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ON THE PARAMETRIZATION OF THE THREE-DIMENSIONAL
ROTATION GROUP*

JOHN STUELPNAGELt

1. Introduction. The problem of parametrizing the group of rotations of
Euclidean 3-space has been of interest since 1776, when Euler first showed that
this group is itself a 3-dimensional manifold. A primary application of such a
parametrization occurs in the integration of the equations of motion of a rigid
body. To describe the orientation of the body relative to its center of mass, we
assume given two sets of mutually orthogonal unit vectors, or frames, one frame
being attached to the body and moving with it, the other being constant and
coinciding with the moving frame at time ¢ = 0. The moving frame at time ¢
is obtained by applying a rotation X (¢) to the fixed frame, and X (¢) satisfies the
differential equation X(¢) = Q(t)X(t), with X(0) = I, the identity matrix;
Q(¢) is defined by the relation Q(¢)v = v X w(t) for all 3-vectors v, where w(¢)
is the angular velocity vector. We assume Q(t) is known, so it is necessary to
integrate the matrix differential equation, or equivalently, a system of nine scalar
equations, to obtain X (¢). However, if it is possible to represent X (¢) by a set of
less than nine parameters, then the given system is equivalent to a system with
fewer than nine scalar equations, and the problem may be simplified.

In this paper we show why it is topologically impossible to have a global
3-dimensional parametrization without singular points for the rotation group.
This is a special case of a corollary to Brouwer’s theorem on the invariance of
domain. We also point out that, although Hopf showed in 1940 that five is the
minimum number of parameters which suffices to represent the rotation group
in a 1-1 global manner, the so-called “quaternion method” of parametrizing the
group in a 1-2 way, using 4 parameters, is sufficient for practical purposes. In
addition, three 3-dimensional parametrizations, as well as Hopf’s method of using
5 parameters, are examined.

This paper is aimed primarily at those who have been led by their involvement
with the practical applications of this problem to wonder if there were not a way
to improve the present methods of parametrizing rotations without adding
redundant parameters; while the answer is negative, it is possible, by adding only
one redundant parameter, to obtain a method of representing unrestricted rota-
tions, which leads to simpler differential equations than any of the other methods
presented.
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2. Notation and preliminaries. We shall use K to denote the set of complex

2 X 2 matrices of the form «x = (_a- Z) ; taking as basis
0 4
i o)

b
1/1 0 1/t O ‘ 1 0 1
Ko = — 5 K1 = — 5 Ko = — y K3 =
2\0 1 2\0 - 2\-10
we see that K is a 4-dimensional associative noncommutative division algebra
over the real numbers, and the map sending agky + i + asks + s onto
3(ay + art + azj + ask) is an isomorphism of K with the quaternions, where
1, J, k here represent the usual basis for the quaternions. The determinant of «
is the square of the quaternion norm. U will stand for the subset of K of deter-
minant 1, and K, the subset of trace zero. The elements of U are just the 2 X 2
complex unitary matrices of determinant 1, so U is a group, and U is topologically
equivalent to the 3-sphere (the unit sphere in E*), since any element of U is of

the form
< w + oy w4+ iu4>
u =

DO =

—uz + Uy U — TUs

with Zu;” = 1. K, is spanned by the set Q = {ki, ke, ks}. Forfixedu € U,z € K,
define linear maps of K, into itself by I',(x) = wuxu ', and A,(xk) = kr — ‘XK,
for any « € K, . The matrices of I', and A, with respect to @ will be denoted by
v(u) and &(x), respectively.

The rotation group will be denoted by R; it consists of those orthogonal
3 X 3 matrices with determinant 1. 7, and 0, will designate the identity and zero
matrices, respectively, of dimension n; the subseript will be omitted except when
confusion is posmble The transpose of a vector or matrix will be indicated by a
prime, e.g., 2’ is the row vector obtained by transposing the column Vector z.
For any matrix 4, Tr A denotes the trace of A.

