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M a s l o v  I n d e x  a n d  S y m p l e c t i c  S t u r m  T h e o r e m s *  
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Introduction 

The Sturm theorems on zeros of solutions of a second-order ordinary differential equation describe the 
rotation of a line in the phase plane of the equation [3, 13]. In the symplectic version of these theorems, lines 
are replaced by Lagrangian planes and the instants of intersection with a given line are replaced by instants 
of nontransversality with a given plane [2]. The train of a given Lagrangian plane is a hypersurface (with 
singularities), in the Lagrangian Grassmannian, that consists of the Lagrangian planes not transversal to 
the given plane. 

By the Maslov index we mean the index of intersection of a curve on a Lagrangian Grassmanuian 
with the train. The symplectic Sturm theorems [2] describe some properties of the Maslov index. The 
symplectic Sturm theory was developed by Morse [10, 11], Lidskii [9], and Arnold [2], and its Hermitian 
version by Bott [4] and Edwards [5]. The properties of (non)oscillation of Hamiltonian equations, and 
cocycles representing a generator of the first cohomology group of the symplectic group, were studied by 
Yakubovich [15-17]. The symplectic Sturm theory was used by Givental [7] who proved the Lagrangian 
nonoscillation of the Picard-Fuchs equation for hyperelliptic integrals. In the present paper we determine 
a class of hypersurfaces in the Lagrangian Grassmannlan on each of which the symplectic Sturm theorems 
can be extended. The author wishes to thank V. I. Arnold and A. G. Khovan.~kii for fruitful discussions. 

w Necessary Definitions 

In this section we construct transversally oriented hypersurfaces in the Lagrange-Grassmann manifold 
that  determine a one-dimensional cocycle coinciding with the Maslov index. 

Let us consider a symplectic vector space (R 2n, w). Denote by An the manifold of all Lagrangian 
subspaces in (R 2n, w), which we call the Lagrange-Grassmann manifold. We choose Darboux coordinates 
(P, q) = (Px , . . . , pn ,  q l , . . . ,  qn) in (R 2n, w), w = ~ dpi A dqi = dp A dq. The plane p = 0 is called the 
q-plane and the plane q = 0 the p-plane. 

Let us consider the set X C An of all Lagrangian planes transversal to the plane p = 0. The set X is 
open and dense in An (a chart of An) that  is diffeomorphic to R n(n+l)/2 . A Lagrangian plane belonging 
to X can be identified with a symmetric matrix, namely, to a matrix A, the plane q = Ap corresponds. 

Def in i t ion  [2]. The set of all Lagrangian planes that  are not tran.qversal to a given Lagrangian plane is 
called the train of this plane. In the chart X,  the train of the p-plane is given by the equation det A = 0. 

We identify each element of the tangent space at a point of a vector space, as well as each translation- 
invariant vector fields on the vector space, with an element of the vector space. In our case, we identify 
translation-invariant vector fields in the chart X with matrices. 

Let us consider a hypersurface in X specified by the equation 

(LA,""  LA,~ det)(A) = 0, 

where A1, . . . ,  Ak are positive-definite matrices (0 < k < n), L.  is the derivative along the vector field v, 
and det is the determinant. 

* The research was partially supported by INTAS grant No. 96-0713 and RFBR grant No. 96-01-01104. 

M. V. Lomonosov Moscow State University, Department of Mechanics and Mathematics. Translated from Funktsionaltnyi 
Analiz i Ego Prilozheniya, Vol. 32, No. 3, pp. 35-49, July-September, 1998. Original article submitted December 23, 1997. 

172 0016-2663/98/3203-0172 $20.00 C)1999 Plenum Publishing Corporation 



Defini t ion .  The closure of the hypersurface {A : (LAI""LAkdet)(A)=0} C X in the Lagrange- 
Grassmann manifold Am is called a generalized train and is denoted by E~ .  Sometimes we denote the 
generalized train by ~-~'A1 . . . . .  Ak ; in this case we assume that some Darboux coordinates are chosen. 

Thus, a generalized train is constructed from the following data: Darboux coordinates in (R 2~, w) and 
k positive-definite (0 < k < n) matrices n x n.  

R e m a r k .  This set of data is excessive, namely, instead of Darboux coordinates, it suffices to choose 
k + 2 Lagrangian planes satisfying the following conditions: 

(1) the first plane is transversal to the other planes; 
(2) if some Darboux coordinates are chosen so that the first plane is the q-plane and the second is the 

p-plane, then the remaining k Lagrangian planes must be represented by positive-definite matrices in the 
corresponding chart X. 

After this we can repeat the above definition of the generalized train for the chosen Darboux coordinates 
and for the matrices thus obtained. The resulting hypersurface and the validity of condition (2) do not 
depend on the choice of Darboux coordinates. 

The train of a Lagrangian plane is a special case of the generalized train ( k = 0). As is shown below, for 
n > 2, all generalized trains in h,~ are hypersurfaces with singularities. For n = 2, the generalized train 
constructed for a single matrix (the first nontrivial example of a generalized train) is a smooth hypersurface 
in A2 diffeomorphic to the two-dimensional sphere. 

