f{'ze, =ze = g xe,
<« forall «,yeY, g(veye) = (g,xe) (g, ye), conjugating both sides,
< forall abe0, g(ab)=1_ga)(g.h), setting
Xe=a, ye=»\. O

Theorem 21.21 is due to Elie Cartan ([65], page 370). The Lie algebra
version is known as Freudenthal’s principle of triality [66]:

Theorem 21.22. For any y, € T(SO(8)), (= End_(R8)), there exist
unique y4,y, € T(SO(8)), such that

yo(ab) = (y1a)b + a(yyh), forall abeO.

Proof For existence let ¥ be as in Prop. 21.20 and take tangents at
1 of each side of the equation

£o(ab) = ((6320)a)((Brgo)b)
for each g, € V and each a,b € O. Then

Yo(ab) = (T8} vo)a)b + a(((T6p)ryo)d),

for each (e T(SO(8)), and each a,b € O; for Cayley multiplication is
bilinear, while the companion involution and evaluation at a or at b are
restrictions of linear maps.
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So, take yy = (T63)yy, and 7, = (T8y)y7,.

For uniqueness we have to prove that if y, ys,, p3, y3 € T(SO(8)), are
such that (y,b)c -+ b(‘yzc) = (y1b)c + b(yyc), for all b,ceO, then
71 = ¥y and y, = ¥;. It is clearly enough to prove that if

(y1b)e + bysc) =0,
for all b,c € O, then y; = ¥, = 0. Let a = y,e. Then
e a = e-y,e =—y,e-e (since 7, is skew) = — a-e.
So a is a pure Cayley number. However, we have

0=uac + Py, forall ceO.

So 0 = (7b)c — b(ac), forall b,ceO.
So 0=y, —ba, forall beO.
So 0 = (ba)c — b(ac), forall b,ceO,

which is not the case, unlessa = 0. So 9,6 = 0, forallb Oand y,c =0,
forallce O.Soy, = %, =0. O

It is more usual to start the entire discussion of triality by first proving
Theorem 21.21 directly and defining (y,, y;, y2) to be a triality triad of
T(SO(8)), if

Yobe = (¥1b)c + b(yyc), forall bceO.
See, for example [70], Vol. 11.

Quadric triality

In Exericse 17.59 we noted that either component of £ ,(R},;) is homeo-
morphic to #,(R$,), each being homeomorphic to SO(4), and we asked
the question whether or not either component of #,(C};) is homeo-
morphic to #,(C},). Now, back in Theorem 12.19 we have represented
each of these quadric Grassmannians as follows:

S(RY) = J(Rip) = (0(4) x O(4))/0(%)

S (R4) = F\(RE,) = (0(4) X O(4)/(0(1) x 0(3) x O(3)
JC) = F(Ch) = O(8)/UM#)

F1(C%) = SI(Ch) = OB)/(U(1) x O(6)).

Hence one component of # (R}, ) is homeomorphic to (SO(4) x SO(4))/
SO(4), clearly homeomorphicto SO(4), while #(R};) ishomeomorphic to
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(SO(4) x SO(4))/(S° x SO(3) x SO(3)) = (S® x S%)/S8°
= Spin 4/S° = SO(4).

Likewise one component of .#,(C8,) is homeomorphic to SO(8)/U(4),
while .#,(C}) is homeomorphic to SO(8)/(U(1) x SO(6)).

It looks at first sight as though the isomorphism of U(4) to
U(1) x SO(6) is a necessary condition for the homeomorphism of
F{(C3p) to F,(CEy)—yet it can be shown by methods of algebraictopology
that these groups are not homeomorphic ! However SO(4) is not homeo-
morphic to S° X SO(3) X SO(3)—though SO(4)/S° is homeomorphic
to SO(3) X SO(3) by an obvious isomorphism, Spin 4 being isomorphic
to Spin 3 X Spin 3. A better question therefore is:

Are U#)/S° and (U(1) x SO(6))/S° homeomorphic?

Triality provides an affrmative answer.

