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INTRODUCTION 

A SIMPLE (resp. finite) n-dimensional Poincart complex X (n L 5) is simple homotopy 
(resp. homotopy) equivalent to a compact n-dimensional CAT ( = DIFF, PL or TOP) 
manifold if and only if the Spivak normal fibration vx admits a CAT reduction for 

which the corresponding normal map cf. b): M + X from a compact CAT manifold M 
has Wall surgery obstruction o*‘cf, b) = 0 E L.,S(rdX)) (resp. UTICA, b) = 0 E 

Lnh(vrl(X))). The surgery obstruction groups L,“(r) (resp. L*“(r)) of a group m are 
defined algebraically as Witt groups of quadratic structures on finitely based (resp. f.g. 
free) Z[a]-modules, and geometrically as bordism groups of normal maps to simple 
(resp. finite) Poincare complexes X with fundamental group r,(X) = ?r. 

The object of this paper is to extend the above theory to finitely dominated 
Poincare complexes, that is Poincare complexes in the sense of Wall [I], and to the 
Witt groups ~!+~(.rr) of quadratic structures on f.g. projective Z[r]-modules intro- 
duced by Novikov[2], the groups denoted by U,(Z[r]) in Ranicki[3]. 

A normal map cf, b): M +X from a compact n-dimensional manifold M to a 
finitely dominated PoincarC complex X has a normal bordism invariant, the “pro- 
jective surgery obstruction” 

such that 

u*“(Cf, b) x 1: M x S’+X x S’) = (0, c~‘cf, b)) E L;+,(m(X X S’)) 

= L,h+,(.rr,(X))o~p(~l(X)). 

Thus a finitely dominated n-dimensional Poincart complex X(n 3 4) has X x S’ 
homotopy equivalent to a compact (n + l)-dimensional CAT manifold if and only if vx 
admits a CAT reduction for which the corresponding normal map cf, b): M +X has 
projective surgery obstruction a*“Cf, b) = 0 E LnP(nl(X)). The point we are making 
here is that the Browder-Novikov transversality construction of normal maps from 
CAT reductions of vx applies equally well to finitely dominated PoincarC complexes 
X. 

Given a space K let J&‘@(K) be the bordism group of normal maps from compact 
n-dimensional manifolds to finitely dominated Poincare complexes equipped with a 
reference map to K, defined exactly as the geometric L-groups I+,‘(K) of 09 of 
Wall[4]. Our main result (Theorem 2.1) identifies L,‘“(K) = Lnp(p,(K)), by analogy 
with the identification LA(K) = L,(r,(K)) of 89 of Wal1[4] (where L = L”). 

The projective L-groups Lnp(r) have been previously interpreted geometrically by 
Maumary[5,6] and Taylor [73, using normal maps from paracompact manifolds to 

tPartially supported by the Danish Natural Science Research Council. 
*Partially supported by the NSF Grant MCS 79-02017. 



240 E. K. PEDERSEN AND A. RANICKI 

“open” Poincare complexes (which are quite distinct from finitely dominated Poin- 
care complexes). The various interpretations are discussed and compared in P7. 

$1. ALGEBRAICL-GROUPS 

Given a group 7r and a group morphism w: a+{ 2 I} let L.“(r) (resp. L,” (r), 
L,,p(r)) be the algebraic L-groups defined for n(mod 4) using quadratic structures on 
based (resp. f.g. free, f.g. projective) Z[rr]-modules, with respect to the involution 

-: a~l+a~l; c n&g- 2 w(g)n,g-’ (n, E Z). &Ten 8ET 

The L”-groups are the original surgery obstruction groups of Wall[4]; the Lh-groups 
are due to Shaneson[g]; the LP-groups are due to Novikov[2]. We recall the 
definitions of the various L-groups, as reformulated in Ranicki[3]. 

Let A be any ring with involution -: A --* A; a-d (for example, A = Z[n]). Given a 
f.g. projective A-module M let M* be the dual f.g. projective A-module 

M* = Horn,&%& A),A x hf*+M*;(a,f)-(x-f(x)@, 

and use the natural A-module isomorphism 

M+ iv**; x-(j-f(x)) 

to identify h4** = M. Given also a f.g. projective A-module N there is defined a 
duality isomorphism 

HomA(M, N)*Hom,.,(N*, M*); f-u*: g-(x-gCf(x))). 

In particular, for N = M*, E = f 1 E A there is defined an e-duality involution 

T.: HomA(M, M*)+HomA(M, M*);cp+ (ep*: X-(Y-q(Y)(X))). 

A (non-singular) E-quadratic form over A(M, 9) is a pair consisting of’a f.g. projective 
A-module M and an element * E Q,(M) of the abelian group 

C?,(M) = coker (I- T.: Horn&V, M*) + Hom,,,(M, M*)) 

such that (1 + T,)* E HomA(M, iVf*) is an isomorphism. An isomorphism of forms 

f: (M, *)+(M’, W) 

is an A-module isomorphism f E Horn&f, M’) such that 

The simple isomorphism classes of such forms (M, *) with M based for which 
(I + T,)9 E HomA (M, M*) is a simple isomorphism are in a natural one-one cor- 
respondence with the isomorphism classes of triples (M, A: M x M+ A, p: M+ 
A/{a - aila E A}) as in 95 of Wall [4], with (A4, q)-(M, h(x, y) = 

(I+ T,)‘L’ (X)(Y), F_(X) = * (X)(X)). 
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A lagrangian of an e-quadratic form over A (M, q) is a direct summand L of M 

such that the inclusion j E Hom,(L, M) fits into an exact sequence 

o- LAM 
j*(I+T,)Y) 

-L*-0 

and 

j**j = 0 E Q,(L). 