Def in i t ion  [2]. By positive vectors on the Lagrange-Grassmann manifold we mean vectors of the 
velocities of motion of Lagrangian planes under the action of positive-definite Hamiltoniaus. 

At nonsingular points, the train of any plane is transversally oriented by positive vectors. The index of 
intersection of oriented loops with the train determines the canonical generator of the group H 1 (An, Z) = Z 
[1, 2] which is the Maslov class. 

A generalized train is a hypersurface (with singularities) in An. The properties of a generalized train 
are mainly similar to those of the train of a Lagrangian plane. The following theorem holds. 

T h e o r e m  1.1. A generalized train ~ d  is a hypersurface in the Lagrange-Grassmann manifold An 
such that 

(1) positive vectors are transversal to ~ at nonsingular points; 
(2) the transversal orientation of the generalized train by means of positive vectors specifies an element 

a~r E H 1 (h,~, Z) which is the index of intersection of the oriented loops with r,~r 
(3) the element ~,~ coincides with the Maslov class. 

Def ini t ion .  By a positive path we mean a smooth path in the Lagrange-Grassmann manifold whose 
velocity vector at any point is positive. 

Co ro l l a ry  1.2. The index of intersection of a positive path with a generalized train is nonnegative. 

The proof of Theorem 1.1 is given in w The intersection of a generalized train with the chart X is a 
zero-level surface of a hyperbolic polynomial. We need some statements concerning hyperbolic polynomials, 
which we present in the next section. 

w H y p e r b o l i c  P o l y n o m i a l s  

Recall that a real polynomial of degree n is said to be hyperbolic along a vector a if its restriction to 
any line parallel to a has exactly n real roots (counted according to their multiplicities). In this case, the 
vector a is called a hyperbolic vector of this polynomial or, by misuse of language, it is simply said to be 
hyperbolic. 

The vectors along which a given homogeneous polynomial is hyperbolic form open convex cones [6, 14]. 
We need the following statements on homogeneous hyperbolic polynomials. 

Let K be an open cone that forms a connected component of the domain of hyperbolic vectors of a 
homogeneous polynomial f .  
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P r o p o s i t i o n  2.1 [2]. The parallel translation of the cone K to a point of the surface f = 0 does not 
intersect this surface in a su~ciently small neighborhood of the new vertex. 

As in w we identify translation-invariant (constant) vector fields on a vector space with vectors of this 
space. 

P r o p o s i t i o n  2.2 [14]. The derivative of the polynomial f along a constant hyperbolic vector field that 
is equal to a vector of the cone K is a homogeneous hyperbolic polynomial with respect to the vectors o] 
the cone K.  

P r o p o s i t i o n  2.3. A path whose velocity vector belongs to the cone K at each intersection point with 
the surface f = 0 intersects the surface f = 0 at finitely many points. 

Proo f .  Denote by g(x) the number of nonpositive roots of a polynomial f ( x  + ta) in t (counted 
according to their multiplicities) for a E K. The function g is locally constant on the complement to the 
hypersurface f = 0 because f is hyperbolic. The value of g does not  depend on the choice of a E K .  The 
function g restricted to the pa th  increases at the intersection points of the pa th  with the surface f = 0, 
which can readily be seen from Proposition 2.1. This proves our proposition. 

P r o p o s i t i o n  2.4. The set of critical points of the derivative of a homogeneous polynomial f along a 
constant hyperbolic vector field is contained in the set of critical points of the polynomial f . 

P r o o f .  Let a E K be a constant hyperbolic vector field. Let x be a critical point of the hyperbolic 
polynomial LGf. Since the polynomial Laf  is homogeneous, we have (Laf)(x)  = O. The multiplicity of 
the root t = 0 of the polynomial (Laf)(x  + tb) in the variable t is constant for b E K by Propositions 
2.1 and 2.2 because all roots of the polynomial (L~f)(x  + tb) in the variable t are real and continuously 
depend on the vectors b E K .  Thus, the point x is a critical point of the hyperbolic polynomial L~f  if 
and only ff t -- 0 is a multiple root of the polynomial l(t) = (Laf) (x  + ta). The polynomial l(t) is equal 
to the derivative of the polynomial f ( x  + ta) in the variable t .  The polynomials f ( x  + ta) and l(t) of the 
variable t are hyperbolic. (We recall that  a real polynomial of a single variable is said to be hyperbolic if 
all its roots are real.) According to Rolle's lemma, a root of the derivative of a hyperbolic polynomial is 
multiple if and only if it is a multiple root (of multiplicity at  least three) of the polynomial itself. Hence, 
t = 0 is a multiple root of the polynomial f ( x  + ta) in t ,  and x is a critical point  of the polynomial f .  
This completes the proof. 

The following s ta tement  is well known. This is a consequence of the theorem on the reduction to 
principal axes for a pair of forms one of which is positive definite. 

P r o p o s i t i o n  2.5. The determinant of a symmetric matrix is a hyperbolic homogeneous polynomial on 
the space of symmetric matrices with respect to the cone of positive-definite matrices. 