Once again we work in R(8) = R, 4, with R® embedded in this Clifford
algebra in such a way that the even Clifford algebra R, is the standard
copy of C(4) in R(8). It is easily verified that the product of the basis
elements for RE is then the diagonal element + 7 of C(4) and we so order
them that the product is in fact 7. The elements 1, ¢ and the six basis
elements of R® then span the copy of R8 in R(8) that we have found it
convenient in Chapter 14 and in this chapter to denote by Y. With these
notational conventions we can now state

Theorem 21.23. Letg € U(4) = SO(8), let z be the inverse of either
of the square roots of the determinant of g, regarded as an element of
C(4), and let p: Spin 6 = SU(4) — SO(6) be the standard projection.
Then

(g, (2)", (§ ,,(g%g))) is a 6-triad of SO(8).

In particular the projection of § to SO(8)/S° maps the subgroup U(4)/S°
of SO(8)/S° to the subgroup (U(1) x SO(6))/S° by the isomorphism

2 0
¢ wi(O P(z*g))' =

Cor. 21.24. The triality automorphism of SO(8)/S° permutes
cyclically the two components of .#,(C},) with the projective quadric
J1(C8y) itself. O

In fact triality also is involved in the case of the real quadric #(R$,).
We note first
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Prop. 21.25. Let SO(4) be embedded in SU(4) = Spin 6 in the
obvious way. Then p (SO(4)) is a copy of SO(3) X SO(3)in SO(6). O

With an obvious reordering of basis elements where necessary for
sense we then have

Theorem 21.26. The triality automorphism 8 of Spin § restricts to
an automorphism of p(SO(4) x SO(4)), the induced automorphism of
SO(8)/ S likewise restricting to an automorphism of (SO(4) x SO(4))/S°.
Moreover, for any g € SO(4) = SU(4),

. (10 ) o g
(g, + 4 (0 p((< 1)ke) is a f-triad of SO(4) x SO(4).

In particular the projection of 8 to (SO(4) X SO(4))/S° maps the sub-
group SO(4)/S° of (SO(4) x SO(4))/S° to the subgroup SO(3) x SO(3)
by the isomorphism + g aw» p(+ 2). Ol

Cor. 21.27. 'The triality automorphism of (SO(4) x SO(4))/S° per-
mutes cyclically the two components of £,(R},) with the projective
quadric S, (R},,) itself. |

We do not wish to deny the reader the fun of filling in the details of the
proofs of these last few theorems for himself.

We have noted in Exericse 17.58 and above that the real projective
quadric #{(R};) is homeomorphic to SO(4). Study’s interest in this
quadric first arose in [74] in connection with the problem of representing
the group of rigid motions of R3. It turns out that such rigid motions can
be represented, uniquely up to non-zero multiples, by pairs of quaternions
(«,8) with a- 8 = 0 but with « 7 0, so that the group is representable by
the quadric #(R§,) with one of its isotropic halfspaces removed (the
group product is («,8)(y,8) = («p,x8 + By), and unity is (1,0)). The
relationship of this representation to the representation of the group
SO(4) by the whole quadric, which we have explored in a wider setting
in Exercise 13.86, is hinted at in [75] and stated quite explicitly in [76].
The same passage in [76] contains a clear statement of what is now known
as Study’s principle of triality, but which he called the Reziprozitdits-
gesetz, or reciprocity law, namely the existence of an analytic homeo-
morphism between the quadric #;(R};) and either component of the
quadric Grassmannian .# ,(R$; ) and also between the quadric #,(C®) and
either component of 4(C?). For an exhaustive treatment of quadric
triality in a general setting, see [78].
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FURrRTHER EXERCISES

21.28. Verify that the set of copies of the algebra C in the Cayley
algebra O can be represented as the homogeneous space G,/ SU(3), while
the set of copies of the algebra H in O can be represented as the homo-
geneous space G,/SO(4). |

21.29. Prove that the map
ROR*2C DO —> C(16)

(&%) = (§,c) w» (C tz’)

iz &’

where {, peR, {=&+in ccO IR, x = (9¢), 2 =v(c)eY and
1(iota) denotes the square root of —1 in the coefficients of the elements of
C(16), is a real linear embedding of R @ R? in Ry 3 = C(16) such that
R, 3 is the standard copy of R(16) in C(16).

