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Abstract. In the first part of this paper, a geometric definition of the K-theory equivariant nilpotent 
groups is given. For a finite group G, the Nil-groups are defined as functors from the category of G-spaces 
and G-homotopy classes of G-maps to Abelian groups. In the nonequivariant case, these groups are 
isomorphic to the classical algebraic Nil-groups. 

In the second part, the Bass-Heller-Swan formula is proved for the equivafiant topological Whitehead 
group. The main result of this work is that if X is a compact G-ANR and G acts trivially on S 1, then 

Top  Top  ~ Top 
Who (X x S 1) ~ Who (X) @ K0o (X) �9 ~ilo(X) @ l~ildX). 

Key words. Equivariant topological Whitehead group, equivariant nilpotent group, equivariant wrap- 
ping-up, topological Bass-Heller-Swan formula. 

O. Introduction 

In this paper, the Bass-Helle~Swan formula is proved for the equivariant topologi- 
cal Whitehead group. 

The Bass Heller-Swan formula, in the classical algebraic K-theory is a formula 
that calculates the K-theory of the polynomial extension of a ring in terms of the 
K-theory of the ring. More specifically, if R is a ring with unit, then 

KI(R[t, t - l ] )  ~ KI(R) �9 Ko(R) @ I~lil(R) @ l~lil(R). 

([4], Chapter XII, w This formula sometimes is called 'The fundamental theorem 
of algebraic K-theory', and it has been used as a tool of calculation in algebraic 
K-theory. 

Many important applications of algebraic K-theory in topology are given through 
the Whitehead group, which is a quotient of the K~ group (for example, see [29]). 
The Whitehead group can be considered as a functor from the category of groups 
to the category of Abelian groups. It associates to a group re, a quotient of Ka(Zrc). 
The Bass-Heller-Swan formula for the Whitehead group can be stated as 

Wh(~ x Z) ~ Wh0z ) @/~o(Z~) G l~lil(Z~) G l~lil(Z~). (1) 

There are geometric interpretations of the above formula in the fibering theorem of 
F. T. Farrell [17], and its interpretation by L. Siebenmann [44], as well as the splitting 
theorems of F. T. Farrell and W. C. Hsiang [18, 20], and F. Waldhausen [53]. 
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S. Illman and H. Hauschild extended the definition of the Whitehead group to 
CW-complexes with group actions [27, 241. We restrict our attention to finite 
groups, but most of the constructions can be done in compact Lie group actions. For 
any finite group G and any finite G-CW complex X, S. Illman and H. Hauschild 
defined the group WhPL(x) (in their notation Wh~(X)) using the geometric defini- 
tion of the classical Whitehead group. Also, in [1-3, 31-34], there are extensions of 
the definition of the /~o-term and of the theory of finiteness obstruction in the 
equivariant case. 

The important difference between the equivariant and nonequivariant category is 
the s-cobordism theorem. The Whitehead group in the nonequivariant case classifies 
differential, piecewise linear, and topological h-cobordisms. But there are differentiably 
nontrivial G-h-cobordisms over G-smooth manifolds which are trivial topo- 
logically (see [7]). In order to classify G-h-cobordisms over topological locally linear 
G-manifolds, M. Steinberger, and J. West introduced the equivariant topological 
Whitehead group, defined for any locally compact G-ANR (see [46, 47]). The methods 
ofT. A. Chapman [101 were used in the definition of this group. The connection of the 
two different Whitehead groups is given by an exact sequence [46, 47]: 

Wh~L(X)c __. WheY(x) ~ WhOOp(X) ~ ~PL --PL Koa(X)c ~ KoG(X), (2) 

where WhPL(X)c and -PL KoG(X)c are the equivariant analogues of the controlled 
K-groups defined by T. A. Chapman [11]. 

Also, M. Steinberger [461 gave a Bass-Heller-Swan splitting for the controlled 
equivariant Whitehead groups generalizing the results of T. A. Chapman [11]: 

Wh~L(X x $1)~ ~ Wh~L(x)~ ~PL K oG(X)~. (3) 

In the first part of this paper, a geometric definition of the Nil-groups is given. This 
is done by generalizing the ideas of F. T. Farrell [171, F. T. Farrell and W. C. Hsiang 
[181, and A. Ranicki [37-391. We first define a category which is the geometric 
analogue of the categories used in the above references and the Nil-groups are 
defined as the Grothendieck groups of these categories. The Nil-groups, then, 
become functors from the category of G-spaces and G-homotopy classes of G-maps 
to Abelian groups. In the nonequivariant case, G = 1, the Nil-groups defined geo- 
metrically are isomorphic to the classical algebraic Nil-groups. This provides a new 
more geometric definition of the classical algebraic Nil-groups. 

In the second part of this work, the Bass-Heller-Swan formula for the equivariant 
topological Whitehead group is given. 

MAIN THEOREM. I f  X is a compact G-ANR and G acts trivially on S 1, then 

Top Top Wh~ (X x S  ~) WhG (X) O --Top Ko~ (X) @ lqil~(X) @ lqil~(X). 

Notice that the Nil-groups are the equivariant analogues of the Nil-groups appearing in 
~ Top Top (I). The summand Ko~ (X) is, by definition, the subgroup of Why (X • S 1) consisting 

of the elements which are invariant under the double covering map of S 1. 
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It was remarked by the referee that the above formula should be called, using A. 
Ranicki's terminology, the geometrically significant splitting in contrast to the 
algebraically significant splitting which corresponds to the classical Bass-Heller- 
Swan formula. Since the methods of this paper are geometric, we are not going to 
prove an analogue of the algebraically significant splitting. The right terminology for 
the above formula seems to be 'geometric Bass-Heller-Swan formula'. 

The proof of the main theorem is given by combining the exact sequences (2), (3), 
and the Bass-Heller-Swan formula for Wh~L(x x S 1) (see [27, 34, 52]), after ident- 

Ko~ (X) with Wh~ (X x R). ifying ~Top Top 

In the appendix, we describe a geometric construction of the split mono- 
XxrhT~ R) to Who (X • $1). The construction of this morphism from . . . .  G t x Top 

monomorphism is given using an equivariant version of 'wrapping up' for Hilbert 
cube manifolds described by T. A. Chapman in [14] and its interpretation by L. 
Siebenmann [44]. 

1. Preliminaries 

In this section, we establish the notation and some of the basic properties of the 
objects we are going to use in this work. 

Space always means a topological Hausdorff space which is compactly generated 
in the sense of [56], p. 17. A map between spaces will always mean a continuous 
map. 

DEFINITION 1.1. Let f :  Y ~  Z be a map. The mappin9 cylinder of f ,  denoted 
M(f), is defined to be the quotient space of the disjoint union: 

M(f)  = Yx [0, 1] II Z/~ ,  

where ~ is the equivalence relation generated by the rule: ( y, 1) ~ f(y) ,  for all y e Y 
Also, if A is a closed subset of Y, define the reduced mapping cylinder of f, MA(f), to 
be M(f) /~ ,  where ,,~ is the equivalence relation generated by the rule: (a, t) ~f(a) 
for all a �9 A and t �9 [0, 1]. 

DEFINITION 1.2. Let f :  Y ~ Y be a map. Define the mappin 9 torus of f ,  denoted 
T(f), to be the space formed by identifying the top of M(f)  with the base by the 
identity map. The mapping torus can be represented as the space 

T(f) = Yx [0, 1 ] /~ ,  

where ~ is the equivalence relation generated by the rule: (f(y), 0)~ (y, 1). As 
before, if A is a closed subset of Y and f ]a = id, define the reduced mapping torus of 
f, TA(f), to be T(f) /~,  where ,-~ is the equivalence relation generated by (a, t) ~ a 
for all a �9 A and t �9 [0, 1]. 

There is a natural map re: T(f) -* S 1 given by the projection, zr( y, t) = t, for all 
y �9 Y, t � 9  (here we identify $ 1 =  [0, 1 ] /~ ,  where ~ is the equivalence relation 
generated by 0 ~ 1). The universal coveting map of S 1, e: R ~ S 1, is given by 
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e(x) = x - [x], where [ - ]  is the greatest integer function. Pull back e using n, and 
get a commutative diagram: 

D ( f )  ~, R 
e' l ~e 

r(f)  ~ S 1 

D E F I N I T I O N  1.3. Define the mapping telescope of f, denoted D(f) ,  to be the 
infinite cyclic cover of T( f ) .  D ( f )  is a countable union of copies of the mapping 
cylinder of f sewn together by identifying the base of one with the top of the next. 
D ( f )  can be written also as Y x [0, 1] x Z / ~ ,  where ~ is the equivalence relation 
generated by the rule: (f(y),  0, n + 1) ,-~ ( y, 1, n) for y e Y, n E Z. Each point of D ( f )  
can be written in the form [y, t, ml where (y, t, m) s Y x [0, 1] x Z. This expression 
is unique if 0 ~< t < 1. If A is a closed subset of Y and f]A = id, define the reduced 
mapping telescope of f to be Da( f )  = D ( f ) / ~ ,  where ~ is the equivalence relation 
generated by [a, t, n] = [a, 0, 0] for a e A, t e [0, 11, n ~ Z. 

If we use the above notation for D(f ) ,  the map r~: D ( f )  --* R is given by 

gc[y , t , n ]= t  + n  for [ y , t , n ] ~ D ( f ) .  

Notice, also, that Z acts on D ( f )  on the right by translations: 

[ y , t , m ] n = [ y , t , n + m ]  f o r n e Z ,  ( y , t , m ) e D ( f ) .  

Set D(f)K = f f - l (K)  for any subset K of R. By composing mapping cylinder 
collapses, we get a map C,: D(f)~D(f)~, ,+~o)  for each n e Z. More precisely, if 
(y, t, m)E Y x [0, 1] x Z represents an element of D(f) ,  then 

S[fn-m(  y), O, nl, if n -- m t> 0, 
C,[y , t ,m]  

( [y , t ,m] ,  if n - m < 0. 

Notice that C, restricts to a G-map c,: D(f)~_ ~,,1 ~ Y for every n ~ Z (Yis identified 
with the subset Y x 0 x {n} of the mapping telescope). We can make the same 
constructions in the reduced mapping telescope of f As before, Z acts on DA(f). 
Define Da(f)r = D( f ) (_  ~,,1/~, where ~ is the equivalence relation generated 
by (a, t, m) = (a, 0, 0) for a e A, t e [0, 1], m e Z, m ~< n. The maps C. and c, above 
induce the maps 

C',: DA( f )  ~ DA(f)t,,+o~), 
t .  c,. DA(f)(-~,,1 ~ Y 

for each n e Z. 
Let G be a finite group. A G-space, in general, is a space on which G acts on the left 

by homeomorphisms [61. 

D E F I N I T I O N  1.4. Let X, Y be G-spaces. 
(i) Let H be a subgroup of G. Set 

X ~ = {x ~ X /hx  = x, for all h ~ H }, 

X >H = {x e XH/Gx # H}, 

X r = {x e X~ a conjugate of H is a subgroup of Gx}. 
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Notice that if N ( H )  is the normalizer of/-/, then the group WH = N ( H ) / H  acts freely 
on X H - X >H. 

(ii) A map f :  X ~ Y between G-spaces is called G-equivariant map if f ( gy )  = gf(y) ,  
for all y ~ Yand g e G. From now on, by a G-map between G-spaces, we will mean a 
G-equivariant map. 

The mapping cylinder of a G-map is a G-space. Similarly, the mapping torus and 
the mapping telescope of a self G-map is a G-space. The same is true for the reduced 
analogues of the above constructions. 

DEFINITION 1.5. A G-space X is called a G - A N R  if for any closed G-embedding, 
i: X ~ Y, in a metric G-space Y, i(X) is a G-retract of some open G-neighborhood of 
Y. (By a G-ANR in this paper we will mean a metric G-ANR) 
Note: Any G-ANR has the G-homotopy type of a G-CW complex [32]. 

DEFINITION 1.6. (a) Let (X, A) be a pair of G-spaces such that: 

(1) (X, A) is a relative CW-complex in the sense of [56], p. 48. 
(2) G permutes the cells of X - A .  

Then we say that (X, A) is a relative G-complex. If X - A  has only finitely many cells, 
we call (X, A) a finite relative G-complex. 

(b) Let X be a G-space. The equivariant Whitehead group of X,  Wh~L(X) is 
defined as the group of equivalence classes of pairs (IT, X), where 

(i) (Y, X) is a finite relative G-complex and there is a strong G-deformation 
retraction of Y to X. 

(ii) Two such pairs (Y, X) and (Y', X) are called equivalent if there is a sequence of 
G-formal deformations from Y to Y' relX [27]. 

(c) A G-map f :  X --. Y between G-spaces is called a G-cell like map (denoted G-CE 
map) if it is a proper G-map, and for each y e Yand each open Gy-neighborhood U of 
f -  l(y), the inclusion of f -  l(y) into U is Gy-nullhomotopic. 

Note.  Notice that a G-CE map between G-spaces is a G-homotopy equivalence 
([46]). 

DEFINITION 1.7. (a) Let X, Y, and Y' be G-spaces such that Y r Y' = X. Then Y 
and Y' are called G-CE equivalent relX, if there are a G-space Z containing Y and Y', 
and G-CE maps r : Z  ~ I1, r ' : Z  ~ Y' such that, if i: Y-~Z,  i': Y'--*Z are the 
inclusion maps, ri = id[r, r'i' = idlr,, ir ~ i d ] z  relX, i'r' ~-~id[z relX. 

(b) Let X be a G-ANR. If Y and Y' are the union of X and a finite number of 
G-cells, then Y and Y' are called simple G-homotopy equivalent relX, if there is a 
sequence of formal G-deformations, relX, from Y to Y'. 

We summarize the basic properties of the mapping cylinder and mapping torus 
construction. The proofs are essentially in [23], Lemmas 2.2, 2.3; [16], 5.5, 5.6, in the 
nonequivariant case, G = {e}, and in the case where G is a finite group in [27], w 
under the assumption that all the spaces are G-CW complexes. The general case 
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follows as a simple generalization of arguments in [23]. Let X be a G-space. Let Y, 
Y', Y" be G-spaces containing X as a closed subspace. 

L E M M A  1.8. Let f t :  Y~Y'O<%t <% l, be a G-homotopy such that f i l x =  
folx. Then M(fo) and M(f l )  are G-CE equivalent rel(M((fo)[x)u Yw Y') and 
Mx(fo) and M x ( f  l) are G-CE equivalent rel(X w Yw Y'). I f  (Y,X) and (Y', X) are 
finite relative G-complexes, then the above equivalences are simple G-equivalences. 

L E M M A  1.9. Let f~: Y ~ YO <<. t <~ 1, be a G-homotopy such that filx = idx. Then, 
T(fo) and T(f l )  are G-CE equivalent rel(X x S 1 w Y • {0}) and Tx(fo) and Tx(fl) 
are G-CE equivalent re l (Xw(Y • {0}). I f  (Y,X) and (Y',X) are finite relative 
G-complexes, then the above equivalences are simple G-equivalences. (This property 
follows from the fact that all the maps and the homotopies of 1.8 fix the ends of the 
mapping cylinders.) 

As before, let Y, Y', Y" be G-spaces containing X as a closed subspace. Let 
f :  Y ~ Y', f ' :  Y ' ~  Y" be G-maps which are the identity on X. Define M( f , f ' )  to be 
the space obtained from M ( f )  II M(f ' )  by identifying the base Y' of the mapping 
cylinder M ( f )  with the top Y' x {0} of the mapping cylinder M(f ' )  by the identity 
map. Define M x ( f , f ' )  to be the space obtained by the above procedure applied 
to the relative mapping cylinders Mx( f )  and Mx(f').  So, M x ( f f ' ) = M x ( f ) s  
Mx(f ' ) /~ ,  where ~ is the equivalence relation generated by y' ~ (y', 0) for y '~  Y'. 

L E M M A  1.10. M ( f , f ' )  and M ( f ' f )  are G-CE equivalent rel((X x I ) u  Y w  Y') 
and Mx( f , f ' )  and M x ( f ' f )  are G-CE equivalent rel(Xu Y w  Y'). I f  (Y,X) and 
(Y' ,X) are finite relative G-complexes, then the above equivalences are simple G- 
equivalences. 

(Strictly speaking, M(f ,  f ' )  contains (X x 1 II X x I)/~, where ,,~ is the equivalence 
relation generated by (x, 1) ~ (x, 0). By abuse of language, we consider this space as 
X x I . )  

We will give the mapping torus version of this property. Define T ( f , f ' ) =  (Y x 
[0, �89 II (y '  x [�89 1])/,,~, where ~ is the equivalence relation generated by 

(y, �89 ~ (f(y),�89 for y~ Y, 

(f'(y'),O) ~ (y', 1) for y' ~ Y'. 

Define Tx(f, f ' )  = T(f,  f')/,,~, where ~ is the relation generated by (x, t) ~ x for all 
x e X .  We construct also O( f , f ' )  from T( f , f ' )  as we constructed O(f)  from T(f). 
More precisely, D ( f  f ' )  is defined as the countable union of copies of M(f ,  f ' )  sewn 
together by identifying the base of one with the top of the next. This comes with a 
natural right Z action. There is also a collapse map defined for D(f, f'). Also, we can 
get the relative version of D( f , f'), Dx( f , f'). 

L E M M A  1.11. T ( f  f ' )  and T ( f ' f )  are G-CE equivalent rel(X x Sl w Y x {0}), and 
Tx(f, f ' )  and Tx( f ' f )  are G-CE equivalent rel(X w (Y x {0}). If (Y, X) and (Y', X) are 

finite relative G-complexes, then the above equivalences are simple G-equivalences. 
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2. The Geometric Definition of the Equivariant Nil Groups 

In this section, a geometric construction of a functor is given, from the category of 
topological spaces with a group action, and equivariant homotopy classes of 
equivariant maps to the category of Abelian groups. This construction is the 
geometric analogue of the construction of the nilpotent K-theory groups of a ring. 

Let G be a finite discrete group. For each G-space X a category is constructed. 
Then the equivariant Nil-group of X is defined as the 'Grothendieck' group of this 
category. 

We start with the definition of the basic category which will be used in the 
construction of the geometric Nil-groups. 

D E F I N I T I O N  2.1. Let X be a G-space. Define no(X) to be the category whose 
objects are pairs (Y,f),  where (Y, X) is a relative G-complex, and f :  Y ~ Y is a map 
such that 

(i) f l x = idx 
(ii) The inclusion of X x S 1 into the mapping torus of f is a G-homotopy 

equivalence. 

