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From Goeritz matrices to
quasi-alternating links

by

Józef H. Przytycki

Introduction

Knot Theory is currently a very broad field. Even a long survey can only
cover a narrow area. Here we concentrate on the path from Goeritz matrices
to quasi-alternating links. On the way, we often stray from the main road
and tell related stories, especially if they allow as to place the main topic
in a historical context. For example, we mention that the Goeritz matrix
was preceded by the Kirchhoff matrix of an electrical network. The network
complexity extracted from the matrix corresponds to the determinant of a
link. We assume basic knowledge of knot theory and graph theory, however,
we offer a short introduction under the guise of a historical perspective.

1 Short historical introduction

Combinatorics, graph theory, and knot theory have their common roots in
Gottfried Wilhelm Leibniz’ (1646-1716) ideas of Ars Combinatoria, and Ge-
ometria Situs. In Ars Combinatora, Leibniz was influenced by Ramon Llull
(1232 – 1315) and his combinatorial machines (Figure 1.1; [Bon]).
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Fig. 1.1; Combinatorial machine of Ramon Llull from his Ars Generalis Ultima

Geometria (or Analysis) Situs seems to be an invention of Leibniz. I am
not aware of any Ancient or Renaissance influence (compare however [P-21].
The first convincing example of geometria situs was proposed by Heinrich
Kuhn in a letter written in 1735 to Leonard Euler (1707-1783). Kuhn (1690-
1769) was a Danzig (Gdańsk) mathematician born in Königsberg, studied
at the Pedagogicum there, and in 1733 settled in Danzig as a mathematics
professor at the Academic Gymnasium (he was also a co-founder of the Na-
ture Society) [Janus]. Kuhn communicated to Euler the puzzle of bridges
of Königsberg, suggesting that this may be an example of geometria situs.
Kuhn was communicating, in fact, through his friend Carl Leonhard Gottlieb
Ehler (1685-1753), correspondent of Leibniz and future mayor of Danzig.
The first letter by Ehler did not survive but in the letter of March 9, 1736 he
writes: “You would render to me and our friend Köhn a most valuable ser-
vice, putting us greatly in your debt, most learned Sir, if you would send us
the solution , which you know well, to the problem of the seven Königsberg
bridges, together with a proof. It would prove to be an outstanding exam-
ple of Calculi Situs, worthy of your great genius. I have added a sketch
of the said bridges ...” In the reply of April 3, 1736 Euler writes “... Thus
you see, most noble Sir, how this type of solution bears little relationship to
mathematics, and I do not understand why you expect a mathematician to
produce it, rather than anyone else, for the solution is based on reason alone,
and its discovery does not depend on any mathematical principle. Because
of this, I do not know why even questions which bear so little relationship
to mathematics are solved more quickly by mathematicians than by others.
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In the meantime, most noble Sir, you have assigned this question to the
geometry of position, but I am ignorant as to what this new discipline
involves, and as to which types of problem Leibniz and Wolff expected to see
expressed in this way ... ” [H-W]. However when composing his famous paper
on bridges of Königsberg, Euler already agrees with Kuhn suggestion. The
geometry of position figures even in the title of the paper Solutio problematis
ad geometriam situs pertinentis.1

The first paper mentioning knots from the mathematical point of view
is that of Alexandre-Theophile Vandermonde (1735-1796) Remarques sur les
problèmes de situation [Va]. Carl Friedrich Gauss (1777-1855) had interest
in Knot Theory whole his life, starting from 1794 drawings of knots, the
drawing of a braid with complex coordinates (c. 1820), several drawing of
knots with “Gaussian codes”, and Gauss’ linking number of 1833. He did
not publish anything however; this was left to his student Johann Benedict
Listing (1808-1882) who in 1847 published his monograph (Vorstudien zur
Topologie, [Lis]). The monograph is mostly devoted to knots, graphs and
combinatorics.

In the XIX century Knot Theory was an experimental science. Topology
(or geometria situs) had not developed enough to offer tools allowing pre-
cise definitions and proofs2 (here Gaussian linking number is an exception).
Furthermore, in the second half of that century Knot Theory was developed
mostly by physicists (William Thomson (Lord Kelvin)(1824-1907), James

1In the paper, Euler writes: “The branch of geometry that deals with magnitudes
has been zealously studied throughout the past, but there is another branch that has
been almost unknown up to now; Leibniz spoke of it first, calling it the “geometry of
position” (geometria situs). This branch of geometry deals with relations dependent on
position; it does not take magnitudes into considerations, nor does it involve calculation
with quantities. But as yet no satisfactory definition has been given of the problems that
belong to this geometry of position or of the method to be used in solving them. Hence,
when a problem was recently mentioned, which seemed geometrical but was so constructed
that it did not require the measurement of distances, nor did calculation help at all, I had
no doubt that it was concerned with the geometry of position–especially as its solution
involved only position, and no calculation was of any use. I have therefore decided to give
here the method which I have found for solving this kind of problem, as an example of the
geometry of position. 2. The problem, which I am told is widely known, is as follows: in
Königsberg in Prussia, there is... ”[Eu, B-L-W].

2Listing writes in [Lis]: In order to reach the level of exact science, topology will have

to translate facts of spatial contemplation into easier notion which, using corresponding

symbols analogous to mathematical ones, we will be able to do corresponding operations

following some simple rules.
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Clerk Maxwell (1831-1879), Peter Guthrie Tait(1831-1901)) and one can ar-
gue that the high level of precision was not appreciated3. We outline the
global history of the Knot Theory in [P-21] and in the second chapter of my
book on Knot Theory [P-Book]. In the next subsection we deal with the
mathematics developed in order to understand precisely the phenomenon of
knotting.

1.1 Precision comes to Knot Theory

Throughout the XIX century knots were understood as closed curves in a
space up to a natural deformation, which was described as a movement in
space without cutting and pasting. This understanding allowed scientists
(Tait, Thomas Penyngton Kirkman, Charles Newton Little, Mary Gertrude
Haseman) to build tables of knots but didn’t lead to precise methods allowing
one to distinguish knots which could not be practically deformed from one
to another. In a letter to O. Veblen, written in 1919, young J. Alexander
expressed his disappointment4: “When looking over Tait On Knots among
other things, He really doesn’t get very far. He merely writes down all the
plane projections of knots with a limited number of crossings, tries out a few
transformations that he happen to think of and assumes without proof that
if he is unable to reduce one knot to another with a reasonable number of
tries, the two are distinct. His invariant, the generalization of the Gaussian
invariant ... for links is an invariant merely of the particular projection
of the knot that you are dealing with, - the very thing I kept running up
against in trying to get an integral that would apply. The same is true of his
‘Beknottednes’.”

In the famous Mathematical Encyclopedia Max Dehn and Poul Heegaard
outlined a systematic approach to topology, in particular they precisely for-
mulated the subject of the Knot Theory [D-H], in 1907. To bypass the notion
of deformation of a curve in a space (then not yet well defined) they intro-
duced lattice knots and the precise definition of their (lattice) equivalence.

3This may be a controversial statement. The precision of Maxwell was different than
that of Tait and both were physicists.

4We should remember that it was written by a young revolutionary mathematician
forgetting that he is “standing on the shoulders of giants.” [New]. In fact the invariant
Alexander outlined in the letter is closely related to Kirchhoff matrix, and extracted nu-
merical invariant is equivalent to complexity of a signed graph corresponding to the link
via Tait translation; see Subsection 1.4.
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Later Reidemeister and Alexander considered more general polygonal knots
in a space with equivalent knots related by a sequence of ∆-moves; they also
explained ∆-moves by elementary moves on link diagrams – Reidemeister
moves (see Subsection 1.6). The definition of Dehn and Heegaard was long
ignored and only recently lattice knots are again studied. It is a folklore
result, probably never written down in detail5, that the two concepts, lattice
knots and polygonal knots, are equivalent.

1.2 Lattice knots and Polygonal knots

In this part we discuss two early XX century definitions of knots and their
equivalence, by Dehn-Heegaard and by Reidemeister. In the XIX century
knots were treated from the intuitive point of view and was P. Heegaard in
his 1898 thesis who came close to a formal proof that there are nontrivial
knots.

Dehn and Heegaard gave the following definition of a knot (or curve in
their terminology) and of equivalence of knots (which they call isotopy of
curves)6.

Definition 1.1 ([D-H])
A curve is a simple closed polygon on a cubical lattice. It has coordinates
xi, yi, zi and an isotopy of these curves is given by:

(i) Multiplication of every coordinate by a natural number,

(ii) Insertion of an elementary square, when it does not interfere with the
rest of the polygon.

(iii) Deletion of the elementary square.

Elementary moves of Dehn and Heegaard can be summarized/explained
as follows:

(DH0) Rescaling. We show in [P-Book] that this move is a consequence of
other Dehn-Heegaard moves.

(DH1) If a unit square intersects the lattice knot in exactly two neighboring
edges then we replace this edges by two other edges of the square, as
illustrated in Fig. 1.2 (DH1).

5It is however long routine exercise
6Translation from German due to Chris Lamm.
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(DH2) If a unit square intersects the lattice knot in exactly one edge then we
replace this edges by three other edges of the square, as illustrated in
Fig. 1.2 (DH2).

DHDH1 2

Fig. 1.2; Lattice moves DH1 and DH2

In this language, lattice knots (or links) and lattice isotopy are defined
as follows.

Definition 1.2 A lattice knot is a simple closed polygon on a cubical lattice.
Its vertices have integer coordinates xi, yi, zi and edges, of length one, are
parallel to one of the coordinate axis. We say that two lattice knots are
lattice isotopic if they are related by a finite sequence of elementary lattice
(“square”) moves as illustrated in Fig. 1.2 (we allow DH1-move, DH2-move
and its inverse DH−1

2 -move). These are moves (ii) and (iii) of Dehn and
Heegaard.

Below we give a few examples of lattice knots.
They can be easily coded as (cyclic) words over the alphabet {x±1, y±1, z±1}.

For example the trivial knot can be represented by xyx−1y−1, the trefoil knot
by x2z3y2x−1z−2y−3zx2y2x−3y−1z−2, and the figure-eight knot
by y2z2xy−3x2y2z−1x−4y−2x3yz2x−2z−3; see Figure 1.3.

0 1

0

3

2 0

1 23

Fig. 1.3; A trivial lattice knot, with 4 edges, 4 right angles and no changes
of planes. A lattice trefoil with 24 edges, 12 right angles and 8 changes of

planes. A lattice figure-eight knot with 30 edges, 14 right angles and 8
changes of planes. The numbers are the z-levels and the dots are the sticks

in z-direction.
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1.3 Early invariants of links

The fundamental problem in knot theory is7 to be able to distinguish non-
equivalent knots. It was not achieved (even in the simple case of the unknot
and the trefoil knot) until Jules Henri Poincaré (1854-1912) in his “Analysis
Situs” paper ([Po-1] 1895) laid foundations for algebraic topology. According
to W.Magnus wrote [Mag]: Today, it appears to be a hopeless task to assign
priorities for the definition and the use of fundamental groups in the study
of knots, particularly since Dehn had announced [De] one of the important
results of his 1910 paper (the construction of Poincaré spaces with the help
of knots) already in 1907.. Wilhelm Wirtinger (1865-1945) in his lecture
delivered at a meeting of the German Mathematical Society in 1905 outlined
a method of finding a knot group presentation (it is called now the Wirtinger
presentation of a knot group) [Wir], but examples using his method were
given after the work of Dehn.

1.4 Kirchhoff’s complexity of a graph

Gustav Robert Kirchhoff (1824-1887) in his fundamental paper on electrical
circuits [Kir]. published in 1847, defined the complexity of a circuit. In the
language of graph theory, this complexity of a graph, τ(G), is the number
of spanning trees of G, that is trees in G which contain all vertices of G. It
was noted in [BSST] that if e is an edge of G that is not a loop then τ(G)
satisfies the deleting-contracting relation:

τ(G) = τ(G− e) + τ(G/e),

where G − e is the graph obtained from G by deleting the edge e, and G/e
is obtained from G by contracting e, that is identifying endpoints of e in
G− e. The deleting-contracting relation has an important analogue in knot
theory, usually called a skein relation (e.g. Kauffman bracket skein relation).
Connections were discovered only about a hundred years later (e.g. the
Kirchhoff complexity of a circuit corresponds to the determinant of the knot
or link yielded by the circuit, see the next subsection).

For completeness, and to be later to see clearly connection to Goeritz
matrix in knot theory, let us defined the (version of) the Kirchhoff matrix of

7One should rather say “was”; there are algorithms allowing recognition of any knots,
even if very slow. Modern Knot Theory looks rather for structures on a space of knots or
for a mathematical or physical meaning of knot invariants.
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a graph, G, determinant of which is the complexity τ(G).

Definition 1.3 Consider a graph G with vertices {v0, v1, . . . , vn} possibly
with multiple-edges and loops (however loops are ignored in definitions which
follows).

(1) The adjacency matrix of the graph G is the (n + 1) × (n + 1) matrix
A(G) whose entries, aij are equal to the number of edges connecting vi
with vj; we set vi,i = 0.

(2) The degree matrix ∆(G) is the diagonal (n+ 1)× (n+ 1) matrix whose
ith entry is the degree of the vertex vi (loops are ignored). Thus the ith
entry is equal to −∑n

j=0 aij.

(3) The Laplacian matrix Q′(G) is defined to be ∆(G) −A(G); [Big]. No-
tice, that the sum of rows of Q′(G) is equal to zero and that Q′(G) is a
symmetric matrix.

(4) The Kirchoff matrix (or reduced Laplacian matrix) Q(G) of G is ob-
tained from Q′(G) by deleting the first row and the first column from
Q′(G).

Theorem 1.4 det(Q(G)) = τ(G).

Proof: The shortest proof, I am aware of, is by direct checking that det(Q(G))
satisfies deleting-contracting relation for any edge e, not a loop, that is

det(Q(G)) = det(Q(G− e)) + det(Q(G/e)).

The above equation plays an important role in showing in Section 7 that an
alternating link is a quasi-alternating as well. �

Example 1.5 Consider the graph
0v

v 1v 2

. For this graph we have:

A( ) =





0 1 1
1 0 2
1 2 0



 , ∆( ) =





2 0 0
0 3 0
0 0 3



 .

Q′( ) =





2 −1 −1
−1 3 −2
−1 −2 3



 ; Q( ) =

[

3 −2
−2 3

]

.
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det(Q( )) = det

[

3 −2
−2 3

]

= 5 = τ( ).

As we will see in the next subsection the corresponding knot is the figure
eight knot (Fig. 1.4).

1.5 Tait’s relation between knots and graphs.

Tait was the first to notice the relation between knots and planar graphs. He
colored the regions of the knot diagram alternately white and black (following
Listing) and constructed the graph by placing a vertex inside each white
region, and then connecting vertices by edges going through the crossing
points of the diagram (see Figure 1.4)[D-H].