In particular, for any f.g. projective A-module L there is defined 
e-quadratic form 

H,(L) = (L@L*, 
( > ; ; E Q&OL*)) 

with lagrangian L. An e-quadratic form (M,q) admits a lagrangian L 
is isomorphic to the hyperbolic form H,(L). 

the hyperbolic 

if and only if it 

A (non-singular) e-quadratic formation over A (M, W; F, G) is an e-quadratic form 
over A (M, q) together with an ordered pair of lagrangians (F, G). An isomorphism of 

formations 

f: (M, ‘4’; F, G)+(M’, ‘P’; F’, G’) 

is an isomorphism of forms f: (M, *)+(M’, 9’) such that f(F) = F’, f(G) = G’. If 
(M, V; F, G) is an E-quadratic formation an A-module isomorphism F-, G (if any) 
extends to an automorphism cr: (M, T)+(M, q) such that a(F) = G, by a generaliza- 
tion of Witt’s theorem. Conversely, if (Y: (M, *IT)-, (M, q) is an automorphism of an 
e-quadratic form (M, T), and L is a lagrangian of (M, q), then (M, *; L, a(L)) is an 
e-quadratic formation. In particular, if (M,q) is an e-quadratic form with a f.g. free 
lagrangian L any base of L extends to a base of M, with a simple isomorphism 
H,(L) + (M, W). Thus if (M, Yr; F, G) is an e-quadratic formation such that F and G 
are based A-modules of the same rank r, and such that the resulting two bases of rank 
2r for M differ by a simple automorphism, then (M, 9; F, G) is simple isomorphic to 
(&(A’); A’, a(A’)) for some simple automorphism Q: H,(A’)+H,(A’). The matrix of 
(Y is an element of the special unitary group W,(A) considered in 56 of Wall[4], and 
conversely any element (Y E W,(A) determines an e-quadratic formation 
(H,(A’); A’, a(A’)). Note, however, that for a formation (M, q’; F, G) with projective 
lagrangians F, G there may be no A-module isomorphism F + G, and hence no 
automorphism a : (M, 9) + (M, P) such that a(F) = G. 

Define L$i(T) (i(mod 2)) to be the abelian group with one generator for each 
isomorphism class of (-)‘-quadratic forms over Z[n], subject to the relations 

(M, ‘I’) = 0 if (M, Y) admits a lagrangian, 

with addition and inverses by 

(M,‘P)+(M’,Y’)=(M@M’,‘J’@‘P’),--(M,’l’)=(M,-’P). 

Define L$,,(n) (i(mod 2)) to be the abelian group with one generator for each 
isomorphism class of (-)‘-quadratic formations over Z[r], subject to the relations 

(M,*:F,G)=OifM=F@G 

(M, ‘J’; F, G) + (M, ‘I’; G, H) = (M, ‘I’; F, H), 

TOP Vol. 19. No. 3-C 
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with addition and inverses by 

(hf. ‘P: F, G) + (M’, ‘If’; F’, G’) = (M@M’, ‘P@P’; F@F’, G@G’) 
= -(M,‘P: F, G)(M,-‘P; F,G). 

The groups L”(T) (resp. L”‘(r)) (n(mod 4)) are defined in the same way as Lnp(7r), 
using f.g. free Z [rl-modules (resp. based Z [tr]-modules and simple isomorphisms). 
Here, an isomorphism of based Z [r]-modules is simple if it has 0 torsion in the 
Whitehead group %%(a) = EI(Z[7r])/{7r}. 

The L’groups are related to the Lh-groups by the Rothenberg exact sequence 

. . . --&“+‘(z*; Wh(rr))-,L”“(a)~L,h(X)~1Fin(Z*; wh(7r))+ *. . 

obtained by Shaneson[S]. The reduced Tate cohomology groups @*(Zz; G) of a 
Z 2-module G are defined by 

I$(Zz; G) = {g E Gl7’g = (-)‘g}/{h +(-)%/II E G} (i(mod 2)); 

the Whitehead group M(r) is regarded as a Zz-module by the duality involution 

*: wh(7r)* Wh(7r); 7(a: P+P)HT(ar*: P*+P*). 

The Lhgroups are related to the Lp-groups by the exact sequence 

. . . +An+yz2; ~~(Z[~]))-,L,h(~)~L.P(~)-*ti.(Z2; &(Z[T]))3. * * 

obtained by Ranicki[3]. The reduced projective class group &(Z[r]) is regarded as a 
Zz-module by the duality involution 

*: &(Z[?T])-+ Ic&$rl); [Pl++[p*l. 