A morphism F:  (Y,f)--+ (Y ' , f ' )  in no(X) is a G-map F: Y +  Y', Fix = idx, making 
the following diagram commutative 

y F___, y, 

q (,) 
y F~y,  

Remark. Since (Y, X) is a relative G-complex, the inclusion map X • S 1 ~ T ( f )  is 
a G-cofibration. So, it can be assumed that X • S 1 is a strong G-deformation 
retraction of T ( f )  ([45], p. 31). 

D E F I N I T I O N  2.2. Let (Y~, f~), i = 0, 1, 2 and (Y, f )  be objects of no(X). Assume that 
(Y1, Yo) and (Y2, Yo) are relative G-CW pairs, and that the restriction off~ to Yo is fo, 
i = 1, 2. Let i': Yo ~ I11 and i: Yo ~ I72 be the inclusion maps. The diagram 

i' 
(Yo, fo) , (Yl , f l )  

(Y2, f2) j ' ,  (Y , f )  

is called a push-out diagram if 

Given any commutative diagram of objects and morphisms in no(X): 

(Yo, T o ) / ~  (Ya, f l )  

(Y2, f2) ~O' (y , , f , )  
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there is a unique morphism h:,(Y, f ) ~  (Y', f ' )  such that 

hj = q), hi' = q0' as morphisms in nG(X). 

Note. The diagram of G-spaces and G-maps 

Yo i'>Y1 

]:2 J" Y 

is a push-out diagram of spaces and f is the push-out of the maps f~, i = 0, 1, 2. 

L E M M A  2.3. Push-out diagrams exist in na(X) and they are unique up to isomorphism 
in nG(X). 

Proof. Let (Yi, fi), i=  0, 1, 2, 3 be as in Definition 2.1. Define Y =  Y1 11_ Y2/~, 
where ~ is the relation generated by y ~ y for y ~ Yo. Then, (Y, X) is a relative 
G-CW pair. Also, define f =  f l  w f2: Y ~  Y. Then (Y,f)  is an object in n~(X) and it 
is the push-out of (Y~, fi). The uniqueness of the push-out is obvious from the 
definition. 

Let (Y, f )  be an object in nG(X). Then f induces a map Tor ( f ) :  Tx( f )  ~ Tx(f) ,  
Tor( f ) (y , t )  = (f(y),t).  But, T o r ( f )  is G-homotopic relX to the identity. The 
homotopy is given by ks: Tx( f )  ~ Tx( f )  

f ( y , s + t )  s + t ~ <  1 
ks( Y, t) ( ( f ( y ) , s  + t - -1 ) ,  s + t >~ l 

([36]). From now on, we will refer to this homotopy as Mather's trick. Hence, 
T(Tor(f))  and T(idrx(:)) are G-homotopic equivalent relX x S 1 (by 1.11). Since X is 
a strong G-deformation retract of Tx(f), it follows that X x S t is a strong G- 
deformation retract of T(idwx(:)) and of T(Tor(f)). Also (Tx ( f ) ,X )  is a relative 
G-CW pair. Therefore, (Tx(f) ,  Tor(f ) )  is an object in na(X). 

DEFINITIONS 2.4. (a) Let (Y, f )  be an object in n~(X). The torus of (Y, f )  is the 
object (Tx(f),  Tor(f ) )  of n~(X). 

(b) Let Y' = (Y', f ' )  and Y = (Y, f )  be two objects in n~(X) such that (Y', Y) is a 
relative G-CW complex, and f ' l r  = f. Define the quotient Y'/Y to be the pair (C, F) 
where C is given as the push-out: 

(y, f )  i > (y,, f , )  

(Tx(f) ,  Tot ( f ) )  J ~  (C, F) 

where i: Y ~  Y' is the inclusion map, z :Y~ Tx(f )  is the map given by ~(y) = (y, 0) 
for y e  Y. 
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Let (Y, X) be a pair of G-spaces. We call (Y, X) a relative finitely dominated G-pair 
if there is a pair of G-spaces (K, X) such that 

(i) (K, X) is a finite relative G-complex. 
(ii) There are G-maps Y ~ K d ) y such that, U]x = d Ix = id]x, du ~-G idy relX. 

If d: (Y, X) - ,  (K, X) is a G-homotopy equivalence relX, we say (Y,X) has the 
G-homotopy type of a finite relative G-complex. 

DEFINITIONS 2.5. (a) Write nilG(X) for the full subcategory of nG(X) consist- 
ing of those objects (Y,f)  of nG(X) such that (Y,X) is relative finitely dominated 
G-pair. 

(b) Write n~IG(X) for the full subcategory of nilG(X) consisting of those objects 
(Y, f )  of nilE(X), with the property that (Y,, X) has the G-homotopy type of a finite 
relative G-complex. 

(c) Write KoG(X) for the full subcategory of nilE(X) consisting of objects (Y, f )  of 
nildX), where f is a G-retraction of Y into X. 

Remark. Let /~PL(y) be the subgroup of the equivariant Whitehead group 
WhPL(Y x $1), consisting of all those elements which are invariant under the transfer 
induced by the covers of S 1 ([46, 49]). If (Y, f )  is an object of nildX), then there is an 
obstruction aG(Y,X)s-(PoL(y) [21, 54, 55] for G = 1; [33, 34, 2, 31, 40] for finite G. 
The element a~(Y, X) = 0 if and only if (Y, X) has the G-homotopy type of a finite 
relative G-CW pair. In particular, aG(Y, X ) =  0 if and only if (Y, f )  is an object of 
n~l~(X). 

The next proposition is another characterization of objects in nilG(X) sometimes 
more useful for the applications. Also, this proposition shows that the category 
nilG(X) is an analogue of the categories used in 1-17, 19, 39] in the construction of the 
algebraic Nil-groups. 

P R O P O S I T I O N  2.6. Let (Y, X) be a G-complex, and f :  Y ~ Y be a G-map such that 

(i) the pair (Y, X) is a relative finitely dominated G-pair 
(ii) f i x  = idx. 

Then, (I7, f )  is an object in nilE(X) if and only if there is an integer n ~ N such that f "  is 
G-homotopic relX to a G-retraction of Y to X. 

Proof Suppose first that (Y , f )  is an object in nildX). So, there are 

(i) A strong G-deformation retraction fr: T(f)--* T(f),  t~I ,  of T(f )  to X x S 1 
which induces a strong G-deformation retraction, J]: D(f)  ~ D(f), of D(f)  to 
X x R .  

(ii) there is a pair of G-spaces (K, X) such that 
(a) (K, X) is a finite relative G-complex. 
(b) There are G-maps Y r ) K ~ Y such that ir "~G idr relX. 
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Define f ' :  K---r K as the composition rfi. There is a G-homotopy equivalence, 
q: D ( f ' ) ~ D ( f )  rel(X x R) ([23], p. 106). Therefore, there is a strong G-deforma- 
tion retraction f't: D ( f ' ) ~ D ( f ' )  of D(f') to X x R. The maps q, f ; ,  f are 
Z-equivariant. Identify K with K x 0 x 0 in D( f ' ) .  Let M' be the mapping 
cylinder M(f ' ) in  D(f') with top K • {0} x {0} and M = M(f )  with top Y x 0 x 0 

in D(f). Then, M' is the union of X • [0, 1] with a finite number of G-cells. Let C 
be the union of the G-cells. By the compactness of C, there is a number m > 0 
such that 

f~(M') c O(f')(_ co,,,] u (X x R), for all t �9 I. 

Then, since q maps M' to M and the homotopies preserve M' and M, there is a 
number n > 0 such that ~(M) is contained in D(f)(_~,,] w(X x R). The G-homo- 
topy ft  induces a G-homotopy q~t: D x ( f ) ~ D x ( f )  from the identity map to a 
retraction to X, relX. Notice that the map 

t .  cn. Dx(f)(-o~,n+l] ~ r 

is the identity on Y. The homotopy 

(c',,)(~0tlrx{o}• Y• {0} x {0} --, Y 

is a G-homotopy from f , + t  to a map c',~0t sending Yinto X, relX. This completes the 

first part of the proof. 
Assume that there is n �9 N such that f "  is G-homotopie relX to a G-retraction of Y 

to X, i.e. f"~-~jr,  where j : X ~ Y i s  the inclusion map and r : Y ~ X  is a G- 
retraction. Let e": S t ~ S t be the cover of S 1 corresponding to the subgroup nZ. 

Consider the pull back diagram 

T"(f) ~--~ S 1 

le le 
T(f)  ~ S ~ 

The space T"(f) is given as M(f )  x {1,2 . . . .  ,n} /~ ,  where ,,~ is the equivalence 
relation generated by 

(i) (y,m) ~ (y, 0, m + 1) for (y,m) �9 Y • {m} c M(f )  • {m} and (y, 0, rn + 1)e 
Y x  {0} • {m+  1 } c M ( f )  • { m + l } f o r m < n .  

(ii) (y,n) ~ (y, 0,0) for ( y , n ) � 9  Y x {n} c M(f )  • {n} and (y, 0 ,0 )e  Y x {0} x 

{0} c M(f)  • {0}. 

By successive applications of 1.10, T"(f) is G-homotopy equivalent, relX • S t, to 
T(f"). Using the properties 1.9 and 1.11, there is a sequence of G-homotopy 
equivalences relX x S ~: 

T(f") ~e  T(jr) "~e T(rj) = T(idx) = X • S i. 

Therefore, T"(f) strong G-deformation retracts to X • S~. 
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Also, consider the pull-back diagram 

X x S 1 i' T ' ( f )  
idx • e~ l e 'n 

X x S 1 i ,  T( f )  

For each subgroup H of G, this induces a pull-back diagram 

X n x S 1 i'", Tn(f) n 

1 1 
X n x S 1 in - - - ,  T ( f )  n 

Since the map i 'n is a homotopy equivalence, and the above diagram is a pull-back 
diagram of a fibration, the map i n induces an isomorphism on the homotopy groups. 
Therefore 7ci(T(f)n, X n x  S 1) = 0  for i >  0. Since (T(f)n, X n x  S 1) is a relative 
CW-pair, i n is a homotopy equivalence for all finite subgroups H of G. Therefore, i is 
a G-homotopy equivalence. So X x S 1 is a strong G-deformation retraction of T(f).  
This completes the proof of the proposition. 

We define an equivalence relation on the set of isomorphism classes of objects 
of nile(X), similar to the homotopy relation in [39], w Let (Y, f )  and (Y ' , f ' )  
are two objects in nile(X). Define ( Y , f ) ~ ( Y ' , f ' )  if and only if there is a 
G-homotopy equivalence F: Y ~  Y'relX such that Ff  is G-homotopic relX, to 

f 'F .  
Denote by [Y, f J  the equivalence class of the object (Y, f) .  
From the definition of the equivalence relation, it is obvious that: 

LEMMA 2.7. Let (Y, f )  and (Y', f ' )  be two equivalent objects of nile(X). Then, if  
(Y, f )  is an object in n~i6(X) so is (Y', f ' ) .  

PROPOSITION 2.8. Push-out diagrams exist in nil6(X) (n~lG(X) or KoG(X)). 
Proof. Let 

(Yo,fo) i -~(Yl , f l )  

(Y2, f2) J " ( Y , f )  

be a push-out diagram in nG(X). 
(i) Let (Yi, fi), i = 0, 1,2 be objects in nilG(X). Then, since (Yi, X)  is relatively 

G-finitely dominated, i = 0, 1, 2, and Y is the push-out of Yi, (I1, X) is relatively 
G-finitely dominated. So, (Y, f )  is an object of nile(X). 

(ii) Let (Yi, fi), i = 0, 1, 2, 3 be objects in n~la(X). Then, 

aG(Y, X)  = j.tr6(Y1, X)  -4- j'.aG(Y2, X)  -- (j'i).a6(Yo, X)  = O, 

since a6(Yi, X) = 0 for i = O, 1, 2. So, (Y, f )  is an object of nile(X). 
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(iii) Let (Yi,fi), i =  0, 1, 2 be objects in Koe(X), then f :  Y ~  Y is given as the 
union of two retractions. Therefore, f is a G-retraction, and the push-out is an object 
in Koe(X). 

C O R O L L A R Y  2.9. Let Y' = (Y', f ' )  and Y = (Y, f )  be two objects in nile(X) (n'~le(X)) 
or Koe(X) such that (Y', Y) is a relative G-CW pair, and f ' l r  = f. Then, the quotient 
Y'/Y is an object in nile(X) (nile(X) or Koe(X)). 

We can give now the definition of the geometric Nil-groups. 

DEFINITIONS 2.10. (A) Define NitrE(x) to be the group I:/N where 
(i) Y is the free Abelian group generated by equivalences classes of objects in 

nile(X). 
(ii) N is the subgroup of F generated by elements of the form: 

(a) [ Y , f ]  + [Yo, fo] - [Y1, f l ]  - [Y2,f2],  if there is a push-out diagram 

(Yo,fo) i " ( Y l , f l )  

(Y2, f2) J" (Y, f)  
(b) [Y, f ] ,  where (Y, X) is relative G-homotopy equivalent to a relative finite 

G-CW pair, and f is G-homotopic relX to a G-retraction. 

(B) Define N~le(X) to be the group constructed ~:'/N c~ ~', where D z' is the free 
Abelian group generated by the equivalence classes of objects in n~|e(X). 

(C) Define /~PL(x) to be the group constructed Uz"/N", where U:" is the free 
Abelian group generated by the equivalence classes of objects in Koe(X) and N" is 
the subgroup of F generated by elements of the form: 

(1) [Y, r] + [Yo, r0] - [I11, r l]  - [Y2, rz], if there is a push-out diagram 

(Yo, ro)/-L (y~, r~) 

(r~, r~l AL (y, r) 

(2) [Y,r], where (Y ,X)  is relative G-homotopy equivalent to a relative finite 
G-CW pair. 

Remarks. (1) Notice that in (B) above the groups N'{le(X) are not specified as 
PL-groups. The reason is that these groups will be the same in the PL and the 
topological case. This is due to the fact that the difference between the PL and the 
Top groups is measured by controlled groups and the Nil-elements are not 
controlled. 

(2) Part (C) is another interpretation of the group defined in [33, 34]. 

L E M M A  2.11. (i)Let (Y, f )  be an object in n'{le(X). Then the torus object (Tx(f) ,  
ToT(f)) determined by (Y, f )  is such that [Tx(f) ,  ToT(f)] = 0 in NilgL(X). 
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(ii) Let Y ' =  (Y', f ' )  be an object nilG(X) and Y= Y' be a closed G-space such that 
(Y', Y) is a relative G-CW pair, and Y=(Y, f ' ]Y)  is an object in nila(X). Let 
Y'/Y = (C, F) be the quotient. Then, 

[C,F] + [ Y , f  ] = [Y' , f ' ]  in NilPL(x). 

(iii) If(Y, f )  and (Y', f ' )  are two objects of ni ldX) then, 

[Y , f ]  + [Y ' , f ' ]  = [ Y w x  Y ' , f  w f ' ]  in NilPL(X). 

(iv) Let (Y, f )  and (Y, f ' )  be two objects of nilo(X) such that f ~-a f ' ,  relX. Then, 

[Y , f ]  = [ Y , / ' ]  in NilPL(X). 

Fy' f ' l  Then, [Y, f ]  = L , ,  J in NilPL(X). 

(v) Let (Y, f )  be an object in nilG(X). Then the inverse of [Y, f ]  in Nil~L(X) is given 
by the class of the quotient of (Tx(f), Tor(f))  by (Y,f). 

Proof (i) Tx(f) strong G-deformation retracts to X, and by Mather's trick, To t ( f )  
is G-homotopic to the identity on Tx(f), relX. Therefore, Tor ( f )  is G-homotopic 
to a retraction relX. By (lib) Definition 2.10, [Tx(f), Tot ( f ) ]  = 0 in NilPL(X). 

(ii) (C, F) is given as the push-out diagram of Definition 2.4(b), then 

[C,F] + [Y , f ]  = [Tx(f), Tor( f ) ]  + [Y ' , f ' ]  in NilPL(X) 

By (i): 
y !  / I-C, FJ + [Y, f ]  [- , f J NilPL(X). 

(iii) It is obvious that ( Y u x  Y', f ~  f ' )  is an object in nilG(X ). Also, there is a 
push-out diagram in nilG(X): 

(X, idx) i' , (y, f )  

'1 :1 
(Y', f ' )  J - ~ ( Y u x Y ' , f ~ f ' ) .  

By (iia) Definition 2.10, [ Y , f  ] + [Y ' , f ' ]  = [ Y ~ x  Y ' , f  ~ f 'J  in NilPL(x). 
(iv) The identity map id: Y ~ Y induces an equivalence between (Y, f )  and (Y, f'). 

y,  t" Therefore, [Y , f ]  [ , f  ] in Nil~L(X). 
(v) Obvious from (i) and (ii). 

Remark. Lemma 2.11 actually proves that any element of Nil~L(X) can be 
represented as [Y, f ]  for some object (Y, f )  of the category nilG(X). The same is true for 
the subgroups NI'IG(X) and/s  of Nil~L(X), and the categories n]IG(X), KoG(X). 

The following Lemma characterizes equality in the group NilPL(X). 

LEMMA  2.12. Let (Y, f )  and (Y', f ' )  be two objects in nilG(X) such that 

(i) (Y', Y) is a finite relative G-CW pair. 
(ii) f ' ]  r = f .  

(iii) f ' (Y ' )  is contained in Y. 
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Proof. Notice that, since Y' is formed by adding finitely many G-cells to 
Y, i,(~r~(Y,X))= eG(Y', X) in /~o~(Y') by the additive property of the finiteness 
obstruction. Let (C, F) be the quotient. Then, (C, F) is given by the push-out diagram 

(y, f )  i , (y,, f , )  

'1 Jl 
(Tx(f), Tor(f)) J-~ (C, F) 

Notice that 

aa(C, X) = j ,aa(Tx(f),  X) + j .a~(Y',  X) - (ji).aa(Y, X). 

But, 

j . i . (a~(Y,X))  = j,(aG(Y', X)) and aG(Tx(f),X) = O. 

Therefore, a~(C, X) = 0, and (C, X) is relatively G-homotopy equivalent to a relative 
finite G-CW pair. The map F maps C to Tx(f). The restriction of F to Tx(f) is just 
Tor(f).  But, Tor(f)  is G-homotopic, relX, to a retraction r: Tx(f)--* X. If k: X 
Tx(f)  is the inclusion map: 

F(j'k) = Tor(f)k ~-~rk = idx. 

But, the inclusion map X ~ C is a G-cofibration. So F is G-homotopic, relX, to a 
retraction ([45], p. 29). Therefore [C, FJ = 0 in Nil~L(X). So [Y, f ]  = [Y', f ' ] .  