.

..

.

. .

Figure 1.4; Tait’s construction of graphs from link diagrams, according to
Dehn-Heegaard
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It is useful to mention the Tait construction going in the opposite direc-
tion, from a signed planar graph, G to a link diagram D(G). We replace
every edge of a graph by a crossing according to the convention of Figure 1.5
and connect endpoints along edges as in Figures 1.6 and 1.7.

Fig. 1.5; convention for crossings of signed edges (edges without markers
are assumed to be positive)

Fig. 1.6; The knot 819 and its Tait graph (819 is the first in tables
non-alternating knot)

Fig. 1.7; Octahedral graph (with all positive edges) and the associated link
diagram
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We should mention here one important observation known already to Tait
(and in explicit form to Listing):

Proposition 1.6 The diagram D(G) of a connected graph G is alternating
if and only if G is positive (i.e. all edges of G are positive) or G is negative.

A proof is illustrated in Figure 1.8.

Fig. 1.8; Alternating and non-alternating parts of a diagram

1.6 Link diagrams and Reidemeister moves

In this part we define, after Reidemeister, a polygonal knot and link, and
∆-equivalence of knots and links. A ∆-move is an elementary deformation
of a polygonal knot which intuitively agrees with the notion of “deforming
without cutting and glueing” which is the first underlining principle of topol-
ogy.

Definition 1.7 (Polygonal knot, ∆-equivalence) .

(a) A polygonal knot is a simple closed polygonal curve in R3.

(b) Let us assume that u is a line segment (edge) in a polygonal knot K
in R3. Let ∆ be a triangle in R3 whose boundary consists of three line
segments u, v, w and such that ∆∩L = u. The polygonal curve defined
as K ′ = (K−u)∪v∪w is a new polygonal knot in R3. We say that the
knot K ′ was obtained from K by a ∆-move. Conversely, we say that L
is obtained from L′ by a ∆−1-move (Fig. 1.9). We allow the triangle

11



∆ to be degenerate so that the vertex v ∩ w is on the side u; in other
words we allow subdivision of the line segment u.8

(c) We say that two polygonal knots are ∆-equivalent (or combinatorially
equivalent) if one can be obtained from the other by a finite sequence of
∆- and ∆−1-moves.

u

vw D

Fig. 1.9

Polygonal links are usually presented by their projections to a plane. Let
p : R3 → R2 be a projection and let L ⊂ R3 be a link. Then a point P ∈ p(L)
is called a multiple point (of p) if p−1(P ) contains more than one point (the
number of points in p−1(P ) is called the multiplicity of P ).

Definition 1.8 The projection p is called regular if

(1) p has only a finite number of multiple points and all of them are of
multiplicity two,

(2) no vertex of the polygonal link is an inverse image of a multiple point
of p.

Thus in case of a regular projection the parts of a diagram, illustrated in the
figure below, are not allowed.

8Notice, that any subdivision is a combination of three non-degenerate ∆-moves, or
more precisely two ∆-moves and the inverse to a ∆-move:

−move −move     
    −move
−1
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Maxwell was the first person to consider the question when two pro-
jections represent equivalent knots. He considered some elementary moves
(reminding future Reidemeister moves), but never published his findings.

The formal interpretation of ∆-equivalence of knots in terms of diagrams.
Was done by Reidemeister [Re-1], 1927, and Alexander and Briggs [A-B],
1927.

Theorem 1.9 (Reidemeister theorem)
Two link diagrams are ∆-equivalent9 if and only if they are connected by
a finite sequence of Reidemeister moves R±1

i , i = 1, 2, 3 (see Fig. 1.10) and
isotopy (deformation) of the plane of the diagram. The theorem holds also for
oriented links and diagrams. One then has to take into account all possible
coherent orientations of diagrams involved in the moves.

9In modern Knot Theory, especially after the work of R. Fox, we use usually the
equivalent notion of ambient isotopy in R3 or S3. Two links in a 3-manifold M are
ambient isotopic if there is an isotopy of M sending one link into another.

13



R3

R3

R2

R1
or

Figure 1.10; Reidemeister moves; we draw two versions of the first and the
third moves which are related by a mirror symmetry in the plane of the

projection

2 Goeritz matrix and signature of a link

In the first half of XX-century combinatorial methods ruled over knot the-
ory, even if more topological approach was possible, for example, Reidemeis-
ter moves were used to prove existence of the Alexander polynomial even if
purely topological prove using the fundamental group was possible and prob-
ably well understood by Alexander himself. Later, after the Second World
War, to great extend under influence of Ralph Hartzler Fox (1913 -1973),
Knot Theory was considered to be a part of algebraic topology with fun-
damental group and coverings playing an important role. The renaissance
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of combinatorial methods in Knot Theory can be traced back to Conway’s
paper [Co-1] and bloomed after the Jones breakthrough [Jo-1] with Conway
type invariants and Kauffman approach (compare Chapter III of [P-Book]).
As we already mentioned, these had their predecessors in 1930th [Goe, Se].
Goeritz matrix of a link can be defined purely combinatorially and is closely
related to Kirchhoff matrix of an electrical network. Seifert matrix is a gen-
eralization of the Goeritz matrix and, even historically, its development was
mixing combinatorial and topological methods.

In this section we start from the work of L. Goeritz. He showed [Goe]
how to associate a quadratic form to a diagram of a link and moreover how
to use this form to get algebraic invariants of the knot (the signature of this
form, however, is not an invariant of the knot). Later, H. F. Trotter [Tro-1],
using Seifert form (see Section 3), introduced another quadratic form, the
signature of which was an invariant of links.

C. McA. Gordon and R. A. Litherland [G-L] provided a unified approach
to Goeritz and Trotter forms. They showed how to use the form of Goeritz
to get (after adding a correcting factor) the signature of a link (this signature
is often called a classical or Trotter, or Murasugi [M-10] signature of a link).

We begin with a purely combinatorial description of the matrix of Goeritz
and of the signature of a link. This description is based on [G-L] and [Tral-1].

Definition 2.1 Let L be a diagram of a link. Let us checkerboard color the
complement of the diagram in the projection plane R2, that is, color in black
and white the regions into which the plane is divided by the diagram10. We
assume that the unbounded region of R2 \L is colored white and it is denoted
by X0 while the other white regions are denoted by X1, . . . , Xn. Now, to any
crossing, p, of L we associate the number η(p) which is either +1 or −1
according to the convention described in Fig. 2.1.

10This (checkerboard) coloring was first used by P. G. Tait in 1876/7, compare Chapter
II of [P-Book], however we switched, after C. Gordon, the role of white and black. We
can say that Tait convention worked well with a blackboard, while our convention with
white-board.
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1 -1

Fig. 2.1

Let G′ = {gi,j}ni,j=0, where

gi,j =







−∑

p η(p) for i 6= j, where the summation extends

over crossings which connect Xi and Xj

−∑

k=0,1,...,n;k 6=i gi,k if i = j

The matrix G′ = G′(L) is called the unreduced Goeritz matrix of the
diagram L. The reduced Goeritz matrix (or shortly Goeritz matrix) associated
to the diagram L is the matrix G = G(L) obtained by removing the first row
and the first column of G′.

Theorem 2.2 ([Goe, K-P, Ky].) Let us assume that L1 and L2 are two
diagrams of a given link. Then the matrices G(L1) and G(L2) can be obtained
one from the other in a finite number of the following elementary operations
on matrices:

1. G⇔ PGP T , where P is a matrix with integer entries and detP = ±1.

2.

G⇔
[

G 0
0 ±1

]

3.

G⇔
[

G 0
0 0

]

Moreover, if L is a diagrams of a knot11, then operations (1) and (2) are
sufficient.

11It suffices to assume that L represent a non-split link, that is a link all projections of
which are connected.
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Corollary 2.3 | detG| is an invariant of isotopy of knots called the deter-
minant of a knot12.

A sketch of a proof of Theorem 2.2
We have to examine how a Goeritz matrix changes under Reidemeister

moves. The matrix does not depend on the orientation of the link, let us as-
sume, however, that the diagram L is oriented. We introduce new notation:
a crossing is called of type I or II according to Fig. 2.2. Moreover, we define
µ(L) =

∑

η(p), where the summation is taken over crossings of type II.

I II

Fig. 2.2

Now let us construct a graph with vertices representing black regions (this
is the Tait’s construction, however, the choice of black and white regions is
reversed) and edges in bijection with crossings of L. Edges of the graph are in
bijection with crossings of L: two vertices of the graph are joined if and only
if the respective regions meet in a crossing13. Let B(L) denote the number
of components of such a graph. From now on, let R be a Reidemeister
move. We denote by G1 the Goeritz matrix of L, and by G2 the matrix
of R(L). Similarly we set µ1 = µ(L), µ2 = µ(R(L)) and also β1 = B(L),

12Often, by the determinant of a knot one understands the more delicate invariant whose
absolute value is equal to | detG|; see Corollary 2.7. This determinant can be defined, also,
as the Alexander-Conway or Jones polynomial at t = −1; compare Corollary 6.18.

13This construction of Tait is an important motivation for material in Chapter V of
[P-Book]. The constructed graph, which we denote by Gb(L), is usually called the Tait
graph of L (see the first section). For an alternating diagram L this graph is the same
as the graph Gs+(L) considered in Chapter V of [P-Book]. We often equip the edges of
Gb(L) with signs: the edge corresponding to a vertex p has the sign η(p) (see Figure 2.1).
The signed graph Gb(L) is considered in Chapter V of [P-Book]; compare also Definition
7.4.
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β2 = B(R(L)). We will write G1 ≈ G2 if G1 and G2 are in relation (1) and
G1 ∼ G2 if G2 can be obtained from G1 by a sequence of relations (1)–(3).

1. Let us consider the first Reidemeister move R1.

(a) In the case shown in Fig. 2.3 we have: β1 = β2, µ1 = µ2 and
G1 ≈ G2.

Fig. 2.3

(b) In the case shown in Fig. 2.4 we have:

β1 = β2, µ2 = µ1 + η(p), G2 =

[

G1 0
0 η(p)

]

P
X n+1

Fig. 2.4

2. Let us consider the second Reidemeister move R2.

(a) In the case described in Fig. 2.5 we get immediately that β1 = β2

and µ1 = µ2 (either both crossings are of type I or of type II and
always of opposite signs), G1 ≈ G2.

Ω2

Fig. 2.5
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(b) In the case described in Fig. 2.6 we have to consider two subcases.
In each of them µ1 = µ2, since the two new crossings are either
both of type I or both of type II and always of opposite signs:

Fig. 2.6

(i) β1 = β2. Then

G2 ≈





G1 0
1

0 −1



 or

[

G2 0
0 1

]

≈









G1 0
1

1
0 −1









We leave it for the reader to check, c.f. [K-P].
Both possibilities give G1 ∼ G2.

(ii) β2 = β1 − 1. Then we see immediately that

G2 ≈
[

G1 0
0 0

]

.

3. Let us consider the Reidemeister move R3 (Fig. 2.7).

Ω3

Fig. 2.7
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We see immediately that β1 = β2. Next we should consider different
orientations of arcs participating in R3 and two possibilities for the
crossing p. However, we will get always µ2 = µ1 + η(p) and

G2 ≈
[

G1 0
0 η(p)

]

.

We leave it for the reader to check (c.f. [Goe] and [Re-2]).

This concludes the proof of Theorem 2.2.

Corollary 2.4 (1) For a link L let us define σ(L) = σ(G(L)) − µ(L),
where σ(G(L)) is the signature of the Goeritz matrix of L. Then σ(L)
is an invariant of the link L, called the signature of the link; compare
Corollary 2.7 and Definition 6.7.

(2) Let us define nul (L) = nul (G(L)) + β(L) − 1, where nul (G(L)) is
the nullity (i.e. the difference between the dimension and the rank) of
the matrix G(L). Then nul (L) is an invariant of the link L and we
call it the nullity (or defect) of the link.

Proof. It is enough to apply Theorem 2.2 to see that σ(L) and nul (L) are
invariant with respect to Reidemeister moves.

L. Traldi [Tral-1] introduced a modified matrix of an oriented link, the
signature and the nullity of which are invariants of the link.

Definition 2.5 Let L be a diagram of an oriented link. Then we define the
generalized Goeritz matrix

H(L) =





G ©
A

© B



 ,

where G is a Goeritz matrix of L, and the matrices A and B are defined as
follows. The matrix A is diagonal of dimension equal to the number of type
II crossings and the diagonal entries equal to −η(p), where p’s are crossings
of type II. The matrix B is of dimension β(L)−1 with all entries equal to 0.

Lemma 2.6 ([Tral-1].) If L1 and L2 are diagrams of two isotopic oriented
links then H(L1) can be obtained from H(L2) by a sequence of the following
elementary equivalence operations:
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1. H ⇔ PHP T , where P is a matrix with integer entries and with detP =
±1,

2.

H ⇔





H ©
1

© −1



 .

Proof. Lemma 2.6 follows immediately from the proof of Theorem 2.2.

Corollary 2.7 The determinant det(iH(L)) (i =
√
−1) is an isotopy in-

variant of a link L, called the determinant of the link, DetL. Moreover,
σ(H(L)) = σ(L) and nul (H(L)) = nul (L).

The proof follows immediately from Lemma 2.6 and from the proof of
Theorem 2.2.

Example 2.8 Consider a torus link of type (2, k), we denote it by T2,k. It
is a knot for odd k and a link of two components for k even; see Fig. 2.8.

T2,k X 0
X1

k  halftwists

Fig. 2.8

The matrix G′ of T2,k is then equal to

[

k −k
−k k

]

, and thus Goeritz

matrix of the link is G = [k]. Moreover, β = 1 and µ = k because all
crossings are of type II. Therefore, for k 6= 0, σ(T2,k) = σ(G)−µ = 1−k and
nul (T2,k) = nul (G) = 0. The generalized Goeritz matrix H of the knot
T2,k is of dimension k + 1 and it is equal to

H =















k ©
−1

−1
. . .

© −1
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Therefore DetL = det(iH) = (−1)kik+1k = i1−kk. Notice also that iσ(T2,k) =
DetT2,k
|DetT2,k |

; compare Exercise 2.10.

Let us note that if we connect black regions of the plane divided by the
diagram of the link by half-twisted bands (as indicated in Fig. 2.9) then we
get a surface in R3 (and in S3), the boundary of which is the given link;
we denote this surface by Fb, and call the Tait surface of a link diagram;
compare Definition 7.4. If, for some checkerboard coloring of the plane, the
constructed surface has an orientation which yields the given orientation of
the link then this oriented diagram is called a special diagram.

Fig. 2.9

Exercise 2.9 Prove that an oriented diagram of a link is special if and only
if all crossings are of type I for some checkerboard coloring of the plane.
Conclude from this that for a special diagram D, we have σ(D) = σ(G(D)).