C o r o l l a r y  2.6. Let A 1 , . . . ,  Ak be positive-definite matrices. The polynomial LA1 ""LAk det is a 
hyperbolic homogeneous polynomial on the space of symmetric matrices with respect to the cone of positive- 
definite matrices. 

w P r o p e r t i e s  o f  a G e n e r a l i z e d  T r a i n  

Recall that  by X we denote the chart of An that  consists of all Lagrangian planes transversal to the 
q-plane. By means of the linear structure, we identify the tangent vectors at different points of X with 
constant vector fields on X and with matrices that  are elements of X. 

L e m m a  3.1. Positive vectors in the chart X of a Lagrange-Grassmann manifold are represented by 
positive-definite matrices. 
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Proof .  Let H be a positive-definite Hamiltonian. Consider the Lagrangian plane q = Ap. Under the 
action of the phase flow of the Hamiltonian vector field p = - H q ,  q = Hp with Hamiltonian H at time r 
its image is the plane q = (A + r + o(r Let us prove that the matrix B is positive definite. Indeed, 

Ap + clip(p, A;) = ( A + r  - r Ap) ) + o(r 

and hence Hp(p, Ap) = Bp - AHq(p, Ap). Therefore, 

(Bp, p) = (Hp(p, Ap), p) + (Agq~p, Ap), p) = (Hp(p, Ap), p) + ( g q ~ ,  Ap), Ap) = 2 H ~ ,  Ap) 

by the Euler theorem. Thus, the matrix B is positively definite. The converse is also true, namely any 
positive-definite matrix represents a positive vector. This proves the lemma. 

Let us consider a chart Y of the Lagrange-Grassmann manifold An that consists of all Lagrangian 
planes transversal to the plane p = 0 (q-plane). As in the case of X, in the chart Y we identify a 
Lagrangian plane with a symmetric matrix B, namely, the plane p = Bq corresponds to the matrix B.  
The coordinates of a plane A E X f 3 Y  in the charts X and Y are related by the formula A = B -1 (A (B, 
respectively) is the matrix corresponding to the plane A in the chart X (Y, respectively)). 

L e m m a  3.2. (a) In the chart Y,  the equation (LAt '"  "LAk d e t ) ( A ) =  0 has the form 

(L_I~A,B.. .  L _ B A h B 1 ) ( B )  = 0 .  

(b) (L-BA,B 1 B "" " L-BA~B'd~)( ) = PAt ..... A~ (B) /det  B , where PAt ..... A~ (B) is a homogeneous polyno- 
mial of degree k that is equal to the sum o.f terms of the .form 

:t: tr (Ai~ B . . .  Ai,~ ) tr (A+,,~+~ B . - .  Ai,, 2 B ) . . -  tr (Ai=~_~+, B-- -  Aimz B) 

((it, . . .  ,ira,) is a permutation of the elements (1, . . .  , k)). 

P roof .  (a) For any matrix M (de tM #: O) we have ( M + e A i )  -1 = M -1 - e M - X A i m  -1 +o(e ) .  
(b) We can readily see that (L_BAtB~et)(B) = t r A x B / d e t B .  The remaining part of the proof can 

be performed by induction. For instance, PAt,A2 (B) = t r A t B  t rAzB - t r  A1BA2B.  This completes the 
proof. 

For convenience, we sometimes denote the operator LAx "'" LAb by L~r and the polynomial PAt,...,A+ 
by Par 

L e m m a  3.3. The set of singular points of the hypersurface L~cdet = 0 is of codimension not less than 
three in the chart X .  

The set of singular points of the hvpersurface { B :  P ~ ( B )  = 0} is of codimension not less than three 
in the chart Y ,  and the hypersurface {B : P ~ ( B )  = 0} intersects the hypersurface {B : det B = 0} 
transversally outside a set of codimension not less than three in the chart Y .  

Proof .  The first assertion of the lemma follows from Proposition 2.4 because the set of singular points 
of the hypersurface L~,det = 0 is contained in the set of singular points of the hypersurface det = 0 whose 
codimension is equal to three. Let us prove the other assertion. The intersection of the set of singular 
points of the hypersurface {B : Pal(B) = 0} with the set {B : det B # 0} is of codimension not less 
than three in the chart Y because this is a representation of the set of singular points of the hypersurface 
L~cdet -- 0 in the chart Y. 

The set of singular points of the hypersurface {B : det B = 0} is of codimension three in the chart Y. 
Hence, it suffices to show that the hypersurface {B : Pal(B) = 0} and the manifold of nonsingular points 
of the hypersurface {B : det (B) = 0} intersect transversally outside a set of codimension not less than 
three in the chart Y. 

The set of nonsingular points of the hypersurface {B : det (B) = 0} is the set of matrices with one- 
dimensional kernel. This is a bundle over the corresponding projective space (the kernel corresponds to a 
matrix). Let us prove that the set of singular roots of the equation Pa(B)  = 0 that is restricted to any 



fiber of this bundle is of codimension not less than two in the fiber (this fact yields the other assertion of 
the lemma). 