Hence prove that any element of Spin 10 = C(16) is expressible in the

fom EDCE DeE )

where (ﬁ“ ;) cSpin8, with gog, € SO(@8),
1

(; _;)ess, with 2eR,yeY and 2%4yy =1

and (é ‘f_:) €8 with ¢(eC,2eY and (™ +237 =1,

the image of such an element by the standard projection Spin 10 —- S®
. & i2F\?
being (‘z rr) O

21.30. With the elements of Spin 10 represented as in 21.29 acting on
R = C @ O < C(16) by left multiplication, prove that the isotropy
group at 1 is isomorphic to Spin 7 (in fact to the Clifford subgroup H, of
Spin 8—c.f. Theorem 21.18) and that the isotropy group at

(1 +u 0
0 l—Li)

consists of those elements of Spin 10 for which
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cosf — sinf} 0
go=|sinb  cosgi =~ » with gy e SO(6),
with { =24(cos 6 + ¢sin @) and x = y(sin § — 7 cos @), the latter group
having dimension equal to

dim SO(6) + dim S® =15 4 9 =24,

and acting transitively on S with isotropy group at 1 isomorphic to
Spin 6 = SU(4). (By a theorem [71] that lists all compact Lie groups
acting transitively on spheres it follows that this latter group must be
isomorphic to SU(5).) O

21.31. Establish the following commutative diagrams for the orbits 4,,,
B,, and C,, of the Clifford action of Spin 10 on S3%!:

Spin 6 = Spin 6

' {
Spin7 — Spin 9 — S5
| | l

58 - A, — S

Spin 7 = Spin 7

} '
Spin9 — Spin 10 — S*
| ' I

SU@#) — SUGS) — S
Z Spin 6 | I

|

Spin 9 — Spin 10 — S5?
} |
Ay = Aan

implying that Cgy, = Spin 10/Spin 6 = 4,, X S9,
Spin 6 = Spin 6

| |
Spin 9 — Spin 10 —» §°
| { Il

Ay — Cy — 5°
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Spin 6.== Spin 6
= SU4) ‘
SU(5) — Spin 10 — 4,,

} ' I

S - (3 — 4y

and
Spin 6 = Spin 6
} }
Spin 7 — Spin 10 — B,,
| ' I

S8 - G —= By
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294, 37
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312
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345
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19,
d*f 392
Ct, C>, C* 392, 361
20.
TX 406, 408
TX, 406, 408, 75
Topx 406, 408
Tf 409
Tf, 409
Adg, adg 428
[%y] 428, 42, 81, 141, 286
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hg 437, 439
he 437, 440
hg 438, 442
ho 439, 453
G, 435, 449
g 445
7] 446
H,H, H, 450
Azl’ B24a C30 454
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abelian group 27 , real (linear) 48, 67
Abraham, R. 434, 463 , tensor 241 _
absolute alternating group 99, 119
angle 166 alternating multilinear map 122
determinant 126, 186 alternative algebra 278
value 34,47, 178 analytic 392
Adams, J.F. —6,197,239,284,420, angle 175
463 , absolute 166
addition 20 , right 147
adjoint annihilator
of linear map 153, 208 , dual 108
representation , orthogonal 156, 211
of Lie algebra 428 anti-automorphism 67
of Lie group 428 anticommute 179
affine anti-involution, algebra 67, 154, 207
approximation 353, 360 antipodal 169
map 77 antirotation 153
space 74 archimedean 23, 45
, normed 289 architects 229
of linear complements 138 area 126
structure 74 arm-twisting 2
subspace 78 Arnol'd, V. I. 225, 434, 465
algebra Artin, E. —6, 263, 463
, alternative 278 associative 14
anti-involution 207 Atiyah, M. F. —6,239,241, 320,463
automorphism 221 atlas 343, 344
, Cayley 279 , admissible 404
, Clifford 240 , orientable 432
, Dirac 248 , parabolic 231
, division 277 , smooth 400
, extensive 274 , standard 224
, exterior 274 atlases, equivalent 345
, fundamental theorem of 47, 390  automorphism 28, 59, 67
, geometric 240 group 66, 449
, Grassmann 274, 275 , triality 446
, Jordan 436 axis 160
, Lie 429, 432
, linear 67
, matrix 69 backwards 11
of complex numbers 48 ball
of quaternions 176 , closed 290
, Pauli 248 , open 290
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, ping-pong 195
Banach space 296
basis