$2. GEOMETRIC L.-GROUP!3 

Given a CW complex K and a map c~(K)-*{ 2 I} let J~~‘~‘(K) (resp. L.‘,“(K)) be 
the geometrically defined L-groups of 09 of Wall[4], involving normal maps from 
compact manifolds to simple (resp. finite) Poincare complexes. (Here, we are adopting 
the terminology regarding simple and finite Poincare complexes suggested in the 
footnote on p. 23 of Wall[4]). Let L,‘“(K) be the L-groups defined in exactly the 
same way, but using normal maps from compact manifolds to finitely dominated 
Poincare complexes. For the sake of completeness we spell out the definition of the 
appropriate “objects”. 

An “object*’ consists of the following: (1) a finitely dominated Poincart pair (Y, X) 
and a bundle v over Y, compact manifold N with boundary M, dim N = m; (2) a map 
cp : (N, M) + ( Y, X) of pairs of degree 1, including a homotopy equivalence M + X; (3) 
a stable framing F of TN@q*v; and finally (4) a map w: Y +K such that wy 
factorizes as 7r,( Y*7r,(K) + { It I}. 

Similarly for the relations. 
For each of the superscripts 9 = s, h, p there are defined “surgery obstruction” 

functions 

working as in PI, 85 and 86 of Wall [4], the case 9 = s. Given a normal map 
cf, b): M+X from a compact n-dimensional manifold M to a finitely dominated 
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Poincart complex X it is possible to perform surgery below the middle dimension as 
in Theorem I .2 of Wall [4]. For n = 2i there is obtained a non-singular (-)’ quadratic 
form (Ki(M), A, p) as in Theorem 5.2 of Wall[4], except that now Ki(M) is a f.g. 
projective module. For n = 2i + 1 there is obtained a non-singular (-)’ quadratic 

formation (Ifc_$(Ki+,( V, au), K;+l (U, au), Ki+l(Mo, au)) as in 96 of Wall [41, except 
that now Ki+l(Mo, aU) is a f.g. projective module, and there may not exist an 
automorphism (Y: of Hc_+(Ki+I( U, au)) sending Ki+r( U, 8U) to Ki+l(Mo, au). Alter- 
natively, the functions of (4 = s, h, p) may be defined using the chain complex method of 
Ranicki[9]. 

It is proved in Corollary 9.4.1 of Wall[4] that for a CW complex K with a finite 
2-skeleton the functions 

US : L.l*q(K)+ L,‘I(r,(K)) 

are isomorphisms for n 3 5, q = s. The proof applies equally well for 4 = h, so that the 
functions a$ are also isomorphisms for n > 5. The stable 4-dimensional surgery 
technique of Cappell and Shaneson[ lo] applies to prove that a% (4 = s, h) is an 
isomorphism for n = 4. 

THEOREM 2.1. If K has a finite 2-skeleton the function 

u$: L,‘*P(K)+~p(~,(K)) 

is an isomorphism for n 3 5, and a monomorphism for n = 4. 0 

The proof of Theorem 2.1 must necessarily differ from the cases q = s, h, since 
there is no analogue of the ~T-T theorem of $4 of Wall[4] for normal maps from 
compact manifolds with boundary to finitely dominated PoincarC pairs. Our proof is 
by a 5-lemma argument applied to the morphism of exact sequences 

- . -w L:;Pii(K) - L,‘sh(K) - L,lp(K) - L,‘g9h(K)+ . . 

. . * +tin+‘(&; R,(Z[~I(K)I))-*L,~(~,(K))~L,~(~~,(K))~E~”(Z~; I&,(Z[rr,(K)]))+. - * 

The relative cobordism groups Lt;+Prh(K) are defined to be the evident equivalence 
classes of “objects” consisting of: (1) a finitely dominated Poincare triad (2; Y, Y+) 
with Y f~ Y+ = X, and a bundle p over 2, such that (Y, X) is a finite PoincarC pair; (2) 
a compact manifold triad (P; IV, N+) with N II N+ = M, dim P = n + 1; (3) a map 
9: (P; N, N+)+(Z; Y, Y,) of degree 1, which restricts to a degree 1 map cp: (IV, M)-+ 
(Y, X), and to a homotopy equivalence Q+: (IV,, M)+( Y+, X); (4) a stable framing G 
of rp @**p which restricts to a stable framing F of rN @Q*v, where Y = ply; and 
finally (5) a map R: 2 + K such that wz factorizes as WI(Z) n. r,(K) + (2 l}, and wy 
factorizes as nr( Y) + r,(K) + { 2 1). 

The map a$sh: Lf;,Pih(K)+ &+‘(Zz; &,(Z[r,(K)])) sends such an object to the 
image of the Wall finiteness obstruction [Z] E &(Z[rQ)]). 

