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Quaternions and Rotations in E4 

Joel L. Weiner and George R. Wilkens 

1. INTRODUCTION. In 1843, Sir William Rowan Hamilton invented the quater- 
nion algebra, which is customarily denoted H in his honor. Soon after, people rec- 
ognized that quaternions could be used to represent rotations in E3. In 1855, Arthur 
Cayley discovered that quaternions could also be used to represent rotations in E4. 
This note explores Cayley's representation. Ultimately we use it to show that any rota- 
tion in E4 is a product of rotations in a pair of orthogonal two-dimensional subspaces, 
a result first proved by Edouard Goursat [3]. 

In section 2 we review the algebraic structure of H and show that H has a natural 
inner product that allows us to identify it with four-dimensional Euclidean space E4. In 
section 3 we show that a pair p and q of unit vectors (also called unit quaternions) in H 
determines a rotation Cp,q : H -> H. According to Goursat's result, Cp,q is a product 
of rotations in a pair of orthogonal planes. By this we mean the following: there exist 
rotations R1, R2 : H -* H and a pair of orthogonal planes Vi and V2 in H, such that 
the restrictions R1I v2 and R2 I v are identities on their respective planes and 

Cp,q = R o R2 = R2 O R1. 

Thus, H = V1 e V2, where V1 I V2, and Cp,q rotates vectors in the plane V1 through 
a determined angle at and vectors in the plane V2 through a determined angle a2. 

The principal goals of this note are to prove Theorems 1 and 2, which are stated 
precisely in section 5. Theorem 1 not only proves Goursat's result for Cp,q, but also 
shows that one can easily determine the planes V1 and V2 and the angles at and a2 in 
terms of p and q. Theorem 2 establishes that every rotation in E4 can be represented by 
some Cp,q. Together, these theorems prove Goursat's result for every four-dimensional 
rotation. 

The observation that Cp,q(V) = Vi (i = 1, 2) motivates the method of proof. The 
Vi are known as invariant subspaces for Cp,q. If we wish to see that Cp,q is indeed a 
product of rotations, it is natural to look first for invariant subspaces of that transfor- 
mation. In section 4 we recall some elementary results from the theory of ordinary 
differential equations that are related to subspaces and two-dimensional rotations. Fi- 
nally, in section 5, we apply these results to find the Cp,q-invariant subspaces and the 
rotation angles. 
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2. THE QUATERNION ALGEBRA. Let H denote 

{al + bi + cj + dk: a, b, c, d e R}, 

and define addition and multiplication by a real scalar in component-wise fashion. In 
so doing, H becomes a four-dimensional real vector space and {1, i, j, k} is a basis 
for H. To define the product of two points in H, one simply asserts the following: 
multiplication distributes over addition; 1 is the multiplicative identity; and 

i2 j2 = k2 _1, 

ij = -ji = k, jk = -kj = i, ki = -ik =j. 

These operations of addition and multiplication on Hl satisfy all the axioms for a field, 
except the commutativity of multiplication. 

It is convenient to decompose a quaternion into two parts that are traditionally called 
its scalar and vector parts. If q = qol + qli + qj + q3k, then we write 

q=qo+q, 

where qo = qol and q = qli + qj + q3k. We call qo the scalar part and q the vector 
part of q. It is straightforward to check that the product 

pq = (po + P)(qo + q) = (Poqo - P q) + (po q + qo P + p x q), (1) 

where p q and p x q are, respectively, the usual inner product and vector cross prod- 
uct in E3. 

There is another important operation on H; it is called conjugation. If q = qo + q 
belongs to H then q = qo - q is called the conjugate of q. Conjugation has several 
nice properties, the most important of which is the following: 

pq = qp 

(note the change in order). 
From equation (1) it also follows that 

qq = q= + q + q2 + q3 = q. 

Thus, if we identify H with Euclidean four-space E4 by associating q with the vec- 
tor (qo, ql, q2, q3) and denote the Euclidean inner product of p and q by (p, q), then 
qq = (q, q). Using the fact that qq and (q, q) are quadratic forms (i.e., each is R-linear 
in the two "slots" that appear in these expressions), it is a simple matter to verify that 

pq + qp = 2(p, q). (2) 

Note, in particular, that p is orthogonal to q if and only if pq + qp = 0. 
We denote the Euclidean norm of a quaternion q by Iql. Since scalars commute with 

every quaternion, 

Ipql2 = (pq, pq) = pqpq = pqqp = plql2p = Ip21q12. 

