QUADRATIC FORMS ON FINITE GROUPS II
C. T. C. WALL

In my paper [1] I showed how a quadratic form on a finitely generated abelian
group H led to one on a finite group G, and similarly for symmetric bilinear forms.
The prototype for this is the relation between the intersection form on H,(M?*¥)
for a manifold M, and the linking form on H,_(0M). I also showed that any form
on G could so arise, but did not discuss uniqueness.

Similar forms had already been considered by various authors [2; 3; 4] (including
many of the results of [1] and some not to be found there); in particular, Kneser and
Puppe [5] claimed that the symmetric bilinear form on G determined that on H up
to stable equivalence, and proved this in the case |G| odd. Complete proofs have
since been given by Wilkens [Ph.D. thesis, University of Liverpool, 1971] and
Durfee [Ph.D. thesis, Cornell University, 1971]; the former by lengthy matrix
manipulations, the latter using a delicate p-adic analysis. Durfee in fact obtains the
corresponding result for quadratic forms.

The object of this paper is to present a direct and simple proof of the latter
result, which arose out of work on [6; Chapter 8]. The argument can be generalised
to replace Z by any order in a finite algebra over @ with anti-involution, without
essential change.

We adopt the notation of [1], particularly §7. Thus H is a free abelian group,
A:HxH —Z a symmetric bilinear form with each A(x, x) even; 1: HxH - Q
the rational extension of A, assumed nonsingular, and

H ={yeH:l(x,y)eZ forall xeH}
the dual module of H. We have G = H'/H, and

b:GxG-»8=Q/Z, q:G-Q)2Z
are defined by

b(x+H,y+H) = A(x, y) (mod 1).

q(x+H) = X(x,x)  (mod 2).

We wish to show that H is determined by G up to stable equivalence; that is, up to
forming direct sums with unimodular even forms. This will be an easy consequence
of our main result.

THEOREM Suppose given even symmetric bilinear forms ¢, :AxA > 1Z,
¢5:BXxB— Z as above, and a homomorphism o.: A’ — B’ inducing an isomorphism

%:A'JA—> BB
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of quadratic forms. Then there exists a homomorphism h: A’ — A such that

(i) The map i=(h1,0):A > ADA @B =H(A)D®B' is an isometric
embedding.

(ii) Let M be the orthogonal complement of i(A’). Then the projection
n: M — A" @B’ is injective, with image A’ @ B.

(i) HA)® B =M@ i(A").
(iv) The induced form on M is unimodular and even M xM — Z.
(v) Let P be the inverse image in A' ® B’ of the graph of (—d). If
j=U,—-a): A" A @B,
then P = j(A") ® B. The composite M — A’ @ B(il;’ is an isometry, where
the form on P is induced from —¢ @ ¢p.
Proof. (i) The function on A’ x A’ given by
S (x, X) = da(x, x')—¢plax, ax)

is symmetric and bilinear; also, since & is an isomorphism of quadratic forms, the
function takes values in Z and is even on the diagonal. Hencet (e.g. using bases)
we can choose a bilinear g: A’ x A’ = Z with

S (x, x) = g(x, x')+g(x', x).

Now since A and A’ are dually paired by ¢,, g determines a homomorphism
h:A — A with

g(x, x') = ¢ 4(x, h(x")).
Hence,
bu(x, X) = dp(ax, ax’) = f(x, x')
= ¢(x, h(x))+d4(x', h(x)),
and this is equivalent to the statement that i is an isometry.

(i) M is the set of (x,y,z)e(A@® A’ @ B’) which are orthogonal to
(h(w), w, a(w)) for all we A'; i.e.

0 = ¢A(-x’ w)+¢A(y’ h(W))+¢B(Z, a(w)). (2)
If y=z=0, then ¢,(x, w) =0 for all w, so x =0 since ¢, is nondegenerate.

Hence =« is injective.

tThis does not work with symmetric bilinear forms. However, we can simply take A = 0 and

define a metabolic structure on 4 @ 4" by ¢((a, f), (@, f) = S, a)+da(a, [+, f)
—¢p5 (o f, 2’f"). Later details then need alteration, but this is the essential step.
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The first two terms on the right-hand side of (2) are integers. Hence the image
of z in B’/B is orthogonal to all &(w), hence to all of B’/B. But this form is non-
singular, hence z has zero image. Thus z e B.