of induction 18

of linear space 103
basis, standard 103

theorem 104, 135, 158, 212
between 34
bijection, bijective 6
bilinear

map 65

, continuous 304

product 15, 66
binary

expansion 44

operation 14
biquaternion 276

Bott, R. —6, 241, 284, 420, 463,

464

bound

, lower 39

, upper 38
bounded subset 39, 290, 319
Boy, W. 433, 463
Boyer, R.H. —6
Boy’s surface 433
Bredon, G. E. 454, 465
Brouwer, L. E. J. 173, 350, 463
Brown, R, —6, 324, 463
Bruck, R. H. 284, 285, 463
bundle

, principal 347

, tangent 406, 408

, vector 410
Butler, M.C. R, —6

cancellation 20
cardinality 19
Cartan, E. 435, 456, 465
cartesian product 12
Cauchy sequence 43, 295
Cauchy-Riemann equations 363
Cauchy~Schwarz inequality 166
Cayley, A. 278, 463
Cayley

algebra 279, 435

chart 234, 236, 426

heptagon 283

projective line 285
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projective plane 285, 416
triangle 282
Cayley’s theorem 27
central affine quadric 226
centre
of algebra 67
of sphere 168
chain rule 357
characteristic of ring 36
zero 36
chart 343
, admissible 401
, Cayley 234, 236, 426
, Lipschitz 260
, natural 223
, parabolic 231
, Pfaffian 263, 349, 426, 427
, standard 224
Chevalley, C. 432, 463
choice, axiom of 10
circle group 52, 175
classification theorem
214
classroom 5
Clifford, W. K. 240, 276, 463
Clifford
action 436
algebra 2, 174, 240
,even 253
, universal 247
algebras, table of 250
embedding 441
group 255
, projective 255
homogeneous space 441
closed
, algebraically 391
graph theorem 288
map 322
subset 291, 316
, locally 317
closure of set 316
codimension 106
coefficient system 100
cofinite topology 311
Cohen, L. W. 26, 45,463
coimage 8
cokernel 87
column 116
, matrix 68, 103

158, 161,
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commutative

diagram 10

product 15

ring 29
compact

map 322

space 319
companion 448

involution 445
complement

, linear 136

, orthogonal 156, 211

,set 15
complete 45, 296
complex

differentiable 362

field 46

group 216

, line 216, 225

manifold 433

number 46
component 12, 13, 332
composite, composition 6
cone, quadric 227

conjugate, conjugation 46, 177, 252,

279

connected 41, 329
constant 6

, locally 334
continuous 292, 313
contour 8
contraction lemma 298
convergence 42, 295

, general principle of 45
convex 81

hull 84
correlated

map 211

space 151
correlation

, linear 150

, semi-linear 201

correlations, (projectively) equivalent

203, 207
coset 87
space representation 97, 232, 237
cosine 49, 147
countable 19
counterimage 11
cover, open 317

critical 372
Crowell, R. H.
curve 383

, Peano 309, 384

, smooth 382
cycle, cyclic 130
cylinder, quadric 227

173, 463

decimal expansion 44
degree of polynomial 31
dense 333
derivative 361
Descartes, R, 12
determinant 121
, absolute 126, 186
of endomorphism 125
diagonal of matrix 69
diagram-chasing 92
Dieudonné, J. -7,
463
difference
, absolute 34
of numbers 20
of sets 15
vector 74
differentiable 360
manifold 403
differential 360
coefficient 361
manifold 403
, partial 364
, second 393 .
differentials, higher-order 392
dimension 100, 105, 351, 405
Dirac algebra 248
direct sum 132
disconnected 329
, totally 332
discrete topology 312
dishonesty 249, 251
dissimilar 194
distance 41, 146, 164, 290
distributive 20, 29
divide 20
division algebra 277
divisor 20
of zero 30
domain 5
, invariance of 350
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dual
, continuous linear 302
exact sequence 92
, linear 184
of semi-linear map 201
tangent bundle 434
dynamics, Hamiltonian 434

