Some Product Formulae for Nonsimply Connected Surgery Problems

R. J. Milgram, Andrew Ranicki

Transactions of the American Mathematical Society, Volume 297, Issue 2 (Oct., 1986),
383-413.

Your use of the JISTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.ac.uk/about/terms.html, by contacting
JSTOR at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX)

(734)998-9113. No part of a JSTOR transmission may be copied, downloaded, stored, further transmitted,
transferred, distributed, altered, or otherwise used, in any form or by any means, except: (1) one stored

electronic and one paper copy of any article solely for your personal, non-commercial use, or (2) with prior written
permission of JSTOR and the publisher of the article or other text.

Each copy of any part of a JISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Transactions of the American Mathematical Society is published by American Mathematical Society. Please
contact the publisher for further permissions regarding the use of this work. Publisher contact information may be
obtained at http://www jstor.ac.uk/journals/ams.html.

Transactions of the American Mathematical Society
©1986 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2000 JSTOR

http://www _jstor.ac.uk/
Wed Nov 1 07:45:07 2000



TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 297, Number 2, October 1986

SOME PRODUCT FORMULAE FOR NONSIMPLY
CONNECTED SURGERY PROBLEMS

R. J. MILGRAM AND ANDREW RANICKI

ABSTRACT. For an n-dimensional normal map f: M" — N" with finite fundamental
group m(N)== and PL 1 torsion kernel Z[x]-modules K,(M) the surgery
obstruction o,(f) € L"(Z[n]) is expressed in terms of the projective classes
[Ko( M) € kO(Z[ﬂ]), assuming K, (M) = 0 if n = 2i. This expression is used to
evaluate in certain cases the surgery obstruction o,(g) € L! . ,(Z[m X 7)) of the
(m + n)-dimensional normal map g=1Xf: M; X M - M, X N defined by
product with an m-dimensional manifold M,, where m = m(M,).

A key problem in surgery theory is to understand how to calculate the surgery
obstructions for surgery problems

(+) f: M N
where f is a degree 1 normal map and M", N" are closed n-dimensional manifolds.
C. T. C. Wall [20] has pointed out that the problem (*) determines an element

a(f) € Qn(Bvrl(N) X G/TOP, B, (yy X {Pt-})
and there is a map
e: Qy(B, (v, X G/TOP, B, () X {pt.}) = Ly(m(N))

so that the surgery obstruction o,( f) is e(a(f)).

Wall also pointed out that if «;(N) is finite, then a( f) is already determined by
restriction to the 2-Sylow subgroup of =, and the groups L,(w) have been
extensively studied when 7 is a finite 2-group. (See e.g. Pardon [12], Carlsson-
Milgram [3, 5], Hambleton-Milgram [9], Wall [21] and Bak-Kolster [1].) Indeed the
projective L-groups Lj() are completely known, and the groups Lf(7) and Li(7)
are effectively computable in tems of certain additional facts about K,(Z[#]) and
Wh(m).

So further progress depends on studying the map e. For the projective L groups
L{(7) with 7 a finite 2-group, this was done by L. Taylor-B. Williams [18] and
independently by I. Hambleton [8]. But for the more basic case of Lf(7) our
information is much more limited. There are some key examples (Cappell-Shaneson
[2], Taylor-Williams [18]) which show that this problem is much harder, but general
information is hard to come by.
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384 R.J. MILGRAM AND ANDREW RANICKI

In this note we initiate an attack on this problem from a different direction, that
of product formulae for surgery obstructions.

Under certain circumstances we demonstrate the existence of ““semicharacteristic
classes” and relate the surgery obstructions of surgery problems of the form
(%) dXf: M XM->M XN
with m(M;) =m and m(N)= o to a certain product x;,(M,)- tr(cx(f)) in
L%(m X m), or when appropriate simplifying conditions are not present, to a
formula only slightly more complicated (Theorems 3.3 and 3.4).

These results are applied in §4 to give a direct proof of the Morgan-Pardon,
Taylor-Williams result for the group 7 = Z/2 X Z /4, which is the simplest case in
which a surgery obstruction occurs which is trivial in L{(#) but not in L%(7), and
provide the main intuitions for the key step in [10], where ideas of Clauwens [6] are
used to completely classify surgery obstructions for closed manifolds with finite
fundamental group crossed with the Kervaire problem.

We thank Ian Hambleton for a careful reading of a preliminary version and some
valuable comments.

1. Evaluating the surgery obstruction. In this section we study the question of when
the surgery obstruction o,(f) € L,(Z[7]) of an n-dimensional normal map f:
M — N with 7 (N) = = is determined only by the kernel Z[«]-modules

Ko(M) = ker(fy: Hy(M) - Hy(N)).

ExaMpLE 1.0. If K, (M) = 0, then f is normal bordant to a homotopy equivalence
and o,(f) =0 € L' Z[#]). (If also (M) = m(N)=m, then f is a homotopy
equivalence). O

Our main tool will be the Rothenberg exact sequence of Ranicki [13] relating the
free L-groups L%(Z[7]) to the projective L-groups Lf(Z[7]) and the projective
class group Ky(Z[7))

(11) - = B,(2y, Ro(Z[7])) > LA(Z[7]) » L2 (Z[ )

- I:In—l(zz’ IZO(Z[W])) o
ExaMpLE 1.2. If the kernel modules K,(M) are f.g. projective, with K;,(M) =0
when n = 2i, then

ox(f) = 8( )» (—)’[K,(M)]) € im(3: A,(Z,, Ko(Z[7])) - L (Z[7])).

j<n/2
(See Corollary 2.3 for a proof.) 0O
We shall obtain an analogous result for normal maps f: M" - N" of closed
oriented manifolds with finite fundamental group m;(N) = m, such that the kernel
modules K,(M) are torsion of projective length 1. In Theorems 1.11 and 1.14 we
shall prove that the surgery obstruction of such a normal map with simply-connected
Kervaire invariant 0 if » = 4k + 2 and K,(M) = 0if n = 2i + 1 is given by

o(f) =8 L (=)x(K,(M))|€im(3: A,(Z,, Ko(Z[7])) > L}(Z[7]))
j<n/2
with x(K;(M)) € Ko(Z[)) the projective characteristic.
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We shall be making extensive use of the commutative braid of exact sequences

(1.3)

Ly (Q[7]) - LIS(zZ[7])) - B, (2, Ke(Z[)))
N 7 N 7
Ly5(Z[]) L(Z[7])
b \ 2 \
A,(Z,. Ko(Z[7])) - L,(z[=]) - Ly(Q[7])

incorporating (1.1) and the localization exact sequences of Pardon [11], Ranicki [16],
Carlsson-Milgram [4]

= L(Z[7]) = L2(Z[7]) - Ly(Ql7]) » Ly (Z[7]) > -
- = Lyg(2[7]) » Ly(Z[7]) - Ly(Q[7]) - Ly (Z[7]) > -

as well as the analogue of (1.1) for the torsion L-groups

c > B,(Z,, Ro(Z[ 7)) S Lh(Z[ 7)) - Lris(Z][ )

>

- H,_(Z,,Ko(Z[7])) > -
The inclusion Z[7] - Q[=] induces maps L{(Z[n]) —» LE(Q[7]) from the projec-
tive L-groups of Z[x] to the free L-groups of Q[w], since for every f.g. projective

Z[w]-module P the induced Q[7]-module Q ®, P is f.g. free, by the theorem of
Swan.

The action of Z, on K o(Z[x]) is by the duality involution
*: Ko(Z[n]) - Ko(Z[7]); [P] = [P*],
using the involution on Z[ 7]
= Z[n] > Z[n)ia= Y ng—oa= Y ngt

ge™ ge™
to define a left Z[«]-action on the dual f.g. projective Z[#]-module
P* = Homy,,(P, Z[7])
of a f.g. projective left Z[#]-module P by
Z[7] X P* > P*;(a,¢) = (x = ¢(x)a).

Thus the homology Z,-groups appearing in (1.1) and (1.3) are given (as usual) by
{[P] € Ko(Z[=])|[P*] +(-)"[P] =0}

{le1-(=)"[e*]ile) € Ko(2z[7])}

The even-dimensional L-group L{,(Z[]) (resp. L%, (Z[=])) is the Witt group of
nonsingular ( —)’-quadratic forms
(K. A K x K > Z[7], p: K > Q,i(Z[7]) = Z[n]/{a -(-)'dla e z[=]})

on f.g. projective (resp. free) Z[=]-modules K. Nonsingular means that the adjoint
of A is a Z[w]-module isomorphism

AN K5 K*; x - (y = A(x, »)).

I:I,,(Zz, Ko(z[ﬂ'])) =
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Given a f.g. projective Z[7]-module L, there is defined a hyperbolic nonsingular
(—)’-quadratic form with lagrangian (= subkernel) L

H_i(L)=(L®L* \: Lo L* > Z[=]; ((x,9), (»,6))

= ¢(») +(=)"6(x), p: Lo L* > 0,i(Z[7]);(x,9) — ¢(x))

such that H _,i(L)=0¢€ L} (Z[x]) (resp.=0 € L% (Z[n]) if L is free). For
n = 2i the map 9 in (1.1) is given by

0: Hy(2,, Ko(Z[7])) = L3(Z[7]); [L] - H(i(L).