The next lemma shows that the class of an element (Y, r) of /s does not 
depend on the retraction r. 

LEMMA 2.13. Let (Y,X) be a relative G-complex such that (Y,X) is relatively 
G-finitely dominated and r,r': Y ~ X  be two retractions. Then [Y,r] = [Y,r'J in 
Wo ( X ). 

Proof By Lemma 2.11 (v), there is an object (Y',s) in KoG(X) such that 

[Y,r] + [Y',s] = 0  

in /(~L(x). In particular, the relative finiteness obstruction aa(Ywx Y ' , X ) =  O. 
Therefore (Y Wx Y', X) has the G-homotopy type of a finite relative G-complex. But 
[Y, r'] + [Y',sJ = [ Y w x Y ' , r ' w s l  and ( Y w x Y ' , r ' w s ) e  N". So, 

[Y, r '] + [Y', s] --= 0 ~  [Y,r'] = - [ Y ' , s ]  = [Y, r]. 

in/(eo~(X). 
The next proposition is the geometric analogue of the formula Nil(R) 

Nil(R) @/~o(R) for any ring R ([17], Lemma 1.4; [19], Proposition 6; [39], w 

PROPOSITION 2.14. For a G-space X, NilPL(X) ~ NTIo(X) �9 
Proof The inclusion induced map ~p:/s ~NilPL(X) is well-defined group 

homomorphism. We will prove that ~p is a split monomorphism. We construct a left 
inverse for (p, p: Nil~L(X) -~/(~L(X): 
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Let (Y, f )  represent an element of Nil~L(X). Then by Proposition 2.6, there is a 
number n eN ,  such that f "  is G-homotopic relX to a G-retraction r: Y ~ X .  Let 
i: X ~ Y be the inclusion map. Define p[Y, f ]  = [Y, it]. 

CLAIM. The map p is a well-defined group homomorphism. 
Proof (i) Notice that the map f "+  1 is also G-homotopic to a retraction r': Y ~ X. 

But ir' ~-G f"+ 1 = f f ,  ~_~ fir = ir. So, [Y, ir'] = [Y, ir] in KeoL(x) and p[Y, f ]  does 
not depend on the number n. 

(ii) If (Y, f )  ,,- (Y', f ' )  in nilG(X), there is a G-homotopy equivalence F: Y--+ Y', 
r '"F relX, where n is a number for relX such that Ff~-Gf 'Fre lX.  Then, Ff"  ~-GJ 

which f "  and f ' "  are G-homotopic relX to G-retractions r: Y --+ X and r': Y' --+ X, 
respectively. So, [IT, ir] = [Y', i'r'], where i': X --+ Y is the inclusion. Hence, 

p [ Y , f ]  = p [ Y ' , f ' ] .  
(iii) If (Y, X) is G-homotopy equivalent to a relative finite G-complex (K, X) and 

f :  Y ~ Yis G-homotopic relX to a G-retraction, then p[Y, f ]  = O. 
(iv) Let 

(Yo,fo) i'> ( r i ,  f l )  

'1 '1 
(]12, f2) J'> (Y, f )  

be a push-out diagram in nilG(X). Choose an integer n > 0 such that f7  and f "  are 
G-homotopic, relX, to G-retractions ri: Yi --+ X, r: Y --+ X, respectively (i = 0, 1, 2). 

l ,  Write ~i: X --+ Yi, i = 0, 1, 2, i: X -+ Y for the inclusion maps, and r~. Y~ ~ X for the 
restriction of r to Yi- By Lemma 2.13, [Yi, ziri] = [Yi, zir~] in / ~ L ( x ) .  

Also, the following is a push-out diagram in/<~L(x): 

(I1o, r ; ) / ~  (Y1, r'l) 

'I 'I I, 
(Y2, rl)  ~ (Y, r) 

Putting these observations together, we get: 

P([Y, f ]  + [Yo, fo])  = P([Y Wx Yo, f w fo])  = [Y Wx II0, r w ro] 

= [Y, r] + [Yo, ro] = [Y, r] + [Yo, r ; ] .  

Similarly, P([Yi, f i ]  + [Y2, f2]) = [Yt, r'i] + [I(2, r~]. But from the above push- 
out diagram (1), we get 

[Y,r] + [Yo, r ; ]  = [Yi,r ' l]  + [Y2, r ' 2 ] ~ p ( [ Y , f ]  + [Yo,fo]) 

= P ( [ Y l , f l ]  + [Y2, f2]). 

This completes the proof that p is a well-defined map. 
It is obvious that p is a group homomorphism. It is a group epimorphism since 

p(o[Y, f]  = plY, f ]  = [ Y , f ] .  
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There is also an inclusion-induced group homomorphism 

j :  N i'll(X) ~ NilUs(X). 

j is obviously a group monomorphism. 
We complete the proof of the proposition by proving that the sequence 

0 ~ NI"Ia(X) ~ Nil~L(x) P - - ~ / ~ ( X )  ~ 0 

is split exact. The only thing that remains to be proved is that Ker p = Im j. 
Kerp  ~ I m j :  Let [ Y , f ]  ~ I~I(X). So (Y, X) is G-homotopy relative finite G-CW 

pair. Also, p j [ Y , f ]  = [ Y , f " ] ,  which belongs to N and so it represents the zero 
element o f / ~ L ( x ) .  Therefore pj = O. 

I m j  ~ K e r p : L e t  [ Y , f ]  a K e r p .  Then, r [ Y , f ]  = [ Y , f " ]  = 0 in /~gL(x). SO 
( Y , X )  is homotopy relative finite G-CW pair. This means that [ Y , f ]  = j [ Y , f ] ,  

where [Y, f ] ~  NT1G(X). So [Y, f ]  E Im j .  

We give a geometric description of the projection p: Nil~L(x) ~ NT1G(X): 
Let (Y, f )  be an object in nilE(X). Since (Y, X) is relatively G-finitely dominated, 

there is a finite relative G-complex ( K , X )  and G-maps Y Z-~K i y which 
are the identity on X, such that ir---aidr relX. Let f ' :  K ~ K as the composition 
rfi. The pair ( K , f ' )  is an object in nnG(X). Define p ' :F~NTtG(X)  by 
p'(Y, f )  = [K, f ' ] .  

CLAIM: p' is a well-defined group homomorphism. 

Proof. First we prove that p' is independent of the choice of the domination: 
r' K'  i' (a) Assume that Y ~ Y is another domination of (Y, X) such that 

K ' c K ,  r = r ' ,  and i '= i ]K, .  

Set f ' =  rfi and f " =  rfi ' .  Then, f ' ( K ) c  K', and the objects (K, f )  and ( K ' , f " )  
satisfy the hypothesis of Lemma 2.12, so I-K, f ' ]  = [K', f " ]  in N;1G(X). 

(b) Assume that Y r '  K' i '  y is another domination of (Y, X). Define M = 
Mx(r'i) ,  and i": M ~ Y to be i'c, where e is the collapse map to K'. Also, define 
r": Y ~ M to be jr', where j :  K'  ~ M is the inclusion map. Then 

r"i" = jr'i '  c ~-~ jr  ~-~ idr relX. 

By (a), I-M, m] = [K', f " ] ,  where rn = r"fi". Let j ':  K --* M be the map j ' (k)  = (k, 0). 
Then, j ' i "  = i'r' ~-~ i, relX, and [K, ifr] = [K, j ' i " f r] .  

Similarly, 

cj'r = r'ir "~ ~r' ~ j 'r  ~-~ jcjr ~-c jr' = r" relX. 

Hence, 

[M, r"f i"]  = [M, r"f j ' i]  and [M, r"fj ' i] = [K, j 'r"f i]  ~ [M, m] = [K, f ] .  

Now, we prove that p' does not depend on the equivalence class of (Y, f) :  
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If (Y, f )  and (Y ' , f ' )  are equivalent, then there is a G-homotopy equivalence 
F: Y ~ Y', relX such that Ff  ~-G f ' F  relX. Let Y r i K ~ Y be a domination for 

E Then 

y,  F -1 ~ r  r , K ~ - ~ y  F-f-~y ' 

is a domination for Y', where F - 1  is a G-homotopy inverse of F. Then 

p'(Y,f)  = [K, rfi] and p'(Y' , f ' )  = [K, rF- l f 'F i ] .  

But, rF- l f 'F i  ~-~rfi relX. So, 

p'(Y, f )  = p'(y', f ') .  

It is obvious that p' is a group homomorphism. 

CLAIM. p'(t~) = 0. 
Proof. (a) Let (Y, f )  be such that (Y, X) has the G-homotopy type of a finite 

relative G-complex and f is G-homotopic relX to a retraction. Then if(Y, f ) =  

[ Y , f ]  = 0 .  
(b) Consider the push-out diagram in nila(X): 

(Yo,fo) i--~(Yl,fl) 

(Ye,f2) J" (Y, f )  

We are going to show that 

P'((Y,f) + (Yo,fo)) = P'((YI,fl) + (Y2, f2)). 

Let Lj dominates Y~, j = 0, 1, 2 and Yj rj ~ Lj ij ~ Y~ be dominations. Define: 

Ko = Lo, K1 = Mx(rliio), K2 = Mx(r2iio). 

Define the dominations: 

ii: K~ ~ Y is the composition of the collapse and i~, 

rj: Y -~ K i is the composition of r~ and the inclusion map (j  = 1, 2). 

Let K be the push-out of K j, j = 0, 1, 2. Then K dominates Y. 
Summarizing, there is a push-out diagram 

(Ko, f~)) t_~ (Ks, f'~) 

(K2, f'2) ~ (K, f ' )  

So, 

K ~ - ~  P'((Y, f)+(Yo,fo))  ( , f ) + ( K o ,  f'o) ( K l , f l ) + ( K 2 , f ' 2 )  

= P'((Y~, f l )  + (Y2, f2). 
So, p' induces a map: 
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p: Nil~L(X) --+ N~'I~(X). 

It is obvious that pj = id, and ip = 0 

This completes the proof of Proposition 2.14. 

The next proposition is about the naturality properties of the above construction. 

P R O P O S I T I O N  2.15. Let k: X --+ X '  be a G-map between G-spaces. Then, k induces 

a 9roup homomorphism 

k,: Nil~L(X) --+ Nil~L(x ') 

such that k ,  maps NTI~(X) into Nfl~(X ) and I(Po~(X) into /(~L(x').  
Proof. Define k , [ Y , f ]  to be [ Y ' , f ' ] ,  where Y ' =  YVOkX'= Y v o X ' / ~  with 

x ,-~ k(x) for x in X and f ' :  Y' -+ Y' is just f w id. First of all (Y', f ' )  is indeed an 
object in nila(X'), because f ' "  = f " w i d ,  the G-homotopy of f "  to a retraction 
of Y to X extends by the identity to a G-homotopy of f ' "  to a retraction of 
Y' to X', and (Y' ,X')  is an G-NDR pair. It is obvious that the map k, is a 
well-defined group homomorphism and that it maps NTI~(X) to N~'lo(X') and 

PL Ko~(X)  t o / ~ ( X ' ) .  

P R O P O S I T I O N  2.16 Let X,  X', X"  are G-spaces. I f  k: X --+ X'  and k': X '  --* X"  are 

G-maps, then (k'k), = k , k , .  
Proof. Let [Y, f ]  e NilPL(x). Then, 

k , k , [ Y , f ]  = [ ( r % x ' ) % , x " , f ' ]  = [Y~Ok,k X",a4""qa = ( k ' k ) , [ r , f ] .  

P R O P O S I T I O N  2.17. Let X,  X'  be G-spaces. I f  k, k': X ~ X'  are two G-homotopic 
maps, then k, = k , :  Nil~L(X) ~ Nil~L(x'). 

Proof. Let I-Y, f ]  represent an element in Nil~L(X). By the proof of the adjunction 
lemma of L. Siebenmann [44], p. 21, construct a G-homotopy equivalence relX' of 
Y % X' to Y Yak, X'. This homotopy equivalence induces an isomorphism in nildX') 
of (Y  Wk X', f w id) and (Y Uk, X', f w id). So k,  = k, .  

COROLLARY 2.18. I f  k: X -+  X'  is a G-homotopy equivalence between G-spaces, 

then k ,  is an isomorphism. 

So, we have defined three functors from the category of G-spaces, and G-homo- 
topy classes of G-maps, to the category of Abelian groups and group homomor- 
phisms. 

3. Nil-Groups as Summands of the Whitehead Group 

In this chapter, we show that NilPL(X) is a direct summand of WhPL(X • $1). 
The methods are similar to the ones used in the nonequivariant case [4, 5, 17, 
19, 391. 

Let X be a G-space. We first define two injections, j (+ ) :  N~IG(X) - ,  WhP~(X x $1). 



THE BASS-HELLER-SWAN FORMULA 413 

L E M M A  3.1. Let (Y,f),  (Y' , f ' )  be two equivalent objects of nile(X ), such that 
(Y,X) and (Y' ,X) are finite relative G-complexes. Then T( f )  and T(f ')  are G- 
simply equivalent rel(X • S1). Also, Tx(f)  and Tx(f') are G-simply equivalent 
relX. 

Proof. It follows from 1.9 and 1.11. 

C O N S T R U C T I O N  3.1.1. We construct a map: j (+ ) :  lffildX ) ~ WhPL(X x S1). 
Let (Y, f )  be an object of nile(X) representing an element in hTilG(X). Then (I7, X) 

has the G-homotopy type of a finite relative G-complex (K, X). Let a: Y ~ K be the 
G-homotopy equivalence, and b: K ~ Y is a G-homotopy inverse (relX). Then, 
T(afb) ~-~ T(baf) ~-~ T(f) ,  rel(X • Si). Since the T( f )  strong, G-deformation 
retracts to X x S i, the object (Y, f )  determines an element [T(afb),X x S 1] of 
WhPL(X x si). Define j+(Y, f )  = [T(afb), X x Si]. 

P R O P O S I T I O N  3.2. The map j+ induces a split injection j (+): lq i lo(X)~ 
WhP~L(x • S1). 

Proof. Lemma 3.1 shows that j+ extends to a well-defined homomorphism 

j+ : U:' --+ WhPL(x x Si). 

To complete the proof that j+ induces a homomorphism as stated, we have to prove 
that j+ respects the relations in ]qilo(X). 

(i) I f f  is G-homotopic relX to a retraction r from Yinto X, then [Y, f ]  = [Y, ir], 
where i is the inclusion map. We can assume that (Y, X) is a finite relative G-complex. 
Then, by 1.11: 

[T(ir), X x S 1] = [T(ri), X x S 1] = [X x S i, X x S l] = 0 in Wh~L(X x S1). 

Therefore, j+[Y, f ]  = O. 
(ii) Consider the push-out diagram in n]lo(X): 

(Yo, f o ) / - ~  (Y1, f l )  

(Y2, f2) J-~(Y , f )  
(1) 

We are going to show that j+([Y, f]  + [Yo, fo])  = J+([Yl, f l ]  + [Y2, f2]). 

ASSERTION. We can replace the above push-out diagram with a push-out diagram of 
finite relative G-complexes: 

(Ko, f'o) " ,  K ' ( i, f l )  

(K2, f~) ~o' (K, f') 
(2) 

where (Ki, f~) is equivalent to (Yi, fl), i = 0, 1, 2, and (K, f ' )  is equivalent to (Y, f) .  
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Proof. Diagram (1) provides a diagram 

(Lo, f~) ~'> (Ll, ffl) 

(L2, f~) 0', (L, f ' )  

commutative up to G-homotopy relX, 
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(3) 

such that where (L~, f}') is equivalent to 

j+([Y, f ]  + [Yo, fo])  

= j+[Y wx Yo, f w fo] = j+EK ux Ko, f '  u f'o] 

= [ T ( f ' w f ' o ) , X  x S t] = [T(f ')WxxslT(f 'o),  X x S t] 

= [T(f ' ) ,  X x S t] + [T(f~), X x St3. 

Similarly, 

j+([Y t , f t ]  + [Y2, f 2 ] ) =  [T(f '~) ,X x S t] + [ r ( f~) ,  X x Sa]. 

But, the following diagram is a push-out diagram 

r(f'o) ---, W(f i)  

1 1 
r ( f l )  . , r ( f ' )  

Then 

(Yi, fi), i = 0, 1, 2, and (L, f " )  is equivalent to (Y, f )  and (Li, X), i = 0, 1, 2, (L, X) are 
finite relative G-complexes. Notice that x, to', ~k, ~' are morphisms in n]IG(X) 'up to 
homotopy' in the sense that the corresponding diagrams commute up to homotopy. 

Define: 

(Ko, fro) = (Lo, f'~), (Kt, f'O = (MxOc), k). 

To define the map k, we use the G-homotopy, relX, H: Lo x I --r L2 between tcf~ and 
f~tc. Define k: Mx(~) --r MxOc) by 

=I(f~(y) ,2 t ) ,  O <<. t <~ �89 

k(y,t) (H2t-a(Y), � 8 9  ( y , t ) e K o •  

k(y') = f~(y'), for y' eL2 

(K2,f'2)=(MxOc'),k') and if H':Lo x I--+Lt between tc'f~ and f]'tr the map 
k' : Mx(~C) ~ Mx(~C) is given by 

_-I(f'~(Y)'2t ), O <. t <~ �89 
k'(y,t) (Hi,-t(y), �89 (y,t)~goXI, 

k'(y') = fT(Y'), for y ' sLx .  

Then, (K1, El) and (K2, f~) are objects in ni'lG(X) equivalent to (L1, f'~) and (L2, f~) 
(The inclusion map j :  L~ ~ Ki induces the equivalence.) Also, the push-out of (Ki, f}), 
i = 0, 1, 2, is equivalent to (L, f"). 
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So, by the additivity property of the Whitehead torsion 

[T(f ' ) ,  X x S 1] + [T(f•), X x S 13 = I T ( f  i), X x S 13 + [T(f~), X x $1]. 

Therefore, 

j+((Y, f )  -4- (Yo, fo)) = j+((Y1, f l )  -4- (r2, f2)). 

So j+ induces a homomorphism j (+) :  ]qilG(X)~ WhPL(x • $1). 
In order to prove that j ( + )  is a split monomorphism, we define its left inverse. 