Ehrlich, G. 26, 45, 463
ellipse 228
ellipsoid 228
elliptic paraboloid 229
embedding
, Clifford 441
, smooth 412
, topological 315
endomorphism 59
endomorphism algebra 66
epimorphism 59, 99
Epstein, D. B. A. 443, 454, 465
equation of quadric 225
equivalence 13
class 14
euclidean
, locally 343
space 167
even
Clifford algebra 253
permutation 119
everywhere free 419
exact
pair 89
sequence 90, 96
, dual 92, 107
, short 91
, split 95, 97
exponential map 48
exponentiation 21
extensive algebra 274
exterior algebra 274

factor 20
factorial 22
fibre 8

bundle, principal
field 36

, algebraically closed 391

, double 132

347

INDEX

, involuted 251
, tangent vector 419

finite

, locally 334
number 17
set 19

finite-dimensional
five lemma 98
fixed field 251
Flett, T. M. —6
form
, hermitian 202
induced by correlation 201
, quadratic 148
forwards 11
four lemma 98
Fox, R. H. 173, 463
frame 116
, basic 116
framing 116
, basic 116
, elementary 117
, unimodular 117
free 101, 135, 419
subset, maximal 102
vector 75
Freudenthal, H. 456, 465
Frobenius’ theorem 284
Fuchs, L. 48, 463
functional dependence 390

100, 112

Gauss, K. F. 173, 463
general linear group 106
generation

of algebra 112

of ring 112

geometric algebra 240
geometrical model 41
geometry 41

, projective 144, 216

, topological —7,1
Gilmore, R. 432, 455, 465
Gleason, A. M. 427, 463
Goffman, C. 288, 463
good correlation 204
gradient, absolute 300
graph 13
Grassmann, H. 274, 463
Grassmann algebra 274, 275



Grassmannian 140, 223, 275

, quadric 225, 425

, semi-neutral 225

, tangent space of 411
great sphere 169
greater than 22
greatest 23
group 26

, abelian 27

action 97, 435

, additive 27

, alternating 99, 119

, Clifford 255

, general linear 106

, Lie 421

, Lorentz 427

map 27

of permutations 26

, orthogonal 153, 216

, Pin 255

reversing map 27

, Spin 255, 264

structure 26

, symplectic 216

, topological 336

, unimodular 124

, unitary 216
Gruenberg, K. W. 144, 463

Hahn-Banach theorem 288
half-spinor space

, complex 251

, real 249
Halmos, P. R. 4, 19, 309, 463
Hamilton, W. R, 176, 463
Hamilton triangle 281
Hamiltonian dynamics 434
Hampson, A. —6
Hausdorff space 320
Heine-Borel theorem 318
Heisenberg uncertainty principle

309

Helgason, S. 432, 464
heptagon, Cayley 283
Hostenes, D. 248, 464
hermitian

form 202

product 202
Hilbert, D. 427, 464

INDEX 479

Hilbert’s fifth problem 427
Hirzebruch, F. 347, 410, 464
homeomorphism 313

, locally a 333

, smooth 373, 375
homogeneous space 338
homomorphism 28
honesty 276
Hopf, H. 197, 464
Hopf map 144, 197, 285, 437
Horrocks, G. —6
hull, convex 84
Hurewicz, W. 85, 350, 384, 464
Hurwitz, A. 284, 420, 464
Hurwitz’ theorem 284
hyperbola 228
hyperbolic 149, 194

paraboloid 229

plane 153, 213
hyperboloid 228
hyperplane 106

at infinity 142

reflection 158

ideal 31, 89

, left 70

, minimal left 71, 113

, right 70
idempotent 193
identification topology 314
identity map 7
image S, 8,11

