
QUADRATIC FORMS ON FINITE GROUPS II

C. T. C. WALL

In my paper [1] I showed how a quadratic form on a finitely generated abelian
group H led to one on a finite group G, and similarly for symmetric bilinear forms.
The prototype for this is the relation between the intersection form on Hk(M

2k)
for a manifold M, and the linking form on Hk.i(dM). I also showed that any form
on G could so arise, but did not discuss uniqueness.

Similar forms had already been considered by various authors [2; 3; 4] (including
many of the results of [1] and some not to be found there); in particular, Kneser and
Puppe [5] claimed that the symmetric bilinear form on G determined that on H up
to stable equivalence, and proved this in the case \G\ odd. Complete proofs have
since been given by Wilkens [Ph.D. thesis, University of Liverpool, 1971] and
Durfee [Ph.D. thesis, Cornell University, 1971]; the former by lengthy matrix
manipulations, the latter using a delicate p-adic analysis. Durfee in fact obtains the
corresponding result for quadratic forms.

The object of this paper is to present a direct and simple proof of the latter
result, which arose out of work on [6; Chapter 8]. The argument can be generalised
to replace Z by any order in a finite algebra over Q with anti-involution, without
essential change.

We adopt the notation of [1], particularly §7. Thus H is a free abelian group,
X:HxH-*Z a symmetric bilinear form with each X(x, x) even; X:HxR -> Q
the rational extension of A, assumed nonsingular, and

H' = {yeH\l(x,y)eZ for all xeH}

the dual module of H. We have G = H'/H, and

b:G*G-+S = Q/Z, q : G -> Q/2Z

are defined by

b(x+H,y+H) = l{x, y) (mod 1).

q(x+H) = X(x,x) (mod 2).

We wish to show that H is determined by G up to stable equivalence; that is, up to
forming direct sums with unimodular even forms. This will be an easy consequence
of our main result.

THEOREM Suppose given even symmetric bilinear forms (f)A:AxA-*I.,
(f)B : B x B -* Z as above, and a homomorphism a : A' -> B' inducing an isomorphism

a : A'IA -+ B'/B
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of quadratic forms. Then there exists a homomorphism h : A' -* A such that

(i) The map i = (h, 1, a ) : A' -• A © A' © B' = H(A) © B' is an isometric
embedding.

(ii) Let M be the orthogonal complement of i(A'). Then the projection
n : M -> A' © 5 ' is injective, with image A' © B.

(iii) H(A) © B' = M © i(i4').

(iv) T/te induced form on M is unimodular and even M x M - > Z .

(v) Let P be the inverse image in A' © B' of the graph of (—a). / /

then P = j(A') © B. The composite M -+ A' © £ -> P is an isometry, where
the form on P is induced from —(f>A® <I>B-

Proof, (i) The function on >!' x .4' given by

/ ( * , *') = (f)A(x, x')-(f)B(ax, ax')

is symmetric and bilinear; also, since a is an isomorphism of quadratic forms, the
function takes values in Z and is even on the diagonal. Hencef (e.g. using bases)
we can choose a bilinear g:A'xA'->Z with

f(x, x') = g(x, x')+g(x', x).

Now since A and A' are dually paired by <frA, g determines a homomorphism
h\ A' -> A with

Hence,

4>A(X, x')-(f)B(ax, ax') =f{x, x')

and this is equivalent to the statement that i is an isometry.

(ii) M is the set of (JC, y, z) e (4 © A' © B') which are orthogonal to
(h(w), w, a(w)) for all we A'; i.e.

0 = <j)A(x, w) + (})A(y, Kw))+cj)B(z, a{w)). (2)

If y = z = 0, then <£,, (A:, W) = 0 for all vt>, so x = 0 since (f)A is nondegenerate.