LEMMA 2.2. Let K be a space with finitely presented fundamental group m(K), which 
is equipped with a map r,(K)+{ 2 l}, and let n 3 5. For each f.g. projectioe Z[a,(K)]- 
module Q there exists a normal map q’: (P, N) + (2, Y) from a compact n-dimensional 
manifold with boundary (P, N) to a finitely dominated Poincar6 (2, Y), which is 
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equipped with a map Z+ K such that 
the maps T~( Y) + q,(Z), a,(Z) --, T,(K) are isomorphisms, 
wz factorizes as 7&T)+ 7rI(K)+{ t f}, 

L.21 = [Ql E &d~EmfK)l), 1 Yl = IQ1 + (-)“-‘IQ*1 E &f~h(lol). 

We defer the proof of Lemma 2.2 to 43. First, let us deduce Theorem 2.1 from 
Lemma 2.2 Every element [Q] E finC,(ZZ; %&Z[~,(K)])) is represented by a f.g. 
projective Z[r,(K)]-module Q such that [Q*] = (-F[Ql E &(Z[rr,(K)]). The (n + l)- 
dimensional normal map g: (P, N)+(Z, Y) given by Lemma 2.2 has [Y] = 
[Q] +(-)“[Q*] = 0 E &(Z[T,(K)]), so that Y is a finite n-dimensional Poincare 
complex, and we have an element of Li.!‘ih (K) (with N+ = Y, = 0) whose image under 
ugvh is [Q], showing that u$.~: Lt;Pi”(K)+A”+‘(Zz; &Z[T,(K)])) (n 24) is onto. In 
order to verify that a$? is one-one consider an object q: (P; N, N+)+(Z; Y, Y+) as 
above, representing an element of Li+!/h(K) such that u*~*~(*) = [Z] = 0 E 

fi”+‘(EZ; &(Z[v,(K)])) (n 2 3). Let Q be a f.g. projective Z(r,(K)]-module such that 

[Zl+ [Ql+ (--)“+‘[Q*l = 0 E &d~h,W)l), 

and let *: (p, fi) --, (2, i;) be the (n + 2)-dimensional normal map given by Lemma 2.2 
with 

[zl = [Ql, [PI = [Ql + (-)“+‘[Q*l E &GfhWl). 

Let- (p = $1: # + F, and form the connected sum 

Q#cj:((P#~;N,N+)-,(Z#~‘; Y, Y+h 

Now (p bounds a normal map, so that 9’ and ‘? # @ represent the same element of 

L!$ih(K). Now [Z#p] = [Z] + [VI = [Z] + IQ] + (-)"+'[Q*l = 0 E &(Z[T,(K)I), and by 
doing simultaneou-, l-surgeries on P #N and Z # Y to ensure 7r,-isomorphisms to K 
we can apply the r-r theorem of 04 of Wa11[4] to deduce that q #@ represents 0. 
Hence cp represents 0, showing that u$“: LI;+Pi”(K)+A”+‘(Zz; &(Z[rr,(K)])) (n 2 3) 
is one-one. 

It is immediate from Theorem 2.1 that if q: (N, M)+( Y, X) is a normal map of 
pairs to a finitely dominated n-dimensional Poincare pair (Y, X) with X finite and 
r,(X) = r,(Y) then the finite surgery obstruction a$(cp(: M+ X) E LI_,(7r,(X)) is the 
image of the projective class [Y] E K@[rr,(X)]) under the canonical map 
fi”(Z,; &(Z[rr,(X)J)) + Li_,(a,(X)). See Pedersen [ 111 for an application of this 
observation. 

53. REALIZING PROJECTIVE CLASSES 

Let K, Q, n be as in the statement of Lemma 2.2. In view of the Browder-Novikov 
transversality construction of normal maps in order to prove Lemma 2.2 it suffices to 
exhibit an n-dimensional Poincare pair (Z, Y) with a CAT (=TOP, PL or DIFF) 
reduction of the Spivak normal fibration VZ, and with a map Z+ K such that 

r,(Y) = r,(Z) = T,(K), wz: ~,(Z)+T,(K)+{--~ l}, 

[Zl = [Ql, [ Yl = [Ql + (-)“-‘[Q*l E &(~h,(K)lh 
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We now proceed to do just this. 
As r’(K) is finitely presented and n > 5 there exists a compact n-dimensional CAT 

manifold with boundary (X, 3X) equipped with a map X + K such that 

7r,(ax) = a,(X) = 7r,(K), wx: a,(X)+ T,(K)‘{ 2 11. 

By the realization theorem of Siebenmann[l2] (proved by the method of infinite 
repetition) there exists an open n-dimensional CAT manifold U with boundary 
8U = 8X and a tame end E such that 

T,(au) = 7r,( U) = 7r,(E), [VI = [el = [Ql 65 Glmnum 

Let (Z, Y) = (U, 8U U - V), with (U; au, V) as in Lemma 3.1: 

LEMMA 3.1. Let (U, 6’U) be an open n-dimensional CAT manifold U with compact 
boundary aU and a tame end E such that rr’(aU) = r’(U) 3 T’(E), n a 5. Then (U, aU) 
is homotopy equivalent rel aU to (0, au), for some finitely dominated n-dimensional 
Poincar6 cobordism (0; aU, V) with a CAT reduction of vu, r’(V) = 7r’(u) and 

[ z7] = [U], [V] = [U] + (--y-q VI* E Ro(Z[T,(U)]). 