This gives the following important result: 

IPql= Ipllql. (3) 
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Once the norm of a quaternion is available, we can obtain a formula for the inverse 
of a quaternion that is reminiscent of what occurs with complex numbers. It is easy to 
show that if q # 0, then 

q-1 q 
q1 12 

If q in H has Iq| = 1, then we call q a unit quaternion. For a unit quaternion q 
we see that q-1 = q. If, in particular, u is a pure unit quaternion (i.e., if u = u), 
then u-1 = -u. Thus every pure unit quaternion is a square root of -1. Also, by 
equation (2), two pure unit quaternions u and v are orthogonal if and only if it is the 
case that uv + vu = 0. 

If q = qo + q is a unit quaternion, then qo + Iq 12 = 1. Hence there is a real num- 
ber 0 and a pure unit quaternion u such that q = 1 cos 0 + u sin 0. Since u2 = -1, the 
power series expansion of et leads to 

oo (u0)n 

eun = n! =lcos0+usin0, (4) 
n=o0 

providing equivalent representations for a unit quaternion q = qo + q = 1 cos 0 + 
u sin 0 = e". Note that neither u nor 0 is uniquely determined by q. When q ±1, 
sin = ±| | and u = +q/|q|; when q = ±1, u can be any pure unit quatemion. 

We note that eu acts like the usual exponential as a function of a complex variable. 
However, since the multiplication in H is not commutative, if u and v are linearly 
independent pure unit quaternions, it is not the case that euee'V is the same as either 
eveuO or eue+v. However, since each component of eu0 is a differentiable function of 
0, it is not difficult to verify that 

d 
-eu = -1 sin 0 + u cos 0 = ueue = enuu. 
dO 

3. ROTATIONS IN E3. We introduce the R-linear transformations representing left 
and right multiplication in H. Let q be a quaternion. Then Lq : H -+ H and Rq : 
H -- H are defined as follows: 

Lq(x) = qx, Rq(x) = xq (x e H). 

If q is a unit quaternion, then both Lq and Rq are orthogonal transformations of H. 
This is an easy consequence of equation (3). Specifically, when Iq| = 1 

ILq(x)I = IqxI = Iq||x| = Ixi. 

Thus, for unit quatemions p and q, the mapping Cp,q : H -+ H defined by 

Cp, q = Lp 0 Rq = Rq o L 

is also an orthogonal transformation of H. It is worth noting for later applications (in 
Theorems 2 and 3) that 

Cp1,91 0 CP2,q2 = PP2,q2ql' 

We examine briefly the transformation Cq,q, where q is a unit quatemion. For 
the time being, we simply denote it by C. If we write q = e", where u is a pure 
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unit quaternion, then C(x) = qxq = en"xe-ue. First, observe that C preserves scalar 
quaternions because C(1) = qlq = qql = 11 = 1. Since C is an orthogonal transfor- 
mation of H, it must also preserve the orthogonal complement to the scalars, the space 
of pure quaternions that we henceforth denote by E3. We restrict C to E3 and call the 
resulting map C as well. Note that u = u is a member of E3. 

Proposition 1. If q is a unit quaternion, then there exist a pure unit quaternion u 
and a real scalar 0 such that q = eue. The transformation C : E3 - E3 defined by 
C(x) = qxq is a rotation in the plane orthogonal to u through an angle 20. 

Proof We have already shown that every unit quaternion has an exponential represen- 
tation. Choose u and 0 so that q = enu. Observe that C(u) = eUoue-u = i, because 
u commutes with eu&. Thus C fixes the one-dimensional subspace L spanned by M, 
hence fixes its orthogonal complement L' (C E3) as well. Let v = v be a unit vector 
in L' and set w = uv = u x v. Notice that uv = -vu, since u and v are orthogonal. 
This implies that ve-uo = eUv. Accordingly, 

C(i) = eUeve-u° = e2u0v = cos(20)0 + sin(20)7. U 

Notice that we can represent every rotation (i.e., every proper orthogonal transfor- 
mation of E3) as Cq,q for an appropriate unit quaternion q. A transformation is proper 
if it is orientation-preserving or, in other words, if it has positive determinant. 

For an elaboration of the topics presented so far the reader can refer to chapters 17 
and 18 of the text by Michael Henle [4]. 

4. SOME FACTS ABOUT ORDINARY DIFFERENTIAL EQUATIONS. We 
now turn our attention to Cp,q for arbitrary unit quaternions p and q. It was Cayley 
who first noticed that these are proper orthogonal transformations of E4. As has been 
known for some time (see [3]), such transformations must be the product of two ro- 
tations in a pair of orthogonal two-dimensional subspaces of E4. We would like to 
see how these rotations and subspaces are related to p and q. Coxeter elucidated this 
relation in an earlier paper in this journal [2]. We intend to do the same using distinctly 
different methods and, in fact, we will show from first principles that Cp,q is a product. 
To do that we call upon one tool from the theory of ordinary differential equations. 