Hence n is injective.

fThis does not work with symmetric bilinear forms. However, we can simply take h = 0 and
define a metabolic structure on A® A' by <£((a, / ) , (a', / ' )) = 4>AW, a')+<f>A(a, / ' ) + ^ ( / , / ' )
— <f>B (a'/, *'/')• Later details then need alteration, but this is the essential step.
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The first two terms on the right-hand side of (2) are integers. Hence the image
of z in B'/B is orthogonal to all a(w), hence to all of B'/B. But this form is non-
singular, hence z has zero image. Thus zeB.

Conversely, given any yeA',zeB,

gives a linear map A' -> Z; and any such map is given by w\-+ — <\>A{x, w) foi
some xeA.

(v) Let (xl9 jui^) and (x2,y2,z2)€M. Then their product is

?i> z2) (by (2)).

= $B{z1-ct(yl),z2-a(y2))-<l)A(y1,y2).

Now the given map M -> P takes (x, y , z )eM to (y,z)eA'@B and thence to
(y, z — a(y))e^4' © B'. It follows at once that, indeed, we have an isometry.

(iv) By (v), it suffices to show that P is unimodular. Now the form on P is
integral, for if (*1,)>i) and (x2,y2) are in P, their product is

-(l>A(x1,x2)+({>B(yuy2).

Reducing xlt x2 mod A, etc., we see that modulo integers, this is

Pi • yi — *i • ̂ 2 = «*i • <**2 — x1.x2 (definition of P)

= 0 (a an isometry).

Conversely, let u: P -> Z be any homomorphism. Since A', 2J' are dual to A, B
there exist x0 e -4', y0 e £ ' such that for all (x\ y') e A + B c: P,

w(x', / ) = - 4>A(x0, x') + <$>B(yQ, / ) . (3)

This also must hold for all {x',y')eA' © B'; hence in particular on P. It remains
to show that (xo,yo)eP, i.e. that y0 = —otxo. But (3) takes integer values on P:
and for all xeA', (x, —ax)eP, so

0 = u(x, -<xx) = (f)B(y0, -ux)-<f)A(x0> x)

s j ? 0 . ( - a x ) - x 0 . x = -ax.(j;o + axo);

since 5'/-B is nonsingular, and yo + dtxo is orthogonal to everything, it is zero.
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Finally, the form is even since if (x, y) e P,

My, JO-^fo x ) = «G0-tf(*) (mod 2) (Def-of i)
= q(-oix)-q(x) (Def. of P)

= 0 (mod2) ( ± a preserve g).

(iii) Since i(A') is nondegenerate, i(A') n M = 0 and i(A') + M has finite index
in H(A) © B'. Now the forms on H(A) and M are unimodular, and on A' and B'
have determinant + l/N, where iV is the order of G. Thus M © iO4') and
H(A) © B' have the same discriminant (up to sign), so the index is 1. (It is also not
difficult to verify (iii) directly.)

COROLLARY 1. There is an isometry H(A) © B ̂  M © A. Hence A and B are
stably equivalent.

Take dual modules in (iii) above.

COROLLARY 2. The signature of A is determined mod 8 by the quadratic
form on G.

For the signature of a unimodular even form is divisible by 8. This argument
is due to Durfee, but in fact we have the following.

THEOREM 2.

£{exp [inq(g)] :geG} = V|G| exp (ina/4).

This result appears as [7; Theorem 3.6]: the authors' proof is not given there}

but one is included in an appendix to lecture notes on Symmetric Bilinear Forms by
John Milnor and Dale Husemoller (issued from Haverford College, 1971) and a
much simpler one in a revised form of these notes. It was discovered indepen-
dently about the same time by D. Sullivan, but his proof is not yet available either.
It was also announced earlier by van der Blij [8], in a more general form, with an
outline proof which seems to have a serious gap in it. (I rediscovered this argument:
the snag is that the multiple integral J exp [inf(u, u)]du, where/is bilinear, does not
converge for any known—to me—theory of integration.) The most important special
case goes back to Gauss [9], and a great number of proofs have appeared since.
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