The theorem of Brouwer on the invariance of domain, to which we w111 appeal
in a later section, is stated as follows, and is proved in Hurewicz and Wallman
[2]: If A and B are homeomorphic subsets of a Fuclidean space E* and A is
open, then B is open.

3. The topology of R. The matrix v(u) of I', with respect to Q is eas11y seen
to be

2 2 2 2 :
U+ Uy — Uz — Us 2(—wus + usus) 2(urus + usuq)
2 2 2 2
2(urus + usus) U — Uy U5 — Us 2(—wus + usug) |,
. 2 2 2, 2
2(—wus + usus) 2(uruz + usug) U — U — Uz + Us

which is orthogonal for all » € U, and has determinant 1. Also, for u, » € U,
v(u)y(v) = vy(wv), so v is a group homomorphism. Since v is continuous, and
U is compact and connected, v(U) is a compact connected subgroup of R. The
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only compact connected subgroups of R are known to be I, R, and the groups
of rotations about a fixed axis. Since y(U) leaves no axis fixed, v(U) = R.
Note that y(u) = v(v) if and only if u = —v, so v is a two-to-one map of U
onto R. Recalling that U is topologically a 3-sphere, we see that R is topologically
equivalent to the sphere with antipodal points identified, that is, projective
3-space.

To find a 1-1 global parametrization of the rotation group using k& parameters,
it is necessary to embed the rotation group R in the Euclidean space E*, that is,
to find a differentiable 1-1 map with differentiable inverse which carries R into
E*, and use the image points as representatives of the rotation matrices.

Since R is a 3-dimensional manifold, each point r has a neighborhood U, which
is homeomorphic to an open subset of E°. If there were a homeomorphism % of
R into:E’s, then A(U,) would be open in E® by Brouwer’s theorem, so h(R),
being the union of all 2(U,) for » € R, would be open in E’. But R is compact,
and h(R), being the continuous image of a compact space, would be compact.
It is a well-known fact that no Euclidean space contains an open compact subset,
so there can exist no such homeomorphism.

The impossibility of embedding R topologically in E* was first proved by H.
Hopf in 1940 [1]. The proof is based on a knowledge of the homology ring of
projective 3-space, and will not be included here. It is possible, however, to
embed R in E° as Hopf showed, and we shall examine this embedding in the next
section.

4. Five- and six-dimensional parametrizations. An element of R is determined
when its first two columns are specified, since the third column is the cross-
product of these two. Thus the six-vector obtained by vertical juxtaposition of
these two columns serves to parametrize the group in a 1-1 global manner.
So if X € R, and X, denotes the 3 X 2 matrix obtained by deleting the last
column of X, then the differential equation Xo(¢) = Q(#)Xo(t) is equivalent to
the equation X(¢) = Q(¢)X(¢), but contains only 6 scalar variables.

Let & = (x1, &2, €3, 24, &5, 25) be the column vector representing the first
two columns of the matrix (1/4/2)X, where X € R. Then we have the identities
dx = 1,2 a = 0,7 = 1, 2, where

I3 0 0; I
J = and J, = .
0 —1Is I 0;

Since 2’z = 1, the set M of all points satisfying the above conditions is contained
in the unit sphere S’ in E°. If a is any point of S° not in M, we can project 8° — {a}
stereographically onto the hyperplane orthogonal to a, and thus obtain an em-
bedding of M, which is topologically equivalent to R, in E°.

To do this explicitly, let V be a 5 X 6 matrix with Va = 0, VV' = I, . Then
V'V is the projection along a onto the subspace of E° orthogonal to a. For
x € M,lety = Va/(1 — a'z). This represents the point which is the intersection
of the line joining x and a with the hyperplane orthogonal to a. It is defined for
all x € M, since the denominator vanishes only if x = a, but a ¢ M. The cor-
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respondence is 1-1, for if y is a 5-vector, then V'y is orthogonal to a, and the
line joining V'y and @ intersects the unit sphere in a single point z, where