Exercise 2.10 Show that any oriented link has a special diagram. Conclude
from this that for any oriented link L one has
DetL = iσ(L)|DetL|; compare Lemma 6.16 and Corollary 6.18.

Assume now that L0 is a sublink of an oriented link L. Let L′ be an ori-
ented link obtained from L by changing the orientation of L0 to the opposite
orientation. Let DL be a diagram of L and define lk(L−L0, L0) be defined a
∑

p sgn p where the sum is taken over all crossings of the diagram of L−L0

and L0 (as subdiagrams of LD. This definition does not depend on the choice
of DL, as checked using Reidemeister moves and agrees with the standard
notion of linking number as defined recalled in the next section.

From Corollary 2.4 and Corollary 2.7, we obtain.

Proposition 2.11 ([M-11])

(i) DetL′ = (−1)lk(L−L0,L0)DetL.

(ii) σ(L′) = σ(L) + 2lk(L− L0, L0).
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(ii) σ(L) + lk(L) is independent on orientation of L.

Proof: The derivation of formulas is immediate but it is still instructive to
see how Corollary 2.11(ii) follows from Corollary 2.4(1):

σ(L′) = σ(G(L′))−µ(L′) = σ(G(L))−µ(L′) = σ(L)+µ(L)−µ(L′) = σ(L)+2lk(L−L0, L0).

�

Recall ([P-2]) that an n-move is a local change of an unoriented link diagram
described in Figure 2.10.

..

.n−move

L n L 8L
Fig. 2.10; Ln obtained from L = L0 by an n-move, and L∞

When computing and comparing Goeritz matrices of L = L0, Ln and L∞
we can assume that black regions are chosen as in Figure 2.10 and that the
white region X in R2 −L∞ is divided into two regions X0 and X1 in R2 −L.

Lemma 2.12 G(Ln) =

[

G(L∞) α
αT q + n

]

,

Corollary 2.13

(i) DetG(Ln) −DetG(L0) = nDetG(L∞),

(ii) σ(G(L0)) ≤ σ(G(Ln)) ≤ σ(G(L0)) + 2, n ≥ 0.

(iii) |σ(G(Ln)) − σ(G(L∞))| ≤ 1. Furthermore, σ(G(Ln)) = σ(G(L∞)) if
and only if rankG(Ln) = rankG(L∞) or rankG(Ln) = rankG(L∞) + 2.

If we orient L = L0 we can use Corollary 2.13(ii) to obtain very useful
properties of signature of L and Ln.
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Corollary 2.14 ([P-2]) (i) Assume that L0 is oriented in such a way that
its strings are parallel. Ln is said to be obtained from L0 by a tn-move

( ..
. ); then

n− 2 ≤ σ(L0)) − σ(Ln) ≤ n

(ii) Assume that L0 is oriented in such a way that its strings are anti-
parallel and that n = 2k is an even number. L2k is said to be obtained

from L0 by a t̄2k-move ( ..
. ); then

0 ≤ σ(L2k) − σ(L0) ≤ 2.

(iii) (Giller [Gi])
0 ≤ σ(L ) − σ(L ) ≤ 2

Proof: (i) All new crossings of Ln are of type II (we use shading of Figure
2.10), thus µ(Ln) − µ(L0) = n. Therefore by Corollary 2.13(ii) we have
n−2 ≤ σ(GL0

)−µ(L0)− (σ(GLn)−µ(Ln) ≤ n, and Corollary 2.14(i) follows
by Corollary 2.4.
(ii) In this case µ(L2k) = µ(L0) thus (ii) follows from Corollary 2.13(ii). The
generalization of Corollary 2.14(ii) to Tristram-Levine signatures is given in
Corollary 6.9(ii).
(iii) follows from (i), or (ii) for n = 2. �

We finish the section with an example of computing a close form for the
determinant of the family of links called Turk-head links. We define the nth
Turk-head link, Thn as the closure of the 3-braid (σ1σ

−1
2 )n (see Figure 2.11

for Th6).
14.

Example 2.15 We compute that

DetThn = (
3 +

√
5

2
)n + (

3 −
√

5

2
)n − 2,

14Th0 is the trivial link of 3 components, Th1 the trivial knot, Th2 the figure eight knot
(41), Th3 the Borromean rings (63

2), Th4, the knot 818, Th5 the knot 10123, Th6 the link
123

474 (that is 474th link of 12 crossings and 3 components in unpublished M. Thistleth-
waite tables; compare [This-1]), and Th7 and Th8 are the knots 14a19470 and 16a275159,
respectively, in Thistlethwaite (Knotscape) list.
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or it can be written as DetThn = Tn(3) − 2, where Ti(z) is the Chebyshev
(Tchebycheff) polynomial of the first kind15:

T0 = 2, T1 = z, Ti = zTi−1 − Ti−2.

In particular, DetTh2
= 5, DetTh3

= 16, DetTh4
= 45, DetTh5

= 121,
DetTh6

= 320, DetTh7
= 841, and DetTh8

= 2205; compare [Sed, Mye].

To show the above formulas, consider the (unreduced) Goeritz matrix related
to the checkerboard coloring of the diagram of Thn as shown in Figure 2.11
(we have here z = 3 and we draw the case of n = 6).

G′(Th6) =





















−n 1 1 1 1 1 1
1 −z 1 0 0 0 1
1 1 −z 1 0 0 0
1 0 1 −z 1 0 0
1 0 0 1 −z 1 0
1 0 0 0 1 −z 1
1 1 0 0 0 1 −z





















,

By crossing the first row and column ofG′(Thn) we obtain the Goeritz ma-
trix of Thn which is also the circulant matrix with the first row (−z, 1, 0, ..., 0, 1)
(z = 3 and n = 6 in our concrete case):

G(Th6) =

















−z 1 0 0 0 1
1 −z 1 0 0 0
0 1 −z 1 0 0
0 0 1 −z 1 0
0 0 0 1 −z 1
1 0 0 0 1 −z

















,

To compute the determinant of the circulant matrix CMn(z) of the size
n × n and the first row (−z, 1, 0, ..., 0, 1) we treat each row as a relation
and find the structure of the Z[z] module generated by columns (indexed
by (e0, e1, ..., en)). Thus we have n relations of the form ek = zek−1 − ek−2,
where k is taken modulo n. The relation recalls the relation of Chebyshev

15Tn(3) is often named the Lucas number; more precisely Tn(3) =  L2n, where  L0 = 2,
 L1 = 1 and  Ln =  Ln−1 +  Ln−2 as  Ln = 3 Ln−2 −  Ln−4.
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polynomials, and in fact we easily check that ek = Sk−1(z)e1 − Sk−2(z)e0,
where Sk(z) is the Chebyshev polynomial of the second kind:

S0 = 1, S1 = z, Si = zSi−1 − Si−2.

Thus we can eliminate all vectors (columns) ek except e0 and e1, and we
are left with two equations e0 = en = Sn−1e1 − Sn−2e0 , and e1 = en+1 =
Sne1 − Sn−1e0. Thus, our module can be represented by the 2 × 2 matrix

[

Sn−1 1 − Sn
Sn−2 + 1 −Sn−1

]

,

We conclude that, up to a sign, detCMn(z) is equal to the determinant
of our 2 × 2 matrix, that is Sn − Sn−2 − 1 − S2

n1 + SnSn−2. To simplify this
expression let us use the substitution z = a+a−1. Then Sn(z) = an+an−2 +
. . . a2−n + a−n = an+1−a−n−1

a−a−1 , and Tn(z) = an + a−n. Therefore, Sn − Sn−2 −
1−S2

n−1 +SnSn−2 = Sn−Sn−2−1−((a
n−a−n
a−a−1 )2−(a

n+1−a−n−1

a−a−1 )(a
n−1−a−n+1

a−a−1 )) =

Sn − Sn−2 − 1 − ( (an−a−n)2−(an+1−a−n−1)(an−1−a−n+1)
(a−a−1)2

) = Sn − Sn−2 − 2 =

an + a−n − 2 = Tn(z) − 2.
By comparing the maximal power of z in detCMn(z) and T2(z) − 2, we get
that detCMn(z) = (−1)n(Tn(z) − 2). For z = 3 we have a + a−1 = 3,

thus a = 3±
√

5
2

so we can choose a = 3+
√

5
2

and a−1 = 3−
√

5
2

, and thus

Tn(3) = (3+
√

5
2

)n + (3−
√

5
2

)n.
Because, Thn is an amphicheiral link, its signature is equal to 0 and

DetThn = iσ(Thn)|detCMn(3)| = Tn(3) − 2 = (
3 +

√
5

2
)n + (

3 −
√

5

2
)n − 2.

Figure 2.11; The Turk-head link Th6 and its checkerboard coloring
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We computed the determinant of the circulant16 matrix CMn for a general
variable z and till now used it only for z = 3, we see in the next exercise that
the matrix has knot theory interpretation for any rational number z.

Exercise 2.16 Consider the “braid like” closure of the tangle (σ
− 1

a

2 σb1)
n for

any integers a and b, (see Figure 2.12 for (σ
− 1

3

2 σ3
1)

4). Show that the determi-
nant of the link satisfies the formula17

|Det
(σ

−
1
a

2
σb
1
)n
| = |bndetCMn(2 +

a

b
)| = |bn(Tn(2 +

a

b
) − 2)|.

Fig. 2.12; The closure of the tangle (σ
− 1

3

2 σ3
1)

4

3 Seifert surfaces

It was first demonstrated by P. Frankl and L. Pontrjagin in 1930 [F-P] that
any knot bounds an oriented surface18. H. Seifert found a very simple con-
struction of such a surface [Se] and developed several applications of the

16Recall, that the circulant n × n matrix, satisfies ai,j = ai−1,j−1 = . . . a1,j−i+1,
0 ≤ i, j ≤ n− 1. Such a matrix has (over C) n different eigenvectors: (1, ω, ω2, ..., ωn−1),
where ω is any nth root of unity (ωn = 1). The corresponding eigenvalues are

λω =
∑n−1

i=0
ωia1,i. Thus Example 2.15 leads to a curious identity Πn−1

i=0 (ωi + ω−i − z) =
detCMn = (−1)n(Tn(z) − 2) for any primitive nth root of unity ω.

17It is also the formula for the number of spanning trees of the generalized wheel, Wa,b,n,

which is the Tait graph of the closure of (σ
−

1
a

2 σb1)n (W3,3,4 = ; compare Chapter V

of [P-Book]).
18According to [F-P]: “The Theorem... [was] found by both authors independently from

each other. In what follows, the Frankl’s form of the proof is presented.” One should add
that Seifert refers in [Se] to the Frankl-Pontrjagin paper and says that they use a different
method.
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surface, named now Seifert surface (also, infrequently, Frankl-Pontrjagin sur-
face)19.

Definition 3.1 A Seifert surface of a link L ⊂ S3 is a compact, connected,
orientable 2-manifold S ⊂ S3 such that ∂S = L.

For example: a Seifert surface of a trefoil knot is pictured in Fig. 3.1. If the
link L is oriented then its Seifert surface S is assumed to be oriented so that
its orientation agrees with that of L.

Fig. 3.1

Definition 3.2 The genus of a link L ⊂ S3 is the minimal genus of a Seifert
surface of L.

The genus is an invariant (of ambient isotopy classes) of knots and links.
The following theorem provides that it is well defined.

Theorem 3.3 (Frankl-Pontrjagin-Seifert) Every link in S3 bounds a Seifert
surface. If, moreover, the link is oriented then there exists a Seifert surface,
an orientation of which determines the orientation of its boundary coinciding
with that of L.

Construction 3.4 (Seifert) Consider a fixed diagram D of an an oriented
link L in S3. In the diagram there are two types of crossings, in a neighbor-
hood of each of crossings we make a modification of the link (called smoothing)
according to Fig. 3.2.

19Kauffman in [K-3, K-8] uses the term Seifert surface to describes the surface obtained
from an oriented link diagram by the Seifert algorithm (Construction 3.4), and the term
spanning surface for an oriented surface bounding a link (our Seifert surface of Definition
3.1). In [Bol] the name Frankl surface is used for any, oriented or unoriented spanning
surface.
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Fig. 3.2

After smoothing all crossings of D we obtain a family of disjoint oriented
simple closed curves in the plane, called by R. Fox, Seifert circles and denoted
by D~s. Each of the curves of D~s bounds a disk in the plane; the disks do not
have to be disjoint (they can be nested). Now we make the disks disjoint
by pushing them slightly up above the projection plane. We start with the
innermost disks (that is disks without any other disks inside) and proceed
outwards (i.e. if D′ ⊂ D then D′ is pushed above D; see Fig. 3.3.

Fig. 3.3

The disks are two-sided so we can assign the sings + and − to each of
the sides of a disk according to the following convention: the sign of the
“upper” side of the disk is + (respectively, −) if its boundary is oriented
counterclockwise (respectively, clockwise), see Fig. 3.4.

Fig. 3.4

Now we connect the disks together at the original crossings of the diagram
D by half-twisted bands so that the 2-manifold which we obtain has L as its
boundary, see Fig. 3.5.
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Fig. 3.5; Seifert surface around a crossing

Since the “+ side” is connected to another “+ side” it follows that the
resulting surface is orientable. Moreover, this surface is connected if the
projection of the link is connected (for example if L is a knot). If the surface
is not connected then we join its components by tubes (see Fig. 3.6) in such
a way that the orientation of components is preserved.

Fig. 3.6

Remark 3.5 If the link L has more than one component then the Seifert
surface, which we constructed above, depends on the orientation of compo-
nents of L. This can be seen on the example of a torus link of type (2, 4), see
Fig. 3.7.
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Fig. 3.7; different orientations result in different Seifert surfaces

The Seifert surface from Fig. 3.7(a) has genus 1 while the surface from
Fig. 3.7(b) has genus 0. Therefore the link L has genus 0 (as an unoriented
link).

Corollary 3.6 If a projection of a link L is connected (e.g. if L is a knot)
then the surface, from the Seifert Construction 3.4, is unknotted, that is, its
complement in S3 is a handlebody. The genus of the handlebody is equal to
c + 1 − s and the Euler characteristic is equal to s − c, where c denotes the
number of crossings of the projection and s the number of Seifert circles.

Proof: The complement in S3 of the plane projection of L is a 3-disk with
c + 1 handles (the projection of L cuts the projection plane (or 2-sphere)
into c + 2 regions). Furthermore adding s 2-disks in the construction of the
Seifert surface we cut s of the handles thus the result remains a 3-disk with
c+ 1 − s handles. The Euler characteristic of obtained handlebody is equal
to 1 − (c+ 1 − s) = s− c. �

Corollary 3.7 A knot K in S3 is trivial if and only if its genus is equal to
0.