Proof. As U x S’ has 0 finiteness obstruction by the main result of 
Siebenmann[l2] there exists a compact (n + I)-dimensional cobordism (U x S’; aU x 
S’. v) such that U x S’ - v = U x S’. Let p: 0 +m be the infinite cyclic cover- 
ing of U x S’ obtained from the universal cover R--j S’ by pullback along the 

composite 
‘projection 

U X S’ +Y U x S’ -- S’, and let V = p-‘(e) C u. We shall 

produce a homotopy equivalence 

(UxS';aUxsl,V)~(O; auxR, V)XS’, 

from which it follows that (U; aU, V) is a finitely dominated n-dimensional Poincart 
cobordism with a CAT reduction of VU. In the first instance we produce a homotopy 
equivalence V+ V X S’. 

Let U, 3 Uz 3 - . . be a system of neighbourhoods of infinity in U consisting of 
manifolds with boundary, and let [-, Ui] denote the functor associating to a CW, 
complex C the set [C, Vi] of free homotopy classes of maps C+ Ui. Consider the 

functor Lim [-, Ui]: C+Lim [C, Vi]. Since any two systems of neighbourhoods are 
i i 

cofinal this functor is independent of the system of neighbourhoods. 
Now U,xS’> UzxS’>... is a system of neighbourhoods of infinity in U x S’. 

Let Vl > Vz > . . - be a system of neighbourhoods of infinity in U x S’ = U x S’ - v 
consisting of collars of the boundary component v in U x S’, so that 

Lirn [C, Vi x S’] = Lirn [C, Vi] = [C, ii]. 
i i 

Let Vi = p-‘(vi) C U x S’. Passing to the covers we have 

Lirn [C, Vi x W] = Lirn [C, Vi] = [C, V], 
i I 
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so that 

[C, V X S’] = Lirn [C, Ui X S’] = [C, V]. 

Thus both the spaces e and V X S’ represent the functor Lirn [-, Vi], and there is 

determined a unique homotopy class of homotopy equivalences v’-, V x S’. 
Next, we give a geometric construction for a homotopy equivalence (U x S’; d U X 

S’, v>-*( 0; aU x R, V) x S’ which restricts to one of the specified homotopy 
equivalences v-, V x S’. The map into S’ is easily obtained, so we need only 
construct U x S’+ 0. Choose a collar VX IO, 11 of v in U X S’, with v = _ _ 
QX{O}C UXS’. Let Vi b e a neighbourhood of infinity in U such that Vi X S’ C v X 

(0, I]. Let n > 0 be so small that VX (0, n] C ui x S’. Identify 0 - V with U X R. 
The map UxS’+8 is defined to be the restriction of U X S’ --f 
U x R C 0; (U, S)H(U, 0) on U X S’ - e X [0, n], and on v X [O, n] to be the com- 
posite 

Qx{f}-J*VX{~}C UixS’zUiXWC VX(Oy1) 
projection 

b 

Vx{t}C iT(Ostsq). 
0 

54. THE SPLITTING THEOREM 

The L’groups are related to the L”groups by the splitting theorem 

L:(r x Z) = L,S(7r)@L,h-‘(n) (n(mod 4)) 

obtained geometrically by Shaneson [8]. Following Novikov [2] this was obtained 
algebraically by Ranicki[3], along with the corresponding splitting theorem relating 
the L*-groups to the Lp-groups 

L.“(,rr x Z) = L,*(r)@LZ_‘(7r) (n(mod 4)). 

The constructions of 52 and 13 can be used to also give a geometric proof of the latter 
theorem (for finitely presented P), i.e. to prove 

L~;~(K x 9) = L,,‘*h(K)@L:P,(K) (n a 6). 

We content ourselves with a geometric description of the maps involved. 
The maps L,‘**(K x S’)*L,, ‘s*(K) are the functorial splitting maps induced by 

K x Se K. 

and 

It remains to define L,‘**(K x S’)+ L!,f’(K). 
By the realization theorems of 55 and 96 of Wa11[4] every element of J!+‘*~(K X S’) 
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is represented by a normal map of compact n-dimensional manifold triads 

for some compact (n - 2)-dimensional manifold M equipped with a map M + K, such 
that cpJ = id.: M x S’ + M x S’ x 0 and cpj: N -P M X S’ x 1 is a homotopy equivalence. 
Making cp transverse regular at M X pt. X I (pt. X S’), so that cp-‘(M X pt. X I; M X 
pt. x 0, M x pt. x 1) = (W,,; M, No) C (W; M x S’, N) is a codimension 1 manifold triad, 
there is defined an (n - I)-dimensional normal map 

cpo = cpj: (Wo; M, No)+(M x I; M x 0, M x I). 

W 

MXS’ 
M WO , eNo N 

cp I-identlty ?I= homolopy 
equwalence 

MXS'XO MXS’Xl 

Fig. 1. 