We consider a fiber of this bundle over the line ql = . . . .  q , - t  = 0. The rightmost column and the 
bo t tom row of the matrices from this fiber are zero and the determinant of the upper left minor of size 
( n -  1) x ( n -  1) is nonzero. Denote this minor b y / 3 .  In this fiber, the equation Pal(B) = PA~ ..... Ak (B) = 0 

has the form PAt ..... ilk (/3) = 0 (by Lemma 3.2), where Ai is the upper left minor of size (n - 1) x (n - 1) 

of the matrix Ai .  The matrices .,i,i are positive definite, and hence, as was shown above, for k < n - 1, 
the equation P~.(B) = 0 determines a hypersurface in the fiber under consideration such that  the set 
of singular points of this hypersurface is of codimension not less than three in this fiber. If k = n - 1, 
then P~i,,...,iik ( /3)/det  B = ( L A . . . L T t  k det)(B - t )  ~ 0. Therefore, the fiber under consideration is not 
contained in the hypersurface {B : P~,(B) = 0}. The case of other fibers can be reduced to that  treated 
above by changing the Darboux coordinates that  preserve p- and q-planes. This proves the lemma. 

Denote by O the nnion, over all fibers of the bundle introduced in the proof of Lemma 3.3, of the sets of 
singular roots of the equation PA1,...,ak (B) = 0 on a fiber of this bundle. By Lemma 3.3, the codimension 
of the set O is not less than  three. 

C o r o l l a r y  3.4. The intersection of a generalized train with the union of  the charts X and Y is a 
hypersurface that is smooth outside a set of codimension not less than three. 

P r o o f .  Indeed, the intersection of a generalized train with the chart X is nonsingular outside a set of 
codimension not less than  three, which is the first assertion of the above lemma. The singular points of 
the intersection of a generalized train with the chart Y that  belong to Y \ X are contained in the set of 
singular points of the hypersurface {B : det (B) = 0} and in the set O. 

L e m m a  3.5. A positive vector is transversal to a generalized train at any of  its nonsingular points. 

P r o o f .  Let a Lagrangian plane A be a nonsingular point  of a generaliT.ed train. In this case, A is the 
limit of a sequence of nonsing~llar points of the intersection of the generalized train with the chart X.  At 
the nonsingular points of the intersection of the generalized train with the chart X,  any positive vector is 
tran.qversal to the generaliT.ed train by Proposition 2.1 and Lemma 3.1. Let us chose Darboux coordinates 
(t5, q) so that  A is the if-plane. By Lemma 3.1, in the chart Z of Lagrangian planes transversal to the 
q-plane, the positive vectors are represented by positively definite matrices. The lemma follows from the 
next simple statement.  

Proposition 3.6. Let K be an open cone in R tr and let F be a smooth hypersurface in R N. In this 
ease, the set of  points of  the hypersurface F at which all vectors of  K are transversal to F is closed in F. 

P r o o f .  Indeed, the set of points of F at which there exists a vector from K that  is tangent  to F is 
obviously open in F.  

L e m m a  3.7. The index of  intersection of oriented closed curves with a generalized train ]E,~ = 
EAx ..... Ak (transversally oriented by positive vectors) determines an element ~At .... ,Ah E H t ( X  U Y,  Z).  
The element ~At ..... Ah does not depend on the choice of  positive-definite matrices A t , . . . ,  Ak .  

P r o o f .  Indeed, the first s tatement  of the lemma fo.llows from Corollary 3.4 and Lemma 3.5. Let us 
prove the other s tatement .  Let us consider a loop in X U Y and bring it to general position with respect 
to EAt .... ,A~ and to the train of the q-plane. The loop thus obtained intersects YIAt ..... Ah and the train 
of the q-plane transversally at nonsingular points of these hypersurfaces. In this case, by Lemma 3.3, we 
can assume that  the points of intersection of the loop with EAt ..... Ak are contained in the chart X.  If 
matrices B t ,  . . . ,  Bk are close to the matrices At ,  . . . ,  Ak,  respectively, then the resulting loop intersects 
EBt ..... Bk transversally at close points. Let us prove this fact. 

Let 7( t ) ,  t E R / Z ,  be the resulting loop and let t t ,  . . . ,  tt be the instants of intersection of this loop 
with the train of the q-plane. In this case, for a sufficiently small e, the paths 7( t) ,  t E [tj - e, tj + e], 
are contained in the chart Y and do not intersect the hypersurface {B : PAt ..... Ak (B) = 0}. Hence, these 
paths do not intersect the hypersurface {B : PB1 ..... -k (B) = 0} (if the matrices B 1 , . . . ,  Bk are close to 
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the matrices A 1 , . . . ,  Ak) because the equation PAl .... , A k ( B )  = 0 depends continuously on A 1 , . . . ,  Ak. 
All the more, the paths 7(t) ,  t E [tj - E, tj + e], do not intersect EB1 ..... Bk- 

On the other hand, the paths "r(t), t E [tj + r tj+l - z], belong to the chart X. The equation 
LA, " . . LAk (A) = 0 depends on A 1 , . . . ,  Ak smoothly, and hence the paths 7(t) , t e [tj + c, tj+l - E] 
intersect EB1 ..... Bk transversally at close points by the implicit function theorem. It remains to note 
that the contribution of each intersection point to the index of intersection is preserved under a small 
modification of the matrices A1, . . . ,  Ak. We have proved that the element aA~ ..... A~ is locally constant, 
and therefore it is constant because the positive-definite matrices form a connected set. This proves the 
lemma. 