REMARK 1.4. An element x € L4(Z[7]) is the image 9(y) of the element
y € Hz,(Zz, KO(Z[W])) if and only if x is represented by a (—)-quadratic form
(K,\,p) on a fg. free Z[w]-module K which admits a f.g. projective lagrangian
L C K such that

[L]=y € A,(Z,,Ko(2Z[7])). O
The odd-dimensional L-group Lj ,,(Z[7]) (resp. L%, . ,(Z[7]) is the Witt group
of (—)'-quadratic formations (K, A, n; F,G), with (K, A, n) a nonsingular (—)*-
quadratic form and F, G projective (resp. free) lagrangians. For n = 2i + 1 the map
0 in 1.2 is given by

: Hy,.1(Z5, Ro(Z[)) = Ly n(Z[7));
[P]- (H<—)i(P ®—-P),P® —~P,P €B(—P)*)

with P, — P f.g. projective Z[#]-modules such that P @ (—P) and P ® (—P)* are
f.g. free Z[«]-modules.

A Z[w]-module M is said to have projective length 1 (PL 1 for short) if it admits a
f.g. projective Z[w]-module resolution 0 —» P, —» P, > M — 0. We shall be prim-
arily concerned with PL 1 torsion Z[#]-modules M, assuming throughout that « is
a finite group.

REMARK 1.5. If M is a f.g. torsion Z[w]-module such that (|M|, |7]) = 1, then M
is PL 1. (See e.g. Carlsson-Milgram [3].) O

A Z[w]-module M is said to have free length 1 (FPL 1 for short) if it admits a f.g.
free Z[w]-module resolution 0 - F, - F, > M - 0. A PL 1 module M has a
projective characteristic

x(M) = [P] —[P,] € Ko(Z[7]).
such that M is FPL 1 if and only if x(M) = 0.
The torsion L-groups L{"(Z[n]) (resp. L4 (Z[n])) are the Witt groups of +
quadratic structures on PL 1 (resp. FPL 1) torsion Z[#]-modules.

The torsion dual of a PL 1 torsion Z[w]-module M is the PL 1 torsion
Z[m]-module defined by

M"= HomZ[w](M,Q[’”]/Z['”])»
with |
Z[r] xM"> M*; (a,¢) - (x = ¢(x)a).
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The dual of a f.g. projective resolution of M
0P 5P SM—0
is the f.g. projective resolution of M "
0 Pr S PrSiMA0,
with

e’ Pfk—’MA;qb—’(e(x)—»—H(—syl)

(xe Py, yeP,s€Z—{0},sx=dy €P,).
The projective characteristic of the torsion dual is thus given by
x(M*) = [Pl*] - [Po*] = —x(M)* € Ky(Z[7]).

The even-dimensional torsion L-group Lf(Z[w]) (resp. L4 (Z[w])) is the

Witt group of nonsingular (—)'-quadratic linking forms
(K,A: KX K > Q[]/Z[7], p: K > 0i(Q[7]/Z[x]))
on PL 1 (resp. FPL 1) torsion Z[«]-modules K. Nonsingular means that the adjoint
of A defines a Z[#]-module isomorphism
AN KS K™ x> (y = Ax, p)).

In order to describe the map
9" ﬁ2i—1(227 Ko(Z[7])) - Ly (z[n])
appearing in (1.3), note first that for any f.g. projective Z [7]-module P there exists a
PL 1 torsion Z[w]-module L such that
x(L) = [P] € Ko(Z[7]),

since Q ®, P is a f.g. free Q[7]-module by Swan’s theorem, so that there exists an
integral lattice Z[#]™ c P and L = P/Z[7]™ will do. Now for any PL 1 torsion
Z[7]-module L there is defined a hyperbolic (—)-quadratic linking form with

lagrangian L
H“"i(L).= rerra=| %, ! =(0 1)
(-) ’ (_)I 0 )’J‘ 0 0

exactly as the hyperbolic form H _,i(P) = (P & P*, A, p) but with the torsion dual
L" in place of the projective dual P*, such that H%)i(L) = 0 € LE""(Z[7]) (resp.
H*i(L) = 0 € L5 (Z[=])) if L is FPL 1). The map 0'r is given by

99 iy, (2, Ro(Z[))) = Ly (2Z[x]); [P] > HE(L),
with L any PL 1 torsion Z[w]-module such that x(L)=[P]€ Ko(Z[7]). The
torsion analogue of Remark 1.4 holds:

REMARK 1.6. An element x € L4 (Z[n]) is the image 3''(y) of y €
H,,_.(Z,, Ko(Z[7))) if and only if x is represented by a (—)"-quadratic linking
form (K, A, p) on an FPL 1 torsion Z[n]-module K which admits a PL 1 torsior
lagrangian L C K such that

X(L) =y € H,_,(Z, Ky(z[])). O
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The odd-dimensional torsion L-group LZ‘°I(Z[7]) (resp. L% (Z[x])) is essen-
tially the Witt group of nonsingular (—)-quadratic linking formations (K, A, u;
F,G), with F, G PL 1 (resp. FPL 1) torsion lagrangians of the (—)’-quadratic linking
form (K, A, p), together with some extra structure needed to capture the Kervaire
invariant in L,(Z)—the precise definition need not detain us here.

Explicit calculations for the groups and the sequences in (1.3) are made in
Carlsson-Milgram [S] and Hambleton-Milgram [9]. Indeed, from [5] we have

LEMMA 1.7. For any finite 2-group m
LY (zn) = (2/2) . LY™(Zn) = Ly™"(2ym) = (2/2)°
where c, d are explicit functions of the rational group ring Qm. O

A nontrivial element in LY"?(Zw) is sent by d to the nontrivial Z/2 in
LJ(Z)= L% Z) = Z/2. Recall that the Z/2 in L%(Z) is the Kervaire invariant, and
that the identification of the set of degree-one normal maps f: M” — N” with the
set of homotopy classes of maps [N,G/CAT] allows one to get an explicit formula
for the Kerviare obstruction. Indeed, from the work of Rourke and Sullivan [17],
(see in particular Wall [20]), we have that there exists classes k,,, €
H**2(G/CAT, Z/2) so that

(1) alf) = < VY £ (k) [M1> <z,
1=0
where a,( f) is the Kervaire invariant of the surgery problem induced by the map f:
M — G/CAT. (Here, V is the total Wu class of M.)
A. Surgery below the middle dimension.

PROPOSITION 1.9. Let f: M" = N" be a normal map of closed n-dimensional
manifolds with m,(N) = = finite, such that the kernel Z|w]-modules K,(M) are PL 1
torsion. For each j < n/2, f is normal bordant to a (j — 1)-connected normal map
f: MY - N with kernel modules

0 ifr<jorr>n-—j,
. P ®K,(M) ifr=j,
K(MP) =1 g (m) ifj<r<n-—j
P ifr=n—J,

where P, is a f.g. projective Z[m]-module such that

(7] = (=) £ (-x(k.0))) & Ro(ZL7]).

r<j

PrOOF. We shall make repeated use of the next lemma, whose proof is obvious.

LEMMA 1.10. Given a f.g. projective Z[m]-module P and a PL 1 torsion Z[w]-mod-
ule K, there exists a surjection of a f.g. free Z[w]-module F

(§): F=2z[7]"> PoK,
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in which case Q = ker(({): F —» P ® K) is af.g. projective Z[n]-module with a short
exact sequence

d (@
0-Q0->F->P®K-0
such that
x(K) +[P]+[Q] = 0 € K,(Z[7]).
The torsion dual K " fits into the exact sequence

(.lk d* e/\
0> P*>F*S5Q0*5K 50, O

Assume inductively that f): M) - N has already been constructed for some
J < n/2 — 1. By the lemma, there exists a surjection

(g) F= Z[ﬂ']m - Kj(M(j)) - P_, ® KJ(M)

with kernel Q = P ,,, a f.g. projective Z[«]-module, such that

[Bi] = =[B] = x(K,(M0) = (=) T (=)x(K,(M)) € Ry(2[)).

r<j+1

Let fU*D: MU*D - N be the normal map obtained from f) by surgery on m
disjoint framed embedded spheres S/ C M) representing the corresponding m
Z[n]-module generators of K;(M ). The trace normal bordism is denoted by

(gU+D; fU), fURD): (WUHD; MU, MUD) 5 N X (I;0,1),
and is such that
WU+D = MDD x [ U us/xpr—s U D/t x prn—J
= MUY X T U pe1 Xyt U DIFL X D"
=MD U g U DI
=MUDyY jo 1 U D",
It follows that

F ifr=j;+1,

K,(WU“),M(”) = (0 £ ;&j +1

K,(WU+D pMU+D) = F* ifr=n-—j,
' 0 ifr+n—j,

and hence that
K,(WUD) = K (MD) ifr+#j,j+1,

K, (WUHD) = K (MY*D) ifrtn—j—1,n—j.
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The exact sequences
0 = K (M) > K (W) o K (WUt M)