, inverse 11

, linear 101
imaginary part 47
immersion 413
implicit function theorem 380
inclusion 8
increment 74

formula 375
index 161, 214, 475

, Witt 162
induction, mathematical 18
infimum 39
infinite 19

, countably 19
infinity 42, 142
injection, injective 5
integer 35
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intermediate-value theorem 330
intersection 15
interval 42
inverse 15

function theorem 378
inversion 305, 369
invertible 150
involute 181, 252
involuted field 251
involution 59

, algebra 67

, companion 445

, main 181, 252
irreducible

automorphism 193

semi-linear map 200
Irwin, M. C. —6
isolated critical point 396
isomorphism 28, 59, 313
isotropic

correlated space 210

orthogonal space 149
isotropy subgroup 98, 339, 437

Jacobi identity 432

Jacobian matrix 362

Jacobson, N. 455, 465

James, I. M. 416, 443, 464, 465
join, affine 109

Jordan algebra 436

Kaplansky, 1. 432, 464
Kelley, J. L. 4, 464
kernel 29, 61, 151

rank 110
Kervaire, M. 284, 420, 464
Kleinfeld, E. 284, 464

Lagrange multipliers 387
Lagrangian subspace 225
Lang, S. 381, 464
least 23
left
coset 87
linear space 183
module 187
left-coset exact 97, 218

INDEX

left-handed 129
length 146, 164
less than 22
level 8
Lie, S. 421, 464
Lie
algebra 429, 432
, semi-simple 455
, simple 455
bracket 429
group 421
map 421
, semi-simple 455
, simple 455
limit 42, 295, 317
line
, affine 81, 105
, Cayley projective 285
complex 216, 225
, intuitive 41
, linear 105
, projective 140

linear
algebra 67
bundle 410

complement 136
correlation 150
dependence 100, 135
dual 64, 65, 100, 184
, continuous 302
image 101
independence 101
map 57
, continuous 294, 300
over double field 135
maps, equivalent 111
part 77
product 63
section 59, 95, 138
space 55
, normed 289
over double field 135
structure 55
subspace 60
sum 61
union 61
linearly free 101, 135
line-segment 81, 146
linked spheres 173, 197
Lipschitz, R. 260, 465
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Lipschitz chart 260 natural
locally chart 223
closed 317 number 17

constant 334
euclidean 343
finite 334
trivial 326
Loos, O. 449, 457, 465

Lorentz group, proper 161, 268, 427

MacLane, S. 85, 464
main involution 181, 252
manifold

, analytic 401

, complex 433

, differentiable 403

, differential 403

, infinitely smooth 401

, orientable 432

, smooth 401

, topological 343
map 5

, inverse 7

, invertible 7
Mather, J. N. 434, 464
matrix 68
maximum, local 372, 386
mean value theorem 377
membership 4

Milnor, JW. —6 284,403, 415, 420,
464
minimum, local 372, 386
model
, geometrical 41
, linear 59

, topological 313
module 71, 187

over double field 134
modulo 23
modulus 47
monomorphism 59, 98
Montgomery, D. 427, 461, 464, 465
morphism 28
Morton, H. R. 454
Moufang identities 287
Moufang, R. 287, 465
multilinear map 66
multiplication 20

negative 33
of a correlated space 211
negative-definite 149, 215
neighbourhood 290, 312
Neumann, J. von 4
neutral
correlated space 210
orthogonal space 149
Newns, W. F. 390, 412, 436, 465
non-associative 29, 282
non-degenerate
affine quadric 225
correlation 151, 203
critical point 396
orthonormal subset 243
norm 47, 164, 178, 259, 288, 300
, product 289
, quadratic 289
, sum 289
normal subgroup 88
normed
affine space 289
division algebra 277
linear space 289
norms, equivalent 292, 299
North pole 168
nullity 110
number
, complex 46
, finite 17
, natural 17
, prime 50
, rational 37
, real 40

octaves 278
octonions 278
odd permutation 119

one 5
open
cover 317
map 322

mapping theorem 288
section 323

set 291, 311

orbit 98
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order 22
ordered field 36
orientable
atlas 432
smooth manifold 432
orientation 129
oriented linear space 129
origin 56
orthogonal 149, 211
annihilator 156, 211
complement 156, 211
decomposition 156
group 153, 216
isomorphism 152
map 152
, special 153
space 149
, neutral 149, 163
orthonormal
basis 158, 212
subset 158, 242