Introduce a function g d  on the chart X as follows: gd(B)  is equal to the number of nonpositive roots 
of the polynomial L d ( B  + tP) in the variable t (where P is a positive-definite matrix). The function 
g~, does not depend on the matrix P used in its definition. The results of w readily imply the following 
assertion. 

P r o p o s i t i o n  3.8. The index of intersection of a path belonging to the chart X with ~ d  is equal to 
the increment of the function gal. I f  the starting point and the terminating point of this path are negative- 
and positive-definite matrices, respectively, then the index of intersection of this path with ~3~, is equal to 
n - k .  

Denote by E the identity matrix and by E~ the gener_a!~ed train ZAa ..... ak with A1 = . . -  = Ak = E .  

L e m r n a  3.9. The generalized train I3~ is a hypersurfuce that is smooth outside of a set o/codimension 
not less than three in An.  The index o/ intersection of oriented closed curves with ~3~ ( transversally 
oriented by positive vectors) determines an element in H 1 (An, Z) that coincides with the Maslov class. 

Proof .  If k = 0, then our generaliT.ed train is simply the train of the p-plane, and the assertion of the 
lemma was proved in [1]. Assume that k > 0. Let us prove that  the intersection of E~ and An \ (X  U Y)  
is a set of eodimeusion not less than three (for k = 0, this is not the ease). By Corollary 3.4, this implies 
the first assertion of the lemma. 

We have the following obvious statement: 

P r o p o s i t i o n  3.10. Let A1 = " .  = Ak = E and let I~1, . . . ,  I~  be the eigenvalues of a symmetric 
matrix M .  In this case, 

L~,de t (M)  -- k! E I~i, ...p.ih, Pal(M) = k! E i~i, . . . l~i,_h. 
Q < . . .< ih  Q < ' " < i n -  k 

Let us continue the proof of Lemma 3.9. The set An \ (X U Y) is a submanifold (with singularities) 
of codimension two in An. The set of Lagrangian planes that intersect the 19- and q-planes along a one- 
dimension subspace forms an open submanlfold L of codimension two in An (for example, for n = 2, this is 
an ,,nlmotted circle in A2). The complement to L in A n \ ( X U Y )  forms a submanifold (with singularities) 
ofeodimeusion at least three in An. To a plane A E L,  a system of n - 2  nonzero "eigenvalues" corresponds; 
~amely, we must consider a sequence of planes (matrices) in X convergent to A and take the limits of 
the eigenvalues. One of these limits is zero and another is infinite, and the remained eigenvalues form the 
desired system. By Proposition 3.10, we can readily show that  the condition "the plane belongs to the 
generalized train E~" is nontrivial for this system. Hence, E~ intersects L along a hypersurface. The 
first statement of the lemma is proved. 

Let us prove the other statement of the lemma. The generalized train E~ ,  transversally oriented by 
positive vectors, determines an element ak~ in HX(An, Z) because the set of its singular points is of 
codimeusion three in A,,. Let us show that ak~ coincides with the Maslov class. 

Since ~q(An) = Z [1], it suffices to show that the values of the class ak and of the Maslov class 
coincide on a noncontractible loop. Consider a loop 7 formed by the following paths 71 and 72- The 
path 71(t) = (t - 1)A + t B ,  t E [0, 1], belongs to the chart X and the path 72(t) = (1 - t )B -1 - tA -1 , 
t E [0, 1], to the chart Y, where A and B are positive-definite matrices. The endpoints of the paths 3'1 
and 72 do not belong to E~ .  The Maslov index of the loop 7 is equal to n because the path ~2 does not 
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intersect the train of the p-plane, and the index of intersection of the path 71 with the train of the p-plane 
is equal to n [2]. Hence, the index of intersection of the loop 7 with Z k is divisible by n.  According 
to 3.8, the index of intersection of the path 71 with E~ is equal to n - k. On one hand, the index of 
intersection of the path 72 with E~ is nonnegative because the path V2 is positive (note that, in the 
chart Y, the positive vectors are represented by negative-definite matrices), and, on the other hand, this 
index does not exceed k because the intersection of Z k with the chart Y is contained in the zero-level 
surface of the polynomial PE ..... E of degree k. Thus, the index of intersection of the loop V with E~ is 
positive and does not exceed n ,  and therefore it is equal to n.  This proves Lemma 3.9. 

L e m m a  3.11. The index of intersection of oriented closed curves with E,~ (transversally oriented by 
positive vectors) determines an element in H x(An, Z) coinciding with the Maslov class. 

Proof .  Take a loop in A,, and consider its small perturbation that belongs to X U Y. By Lemma 3.7, 
on the resulting loop, the value of ~At ..... At, is equal to the value of ~ ..... ~ .  According to Lemma 3.9, 
this value coincides with the Maslov index. Hence, the index of intersection is well defined, and this proves 
the lemma. 

P r o o f  of  T h e o r e m  1.1. Theorem 1.1 follows from Lemmas 3.5 and 3.11. 