- Kj(M(j)) - Kj(w(jﬂ)) - 0,
0 - K, (MU*D) K, (WU) o K, (WU, MUD)

- Kn—j—l(M(j+1)) - Kn—j—l(W(j+1)) - 0
are naturally identified with the exact sequences

9] doy (9
0~ K, 1(M) S By @ K,y y(M) = F5 P @ K (M) > 00,

J
(.* d* e/\
0—>0—>Pj*—>F*—>Pj’!;1—>Kj(M)—>O
respectively, with d: P;,; — F the inclusion. In particular,
K, n(MU*) = B @ K, (M), K(MU™) =0,
Kooy r(MUPD) = PRy, K, (MUTD) =0,
establishing the inductive step. O

REMARK. The quadratic kernel of an n-dimensional normal map f: M" - N”"
with 7,(N) = 7 is an n-dimensional quadratic Poincaré complex

d d
(C3 C,=>C1— _’Cl_’COs‘P)

with C a f.g. free Z[7]-module chain complex such that Hy(C) = K,(M) and ¢ a
quadratic structure, such that the surgery obstruction of f is determined by (C, ¥)

or(f) = (C,¥) € L,(Z[7])

(Ranicki [15]). Proposition 1.9 can also be proved by algebraic surgery on (C, ¢). O
B. The even-dimensional case. The quadratic kernel (C, ) of a 2i-dimensional
normal map f: M?% — N2 determines a (—)-quadratic form

(K(M), \: K,(M) X K(M) = Z[x], p: K(M) = Qi(Z[7]))
which is nonsingular if all the kernel Z[w]-modules Hy(C)= K. (M) are f.g.
projective. In the (i — 1)-connected case K,(M)=0 for r#i, K,(M) can be
assumed to be f.g. free and (K,(M), A, p) is the geometric intersection form defined
by Wall [20].

For a (2i + 1)-dimensional normal map of manifolds with boundary
(g, ag) (W2i+1, aw) - (V2i+1, aV)
the form (A, p) on K,(3W) restricts to (0, 0) on the submodule
im(3: K,,,(W,0W) > K,(3W)) € K,(3W).
If the kernel modules K,(3W), K,(W) are all f.g. projective, then
Cim(K,,, (W, W) - K(3W))
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is a projective lagrangian of (K,(dW), A, p). In particular, this is the case if (g, dg)
is (i — 1)-connected, with K, (W) = K, (W) = 0 for r # i, when the lagrangian is
in fact free.

THEOREM 1.11. Let f: M?* — N2 be a normal map of closed 2i-dimensional
manifolds with m(N) = = finite and K,(M) PL 1 torsion, and such that for odd i the
Kervaire invariant ox(f) € Ly,(Z[{1}]) = Z, is 0. Then the surgery obstruction of fis
given by

ox(f)=129 (_)iz (_)jX(Kj(M))
€ im(3: H,,(2Z,, Ko(Z[7])) - L4, (2[=])).

PrROOF. From Proposition 1.9 we have a normal bordant (i — 2)-connected normal
map f¢~D: MU=D - N such that

0 ifr<i—lorr>i+1,
e | P @K (M) =i,
K.(M0) =1 g (M) if r =i,
P*, ifr=i+1,

with P,_, a f.g. projective Z[7]-module such that
[Pl = ()7 E (Vx(K () € Kol 2I).
J<i-1
By Lemma 1.10 there exists a surjection of a f.g. free Z[7]-module
(g): F=Z[7]" > K,_ (M P)=P_ & K,_,(M),
and P, = ker(({): F— K, (MU“"V))is a f.g. projective Z[«]-module fitting into a
short exact sequence
d (@)
0O->P->F->P_ 0K, (M)>0
such that
[P]= —[P_ ] - x(Kioi(M)) = (=)'| X (—)jx(K,(M))) € Ko(Z[n]).
J<i
Let f®: M — N be the (i — 1)-connected normal map obtained from ¢~V by

surgery on the corresponding m Z[7]-module generators of K,_,(M“~V). The trace
normal bordism

(g; fUD, fO): (W, MU-D, M®) > N x(I;0,1)
is such that
WO = M- x T U yg-ixp+t U DF X Di*!
=MD XTU | pygUD XD

=MVY e UD =MD U o U DT
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It follows that
F ifr=i,

KW, M00) = (0 if r#i

i i * fr=i
o) = (52

and hence that
K(W®) =K (MG D) ifr+i-1,i
K(WD)=K,(MD) ifr+ii+]1.
The exact sequences
0 - K,(MUV) 5 K(W®) > K (WD, MG=D) 5 K, (MU~D)
- K,_(W?) -0,
0 = K,, (W, MG-D U M©) o K,(MIDU MO, M0-D) (= K,(MD))
- K (WD, M=) 5 K (WO, MG-Dy M©) - 0,
0K, y(MP) > K (WD) = K (WO, M©D)
- K,(M")>K,(W®)->0
are naturally identified with the exact sequences

d0)

) ( (3]
0-K(M)>PeK(M)->F5P_,eK,_,(M)-0-0,

d 0)

(9] ( €
0->P*>Pe®P*>F->P_,0K,_(M)-0,

b))
(‘* dl 0 A
00— P*, —>F*(—>)P,- eP* - PeK(M)-0,
respectively, and in particular
Ki—l(M(i))=Ki+1(M“))=0’ K(M®P)=P o P*
The (—)'-quadratic forms (K;(M“~1), A= pG=Dy (K, (M D), XD, u) are such
that (ACD u=Dy @ — (XD, u?) restricts to (0,0) on

im(K,, (WD, MU=y MDY - K,(MU=Dy MD))
= {(e*(x),0,x)|x € P*} c K,(M) ® P, ® P
withe": P* - K, ,(M)"= K,(M) a surjection. Thus for all x, y € P*
AO(x,p) = Ni=D(e (x),e"(y)) € Z[],
pO(x) = l"(i—l)(e/\(x)) € Q(_)i(Z['IT]).
Since K, (M=) = K,(M) is torsion, ‘
A=D(K, (M) X K,(M)) c (torsion subgroup of Z[7]) =0 ¢ Z[n],
so that A/~ 1 = 0, Thus
}‘(ii)(Pi* X PI*) =\ND(K,(M) X K,(M))=0
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and P is a projective lagrangian of the nonsingular (— )’-symmetric form (K,(M®),

A) on the f.g. free Z[7]-module K,(M ) = P, ® P*. Forall z & K,_(MU~D)
ND(z,2) = 0= 40(2) + (=) W0(2) € z[n],

so that

nu'(i)(Pi*) = :“'(i_l)(Ki(M))
{a €Z[nlla+(-)a= O}
{b —(=)'Bp e Z['rr]}

For i even ﬂ,(Zz, Z[n]) =0 (since a — g is the oriented involution on Z [7]), so
that P* is a projective lagrangian of the (—)-quadratic form (K AMD), ND )y,
It is now immediate from Remark 1.4 that the surgery obstruction is given by
ou(f) = (K(M®P), X, u®) = 3([P*])
€ im(3: A,,(Z,; Ko(Z[7])) > L4(Z[]))
and Theorem 1.11 is proved in this case,
For i odd H;(Z,, Z[r)) is a direct sum of copies of Z,, one for each element in 7

of order 1 or 2. It remains to understand the failure of p¢/ )(P*) to be 0.
First consider the localization exact sequence

© = Ly (Z[7]) - Ly(z[7]) > Li(e[r]) - -

Since f: M — N is a rational homotopy equivalence, the surgery obstruction
ou(f) = (K,(MD), XD,y & LA(Z[7]) has

Q ® ou(f) =0 Li(Q[]).

(Alternatively, note that Q ® P* is a free lagrangian of Q ® (K,(M ), A®, p9).)
Thus the surgery obstruction must come from the torsion L-group. Moreover, since
we are dealing with a closed manifold surgery obstruction with finite fundamental
group, the restriction to the Sylow-2-subgroup determines the surgery obstruction,
and we may assume from now on that « is a finite 2-group. But the image of
L3*(Z[n]) in L4(Z[=]) is well understood in the oriented case of a finite 2-group.
In particular, the image of o,(f) in LZ(Z[r]) is either 0 or restricts to the
simply-connected Kervaire problem (see e.g. Hambleton [8] or Taylor and Williams
[18]). As we have assumed that the Kervaire invariant of f is 0, we thus have

ou(f) = 0e L(Z[n]).

To complete the proof, we proceed to analyze the (—1)-quadratic form (K,(MD),
ADuy with

c A(zy; Z[=]) = € Q,)i(Z[n]).

(K,(M®),\0) = (P, ® P¥, ( _01 é))

In view of Remark 1.4 it suffices to prove that the (— 1)-quadratic form defined on
the f.g. free Z[7]-module V = P, ® P* © P,® P* by

(V,¢,.p)=(K;(M(n),w),p(”)e(P,eP,»*~(_01 (1))’(8 (1)))
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is such that (V,¢,¢)=0¢€ Li(Z[7]). Now F=0@ P*® P,® 0 is a free
lagrangian of the (— 1)-symmetric form (V, ¢). Also,

(V,$.9) = 0u(f) = 0 € LL(Z[7]),
so (V, ¢, ) admits a projective lagrangian L.