Exercise 3.8 Let L be a link with n components and DL its diagram. More-
over, let c denote the number of crossings in DL and let s be the number of
Seifert circles. Prove that the genus of the resulting Seifert surface is equal
to:

genus(S) = p− s+ n− c

2
,
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where p is the number of connected components of the projection of L.
Check that the Euler characteristic of S, for p = 1, is equal to s − c so it
agrees with the Euler characteristic of handlebody described in Corollary 3.6.

Suppose that the solid torus VK is a closure of a regular neighborhood
of a knot K in S3 and set MK = S3 − int VK (note that MK is homotopy
equivalent to the knot complement). Let us write Mayer-Vietoris sequence
for the pair (MK , VK):

0 = H2(S
3) → H1(∂MK) → H1(MK) ⊕H1(VK) → H1(S

3) = 0.

For a torus ∂MK and the solid torus VK homology are Z ⊕ Z and Z, re-
spectively. Therefore H1(MK) = Z and it is generated by a meridian in
∂MK = ∂VK , where by the meridian we understand a simple closed curve in
∂Vk which bounds a disk in VK . We denote the meridian by m. A simple
closed curve on ∂MK which generates ker(H1(∂MK) → H1(MK)) is called
longitude and it is denoted by l. If S3 and K are oriented then the longi-
tude is orientated in agreement with the orientation of K. Subsequently, the
meridian is given the orientation in such a way that the pair (m, l) induces
on ∂VK the same orientation as the one induced by the solid torus VK , which
inherits its orientation from S3. Equivalently, the linking number of m and
K is equal to 1 (compare Section 5). Similar reasoning allows us also to
conclude:

Proposition 3.9 For any link L in S3 the first homology of the exterior of
L in S3 is freely generated by meridians of components of L. In particular,
H1(S

3 − L) = Zcom(L).

We also can use the Mayer-Vietoris sequence to find the homology of the
exterior the Seifert surface in S3. Let FL be a Seifert surface of a link L and
F ′ its restriction to ML = S3 − intVL. Let VF ′ be a regular neighborhood
of F ′ in ML. Because F ′ is orientable VF ′ is a product F ′ × [−1, 1] with
F+ = F ′ × {1} and F− = F ′ × {−1}. The boundary, ∂VF ′ is homeomorphic
to F+ and F− glued together naturally along their boundary. Now let us
apply the Mayer-Vietoris sequence to VF ′ and S3 − intVF ′ . We get:

0 = H2(S
3) → H1(∂VF ′)

(i1,−i2)→ H1(S
3 − intVF ′) ⊕H1(VF ′) → H1(S

3) = 0.

where i1 and i2 are induced by embeddings. Clearly, H1(S
3 − intVF ′) is

isomorphic to the kernel of i2. We can easily identify the elements x+ − x−
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as elements of the kernel, for any x a cycle in F ′. In the case of L being a
knot, these elements generate the kernel.

Corollary 3.10 The homology groups, H1(FL) and H1(S
3−FL) are isomor-

phic to Z2g+com(L)−1, where g is the genus of FL and com(L) is the number
of components of L thus also the number of boundary components of FL.
Compare Theorem 3.12.

Corollary 3.11 Let x1, ..., x2g be a basis of H1(FK) where FK is the Seifert
surface of a knot K. Then x+

1 −x−1 , . . . , x+
2g−x−2g form a basis of H1(S

3−K).

With some effort we can generalize Corollary 3.10 to get the following
result which is a version of Alexander-Lefschetz duality20 (see [Li-12] for an
elementary proof).

Theorem 3.12 i Let F be a Seifert surface of a link, then H1(S
3 − F ) is

isomorphic to H1(F ) and there is a nonsingular bilinear form

β : H1(S
3 − F ) ×H1(F ) → Z

given by β(a, b) = lk (a, b), where lk (a, b) is defined to be the intersection
number of a and a 2-chain whose boundary is b (see Chapter 5).

4 Connected sum of links.

Definition 4.1 Assume that K1 and K2 are oriented knots in S3. A con-
nected sum of knots, K = K1#K2, is a knot K in S3 obtained in the following
way:

First, for i = 1, 2, choose a point xi ∈ Ki and its regular neighborhood Ci
in the pair (S3, Ki). Then, consider a pair ((S3−int C1∪ϕS3−int C2), (K1−
int C1∪ϕK2− int C2)), where ϕ is an orientation reversing homeomorphism
∂C1 → ∂C2 which maps the end of K1 ∩ (S3 − int C1) to the beginning of
K2∩(S3−int C2) (and vice versa). (Notice that notions of beginning and end
are well defined because K1 and K2 are oriented.) We see that (S3−int C1)∪ϕ
(S3 − int C2) is a 3-dimensional sphere and (K1 − int C1) ∪ϕ (K2 − int C2)
is an oriented knot.

20Let us recall that Alexander duality gives us an isomorphism H̃i(Sn−X) = H̃n−i−1(X)
for a compact subcomplex X of Sn and that on the free parts of homology the Alexander
isomorphism induces a nonsingular form β : H̃i(S

n − X) × H̃n−i−1(X) → Z, where H̃
denotes reduced (co)homology.
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Lemma 4.2 The connected sum of knots is a well defined, commutative and
associative operation in the category of oriented knots in S3 (up to ambient
isotopy).

A proof of the lemma follows from two theorems in PL topology which
we quote without proofs.

Theorem 4.3 Let (C, I) be a pair consisting of a 3-cell C and 1-cell I which
is properly embedded and unknotted in C (i.e. the pair (C, I) is homeomor-
phic to (B̄(0, 1), [−1, 1]) where (B̄(0, 1) is the closed unit ball in R3 and [−1, 1]
is the interval (x, 0, 0) parameterized by x ∈ [−1, 1]. Respectively, let (S2, S0)
be a pair consisting of the 2-dimensional sphere and two points on it. Then
any orientation preserving homeomorphism of C (respectively, S2) which pre-
serves I and is constant on ∂I (respectively, it is constant on S0) is isotopic
to the identity.

Theorem 4.4 Let K be a knot in S3 and let C ′ and C ′′ be two regular neigh-
borhoods in the pair (S3, K) of two points on K. Then there exists an isotopy
F of the pair (S3, K) which is constant outside of a regular neighborhood of
K and such that F0 = Id and F1(C

′) = C ′′.

Remark 4.5 In the definition of the connected sum of knots we assumed
that the homeomorphism ϕ reverses the orientation. This assumption is sig-
nificant as the following example shows.

Let us consider the right-handed trefoil knot K (i.e. a torus knot of type
(2, 3)), Fig. 3.1. Let K be the mirror image of K (i.e. a torus knot of type
(2,−3)). Then K#K is the square knot while K#K is the knot “Granny”
and these two knots are not equivalent. To distinguish them it is enough
to compute their signature or the Jones polynomial, or Homflypt (Jones-
Conway) polynomial.

Theorem 4.6 (Schubert [Sch-2]) Genus of knots in S3 is additive, that is

g(K1#K2) = g(K1) + g(K2).

A proof of the Schubert theorem can be found in e.g. [J-P, Li-12].

Corollary 4.7 Any knot in S3 admits a decomposition into a finite con-
nected sum of prime knots, i.e. knots which are not connected sums of non-
trivial knots.
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In fact Schubert [Sch-1] showed that the prime decomposition of knots
is unique up to order of factors; in other worlds, knots with connected sum
form a unique factorization commutative monoid.

Corollary 4.8 The trefoil knot is non-trivial and prime.

Proof. The trefoil knot is non-trivial therefore its genus is positive (Corol-
lary 3.7). Fig. 3.1 demonstrates that the genus is equal to 1. Now primeness
follows from Theorem 4.6 and Corollary 4.7.

Similarly as for knots, the notion of connected sum can be extended to
oriented links. It, however, depends on the choice of the components which
we glue together. The weak version of the unique factorization of links with
respect to connected sum was proven by Youko Hashizume [Hash].

5 Linking number; Seifert forms and matri-

ces.

We start this Section by introducing the linking number lk (J,K) for any
pair of disjoint oriented knots J and K. Our definition is topological and we
will show that it agrees with the diagrammatic definition considered before.
We use the notation introduced right after the Exercise 3.8.

Definition 5.1 The linking number lk (J,K) is an integer such that [J ] =
lk (J,K)[m], where [J ] and [m] are homology classes of the oriented curve
J and the meridian m of the oriented knot K, respectively.

Lemma 5.2 Let S ⊂ S3 − int VK be a Seifert surface of a knot K (more
precisely, its restriction to S3 − int VK), such that its orientation determines
the orientation of ∂S compatible with that of the longitude l. Then lk (J,K)
is equal to the algebraic intersection number of J and S.

Proof. First, let us recall the convention for the orientation of the bound-
ary of an oriented manifoldM . For x ∈ ∂M we consider a basis (v2, . . . , vn) of
the tangent space Tx∂M together with the normal n of ∂M in M which is di-
rected outwards. Then, v2, . . . , vn defines orientation of Tx∂M if n, v2, . . . , vn
defines the orientation of TxM . Returning to the proof of 5.2 we note that
the meridian m intersects the Seifert surface S exactly at one point. More-
over, the algebraic intersection number of m and S is +1, according to our
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definition of the orientation of S. Thus, if the algebraic intersection num-
ber of J and S is equal to i, then [J ] = i[m], that is i = lk (J,M), which
concludes the proof.

Lemma 5.3 Let us consider a diagram of a link J ∪ K consisting of two
disjoint oriented knots J and K. We assume that the orientation of S3 =
R3 ∪ ∞ is induced by the orientation of the plane containing the diagram
of J ∪K and the third axis which is directed upwards Now, to any crossing

of the diagram where J passes under K we assign +1 in the case of
KJ

and −1 in the case of J

K
. Then the sum of all numbers assigned to such

crossings is equal to linking number lk (J,K).

Proof. Let us consider a Seifert surface of the knot K constructed from
the diagram of K, as described in Construction 3.4. We may assume that
the knot J is placed above this surface, except small neighborhoods of the
crossings where J passes under K. We check now that the sign of the inter-
section of J with this surface coincides with the number that we have just
assigned to such a crossing.

Exercise 5.4 Show that lk (J,K) = lk (K, J) = −lk(−K, J), where −K
denotes the knot K with reversed orientation.

Hint. Apply Lemma 5.3.

The linking number may be defined for any two disjoint 1-cycles in S3.
For example, as a definition we may use the condition from Lemma 5.2.
That is, if α and β are disjoint 1-cycles in S3 then lk (α, β) is defined as the
intersection number of α with a 2-chain in S3 whose boundary is equal β.

Exercise 5.5 Prove that lk (α, β) is well defined, that is, it does not depend
on the 2-chain whose boundary is β.

Exercise 5.6 Show that lk is symmetric and bilinear, i.e. lk (α, β) =
lk (β, α) and lk (α, nβ) = n · lk (α, β), and if a cycle β ′ is disjoint from α

then lk (α, β + β ′) = lk (α, β) + lk(α, β ′).

Exercise 5.7 Prove that, if β and β ′ are homologous in the complement of
α, then lk (α, β) = lk (α, β ′).
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Now we define a Seifert form of a knot or a link. Let S be a Seifert surface
of a knot or a link K, then S is a two-sided surface in S3. Let S × [−1, 1] be
a regular neighborhood of S in S3. For a 1-cycle x in int S we can consider
a cycle x+ (respectively x−) in S × {1} (respectively S × {−1}) which is
obtained by pushing the cycle x to S×{1} (respectively, to S×{−1}). (We
note that the sides of S are uniquely defined by the orientations of K and
S3.)

Definition 5.8 The Seifert form of the knot K is a function f : H1(int S)×
H1(int S) → Z such that f(x, y) = lk (x+, y). Similarly we define a Seifert
form of an oriented link L using an oriented Seifert surface S of L.

Lemma 5.9 The function f is a well defined bilinear form on the Z-module
(i.e. abelian group) H1(int S).

Proof. The result follows from Exercises 5.6 and 5.7.

Definition 5.10
By a Seifert matrix V = {vi,j} in a basis e1, e2, ..., e2g+com(L)−1 of H1(S) we
understand the matrix of f in this basis, that is

vi,j = lk (e+i , ej).

Then, for x, y ∈ H1(S) we have f(x, y) = xTV y. We use the convention that
coefficients of a vector are written as a column matrix21.

Notice, that a change of the basis in H1(S) results in the change of the
matrix V to a similar matrix P TV P , where detP = ±1.

Example 5.11 The Seifert matrix of a Seifert surface of the right-handed

trefoil knot, computed in the basis [α], [β], is equal to

[

−1 0
1 −1

]

(see Fig. 5.1).

21Our notation agrees with that of Kauffman [K-3], Kawauchi [Kaw-4], and [J-P] but
in the books by Burde and Zieschang [B-Z], Lickorish [Li-12], Rolfsen [Ro-1], Livingston
[Liv], and Murasugi [M-9] the convention is the opposite, that is f(x, y) = lk(x, y+).
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α

β

Fig. 5.1

Example 5.12 The Seifert matrix of a Seifert surface of the figure-eight

knot, computed in the basis [α], [β] is equal to

[

1 −1
0 −1

]

(see Fig. 5.2).

α

β

Fig. 5.2

With some practice one should be able to find Seifert form efficiently and we
encourage a reader to compute more examples and develop some rules; for
example if α is a simple closed curve on S and on the plane then lk(α+, α) =
−1

2

∑

sgn p where the sum is taken over all crossings of the diagram tra-
versed by α. We illustrate it by one more example, the Seifert matrix of a
pretzel knot. The computation is almost the same as in the trefoil case as
the genus of the surface is equal to 1 and three crossings of the right-handed
trefoil knot 3̄1 are replaced by 2k1 + 1, 2k2 + 1, and 2k3 + 1, respectively.

Example 5.13 Let Pn1,n2,n3
denote the pretzel link of type (n1, n2, n3) (com-

pare Fig. 5.3). The Seifert matrix of a Seifert surface of the pretzel knot
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P2k1+1,2k2+1,2k3+1, computed in the basis [α], [β], is equal to

[

−k1 − k2 k2

k2 + 1 −k1 − k2

]

(see Fig. 5.3).

Fig. 5.3; P1,3,5 – the pretzel knot of type (1, 3, 5)

There is a classical skew-symmetric form on a homology group of an
oriented surface, called an intersection form, which is related to the Seifert
form f .

Definition 5.14 Let S be an oriented surface. For two homology classes
x, y ∈ H1(S) represented by transversal cycles we define their algebraic in-
tersection number τ(x, y) as the sum of the signed intersection points where
the sign is defined in the following way: if x meet y transversally at a point

p then the sign of the intersection at p is equal +1 if
x

y and −1 if
x

y .

Exercise 5.15 Prove that τ : H1(S) × H1(S) → Z is bilinear and skew-
symmetric (i.e. τ(x, y) = −τ(y, x)).