First, define a map co(+): WhPL(x x S 1) ~ Nil~L(X) as follows: Let (Y ,X  x S 1) be 
a finite relative G-complex. Let f :  Y--. X x S 1 be a strong G-deformation retrac- 
tion from Y to X • S ~. Actually, f is a proper strong G-deformation retraction. 
Lift f to a proper strong G-deformation retraction o'n the infinite cyclic covers [21, 
Lemma 4.2: 

Y-2 x • 
P[ l (id x e) 

Yf--~ X x S 1 

Notice that cl(] z -  (X x R)) has two ends e(+) and e ( - )  corresponding to the two 
ends of R. Let L be a G-subset of ]7 such that 

(i) (L, L n (X x R)) is a relative G-complex. 
(ii) cl(L - (X x R)) is a neighborhood of e ( - )  in c l (Y-  (X • R)). 

(iii) cl((Y- L) - (X x R)) is a neighborhood of e(+) in cl(Y - (X x R). 
(iv) There is a covering transformation, z: Y-~ Y which generates the group of 

covering transformations, such that L ~ z(L). 

Define Y ( + ) =  L/,,~ where (x, t ) ~  (x, 0) for all (x, t)E(X x R ) n  L, and a map 

f ( + ) :  Y ( + ) ~  Y(+), by f ( + )  = zl: Y ( + ) ~ Y ( + ) .  

CLAIM. (Y(+), f (+) )  is an object in nilG(X). 
Proof. Notice that (Y(+), X) is relative G-complex. Also, (L, L n ( X  x R)) is 

relatively G-finitely dominated pair ([23, 44, 4.4, 2]). This implies that (Y(+), X) is 
relatively G-finitely dominated. To complete the proof of the claim, it remains to be 
proved that some power of f ( + )  is G-homotopic relX to a G-retraction. The pair 
(L, X) is G-finitely dominated, and there is a G-homotopy kt: L ~ L, relX, of the 
identity on L, and a compact subset K of L such that kll(L-K~ = f[(L-K)" Choose 
n ~ N  so big that L - K  ~ z"(L). Then, k,z": Y(+)-~ Y(+) is a G-homotopy, relX, 
from f (+ ) "  to a G-retraction into X. This completes the proof of the claim. 

Define c~(+)(Y,X x S 1) = [Y(+) , f (+ ) ] .  

(i) co(+)(Y, X x S 1) does not depend on the choice of L: 
Repeat the above construction starting with another closed G-subset M satisfying 

(i)-(iv) above. Using this data, we construct (Y ' (+) , f ' (+))  an object of nildX). It is 
enough to prove that [ Y ( + ) , f ( + ) ]  = [Y ' (+) , f ' (+)]  in Nil~L(X)in the case that 
M ~ L .  
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Case 1: Suppose that L ~ z(M). Then by Lemma 2.12, [Y(+) , f (+ ) ]  = [Y'(+), 

f ' ( + ) ] .  

Case 2: Suppose that M ~ L. Let (Ym(+),fm(+)) be constructed using zm(L). Then, 
by Case 1, [ Y ( + ) , f ( + ) ]  = [Ym(+),fm(+)], for all m e N .  Choose h e N  so big 
that L = z " ( M ) .  By Case 1, [ Y n _ l ( + ) , f n _ l ( + ) ] = [ Y ' ( + ) , f ' ( + ) ] .  Therefore, 
[Y(+), f ( + ) ]  = [Y ' (+ ) , f ' (+ ) ] .  

(ii) If [ Y , X  • S 1] = ( Y ' , X  • S 1] in Wh~L(x x $1). Then, Yand Y' are connected 
by a sequence of equivariant formal deformations. Then it is obvious that 

og(+)[Y,X x $1-[ = (o(+)[Y' ,X x S 1] 

So, co(+) is a group homomorphism. Define q(+): Wh~L(X x S ~) ~ N]'IG(X) as the 
composition of co(+) and the projection p: Nil~L(X) ~ NI~IG(X). 

ASSERTION. The map q( + )j( + ): NT'IG(X)~ N[lo(X) is the identity. So j( + ) is a 
split injection. 

Proof. Let (Y, f )  be an object of n~6(X) with (Y, X) a finite relative G-complex. 
Then, j ( + ) [ Y , f ]  = [ T ( f ) , X  x $1]. The infinite cyclic cover of T ( f )  is D(f ) .  L 
can be chosen to be D(f)(-~,oj.  So, Y ( + ) =  Dx(f)( -~,ol .  But the collapse map 
co:Dx( f ) ( -~ ,o~O Y x {0}, is a G-homotopy equivalence relX with inverse the 
inclusion map i : Y x  { O} ~Dx( f ) ( -~ ,o l .  Then [ Y ( + ) , f ( + ) ] = [ Y ,  cof(+)i]  in 
Nilo(X). Notice that Co f (  +)i = f .  So q(+)j(+)[Y, f ]  = [Y, f ] .  

The second injection is constructed similarly. Define j ( - ) :  NlqG(X)~ Wh~L(X x 
S ~) as the composition 

j ( - )  = (idx x # ) . j (+) ,  

where #: S ~ ~ S ~ is the orientation reversing homeomorphism given #(s) = 1 - s. 

We give the definition of the left inverse of j ( - ) :  Define co(-): WhPL(x • S 1) 
NilPL(x) as the composition: co(-) = co(+)(idx • #).. 

PROPOSITION 3.3. q ( - ) j (  + ) = q( + ) j ( - )  = O. 
Proof. We will give the proof of q ( - ) j ( + )  = O, the other part follows similar- 

ly. Let [Y, f ]  represent an element of N~'IG(X) with Y a finite G-complex. Then, 
j( + ) [ Y , f ]  = [T ( f ) ,  X • $1]. The infinite cyclic cover of T ( f )  is D(f ) .  

q ( - - ) j ( + ) [ Y , f ]  = q(+)(idx • # ) , [T( f ) ,  S • S~]. 

Notice that the map idx • # reverses the orientation on X • S 1. So, it reverses the 
ends of cl(D(f) - (X • R)). So, 

q(+)(idx • # ) , [ T ( f ) , X  • S ~] = [Dx(f)to.oo), f ' ] ,  

where f ' : D x ( f ) t o , ~  ) ~ Dx(f)[o,~ ~ is induced by the translation. 
But fn  is G-homotopic, relX, to a G-retraction of r: Y o  X. Then, 

Dx( f )to, ~) ~-~ D x( f~)to, ~) ~--~ Dx(r)to, ~) ~--~ X, 
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and all the G-homotopy equivalences are relX. [Dx(f)ro,~), f ' ]  = 0 in NI]G(X), and 
therefoe q ( - ) j (  + ) = 0. 

Proposition 3.3 states that there are two orthogonal disjoint summands of 
WhPL(x x S 1) each isomorphic to NI"IG(X). 

4. Nonequivariant Nil-Groups 

In this section we compare the geometric Nil-groups constructed in Section 2 with 
the algebraic Nil-groups of a ring defined in [4, 17, 19, 39]. In the nonequivariant 
case, it turns out that the geometric Nil-groups of a reasonable space X are iso- 
morphic to the algebraic Nil-groups of the group ring Zzcl(X). This result provides a 
new, more geometric description of the Nil-groups. 

We recall the definition of the algebraic Nil-groups (see [4]). Let R be a ring with 
identity. By an R-module we mean a left R-module. Nil(R) = F/N, where F is the free 
Abelian group generated by isomorphism classes of pair (P, f ) ,  where P is a finitely 
generated projective R-module, and f :  P ~ P is a nilpotent R-map, and N is the 
subgroup generated by the elements: 

(i) If 0 ~ (P, f )  ~ (P', f ' )  --* (P", f " )  --* 0 is an exact sequence of pairs (i.e. exact 
sequence of modules with the corresponding diagrams commutative), then 

(P', f ' )  - (P, f )  - (p", f") .  

(ii) (F, 0), where F is a finitely generated free R-module. 

In [39], w there is an alternative definition of Nil(R). Nil(R) = F' /N'  where F' is 
the free Abelian group generated by chain homotopy classes of pairs (C, f ) ,  where C 
is a finite, finitely generated, projective R-chain complex, and f :  C --* C is a chain 
homotopy nilpotent chain map (i.e. there is an integer n > 0 such that f "  is chain 
homotopic to the zero map), and N' is the subgroup generated by 

(i) If 0 ~ (C, f )  ~ (C', f ' )  ~ (C", f " )  --* 0 is an exact sequence of pairs, as before, 
then 

(C', f ' )  - (C, f )  + (C", f") .  

(ii) (C, f )  = 0, where C is a finitely generated free R-chain complex and f is chain 
homotopic to the zero map. 

In [39], Proposition 9.3, it is proved that both definitions produce the same group. 
In comparing the algebraic with the geometric Nil-group, we use both definitions. 

For X a path-connected space a map a: Nil(X)~Nil(Zrq(X)) is defined. An 
element of Nil(X) is represented by an object (Y, f )  of nil(X). Then, there is an integer 
n > 0 such that f "  is homotopic to a retraction r: Y~X,  relX. Let 2 be the 
universal cover of X. Let Y be the pull back of X under the retraction r. Then the 
relative chain complex C.(Y, X) is a finitely dominated chain complex over Zrq(X). 
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Since Y is finitely dominated relX, there is a finitely generated projective Zrq(X) 
chain complex P ,  chain homotopy equivalent to C , ( f  ~, X). Let q: P,  ~ C,(Y, 52) be 
the chain homotopy equivalence. Define 

a[Y, f ]  = [P , ,  q- ~f,q]. 

(here q-1 denotes any homotopy inverse of q). Notice that since f "  is homotopic 
relX to a retraction, (q-~f,q)" is chain homotopic to the zero map. So [P , ,  q - ~ f , q ]  
represents an element in Nil(Z~I(X)) ([38]). 

PROPOSITION 4.1. I f  X is a path-connected space, then a: Nil(X) --* Nil(Zrq(X)) is 
a group epimorphism. 

Proof. It is obvious that a does not depend on the choices of n, P , ,  and q above. 
Also, a[Y, f ]  depends only on the equivalence class of the object (Y, f )  in nil(X). Let 
(Y, f )  be an object in nil(X), such that (Y, X) is homotopy equivalent, relX, to a finite 
relative CW-pair and f is homotopic relX to a retraction of Y into X. Notice that 
C,(Y, )7) is chain homotopy equivalent to a finitely generated free Zrq(X) chain 
complex, C, ,  and f ,  is chain homotopic to the zero map. Then the pair (C,, f , )  
represents the zero element in Nil(Zrc) and a[Y, f ]  = 0 in Nil(Zrc). 

Consider the push-out diagram in nil(X): 

(go, fo) i " (Y t , f l )  
il Jl 

(Y2, f2) ~ (Y, f )  

The relative Mayer-Vietoris sequence gives an exact sequence of chain complexes, 
and homotopy nilpotent maps 

0 ~ (C,(Yo, X), fo,) ~ (C,(Yx, X), f~ , )  �9 (C,(Y2, X), f2,)  ~ (C,(Y, X), f , )  ~ 0 

The chain complexes are considered with Z ~  (X) coefficients. This implies 

(C , (Y ,X) , f , )  + (C,(Yo, X ) , f o ,  = (C,(Y~,X), f~,)  + (C,(Y2,X), f2,)  

in Nil(Zrq(X)). So a([Y, f]  + [Y0,f0]) = a([Yl , f l]  + [Y2,f2]). Therefore, a is a 
well-defined group homomorphism. 

Now we prove that a is onto. For this we use the original definition of Nil(Zrq(X)) 
given in [4] and [171. Given a pair (P, k), where P is a left finitely generated 
projective Z~zx(X)-module and k a nilpotent endomorphism, we construct an object 
(Y, f )  of nil(X) such that [P, k] = a[Y, f ]  in Nil(Zrq(X)). P can be represented as 
a pair (F,p) where F is a finitely generated free Zrq(X)-module and p: F ~ F  
is a projection (p2= p). Then (P, k) can be represented by triples (F, p, n), where 
n: F ~ F is a nilpotent endomorphism and pn = np, Imp = P. Suppose that F is 
generated by m elements. Define Y' to be X v (m(S2)), the wedge of X with the 
wedge of m copies of S 2, Notice that gz(Y', X) and F are isomorphic as ZrcI(X )- 
modules, and rcz(Y', X) is generated by the classes of the wedged spheres. Then the 
maps p, n: F --* F induce maps p, n: rc2(Y', X) ~ rCz(Y', X) and so maps p, n: Y' -* Y' 
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extending the identity on X. Notice also that qt: p2 ~ p, pn ~-np, and n s is homo- 
topic relX to a retraction of Y' to X. Define Y = D(p)[o,+~)/~, where (x, t ) ~  x 
for x e X and t e [0, oe). Then (Y,X) is relatively dominated by (Y',X). The 
map d: Y ~  Y' is defined as d(y',t,m)= q~(y'), and i: Y ' ~  Y is defined as 
i(y') = ( y', 0, 0) [35]. We define f :  Y ~ Y by f = ind. Then f s  is homotopic, relX, 
to a retraction of Y to X. So (Y, f )  is an object in nil(X). We want to compute 
a(Y,f). Notice that ~ I ( X ) ~  rq(Y). Also, C,(Y,X) as Zrq(X)-chain complex is 
consentrated in dimensions 2 and 3, and C2(Y,X),.~ C3(Y,X)~ F~, where Foo 
means the direct sum of infinite copies of F. The boundary map ~: Ca(Y, X) 
C2(Y, X) is given by the matrix 

- 1  0 

p - 1  0 

0 p - 1  

There are chain maps 

d, :  C,(Y,X) ~ C,(Y',X) and i,: C,(Y',X) ~ C,(Y,X), 

induced by the maps d and i, respectively. Then d,i ,  = p, and i ,d, ~-id, by 
construction. The maps are nonzero only at dimension 2 because C,(Y ' ,X)= 
C2(Y', X) = F. The map i,:  F ~ Foo is given by the matrix 

and the map d, :  F ~ - ~ F  is given by (ppp.. .) .  So, i ,d , :  F~ ~ F ~  is given by the 
matrix 

We show that C,(Y, X) is chain homotopy equivalent to a chain complex P ,  which 
is 0 for * r 2 and P2 = P. The maps d and i actually induce maps d,:  C,(Y, X) --* P, 
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and i, :  P .  ~ C.(Y, X). Then i , d ,  "~ id as before and d . i . :  P ,  ~ P ,  is given by an 
element of P has the form p(x) for some x in F then 

d,i , (p(x))  = p(p(x)) = pZ(x) = p(x), 

and d , i ,  is the identity on P , .  Therefore C,(Y, X )  is a chain homotopy equivalent to 
P , .  By definition, a[Y, f ]  = (P, ,  d , i , n , d , i , )  = (P, ,  n ,)  where n: P --+ P is just the 
map k. This shows that a[Y, f l  = (P, k). So a is an epimorphism. 

COROLLARY 4.2. I f  X is a path-connected space, then a induces epimorphisms: 

~: lX~I(X) ~ lX~I(Zrcl(X)) and ao: K?o(X) ~ I(o(Z~I(X)),  

PROPOSITION 4.3. I f  X is path-connected. Then 4: ] ~ I ( X ) ~  ]~I(Znl(X)) is an 
isomorphism. 

Proof. It remains to be proved that g is a monomorphism. To accomplish this, we 
compare the image of b~l(X) into Wh(X x S~), with the image of a monomorphism 
of I~I(Zzc 1 (X)) into Wh (re 1 (X x S 1 )). The map j '( + ): lX~I(Zrc 1 (X)) --* Wh(z~ 1 (X) x Z) 

is given by j ' ( + ) ( C , f ) =  (C[t , t -1] ,  1 -  t f )  ([37], w where C is a finite, finitely 
generated free ZTzl(X)-chain complex and f :  C ~ C is a chain homotopy nilpotent 
chain map. 

CLAIM. The following diagram commutes: 

Nil(X) a , N'il(Z~q (X)) 

J(+)l I j'(+) 
Wh(X • S ~) e Wh(rq(X) • Z) 

where e is the isomorphism e given in [511. 
Proof Let [ Y , f ]  represent an element of I~I(X), with (Y ,X)  a relative finite 

CW-complex 

j'(+)aEY, f ]  = j ' (+)(C,(Y, 2~), f , )  = (C,(Y,)~)[t, t -  ~1, 1 - t f ,) ,  

where Y is the pull-back of the universal cover of X induced by the retraction 
determined by f and f is the lift of f to Y, and 

e j ( + ) [ Y , f ]  = e ( T ( f ) , X  x S ~) = ( C , ( T ( f ) ) , X  x S~)). 

By [381, the chain complex of the mapping torus of f :  Y ~  Y is given by 
C ( 1 - t f , [ t , t - 1 ] ) ,  where C ( 1 - t f , [ t , t - t ] )  is the modified mapping cone of 
1 - t f ,  It, t -  a 1. Then 

e ( T ( f ) , X  x S 1) = (C(1 - t f , [ t , t - 1 1 ) ) .  

But 

(d(1 - tf.Et, t-~l)) = (C(1 - t f ,  Et, t-~l)) = (c . (g ,  2),  1 - t f , ) )  

-- j ' (+) (c . (Y,  x) ,  f , ) .  
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Since j ' (+ ) ,  j ( + )  are monomorphisms and e is an isomorphism, we conclude that 
5 is a monomorphism and, therefore, an isomorphism. 

In [391 one more injection, j ' ( - ) :  I~I(Z~i(X)) ~ Wh(rq(X) x Z), is defined by 
j ' ( - ) ( C , f ) = ( C [ t , t - i ] , l - t - l  f ) ,  where C is a finite, finitely generated free 
Zrci(X)-chain complex and f :  C ~ C is a chain homotopy nilpotent chain map. We 
compare j ' ( - )  with the geometrically defined injection j ( - ) :  lffil(X) --+ Wh(X x $1). 

COROLLARY 4.4. The following diagram commutes: 

~l (X)  ~ ,~ l (Z~l (x) )  
J(-)~ l;(-) 
Wh(X x S 1) e ~  Wh(ul(X) • Z) 

(The notation is the same as in the proof of Proposition 4.1.) 
Proof. Let [ Y , f ]  represent an element of I'll(X), and h: T ( f ) ~ X  x S i is a 

strong deformation retract. Then e j ( - ) [Y ,  f ]  = [(idx x #)h], where #: S i ~  S i is 

given by #(s) = 1 - s. By the sum formula for the Whitehead torsion, we get 

[Odx x #)hi = (idx x # ) , [h ]  + [(idx x #)]. 

But [(idx x #)] is a homeomorphism, so [(idx x #)1 = 0 in Wh(X x $1). Therefore, 

ej(-)[g, f ]  = (idx x # ) , [h ]  = (idx x #) , [1  - t f ,] ,  

where f , :  C,(Y, X) --* C,(Y, Jr) is as in proof of Proposition 4.1. But # induces the 
map ##: Z = ( t ) ~ Z  = ( t ) ,p#( t )  = t - i .  Therefore (idx x #),[1 - t f , ]  = [1 -- t -  i f ,  I, 
where 

1 - t - i f , :  C,(Y,)~)[t ,  t -1 ]  ~ C,(Y, )~)[t, t - l ] .  