LeEMMA 1.12. Let (V, ¢, y) be a nonsingular (—1)-quadratic form over Z(w), m a
finite 2-group, such that (V,¢) admits a free lagrangian F and (V,¢,V) admits a
projective lagrangian L. Then (V, ¢, ) admits a free lagrangian.

PROOF. Since KO(ZZ('rr)) =0, L= 22 ®, L is Zz(w) free. Moreover, since L is a
lagrangian V = L & L* so 2,8, V=Le®L*Letf - f, f* - - f* beabasis
for L and L*, respectively, and SUppOSE e; - - - €, ef --- e* are bases for F, and
F *, respectively. Now, project p: L — F, where p is projection rel £'*. We claim it
is possible to choose L so that p is an isomorphism. Indeed, the Jacobson radical J
in Z,(m) satisfies Z,(m)/J = F,, the field with two elements and tensoring over
Z,(m) with F, we obtain p: F,” (= F, ® L) - E". If p(f,),..., p(f,) are indepen-
dent, but if p(f,,,) is dependent on the previous r vectors, then p(f*,) must be
independent of p(f,),..., p(f.). Hence, after a finite number of interchanges, the
claim is true over F,. But this implies the truth of the claim over Z,(=) by standard
arguments. Hence there is an a € GL, (Z,(7))sothat p - a = I, i.e.

p(a(fi))=ei’ l1<igsm.

The element

0 (a*)
and it is possible to choose f,,..., f,, such that p(f;) = e;,1 < i < m. But then
fi=e+ 20, i€
with the §,; € Z,(w). Approximating these 0;; (mod2) by elements in Z(7) which

we denote 0, j» we have that

(a 0 _1) € Sp(2m),

—e +20,jj

form the basis of a free lagrangian of (V,¢,y). This completes the proof of the
lemma, and hence also the theorem. O

The following example illustrates the necessity for the assumption that the
Kervaire invariant be zero in Theorem 1.11.

ExampLE 1.13. Let f®: M® = §3 x §3 > N = §° be the 2-connected 6-dimen-
sional normal map with Kervaire invariant

o(fP)=1€Ly(Z) = Z,,
so that

0= (202, %, (2 1)
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Let f®: M@ — N be the normal bordant 1-connected normal map obtained from
f® by surgery on (2,0) € K;(M®) = Z & Z, with trace

(g9 f@, fO): (W®; MO, MO) > N x (I, 0,1).
Then

(K3 (M@), A, 4®) = (Z,,0,1),  Ko(M®) = 2,
and (A2, u@) & —(A®, u®) restricts to (0,0) on the image of

e A
0
1
In particular,

00 Z)=p?(Z,)=1#0€Q_(Z)=2, O

C. The odd-dimensional case. The quadratic kernel (C, ¢) of a (2i + 1)-dimensional
normal map f: M?*! — N2*1 determines a (—)'*!-quadratic linking form on the
torsion submodule 7,(M) C K;(M)

(T,(M). \: T,(M) X (M) > Q[w]/Z[x], p: T.(M) > @y (Q[n]/Z[]))
which is nonsingular if the kernel modules K,(M) are PL 1 torsion, so that in
particular 7,(M) = K,(M). In the (i — 1)-connected case K,(M) =0 for r+ i,
K, (M)=T(M) is FPL 1 torsion and (K,(M), A, n) coincides with the geometric
linking form of Wall [19].

For a (2i + 2)-dimensional normal map of manifolds with boundary (g,dg):
(W2*23W) - (V**2,9V) the linking form (A, p) on T,(dW) restricts to (0,0) on
the submodule im(7;, ,(W,dW) — T,(dW)) C T.(dW). If the kernel modules
K,.(0W), K, (W) are all PL 1 torsion, then the submodule

im(T,,(W,0W) > T,(3W)) = im(K,,.,(W,3W) > K,(3W))
c T,(aW) = K,(3W)

is a PL 1 torsion lagrangian of (T,(3W), A,p). Such is the case if (g,0g) is
(i — 1)-connected with K, (W)= K, (W)=0 for r # i and K,(dW) = T,(aW),
K, (W)= T.(W) PL 1 torsion modules, when the lagrangian is in fact FPL 1 torsion.

A sublagrangian of a nonsingular (—)'*!-quadratic linking from (K, A, ) on a
PL 1 torsion Z[#]-module K is a submodule L € K such that

(i) L and K/L are PL 1 torsion modules,
(ii) (A, p) restricts to (0,0) on L,

(iii) the Z[7]-module morphism K = L"; x = (y = A(x, y)) is onto.

It follows that the Z[#]-module L+ = ker(K — L") is PL 1 torsion, asis L* /L. A
lagrangian is a sublagrangian L such that L+ = L, or equivalently such that the
sequence 0 - L - K —» L"— 0 is exact. For any sublagrangian L there is induced
a nonsingular (—)"*!-quadratic linking form (L* /L, [A], [s]) such that the sub-
module

LK (WO, MOUM®) =Z 5> K(MPUM®)=2Z,0 Z® Z.

A={(x,[x])|xeL*}) cKke(L*/L)
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is a lagrangian of (K, A, p) ® (L* /L, —[A], —[p]) isomorphic to L+ . If K is FPL
1 then

x(L*) = x(K) = x(L") = =x(L") € Ko(Z[7]),
so that in the Witt group of nonsingular (—)'*!-quadratic linking forms on FPL 1
torsion modules

(K, A, p) = (L*/L, [A].[n]) ® H%i (L) € LE95(Z[7]).
In particular, if « is finite and L is a lagrangian
(K A, 1) = 8 (x(L)) € im(8°": Hy.y(Zy; Ko(Z[7])) > L5i25(Z[ 7))
(cf. Remark 1.6).

THEOREM 1.14. The surgery obstruction o,(f) € L4, (Z(7)) of a normal map f:
M?2*Y 5 N2+ of closed (2i + 1)-dimensional manifolds with w(N) = w finite and
K(M) = T, (M) PL1 torsion is the image of

(Ki(M)a Au)® H(tgr)'”(L) € L4y (Z[]),
with L a PL 1 torsion Z[w]-module such that

x<L>=<—)"(z<—>fx(K,(M>))eko(zw. 0

COROLLARY 1.15. If also K, (M) = 0, then
oa(1) =3 (=)' (=Vx(x ()
€ im(3: Hy.i(Z,, Ko(Z[ 7)) > Lyyir(Z[))).

PrOOF. Immediate from the theorem and the factorization

3: yyii(Z, Ko(Z[7]) S Lo (Z[7]) = LAy, 1 (Z[7]). ©

PROOF OF THE THEOREM. From Proposition 1.9 we have a normal bordant
(i — 1)-connected normal map f): M — N such that

0 ifr<iorr>i+1
K(M®) = PoK(M) ifr=i
pPx fr=i+1

with P, a f.g. projective Z()-module such that
[2]= (=) X (-)x(K,(M))| € Ko(Z[)).
J<i
Choose an integral lattice F = Z[7]™ C P,, so that there is defined a PL 1 torsion
Z[w]-module J = P,/F with an exact sequence

d e
0 F>P—J-0,

and
x(J) = [P] € Ko(Z[7]).
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Surgery on the corresponding m elements of P, C K;(M ) results in a normal
bordant (i — 1)-connected normal map f¢*D: M@*D - N with FPL 1 torsion
kernel K,(M¢*D). The trace normal bordism

(g(i+1); f(i)’f(i+1)): (W(i+1); M(i),M(i+1)) - N X(I, O, 1)
is such that
W(i+1) — M(i) X U US'XD"”DH—I X Di+1
=MD XTI U peiyg U DX D!
~ M® U g U Di+l = pG+D U s U Di+l,
It follows that

i i F ifr=i+1,
kv = (¢ 1T

K (WU, p+n) = (OF* lir : l j: i’
ifr+i+1,

and hence that
Kr(W(i+1)) = K,(M(”) = Kr(M(i)) ifr#ii+1.
The exact sequences
0 K, (MD) > K, (WD) - K, ((WED, MD)
- K,(M(i)) N Ki(W(i+1)) -0,
0- K,.+1(M(i+1)) - Ki+1(W(i+l)) N K’_+1(W(i+l), M(i+1))
- Ki(M(i+1)) N Ki(W(i+1)) -0,
0- KI,H(M(i) U M(i+1)) N K,-+1(W(i+1))
- K, (WD, MO U MUD) 5 K (MDUMUD) - K (WD) -0
are naturally.identified with the exact sequences

(5) (33)

1 0 01
0> P*>P*>F-SPoK(M) - J&K(M)-0,

(") (59)

d* 0
050-P*>F* > VoK(M) - JoK,(M)-0,

(===
-0 = O

0

0

h

1 0 0
0-P*>P*>PoJ eK(M) -

0 0 £k O
01 0 -1
-

PoK(M)oVeK(M)

JeK,(M)-0
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bk
with V' a PL 1 torsion Z[#]-module fitting into an exact sequence 0 > J " - V - J
— 0. The proof is completed by observing that the submodule

L = im(K, (WD, MO UM@Y) - K (MO UMD, M0))
= h(J") CK,(MV) = Ve K,(M)
is a sublagrangian isomorphic to J ” of the nonsingular (—)'*!-quadratic linking
form
(Ti(M(iH)) =K,(MU*D), }\(i+1)’ﬂ(i+1))
such that
(LL/L’ [AC+D], [M(1+1)]) = (K,(M),\, p),

so that the surgery obstruction

ou(f) = ou(fU*D) = 0u(f V) € L}, 1(Z[7])

is the image of
(T,(MU+D), A,y D) = (K, (M), A, 1) ® H'*\i(L) € LEey(Z[7]).