_alyy—1) 4+ 2VYy

Wy + 1
If « € M, then y satisfies the equations a'Ja(y'y — 1)° + 4y'VJ ia(y'y — 1)
+ 4/VJV'y = 0,7 = 1, 2. We now have the 5-vector y satisfying the two equa-

tions above representing a point of R in a 1-1 manner, and we wish to find the
differential equation satisfied by y, if & = Az, where

Q 03
A= s A"+ A =0.
0; Q

X

Differentiating the equation for y above with respect to ¢, we obtain

(1 —ad2)Ve + (d8)Va 1

(1 _a/x)z —é(y!/'i' 1)(V+]/a )$

= <% 'y — DI — yy> VAa + VAV'y.

The resulting equation for y is clearly not as simple as the original linear
equation for z, and there is no apparent advantage in the reduction in the
number of scalar variables by this method. It is possible that an embedding in
E® may be obtained which leads to a simpler equation for y. This parametrization
is primarily of interest because it uses the smallest possible number of scalar
variables for an everywhere defined, 1-1, continuous representation of R, and
because the given embedding is the most obvious and probably the simplest
which can be obtained with five parameters.

5. The quaternion method. As we saw in §3, there is a 2-1 correspondence
v between the quaternions of unit norm and the elements of R. Given the dif-
ferential equation X (¢) = Q(¢)X(t) in R, we can determine a differential equation
4(t) = o(t)u(t) in U such that y(u(t)) = X(¢), and we now indicate how this
is done. .

Let @« = aiy + aske + azxs € Ky, and consider A, acting on K. The matrix
of A, with respect to the basis @ is

0 a3 — Q2
—a3 O a1
o2 — Q1 0

Now if
0 wi(t) —w(t)
Q(t) = | —ws(t) 0 w(t) |,
w(t) —awlt) 0
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and
o) = = w0k,

then A, = —Q. If u(¢) is the solution of @ (t) = o(¢)u(¢) such that u(0) = I,
it is easily seen that w(¢) € U, since o(t) € K,. Also, for any fixed « € K,
(k) = (uku™) = k™ — ukw ™ = o(uku™) — (ukw™)o = — A (Tu(k)).
It follows that if X = y(u), the matrix of I', with respect to Q, then X = QX,
and v thus maps solutions of % = ou onto solutions of X = QX. If u(0) = I,
then X(0) = y(u(0)) = I, so the desired particular solution is obtained.

In terms of the real parameters u;, us, us, us appearing in u, the differential
equation # = ou becomes

Uy 0 w1 w2 w3 U
) 1 —w1 O wyg  —wr| [ %
g 2| —ws —w3 O w1 U3
Ug —w3 w2 —aw 0 Uy

It should be noted that the original linear equation is transformed into a linear
equation; this was not the case with the 5-dimensional method, so this method
is obviously far superior to the previous one. Although the parametrization is
not 1-1, no difficulties arise, since v is a local homeomorphism.

It would be reasonable to ask whether it might be possible to obtain a repre-
sentation of this form, that is, one-to-many, using only three parameters, but
still possessing the property of being a local homeomorphism, and having no
singular points. The answer is no, for this would force the parameter set to be a
“covering space” of R, and it is known that the 3-sphere, which cannot be
represented topologically by less than 4 parameters, is the only covering space
of R, except for R itself.

6. Three-dimensional parametrizations. As we showed earlier, no 3-dimen-
sional parametrization can be both global and nonsingular; however, there are
at least three such parametrizations in common use, each of which has certain
advantages, and we present them here.

The Euler angles are defined in many different ways, depending on the prob-
lem to be solved. The definition adopted here is convenient for problems involving
orientation of aircraft, ete., since the Euler angles ¢, 8, ¥ correspond to the com-
monly used parameters of roll, pitch, and yaw, respectively.