Exercise 5.16 Prove that the determinant of a matrix of τ is equal to 1 if
∂S = S1, or ∂S = ∅ and it is equal to 0 otherwise.

Solution. Assume that S has more then one boundary component and
∂1 is one of them. Then ∂1 is a nontrivial element in H1(S) with trivial
intersection number with any element of H1(S). Thus the matrix of τ is
singular and its determinant is equal to zero.
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Assume now that ∂S = S1, or ∂S = ∅. Let us choose loops representing a
basis of H1(S) such as in Fig. 5.4. In this basis the matrix of τ is as follows















0 1 ©
−1 0

. . .

0 1
© −1 0















Thus, its determinant is equal to 1. Notice also that the determinant of a
matrix changing a basis of H1(S) is equal to 1 or −1, thus the determinant
of the form does not depend on the choice of a basis.

α

α 1

2 α 2g

α 2g-1

Fig. 5.4

Exercise 5.17 Prove that, if S is a Seifert surface of a link then τ(x, y) =
f(x, y) − f(y, x).

Solution. It follows from Lemma 5.3 that the crossing change between two
oriented disjoint curves J and K in S3 changes the linking number between

them by 1 or −1, diagrammatically we have: lk(
KJ ) − lk(

KJ ) = 1.

If J and K are two, possibly intersecting, oriented curves on an oriented
surface we see that the pair (J+, K) differ from the pair (J−, K) by crossing
changes at crossings of J and K. Furthermore the convention we use is that
sgn(

KJ ) = −1.

Thus f(J,K)−f(K, J) = lk (J+, K)− lk (K+, J) = lk (J+, K)− lk (J−, K) =
∑

p∈J∩K) sgn p = τ(J,K). The solution is completed22.

22The equality =− is a defining relation of Vassiliev-Gusarov invariants

or skein modules of links; compare Chapter IX of [P-Book]. This relation, combined with

= 0 (that is, the value of a link with at least two singular crossings is equal

to zero), leads to the (global) linking number, described as Vassiliev-Gusarov invariant of
degree 1.
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Corollary 5.18 The Seifert matrix V of a knot K in S3 satisfies the fol-
lowing equation:

det(V − V T ) = 1.

Proof. We note that V − V T is a matrix of τ (Exercise 5.17) and its
determinant is equal to 1 (Exercise 5.16).

A Seifert matrix is not an invariant of a knot or a link, but it can be used
to define some well known invariants, including the Alexander polynomial.

Now we describe relation between Seifert matrices of (possibly different)
Seifert surfaces of a given link.

Definition 5.19 We call matrices S-equivalent if one can be obtained from
the other by a finite number of the following modifications:

(1) A⇔ PAP T where detP = ∓1.

(2)

A⇔





A α 0
0 0 1
0 0 0



 and A⇔





A 0 0
β 0 0
0 1 0





where α is a column and β is a row.

Theorem 5.20 Let us assume that L1 and L2 are isotopic links and F1,
respectively, F2, are their Seifert surfaces. If A1 and A2 are their Seifert ma-
trices computed in some basis B1 and, respectively, B2 then A1 is S-equivalent
to A2.

We perform the proof in two steps. Namely, we will prove the following
two claims:

(1) If we attach a handle to F1 then the resulting surface (boundary of
which is again L1) has its Seifert surface S-equivalent to the Seifert
surface of F1.

(2) We can assume that L1 = L2. Then there exists a Seifert surface for
L1 which can be reached (modulo isotopy) from both F1 and F2 by the
operation of attaching handles.

First we prove (1).
Let A1 be a Seifert matrix of F1 (in some basis of H1(F )). By γ and µ

let us denote two new generators of H1(F ∪ handle) — see Fig. 5.5.
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µ

λ

Fig. 5.5.

Let us recall that the Seifert form f : H1(F ) × H1(F ) → Z was defined
by the formula f(x, y) = lk (x+, y), where lk denotes linking number in S3

and x+ is obtained by pushing the cycle x out of F in the normal direction
of F .

If the pushing moves the cycle µ outside of the handle (that is µ+ is
outside the handle) then the resulting Seifert matrix is





A α 0
β w0 0
0 ±1 0





which is S-equivalent to the matrix A (α and ω0 can be converted to 0
matrices by type (1) operations; similarly, ±1 can be converted to 1 by a
type (1) operation). In the matrix, β is a row vector determined by linking
numbers of λ+ with the basis of H1(F ), α is a column vector determined by
linking numbers of the basis H1(F ) with λ− and ω0 = lk(λ+, λ−).

Otherwise (i.e. µ+ is inside the handle) we get the matrix:





A α 0
β ω0 ±1
0 0 0





which is S-equivalent to A as well.
Proof of (2). Assume that the Seifert surface F1 intersects F2 transversally

(modulo the boundary L1; in the neighborhood of L1 they may be assumed
to be disjoint outside L1). Now we will use the following

Lemma 5.21 Let M be compact connected 3-manifold and let F1, F2 be such
submanifolds of ∂M that ∂M = F1∪F2 and F1∩F2 = ∂F1 = ∂F2. Then there
exists a surface F in M such that ∂F = ∂F1 and F can be obtained from F1
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as well as from F2 by attaching 1-handles. More precisely: F cuts M into two
3-submanifolds M1, containing F1 and M2 containing F2. Furthermore Mi

can be obtained from Fi (more precisely Fi × [0, 1]) by attaching 1-handles23

to int(Fi). We have Fi ∪ F = ∂Mi; in particular F is obtained from Fi by
1-surgeries.

Sketch of the proof. The presented proof is based on the proof of existence
of Heegaard decomposition of a 3-manifold from triangulation (e.g. [Hemp,
J-P]). Let X be a triangulation of (M,F1, F2). In particular L is in the
1-skeleton of triangulation Γ1. Let Γ2 denote the dual 1-skeleton. That is,
Γ2 is the maximal 1-subcomplex of the first baricentric subdivision X ′ of X,
such that Γ2 is disjoint with Γ1. Let Vi (i = 1, 2) be a regular neighborhood
of Γi associated to the second baricentric subdivision of X. Then X =
V1 ∪ V2 and Vi is obtained from Fi by attaching (solid) 1-handles. Therefore
(F1 ∪ V1) ∩ (F2 ∪ V2) is the surface F that we look for.

The proof of claim (2) is inductive with respect to the number of circles
in the intersection F1 ∩ F2:

(1) Suppose that F1 ∩ F2 = L1. Then we apply Lemma 5.21 to a part of S3

which is bounded by the closed surface F1 ∪ F2.

(n+1) Inductive step. Suppose that (2) holds if the number of components
of F1 ∩ F2 is smaller than n + 1.
Now, assume that F1∩F2 consists of n+1 circles. Then F1∪F2 cuts S3

into a number of connected components and moreover different “sides”
of F1 and F2 bound different components. Let M be a component such
that F ′

1 = F1 ∩ ∂M and F ′
2 = F2 ∩ ∂M . Now we apply Lemma 5.21 to

the triple (M,F ′
1, F

′
2) and consequently let F ′

0 be the surface provided
by the lemma. That is, F ′

0 is obtained by attaching solid 1-handles to
either F ′

1 or F ′
2.

Let F 0
1 and F 0

2 be obtained from F1 and F2 by replacing F ′
1 and F ′

2

by F ′
0. Then by moving slightly surfaces F 0

1 and F 0
2 we can obtain a

smaller number of components of their intersection and thus we can
apply the inductive assumption. This concludes the proof of (2) and of
Theorem 5.20.

23We attach k-handle to an (n + 1)-dimensional manifold M along an open subset,
N , of the boundary by choosing a disk Dn+1 = Dk × Dn+1−k and the embedding φ :
∂Dk ×Dn+1−k → N , and gluing M with Dn+1 using φ. In our case n = 2.
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An elementary, diagrammatic proof of Theorem 5.20, based on Reide-
meister moves and the fact that any link has a special diagram (compare
Exercises 2.9 and 2.10 or Proposition 13.15 of [B-Z]), is given in [BFK].

6 From Seifert form to Alexander polynomial

and signatures

The Conway’s potential function is defined as a normalized version of the
Alexander polynomial using Seifert matrix, as follows [K-1]:

Lemma 6.1 Let A be a Seifert matrix of an oriented link L and define the
potential function ΩL(x) = det(xA − x−1AT ). Then ΩL(x) does not depend
on the choice of a Seifert surface and its Seifert matrix. In particular, if T1

is the trivial knot then ΩT1
(x) = 1.

Proof. The result follows from Lemma 5.20. Indeed, simple computations
show that if we replace the matrix A with another S-equivalent matrix then
ΩL(x) remains the same. We use the following identity

det(x

[

0 1
0 0

]

− x−1

[

0 0
1 0

]

) = det

[

0 x
−x−1 0

]

= 1.

The same identity is used in the computations for the trivial knot.
If we choose x = −

√
t then the potential function is the normalized

Alexander polynomial (i.e. Alexander-Conway polynomial). The transposi-
tion of a matrix is preserving its determinant thus the substitution x→ −x−1

(or
√
t → 1√

t
is preserving the potential function and Alexander-Conway

polynomial. Furthermore, we can put z = x−1 − x =
√
t − 1√

t
. As follows

from Theorem 6.2, we obtain, after the substitution, the Conway polynomial
∇L(z) (terminology maybe sometimes confused, as ∇L(z) is also often called
Alexander-Conway polynomial).

Theorem 6.2 (Kauffman [K-1])
ΩL(x) = ∆L(t) = ∇L(z), where x = −

√
t, z = x−1 − x =

√
t− 1√

t
.

Proof (hint). We have to show that ΩL+
(x)−ΩL−

(x) = (x−1 − x)ΩL0
(x). In

order to demonstrate it we use the properly chosen Seifert surfaces F+, F−, F0

for L+, L− and L0 respectively.
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We give all details in the analysis of the more general case of the behavior
of Seifert matrices under t̄2k-moves, which generalize the crossing change,
which is t̄±2-move.

Definition 6.3 ([P-2]) The t̄2k-move (introducing k full twists on anti-parallel
oriented arcs) is the elementary operation on an oriented diagram L resulting
in t̄2k(L) as illustrated in Figure 6.1.

Notice that t̄2-move is a crossing change from a positive to negative crossing
(L− = t̄2(L+)). We can choose Seifert surfaces F (L), F (t̄2k(L)), and F (L∞)
for L = L , t̄2k(L), and L∞ = L , respectively, to look locally as in Figure

6.1.

t    (L)2k

..

.

LL
Fig. 6.1; Oriented links L, t̄2k(L), and L∞, and their Seifert surfaces

Let us choose a basis for H1(F (L )) and add one, standard, element, e

to obtain a basis for H1(F (L )), and et̄2k(L) to get a basis of H1(F (t̄2k(L)).

Denote the Seifert matrix of L in the chosen basis by AL . In these bases

we have immediately.

Lemma 6.4

AL =

[

AL α

β q

]

,

At̄2k(L) =

[

AL α

β q + k

]

,

where α is a column given by linking numbers of e+ (or e+t̄2k(L)) with

basis elements of H1(F (L )), β is a row given by linking numbers of basis
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elements of H1(F (L )) with e− (or e−t̄2k(L)), and q is a number equal to

lk(e+ , e ) (compare [K-1, P-T-2] or [P-1]).

Corollary 6.5 (i) If two oriented links are t̄2k equivalent (that is they
differ by a finite number of t̄2k-moves) then their Seifert matrices are
S-equivalent modulo k.

(ii) The potential function satisfies:

Ωt̄2k(L) − Ω = k(x− x−1)Ω .

In particular the case k = −1 gives: ΩL+
(x) − ΩL−

(x) = (x−1 −
x)ΩL0

(x).

Proof: (i) It follows from the fact we noted in Lemma 6.4 that for properly
chosen Seifert surfaces and basis of their homology, the entries of Seifert ma-
trices for t̄2k and are congruent modulo k.

(ii) Ωt̄2k(L) = det(xAt̄2k(L)−x−1ATt̄2k(L)) = det

[

AL xα− x−1βT

xβ − x−1αT (x− x−1)(q + k)

]

,

and Ω = det

[

AL xα − x−1βT

xβ − x−1αT (x− x−1)q

]

.

Thus the difference is equal to k(x− x−1)Ω .

�

Example 6.6 We can use Corollary 6.5 to compute the potential (and Alexander-
Conway) polynomial of the pretzel link L = P2k1+1,2k2+1,...,2km+1 (see Fig. 5.3
or 6.2). Namely, we apply the formula of Corollary 6.5(ii) for any column
of a pretzel link. For z = x−1 − x we get

ΩL(x) = ∇L(z) =
m−1
∑

j=0

sm,jz
j∇T2,m−j

(z) =

zm−1(

(

m− 1

0

)

+ sm,1

(

m− 2

0

)

+ sm,2

(

m− 3

0

)

+ ...)+
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zm−3(

(

m− 2

1

)

+ sm,1

(

m− 3

1

)

+ sm,2

(

m− 4

1

)

+ ...) + ... =

⌊(m−1)/2⌋
∑

j=0

(m−1−2j
∑

i=0

(

m− 1 − j − i

j

)

sm,j

)

zm−1−2j ,

Where sm,j is an elementary symmetric polynomial in variables k1, .., km of
degree j, that is Πm

i=1(z + ki) =
∑m

j=0 sm,jz
m−j and ∇T2,m−j

(z) = ∇P1,1,...,1
(z)

is the Alexander-Conway polynomials of the torus links of type (2, m− j), in
particular, it satisfies Chebyshev type24 (compare Example 2.15) relations
∇T2,n

(z) = z∇T2,n−1
(z) + ∇T2,n−2

(z) (with initial data ∇T2,0
(z) = 0 and

∇T2,1
(z) = 1). In particular, ΩT2,n

(x) = ∇T2,n
(x−1 − x) = x−n−(−1)nxn

x−1+x
=

(

n−1
0

)

zn−1 +
(

n−2
1

)

zn−3 + ...+
(

n−1−i
i

)

zn−1−2i+ ... =
∑⌊(n−1)/2⌋

i=0

(

n−1−2i
i

)

zn−1−2i.

Fig. 6.2; P5,7,−3 – the pretzel knot with the trivial Alexander-Conway
polynomial

6.1 Tristram- Levine signature

We generalize definition of the classical (Trotter-Murasugi) signature after
Tristram and Levine (see [Gor, Lev, P-T-2, Tr]).

Recall that a symmetric Hermitian form h : Cn × Cn → C is a map
which satisfies h(a+b, c) = h(a, c)+h(b, c), h(λa, b) = λh(a, b), and h(a, b) =
h(b, a). The matrix H of a symmetric Hermitian form in any basis is called

24We have ∇T2,n
(z) = i1−nSn−1(iz).
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a Hermitian matrix (i.e. H = H̄T ). A symmetric Hermitian form has a basis
in which the matrix is diagonal with 1, −1 or 0 entries. The numbers, n1

of 1’s, n−1 of −1’s and n0 of 0’s form a complete invariant of a symmetric
Hermitian form (the Sylvester law of inertia). The number n0 is called the
nullity of the form and σ = n1 − n−1 is called the signature of the form.
Recall also that if we count eigenvalues of H (with multiplicities) then n1 is
the number of positive eigenvalues of H and n−1 is the number of negative
eigenvalues.