2. Algebraic surgery semi-invariants. In §1 we showed that the surgery obstruction
o4(f) € L*(Z[7]) of an n-dimensional normal map f: M" - N" with 7 (N) ==
could in certain circumstances be expressed in terms of the projective semicharacter-
istic invariant

X12 = 2/2(_)JX(KJ‘(M)) € Ko(z[‘”])-
j<n

We shall now describe a general approach to such surgery semi-invariants using the
algebraic theory of Ranicki [15], for any ring 4 with involution ~: 4 — 4; a — a.
(See Davis and Ranicki [22] for a further development of this approach.) We assume
that the reader is already familiar with the definition of the quadratic L-groups
L,(A) as the cobordism groups of quadratic Poincaré complexes over 4. In dealing
with quadratic Poincaré pairs (f: C — D, (8¢,¢) € Q,(f)) the terminology is
contracted to (D, C; 8¢), and the algebraic mapping cone of f is denoted D/C.

The projective L-group L?(A) is the cobordism group of n-dimensional quadratic
Poincaré complexes (C, §) over 4, with C an n-dimensional f.g. projective A-module
chain complex

d d
c:C,»C,_,—> - »C—-C,.
The finiteness obstruction of C is the reduced projective class
[Cl= X (-)[C]€Ky(4)
r=0

and is such that [C] = 0 if and only if C is chain equivalent to an n-dimensional
(stably) f.g. free A-module chain complex. The free L-group L"( 4) is the cobordism
group of n-dimensional quadratic Poincaré complexes (C, y/) over A such that C is
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an n-dimensional f.g. free A-module chain complex. The forgetful maps L"(A4) —»
LP(A); (C,¢) — (C,¢) fit into an exact sequence

o Ly(A4) > LP(A4) > L(A4) > Ly ((4) > -+
with L”"(A) the relative cobordism group of n-dimensional quadratic Poincaré
pairs (D, C; 8¢) over 4 such that C is free and D is projective. See Chapter 2 of
Ranicki [16] for the definition of the relative cobordism group; in particular, (D, C;

8y) represents 0 in LP"(A) if and only if it is the relative boundary of an
(n + 1)-dimensional quadratic Poincaré triad

C—>8C)

L 1,88y
D - 8D

with 6C free and 8D projective.
The n-dual of an n-dimensional f.g. projective A-module chain complex

d d
C:C-C > 2C>G
is the n-dimensional f.g. projective 4-module chain complex
d* d*
C"*:.C°>Cl-» -+ s Clsn
with C" = C*. The n-dual has finiteness obstruction
[C"*] = (=)"[C]* € Ko(4).

If (C,¢) is an n-dimensional Poincaré complex over A4, then C” * is chain
equivalent to C, so that

[C]=[C"*]=(=)"[C]* € Ko(4)

representing an element [C] € I:I,,,l(Zz, Ky(A)). Similarly, for an n-dimensional
quadratic Poincaré pair (D, C; 8¢) D/C is chain equivalent to D"~ * so that

[D] -[C] = (-)"[DP]* € Ko(A),

and for an (n + 1)-dimensional quadratic Poincaré triad (I',8¢) (as above)
8D /(D U, 8C) is chain equivalent to 8D"*!~* so that

[8D] ~[D] -[8C] +[C] = (=)"""[8D]* & Ko(4).
THEOREM 2.1. The finiteness obstruction defines isomorphisms

x: LI"(A4) > H,,(2,; Ko(4)); (D, C; 8¢) > [D].

PROOF. Apply the 5-lemma to the map of exact sequences

L,(4) - L}(4) - L2 (4) - Ly (4) - L}.,(4)
! \ 1x I )
L)~ L) > B (ZuRo(A) S L(4) — La(4)
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where the bottom sequence (of which (1.1) is the special case 4 = Z[7]) was
obtained and proved exact in Ranicki [13]. O
REMARK 2.2. It follows from Theorem 2.1 that there are defined isomorphisms

ker(Lf’,(A) - Lf(A)) - coker(L/, ,(4) - ﬁn(zzako(A)));

(C.¥)— [D]
sending a projectively null-cobordant free n-dimensional quadratic Poincaré com-
plex (C, ¢) to the finiteness obstruction [ D] of any projective null-cobordism (D, C;
8¢ ). Remark 1.4 is an expression of this for forms and lagrangians, which is just the
(i — 1)-connected case for n = 2i. O

COROLLARY 2.3. Let (C, y) be an n-dimensional quadratic Poincaré complex over A
such that the homology A-modules H,(C) (0 < r < n) are f.g. projective, and such
that H(C) =0 ifn = 2i. Then (C,y) =0 € LF(A), and if C is free then (C,{) €
L"(A) is given by

(C.¥) = 3(x1,2(C)) € im(3: H,(Z,, Ko(4)) = L1(4)),

where the semicharacteristic is defined by
X1/2(C)= Z(_)r[Hr(C)] EKO(A) (n=2ior2i+1).
r=0

PROOF. C is chain equivalent to the chain complex of homology modules
H(C): H,(C) > H, ((C) > -+ = H,(C) > Hy(C),
so that there is defined a projective null-cobordism (D, C; §¢) of (C, ¢) with
D H,(C) = H,y(C) = -+ > Hy(C) > 0> o+ >0
such that

(Dl= % (=) [H(C)] = [€] - x10(C) € Ro(4).

r=i+1
If [C]= 0 € Ky(A), then
[D] = "Xl/z(C) = X1/2(C) € ﬁn(zz’Ko(A))-

Now apply Remark 2.2. O

REMARK 2.4. If A is a semisimple ring with involution, then every projective
(2i + 1)-dimensional quadratic Poincaré complex (C,y) over A is such that the
homology A-modules H,(C) (0 < r < 2i + 1) are f.g. projective, so that L}, ;(4) =
0 (cf. Ranicki [14]) and the semicharacteristic defines an isomorphism

X1,2° L5,1(4) - coker(L{,+2(A) - ﬁ2i+1(22’ IZO(A)));
(C,¢) - X1/2(C)~

(See Davis [7] for a recent account of the applications of the semicharacteristic in
surgery theory.) O
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More generally, given any *-invariant subgroup X C K,(4), there are defined the
intermediate quadratic L-groups LX(A) of n-dimensional quadratic Poincaré com-
plexes (C, ¢) over A with C projective and [C] € X C IE’O(A). Given *-invariant
subgroups Y C X C K,(A), there are defined relative cobordism groups LX"Y(4) of
n-dimensional quadratic Poincaré pairs (D, C; 8y ) over A with [C] € Y,[D]€ X C
K, (A), fitting into an exact sequence

- = L(4) > Ly(4) » L (A4) > Ly ((4) - -+
The finiteness obstruction defines isomorphisms
x: LYY(4) = H,_(Z5; Y/X); (D,C; 8¢) > [D].

The isomorphisms of Theorem 2.1 are just the special case Y = {0} € X = K,(4),
since

LR (4) = Ly(a),  LEU(4) = LY(A).
Let Z, act on the Whitehead torsion group K,(A4) by
x: K (A) > K (A); 1(a: A" > A™) > 7(a*: A™ > A™),
where a* = (a;;) if a = (a;;). Given a *-invariant subgroup X C K,(A) there are
defined the intermediate L-groups LX(A4) of n-dimensional quadratic Poincaré

complexes (C, ¢) over A with C a based f.g. free A-m~odule chain complex and the
Poincaré duality chain equivalence (1 + T)y,: C"* — C such that

T((l + T)y: C" * > c) € X c K,(4).
In particular,

L SR (4) = L(4),  LEO(4) = Li(4).