Paige, L. J. 436, 465
pair, ordered 12
parabola 228
parabolic

affine quadric 227
atlas 231

chart 231
paraboloid 229

parallel 76
parallelizibility 420
parameter space 383
parametric representation 333
parity of permutation 119
partial differential 364
coefficients 362

partition 9

path 2

path-connected 334
Pauli algebra 248
Peano, G. 384

Peano curve 309, 384
Pedrick, G. 288, 463
pentagon, rebracketing 7, 283
period, periodic 49
periodicity 249, 270
permutation 6

,even 119

INDEX

,odd 119

, parity of 119

, signof 119
Pfaffian 260

chart 260, 349, 426

, complete 261
phase space 434
Phillips, A. 433, 464
Pin group 255, 264
ping-pong ball 195
pivotal condensation 131
plane

, affine 105

, Cayley projective 285

, hyperbolic 149, 153, 210, 213

, intuitive 41, 146

, linear 105

, projective 140

, symplectic 211, 213
point 56

at infinity 141

, projective 140

, regular 135
polynomial 31
Pontryagin (Pontrjagin), L. S.

427, 432, 464, 465

positive 33

number 18
positive-definite 149, 164, 215
power 21, 26

set 8
predecessor 17
prime number 50
primitive idempotent 193
product

, algebra 67

, bilinear 15, 66

induced by correlation 201

, matrix 69

norm 289

of groups 29

of numbers 20, 21

of rings 30

of sequence 20

of sets 12

onaset 14

, scalar 148

, tensor 187, 189

topology 325

, scalar triple 179, 280
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, vector 178
projection 13

, orthogonal 146

, smooth 412

, tangent 408

, topological 315
projective

Clifford group 255
correlation 206
geometry 144, 216
line 140

, Cayley 285

map 143

plane 140

planes, embeddings of 415
quadric 225
quadric, complex 238
space 140, 223
subspace 143
proper map 324
pure

part 47

quaternion 176
Pythagoras’ theorem 147

quadratic
form 148
norm 289
quadric
, affine 225
cone 227
cylinder 227
Grassmannian 225, 425
, affine 225
, semi-neutral 225
, projective 225, 435
quasi-sphere 173, 217, 340, 423
quaternion 176
product 176
quaternionic dimension 185
quotient
group 88
, linear 79, 85
of numbers 37
of set 9
space 314
topology 314

INDEX

radial tangent vector 414
radius 168
Radon, J. 420, 465

483

Radon-Hurwitz sequence 259, 273,

420

rank 109, 151

theorem 390
rational

field 37

number 37
real

field 40

number 40

part 47
rebracketing pentagon 7, 283
recursive definition 19
reducible

automorphism 193

semi-linear map 200
reflection 158
reflexive correlation 202
regular point 135
relativity 149, 268
remainder 23
restriction 10
reverse 181, 252
reversion 181, 252, 254
Riemann representation 196
right angle 147

linear space 183

module 187
right-handed 129
ring 29

map 30

of integers 34

of polynomials 31

of remainders 30

, ordered 33
ring-reversing map 31
Robertson, S. A. ~6
rotation 146, 153
rotations

of R® 2,160, 180

of R* 182
Russell, B. 24, 465
Russell paradox 4, 24

Samelson, H. 461, 465
scalar 56
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multiplication 55

product 148

triple product 179, 280
Schréder-Bernstein theorem 24
section 10

, linear 95

, open 323

, zero 409
Segre, B. 48, 465
self-adjoint 208
semi-linear map 198
semi-neutral 225
semi-orientation 161
sequence 18