Definition 6.7 ([Tr, Lev]) Let AL be a Seifert matrix of a link L. For
each complex number ξ (ξ 6= 1) consider the Hermitian matrix HL(ξ) =
(1 − ξ̄)AL + (1 − ξ)ATL. The signature of this matrix is called the Tristram-
Levine signature of the link L. If the parameter ξ is considered, we denote the
signature by σL(ξ), if we consider ψ = 1− ξ as a parameter, we use notation
σψ(L) The classical signature σ satisfies σ(L) = σ1(L) = σL(0) = σL(−1).
Also, by well justified convention, we put σL(1) = 0 (see Remark 6.8).

Tristram-Levine signature is a well defined link invariant as it is an in-
variant of S-equivalence of Seifert matrices. Checking this is similar to the
calculation for the potential function (we leave a pleasure exercise of verifying
it to the reader).

Remark 6.8 The signature of a Hermitian matrix is unchanged when matrix
is multiplied by a positive number25, we can (and will) often assume that ξ
in σL(ξ) and ψ in σψ(L) are of unit length. With such assumptions we have
Tristram-Levin signature functions, σL(ξ), σψ(L) : S1 → Z. σL(ξ) is the
signature function tabulated in [Ch-L], and σψ(L) is used in Examples in this
book. S1 will be usually parameterized by arg(ψ) ∈ [−π, π].26 Generally, we
have σL(ξ) = σ1−ξ(L) but when restricted to the unit circle, we have to write

σL(ξ) = σ(1−ξ)/(|1−ξ|(L). Notice that for ψ = 1−ξ
|1−ξ| , we have ψ2 = (1−ξ)(1−ξ)

(1−ξ)(1−ξ̄) =
1−ξ
1−ξ̄ = −ξ (and (iψ)2 = ξ). Therefore, σψ(L) = σL((iψ)2) = σL(ξ), for

Re(ψ) ≥ 0. As we show in Corollary 6.13, σi(L) = 0, which justifies the
convention27 that σL(1) = 0.

25The Hermitian matrix H is Hermitian similar to λH for any real positive number λ;
λH = (

√
λId)H(

√
λId).

26In [Ch-L], S1 is parameterized by argξ

π
.

27In the literature on Tristram-Levine signature of knots, often used normalization of
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Corollary 6.9 ([P-2])

(i) For any t̄2k-move and Re(1 − ξ) ≥ 0 (i.e. |arg(ψ)| ≤ π/2) we have:

0 ≤ σt̄2k(L)(ξ) − σL(ξ) ≤ 2.

In particular ([P-T-2], for Re(1 − ξ) ≥ 0, we have −2 ≤ σL+
(ξ) −

σL−
(ξ) ≤ 0.

(ii) Furthermore, for any ξ and k we have:

0 ≤ |σL (ξ) − σt̄2k(L)(ξ)| ≤ 1.

In particular, 0 ≤ |σL+
(ξ) − σL0

(ξ)| ≤ 1.

Proof: Applying Lemma 6.4 we obtain

Ht̄2k(L(ξ) =

[

HL (ξ) a

a−T m+ k(2 − ξ − ξ̄)

]

,

HL(ξ) =

[

HL (ξ) a

a−T m

]

,

where a = (1 − ξ̄)α + (1 − ξ)βT and m = ((1 − ξ̄) + (1 − ξ))q. Because
2 − ξ − ξ̄ ≥ 0, so 0 ≤ σ(Ht̄2k(L)(ξ)) − σ(HL(ξ)) ≤ 2, and the proof of (i) is
finished28. Part (ii) follows from the easy observation that deleting the last
row and column of a Hermitian matrix can change the signature at most by
±1. �

We can use results of computations in Examples 5.11, 5.12, and 5.13 to
find the Tristram-Levine signature for the trefoil knot, the figure eight knot,
and the pretzel knot P2k1+1,2k2+1,2k3+1.

the Hermitian matrix (1 − ξ̄)AL + (1 − ξ)ATL is to take |ξ| = 1 (ξ 6= 1). When one
writes the function σK(ξ) then usual assumption about the parameter ξ is that it is on

the unit circle. Then one has det((1 − ξ̄)AL + (1 − ξ)ATL) = det ((ξ − 1)(1−ξ̄
ξ−1

A− AT )) =

det ((ξ−1)(ξ̄A−AT ))
.
= (ξ−1)n∆(ξ̄), where

.
= denotes equality up to ±ti, [Gor] (compare

Lemma 6.16). When dealing with links, we found more convenient (see [P-T-2, P-1]
to consider ψ = 1 − ξ and assume that |ψ| = 1. Then we have det(i(ψ̄A + ψAT )) =
det(iψ̄A − iψAT ) = Ω(iψ̄) = Ω(iψ) = ∇(−i(ψ̄ + ψ)) (compare Lemma 6.16). Therefore,
for any knot σψ(K) = σK((iψ)2) = σK((ξ).

28It holds, in general, that if two n × n Hermitian matrices H and H ′ differ only at
one entry, a′nn > ann then 0 ≤ σ(H ′) − σ(H) ≤ 2. Furthermore, if detH detH ′ > 0 then
σ(H ′) = σ(H) and if detH detH ′ < 0 then σ(H ′) = σ(H) + 2.
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Example 6.10 Using the Seifert matrix for the right-handed trefoil knot (3̄1)
computed in Example 5.11 we find that:

H3̄1
(ξ) =

[

ξ + ξ̄ − 2 1 − ξ
1 − ξ̄ ξ + ξ̄ − 2

]

Therefore

σ3̄1
(ξ) =























−2 if Re(1 − ξ) > 1
2

−1 if Re(1 − ξ) = 1
2

0 if −1
2
< Re(1 − ξ) < 1

2

1 if Re(1 − ξ) = −1
2

2 if Re(1 − ξ) < 1
2

Part of the regularity of the Tristram-Levine signature can be explained by
the observation that for ξ2 = 2 − ξ1 (i.e. 1 − ξ2 = −(1 − ξ1)) we have
HL(ξ2) = −HL(ξ1) and σL(ξ2) = −σL(ξ1).

Example 6.11 Using the Seifert matrix for the figure eight knot (41) com-
puted in Example 5.12 we find that:

H41
(ξ) =

[

2 − ξ − ξ̄ ξ̄ − 1
ξ − 1 ξ + ξ̄ − 2

]

For any ξ 6= 1, we have detH41
(ξ) = −(2− ξ− ξ̄)2 − (1− ξ)(1− ξ̄) < 0, thus

σ41
(ξ) = 0.

The observation that for the figure eight knot the Tristram-Levin signature
is always equal to zero is not that unexpected because the figure eight knot
is an ampchiheiral knot (41 = 4̄1) and we have:

Corollary 6.12 If L̄ is the mirror image of a link L then the Seifert matrix
AL̄ = −AL, HL̄(ξ) = −HL(ξ), σL̄(ξ) = −σL(ξ), and σψ(L̄) = −σψ(L). In
particular, the Tristram-Levine signature of an ampchiheiral link is equal to
zero.

We can also observe that i (i =
√
−1) times the matrix of τ from Exercise 5.15

is a Hermitian matrix of the signature equal to 0 thus for a knot, σi(K) = 0.
This holds also for links as signature is unchanged by adding to the matrix
rows and columns of zeros:

Corollary 6.13 For any link L we have σi(L) = σ−i(L) = 0.

50



It is useful to summarize our observations about the Tristram-Levin sig-
nature of links using ψ = 1 − ξ and |ψ| = 1.

Corollary 6.14 When we change ψ from 1 to i, the signature σψ(L) changes
from the classical (Trotter-Murasugi) σ(L) to 0 (equivalently, if ξ changes
from 1 to −1, then σL(ξ) changes from 0 to σ(L)). Furthermore, σψ(L) =
σψ̄(L) = −σ−ψ(L) = −σψ(L̄).

Example 6.15 Using the Seifert matrix of the pretzel knot P2k1+1,2k2+1,2k3+1

computed in Example 5.13 we find that:

HP2k1+1,2k2+1,2k3+1
=

[

−(ψ + ψ̄)(k1 + k2 + 1) k2ψ̄ + (k2 + 1)ψ
(k2 + 1)ψ̄ + k2ψ −(ψ + ψ̄)(k2 + k3 + 1)

]

Furthermore,

detHP2k1+1,2k2+1,2k3+1
= (ψ + ψ̄)2(1 + k1 + k2 + k3 + k1k2 + k1k3 + k2k3) − 1.

Therefore the Tristram-Levine signature of a pretzel knot with 1 + k1 + k2 +
k3 + k1k2 + k1k3 + k2k3 > 0 (e.g. a positive pretzel knot) satisfies (in lieu of
Corollary 6.12 we consider only Re(ψ) ≥ 0):

σψ(P2k1+1,2k2+1,2k3+1)) =











−2 if Re(ψ) > 1
2
√

1+k1+k2+k3+k1k2+k1k3+k2k3

−1 if Re(ψ) = 1
2
√

1+k1+k2+k3+k1k2+k1k3+k2k3

0 if 0 ≤ Re(ψ) < 1
2
√

1+k1+k2+k3+k1k2+k1k3+k2k3

Notice, that in the example of Seifert of P5,7,−3, Figure 6.2, we have detHP5,7,−3
=

−1 and σψ(P5,7,−3) ≡ 0. We utilize the result of this calculation in [P-Ta].

6.2 Potential function and Tristram-Levine signature

Lemma 6.1 and Definition 6.7 suggest that there is a relation between the
potential function and the Tristram-Levine signature of links. In fact we
have:

Lemma 6.16 Assume that the potential function at iψ is different from zero.
Then

iσψ(L) =
ΩL(iψ)

|ΩL(iψ)| =
∆L(t0)

|∆L(t0)|
=

∇L(−i(ψ + ψ̄)

|∇L(−i(ψ + ψ̄| ,
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where ∆L(t0) is the Alexander-Conway polynomial and t0 = −ψ2 (
√
t0 =

−iψ). In particular, the Tristram-Levine signature is determined modulo 4
by the appropriate value of the potential function (or Alexander-Conway poly-
nomial); compare Chapter III of [P-Book].

Proof: The idea is to compare the formulas for the potential functions
and the signature, that is:

ΩL(iψ) = det(iψAL − (iψ)−1ATL) =

in det(ψAL + ψ̄ATL) and

σψ(L) = σ(ψ̄AL + ψATL)

In more detail, we write our proof as follows:
LetH be a non-singular Hermitian matrix of dimension n and λ1, λ2, ..., λn its
eigenvalues (with multiplicities). Then det(iH) = in detH = inλ1λ2 · · ·λn =
in(−1)n−1 | detH| = in−2n−1 |detH| = in1−n−1 |detH| = iσ(H)|detH|. Therefore,
det(iH)
|det(iH)| = iσ(H). By applying this formula for H = ψAL + ψ̄ATL, |ψ| = 1, and

remembering that σ(H̄) = σ(H), we obtain the formula of Lemma 6.16.
�

Example 6.17 We can use Lemma 6.16 to compute quickly Tristram-Levine
signature29 of the torus link of type (2, n), T2,n. We use the fact that we
already computed the classical signature, and Alexander-Conway (and poten-
tial) polynomial to be (for k 6= 0):

σ(T2,n) = 1−n, ∆T2,n
(z) = ΩT2,n

(x) =
x−n − (−1)nxn

x−1 + x
= t

1−n
2

tn + (−1)n+1

t+ 1
,

where z = x−1−x = t1/2−t−1/2. In particular σψ(T2,n) can change only if x =

iψ is a root of the potential function, and because ΩT2,n
(iψ) = i1−n ψ

n−ψ−n

ψ−ψ−1
,

the only changes holds at ψ satisfying ψ2n = 1 and ψ 6= ±1.
We have for Reψ ≥ 0, k 6= 0, 0 ≤ j ≤ n− 1:

σψ(T2,n) =







1 − n if Re(ψ) > Re(eπ/n)
1 − n + 2j if Re(ejπ/n) > Re(ψ) > Re(e(j+1)π/n), j > 0
2 − n + 2j if Re(ψ) = Re(ejπ/n), j > 0.

29It is, essentially, the same proof we used in Chapter III of [P-Book] to show that a
signature is a skein equivalence invariant: The Alexander-Conway polynomial determines
signature modulo 4 and the Murasugi type inequalities (|σψ(L+) − σψ(L0)| ≤ 1 and for
Re(ψ) ≥ 0, 0 ≤ (σψ(L−) − σψ(L+) ≤ 2) gives the direction, and limit the size of the
signature change, compare also Corollary 6.5.
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Corollary 6.18 The classical (Trotter-Murasugi) signature σ(L) = σ1(L) =
σL(−1), satisfies:

iσ(L) = iσ(AL+ATL) =
ΩL(i)

|ΩL(i)
=

∆L(−1)

|∆L(−1)| =
DetL
|DetL|

=
∇(−2i)

|∇(−2i)| , assuming DetL 6= 0;

here ∆L(−1) denotes ∆L(t) for
√
t = −i. Recall, that DetL = ∆L(−1) =

ΩL(i) = det(i(AL + ATL) is called the determinant30 of a link L.

Example 6.19 We compute here the Tristram-Levine signature of the knot
K = 62 using Lemma 6.16 and discuss the standard convention and notation.
We have:

σψ(62) =



















−2 if Re(ψ) > 1
2

√

1+
√

5
2

−1 if Re(ψ) = 1
2

√

1+
√

5
2

≈ 0.636...

0 if 0 ≤ Re(ψ) < 1
2

√

1+
√

5
2
.

Step 1. We compute the the Conway polynomial ∇62
(z) = 1 − z2 + z4; we

use resolution in Figure 6.3 to find this value and also observe that changing
a crossing at p results in the trivial knot and smoothing at p results in a
connected sum of the right handed trefoil knot and the left handed Hopf link
(Kp

0 = 3̄1#H−). In particular the unknotting number u(62) = 1.
Step 2. DetK = ∇K(−2i) = −11, thus δ(K) ≡ 2 mod 4, and because K can
be unknotted by changing one positive crossing, thus −2 ≤ σ(K) ≤ 0, and
finally σ(K) = −2.

Step 2. Roots of ∇62
(z) are at z2 = −1±

√
5

2
. Thus for t0 = ξ = −ψ2,

z = −i(ψ + ψ̄), we have ξ + ξ̄ = (iψ)2 + ¯(iψ)2 = z2 + 2 = 3±
√

5
2

. Because

|ψ| = |ξ| = 1, therefore −2 ≤ ξ + ξ̄ ≤ 2 and ξ + ξ̄ = 3−
√

5
2

(Re(ξ) = 3−
√

5
4

).