Proposition 2. Let x : R -- Rn satisfy a kth-order linear homogeneous differential 
equation, where 1 < k <_ n. Then the image of x lies in a k-dimensional subspace 
of R. 

Proof We present the proof for the case k = 2, which suits our application. The reader 
should be able to generalize this to any k. 

Let xo = x(0) and xo = di/dt(0) be the initial position and initial velocity for the 
given curve x. Additionally, suppose that x satisfies the second-order linear homoge- 
neous differential equation 

d2x dx 
+ a- + x = 0, 

dt2 dt 

where a and / are differentiable real-valued functions of t. From standard ODE theory, 
we know that when two solutions of this differential equation have the same initial 
position and the same initial velocity, the two solutions are identical. 
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Now suppose that f, (i = 0, 1) are real-valued functions that satisfy the differential 
equation f" + af' + fif = 0 and, in addition, fo(0) = 1, fo(0) = 0, fi(0) = 0, and 
fi(0) = 1. Then the curve x(t) = fo(t)xo + fl(t)x satisfies the same ODE as x and 
has the same initial position and initial velocity. Thus x = fo(t)xo + fi(t)xo, so we 
see that the image of x lies in the subspace of Wn spanned by xo and xo. I 

That the functions fo and fi of the preceding proof exist is guaranteed by the stan- 
dard theory for linear ordinary differential equations [1]. The following proposition is 
an easy consequence of the proof of Proposition 2. It will prove to be quite useful. 

Proposition 3. Suppose that x : IR - H satisfies the differential equation 

d2 
+ W2X = 0, 

dt2 

where co > 0 is a constant, and that the initial position vector i(0) and the ini- 
tial velocity vector di/dt(0) satisfy the conditions I|(0) = w -lldx/dt(O) and 
(i(0), di/dt(0)) = 0. Then i(1) = R(i(0)), where R is a rotation in the plane of the 
image of i through an angle cw in the direction that turns i(0) toward w-'d*/dt(0). 

Proof Following the construction in the proof of Proposition 2, we choose fo(t) = 
cos(cot) and fi(t) = co-1 sin(wt). Then 

dx(O) x(t) = x(0) cos(cot) + d- -) sin(wt), 
dt 

which shows that 

x(1) = x(0) cos(co) + cw-1 -() sin(cw). 
dt 

That the rotation R exists follows from the assumptions that *(0) and co-di/dt (0) are 
orthogonal vectors and have the same length. U 

5. PROPER ORTHOGONAL TRANSFORMATIONS OF E4. Let C be short- 
hand for Cp,q, where for suitable choices of pure unit quaternions u and v and cor- 
responding real numbers 0 and 4, p = eUO and q = ev'. We seek two-dimensional 
invariant subspaces for C. If x in HI lies in some C-invariant subspace S, so does C (x) 
for all integers n. Moreover, if Ct made sense for arbitrary real t, we would expect the 
same to be true of Ct (x). It is this observation that motivates what we do next. 

First, notice that Ct does make sense; in fact, for any real t let Ct be defined by 

Ct(X) = eUtxert. 

To each quaternion x we associate a curve x : IR -+ H defined by *(t) = Ct(x). We 
will compute two derivatives of x. Note that the usual formulas for differentiating a 
product or a composition apply, as the reader can check by examining the components 
in these formulas or by considering equation (1) with the real constants replaced with 
real-valued functions. Keep in mind, however, that the order of terms in products is 
important. As the first derivative of x we obtain 

dr 
-(t) = uO eOt x eVrt + eUOt x evrt v =- u0 x(t) + i(t) v4. (5) dt 
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Differentiating the left-hand and right-hand sides of (5), at the same time using (5) to 
eliminate first-order derivatives of x(t), we get 

d2X 
d(t) = -(02 + q2)i(t) + 20ui(t)v. (6) dt2 

Now if it happened that 

ux(t)v = A(t)x(t), (7) 

where X is a real-valued function, then x would satisfy a linear homogeneous second- 
order ordinary differential equation with real coefficients. By Proposition 2, the image 
of x would lie in a two-dimensional subspace and necessarily the span of x = i(0) 
and C(x) = x(1) would be an invariant subspace. Note however that l|u(t)vl = x(t)|, 
because u and v are unit vectors. Thus if equation (7) were to hold, then X would have 
to be either the constant function 1 or the constant function -1 (since all the functions 
we consider are continuous). In fact, we can simplify the condition of equation (7) 
with X = ±1. 