, Cauchy 43, 295

, convergent 42, 295

, doubly-infinite 35

, exact 90

, finite 19
sesqui-linear 201
set 4

, empty 4

, finite 19

, infinite 19

,null 4
sets

, disjoint 4

, intersecting 4

, overlapping 4
Shapiro, A. —6, 241, 463
short exact sequence 91
side of hyperplane 128
signature 161, 213
similar 112, 194
Simmons, G. F. 288, 384, 465
sine 49
singular 371
singularity 372
skew 73

correlation 201
skew-adjoint 208
Skornyakov, L. A. 284
smooth 360, 392

curve 382

, infinitely 382, 392

manifold 401
smooth map 403

structure 401

submanifold 392

subset 381

INDEX

surface 382
solution 5
soup plate 2
source 5, 39
South pole 168
spanning subset 101

, minimal 102

sphere 168, 290

, seven-dimensional 403

,unit 168

, zero 159, 168
Spin group 255, 264
spinor space

, complex 251, 276

, real 249, 276
split exact sequence 95, 97
Spurgeon, C.J. 4534
square 26, 148

,a 195

, commutative 15

root 42

, twisted 221
stability of maps 434
stabiliser 98

standard
atlas 224
basis 103

chart 224, 399
hyperbolic plane 149, 210
symplectic plane 211
topology 311, 312

Steenrod, N. E. 420, 443, 454, 465

Stiefel manifolds 345, 443, 465
step, inductive 18
stereographic projection 169
Study, E. 276, 435, 459, 466
subgroup 28

, normal 88
submanifold, smooth 382, 404
submersion 414
subring 31
subset 8

, free 101

, proper 8

, spanning 101
subspace, topological 314
subtraction 56, 74
successor 17
sum 20, 21

norm 289
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supremum 38
surface, smooth 382
surjection, surjective 35
symmetric correlation 201
symmetry of second differential 393
symplectic 217

group 216

plane 211, 213

tangency 353
tangent 361
bundle 406, 408
, dual 434
map 406, 409
projection 408
space 75, 381, 408
vector 75, 408
field 419
along a map 433
target 5
Taylor series 392
Taylor’s theorem 397
ten 24, 207, 270
tensor
algebra 241
product of algebras 187
product of linear spaces 189
term
, leading 31
of matrix 69
of sequence 18
three 312
Tits, J. 459, 466
topological
embedding 315
group 336
manifold 343
projection 315
space 312
topology 311
, cofinite 311
, discrete 312
, identification 314
, induced 314, 343
, product 325
, quotient 314
, subspace 314
, trivial 311
torus 350, 414
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trace 367
transformation 6
transitive group action 98, 338, 435
transitivity 23
translate 77
translation 76
transposition 70
transversal intersection 433
triality 435
automorphism 446
, principle of 456, 459
, quadric 457
triangle 84
axiom 74
, Cayley 282
, Hamilton 281
inequality 165, 288
trichotomy 22
trilinear 179
trivial
map 326
topology 311
tuple
,n- 19
,2- 12
twenty-nine 312
twisted square 221
two 5
type of orthonormal subset 243

ultramundane correspondent 260,
465

uncertainty principle 309

unimodular 117

group 124
union 15
unit quaternion 178
unitary

group 216

space 171, 213
unity 14

universal Clifford algebra 247
upper bound axiom 40

value 35

, absolute 34, 47, 178
vector 56, 74

, bound 75
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bundle 410

field, tangent 419
field problem 239
, free 75

product 178
space 56, 74

, tangent 75, 408

vertex of cone 227

Walker, A. G. 412, 465

Wall, C. T. C. —6, 271, 465

Wallman, H. 350, 384, 464
Weir, A. J. 144, 463
well-ordered 23

Weyl, H. 217, 432, 465

INDEX

wheel 130
Whitney, H. 415, 465
Willmore, T.J. —6
Witt, E. 173, 465
Witt
decomposition 162, 214
index 162

Y space 321, 343

zero 4, 56
, divisor of 30
section 409
Zippin, L. 427, 464