Let ~I:(N,;No,zNo)+(M~[1,2];M~1,M~2) be the normal map of (n-l)- 
dimensional manifold triads obtained from the homotopy equivalence cp 1: N + M x S’ 
by cutting along cpol: No + M, with N’ = N - No obtained from N by cutting along No, 
and zNo denoting a copy of No. Let U be the open (n - 1)-manifold with compact 
boundary 8U = M and tame end E defined by 

and let W (U, aU)+ (M x 10, m), M x 0) be the proper degree 1 map defined by 

u 

I 

Mx to.-3 

MxO Mxl Mx2 Mx 3 

Fig. 2. 
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The construction of Lemma 3.1 now gives a degree 1 map of finitely dominated 
PoincarC triads 

WO;au, V)+(MxI;MxO,Mx 1) 

such that q/ = identity: aU=M+MxO and q: V+Mxl is a homotopy 
equivalence. Moreover, * is covered by a map of CAT reductions of the Spivak 
normal fibrations. The Browder-Novikov transversality construction now gives a 
normal map from a compact CAT manifold triad 

8: (P; Q, R)+(l?; au, V) 

such that 19(= identity: Q+ JU and 01: R + V is a homotopy equivalence. Define 

L’wc x S’)+L~!i(K); (cp: (W; M x S’, N)+(M x S’ x I; M x S’ x 0, M x S’ x 1)) 

~(~~:(~;Q,R)-,(M~I;Mxo,Mx~))-(~:(P;Q,R)-,(~;~u, v)). 

55. PROPER MANIFOLD THEORY 

As noted in the Introduction a finitely dominated n-dimensional Poincare complex 
X is such that XX S’ has the homotopy type of a compact CAT manifold (n 3 4) if 
and only if the Spivak normal fibration vx admits a CAT reduction for which the 
corresponding normal map cf, b): M + X has projective surgery obstruction 
a$Cft 6) = 0 E ~2,~(rr(X)). Equivalently, the total projective surgery obstruction of X 
(as defined in Ranicki[l3]) is s(X) = 0 E Ynp(X). We shall now characterize such 
Poincare complexes in terms of the homotopy types of certain open (n + l)-dimen- 
sional CAT manifolds. 

A proper n-dimensional CAT manifold (CAT = TOP, PL or DIFF) consists of: (i) 
an open (n + I)-dimensional CAT manifold M; (ii) a free Z-action Z X M--f M such 
that the quotient M/Z is compact; (iii) a homotopy retraction r: M/Z + M of the 
projection M --, M/Z. 

Then r x c: M/Z + M x S’ is a homotopy equivalence, where c: M/Z + BZ = S’ is 
the classifying map of the free Z-action, and M is a finitely dominated n-dimensional 

PoincarC complex. 

THEOREM 5.1. A finitely dominated n-dimensional Poincare complex X is such that 
X >: S’ has the homotopy type of a compact CAT manifold if and only if X has the 
homotopy type of a proper n-dimensional CAT manifold. 

Proof. If X x S’ is homotopy equivalent to a compact (n + l)-dimensional CAT 
manifold N then the infinite cyclic cover fi is a proper n-dimensional CAT manifold 
homotopy equivalent to X. The converse is obviqus. 

0 

$6. PROJECTIVE POINCd SURGERY 

Given a space K and a group morphism r,(K)+{ 2 1) let OzAT(K) (CAT = DIFF, 
PL or TOP) be the bordism group of maps M + K from compact n-dimensional CAT 
manifolds M for which the orientation map factors as We: m(M)+ T,(K)+{ k 1). 

We shall say that an n-dimensional Poincare complex is of type 4 for q = s, h, p if 
it is simple, finite, finitely dominated respectively. Similarly for Poincart pairs. Define 
the bordism group slzC*‘(K) of maps X+ K from n-dimensional Poincare complexes 
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X of type q with a CAT reduction of the Spivak normal fibration VX, such that 

wx: ?T,(X)-,a,(K)+{ 2 1). 
The result of Levitt [ 141. 

cn:‘^‘(pt.) = R:*r(pt.)@L”({l}) (n 3 5, q = s, h) 

admits the following generalization. 

THEOREM 6.1. If K is a CW complex with a finitely presented T,(K) then 

R:‘^‘(K) = fl~AT(K)@L,q(~,(K)) (n 2 5, q = s, h,p). 

Proof. Define a map 

R~C”T(K)-4:AT(K)@L,4(~,(K)); (X+ K)c*(M AX-, K, aS(Cf, b): M-*X)), 

with (f, b): M+X the normal map from a compact n-dimensional CAT manifold M 
obtained from the given CAT reduction of ux by the Browder-Novikov transversality 
construction. Define an inverse map 

to be the forgetful map on the first summand, and the following map on the second 
summand. By the isomorphisms a$: LiSq(K) = L,q(?rl(K)) (n 5 5) of 69 of Wall[4] 
(q = s, h) and Theorem 2.1 above (q =p) every element of Lnq(‘rrl(K)) can be 
expressed as the surgery obstruction a*“(_f, b) of a normal map cf, b): (N, M)+(Y, X) 
to an n-dimensional PoincarC pair of type q (Y, X), which is equipped with a map 
Y + K, such that the restriction e = fj: M + X is a simple homotopy equivalence for 
q = s, and a homotopy equivalence for q = h, p. Let W = Y U c - N be the n- 
dimensional Poincart complex of type q obtained from N and Y by reversing the 
orientation of N and glueing by e. The Spivak normal fibration vw has a CAT 
reduction, such that the corresponding normal map from a compact CAT manifold is 
given by 

(g, c) = cf, b) U ,id.: N U dN - N + W = Y U p - N, 

with surgery obstruction 

u: k, c) = a,4 cf, b) E Lq(m(K)). 