On the other hand, 

j ' (--)5[Y, f ]  = j ( -  )(C,(:Y, )7), f , )  = (C,(Y,)7)[t, t -  13, 1 - t f , .  

Therefore, e j ( -  ) = j ' ( -  ) 5. 

COROLLARY 4.5. Assume that X is a path connected such that u l (X)  is finitely 
presented. Then the map ao:/~o(X) --+/~0(Zul(X)) is an isomorphism. 

Proof. We must prove that ao is a monomorphism. Let [Y, r] represent an element 
of/(o(X).  Since X is path connected and (Y, X) is relatively finitely dominated Y has 
finitely many path components. By adding finite many 1-cells to u we obtain a space 
Y' which is connected and a retraction r' Y' --+ X. By Lemma 2.12, [Y, r] = [Y', r'J in 

Ko(X). So we can assume that an element of Ko(X) can be represented by a pair 
[Y, r],  were Y is path connected. The next step is to improve the connectivity of the 
map r without changing the class of [Y, r] in/{o(X). 

CLAIM. There is an object (Y', r') of Ko(X) such that 

(i) [Y, r] = [Y', r'] in Ko(X) ,  
(ii) r' induces an isomorphism on the fundamental groups. 
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Proof. Since r is a retraction, it induces an epimorphism on the fundamental groups. 
Let r . :  ~I(Y) ~ 7zl(X) be the map induced by r on the fundamental groups. Since rq(X) 
is finitely presented and (Y,X) is relatively finitely dominated, rq(Y) is finitely 
presented. Then Ker(r.) is finitely generated as a normal subgroup of rq(Y) [34], 
Lemma 14.8, [43]. By attaching finitely many cells on Y, we replace (Y, r) by an object 
(Y', r') such that [Y, r] = [Y', r'] in/~o(X) and r' induces a monomorphism on the 
fundamental groups. So r' induces an isomorphism on the fundamental groups. 

Let [Y, r] is an element in the kernel of ao. By the claim, we can assume that r 
induces an isomorphism on the fundamental groups. Then the fact ao[Y,r] = 0 
means that (Y,X) is homotopy equivalent to a relative finite complex (K, X). In 
particular, [Y, f ]  = 0 in Ko(X). Therefore, ao is a monomorphism. 

So we have proved 

PROPOSITION 4.6. I f  X is path connected and 7q(X) is finitely presented, then 
a: Nil(X) ~ Nil(Zrq(X)) is an isomorphism. 

Assume that X is a space with finitely many path components {X~}i~i, where I 
is a finite index set. We define a map 

d: N i l (X)~  (~  Nil(Xi). 
i e I  

Let [Y, f ]  represent an element in Nil(X). Since T( f )  strong deformation retracts to 
X x S ~, T( f )  has the same number of path components with X • S 1. Also, any 
component of T(f)  has the form T(f ' )  where f '  is the restriction of f to a subset Y' 
of Y. Let T(fi),fi: Yi---r Y~, be the component of T(f)  corresponding to Xi x S 1, for 
each i ~ I. Define 

d[Y, f ]  = ([Y~, fi])i~r. 

This is obviously a well-defined group homomorphism. 
We construct the inverse of d. Denote by cp~: X~ -+ X the inclusion map. Define 

d': @ Nil(X,) --, Nil(X) 
iEI  

by 

d'([r, ,  f,]),~, = ~ (~o,),[r,, f , ] .  
i e l  

So, we have proved the following. 

LEMMA 4.7. Let X be as above. The map d: Ni l (X)~  ~ i~, Nil(Xi) defined above is 
an isomorphism. 

COROLLARY 4.8. Let X be as before. Then, the restriction of d induces isomorphisms 

g: ~l(X)-~ G ~l(Xi) 

do: Ro(X) ~ 4G Ro(X,). 
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By combining Proposition 4.6 and Lemma 4.7, we get the following proposition. 

PROPOSITION 4.9. Let X be a space with finitely many path components {X~)i+i, 
where I is a finite index set. Furthermore, assume that ~zl(Xz) is a finitely presented 

group for each i e I. Then, there is an isomorphism 

t/: Nil(X)~ ~ Nil(Zrq(X,)). 
i+I 

Similarly, there are isomorphisms 

#: ~l(X)--+ �9 ~l(Z~dX3), 
i c l  

~o: Ro(X)-+ �9 go(Z~,(x~)). 
iEl  

5. Equivariant Nil-Groups 

In the equivariant case, the geometric Nil-groups split as a direct sum with one 
summand for each conjugacy class of subgroups of G and each component of the 
fixed-point set. This decomposition is consistent with the decomposition of Wh~L(X) 
given in [34] and [27]. 

Let X be a G-space. For any group H, let EH denote a contractible free H- 
complex (EH is unique up to H-homotopy equivalence). For each subgroup H of G, 
WH acts on E WH • X n diagonally. Let E WH X wn X n be the orbit space of this 
action. We want to compare the groups Nil~L(x) and O<mNil(EWH XwHXn), 
where H ranges over the conjugacy classes of subgroups of G. 

Notation. Let ~ be a collection of subgroups of G. f~ is called a family if H ~ ~, 
then all the conjugates of H belong to ~. If H is a subgroup of G, write [HI for the 
family consisting of all the conjugates of/4. 

Let Y2 be a family of subgroups of G. Write Nil~L[~2](X) for the subgroup of 
Nil~L(x) consisting of pairs [Y, f ] ,  where Y is obtained by attaching cells of types 
{Hi}i~i, where H~ e if2 for each i e I (I is an index set). 

Let Con(G) denote the set of conjugacy classes of subgroups of G. Then Con(G) is 
a partially ordered set: (H) ~< (K) if there is g ~ G such that 9H 9-1 c K. 

The argument will follow the lines of the argument given in [24]. 

STEP 1. The map 

Z: ~ Nil~L[H](X) --+ NilgL(x) 
HeCon(G) 

defined by 

Z([Y(H), f(H)]H~Con<~) ) = 

is an isomorphism. 

[ Y(H), f(H)] 
H~Con(G) 
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Proof. It is obvious that Z is a group homomorphism. 
(i) Z is injective: Assume that ([Y(H), f(H)]u~Con(G)) belongs to the kernel to Z. So, 

[Y, f ]  = ~Co , (m[Y(H) ,  f (H)]  = 0 in Nil~L(X). Let Hi be maximal in Con(G) so 
that [Y(H0, f(H~)-] r 0 in Nil~L[Hi](X). Then [y(m), f(u,)] = 0 in NilPL[HiJ(X(m)). 
Also, if j :X(m)--+X is the inclusion map, [Y(Hi) , f (Hi )]=j . [Y( t~ ' ) , f  (m)] = O. 
Therefore ker(Z) = 0 and Z is an injection. 

(ii) Z is surjective: Let [Y, f ]  = y  represent an element in NilPL(x) and let Hi 
be maximal in Con(G) such that Y -  X contains type Hi-cells. Then, with the 
above notation, a(i) -- j .  [y(m), f(m)] ~ NilPL[Hi](X). Then the element y - a(i) 
can be represented by an element [Y', f ' ]  so that Y' is obtained from X by attach- 
ing cells of a type smaller than H~ or which are not compatible with Hi. 
Repeating this process, we get that the sum of the elements is of the form a(k). So 
Z is surjective. 

STEP 2. The map 

BH: Nil~L[H](X) --+ Nil~n[e](X u) 

9iven by BH[Y, f ]  = [Yn, f n ]  is an isomorphism. 
Proof. We define the inverse of BH, B'H:Nil~H[e](XU)~NilPL[H](X).  

Notice that the inclusion j : X n ~ X  induces a map j*'NilPwLH[e](XU)~ 
NilPL[H](X). Let [ Y , f ]  represent an element of Nil~n[e](XH). Set LrY',jJf'q = 

j * [ Y , f ] .  Y' is obtained from X by attaching NH-cells of type H. The attach- 
ing maps of these cells induce attaching maps for G-cells of type H. Let Y" be 
the space obtained from X by attaching these cells. In a similar way, f '  extends to 
a G-map f " :  Y"--. Y". Notice that T( f " )  is G-homotopy equivalent to X x S 1 
since T( f ' )  is ([24], Satz III.3). So, [g",  f " ]  represents an element in Nil~L[H](X). 
Define B'H[Y, f ]  = [Y", f " ] .  B'H is the inverse of BH. 

STEP 3. We construct a map FG: NilPL[e](X) --* NilPL(EG x X). Let [Y, f l  represent 
an element in NilPL[H](X). Then (Y ,X)  is a relative G-complex which is relative 
free. In [26], a construction is 9iven of a relative G-complex (Y', EG x X) so that Y' 
is G-homotopy equivalent rel(EG x X) to EG x Y and the number of equivariant 
n-cells of (Y, X) (this number can be oe) is equal to the number of equivariant n-cells of 
(Y', EG x X). Let f ' :  Y' ~ Y' be the map given by the composition: 

y,  __5_, EG x Y id x f)  EG x Y b ~ y,, 

where a and b are G-homotopy inverses. Then [Y', f ' ]  represents an element in 
Nil~L(EG x X). The map FG defined above is an isomorphism whose inverse is induced 
by the projection p: EG x X --* X. 

STEP 4. Let X be a free G-space, then the map c: NilgL(X) ~ Nil(X/G) by c[Y, f ]  = 
[Y/G, f /G-I is an isomorphism. 
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Proof. The inverse of c is given by pull back. Let [Z, k] represent an element of 
Nil(X/G). Then some power of k is homotopic relX to a retraction r: Z ~ X/G. 
Define Y by the pull-back 

?.t 
Y----, X 

I 1 
Z --L.X/G 

Also k can be lifted to a G-map f: Y. Then (Y, f )  is an object of nilG(X). Define 
c':Nil(X/G) ~ Nil~L(x) by c'[Z, k] = [Y, f ] .  This is a well-defined group homomor- 
phism which is a two-sided inverse of c. So c is an isomorphism. 

PROPOSITION 5.1. There is an isomorphism 

Nil~L(x) ~ @ Nil(E WH Xwn X H) 
(B) 

and it restricts to isomorphisms 

N~I(X)-~ @ I'~I(EWH XwnXH), g~L(X)~ @ Ko(EWH XwnXn), 
(H) (H) 

where (H) ranges over the conjugacy classes of subgroups of G. 

Combining Propositions 4.9 and 5.1 we get 

PROPOSITION 5.2. Let X be a G-space so that zti(C) is finitely presented for each 
path component of X n and for each subgroup H of G. Then, there are isomorphisms 

(i) e: NilG(X) ~ (~ @ Nil(Zrq(EWH(C) Xwn<c) C)), 
(H) C~o(XH/WH) 

(ii) ~: N~IG(X) ~ @ @ ~',Iil(ZzdEWH(C) Xwr~<c)C)), 
<[;t) Ce~o(XH/WH) 

(iii) e': g ~ ( X )  ~ @ @ R0(Zrq(EWH(C) Xwmc)C)), 
(H) Ceno(XH/WH) 

where (H) ranges over the conjugacy classes of subgroups of G and WH(C) is the 
subgroup of WH which fixes the component C of X ~ 

Proof. In [1], it is shown that rq(EWH(C) XWH<C) C) is a finite extension of rci(C). 
So rci(EWH(C ) • is finitely presented and we can apply Propositions 4.9 and 
5.1. Notice that the hypothesis of Proposition 5.2 is satisfied when X is a compact 
G-ANR. 

There is a similar isomorphism given in [24, 27, 34] for any G-space X: 

a: Wh~L(X • S i) ~ (~ (~ Wh(rci(EWH(C) Xwn<c ) C) x Z). 
(H) C~o(XH/WH) 

In [37], for any group re, a split injection j':/~o(Zrc) ~ Wh(rc • Z) is defined called 
the geometric injection. By combining the map j '  with the isomorphisms given 
above, we obtain a split injection (X is as in Proposition 5.2): 

j : / ~ t ( x )  --+ WhPL(X x S1). 
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Geometrically, the injection j is given in [21, 12, 30, 2, 31, 33, 34, 40]. We repeat it 
here for the reader's convenience. 

CONSTRUCTION 5.3.1. Let (Y,r) be an object of Ko~(X). Then, Y is G- 
finitely dominated relX. So there is a G-pair (K, X) and G-maps Y cl K t__~y 
such that 

(i) (K, X) is a finite relative G-complex, 
(ii) td -6 id r ,  relX. 

Then, the map d t : K - ~ K  satisfies T(dt )~-aYx  S 1 rel(X x S 1) (by 1.9, 1.11, and 
[34], w [31, 2, 40]). Define a G-homotopy equivalence w: T(d t )~  T(dt) as the 
composition v(idr x p)u, where u: T(e) ~ Y x S 1 is a G-homotopy equivalence v 
is a G-homotopy inverse, and #: S 1 ~ S 1 is given by #(s) = 1 - s. Define j(Y, r) = 
(r x id).u.v(w), where r is a retraction such that f is G-homotopic to tr, z 
the inclusion of X into Y. Notice that u �9 r(w) is just the relative finiteness obstruc- 
tion of (Y, X), i.e. j(Y, r) = (r x id), adY,  X). The proof that the map j corresponds to 
the algebraically defined map is given in [37, 38]. This map is a group monomor- 
phism onto the elements of Wh~L(X x S ~) invariant under the transfer induced by 
double cover of S a. ([12], w in the nonequivariant case, [34], Proposition 10.52 in 
the equivariant case). 

The splitting of j geometrically can be described as follows: Define a map 
s: Wh~L(X x S 1) ~ / ~ ( X )  as the composition p~o(+). In [2], the proof is given that 
this corresponds to the algebraically defined splitting of j. Therefore K ~ ( X )  is a 
direct summand of Wh~L(x x $1). 

LEMMA 5.3. /~L(X) is isomorphic to a summand of Wh~L(X x S 1) which is ortho- 
gonal to the two summands isomorphic to N'{IG(X). 

Proof Lemma 5.3 follows from the fact that the splitting of N~ldX ) and 
Wh~L(X x S li is natural with respect to the injections j ( + )  and the projections q(_+). 

In summary, we state the following theorem. 

THEOREM 1. Let X be a G-space so that zcl(C) is finitely presented for each path 
component of X n and for each subgroup H of G. Then there are isomorphisms 

(i) ~: N~I~(X) ~ (~  (~  Nil(Z~I(EWH(C) XwH(c) C)), 
(H) Ce~zo(XH/WH) 

(ii) e':/~PL(x) ~ (~  t~) /s XwH(c) C)), 
(H) Ce~zo(XH/WH) 

such that 

a(j(--) G j (+)  O j)  = (~ 0 ~G e') 

x G (j ( - ) (  , c) @ j'(+)(H, C) @ j'(H, C)) 
C~o(XH/WH) 
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where ~ is the inverse of the isomorphism given in [34-1, and 

j ' (+)(H, C): ~qil(Zzq(EWH(C) XWH(C) C)) ~ Wh(~I(EWH(C) XWHtC)C) x Z), 

j'(H, C):/~o(Znl(EWH(C) Xwn~c)C)) ~ Wh(Ttl(EWH(C) • C) x Z), 

are the injections defined in [39] for the geometric splitting of W h ( -  x Z). 

6. The Bass-Heller-Swan Formula for Wh~ L 

In this section we compare the equivariant K-groups defined in the previous two 
sections and the maps between them with the classical equivariant K-groups and the 
maps which prove the Bass-Heller Swan formula for the PL-equivariant Whitehead 
group. We do not use the equivariant analogues of the maps given by Bass [4] but 
rather the equivariant analogues of Ranicki [39], w In this section, X will always 
be a compact G-ANR. The formula we want to prove is: 

THEOREM 2. I f  X is a compact G-ANR, and G acts trivially on S 1, then the map 

(i,, j, j (+) ,  j(--)): WhPL(X) if)/~PL(x) if) INila(X) 0 ICil6(X) ~ WhPL(X x S 1) 

is an isomorphism, where i ,  is the map induced by the inclusion i: X ~ X x S 1. 

In Section 3, the proof that /~L(x)  and lqila(X)if)I~il~(X) inject to direct 
summands of WhPL(X x S 1) is given. It remains to be studied how WhPL(x) injects 
as a direct summand of WhPL(X x S ~) whose intersection with the other summands 
is {0} 

There is a natural map i,: Wh~L(X)-~ WhPL(X x $1), induced by the inclusion 
i: X -+ X x S x, i(x) = (x, 0). 

LEMMA 6.1. The map q ( - ) i , :  WheaL(x) --+ WheaL(X x S 1) -+ I~ilG(X) is the zero map. 

Proof. Let (K, X) be a finite relative G-complex and f :  K--+ X be a strong G- 
deformation retraction from K to X, representing an element of WheaL(X). Then 
i,(K, X)  is given by 

f w i d : K ' =  K w x ( X  x S l ) ~  X x S 1 

The infinite cyclic cover of K Wx (X x S ~) is K" = (K x Z) Wx • z (X x R), and f w id 
lifts to a proper G-deformation retraction, f ' =  ( f x  idz)widx• K " ~  X x R. 
A neighborhood of the negative end of K" is L =  (K • Z - ) w x •  x ( -  c~,0]), 
where Z -  is the set of nonpositive integers. Then, K ' ( - )  = L~ ~ where (x, n) = (x, 0) 
for each (x, n) e X x Z - ,  and the map f x idz-: K ' ( - )  ~ X, is a strong G-deforma- 
tion retraction. Notice that q ( - ) i , ( K , X ) =  p([K'(- - ) , f ' ( - - )]) ,  where f ' ( - )  is in- 
duced by the translation and so [ K ' ( - ) , f ' ( - ) ]  = 0 in NiIE(X ) since K ' ( - )  is 
G-homotopy equivalent to a finite G-complex, namely X, and f ' ( - )  is G-homotopic 
to a retraction to X, since K ' ( - )  strong G-deformation retracts to X. So q ( - ) i ,  = O. 

Similarly, there is the following result. 
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C O R O L L A R Y  6.2. The maps q(+)i,: Wheet(x)-+ Whe6t(X x S1)-+N~I~(X) and 
si,: Wh~L(X) -+ Wh~L(x x S 1) --+ K ~ ( X )  are the zero maps. 

We must prove that i,: Wh~L(X)--+ Wh~L(X x S 1) is a split monomorphism so 
that WheY(X) is a direct summand of Wh~L(x x Sa). 