If
T Ty X7
X=|x x5 x3
X3 Ts Xy

is in R, we define the Euler angles for X as follows: Let & = z,* + a°, £ = 0. If
£ # 0, define ¢, 0, ¢ by

cos ¢ = Ty/¢, sin ¢ = x¢/;

cc 6 =¢ sing = —ay;

cos ¥ = 21/, siny¢ = a4/t
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If £ = 0,502 = 1, then 9 = —x;7/2, but ¢ and ¥ are not uniquely determined,
being subject only to the conditions cos (x7¢ + ¥) = x5, sin (v + ¢) = —as.
In particular, we may, if we wish, always choose ¢ = 0 if § = 4x/2. This de-
termines ¢ uniquely, but the resulting parameters are not continuous functions of
X at § = =4=n/2. The Euler angles enable us to factor X into a product of rota-
tions about the vertical, transverse, and longitudinal axes of the moving rigid
body; in fact,

1 0 0 cosf 0 —sind cosy siny O
X=|0 cos¢ sing|l 0 1 0 ol —siny cosy O
0 —sing¢ cos¢ sinf 0 cosé 0 0 1
It is clear that the Euler angles give a parametrization of the rotation group

except at the points ¢ = 0, 0r 6 = +7/2.
IfX = QX, where Qisasin §5, then it is seen by direct computation that

1 0 —sin 0 ¢ w1
0 cos¢p singcosf|-|8]=1{w
0 —sin¢ cos¢ cosb ¥ w3

Since the determinant of the matrix on the left is cos 6, it is clearly singular if
0 = =4=x/2, 50 ¢, 8, § are determined only if § does not take on these values. If it is
known in advance that certain orientations of the rigid body cannot be assumed,
then we may be able to choose the original coordinate system in such a way that
these orientations correspond to the singular points. In this case, the Euler angles
furnish a satisfactory method for representing the necessary subset of E.

A second method of obtaining a 3-dimensional parametrization of the rotation
group is based on the facts that (1) for any 3 X 3 skew-symmetric matrix S,
exp S is orthogonal, and (2) any rotation matrix is the exponential of some skew-
symmetric matrix.

Let S be a 3 X 3 skew-symmetric matrix and o> = —% Tr 8%, ¢ = 0. Then the
characteristic polynomial of S is A* + o'\, so 8° = —¢°S. The power series for
X = exp S may consequently be simplified, using the relations $** = (—1)"""
TS 8 = (—1)"6™"S, and collecting terms, to

sin ¢

X =1+ S—|—1_COSUS2.
g

0.2

The characteristic roots of X are 1, cos ¢ = 7 sin ¢. It is not hard to see that
exp S1 = exp S: if and only if S, = 0 and o," = 2km, or Sy = S, + (2kn/02)S:,
for some integer k, where o; = —2% Tr 8. In particular, if we restrict our at-
tention to those skew-symmetric matrices S for which ¢ < 7, thenexp S; = exp S:
ifand only if S; = £S.and a1 = o2 = .

Conversely, let X € R, and let « = Tr X, s0 X° — aX’ + aX — I = 0, and
—1 £ a £ 3. Then —1 £ (e — 1)/2 = 1; hence there is a unique angle o,
0<o<mwithcoseo = (a—1)/2. Ifa & — 1, 3, let

—a(1 4+ 2cos o) I+ o(l+coso)y, @ X

sin ¢ 2 sin o 2sine

S=
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ifa =3,let S = 0. Thenexp S = X, and S is skew-symmetric. If « = —1, then
S = (7/2)(X — I) has two skew-symmetric solutions =S, and exp S
=exp (—8) = X.

Using the correspondence above, we can parametrize the rotation group by the
set of skew-symmetric matrices S with ¢ < ; every rotation matrix corresponds
to at least one skew-symmetric matrix, and those rotations which are involutions
(X is an involution if X? = I) correspond to two skew-symmetric matrices. If
we identify

0 S3 — 8
S=|—s 0 $1
s —s1 O
with the vector s = (s1, s2, 83)’, then ¢ = | s |, and R is seen to be topologically

equivalent to the ball | s | < = with boundary points identified.
The original differential equation X = X is transformed by this substitution
into the equation

e o1 _ 2 — ¢ cot (/2)
§=0-5(28 -8+ <——-—-—-202

) (8’2 + a8* — 28e8).
The derivation of this equation requires some lengthy computations, which are
omitted. Although the number of parameters has been reduced to three, it is
clear that the form of the transformed differential equation is considerably more
complex than that of the original. Also, the transformed equation has a pole at
o = 2, just as we would expect from the nature of the map X — S, since the set
of S for which —1 Tr §* = 4«° is collapsed by the exponential map into the
identity.