R e m a r k s .  1) The intersection of a generalized train E~, with the chart Y coincides with the surface 
{B  : P ~ ( B )  = 0}. The polynomial P~, is hyperbolic with respect to the cone of positive-definite matrices. 
These assertions readily follow from the fact that  the index of intersection of the path 72 introduced in 
the proof of Lemma 3.9 with E~, is equal to k. 

2) Theorem 1.1 could be proved in another way if we were able to show that the singularities of the 
generalized train are of codimension not less than three in the Lagrange-Grassmann manifold. The author 
knows no proof of this fact. 

w C o n s t r u c t i o n  o f  a Cocye le  

The cone of positive vectors is related to a generalized train in the same way as the cone of hyperbolic 
vectors of a polynomial f is related to the surface f = 0 (see Proposition 2.1). This allows one to define 
a one-dimensional cocycle on An. The index of intersection of nonclosed paths with a (generalized) train 
is useful for different aims. For the train of a Lagrangian plane, this index was defined in [12]. 

Lemma 4.1. The instants of intersection of a positive path with the train of any Lagrangian plane A 
are isolated. 

Proof .  Let 7 ( 0 ,  t E ]0, 1[, be a positive path and let "),(to) belong to the train of the plane A. 
We can choose Darboux coordinates ~ ,  q) so that the plane A is the/5-plane and the plane "}'(to) is 

transversal to the ~-plane. In the chart of the manifold An that is formed by the planes transversal to 
the ~-plane, the train of the plane A is specified by the equation det (A) = 0. Applying Propositions 2.3 
and 2.5 and Lemma 3.1, we complete the proof. 

L e m r n a  4.2. The instants of intersection of a positive path with a generalized train are isolated. 

Proof .  The instants of intersection of a positive path with the train of the q-plane are isolated. Hence, 
the path is divided into finitely many parts that belong to the chart X. By 2.6, 2.3, and 3.1, on each such 
part, the number of instants of intersection with the generalized train is finite. This proves the lemma. 

Let us consider the Darbottx coordinates (15, ~) and the chart X~ of the Grassmannian A,~ that  consists 
of aU Lagrangian planes transversal to the Q-plane. As above, we identify the Lagrangian planes from X~ 
with symmetric matrices. 

T h e o r e m  4.3. The parallel translation of the cone of positive-definite matrices in the chart X# to a 
point of a generalized train does not intersect the generalized train in a su~ciently small neighborhood o] 
the new vertex. 
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Proof .  Let us consider a point x0 E X~ of the generalized train and draw a positive path (in the 
chart X~) through x0 that intersects the generalized train at the point x0 only. This can be done 
by Lemma 4.2. If the assertion of the theorem is false, then there exists another positive path (in the 
chart X~) with the same endpoints (as for the first one) that passes through the point x0 and through 
arbitrarily many nonsingular points of the generalized train. The indices of intersection of these paths 
with the generalized train coincide because these paths are homotopic (with fixed endpoints). Hence, the 
index of intersection of the first path is arbitrarily large (see Corollary 1.2). A contradiction. 

R e m a r k .  A similar statement holds for the cone of negative-definite matrices. 

The train of a Lagrangian plane is naturally stratified by the dimension of the intersection with this 
plane. A similar stratification exists for a generalized train. 

Let us consider a point xo of a generalized train and draw a (short) positive path 7 through x0 that 
does not intersect the generalized train at other points. 

Def in i t ion .  By the multiplicity of the point xo we mean the index of intersection of the path 7 with 
the generalized train. 

P r o p o s i t i o n  4.4. The multiplicity is well defined and positive. 

Proof .  Let us consider two positive paths 7t and 72 that pass through a point xo of a generalized 
train (and have no other intersections with the generalized train). Assume that these paths are contained 
in the chart X~ of the Grassmannian An related to the Darboux coordinates (fi, ~). By Theorem 4.3 and 
by the remark after it, the path 7t is homotopically equivalent to a path 72 such that, in the corresponding 
homotopy, the endpoints do not intersect the generali~,,ed train. This proves that the multiplicity is well 
defined. Since the nonsingular points are dense in a generalized train, it follows that  the other part of the 
proposition is also valid. 

R e m a r k .  The multiplicity of a point ~ of the train of a Lagrangian plane a is equal to the dimension 
of intersection of the planes o and /~, For n > 2, all generaliT, ed trains in An are hypersurfaces with 
singularities because, for the generali~.ed train r.~, constructed on the basis of the Darboux coordinates 
(p, q) and matrices A t , . . . ,  A~, the multiplicity of the p-plane is equal to n - k and the multiplicity of 
the q-plane is equal to k. The multiplicity of a nonsinguiar point of the train is equal to 1. Seemingly, if 
the multiplicity is equal to 1, then the point is nonsingnlar. 

Let ~ be a generalized train. Let us define (similarly to [2, 8]) a cocycle ind,. that  coincides with the 
index of intersection of a curve with ~ for curves with endpoints outside ~ .  

Consider a path 7(t) ,  t E [0, 1], in A,~. Let 70 be a negative path that  enters the starting point 
7(0) of the path 7 and let 7t be a positive path issuing from the terminating point 7(1) of the path 7. 
According to Theorem 4.3 and to the remark after it, the paths 7o and 7t can be chosen so that  they 
intersect the generalized train only at the terminating point and at the starting point, respectively. 