L E M M A  6.3. i,: Wh~L(X) ~ WhPL(x x S ~) is a split monomorphism and WhPL(X) is 
isomorphic to a direct summand of Wh~L(X x S 1) whose intersection with the 
summand isomorphic to ,~PL(x) @ n'il~(X) G NIle(X) is {0}. 

Proof. Define a map 

k = p,(1 - j s  - j ( - ) q ( - ) - j ( + ) q ( + ) ) :  WhPL(x x S 1) -+ WhPL(x), 

where p, :  WhPL(X x S 1) -+ Wh~L(X) is the natural map induced by the projection p: 
X x S a ~ X. Then k is the left inverse of i,.  

If re is a group, i , :  Wh(~) -+ Wh(rt x Z) is the map induced by the natural group 
inclusion i': ~ --+ zc x Z. 

L E M M A  6.4. The following diagram commutes: 

WhPL(x ) g' ) @ (~  Wh(u~(EWH(C) XWH(c)C)) 

1 <,,> C~o<X,,/wH)| ~ ~<R,c). 
i ,  [ (H) Ce~o(X /WH) 

| 
Wh~L(x x S 1) ~', @ @ * Wh(zq(EWH(C) Xws<c)C ) x Z), 

(H) Ce~o(XH/WH) 

where e' and a' are the isomorphisms 9iven in [34]. 

Now we have all the machinery to prove Theorem 2. 

Proof of Theorem 2. The homomorphism 

i, �9 j G j ( - )  G j ( +  ): Wh PL(X) O/s G l~il~(X) O ]ffil6(X) 

-+ Wh~L(X x S 1) 

is such that 

a'(i, @ j G j ( - )  G j ( + ) )  

=(e' G e ( - )  G e(+)  �9 e') [ ( ~  (~ ( i , (H ,C)Oj ' (H ,C)O 
L (It) C~no(X~/WH) 

-I 

j'(--)(H, C) G j'( + )(H, C))J. 

But the fundamental theorem of algebraic K-theory ([5]) asserts that for each H and 
" " H for each C, z,(H, C) • j ( , C) O j ' ( -)(H,  C) @ j'( + )(H, C)) is an isomorphism. By 
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Theorem 1 and [34], the maps e', e' �9 e ( - )  @ e(+) G e' are isomorphisms. So the 
map i. @ j O j ( - ) @  j (+ )  is an isomorphism, with inverse given by 

(k, s, q(- ) ,  q(+)): Wh~t(X x S 1) ~ WhPL(x) G/(PoE(X) @ l~ila(X) ~ I~ilG(X). 

In [8,46,41] a Whitehead group is defined for a compact G-ANRX using 
isovariance whenever equivariance occurs (a G-map between G-spaces is called 
isovariant if it preserves the isotropy groups). The resulting Whitehead group is 
denoted by WhPL'lS~ Then, the splitting of WhPL'Is~ is given by 

"~: Wh~L'IS~ ~ (~ Wh(n~(EWH(C) Xwn~q C)), 
(H) Ce~o(X~/WH) 

where H varies over the conjugacy classes of the isotropy subgroups of G. 
The same observations apply for Nil~L(X). By replacing the equivariant maps in 

the definition of NilPL(X) by isovariant and we get Nil~LaS~ The isomorphisms 
(i), (ii), (iii) in Theorem 1 remain valid for the ISO-groups if H ranges over the 
conjugacy classes of the isotropy subgroups of G. In particular, we get: 

LEMMA 6.5. I f  X is a compact G-ANR, and G acts trivially on S 1, then 

WhPL,iSO(X • S 1) ~ Wh~L,iSO(x) @ ~PL,1SOIv~ ~ -" ISO I,.OG ~L~ j ,~ NllG (X) E3 !XTil~~ 

In what follows, by a G-manifold we mean a locally linear G-manifold, except if 
otherwise stated. Let M be a G-manifold. A G-h-cobordism, (W;M,M' ) ,  is a 
G-manifold, W with boundary OW -- MJLM', the disjoint union of M and M', such 
that the inclusion maps i: M ~ W, and i': M" ~ W are proper equivariant homotopy 
equivalences. 

DEFINITION 6.6. A G-manifolds has codimension >~3 gaps if each inclusion 
Mg ~ M~ n, of components of fixed-point sets of M under G ~ K ~ H is either the 
identity or has codimension at least 3. 

For a finite G-complex X define Wh~L'P(X) to be the subgroup of Wh~L(X) 
generated by pairs (Y, X) such that Y~ - y>n = (3, whenever X ~  - X>~ n = (3. It 
turns out [46] that WheLP(M) is a summand of Wh~L(M). Also, if M is a compact 
G-manifold with codimension ~> 3 gaps, Wh~L'p(M) is isomorphic to Wh~L'lS~ 

COROLLARY 6.7. I f  M is a compact G-manifold with codimension >~ 3 gaps and G 
acts trivially on S ~, then 

WhPL'p(M x S ~) WhPLw(M) -eL p G Kod (M) �9 I~Iw G I'qil~(M). 

7. The Bass-Heller-Swan Formula for Wh T~ 

In this section, we complete the proof of the Bass-Heller-Swan formula for the 
equivariant topological Whitehead group. 

If X is a locally compact G-ANR, the topological equivariant Whitehead group, 
WhT~ of X was defined by M. Steinberger and J. West [47, 46] as follows: 
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Let D(X) be the set of all pairs (Y, X) where Y is a locally compact G-ANR and X is 
a proper strong G-deformation retract of Y. An equivalence relation is defined on 
DO(): (Y,X),,~ (Y',X) if there is a locally compact G-ANR, Z, and G-CE maps 
r:Z--+ Y, r ' :Z-+  Y' such that fr ~-~f'r'relX where f:  Y--+X and f ' :  Y'-+X are 
strong G-deformation retractions. The elements of WhT~ are equivalence classes 
of objects of D(X). The operation on WhT~ is induced by push-outs. 

In [46], the connection is given of the topological and the PL Whitehead group of 
a locally compact G-ANR X which is G-dominated by a finite-dimensional G- 
complex in a 5-term exact sequence 

Wh~L(X)c f ,  WhP~L(x) *, Wh~~ ~ I(~(X)c ~ R~(X).  (1) 

The group Wh~L(X)c is the controlled Whitehead group [49]. The group -eL KoG(X)~ is 
the subgroup of Wh~L(X x S 1)~ consisting of elements which are invariant under the 
transfer map induced by the finite covers of S 1. The maps f and g, are 'forget control' 
maps, the map q5 is 'forget cell-structure'. If (Y, X) represents an element of WhT~ 
then v(Y, X) is defined to be the controlled relative propriety obstruction of the pair 
(Y, X), i.e. the obstruction that (Y, X) is a properly controlled G-homotopy equival- 
ent relX to a relative G-CW pair [46]. 

In [46], Chapter 10, Bass-Heller-Swan formulas are given for the controlled 
groups: If X is a finite G-complex and G acts trivially on S 1 then 

Wh~L(X x $1)~ Wh~t(x)~ "eL G Ko~(X)c, (2) 

-PL g~(x)c �9 K~_~(X)c, (3) Koo(X x $1)~ ,.~ 

where Ke__~G(X)~ is the subgroup of the transfer invariant elements of ~PL Ko~(X x S1)c . 
It is observed in [46] that the above isomorphisms are natural with respect to 'forget 
control'. This observation together with the equivariant version of the work of L. C. 
Siebenmann [42] gives an exact sequence for any compact G-ANR X: 

--PL f ~  KPL(x) ~') R) v') Koa(X)c WhT~ • KP-La(x)~ ~-~ KP_La(x). (4) 

From now on, X will denote a compact G-ANR. Using the information provid- 
ed by the above exact sequences, we study the direct sum decomposition of 
WhT~ • $1). First of all, notice that there is an exact sequence 

WhPL(x X S1)c f",  WhPL(X • S 1) q~", WhT~ x S ~) 

V"> --PL ~. goG(X x $1). (5) Koa(X x S*)c ~'" --PL 

We start with the summands corresponding to the Nil-groups. Let 
j (+):  NqlG(X) ~ WhPL(X • S ~) be the injections constructed in Section 2. 

LEMMA 7.1. Im(j(+))  c~ Im(f")  = {0}. 
Proof. We prove the lemma for j (+) .  The proof for j ( - )  is similar. From (2), 

Im(f")  ~ Wh~L(X) @ RPL(X). Alsp Ira(j(+)) c~ (WhPL(X) @ RPo~(X)) = {0}. 
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COROLLARY 7.2. The restriction of  (a" to I r a ( j (+ ) )@ I m ( j ( - ) )  is a monomor- 

phism. 

Proof  This follows from Lemma 7.1 and the exact sequence (5). 

Corollary 7.2 states that the map ~b"(j( + ) • j ( - ) ) :  N]]G(X)@ NT1G(X)~ Wh~~ • 

S 1) is injective. 
Notice that there is a natural map t: Wh~~ Wh~~ x S 1) induced by the 

inclusion i: X ~ X • S ~. This map is injective (the projection X • S ~ ~ X induces a 

left inverse for 0. 
Let tr(n): Wh~L(X • S 1) ~ Wh~L(X • S ~) be the transfer map induced by the nth 

cover of S 1 (the cover corresponding to the subgroup nZ of Z). 

LEMMA 7.3. l f  x ~ Wh~L(X), then tr(n)i,(x) = ni,(x).  
Proof  We will prove the lemma for n = 2. The general case follows similarly. Let 

x be represented by a strong G-deformation retraction k: K ~ X where K is a finite 
G-complex. Then i ,(x) is represented by the strong G-deformation retraction 
k ' =  k w id: K ' =  K w x ( X  x S 1) ~ X  x S 1. The double transfer of k' is k": K " - ~  
X x S 1 where K "  = (K u x ( X  • S~)) u x K  and identify x with (x, 0) in the first union 
and x with (x, �89 in the second union for all x e X. The map k" = k u id w k. It is 
obvious that 

( K " , X  x S t ) = ( K ' , X  x S1) + ( K ' , X  • S 1 ) =  2i.(x). 

LEMMA 7.4. Let x e N~I~(X). Then, there is a positive integer n such that 

tr(n)(j( + )(x)) = O. Similarly, there is a negative integer n' such that t r (n ' ) ( j ( - ) ( x ) )  = 
0. 

Proof. Let (Y, f )  represent the element x of N~IG(X) so that Y is a finite G- 
complex. The j (  + )(x) = (T( f ) ,  X x $1). For each positive number, k tr(k)(j( + )(x)) = 

( T ( f k ) , x  • S ~) (For the proof of this fact for k = 2, see [12], Lemma 8.1. The 
general case follows similarly). But there is a positive number n so that f "  is G- 
homotopic relX to a retraction of Y into X. For  this number n, tr(n)( j(+)(x))  = 

( r ( f " ) , X  • S 1) = O. 
For j ( - ) ,  notice that for each integer k, t r (k ) ( j ( - ) ( x ) )  = t r ( - k ) ( j ( + ) ( x ) ) .  So, this 

case follows from the previous observations. 

There is also transfer maps on Wh~~ • $1). We denote these maps by t(n). 

COROLLARY 7.5. (a) I f  X ~ Wh~~ then t(n)t(x) = re(x). 

(b) I f  x ~ N~IG(X), then there is a positive integer n such that t(n)(O"j( + )(x)) = O. 

(c) I f  x e N~IG(X), then there is a neoative integer n' such that t (n ' ) ( r  = O. 
Proof. The proof is exactly as in the PL case. Alternatively, the result is obvious 

from the fact that the maps in the exact sequence (5) commute with the transfer 
maps. 

Let e: R ~ S ~ be the universal cover of S 1. This defines a map tr: Wh~~ x 
S 1) ~ Wh~~ • R). More precisely, let x e Wh~~ x S 1) be represented be a 
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strong G-deformation retraction f :  Y ~ X  x S 1, where Y is a compact G-ANR. 
Form the pull back 

? f---~X x R  
~e' Ze 

Y f~ X • S 1 

Then f is a proper strong G-deformation retraction. Define tr(x) = (Y, X x R). This 
is a well-defined homomorphism. 

There is a commutative diagram 

0 0 0 0 0 

1 1 1 1 l 
Wh~L(x)c f ,  Wh~L(X) m N  q~@id Top v| --eL 

- -  , WhG ( X )  �9 N - , Ko~(X)r  , g g L ( x )  

"1 il q 'el '~ 
Wh~L(x x $1)~ f", Wh~L(X x S ~) ~ WhT~ x S ~) ~ / ~ V L ( x  X S~)~ ~'; -eL K o ~ ( X  x S 1) 

sq s I tr I so~ So l 
~I'L f '  ~b' PL Top ~" KoG(X)~ , Ko~(X)  ,, Wh~ (X x R) , K"-h~(X)c r K"-h~(X) 

I 1 1 1 1 
0 0 0 0 0 

Here 

N = N~I~(X) ~) N~{I~(X), 

i = i,  $ j ( + )  G j(--) :  WhK(X)  @ N --+ WhK(X x S*) 

and 
Top Top Z = t �9 ~b"j(+) G q~'j(-) :  Wha  (X) G N ~ WhG (X x $1). 

In the above diagram, the first and the fourth columns are split short exact sequences 
given by the isomorphisms (2) and (3), and the second column is the split exact 
sequence which proves the Bass-Heller-Swan formula for Wh PL. The fifth column is 
such that io is a split monomorphism, So is a split epimorphism, soio = 0. The maps io 
and So are defined similarly to i ,  and s. In the third column, we know that Z is a 
monomorphism. To complete the proof of the Bass-Heller-Swan formula for the 
equivariant topological Whitehead group, we have to prove that the third column is 
a split short exact sequence. We have already proved that Z is a monomorphism. 

CLAIM. Ker(tr) c Im(z ). 

Proof.  Let 

x ~ Ker(tr) =r tr(x) = 0 ==> v'(tr(x)) = 0 ~ sc(v"(x)) = 0 ~ v"(x) ~ Ker(sc) = ImG), 

PL so there is a ~ KoG(X)c such that v"(x) = i~(a). 

0 = ~"(v"(x))  = ~ " G ( a ) )  = io(~b(a)). 



THE BASS-HELLER-SWAN FORMULA 433 

Since io is a monomorph i sm,  r  = 0. This means a ~ Ker(r  = Im(v @ 0) and there 
Top is b ~ WhG (X) such that  v(b) = a. 

v"(t(b))  = ic(v(b)) = ic(a) = v ' (x ) ,  i.e. x - ~(b) ~ Ker(v") = Im(q~"). 

Therefore, there is a '  e Wh~L(X x S 1) such that  x - fib) = qS"(a'). 

(o'(s(a')) = tr(qS"(a')) = tr(x) - tr(t(x)) = 0 ~ s(a')  e Ker(~b') = I m ( f ' )  

and there is b' ~/<g~(X)c such that s(a')  = f ' ( b ' ) .  Since sl is an epimorphism, there is 

a" ~ WhgL(X x S t ) c  such that  

s(a') = f '(sl(a')) = s ( f ' ( a " ) )  ~ a' - f ' ( a ' )  ~ Ker(s) = Im(i) 

and there is c E Wh~L(x)  @ N such that  a' - f ' ( a " )  = i(c). 

We now compute  z(b + (r  (9 id)(c): 

z(b + (q~ (9 id)(c)) = z(b) + Z(~b G id)(c) -= ,(b) + (o"(i(c)) 

= x - q~"(a') + ~b"(a' - f " (a" ) )  = x. 

This means that  x e Im(z).  

C L A I M  2. Im(z) c Ker(tr). 
Top Proo f .  We will show that  tr Z = 0. Let x ~ WhG (X) @ N. Then 

v'trz(x) = sci~v(x) = 0 => trz(x) e Ker  v' = Im qS' 

and there is a e / ~ L ( x )  such that trx(x) = qS'(a). Notice that  s is an isomorphism 

from the transfer invariant elements of  WhPL(X x S 1) t o / ~ L ( x ) .  Therefore, there is 

a transfer invariant element b e Wh~L(X x S 1) so that  a = s(b). Then 

trz(x) = ~b's(b) = trqS"(b) ~ Z(X) - qS"(b) e Ker(tr) c Im(z) 

and there is 

Top 
y E W h a  (X) @ N such that  Z(x) - ~b"(b) = Z(Y) => Z(x - y) = ~b"(b). 

Top In  other words, qS"(b) is a transfer invariant element of  WhG (X x S ~) and belongs 

to Im(z). By 7.5, qS"(b) = 0. Therefore, trz(x) = 0. 

If x ~ N there is an easy geometric way of showing that  trz(x) = 0. 

(i) Let x s N~'I~(X) be represented by a pair (Y, f )  where Y is a finite G-complex 

and f :  Y--* Y is a map  which is the identity on X and there is n e N such that  

f "  ~-Gir, where i: X ~ Y is the inclusion map and r: Y ~  X is a retraction. Then 

Z(x) = j ( + ) ( x ) =  ( T ( f ) , X  x S ~) and t r ( z (x ) )=  ( D ( f ) , X  x R). 

There is a sequence of  G-CE equivalences rel(X x R): 

D ( f )  ~ O ( f " )  ~ D(ir)  ~ D(ri) = X x R.  

These G-CE equivalences are the infinite cyclic covers of  the G-CE equivalences 
constructed in 1.9 and 1.11. This shows that  tr(z(x)) = 0. 
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(iii) I f  x, (Y, f )  are as before and )~(x) = j ( - ) ( x ) ,  then tr(z(x)) is represented by the 
telescope of f with the ends reversed. So, the a rgument  in (ii) applies and we have 

tr()~(x)) = 0. 

To~ $1)__, Top C L A I M  3. The map tr: W h o  (X x W h a  (X x R) is a split epimorphism. 

Before we give the p roo f  of  Cla im 3, we need the following 

Top A S S E R T I O N .  Let y e W h ~  (X x $1). Assume that v"(y) is a transfer invariant 
element of  ~ eL Top Ko~(X  • S1)c. Then, there is an element z ~ W h o  (X x S 1) such that y' is 
invariant under t(2) the double transfer map and v"(z) = v"( y). 

Proof of  the Assertion. We assume that  y is not  invar iant  under  t(2). Wri te  
y ' = t ( 2 ) ( y ) .  Then,  since v"(y) is transfer invariant ,  v " ( y ) = v " ( y ' ) ~ y - y ' ~  
Ker(v")  = Im(q~") and there is a ~ WhPL(X x S 1) such tha t  y - y '  = q~"(a). Not ice  

that  

t r (y)  = t r (y ' )  ~ y - y '  ~ Ker(tr)  = Ira(Z) 

there is a '  Top WhG (X) G N such that  y - y '  = )~(a'). 

o = v" (y )  - r  = v " ( z ( a ' ) )  = ic((v �9 0 ) ( a ' ) )  

and i~ is a m o n o m o r p h i s m .  So 

(v @ 0)(a') = 0 ~ a '  E Ker(v @ 0) = Im(q~ @ id) 

there is b s Wh~L(x)  @ N such that  (~b @ id)(b) = a'. 