Given #-invariant subgroups ¥ C X C K,(A) there are defined relative cobordism
groups L)}"Y(A) of n-dimensional quadratic Poincaré pairs (D, C; 8y) over A with
D, C based f.g. free and

1(C,y)=7((1+ T)yy: C""17* > C) e Y C K (4),
7(D,C; 8¢)=7((1 + T)dy,: D" * > D/C) € X C K,(A).
The Whitehead torsion defines isomorphisms
7 LXY(A4) = H,_(Z,; X/Y); (D,C; 8¢) - 7(D,C; 8y),

by analogy with Theorem 2.1.
Let now S C A be a multiplicative subset of central nonzero divisors invariant
under the involution, so that the localization

S7'4 = {a/slac A4, s €S}

is defined and the inclusion 4 - S™'4; a — a/1 is a morphism of rings with
involution. An A-module M is S-torsion if S™!M = 0, or equivalently if for all
x € M there exists s €S such that sx =0€ M. Let K,(4,S) denote the
Grothendieck group of stable isomorphism classes x5(M) of PL 1 S-torsion
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d
A-modules M, i.e. A-modules with a f.g. projective resolution0 — P; = P, SM-0

such that S™'d € Homg 1 (S 'P,, S~ 'P,) is an isomorphism, subject to the rela-
tions

x5(M) = x5(M') + x5(M") = 0 € K,(4,5)

for exact sequences 0 > M —» M’ - M"” — 0. The S-torsion duality defines an
involution

+: K,(4,5) > K,(4,8); x5(M) - x5(M")
with A acting on M "= Hom ,(M, S™'4/4) by
AXM > M (a,9) = (x - ¢(x)a),
so that M ” has the dual f.g. projective resolution
0 PrSPES M50
with
e’ Pr > M" 0 (e(x)—0(y)/s)
(xe P, yeP,s€S,sx=d(y) €P,).

The localization exact sequence of algebraic K-theory
- - G -
Ry(4) - K\(S74) > K,(4,8) = Ko(4) = Ko(S7H)
involves the maps induced in K, and K, by the inclusion 4 — S§~'4, and also the
maps
j: K(S7'4) - K((4,5);
r(a/s: S7A™ > §714™) - x5(A"/a(4™)) — x3(A4"/s4™),
3: K\(4,8) - Ko(A4); x5(M) » x(M) = [Po] =[P,
which are such that j* = *j, 3% = — *J.
An A-module chain complex C is S~ 4-acyclic if S'C=S"'4®,C is an
acyclic S~ '4-module chain complex (Hy(S™'C) = S~ 'Hy(C) = 0), or equivalently
if the homology 4-modules H,(C) are S-torsion. An S ~4-acyclic n-dimensional f.g.

projective A-module chain complex C has an S-torsion characteristic x5(C) €
K (A, S) such that

3(xS(C" %) = (=) 'x5(C)" € Ky (4, 5).
If C is such that each H(C) (0 < r < n — 1)isa PL 1 S-torsion A-module, then
-1

n

x3(C) = go(—)'xS(Hr(C))EKl(A,S)-

The localization exact sequence of algebraic L-theory for a *-invariant subgroup
X C K, 4,S)

C 5 LO(4) > LT O(S7) > LY(A4,8) > L3(4) - -
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involves the cobordism groups L)X(A,S) of S '4-acyclic (n — 1)-dimensional
quadratic Poincaré complexes (C,y) over 4 with x5(C)€ X C K,(4,S). If X
contains the elements x5(A4/sA) (s € S) the S-torsion L-groups L}.(4,S) (resp.
L¥ . 1(A, S)) may be identified with the Witt groups of (— )-quadratic linking forms
(resp. formations) defined using PL 1 S-torsion A-modules M with xS(M) € X C
K,(A4, S), otherwise they are the Witt groups of formal differences of such objects
with virtual S-torsion characteristic in X. See Chapter 3 of Ranicki [16] for the
details, and also Pardon [11], Carlsson-Milgram [4] for the localization exact
sequence of Witt groups.

THEOREM 2.5. The algebraic L-theory localization exact sequences for *-invariant
subgroups Y C X C K (A4, S) fit together in a commutative diagram of exact se-
quences

L L L L

<> H(Z,8x/3Y) - LY(4) o L3¥(4) - H,_(Z,,8x/3Y) -
! i i i
o B2y XY - LTSI o L)N(STA) - A, (2,7 X)) -
i ) ) )
i FI”(ZZ,X/Y) - LZ(A‘S) - L:I\,(A'S) - ’:1'1—1(22*X/Y) -
l ! ! !
- H,.(Z,,0X/3Y) - LY (4) - LY (4) - H,_(Z,,9X/3Y) - -

) { \ l

PROOF. This is just a restatement of Proposition 3.7.1 of Ranicki [16]. O
Define

Ro(A4)° = ker(Ry(4) » Ko(S7'4)) = im(3: K,(4,S) - K,(4)),
Lf:(A, S) — L:er(a:'xl(A,S)—»f(O(A))(A,S),
LP(A,S)=LKA45(4,S).
In the case
Y = ker(3: K,(4,S) - K,(4)) € X =K,(4,S),

the diagram of Theorem 2.5 collapses to the commutative braid of exact sequences

3 - = N
I‘/’H—l(s lA) L:{’+I(A‘s) l]n—l(ZZ’KO(A) )

Lh 1 (A.S) LR (1)

3 ~ 7 ~.

A,(2,.Ro(4)°) ~ Li(A) > LI(S74)
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In particular, for (4,S) = (Z[7],Z — {0}) (= finite) KO(A)S= KO(Z[W]) by
Swan’s theorem, and this is just the braid (1.3) with

Li(4,8) = Ly (Z[7]),  Li(4,8) = L (Z[n]).

Given #-invariant subgroups Y C X C K,(A4,S) there are defined relative
cobordism groups LXY(4, S) of S~'4-acyclic (n — 1)-dimensional quadratic Poin-
caré pairs (D, C; 8¢) over A4 such that

XS(C) €Y, x5(D)eXcK(4,5S),
fitting into an exact sequence

- = L(4,8) - L(A4,5) > L77(4,8) = Ly ,(4,8) = -~

THEOREM 2.6. The S-torsion characteristic defines isomorphisms

x5 L¥Y(A4,8) > H,_((Z,,X/Y);  (D,C; 8y) - x5(D).

PROOF. By analogy with Theorem 2.1. O
REMARK 2.7. By analogy with the isomorphisms of Remark 2.2 the S-torsion
characteristic also defines isomorphisms

ker(LY(A,S) - LX(A,S)) - coker(L¥,,(4,S) - H,(Z,, X/Y));

(C.¥) > x*(D),
with (D, C; 8¢) any S~ '4-acyclic null-cobordism of (C, ¢) such that xS(D) € X ¢
K,(A,S). Remark 1.6 is an expression of the isomorphism

ker(L’z',(A,S) - szi(A’S)) ~ COker(Lgi+1(A’S) - HZi(ZZ’ IZO(A)S))§

(C,¥) - x(D)
in terms of linking forms and torsion lagrangians, which is just the (i — 2)-connected

case. O
Corollary 2.3 has only a partial analogue for the torsion L-groups:

COROLLARY 2.8. Let (C, ) be an n-dimensional quadratic Poincaré complex over A
such that the homology A-modules H,(C) are PL 1 S-torsion, such that H;_,(C) =
H(C)=0ifn=2iand H(C)=0ifn=2i+ 1. Then (C,y)=0€ LF ,(4,S),
and if C is free

i-1

(C.y) = as( )y (—)’x(H,(C))) e im(0%: A,(Z,; Ko(4)°) - Lh,1(4,5)).

r=0

PROOF. If C is any n-dimensional f.g. projective 4-module chain complex with PL

1 S-torsion homology 4-modules H,(C), then for any f.g. projective 4-module
resolutions

050 5P >H(C)»0 (0O<r<n-1)
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C is chain equivalent to the chain complex

(5) (5 o)

’ O o)
c:Q,,»P_190,, > P_,0Q, ;> - >P&®Q, > P,

Now if (C,¢) satisfies the stated conditions, there is defined an S~'4-acyclic
null-cobordism (D, C; §¢) with
®) © o
D:Q, ,»P 80, ,> 2P ,8Q0, - P20 >0

such that

(D)= % (=)xS(H,(C)) € K\(4,5).

r=i+1
Now apply Remark 2.7. O
A full analogue of Corollary 2.3 for the torsion L-groups would be that any
2i-dimensional quadratic Poincaré complex (C,y) over 4 with PL 1 S-torsion
homology A-modules H,(C) is such that
1—1

(C,¢) =35 X (=) 'x(H,(C))

r=0

€ im(asz ﬁz,(Zz, I?O(A)S) - LQ,H(A,S))

= ker(L},.,(4,8) = L}, (4, S)).
However, Example 1.13 shows that this is false for (4, S) = (Z, Z — {0}) with i
odd, for in that case (C,y) is an S-acyclic 2-dimensional quadratic Poincaré
complex over 4 with

(C.¥)=1€Ly(Z)=27,, Hy(C)=H(C)=2, H,y(C)=0,

so that H,(C) is PL 1 S-torsion while K(4)® = 0. The full analogue does hold for
the torsion L-groups if (A4, S) is such that I:I*(ZZ, S™'4/A4) = 0, with Z, acting on
S~'4/4 by the involution. In that case there is defined an S ~4-acyclic null-cobor-
dism (D, C; §¢) with