Finally, assuming Re(ψ) ≥ 0 we get ψ = 1
2

√

1+
√

5
2

).

Step 3. For Re(ψ) ≥ 0, the value Re(ψ) = 1
2

√

1+
√

5
2

is the only place where

the Tristram-Levine signature σψ(62) can be changing, and because we know

30We should mention here that |DetL| is equal to |det(GL)| where GL is a Goeritz matrix
of L. Furthermore, if DL is a special diagram of an oriented link L then GDL

= AL +ATL
for a properly chosen basis of H1(S) where S is the Seifert surface of DL constructed
according to Seifert algorithm. Thus not only DetL = det(iGDL

)) but also σ(L) = σ(GL);
compare Corollary 2.7.
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already that σ1(62) = −2 and σi(62) = 0 we conclude that σψ(62) = −2 if

Re(ψ) > 1
2

√

1+
√

5
2

and σψ(62) = 0 if 0 ≤ Re(ψ) < 1
2

√

1+
√

5
2

.

Step 4. It remains to show that σψ(62) = −1 for Re(ψ) = 1
2

√

1+
√

5
2

. Here

we argue that, because the considered ψ is the singular root of the Alexander
polynomial (precisely t0 = −ψ2), therefore the value of signature at this point
cannot differ by more than one from the neighboring values (so from 0 and
from −2). More detailed analysis of the Hermitian matrix ψ̄A+ψAT , leads to
the conclusion that if t0 = −ψ2 is a singular root of the Alexander polynomial

of a knot K then σψ(K) =
σψ

−
(K)+σψ+

(K)

2
, where ψ− and ψ+ are parameters

just before ψ and just after ψ on the unit circle [Mat].
In the convention of [Gor, Ch-L] one defines the Tristram-Levine signa-

ture function of variable ξ (|ξ| = 1) as σL(ξ) = σ((1 − ξ̄)A + (1 − ξ)AT )).
For Re(ψ) ≥ 0, one has σψ(L) = σL(ξ), where ξ = −ψ2 (ψ = 1−ξ

|1−ξ|). In

knotinfo Web page [Ch-L], the parameter s satisfying ξ = eπis is used. In

particular, σ62
(ξ) = −1 for Re(ξ) = 3−

√
5

4
= 1 − cos(π/5) ≈ 0.191, and

s = arccos(1 − cos(π/5))/π ≈ 0.44 (compare Remark 6.8).

6 2

p

(6  )
2

p

0

p

(6  )
2

p

Fig. 6.3; Computing the Conway polynomial of the knot K = 62.
∇62

(z) = ∇T1
(z) + ∇3̄1#H−

(z) = 1 + (1 + z2)(−z) = 1 − z2 − z4

Example 6.20 The knot 942 = is the smallest knot which is not

amphicheiral but the Jones, Homflypt, and Kauffman polynomials are sym-
metric (e.g. V942

(t) = V942
(t−1)). The non-amphicheirality of 942 is de-

tected by signature: σ(942) = −2 = −σ(942). This description can leave
however an impression that the fact that 942 is not ambient isotopic to its
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mirror image cannot be checked by the Jones polynomial alone. However, it
follows from Corollary 5.17 that (−1)σ(K)/2 = sign(VK(−1)) for any knot
K, thus if a knot is amphicheiral then VK(−1) > 0. For 942 we have
V942

(−1) = Det942
= −7 < 0 thus 942 is not amphicheiral. Furthermore,

because 942 can be unknotted by changing one positive crossing, we can de-
duce that σ(942) = −2.

In fact, the absolute value of the determinant |DetK | = |VK(−1)| = |∆K(−1)| =
|∇(−2i)| suffices to show that the knot 942 is not amphicheiral. K. Murasugi
proved in [M-10] (Theorem 5.6), the following result:

Theorem 6.21 For any knot K

σK ≡ |DetK | − 1 mod 4

Proof: We use the fact thatDetK = ∇(−2i) ≡ 1 mod 4. Therefore, |DetK | ≡
1 mod 4 if DetK > 0 and |DetK | ≡ −DetK ≡ −1 mod 4 if DetK < 0.
Furthermore, from Corollary 6.18 follows that DetK = (−1)σ(K)/2|DetK |.
Therefore,

σK
mod 4≡

{

0 if |DetK | ≡ 1 mod 4
2 if |DetK | ≡ 3 mod 4

and Theorem 6.21 follows. �

Murasugi’s Theorem leads to a curious formula:

Corollary 6.22 For any knot K

DetK = (−1)(|DetK |−1)/2|DetK |.

J. Milnor proved that the signature of a knot with the Alexander poly-
nomial equal to one is equal to zero [Mil]. In fact, it follows directly from
Lemma 5.16 that the Tristram-Levin signature can change only at roots of
unit length of Alexander polynomial; therefore a link which has the Alexander
polynomial without any root on the unit circle has constant Tristram-Levin
signature function. Thus:

Corollary 6.23 ([Mil]) If the Alexander polynomial ∆L(t) is different from
zero on the unit circle then for any ψ, (|ψ| = 1), we have σψ(L) = 0.

If we assume only that the determinant of a knot is equal to 1 then we
get as a conclusion that the signature is divisible by eight (compare [M-9],
page 149 after Exercise 7.5.4):
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Proposition 6.24 If the determinant of a knot K is equal to 1 then σ(K) ≡
0 mod 8.

Proof: DetK = 1 means that for a Seifert matrix A of a knot K, det(A +
AT ) = 1; The matrix/form A + AT is often called the Trotter form. The
diagonal entries of the Trotter form are even because the diagonal of A+AT

is twice a diagonal of A. We can summarize these conditions by saying
that the Trotter form is even and unimodular; recall that unimodularity
means that det(A + AT ) is invertible (here equal to ±1). The form is even
if x(A + AT )xT is always an even number. Finally, every even unimodular
form over Z has its signature divisible by 8; see Theorem II.5.1 in [M-H]. �

7 A combinatorial formula for the signature

of alternating diagrams;

Quasi-alternating links

Corollary 6.18 has various interesting consequences. P. Traczyk used it back
in 1987 [Tra] to find the combinatorial formula for the signature of alter-
nating links, starting from analysis of the condition σ(L+) = σ(L0)− 1 (and
σ(L−) = σ(L0)+1) and observing that it holds for any essential crossing of an
alternating diagram. The property was refined by Manolescu, Ozsvath, and
Szabo and used to define quasi-alternating links [O-S], whose Khovanov [Kho]
and Heegaard Floer homology share with alternating links many interesting
properties [M-O, C-K] (compare Chapter X of [P-Book]). The property, of
links which Manolescu, Ozsvath, and Szabo observe to be important, and
which always holds for alternating links, is the following (compare Subsec-
tion 1.4):

|Det | = |Det | + |Det |

The following result combines the above properties (compare [M-O]):

Theorem 7.1
The following two conditions are equivalent, providing that determinants of
L0 and L∞ are not equal to zero31

31In (a) one deals with a Kauffman skein triple of unoriented links; in (b) one chooses

any orientation of L+ (e.g. ) and related orientation of L0 ( ), and any orientation

of L∞ (e.g. or ).
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(a) |DetL+
| = |DetL0

| + |DetL∞
|

(b) σ(L+) = σ(L0) − 1 and σ(L+) = σ(L∞) − 1
2
(w(L0) − w(L∞)).

The similar equivalence also holds for a negative crossing:
(a′) |DetL−

| = |DetL0
| + |DetL∞

|
(b′) σ(L−) = σ(L0) + 1 and σ(L−) = σ(L∞) + 1

2
(w(L0) − w(L∞)).

Proof: ((a) ⇔ (b)): We apply the formula Det(L) = iσ(L)|Det(L)| and
use the relation between the Jones polynomial, and its Kauffman bracket
variant, with the signature. Recall, that the Jones polynomial VL(t) of an
oriented link L is normalized to be one for the trivial knot and satisfies the
skein relation t−1V (t)− tV (t) = (t

1

2 − t−
1

2 )V (t). For t = −1 (or, more

precisely,
√
t = i) we obtain exactly the skein relation of the determinant:

Det −Det = −2iDet . ThusDetL = VL(−1);
√
t = i. Recall also that

the Kauffman bracket polynomial of unoriented link diagrams, 〈D〉 ∈ Z[A±1],
is defined by the following properties [K-6]:

(i) 〈©〉 = 1

(ii) 〈© ⊔D〉 = −(A2 + A−2)〈D〉

(iii) 〈 〉 = A〈 〉 + A−1〈 〉

Furthermore, if ~D is an oriented diagram with underlying unoriented dia-
gram D then V ~D(t) = (−A3)w(~D)〈D〉. Thus for A2 = −i (A4 = −1) we get:
Det(D) = (−A3)−w(D) < D >= Aw(D) < D >. Recursive formula for the
Kauffman bracket < D+ >= A < D0 > +A−1 < D∞ > leads to
(−A3)w(D+)Det(D+) = A(−A3)w(D0)Det(D0) + A−1(−A3)w(D∞)Det(D∞)
then leads to A−w(D+)Det(D+) = A1−w(D0)Det(D0) + A−1−w(D∞)Det(D∞),
then leads to
A−w(D+)iσ(D+)|Det(D+)| = A1−w(D0)iσ(D0)|Det(D0)|+A−1−w(D∞iσ(D∞ |Det(D∞)|
and eventually to
|Det(D+)| =

Aw(D+)−w(D0)+1iσ(D0)−σ(D+)|Det(D0)|+Aw(D+)−w(D∞)−1iσ(D∞)−σ(D+)|Det(D∞)| =

iσ(D0)−σ(D+)−1|Det(D0)| + iσ(D∞)−σ(D+)−1/2(w(D0)−w(D∞))|Det(D∞)|.
When we compare this formula with that of Theorem 7.1(a) we see that (a)
holds iff iσ(D0)−σ(D+)−1 = 1 and iσ(D∞)−σ(D+)−1/2(w(D0)−w(D∞)) = 1 and these
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conditions are equivalent to conditions
σ(D0) − σ(D+) ≡ 1 mod 4 and σ(D∞) − σ(D+) − 1

2
(w(D0) − w(D∞) ≡

0 mod 4. These conditions are equivalent to (b) because by Corollary 2.14(i),
we have generally that |σ(D+) − σ(D0)| ≤ 1). Furthermore, in general, we
have that |σ(D+) − σ(D∞) + 1

2
(w(D0) − w(D∞)| ≤ 2. The last inequality

require some explanation and consideration of two cases in which is either
a mixed crossing or a self-crossing.

(m) If is a mixed crossing then let Dj be a component of D+ such that
the change of the orientation of Dj results in the link D′

− = . Then
by Corollary 2.14 |σ( )−σ( )| ≤ 1. Further, by Proposition 2.11(ii),
|σ( + 2lk(Dj , D+ −Dj) − σ( )| ≤ 1. Because 4lk(Dj, D+ −Dj) =
w(D+) − w(D′

−) = w( ) − w( ) + 2 we obtain
|σ(D+) − σ(D∞) + 1

2
(w(D0) − w(D∞)) + 1| ≤ 1 and finally

−2 ≤ σ(D+) − σ(D∞) − 1
2
(w(D0) − w(D∞)) ≤ 0.

(s) If is a self-crossing then in D0 = the two parallel arcs belong
to different link components. Let Dj component contain the lower arc
and let D′

0 = be obtained from D0 by changing the orientation of
Dj. After performing the second Reidemeister move on D′

0 we obtain
a diagram which has two mixed crossings. We use Corollary
2.14(i) on one of them to get |σ( ) − σ( )| ≤ 1. Because σ(D′

0) =
σ(D0) + 2lk(Dj , D0 − Dj) = σ(D0) − 1

2
(w(D0) − w(D′

0)) = σ(D0) −
1
2
(w(D0) − w(D∞)), we obtain

|σ( ) − σ( ) + 1
2
(w( ) − w( ))| ≤ 1, then

|(σ( ) − σ( )) + (σ( ) − σ( ) + 1
2
(w( ) − w( )))| ≤ 1,

and finally |σ( ) − σ( ) + 1
2
(w( ) − w( ))| ≤ 2 as required.

The equivalence (a′) ⇔ (b′) follows from (a) ⇔ (b) by considering mirror
images of diagrams from (a) and (b). In particular, for the diagram D̄
being the mirror image of D, we always have that σ(D̄) = −σ(D), and
w(D̄) = −w(D)).

�

It is not difficult to see that any crossing of an alternating diagram satis-
fies properties (a),(a’) of Theorem 7.1. This follows from the fact that if D is
an alternating diagram then also D0 and D∞ are alternating, and for an al-
ternating diagram |DetD| can be interpreted as the number of spanning trees
of the underlying Tait graph, Gb(D), and the number of spanning trees is
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additive under deleting contracting rule; see Subsection 1.4. These ideas are
developed in Chapter V of [P-Book]. Without referring to it, the properties
(a) and (a’) of alternating links follow from the proof of Traczyk formula for
the signature of alternating diagrams which we present below. First, we have
to recall the necessary terminology. In fact, we use this as an opportunity for
introducing basic language which unifies the notion of Tait surface and Tait
graph (Footnote 13) with that of Seifert surface and Seifert graph [Crom].
Before general definition let us recall the definition of the Seifert graph.

Definition 7.2 [Crom]

The Seifert graph of an oriented diagram ~D is a signed (planar) graph Γ( ~D)
whose vertices correspond to Seifert circles of the diagram and edges corre-
spond to crossings of the diagram. The sign of an edge is determined by the
sign of the corresponding crossing.

In the more general setting we allow arbitrary smoothings of crossings of
(not necessary oriented) diagram D.

Definition 7.3 A Kauffman state s of D is a function from the set of cross-
ings of D to the set {+1,−1}. Equivalently, we assign to each crossing of D
a marker according to the following convention:

+1 marker

−1 marker

Fig. 7.1; markers and associated smoothings

By Ds we denote the system of circles in the diagram obtained by smooth-
ing all crossings of D according to the markers of the state s, Fig. 7.1. |Ds|
denotes the number of circles in Ds.
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In this notation the Kauffman bracket polynomial of D is given by the
state sum formula:

< D >=
∑

s

Aσ(s)(−A2 −A−2)|Ds|−1,

where σ(s) =
∑

p s(p) is the number of positive markers minus the number
of negative markers in the state s.
The state sum formula looks like a useful but not necessarily sophisticated
tool, however, state sums (and their limits) are basic and deep concepts in
the statistical physics and very likely the next breakthrough in Knot Theory
(and more) will utilize a connection (still to be discovered) between phase
transition of a physical system and Khovanov type homology based on close-
ness of states of the system (possibly persistent homology [E-Ha] will play a
role here).