The required map is defined by 

Lq(rr,(K))4GCAT(K); a,4(f, b)c+(W+ K). 
cl 

Let &q(K) denote the bordism group of maps X + K from n-dimensional Poin- 
care complexes of type q for q = s, h, p. 

LEMMA 6.2. Zf K is a CW complex with finitely presented T,(K) the various Poincark 
bordism groups fLq(K) (q = s, h, p) are related to each other by exact sequences 
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***+An+Yz*; Wh(~))~R,‘(K)~R.“(K)~~i”(;llIz; wh(7r))+. * * 

. . . + fin+Yz2; Ko(Z[~l)) + f-Lb(K) + &P(K) + A”(Zz; &(Z[77])) +. . . 

(n ?= 5, 7r = 7rI (K)) 

Proof. This is immediate from Lemma 2.2, and from its analogue realizing 
Whitehead torsion elements using normal maps from compact manifolds with boun- 
dary to finite Poincare pairs. 0 

It follows from the Poincare surgery theories of Levitt [ 141, Jones [15] and 
Quinn[l6] that there is defined a braid of exact sequences 

with aaN = H,(K; MSG) the normal space bordism groups. We deduce from this 

and from Lemma 6.2: 

THEOREM 6.3. If K is a CW complex with finitely presented T,(K) there is defined a 
braid of exact sequences 

/ 
fi”+‘(&; Ko(Z[n(K)l)) -hnh(K) -RN(K) 

L/t\/ 
Lh(m(W) fLP(K) 

flN. (K/ L /” L 

(n 3 5) 

Furthermore, as a consequence of the splitting theorems 
above) we have 

f-l;(K x S’) = fi.S(K)@@_,(K) 

finh(K x S’) = fLh(K)@fl:_,(K). 

57. SURGERYONOPEN MANIFOLDS 

q 

for the L-groups (see 94 

(n 26) 

We shall now relate our projective surgery theory to the open surgery theory of 
Maumary [5,63 and Taylor [7]. 

In his thesis Taylor[7] sets up a surgery theory along the lines of 09 of Wall [4], 
involving paracompact open manifolds and open Poincare complexes (which are not 
in general Poincart complexes in the sense of Wall [ I]). We outline this theory: 

Let K be a locally finite CW complex, and let Wh(K) denote the Whitehead group 
of K in the sense of Siebenmann[l7]. Using the algebraic description of Wh(K) in 
terms of locally finite infinite matrices due to Farrell and Wagoner[ 181 there is defined 
a duality involution*on WI(K). An n-dimensional open Poincare complex is a locally 
finite CW complex X together with a fundamental class [Xl E H,,‘.‘(X) in the 
homology theory defined by locally finite chains-we refer to Taylor-[71 for the details 
of the open Poincare duality itself. At any rate, if X is a locally finite CW complex 
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such that X = 6 Xi for some subcomplexes Xi(i = 1,2,. . .) such that each (Xi; Xi fl 
i=l 

Xi_,, Xi n Xi+,) (i 5 1, X0 = 0) is a finite n-dimensional Poincare triad (in the usual 
sense) then X is an n-dimensional open Poincare complex. In particular, paracompact 
open manifolds have such decompositions and are open Poincare complexes. It is 
shown in Taylor[7] that the open Poincare duality of an n-dimensional open Poincare 
complex X has a proper Whitehead torsion r(X) E wh(X) such that T(X)* = 
(-)V(X) E wh(X), and such that r(X) = 0 if X is a paracompact open manifold. 
Following $9 of Wall[4] there are defined geometric L-groups Q”““(K) for q = s 
(resp. h) involving proper normal maps from paracompact open manifolds to open 
Poincare complexes with zero (resp. arbitrary) proper Whitehead torsion, with proper 
reference maps to K. A proper analogue of the T--P theorem of 04 of Wall[4] is 
obtained, proving that a proper normal map of pairs cp: (N, M) -+ (Y, X) with X C Y a 
proper l-equivalence can be made a proper homotopy equivalence by open surgery. It 
then follows that a proper normal map M + X with an n-dimensional open Poincare 
complex of type q can be made a proper q-homotopy equivalence by open surgery if 
and only if it represents 0 in I”“““(X) (q = s, h, n 2 6). Furthermore, if X + K is a 
proper l-equivalence of locally finite CW complexes then the maps L,‘7+own(X)+ 
J?~~*“““(K) are isomorphisms (q = s, h). 