Also, cy'(i(b))= )~((4o @ id ) (b) )=  x ( a ' ) =  y -  y'. The  d e m e n t  b has three com- 

ponents  b = (k, n+, n_ ). Then  f rom 7.5, tr(m)(i(b)) = mi,(k) + tr(m)(j( + )(n+ )) for 

some negat ive integer m. So we can assume tha t  the element y we star ted with has 

the p rope r ty  tha t  y - y '  = O"(i(b)) and b = (k, n+,  0). This can be done  by replacing 

y with t(m)(y). Under  these assumpt ions  set 

z = y' + 2qS"i,(k) - t(2)(q~"j( + )(n + )) - t(4)(q~"j( + )(n + )) . . . .  

- t(2v)(~b"j(+ )(n +)), 

where p is a posit ive n u m b e r  such that  t(2 p+ 1)(j( +)(n  +)) = 0. Then  

t(2)(z) = t(2)(y')  + 4 ~ b " i , ( k ) -  t(4)(~b"j(+)(n+)) - t(8)(qS'7(+)(n+)) . . . .  

- t (2v)(~b'{j( + )(n + ). 

But 

y -  y ' =  qS"(i,(k))+ ~b"(j(+)(n+))=~ t (2 ) (y ' ) - -  t ( 2 ) ( y ) -  2~b"( i , (k))-  

- t (2)(~'7(  + ) ( n  +)). 

F r o m  this it follows that  t(2)(z) = z. Not ice  that  v"(z) = v"(y') -- v"(y). This com-  

pletes the p roo f  of the assertion. 
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~ P L  "P . "'" KP-~dX)c  ~ K o d X  • S1)c be the right inverse of sc and to. P r o o f  o f  Claim 3. Let to. 
P L  K P ~ d X )  ~ K o o ( X  • S 1) be the right inverse of So. The images of these maps  are the 

transfer invariant  elements of the corresponding groups and the maps are natural  

with respect to 'forget control '  (see the appendix and [461, w Let x ~ Wh~~ x 

R). Then, 

~' v'(x) = 0  =~ i'o~'V'(x) = 0 ~ ~"i'cv'(x) = 0 ~ i 'S (x)  E Ker(~") = Im(v") 

there is y~Wh~~ x S 1) such that  v ' ( y ) = i ' S ( x ) .  Since i 'S (x)  is transfer 

invariant, we can choose y to be variant under  double transfers using the 

assertion. Choose  y~Wh~~ x S 1) invariant under  double transfers such that  

v"( y) = i 'S(x) .  Notice 

v'tr(y) = scv"(y) = sd'cv'(x) = v'(x) ~ tr(y) - x e Ker(v') = Im(~b') 

there is b e / ~ L ( x )  such that  tr(y) - x = qS'(b). Define a map  j ' :  WhT~ x R) ---, 

WhT~ x S a) by j ' ( x ) =  y -  4)'~i(b) with y and b as above and j : / ~ L ( x ) - - *  

Wh~L(x x S ~) is the right inverse of  s discussed in Section 2. 

(i) j '  is well defined. Let y'  be another  invariant under  double transfers element 

of WhT~ x S 1) such that  v " ( y ) =  v " ( y ' ) =  i;v'(x) and b 'eKPoL(X)  be such that  

t r(y ' )  - x = qT(b'). Then, 

v"(y) = v"(y') =~ y - y '  ~ Ker(v") = Im(qT') 

and there is a e Wh~L(X • S 1) such that  y - y '  = qT'(a). 

x = tr(y) - qT(b) = tr(y ')  - qT(b') ~ tr(y - y') = qT(b' - b). 

~ P L  But, t r ( y -  y ' ) =  trqT'(a)= ~'s(a). 4)'s(a)= 4 9 ' ( b ' - b )  and there is ~ e K o d X ) c  such 

that  f ' (c  0 + s(a) = b' - b. Then, 

y - qS'7(b) - y '  + q~'7(b') = qS"(a) + 4o"jf'(~) + 4)'~js(a). 

But, j f ' (e)  = q~'7\s\do2(1)(~), where Jl"/~gL(x)c --* Wh~L( X x S1)c is the right inverse 

of the projection s~, and 

y - q~"j(b) - y '  + q~"j(b') = O"(a) + q~"js(a). 

Case 1. If  a is a transfer invariant  element of WhPL(x • St), then there is a '  e / ~ L ( x )  

such that  a = j(a'), and js(a) = jsj(a') = j(a')  = a. In  this case 

y - qS"j(b) - y '  + ~b"j(b') = 0. 

Case 2. If  a is not  transfer invariant, then there is a" ~Wh~L(X)@ N such that  

a = i(a"). Then ~b"(b) = cy'i(a") = Z(q5 G id)(a") = y - y'. But, y - y '  is invariant 

under  double transfers. By 7.5, the only invariant under  double transfer element in 

Im(z)  is 0. So, 

)~(~b G id)(a") = 0 =*- (4) �9 id)(a") = 0 
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there is e' s Wh~L(X)~ such that f(c() = a". Then, 

O"(a) = qY'i(a") = Z((a G id)(a") = z(q5 �9 id)f(cd) = 0. 

Also, 
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cy~js(a) = cy~jsi(a") = 0 and y - (o'~j(b) - y' + (o"j(b') = O. 

This proves that j ' (x )  is independent of the choices of y and b. 

(ii) j '  is a group homomorphism: This is obvious from (i). 

t t .  b (iii) j '  is a right inverse o f  tr: If x e WhT~ x R), then j ' (x )  = y - (a j ( ) ,  where 
y ~ WhT~ x S t) is a double transfer invariant element such that v"(y) = i;v'(x) and 
b ~/~PL(x) such that tr(y) - x = qS'(b). Then 

trj'(x) = tr(y) - tr~"j(b) = x + O'(b) - 4)'sj(b) = x. 

(iv) j '  is an isomorphism onto the group o f  the transfer invariant elements  o f  
WhT~ • S1): If y E WhT~ • 31) is transfer invariant, then we compute j'tr(y). 

Notice that 

v'tr(y) = scv"(y) ~ i 'Str(y) = i'~s~v"(y) = v"(y)  and tr(y) = tr(y) + 0. 

We can choose b = 0 in the definition of j 'tr(y). This proves that j ' t r(y)  = y. 
Therefore, the map j '  from the transfer invariant elements of Wh~~ • S 1) to 
WhT~ • 11) is an isomorphism. 

This completes the proof of the assertion that the third column in the above 
commutative diagram is split short exact. By (iv) above, we can identify Wh~~ x 
R) with the transfer invariant elements of WhT~ x $1). This completes the proof 
of the main theorem. 

For  a locally compact G-ANR X, define WhT~ to be the subgroup of 
WhT~ generated by pairs ( E X )  such that Y ~ - y 2 n =  | whenever X,  H -  
X~ >u = �9 It turns out (see [46]) that WhT~176 is a summand of Wh~L(x). Then, 

using the main theorem, we get 

COROLLARY 7.6. I f  X is a compact  G-ANR and G acts trivially on S ~, then 

WhT~ x S ~) ,.~ WhT~176 -Vop,p �9 Koo (X) �9 1Nile(X) G l',Til~(X). 

In what follows, by a G-manifold we mean a locally linear G-manifold. Let M be a 
G-manifold. A G-h-cobordism, (W; M , M ' ) ,  is a G-manifold W with boundary 
c~W = M ~ M', the disjoint union of M and M', such that the inclusion maps i: M ~  
W, and i': M" ~ W are proper equivariant homotopy equivalences. 

The connection of WhT~ for a G-manifold M, with the geometry is given by 
the equivariant G-h-cobordism theorem. We call two G-h-cobordisms,  (W; M, N) and 
( W ' ; M , N ' )  equivalent if there is a G-homeomorphism F: W ~ W '  which is the 
identity on M. 
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EQUIVARIANT G-h-COBORDISM THEOREM [46]. Let M be a compact 

smooth G-manifold and M has codimension >~3 gaps, and such that all the f ixed 

points of  M have dimensions >.5. Then, there is a bijection set of the equivalence 

classes of  G-h-cobordisms over M and elements of  WhT~176 in such a way that 

the trivial G-h-cobordism (M x I ; M , M )  corresponds to the zero element of 
WhT~ 

In [-46], WhT~176 is defined for any locally compact G-ANR X. The definition 
of this group is given by using isovariance whenever equivariance occurs. Then 
WhT~176 ~ WhT~ So 

COROLLARY 7.7. I f  X is a compact G-ANR, and G acts trivially on S t then 

~T~ ~ lqil~~ G !'~il~~ Wh~~176 x S t) ~ WhT~176 �9 *-oa w~, 

Appendix: Equivariant Wrapping-up 

We give an equivariant version of 'wrapping up' over S t for Hilbert cube manifolds. 
This construction can be used as an alternative definition of the split monomorphism 
j ' :  WhT~ x R)--> WhT~ • St). 

In the nonequivariant case, this method was developed in [44], Chapter 5, and in 
[13], Chapter 4, for topological finite-dimensional manifolds, and in [15], w for 
Hilbert cube manifolds. The input for this process is a proper homotopy equivalence, 
f :  M ~ X x R, from a finite-dimensional manifold (or Hilbert cube manifold) M to 
X x R, where X is a finite CW-complex (or a compact ANR) and the output is a 
homotopy equivalence f ' : M '  ~ X x S t whose infinite cyclic cover is f.  It turns out 
that the element of Wh(~t(X) x Z) determined by f '  is invariant under the transfer 
maps induced by the double covers of S t. 

In [50], there is an extension of the methods in [14] in the equivariant case. 
We use this work to extend the 'wrapping up' in [15], w to the equivariant 
case. We start with a proper G-homotopy equivalence f :  M ~ X x R, from an 
equivariant Hilbert cube manifold M to X x R, where X is a compact G-ANR, 
and we produce a G-homotopy equivalence f ' :  M'  ~ X  x S t whose infinite cyclic 
cover is f .  

The main reason that we use infinite-dimensional manifolds is the engulfing 
arguments. Engulfing arguments are simpler in the infinite-dimensional case because 
we do not really need any codimension conditions. Engulfing arguments in the 
finite-dimensional case have been developed by Steinberger and West [48] and most 
probably a variation of these arguments will be enough for the case under con- 
sideration. Once the engulfing arguments have been established, the rest of the 
construction works in the finite-dimensional case. 

We start with the definitions needed in this chapter. Let [G[ = n and let I " =  
{(x~, x2,..., x,) e R " / - 1  ~< xl ~< 1} be the unit hypercube of the regular real represen- 
tation of G. 
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DEFINITION A.1. (1) A G-map f : A  ~ B  between G-spaces is called a near 
homeomorphism if for each open G-cover e of A there is a G-homeomorphism 
f ' :  B --* A which is e-close to f.  

(2) The G-Hilbert cube QG is the countable product of I", 

QG= I~II} ', 
i = 0  

where each I~' = I". 
(3) A Q~-manifold M is a separable metric G-space, all of whose orbits have 

neighborhoods which are G-homeomorphic to open subspaces of QG. 
In [50], it is observed that the results for Hilbert cube manifolds in [14], which do 

not use the topological invariance of the Whitehead torsion, can be generalized in 
the equivariant case. 

(A.2) (Equivariant Edwards' Theorem). A G-space X is a G-ANR /f and only if 

X x QG is a QG-manifold. 

(A.3) (e-Approximation Theorem for QG-manifolds). Let ~ be an open cover of  the 

Qa-manifold M. Then, there is an open G-cover fi such that if f :  N ~ M is a G-fl- 

homotopy equivalence from a QG-manifold N, then f is a-close to a G-homeomorphism. 

Notes: (i) In particular, if the map f in (A.3) is a G-CE map, then f is a near 
G-homeomorphism ([46], Proposition 4.5). 

(ii) In [48], the e-approximation theorem is proved for finite-dimensional locally 
linear G-manifolds. 

(A.4) I f  M is a Q6-manifold, then M x Q~ ~ M. Moreover, the projection map 

p: M x Q~ ~ M is a near G-homeomorphism. 

Note: In particular, M x I" ~G M and the projection map is a near G-homeomor- 
phism. 

DEFINITION A.5. (1) Let X be a G-space. A closed G-subset A of X is called a 
G-Z-set if for any open G-cover e of X, there is a G-map of X into X - A which is 
e-close to the identity ([14] w for the nonequivariant analogue). 

(2) A G-Z-embedding f :  A--*X is a proper G-embedding such that f (A)  is a 
G-Z-set in X. 

The basic properties of Z-sets in Hilbert cube manifolds can be generalized in the 
equivariant case [50]. 

(A.6) (G-Z-embedding Approximation Theorem). Let (A, A') be a pair so that A is a 

locally compact G-space and A' is a closed G-subset of A. Let M be a QG-manifold and 
let f :  A --*M be a proper G-map such that flA' iS a G-Z-embedding. Then, for each 
open G-cover ~ of  M, there is an e G-homotopy from f to a G-Z-embeddings f '  : A ~ M 

so that f 'lA' ---- fl~'-  
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(A.7) (G-Z-set  Unkno t t ing  Theorem)  ([46] Theo rem 4.3, [-50]). Let M be a QG- 
manifold and let A be a G-ANR. Then any two properly G-homotopic G-Z-embeddings 
of A in M are ambiently G-isotopic. 

Note: If the G - h o m o t o p y  between the two G-Z-embeddings  in (A.5) is c~-homo- 
topy,  then the ambient  i so topy can be chosen to be c~-isotopy ([14], Theo rem 19.4). 

We start  with an equivar iant  engulfing result for Q~-manifolds. 

Notation: (i) If  a: A ~ B x R is a cont inuous  m a p  between topological  spaces, K is 

a subset of  A, and C is a subset of R, write Kc for Kc~a- I (B  x C). 
(ii) In what  follows, M is a Qa-manifold and X is a compac t  G-ANR and the 

group  G acts trivially on R or on S 1. 

L E M M A  A.9. Let f :  M ~ X x R be a proper G-homotopy equivalence. Then, there is 
a G-isotopy, h,: M ~ M, with compact support, from the identity on M such that 

h l f - ~ ( X  x ( - o % 0 ) )  ~ f - l ( X  x ( - o %  1]). 

Proof. Using the note  following (A.4), the project ion m a p  pr:  M x I "  ~ M  is a 

near  G-homeomorph i sm,  i.e. there is a G - h o m e o m o r p h i s m  k: M x I " ~  M which is 

close to the projection,  which induces a proper  G - h o m o t o p y  equivalence f ' =  

f k :  M x I"--* X x R. Let  d be a G - h o m o t o p y  inverse o f f ' ,  fit: M x I "  ~ M  x I "  be 
a p roper  G - h o m o t o p y  from the identity on M x I "  to df', and dt:X x R ~ X  x R 
be a p roper  G - h o m o t o p y  f rom the identity on X x R to f 'd.  Fix a number  

a a R ,  such that  M x I~-o~,a)~f't((M x I"){1.s}) and X x ( - o o ,  a ) ~  dt(X x {1.5}), 

for all 0 E t E 1. Not ice  that  the main  diagonal  (L) in I",  consisting of the points  
whose coordinates  are all equal, is fixed pointwise under  the act ion of G. Let A = 

(1, 1,. . . ,  1) e (L), and B = ( -  1, - 1 . . . . .  - 1) �9 (L). 
The first step of the p roof  is to construct  a G-isotopy, ut: M x I "  ~ M x I n, with 

compac t  support ,  f rom the identity on M x I n, such that  

ul((M x In)(_~,o)) = (M x {A})(-o~,a+l] (1) 

To  construct  ut we apply  the G-Z-set  unknot t ing  theorem as follows: 
(i) The  inclusion m a p  i: M x {A} ---, M x I n is a G-Z-embedding.  

(ii) Choose  a G - h o m o t o p y  qt:X x R ~ X  x R from the identity on X x R, with 

compac t  support ,  such that  X x ( -  o% 0) = ql(X x ( -  o% a + 1]). Define a G-map  

t: M x {A} ~ M  x [0, 1] as the compos i t ion  dq1(f'lM• Then, there is a G-homo-  
topy  with compac t  suppor t  f rom the inclusion m a p  to 1 and M x I~'-~,o) = 
z((M x {A})(-~.,+I]). The m a p  t can be approx ima ted  by a G-Z-embedding  

i': M x {A} ~ M  x I n. Then, i' is still G-homotop ic  to i and it can be chosen to 
satisfy (M x I")(-~,o) ~ i'(M x {A})~-oo,~+l]). 

Two  G-homotop ic  G-Z-embeddings  have been constructed f rom M x {A} to 
M x I n. By the G-Z-unkno t t ing  theorem, there is a G-isotopy Ft: M x I n ~ M x I n 

f rom the identity on M x I n, such that  F~i = i'. In  part icular  

(M x In)(_oo,O) ~ FI((M • {A})(-oo,a+l]). 
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Also, there are real numbers  b and c so that  the i so topy Ft can be chosen with 
compac t  suppor t  in (M x I")[b, d. 

Set ut = F; - i .  This completes  the first construct ion.  

The  second step is the cons t ruc t ion  of a G-isotopy,  vt: M x I"  -~ M x I", with 
compac t  suppor t  in (M x I")(-o~,a], f rom the identi ty on M x I", such that  

v~-l((M x I")(i, +00)) = (M x {B})tb ' +~). (2) 

This i so topy is const ructed as in the first step. The  iso topy vt can be chosen to have 

c om pac t  suppor t  in (M • I")(-~o,a]. By continuity,  there is a G-ne ighborhood  U of 
M • {B} in M x I"  such that  

v ; l ( ( M  x I")(1, +~o)) = U[b. +co) (3) 

The third step is the const ruct ion of a G-isotopy wt: M x I " ~ M  x I" with 
compac t  suppor t  f rom the identity on M x I"  such that  

U(b, +~) w (M x I")(.+ l, +~)) m wiu i ( (M x I")to, +0o)). (4) 

The  cons t ruc t ion  of wt will complete  the p roo f  of the theorem because h~ = vtwtut is 
a G-isotopy f rom the identity on M x I"  with compac t  suppor t  and  

hi((M x I')(-o~,o)) = v i ( m  - (U(b, +00) U (M x I")(a+ l. +~o))) 

= vi((M x I" ) ( -~ ,a+i l  -- U~b,+o~)) = vl((M • I")(-~o,~+i]) - -  v i ( U ( b ,  + ~ ) ) .  