Def in i t ion .  Let ind,.(7) be the index of intersection of the path 7o U 7 U qt with E.  

P r o p o s i t i o n  4.5. The value indr.(7) is well defined. The function indr, is a cocycle. The cohomo- 
logical class of the cocycle ind,. is the Maslov class. 

Proof .  The fact that indr. (7) is well defined can be verified in the same way as that  of the multiplicity. 
We can readily see that indr, is cochain. The fact that inds is a cocycle follows from Theorem 1.1. 

We can readily verify the validity of the following statement. 

P r o p o s i t i o n  4.6. Let 7 be a positive path. The value of the cocycle indr, on the path 7 is equal to 
the number of intersection points of the path 7 with the generalized train ~ ,  except for the starting point 
of the path 7, counted according to the multiplicities ascribed to the points of ~ .  

Let g~ be a mapping of the phase flow of a Hamiltonian vector field with the positive-definite (possibly 
nonautonomous) Hamiltonian H at time ~. 
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Propos i t i on  4.7. Let 7(t),  t E [0, 1], be a path in A , .  The value of the coeycle ind~ on the path 
7 is equal to the value of ind,. on the path g~(7) for any sufficiently small positive ~ (depending on H 
and 7). 

Proof.  In fact, for a small e, the path constructed in the definition of ind,(7)  is homotopic to the 
path g~(7) in the class of paths with endpoints outside E. 

w Symplec t i c  S t u r m  T h e o r e m s  

In this section we prove generalizations of symplectic Sturm theorems [2]. In our consideration, the 
following simple lemma is of particular importance. 

L e m m a  5.1. Any two transversal Lagrangian planes in An can be joined by a positive path 7 such 
that 0 < ind~ (7) < n for any generalized train ~ .  

Proof .  Choose Darboux coordinates in (R 2n, w) such that the first plane coincides with the p-plane 
and the second with the q-plane. Let us identify R 2'* with C" as follows: pt, + iqk = zk. In this case, 
the path 7(~o) = ei~{q = 0}, 0 < ~o < r / 2 ,  is the desired one. Indeed, the path 7 thus constructed is 
positive because 7(~0) is the image under the action of the phase flow at time ~o with the Hamiltonian 
)-'~p~ + q~. On the other hand, the path 7 is a part of the positive loop l(~o) = ei~'{q = 0}, 0 < ~o < rr, 
whose Maslov class is equal to n [1]. 

The following theorem is an alternation theorem. 

T h e o r e m  5.2. Let ~ t  and ]E2 be generalized trains and let I be a path in the Lagrange-Grassmann 
manifold An. In this case, 

lind,., (l) -ind,2 (l)l < n .  

Proof .  By Proposition 4.7, we may assume that the endpoints of the path I do not belong to E1 and 
E2- Hence, we can assume that these endpoints are transversal Lagrangian planes. We can close them 
by means of the positive path 7 constructed in Lemma 5.1. According to Proposition 4.5, the Maslov 
class of the loop thus obtained is equal to indE~ (1) + indz~ (7), J = 1, 2. Hence, ind,. 1 (I) - ind,. 2 (1) = 
ind,'.2 (7) - ind,., (7)- Applying the estimate in Lernma 5.1 to the path 7,  we obtain the desired equality. 

Coro l la ry  5.3. I f  a Lagrangian plane evolves under the action of the phase flow with a positive- 
definite Hamiltonian, then, on any interval, the difference between the numbers of intersections with any 
two generalized trains (counted according to their multiplicities) does not exceed the number of degrees of 
freedom. On a closed interval that contains n + 1 points of intersection with a generalized train, there is 
a point of intersection with any other generalized train. 

Corol la ry  5.4. The multiplicity of any point of a generalized train ~, C A,, is at most n .  

Let us prove the theorem on zeros. 

T h e o r e m  5.5. Let gt be a phase flow of a linear nonautonomous Hamiltonian vector field in (R 2", w), 
let E be a generalized train, let 5~ (i = 1, 2) be Lagrangian planes, and let gtSi = gt(Si), t E [0, 1], be 
paths in the Lagrange-Grassmann manifold A,~. In this case, 

lindr.(gt51) - indr.(gt52)l _< n .  

Proof .  By Proposition 4.7 we may assume that the Lagrangian planes 5i and gl(hi) (i = 1, 2) do not 
belong to the generalized train ~ and that the planes 51 and 52 are transversal. We join the planes 51 
and 52 by the path ml  constructed in the proof of Lemma 5.1. The paths gt51 and m l  Ug$52 U --gl(ml) 
are homotopic ( - g l ( m l )  is the path gX(ml) with opposite orientation). Hence, indr,(gt51) -indr.(gt52) = 
i n d r . ( m l ) -  indr.(gl(ml)) .  We have indr . (g l (ml ) )=  ind(g,)-,(r.)(ml), where ( g l ) - l ( E ) i s  a generalized 
train. By the estimate in Lemma 5.1, we obtain the desired inequality. 
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Coro l l a ry  5.6. If two Lagrangian planes evolve in a system with a positive-definite Hamiltonian, then 
the difference between the numbers of points of intersection with a generalized train (counted according to 
their multiplicities) does not exceed s. 