But we are straying too far from our local goal of associating graphs and
surfaces to any Kauffman state s.

Definition 7.4 ([PPS])

(i) Let D be a diagram of a link and s its Kauffman state. We form a
graph, Gs(D), associated to D and s as follows. Vertices of Gs(D) cor-
respond to circles of Ds. Edges of Gs(D) are in bijection with crossings
of D and an edge connects given vertices if the corresponding crossing
connects circles of Ds corresponding to the vertices. As in the case of
the Tait graph, Gs(D) is a signed graph where the sign of an edge e(p)
is s(p), that is the sign of the marker of the Kauffman state s at the
crossing p.

(ii) In the language of associated graphs we can state the definition of an s-
adequate diagrams as follows: the diagram D is s-adequate if the graph
Gs(D) has no loops (adequacy is studied and utilized in Chapter V of
[P-Book]).

(iii) We associate with every Kauffman state s of a diagram D, a surface
Fs(D) embedded in R3 and with ∂Fs(D) = D, in a manner similar to
Construction 3.4 of a Seifert surface. That is, we start from the collec-
tion of circles Ds. Each of the circles bounds a disk in the projection
plane. We make the disks disjoint by pushing them slightly up above the
plane of projection, starting from the innermost disks. We connect the
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disks together at the original crossings of the diagram D by half-twisted
bands so that the 2-manifold which we obtain has D as its boundary,
see Figure 3.5 (we ignore orientation of the diagram, and the resulted
surface can be unorientable). Equivalently, we can start a construction
of Fs(D) from the graph Gs(D) as a spine (strong deformation retract)
of the constructed surface and proceed as follows: The graph Gs(D)
possesses an additional structure, that is a cyclic ordering of edges at
every vertex following the ordering of crossings at any circle of Ds. The
sign of each edge is the label of the corresponding crossing. In short,
we can assume that Gs(D) is a ribbon (or framed) graph, and that with
every state we associate a surface Fs(G) whose core is the graph Gs(D).
Fs(G) is naturally embedded in R3 with ∂Fs(G) = D. If s is the state
separating black regions of checkerboard coloring of R2 −D then Fs(G)
is the Tait surface of the diagram described in Exercise 2.8. For s = ~s,
that is, D is oriented and markers of ~s agree with orientation of D,
Gs(D) is the Seifert graph of D and Fs(G) is the Seifert surface of D
obtained by Seifert construction. We do not use this additional data in
this survey but it may be of great use in analysis of Khovanov homology
(compare [A-P] or Chapter X of [P-Book]).

The surface Fs(G) is not the only surface associated with the graph Gs(D),
another such surface is Turaev surface, M(s) [Tu], which for positive (s+) or
negative (s−) states of an alternating diagram is a planar surface. With some
justification Turaev surface can be called a background surface of a diagram.
The construction of M(s) for a given state s of D is illustrated, after [Tu],
in Figure 7.2. That is, M(s) is obtained from a regular neighborhood of a
projection of a link by modifying (by half-twists) neighborhoods of s-wrong
edges (see Figure 7.2 and compare it to Figure 1.8 to see that any alternating
digram has only s+-true edges). Notice, that M(s) depends on s and the link
projection but not over-under information of a link diagram. Alternatively,
we can say that M(s) is a surface realizing the natural cobordism between
circles of Ds and circles of D−s. In [DFKLS] the Turaev genus of a link is
defined to be the minimal genus of Turaev surface over all diagrams D of a
link with s+(D) states. The immediate consequence is that alternating link
has the Turaev genus equal to zero. Notice also, that if we cup off the circles
of Ds in M(s) by 2-discs we obtain the surface, M+(s) with boundary D−s
and the graph Gs(D) as its spine.
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Surface along s−true edge

Surface along s−wrong edge

Fig. 7.2; Turaev surface M(s) is composed of squares along every crossing
of D connected by ribbons according to convention illustrated in this

Figure. s-true edge and s-wrong edge are arcs of the diagram D connecting
crossings and the name depends on the label given by s to boundary

crossings [Tu]

Going back to Traczyk’s combinatorial formula, we recall the convention
for checkerboard shading of the projection plane. In an alternating diagram
we choose the standard shading as in Figure 7.3(a) complementary to the
shading given in Figure 7.3(b) (this essentially agrees with Tait’s convention
of checkerboard coloring, however we do not assume that the outside region
is white or black).
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Fig. 7.3; Checkerboard shading of the plane of the projection: (a) Tait’s,
(b) dual to Tait’s

We denote by B the number of black (shaded) areas and by W the num-
ber of white areas (for an alternating diagram D we have B = |Ds−| and

W = |Ds+|). Furthermore for an oriented diagram ~D let Γ( ~D) denote its
Seifert graph (Definition 7.2), T its (signed) spanning tree and d+(T ) (resp.
d−(T )) the number of positive (resp. negative) edges in T . For an alternat-
ing diagram the numbers d+(T ), d−(T ) do not depend on T so we can write

d+( ~D),and d−( ~D) in this case32

32This is the case for more general class of homogeneous diagrams introduced in [Crom]
and defined as diagrams for which 2-connected components of the Seifert graph have all
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Lemma 7.5 If ~D is an oriented connected alternating diagram of a link then

1

2
(w( ~D) + |Ds+| − |Ds−|) = d+( ~D) − d−( ~D)

In particular, the left hand side of the equation is unchanged when one goes
from ~D to ~Dp

0 for a non-nugatory crossing p (in ~Dp
0 the crossing p is smoothed

according to orientation of ~D).

Proof: One can easily proof Lemma 7.5 by induction on the number of non-
nugatory crossings of ~D. First one observes that if ~D has only nugatory
crossings then Γ( ~D) is a tree and d+( ~D) = c+( ~D) = s+( ~D)−1 (and d−( ~D) =

c−( ~D) = s−( ~D)− 1), thus the formula in Lemma 7.5 holds. In the inductive

step we consider a non-nugatory crossing p of ~D and compare ingredients of
the formula for ~D and ~Dp

0, and having the formula for ~Dp
0 deduct it for ~D.

It is worth however to compare d+, d−, c+, c−, |Ds+|, and |Ds−|) in more
detail. �

Lemma 7.6 Let p be any crossing of an oriented diagram ~D. Then

(i)

~s(p) =

{

s+(p) if p is positive
s−(p) if p is negative

In particular if ~D is a positive diagram then ~s = s+, and if ~D is a
negative diagram then ~s = s−.

(ii) |( ~Dp
0)~s| = | ~D~s|,

(iii)

|( ~Dp
0)s+ | =

{

| ~Ds+| if p is positive

| ~Ds+| − ε+ if p is negative

|( ~Dp
0)s−| =

{

| ~Ds−| − ε− if p is positive

| ~Ds−| if p is negative

Here ε+ and ε− are +1 or −1. If p is a non-nugatory crossing of an
alternating diagram then ε+ = ε− = 1.

edges of the same sign (i.e. they are homogeneous). Alternating diagrams are special cases
of homogeneous diagrams; this well known fact follows also from Lemma 7.5 as the lemma
can be proved for a fixed choice of a spanning tree and the left side of the equation does
not depend on the choice of a spanning tree.
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Proof: (i) The proof is illustrated in Figure 7.4.
The other parts are equally elementary and we leave them as exercise for the
reader. �

Fig. 7.4; ~s(p) = s+(p) if sgn(p) = 1, and ~s(p) = s−(p) if sgn(p) = −1

Lemma 7.7 If D is a connected alternating diagram, then for a complex
number A such that A4 = −1, we have:

(i) < D >A4=−1= AB−W | < D >A4=−1 |

(ii) For any crossing p of an alternating diagram D one has:

| < D >A4=−1 | = | < Dp
0 >A4=−1 | + | < Dp

∞ >A4=−1 |

in other words the absolute value of the determinant of a diagram is
additive under the Kauffman bracket skein triple.

Proof: If all crossings of D are nugatory, then D represents the trivial knot.
Choose an orientation of D. The orientation defines signs of crossings, which
are however independent on chosen orientation. As we noticed in Lemma XX
in this case c+ = W−1 and c− = B−1. Thus 〈D〉 = (−A3)w(D) = (−A3)W−B

(for a knot w(D) does not depend on the orientation of D). For A4 = −1,
〈D〉A4=−1 = (−A4)W−B(A)B−W = AB−W as required. The inductive step
follows easily: If p is a non-nugatory crossing of D, then from the Kauffman
bracket skein relation

〈D〉 = A〈D0〉 + A−1〈D0+〉

and by the inductive assumption, for A4 = −1, follows that:

〈D〉A4=−1 = AAB−W−1|〈Dp
0〉A4=−1| + A−1AB−W+1|〈Dp

∞〉A4=−1| =
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AB−W (|〈Dp
0〉A4=−1| + |〈Dp

∞〉A4=−1|) = AB−W |〈D〉A4=−1|
which completes the proof of Lemma 7.7(i). It also establishes Lemma 7.7(ii)
for a non-nugatory crossing p of a connected diagram D. If p is a nugatory
crossing, then 〈Dp

0〉A4=−1| or |〈Dp
∞〉A4=−1| is equal to zero and (ii) holds im-

mediately. If D is not connected diagram then (ii) holds for any connected
component of D and (ii) follows because Kauffman bracket (and signature)
is multiplicative under disjoint sum.

�

As a corollary of Theorem 7.1, 7.5, and 7.7, we have Traczyk’s result.

Theorem 7.8 [Tra] If D is a reduced33 alternating diagram of an oriented
link, then

(1) σ(D) = −(c+ − c−) + d+ − d− = −w + d+ − d−

(2) σ(D) = −1
2
(c+ − c−) + 1

2
(W − B) = −1

2
w + 1

2
(W − B) =

− 1
2
(w + |Ds+| − |Ds−|)

(3) σ(D) = σ(Dp
0) − sign(p)

7.1 Quasi-alternating links

Quasi-alternating links introduced by Manolescu, Ozsvath, and Szabo in
[O-S, M-O, C-K] are motivated by properties (a),(a’) of Theorem 7.1, de-
scribed in the theorem relations to signature, and applications of these prop-
erties to the thinness of Khovanov and Heegaard Floer homology:

Definition 7.9 [O-S] The family of quasi-alternating links is the smallest
family of links which satisfies:

(i) The trivial knot is quasi-alternating.

(ii) If L is a link which admits a crossing such that
(1) both smoothings (L0 and L∞) are quasi-alternating, and
(2) |DetL| = |DetL0

| + |DetL∞
|,

then L is quasi-alternating.

33Reduced means that no crossing of D is nugatory and the crossing p of D is called
nugatory if Dp

0 has more (graph) component from D.
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The crossing used in the definition is called a quasi-alternating crossing of
L.

Notice that a split link has its determinant equal to 0 so it cannot be
quasi-alternating (determinants of quasi-alternating links are always positive
as easily follows by induction from Definition 7.9). Therefore, we can use
condition (b) of Theorem 7.1 as alternative definition of the family of quasi-
alternating links.

One can ask why we choose condition (2) in the definition of quasi-
alternating links and not a weaker first part of conditions (b), (b’) from
the Theorem 7.1 (σ(D+) = σ(D0) − 1 or σ(D−) = σ(D0) + 1). The first an-
swer is purely practical: this is exactly what is needed to have thin Khovanov
(and Heegaard) homology (see Chapter X of [P-Book]). One can also argue
that condition which refers only to unoriented links is sometimes a plus.

We already have proved that non-split alternating links satisfy properties
which make them quasi-alternating: if D is an alternating diagram then also
D0 andD∞ are alternating, and every non-nugatory crossing of an alternating
diagram is quasi-alternating (satisfies property (ii)(2)) as long as D is a non-
split link.

According to [M-O] among the 85 prime knots with up to nine crossings,
82 are quasi-alternating (71 are alternating), 2 are not quasi-alternating (819

and 942), and the knot 946 still remains undecided. It was showed by A. Schu-
makovitch using odd Khovanov homology that 946 is not quasi-alternating.
The classification of quasi-alternating knots up to 11 crossings was completed
by J. Greene in [Gr].

It was also determined which pretzel links are quasi-alternating (partial
classification of quasi-alternating Montesinos links is advanced in [C-K, Gr,
J-S, Wid]:

Theorem 7.10 [C-K, Gr] [Characterization of quasi-alternating pretzel links]
The pretzel link P(1,...,1,p1,...,pn,−q1,...,qm) with e 1th, e+ n+m ≥ 3, and pi ≥ 2,
qi ≥ 3 is quasi-alternating if and only if one of the conditions below holds:
(1) e ≥ m,
(2) e = m− 1 > 0,
(3) e = 0, n = 1, and p1 > min(q1, ..., qm),
(4) e = 0, m = 1, and q1 > min(p1, ..., pn),
The same is true on permuting parameters34 pi and qj.

34Thus all pretzel links are covered in the theorem.
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The importance of quasi-alternating links rests in the following results of
Manolescu and Ozsvath:
(1) Quasi-alternating links are Khovanov homologically σ-thin (over Z).
(2) Quasi-alternating links are Floer homologically σ-thin (over Z2).
We explain the meaning of the first result in Chapter X of [P-Book] showing
also how to generalize it to Khovanov homologically k-almost thin links.

To have some measure of complexity or depth of quasi-alternating links
we introduce the quasi-alternating computational tree index QACTI(L) is
defined inductively from the definition of quasi-alternating link as follows:

Definition 7.11 For the trivial knot T1, QACTI(T1) = 0. QACTI(L) is
the minimum over all quasi-alternating crossings p (of any diagram) of L of
max(QACTI(Lp0), QACTI(L

p
∞)) + 1.

In other words, QACTI(L) is the minimal depth of any binary compu-
tational resolving tree of L using only quasi-alternating crossings and having
the trivial knot in leaves.

From Definitions 7.9 and 7.11, and Theorem 7.1 we get approximation on
QACTI(L):

Corollary 7.12 Let L be a quasi-alternating link then:

(i) |Det(L)| − 1 ≥ QACTI(L) ≥ log2(|Det(L)|)

(ii) QACTI(L) ≥ |σ(~L)|, for every orientation of L.

(iii) If p is a quasi-alternating crossing of L then
QACTI(L) ≤ QACTI(Lp0) + 1, and QACTI(L) ≤ QACTI(Lp∞) + 1.

Let us finish this survey with a nice example of a quasi-alternating knot
of 13 crossings due to S. Jablan and R. Sazdanovic [J-S].
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Figure 7.5; A quasi-alternating knot 13n1659
with 2 diagrams of (minimal

number) 13 crossings. The first diagram is (Conway) algebraic but no
crossing is quasi-alternating. The second diagram, which bases on Conway’s
polyhedron 6∗, has the circled crossing quasi-alternating. The determinant
of 13n1659

is equal to 51 while smoothings of quasi-alternating crossing gives
the trivial knot and a quasi-alternating link with determinant 50, [J-S].
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