The final 3-dimensional parametrization we shall consider is known as the
Cayley parametrization (not to be confused with the Cayley-Klein parameters),
and also uses 3 X 3 skew-symmetric matrices to represent rotations. If S is skew-

symmetric, we again let o = —1Tr &, and now set
XU +8) " =T 2 S+-_2_8
1+ o2 14+ ¢

Then X is orthogonal, and the characteristic equation of X is AN — N
+ar—1=0, witha =[(3—d)/(1+ )], so the characteristic roots of X
are1,[1/(1 + ¢)](1 — ¢® = 2is). These roots are real only if ¢ = 0, in which case
all roots are +1. Thus no rotation matrix having — 1 as an eigenvalue may be ob-
tained from a skew-symmetric matrix in this manner.

Conversely, if X € R, and @ = Tr X, then, for a # —1, set

1
1+«

S=I-X)T+X)"= (af — (1 + &)X + XO).
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S is then skew-symmetric, and this is the inverse of the above correspondence.
Differentiating this last equation, substituting X = ©X, and simplifying, we ob-
tain 8 = 1(8QS — SQ + S — Q), a Riceati matrix equation for S.

In this case, if it is known beforehand that Tr X is never — 1, this parametriza-
tion serves to represent all allowed orientations.

7. Conclusion. In evaluating the usefulness of a parametrization of I, several
factors must be considered. Among these are (1) the number of parameters
needed, (2) the form of the transformed differential equations, (3) the suscepti-
bility to error of the new equations in machine integration of these equations,
and (4) the ease with which a desired output can be obtained when these
equations are integrated.

As we have seen, the 6-dimensional parametrization, using the first two columns
of a rotation matrix to describe it, leads to linear equations, and the output is in
a readily usable form, since X is very simply obtained from the given six pa-
rameters.

The 5-dimensional parametrization leads to nonlinear equations, and an un-
desirable amount of computation is necessary to obtain X as an output. This
method, while using one less parameter than the previous method, does not
appear to have anything in particular to recommend it, and it is included only
because it uses the smallest possible number of parameters in a 1-1 global
parametrization.

The 4-dimensional or quaternion method has the advantages of leading to
linear equations while using only one redundant parameter, and representing
the most general possible motion of the body. At the same time, the coefficients
of X are obtained as quadratic functions of the coefficients of w.

As we showed in §3, no 3-dimensional parametrization can be both global
and nonsingular. If the parametrization is global, i.e., every rotation matrix
determines some finite values of the parameters, then there must be points
where the parameter values are not uniquely defined, and in this case the de-
rivatives of the parameters are obviously not defined, so the transformed differ-
ential equations become singular at these points, that is, the derivatives become
infinite. This occurs, for example, with the Euler angles and the exponential
parametrization. On the other hand, the Cayley parametrization leads to a well-
defined differential equation, being nonsingular, but it does not represent any
rotation matrices of trace —1, which is a distinct disadvantage, since this will
not even allow 180° rotations about a fixed axis.

The only commonly used methods among those presented here are the 6- and
4-parameter methods, and the Euler angles. A comparison of the advantages
and disadvantages of these methods is made by Robinson in [3]; he concludes
that the quaternion method is the best, at any rate from the standpoint of
analog computation, for handling unrestricted rotations, although the Fuler
angles are useful because of their simple interpretations as roll, pitch and yaw.
That is, the Euler angles themselves provide a usable output, whereas with the
quaternion method, it is necessary to transform the solution to the rotation
group after integrating.
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