®) © o
D:Qy 1 2Py 180y > 2P 80, - P20 >0

such that
(D)= ¥ (=)'x(H,(C)) € Ky(4.5),

and Remark 2.7 applies as before. For arbitrary (4, S) the i th quadratic linking Wu
class of (C, ¢) (defined in Chapter 3.3 of Ranicki [16])

v5(¥): H'(C) = H(C) > B(Z,,57'4/4)

is an obstruction to defining such a null-cobordism (D, C; 8¢ ). In Example 1.13 this
obstruction is nonzero, with

vs(¢) =1: H(C) = H\(C) = 2, > H\(2,,0/Z) =2, (i=1)
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detected by the Kervaire invariant. If (4, S) = (Z[=], {odd}) for a finite 2-group =,
then H,(Z,, S '4/A4) = 0 and also every f.g. odd torsion Z[7]-module is PL 1 (cf.
Remark 1.5); it follows that the surgery obstruction of an n-dimensional normal
map f: M" —> N" with m(M)=m a finite 2-group, Ky(M) odd torsion and
K,(M)=0if n=2i + 1is given by

)= 0| T (<) X(KAM)| < im{o: 7,2, Ro(Z[7])) = i(ZLeD)

(n=2ior2i+1).
Note also that this example contradicts the quadratic even-dimensional case of
Proposition 7.1 of Ranicki [15, I]: if 4 is a Dedekind ring with involution and (C, ¢)
is a 2i-dimensional quadratic Poincaré complex over A the cobordism class (C, ) €
L7 (A) is not in general the i-fold skew-suspension Si(F'(C), ) of the nonsingular
(—)'-quadratic form on the f.g. projective A-module F'(C) = H'(C)/torsion. How-
ever, the instant surgery obstruction formula of Proposition 4.3 of [15, I] (for any
ring with involution A) applies to show that the cobordism class (C, ¢) € LI (A)is
the i-fold skew-suspension S'( P, 8) of the nonsingular (—)'-quadratic form over 4

d* 0
(P,0)=(coker( (=) 1+ T)yy d :

CleC,->CoC,

1)

with P a f.g. projective A-module. The error is repeated in Proposition 4.2.1iv) of
Ranicki [16]. However, if (C, ¥) is a 2i-dimensional quadratic Poincaré complex over
any A with f.g. projective homology 4-modules H,(C) then Corollary 2.3 above
shows that (C,¢) € LY (A) is represented by S'(H(C), ¢). Thus the description of
the isomorphism L,;_ ,(Z) - Z, in Propositions 7.2 of [15, I] and 4.3.1 of [16]
should read (C,y) — Arf invariant of (H,,,(C; Z,),¢). For a 2i-dimensional
symmetric Poincaré complex (C, ¢) over a Dedekind ring A the proof of Proposition
4.5 of [15, 1] does show that (C, ¢) € L;'(4) is represented by Si(F'(C), $).

3. Some product formulae. We consider a product (m + n)-dimensional normal
map
g=1Xf: M"X M" > M" X N"

with M/" a closed m-dimensional manifold, f: M" — N" an n-dimensional normal
map, and

m(M)=m, m(N)=a, m(MXN)=m Xm.
The surgery obstruction o,(g) € L., ,(Z[m X 7]) is determined algebraically by
the symmetric signature o*(M,) € L}(Z[m]) and the surgery obstruction o4(f) €
L"(Z[7]); there is defined a product operation

(3.1) Ly(z[m]) ® Li(Z[7]) = Ly, (Z[7 X 7]);

m+n

- (C,¢)®(D,y) > (C®,D, 6 ®Y)
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which on the chain level is just the tensor product of chain complexes, and
(3.2) 0*(8)=U*(M1)®U*(f)ELm+n(Z['”1 X’”])’
where

o*(M) = (C,¢) € L}(Z[m]), ou(f)=(D,¥) € L}(Z[])

with H,(C) = Hy,(M,), Hy(D) = K,(M); see Ranicki [15] for details.

It is not in general possible to evaluate (3.1) for finite groups =, , since the
symmetric L-groups L*(Z[m,]) are comparable in size to the entire bordism groups
§4(Bm;) (by unpublished work of G. Carlsson, for example). So it is better to try
and evaluate the particular products of (3.2) in the favorable circumstances where
0.(g) can be expressed in terms of the homology modules H*(Ml), K.(M).

THEOREM 3.3. If f: M" — N" is a normal map such that
or(f) = 3([P]) € im(3: A,(Z,; Ko(Z[n])) - Li(Z[7]))

for some f.g. projective Z|ml-module P, then the induced f.g. projective Z[m X =]
module Z[7,] ® , P is such that

ox(g) = X(M1)a([z['”1] ®ZP])
e im(3: A,,,(Z,, Ko(Z[m x 7])) > L~ (Z[m X 7]))

with x(M,) € Z the Euler characteristic of M,. In particular, if m is odd, then
x(M,) =0 and a,(g) = 0.

PROOF. Let (C = C(M,), $) be the symmetric Poincaré complex of M,, and let
(D, ¢) be the quadratic Poincaré kernel of £, so that
H*(C)=H*(M1)’ H*(D)=K*(M),
[C]= [C(Ml)] = X(Ml)[z['”l]] € Ko(Z[m]) (unreduced).

By Remark 2.2 (D, ¢) admits a projective null-cobordism (8D, D; 8¢ with [8D] =
[Pl e IZO(Z["IT]). Then (C,¢) ® (D, ) admits a projective null-cobordism (C ®
6D,C ® D; ¢ ® 8¢y ) such that

[C ®8D] = [C(M,) ® 6D] = x(M,)[Z[m] ®, P] € Ko(Z[m, x 7]),

and the theorem follows from Remark 2.2. O
The product of (3.1) has a version for the torsion L-groups

Ly(z[m]) ® Ly5(Z[7]) — L, (Z[m x 7]);
(C,9)®(D,¢) > (C®D, ¢ ®Y),
so that if
ou(f) € im(Ly7(Z[7]) - Lh(Z[7])),
then

o(g) € im(Lfn'tf;H(z['”l Xw]) > L, (Z[m x ’”]))

m+n
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THEOREM 3.4. Let n = dim N = 2i + 1 be odd in (3.1), and suppose that o,(f) €
L% . (Z[7)) is the image of (V,\,p) € L4 (Z[n]) with (V,\,p) a nonsingular
(—)'*'-quadratic linking form on an FPL 1 torsion Z|w)-module V such that (|V|,
|m, X w|) = 1 (assuming m, and = are finite), and such that |V | is also prime to all the
torsion in H*(Ml). Then

(@ ifm=dmM, =2j+1,

;
o*(g) =9 Z (_)kX(Hk(Ml) ® V)
k=0
€ im('d: H2i+2,‘+2(22, Ko(Z[m x 7])) - Lgi+2/+2(z[7f1 X '”]))’
(b) if m=12j, 0x(8) € Lgi+2j+1(z['”l X a]) is the image of
(Hj(Ml) eV, ¢ ®(}"l")) ® H(tgr)'*!“(L) € Lg}tfrzﬂz(zlﬂl X m])

with L a PL 1 torsion Z[m; X w]-module such that
j-1

x(L) = (—)"kgo(—)kx(Hk(Ml) ® V) e Ky(Z[m x 7]).

In particular, if Hj(Ml) =0, then
71
o(g)=3| X (_)kX(Hk(Ml) ®V)
k=0
€ im(az H2i+2j+1(22’ Ky(Z[m x 7])) = Lgi-+2j+1(z[ﬂ1 X ’”]))

PROOF. By surgery below the middle dimension we may assume that

_(V ifr=i,
K,(M) (0 if r+i.

It follows by the Kiinneth theorem and the assumption on ¥ that

0 ifr<iorr>i+m,

K,(M, x M) = (H,_,.(Ml) eV ifigr<i+m,

sothat g =1 X f: M; X M - M, X N has PL 1 torsion kernel Z[m; X 7]-modules
Ku«(M; X M) (cf. Remark 1.5). Moreover, if m + n = 4k + 2, the Kervaire in-
variant o,(g) € L,,,,(Z) = Z, is 0, since it is the evaluation on 6 *(M;) ® a,(f) of
the product L"(Z)® L,(Z)—- L, ,(Z) (a special case of (3.1)) and ou(f) €
L,(Z)= L, ,+(Z)=0. The theorem now follows by a direct appliction of Theo-
rems 1.11,1.14. O

EXAMPLE 3.5. We start with the surgery problem

(3.6) id X f: RP¥*1 x K4/*2  RP4*1 x §4/+2

where f represents the usual Kervaire problem. Then Wall has proved [20, Theorem
13B.7, p. 181] that this problem represents the nontrivial element in the surgery
group L%(Z/2) = Z/2. Hence (3.6) can be surgered to

(3.7) : g N4(l'+j)+3 - RP41+1 X S4j+2
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with

K.(g) = 0 if*#2(i+j)+1
8 Z/(8k + 3) with trivial Z/2 action, 8k + 3 prime if * = 2(i +j) + 1.