The theory of Maumary[5,6] is primarily concerned with the algebraic deter- 
mination of the groups L,“*Open (K), as follows. Let Kr 3 Kz 3 K3 3 . - . be a sequence 

of neighbourhoods of infinity in K, so that each K, is cocompact and Ki = 8. Let 
i=l 

ILq(K) = if, Ln’(al(Ki)) (q = p, h), and define maps 

I- s: Kq(K)+ Lnq(mW)OKqW); (al, a2,. . .)+-+(-j&d, al - i*(ad, . . A 

where j* denotes the maps induced by the inclusions j: Ki C Ki-1 (i 2 1, KO = K). (The 
problem of base points is solved by choosing an appropriate tree.) 

THEOREM 7.1. (Maumary) The groups L,,*+“(K) fit into an exact sequence 

Taylor[7] obtains the following realizability theorem for open surgery obstruc- 
tions. 

THEOREM 7.2. (Taylor) Eoery element of L2”P”(K) (n B 6) is the open surgery 

obstruction of a proper normal map of n-dimensional open manifold triads 
~:(W;M,N)~(MxI;MXO,Mxl) with q/=id.:M+MxO, 9/:N+Mxl a 
proper homotopy equivalence. 

Remark. A similar result was also obtained for L:OPc”(K) (n 2 6). 

We proceed with some specific computations of the L~~Op”-groups, which will 
enable us to relate them to the geometric construction of the projective L-groups in 

02. 
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PROPOSITION 7.3. If K is a finite CW complex 

LQ‘=(Kx[o,~))=o (q=s,h,n36). n 

Proof. In the first instance note that WJr(K x [Cl, 3~)) = 0 (Siebenmann[ 171, so that 
L h*+n(X_ x [Q m)) = 

th’at L,k”m 

J_;*p* (I( x [O, m)). The exact sequence of Theorem 7.1 implies 
YrC X [O, p)) = 0. Alternatively, this may be deduced from Theorem 7.2 by 

an inductive appfication of the usual F-Z- theorem. 
cl 

Remark. Let R” + [O, p); x~I[x(( be the norm map. Then K x Iw” + K X [0,x) is a 
proper l-equivalence for m 3 3, so that Ln4*“DCn (KxWm)=O(q=s,h,m~3,n~6). 

0 

We seek to exhibit isomorphisms for a finite CW complex K 

thus proving L$,b’P(K x R) = Lp(tr’(K)) (which can also be obtained directly from 
Theorem 7.1). An element of J~.‘,~(K) is an equivalence class of n-dimensional normal 
maps cp: (IV, M)+( Y, X) to finitely dominated Poincare pairs (Y, X) equipped with a 
reference map to K, such that rpl: M-X is a homotopy equivalence. We cross the 
normal map with S’ and choose a finite CW complex 2 with X x S’ as a subcomplex 
and (2, X x S’) homotopy equivalent to (Y x S’, X x S’). The map Z+ K x S’ is 
proper since both spaces are compact. The pullback of K x Iw+ K x S’ will thus 
produce an (n + I)-dimensional open surgery problem 

(NxW,MxR)-+(Z,XxR)-,KxR 

defining an element of L$,?F(K XW). Noting that Wh(K xR) = &(Z[rr’(K)I) 
(Siebenmann[l7]) it is easy to see that the torsion of the open PoincarC duality pair 
(2, X x R) is the Wall finiteness obstruction [Y] E &(Z[rr,(K)]) (assuming rl( Y) = 

TI(K)). 

THEOREM 7.4. If K is a finite CW complex the map 

L,‘.P(K) = L,zp(q(K))+ L:$/=(K x 8%) 

is an isomorphism for n 3 7. 

Proof. Taylor[7] obtains an analogue of the Rothenberg exact sequence 

* * . +fi”(Z*; Wh(T))-*L,‘*“P”(T)_,L,h.open(T)_,An-’(Z*; W(T))j.. . 

for any locally finite CW complex T. The map fi”(Z,; wh( T)) + L,S~ow”( T) is given by 
constructing a proper homotopy equivalence of open manifolds with prescribed 
proper Whitehead torsion and regarding it as an open surgery problem of type s. The 

map n I. h*own(T)+ fin-‘(Zz; Wh(T)) is given by sending cp: ( W; M, N)+ 
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(M x I; A4 x 0, A4 x 1) (as in Theorem 7.2) to the torsion of the proper homotopy 
equivalence cpj: N +A4 x 1. In the case of interest to us T = K XR, so WZt(K x R) z 

&(Z[7r,(K)]) (as a Zz-module) and we have a morphism of exact sequences 

the maps not yet defined being 

In view of the 5-lemma it now suffices to prove that the latter maps are isomor- 
phisms. They are monomorphisms by Siebenmann[l2]. To see that they are also 
epimorphisms represent an element of L,s*Op” (K xTP) by an open surgery problem 

W ;A4 x I x R with M a compact (n -2)-dimensional manifold, JW = 

A4 x 0 x R u a, W, 8, W :A4 x 1 x R a simple proper homotopy equivalence. Using 

Siebenmann [ 121 again, we can make q transverse to M X I X 0 obtaining a homotopy 
equivalence on J(M x I). Crossing with R we obtain a surgery problem with the same 

open surgery obstruction as W :A4 x I x R, as is seen by a double application of 

Proposition 7.3. 
0 

Remark. Using Maumary’s work the isomorphism of Theorem 7.4 can be extended 
to n = 6. c3 
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