Since vt has suppor t  in (M • I")(_~,.], 

vl((M x I" ) ( -~ , .+ l ] )  = m x I~-~ , .+ l ]  and ( m  x I")(1,+o~) = vl(U(b,+~)) 

by (3). Then  

h l ( (m • I")(-~o,0)) = (M x I " ) (_~ , .+q  - (M • I")(i. +oo) = ( m  • I")(-oo,q. 

Now,  we give the cons t ruc t ion  of wt. There  is a real number  a '  such that  

(M x I")(-oo,.,) ~ u i (M x I~o)). 

Choose  a G-isotopy 

at: (M x I")t- i ,~ ']  ~ ( M  x / " ) t - l , . ' ]  

f rom the identi ty on (M x I " ) t -  1,.'] such tha t  U c~ (M x I~-l,a']) ~ a l (M x I")[_l,..]). 
This i so topy can be const ructed by moving  A on (L) towards  B, and moving  the sides 
of I", which intersect in A, parallel  towards  the sides of I "  which intersect in B. In  this 
way, I "  is i so toped to the sets 

I"(s) = {(xl, x2 .. . .  , Xn) E R"/--  1 <~ xi <~ s}, for all s ~ ( -  1, 1]. 

Define wt to be the extension of at to M x 15 such that  w, is the identity in the 
complemen t  of (M x I")t_2,a,+ ~]. Then, wt has compac t  suppor t  and satisfies (4). 

Let  M be as in L e m m a  A.9. Then  M has two ends e ( + )  and e ( - )  cor responding to 
the two ends of R. 
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L E M M A  A.10. There is a G-neighborhood U+ of e( + ) and a G-isotopy of open 
embeddings h+ : U+ ~ M such that 

(i) h~d is the inclusion, 
(ii) h+t fixes pointwise a smaller neighborhood of e( + ), 

(iii) h~ = h+ is a G-homeomorphism. 

Proof. The proof  of this lemma is essentially in [9], L emma  2.7. Set ao = 0, 
al  = - 1. Let  h~ : M ~ M be a G-isotopy, with compact  support ,  constructed as in 
Lemma  A.1 such that  h l f - l ( X  x ( - o o ,  - 1 ) )  ~ f - ~ ( X  x ( -  oo,0]). Let  ab be a real 
positive number  such that  M(,a, +~) contains the support  of h~. Using Lemma A.9, we 
can construct  two sequences of real numbers,  {a~} {~0 and " '~ +oo = /ai) i= o, such that  

(i) ao, al ,  ab are as above. 
(ii) Fo r  each i ~> 1 there is a G-isotopy, h~: M ~ M, from the identity on M with 

compact  support  in M(-o~,a~ ,) such that  hi(M( . . . . .  +~)) ~ Mtai, +oo). 

Set 

Pi = M(,~, +ool, Ai = Mr,,,, ,_ 11, Wi = M[ai_ ~, +~o) for i /> 1. 

Define also a sequence of G-subsets of M as follows 

Vo = M(o~, +~) ,  

Vi= Vi-1 uth~hi-l~ 1 1 ...h~)-l(Pi) for i~> 1. 

C L A I M  1. Vi ~ W1 for all i >~ 1. 
Proof. The proof  is by induct ion on i: Fo r  i = O, the claim is obvious from the 

definition. Assume the claim is true for i - 1. Notice that  

i i - - i  1 hlhi . . . h l ( W i ) ~  Wi ~J A 1 u  Ai ~ Wiu  Ai ~ Pi. 

This proves that  Vi ~ I411. 
Set U+ = ~Jl V, and define a G-isotopy ht + : U+ -~ M as follows 

hk(k+l)t-(k+l)(k-1)hk-1...h~(x) f o r t E [ k  k - k + l l  

ht +(x) = and k ~> 1, 

h~ ..h~(x) for t = 1. 
k "-+ " t - ~  " 

C L A I M  2. h + is well-defined. 
Proof. Notice that  if j > i, the restriction of h{ to P~ is the identity. This implies 

that  

h~... hl(V,) = Vo u Pi  u . . .  uP1 

and so the restriction of hi to h~... h~(Vi) is the identity for j > i. Therefore,  if 

te.i+l[_ j and xeVi ,  
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then ht(x)  = hl ...hi(x). This completes the proof of the claim. 

The isotopy ht + satisfies Lemma A.10 because 

(i) h~ is the inclusion map, 
(ii) h~ fixes M(-~o,,~), 

(iii) hi- is an injection and the image of h~ is M. So h~ is a G-homeomorphism. 

This completes the proof of Lemma A.10. 

There is nothing special about e(+). The same proof applies for e ( - ) .  

COROLLARY A.11. There is a G-neighborhood U_ of e ( - )  and a G-isotopy 
h-~ : U_ ~ M such that 

(i) ho is the inclusion, 
(ii) h2 fixes pointwise a smaller neighborhood of e ( - ) ,  

(iii) h ~ = h_ is a G-homeomorphism. 

Remark. The proof of Lemma A.10 really proves that there are arbitrarily small 
G-neighborhoods of e(+) with the property satisfied by U+ in Lemma A.10. This can 
be done by choosing ao, al large enough. 

The above remark suggests that we can apply an equivariant version of the twist 
gluing construction given in [44]. We can combine Siebenmann's approach with the 
ideas in Chapman's wrapping up to construct a G-homotopy equivalence f ' :  M' -~ 
X x S 1, where M'  is a compact Q~-manifold. The lifting of f '  to the infinite cyclic 
cover induced by the cover X x R i d x e  X x S 1, where e is the universal cover of 
S 1 will be essentially f .  

CONSTRUCTION. The input for the construction is a proper G-homotopy equiv- 
alence f :  M --* X x R, where M is a QG-manifold and X is a compact G-ANR. Then 
M has two ends, e(_), corresponding to the two ends of R. Using Lemma A.10 
and Corollary A.11, we can find G-neighborhoods U+ of e(_+) and G-isotopies 
h+: [7+ ~ M  which fixes smaller G-neighborhoods of e(_+), respectively, from the 
inclusion maps to G-homeomorphisms h+:U+--* M. From the remark following 
Corollary A.11, we can assume that U+nU_ = �9 Define M ( h + , h _ ) = M / ~ ,  
where ,-~ is the relation generated by x ~ h~ lh_(x) for x e U_. Write q: M --* M(h+, h_) 
for the quotient map. 

The next step in the construction is the definition of a G-map, f(h+, h_): M(h+, 
h_) ~ X  x S 1. Choose a number a ~ R such that M(-oo,al is fixed pointwise by h~-. 

LEMMA A.12. There is a G-isotopy through G-homeomorphisms ht: M ~ M  such 
that 

(i) ho = idM, 
(ii) ht has compact support, 

(iii) hdh+ ~(Mt, ' +~)) = h + [h+ l(Mt~ ' +co)). 
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Proof. We use the nota t ion of Lemma A.10. Notice that  there is an integer m ~> 1 

such that  h~_ i(Mra" +0o)) c V,,. Following the proof  of Lemma A.10, we define 

k k -1  i k - 1  k 
h k ( k + l ) t - ( k + l ) ( k - 1 ) h l  . . .hi(x) for t � 9  ~- k +  1-] and k<~m, 

ht(x) = 
m 

hT...hl(x) for t ~> m + 1 

It follows from the construct ion of h + that  

h, lv,. = h+]vm. 

So ht[h~ 1 M 1 M ( t., +~o)) = h+t[h; ( ~., +~o)), and ht satisfies the requirements o f L e m m a  A.3. 

Choose a number  b �9 R such that  M(-oo,b) c hi-i(M(-~,.l). Let  Y = h~-i(M(_o~,.l) - 
M(-~o,~). Define a G-map q~(h+,h_): Y ~ X  x [a,b] as follows 

(i) If PR: X x R ~ R is the projection define 

p.c~(h+, h-)l = f l :  ME.,bl ~ [a, b] and pR~b(h+, h_)(Y-ME.,bl)  = b. 

(ii) Let  Px: X x R - + X  is the projection to X. Define a G-homotopy  

at: hi-i(M(a}) ~ (M~}) ~ X, ~, = P x f  on M(,} and at = pxfh,  on h[i(M(,}). 

Notice that  ao = Pxf. Using the H o m o t o p y  Extension Theorem ([28]), we can 
extend ~t to a G-homotopy  et: Y ~ X. Define pxO(h+, h_) = ea. 

Notice that  c~(h+,h_)=f  on M(,} and pxc~(h+,h- )=pxfh l  on hi-l(M{~}). In 
particular, 

pxO(h+, h_)(x) = pxc~(h+, h_)(hl l(x)). 

Extend 4(h+, h_) to a G-map @(h+, h_): M ~ X  x [a, b] as follows: 

If x �9 M(-oo,,), then hyth_(x)  = h ; l (x )  �9 Y. Define 

@(h+, h_ )(x) = (~(h+, h_ )(h ~_ ~ h_(x) ). 

If x �9 h+ l (M(a ' +c~)) then h-  lh+(x) �9 h--_ l(M(.. +co)) c U_ - -  M(-oo,a) c E Define 

@(h+, h_)(x) -- q~(h+, h_)(hZ lh+(x)). 

This is a well defined G-map 
([a, b] /~)  where ~ is generated 

f(h+,h_): M(h+,h_) --* X x 

and induces a G-map f(h+, h_): M(h+, h_) ~ X x 
by a -~ b. So we have constructed a G-map 

S i . 

We can construct  f (h+,h_) to be the restriction of f in Mta . .  ) - M ( . ,  o~), where 
M(,,, 0o) ~ cl(U+). 

Remark. Following T. A. Chapman,  we define M ' =  Y/~  where x ~ hi-l(x) for 
x �9 M{a}. Then, the restriction of @(h+, h_) to Y induces a G-map f ' :  M'--* X x S 1. 
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CLAIM. There is a G-homeomorphism k: M '  ---, M(h+, h_) such that f '  = kf(h+, h_). 
Proof. The map k: M '  ~ M(h+, h_) given by k(x) = x for all x ~ Y is a G-homeo- 

morphism ([9] Theorem 3.3). By definition, f '  = kf(h+, h_). 

LEMMA A.13. The G-space M(h+, h_) is a compact Q~-manifold. 
Proof. Since M is a Qa-manifold by [44], Proposition 5.5, M(h§ h_) is a metric 

space. Since M w ( e ( + ) , e ( - ) }  is compact, the above proposition asserts that 
M(h+, h_) is compact. Notice that in [25], Assertion 5, it is proved that for each 
x e M'  there are G-neighborhoods N' of x in M'  and N of M that are G-homeo- 
morphic. In particular, this proves that M' is a QG-manifold. Using the Claim above, 
we can see that M(h+, h_) is also a Q~-manifold. 

LEMMA A.14. The map f(h+, h_): M(h+, h_) ~ X x S 1 is a G-homotopy equivalence. 
Pro@ The proof of [15], Lemma 4.1, generalizes to the equivariant setting and it 

gives that f ' :  M' --* X x S 1 is a G-homotopy equivalence. 

Remarks. (i) In [13], chapter 7, it is proved that (M', f ' )  does not depend on the 
G-isotopy ht chosen above in the sense that if h't is an other G-isotopy as in Lemma 
A.3 and (M", f ' )  is constructed using h't, then there is a G-homeomorphism K: M' ---, 
M" such that K f "  "~Gf'. 

(ii) The same proof gives that the construction is independent of a, b, and the 
proper G-homotopy class of f .  

(iii) Also, in [44], Theorem 5.2, it is proved that the above construction is 
independent of the G-neighborhoods U+ and the G-isomorphisms h e. 

(iv) If there is a G-CE map from a Q~-manifold N, c: N ~ M, then by A.2, c can be 
approximated by a G-homeomorphism. If we apply the above construction to the 
composition fc: N ~ X x R, we get a compact QG-manifold N' and a G-homotopy 
equivalence f ' :  N'  ~ X x S 1. Then, by (iii), there is a G-homeomorphism L: N' ~ M'  

such that L f '  ~-~ f ' .  
(v) In [13], chapter 7, it is proved that (M ' , f ' )  is invariant under the transfers 

induced by the finite covers of S 1. 

There is a natural infinite cyclic cover of M(h+,h_). Following [9], theorem 
3.4, and [44], w we define M(h+, h_) = M x Z/,,~, where (x, k) ~ (h- lh+(x) k + 1). 
Write ~: U+ x Z ~ U_ x Z for the G-map z(x, k) = (hSlh+(x), k + 1). Using this, we 
define a G-map t: M x Z ~ M  x Z by t = (h_ x 1)z(h+ 1 x 1). The map t induces a 
G-homeomorphism T: _M(h+, h_) ~ ]~(h+, h_). The map T is given by T(x, k) = 
(x, k + 1). Write 0: M x Z ~ _~r(h+, h_). There is a natural map i: M ~ M(h+, h_) 
given by i (x)= (x, 0) for all x EM. Now we compare M with .~r(h+, h_) ([44] 
Proposition 7.8). For this we need the following Lemma. 

LEMMA A.15. Let A c U_ be a closed subset of Y. Then there is a G-isotopy 
ft: U_ -~ M from the inclusion map to a G-homeomorphism through G-embeddings such 
that f~ fixes A pointwise. 
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Proof. In Corollary A.11, we constructed a G-isotopy h~-: U_ ~ M  from the 
inclusion map to a G-homeomorphism which fixes a G-neighborhood U' of e(- ) .  
Since A is dosed in Y, there is a G-neighborhood U" of the positive end of U_ such 
that A c (U")c. By applying Lemma A.10 to U_, we construct a G-isotopy qS~: U_ --* 
U_ from the identity with compact support in U_ such that ~bl(U") u U' = U_. Then 
q~l(A) c U'. Extend ~bt to a G-isotopy ~t: M ~ M by the identity outside U_. Define 
ft  = @i- 1hi- lq51. Then, fo is the inclusion map, f~ fixes A pointwise because ht~)l(a) = 
q51(a ) for all a e A and f l  is a G-homeomorphism. 

Define M§ = M x N / ~  where ~ is the restriction of the relation we used 
to define M(h§ Similarly, define M_ = M  x Z_/,,~, where Z_ is the set 
of the nonpositive integers. Also, we write Mo for i ( M ) c  ~l(h§ and 
Un = O(M x {n})c~0(M x {n + 1}) c M(h+,h_). 

PROPOSITION A.16. Let A c Mo be closed in M+. Then there is a G-isotopy 
through G-embeddings ~ "  Mo --* M+ to a G-homeomorphism fixing A pointwise. 

Proof. This is given in 1-44], Proposition 7.8. We give the proof for M§ Consider 
a sequence A = A1 c A2 c A3 c . . .  of closed subsets of M§ each contained in 
Mo such that u , ( In t (A,) )= Mo. We construct ~bt + inductively. Set qSt 1 = i. Sup- 
pose that inductively we constructed a G-isotopy ~ :  Mo ~ O(M x {0}) u O(M x 
{1}) u . . .  u O(M x {n}) of the map i, through G-embeddings fixing A, such that qS~ is 
a G-homeomorphism. Notice that there is a G-homeomorphism of M to 
O(M x {n + 1}) mapping U_ to U,. Then, we can apply Lemma A.15 to find a 
G-isotopy ft: U, ~ O(M x {n + 1}), from the inclusion map to a G-homeomorphism, 
through G-embeddings such that fr fixes a neighborhood of the negative end of U~ 
containing U,c~(ut~i4~(An)). Then, ft extends as the identity outside U. to a 
G-isotopy 

f;: O(M x {0})u0(M x { 1 } ) u . . . u  O(M x {n}) 

O(M • {0}) O(M • {1}) u O(M • {n + 1}). 

Define 49f +1 by f't4)7. This completes the construction of the maps qS~, qS~, ~bt3,.... 
Define ~b~ + ]I~t(a~) --- ~bTllm~a,~. This extends to a G-isotopy on M which fixes A. 

COROLLARY A.17. Let B c Mo be closed in M(h+, h_). Then there is a G-isotopy 
through G-embeddings r Mo--* M(h+, h_) to a G-homeomorphism fixing B point- 
wise. 

In particular, this means that (M, f )  is an infinite cyclic cover of (M(h+,h_), 
f(h+, h_)) ([9], Theorem 3.4). 

Let X be a locally compact G-ANR. In [46], an alternative definition of the 
equivalence relation in Wh~~ is given: Let Y and Y' be locally compact G-ANR's 
and X is proper strong G-deformation retraction of Y and Y'. Then (Y, X)  ,,. (Y', X)  
if there is a G-homeomorphism Y x QG ~- Y' x QG which commutes up to proper 
G-homotopy with the natural inclusions of X. In 1-46], it is proved that the relation 
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generated by G-CE maps and the above relation produce the same group. Using 
Theorem A.1, we can assume that any element of Wh~~ can be represented by a 
Qa-manifold. 

In what follows, we use the notation from Section 7. Let X be a compact G-ANR. 
Let j" :  Wh~~ x R) ~ Wh~~ x S 1) be defined as follows: I fx  ~ Wh~~ x R) 
is represented by a proper strong G-deformation retraction, f :  M ~ X x R, where M 
is a QG-manifold. Define j " ( x ) = ( M ' , X  x S t ) .  By the remark above, this is a 
well-defined map. Also j " ( x )  is a transfer invariant element of W h T ~  • $1), and 
trj"(x) = x. From the definition of i'c: KP-hG(X)c--* gPo~(X x S1)c, we can prove that 
i'cV'(X) = v ' j " (x ) :  notice, first of all, that 

s j ' : ' ( x )  = v'(x) and s : ' 7 " ( x )  = v' trj"(x)  = v'(x) 

and so 

s j ' : ' ( x )  = ScV'j"(x) ~ i ' S (x )  - v'~i"(x) ~ Ker(s~) = Ira(it) 

~PL and there is b ~ KoG(X)~ such that i'cv'(x) - v '7"(x ) = it(b). But i ' : ' (x)  - v '7"(x  ) is a 
transfer invariant element o f / ~ ( X  x S 1)c and so i~(b) is a transfer invariant element 
o f / ~ ( X  x S1)c. But the only transfer invariant dement of ~PL K o G ( X  x $1)~ which in 
Im(i~) is the zero element. So, 

i ' c v ' ( x )  - v ' 7 " ( x )  = 0 ~ i ' : ' ( x )  = v ' 7 " ( x ) .  

Following the definition of j '  in Section 7, we see that j ' (x)  = j"(x) .  
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