Consequently, we have that
id X id Xf: RP4s_—t1 X RP4i+1 X K4j+2 N RP4si1 X RP4i+1 X S4j+2

is represented by d{Z/(8k + 3)}. But since K,(Z/2 X Z/2) = 0, it follows that
o,(id X id X f) = 0 in all these cases. O

4. A nontrivial example and other applications. We shall now construct a family of
products with nontrivial surgery obstructions. The first of these examples was
discovered by J. Morgan and W. Pardon, and later analyzed by L. Taylor and B.
Williams using different techniques.

Let # = Z/4 X Z /2, with generators t € Z/2, u € Z /4. Define a 4-dimensional
normal map of closed manifolds

g=1XfT*XT?>T?xS§?
with f: T? - S? the 2-dimensional normal map with Kervaire invariant
ou(f)=1€Ly(Z) =2,

The original Morgan-Pardon example is the element o,(g) € L%(7) obtained from
the actual surgery obstruction o,(g) € L%(Z X Z) via the evident surjection of
groups

7 (T})=ZXZ=(T,UTU=UTY »a; T-1,U-u

In fact, this example turns out to be a special case of the product formula, which we
will apply in Corollary 4.10 to obtain the complete answer for this group.

The following result provides a nice example of the use of the torsion projective
semicharacteristic (Theorem 1.11).

PROPOSITION 4.1. The element o,(g) € L!(w) is the image under 3 of the nontrivial
element [P] € ro(Zz; Ko(Z[7))) = Z/2 represented by the PL 1 odd torsion Z|m]-
module

P=Z[7]/2-t,1-u)=2Z/3,
that is 0,(g) = d([P)) € Li(m).
PROOF. Define rings
A=2(2Z)=2[T,T],
N=A®A=2Z(ZxZ)=2Z[T,T",UU],

with the involutions 7 = T-1, U = U~. The surgery obstruction o,(g) € Li(A’) is
represented by the 4-dimensional quadratic Poincaré complex over A’

ou(g) = o*(5%) ® 0*(8) @ 0u(f),
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with 6*(S!) = (C, ¢) the 1-dimensional symmetric Poincaré complex over A of the
circle S! and o4(f) = (D, ¢) the 2-dimensional quadratic Poincaré kernel over Z of

/s
d=1-T:C,=A - Cy=A,

1:C°- ¢,

T\ 1o,

¢, =1:C' > C,

¢0=((1) 1):D1=ZEBZ—>D1=Z€BZ, D, =D, = 0.

The product
o*(S') ®a(f)=(C® D, ¢ ®Y)

is a 3-dimensional quadratic Poincaré complex over A with homology A-modules

zZeZ r=1,
H’(C®D)=(0 vy

Algebraic surgery on the two A-module generators of H,;(C ® D) results in a
cobordant 3-dimensional quadratic Poincaré complex ( E, 6) over A with
H(E) - (A/(l -T+T?, r=1,
0, r+1,
where
1-T 1
-T 1-T
(= the Alexander polynomial of the trefoil knot). Thus
(C,¢) ®(D,y) = (E,0) € Li(A)
and o4(g) = (C,$) ® (C,$) ® (D, ¢) is cobordant to the 4-dimensional quadratic
Poincaré complex over A’ (E’,8") = (C,$) ® (E, 8) with A’-homology modules
H(E") - (A/(l ~T+T%1-U), r=1,2,
0, r+1,2.

Changing the coefficient ring from A’ to Z[«] by the surjection A" = Z[#]; T — ¢,
U — u we have

1-T+T?=

Z[7)/2-t,1—u)=P, r=1,2,

Hr(Z[W]®A'E)=(O, , re1,2,

so that by Theorem 1.11

ox(g) = Z[7] @, (E',0')
= 8([P]) € im(3: Ho(Z,; Ko(Z[7])) > Li(m)). O

LEMMA 4.2. K(Z[7]) = Z/2 with explicit representative generated by
x[Z(i)/(1 = 2i)] = x((Z77/3)) =x((Z*7/3)) = x((Z77/3)) =x((Z"/3))-
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PrROOF. We assume it is well known that K (Z[Z/2 X Z/2]) = 0. There is an
exact sequence
(43) K(Zm)- KI(Z(%)W) ® Kl(zz'”) - K(Q,m) — Ko(Zm) >0
(see e.g. Hambleton-Milgram [9]), and
K\(Qym)/K\(Z(5)7) @ im(1 + I{Z,(7)})
_ UZ0)) e u(Z() ) e(2)
1+ 8uy & (1 +8uy) ® - &(1 + 8ug)

To obtain the rest of the calculation, consider the exact sequence which calculates
K\(Zy(m)),

0 - Ky(Z,m) > Ki(Z,(Z/2 % 2/2)) @ K\(Z,(i)[ 2/2])
- K\(F(Z/2 X 2/2)).

Here F,(Z/2 X Z/2)* = (Z/2)* with generators u, t, 1 + u + t (where ¢, u are
generators for Z/2 X Z/2). The first two are cancelled from K,;(Z(3)w), but the
third is not and forces the Z/2 in K,(7). To see that this element x((3)**) is also
represented by the other elements claimed in 4.2 consider the unit 1 + (¢ — 1)u
(12 =1, u* = 1) in Z,(=). Its images are
++ = -+ —= 4] -1
1,1,-1,-3,1,1-2i.
Next consider 1 + (¢ — 1)(u* + 1) with image
++ - -+ —— 4P —
1,1,-3,-3,1, 1.
Also, u(1 — u + u?) has image
+4+ = -+ - = +i -
1,-3,1,-3,1,1
and finally, 1 — (¢ + 1)(u* + 1) has image
++ +=- -+ —-= 41 -1
-3,-3,1,1,1, 1.
This completes the proof. O

COROLLARY 4.4. The L"-groups of m = Z/4 X Z /2 are given by
Z°@ Z/2, =0,

\ Z/2, * =1,
La(m) = (Z/2) @ 2%, * =2,
(z2,2), * =3

In particular, L(w) - L{(w) is an injection and

(45) 0~ {f(2/2.Ry(m)) = 2/2) > Li(7)

is injective.
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PrOOF. Using Hambleton-Milgram [9, Lemmas 5.4, 5.7] and 4.2 we have that the
compositions

L§(m) > Z° > Hy(Z/2, ko(”))’
Li(m)—> 2% > Hodd(z/z’ Ko(m))
are both zero. (This is an exceptional case, normally the map would have been onto,

but Z[i] does not have any nontorsion units.) But L{(7) - H,(Z/2, Ky(7)) is
onto, and since L{(7) = 0, the result follows. O

THEOREM 4.6. The elements in Lii(m) which are detected by surgery problems on
closed manifolds are Z & Z/2 C Ll(w) coming from the simply connected index
obstruction, and the Morgan-Pardon example, Z/2 C L%(w) (the simply connected
Kervaire problem) and (Z/2)* C Li(w). O

REMARK 4.7. The Morgan-Pardon surgery problem is the simplest example of a
nontrivial obstruction in the image of the map 9 in (4.5). O

PROOF OF 4.6. Since Q,(pt) ® Q — Q,(7) ® Q is an isomorphism, it follows that
the only Z-free classes which occur have some finite multiples in the image of L,(1).
Thus the only thing left to prove is that the extra class in L{i(7) also detects.

Consider the surgery problem

(4.8) id X p: L; X RP® X K¢ > L} X RP® X S¢.
Doing surgery on RP® X K, we can assume (4.8) equivalent to
(4.9) idXpi LSX M” > L3 X S8
with K,(p') = Ks(p’) = (Z/3)**. Then applying 3.3, we have

o (id x p') = 3{x(Z*®(2/3)")} = 3{x(2/3"")},
and the result follows from 4.2. O

COROLLARY 4.10. Let m;, = Z/2' X Z/2,i > 2.

(a)im(3: H,,(Z/2, Ky(m)) = Ll(m,)) is never 0.

(b) There is a closed 4i-dimensional manifold N with fundamental group m, and a
surgery problem f: M — N with nontrivial L"-surgery obstruction in the image of 9.

PROOF. The problem
id X p: L3, X RP® X K¥*% > L5, X RP® X §¥*2

will serve since a covering of this problem is the one used in the proof of 4.6.
Moreover, the index invariant of this problem is zero, so the image of the surgery
obstruction in L¥(m) = Z* is 0, and the result follows. O

REMARK 4.11. This process ends when we go to 3-fold products. Indeed, Theorem
3.3 shows that the surgery obstruction

id X p: Ly X Ly, X Ly X K4%2 > L), X Ly, X Ly X S%+2

is always 0. O
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In fact one of us will show in [10] that the Morgan-Pardon example is, in a very
precise sense, the only iterated product that can occur for surgery problems with
finite fundamental group. Indeed, [10], building on the work initiated here will show
that the only possible obstructions in these cases occur from products RP4/*1,
situations induced up from Morgan-Pardon examples, and situations induced up
from Cappell-Shaneson examples.

However, the structure of product formulae is much richer when we look at
infinite groups. Indeed, both the Milnor and Kervaire problems can be producted
arbitrarily often with circles to obtain nontrivial surgery problems in L*(Z[Z*)).
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