Denote by g~r  = gtH(a), t E [0, 1], the path in the Lagrange-Grassmann manifold An formed by the 
evolution of a Lagrangian plane ~ under the action of the phase flow of a Hamiltonian vector field with 
Hamiltonian H (g~ is the mapping of the phase flow at time [0, t]). Let us prove the symplectic version 
of the comparison theorem. 

T h e o r e m  5.7. I f  Ht  > H0, then, for generalized trains Et and E2 and Lagrangian planes a and ,k, 
the following inequalities hold: 

ind , ,  (g~,a) > ind,., (g~/oa), ind, ,  (g}~ta) > ind,., ( g k $ )  - n ,  

ind,., ( g ~ a )  _> ind,.2 (gto A) - 2n. 

Proof .  By Proposition 4.7 we may assume that the planes a ,  g~h (a),  g~/o (r R, g~/, (~), and g~/o ('~) 
do not belong to the generalized trains Gt and E2. Thus, it sn~ces to prove the theorem for H1 > H0. 
Let us consider the homotopy H,,, = (1 - m) Ho + rnH1 of the Hamiltonians. 

L e m m a  5.8. The path g~l. a = g~.. (a), m e [0, 1], /s positive. 

We continue the proof of the theorem. The paths g~/o r U g~.. a and g t sa  are homotopic. Hence, by 
Corollary 1.2, indr,  (gtHta) > indr.t (gtHoa) . The first inequality of the theorem is thus proved. According 
to Theorem 5.5, we have ind,-., (gtH, a ) > indr.t (g}~ ,~) - n .  This, together with the first inequality, proves 
the second inequali W. By Theorem 5.2 we have ind~-.t(g}~ a) > indr.2(g~ a ) - n. This, together with the 
second inequality, proves the third inequality. 

P r o o f  o f  L e m m a  5.8. Lemma 5.8 follows from the assertion below. 
Let a nonautonomous quadratic Hamiltonian H depend on a parameter s so that  3 = dH/ds  > O. 

Then the family of symplectomorphisms es 1 1 -1 - gH(s)(gH(O)) is specified by a positive-definite Hamilton- 
inn. 

The derivative of the solution (p(t, s), q(t, s)) of the Hamiltonian equations 15 = - H  a , 4 = Hp with 
respect to the parameter s (we denote this derivative by (hi(t,  s), h2(t, s))) satisfies the following system 
of equations in variations: 

03 O~H 02H 03 
-- 021-1 02H h2 -- - -  h2 = h i  4- h2 + 

h, = oq op hi Oq O---q Oq ' Op 

with initial conditions hi(0, s) = 0 and h2(0, s) = 0. 
According to the Euler theorem, w(x, rE(x))  = 2K(x) for a Hamiltonian vector field vg  with the 

Hamiltonian K .  Thus, we must show that a;((p(1, s), q(1, s)), (h i ( l ,  s), h2(1, s))) > 0. We have 

0 
O-'-t w((p(t), q(t)), (hi(t) ,  h2(t))) = ihh2 - qht + ph2 - qhl 

OH OH 1" 02H 02H 0 3 \  
-  h,+N ) 

/ 02H 02H 0 3 \  
+ q ~ o - - ~ h l +  o - - ~ h 2 + ~ q  ) 

(we omit the parameter s,  and the dot denotes the derivative with respect to t). Moreover, 

OH 02H 02H OH 02H 02H 
Op = p O - ~  + q OqOp' Oq = p ~ + q OqOq ' 

because OH/Op and OH/Oq are homogeneous of degree one. Hence, by the Euler theorem, we have 

0H 0H 
= > 0 w((p(t), q(t)), (hi(t),  h2(t))) = p ~ + q ~ 2H 
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By integrating and taking account of the initial conditions, we obtain the desired inequality. This proves 
the lemma. 

Assume that the Hamiltonian functions are positive definite. 

Corol lary 5.9. On a closed interval containing the n + 1 instants of intersection o / a  Lagrangian 
plane evolving in a Hamiltonian system with a generalized train, there exists at least one instant of inter- 
section of a Lagrangian plane evolving in a system with a not lesser Hamiltonian function with the same 
train. Moreover, the difference between the numbers of instants o/intersection (counted according to their 
multiplicities) for  the systems with lesser and greater Hamiltonian /unctions does not exceed n .  

Remark .  All estimates in the theorems of this section are exact. For any inequality of any theorem, 
we can find generaIiT.ed trains (even with a prescribed number of matrices f~om which the generalized 
train is constructed), paths in the Lagrange-Grassmann manifold, Lagrangian planes, and Hamiltonians 
such that the inequalities turn out to be equalities. It is of interest that no proof of the Sturm theorems 
that is known to the author uses the geometry of mutual displacement of two (generalized) trains and, 
in particular, the number of parts into which these generalized trains divide the Lagrange-Grassmann 
manifold, which is not known for generalized trains (the trains of two transversal Lagrangian planes divide 
the Lagrange-Grassmann manifold into n + 1 parts). 
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