Conversely, given any ye A, z€ B,

wi ¢y, h(W)) + 4’5(2 ) “(W))

gives a linear map A’ — Z; and any such map is given by wi—~ —¢,(x, w) for
some x € A.

(v) Let (xy, /1, 2,) and (x5, 5,2,)€ M. Then their product is
Ga(x1, 2) +04(x3, y1) + 0521, 25)
= =041, h(y2)) = Ps(21, ¢(2)) = B a2, h(y1)) = P22, 2(11)) + b5(21,22)  (by (2)),
= —f(V1, ¥2) = bu(z1, 2(¥2)) = Ps(z2, 2(1)) + $5(z1, 22)
= $p(a(y1), a(y2)) =S4V 1> ¥2) = bs(z1, 2(y2)) — Pu(z2, 2(¥1)) +@5(21, 22)

= ¢B(zl —a(yy), 2, _a()’2))_¢,4()’1, Y2).

Now the given map M — P takes (x,y,z)eM to (y,z)e A’ ® B and thence to
(y,z—-oc(y))eA' @® B'. It follows at once that, indeed, we have an isometry.

(iv) By (v), it suffices to show that P is unimodular. Now the form on P is
integral, for if (x,, y,) and (x,, y,) are in P, their product is

=& 4(x1, X3) +P5(y1, ¥2).
Reducing x,, x, mod A, etc., we see that modulo integers, this is

X, .0X,—X,.X, (definition of P)

I
Ri

Vi-J2—%. %

I
=

(@ an isometry).

Conversely, let u: P — Z be any homomorphism. Since A’, B’ are dual to 4, B
there exist x, € A’, yo € B’ such that for all (x', y)e 4+ B < P,

u(x', y') = = 4(xo, X )+ d5(vo, ¥). 3

This also must hold for all (x’, y")e A’ @ B’; hence in particular on P. It remains
to show that (x,, yo) € P, i.e. that j, = —a&X,. But (3) takes integer values on P:
and for all xe 4’, (x, —ax)e P, so

0 = u(x, —ax) = ¢p(yo, —0ox)—@ 4(xo, X)
= Jo.(—0X)—%o.X = —&X. (Yo +&%,);

since B’/B is nonsingular, and j,+&X, is orthogonal to everything, it is zero.
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Finally, the form is even since if (x, y) e P,
¢5(y, )~ 4%, X) = q(§)—q(X) (mod2)  (Def. of q)
= (- ax)—q(X) (Def. of P)
=0 (mod 2) (& preserve g).

(iii) Since i(A") is nondegenerate, i(A) " M =0 and i(4')+ M has finite index
in H(A) ® B'. Now the forms on H(4) and M are unimodular, and on A’ and B’
have determinant +1/N, where N is the order of G. Thus M @ i(4") and
H(A) @ B’ have the same discriminant (up to sign), so the index is 1. (It is also not
difficult to verify (iii) directly.)

COROLLARY 1. There is an isometry H(A)®@ B~ M @ A. Hence A and B are
stably equivalent.

Take dual modules in (iii) above.

CoOROLLARY 2. The signature of A is determined mod8 by the quadratic
form on G.

For the signature of a unimodular even form is divisible by 8. This argument
is due to Durfee, but in fact we have the following.

THEOREM 2.
> {exp [ing(g)] : g€ G} = /|G| exp (inc/4).

This result appears as [7; Theorem 3.6]: the authors’ proof is not given there,
but one is included in an appendix to lecture notes on Symmetric Bilinear Forms by
John Milnor and Dale Husemoller (issued from Haverford College, 1971) and a
much simpler one in a revised form of these notes. It was discovered indepen-
dently about the same time by D. Sullivan, but his proof is not yet available either.
It was also announced earlier by van der Blij [8], in a more general form, with an
outline proof which seems to have a serious gap in it. (I rediscovered this argument:
the snag is that the multiple integral j exp [inf (u, u)]du, where f is bilinear, does not
converge for any known—to me—theory of integration.) The most important special
case goes back to Gauss [9], and a great number of proofs have appeared since.
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