Lemma 1. For x in H, uxv = +x if and only if ui(t)v = +x(t) holds for all t. 

Proof Since x = i(0), the if direction is obvious. To prove the only if direction, as- 
sume that uxv = ix. Apply Ct to both sides of this equation to get 

+Ct(x) = Ct(uxv) = eUtuxveet = uCt (x)v 

(i.e., +i(t) = ui(t)v). U 

Thus we look for those x in H that satisfy one of the linear equations ux ± xv = 0. 
To do this we introduce a basis for H. A natural choice is the set consisting of 1, u, 
v, and uv. Of course, this is not a basis if u = iv, but it is otherwise. (Note: when 
p = ±1 or q = +l, at least one of u or v may be chosen arbitrarily. When this occurs, 
we always choose u and v to be orthogonal.) 

We first consider the case where u = ±v and look for solutions to ux ± xu = 0. It is 
easy to see that 1 and u are solutions to ux - xu = 0; in fact, they form an orthonormal 
basis for the solutions to this equation. On the other hand, the solutions to ux + xu = 0 
are the pure quaternions x that are orthogonal to u. In a minor abuse of notation we use 
UI (recall that u is the vector part of u) to signify this set of solutions. Since any pure 
quaternion is necessarily orthogonal to 1, the space IuI is the orthogonal complement 
of the space spanned by 1 and u. Thus the solution spaces to the two equations ux + 
xu = 0 give a decomposition of H into the sum of two two-dimensional orthogonal 
subspaces. 

Now assume that u 7 +v. One can then introduce the basis {1, u, v, uv} and in a 
straightforward fashion find solutions. However, it is easier to guess solutions. For 
example, x = u + v satisfies ux - xv = 0. For this x, the curve x lies in a two- 
dimensional invariant subspace; hence di/dt(0) is also in that subspace. Using (5), 
we see that for x = u + v 

di 
-(0) = uO (u + v) + (u + v) vq = (0 + 4)(uv - 1). 
dt 

A direct calculation confirms that x = uv - 1 is another solution of ux - xv = 0. 
Moreover, since Ct is a rotation for every t, Ix(t) I = IC (u + v) = |u + vl is a con- 
stant. It follows that x(0) = u + v is orthogonal to i'(0) and thus to uv - 1. Observe 
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also that, since uv - 1 = (u + v)v, equation (3) implies that these two quaternions 
have the same norm. A direct calculation gives the common value of these norms: 

2(1 + cos a), where a (0 < a < 7) is the angle between u and v. In a similar fash- 
ion, we can show that v - u and uv + 1 are orthogonal solutions of ux + xv = 0, each 
having norm /2(1 - cos a). Finally, it is easy to check that each pair of vectors is or- 
thogonal to the other pair. Thus the vectors u + v, uv - 1, v - u, and uv + 1 constitute 
an orthogonal basis for H. 

Assume that u 7 -v, let x = u + v, and recall that this x satisfies ux - xv = 0 (or 
equivalently uxv = -x). Here lu + vl = luv - 1| = 2(1 + cos a) even when a = 0. 
For this x, (6) becomes 

d2, 
dt2(t) + (0 + 2(t) = 0. (8) 

Also, by (5) evaluated at t = 0, 

di 
-(0) = 0ux + Cxv = (0 + ¢)(ux) = (0 + q)(uv - 1). dt 

Hence |0 + - Idxi/dt(0)I = I (0)I and (i(0), di/dt(0)) = 0. Thus we can invoke 
Proposition 3 and conclude that C restricted to the plane spanned by u + v and uv - 1 
is a rotation through the angle |0 + ¢| in the direction that turns u + v toward sign(0 + 
¢)(uv - 1). Stated more simply, C restricted to the plane spanned by u + v and uv - 1 
is a rotation through 0 + ¢ in the direction that turns u + v toward uv - 1. In a similar 
fashion, when u 7 v we can show that C restricted to the plane spanned by v - u and 
uv + 1 is a rotation by 0 - ¢ in the direction that turns v - u towards uv + 1. The 
same kind of results hold in the remaining cases when u = ±v. 

We consolidate what we have learned into our first theorem: 

Theorem 1. Let p = euO and q = ev, where u and v are pure unit quaternions. 
The orthogonal transformation Cp,q of HI is a product of two rotations in orthog- 
onal planes. If u I ±v, then Cp,q rotates the plane spanned by u + v and uv - 1 
through the angle \0 + 0I and the plane spanned by v - u and uv + 1 through the 
angle 10 - I. If u = ±v, then the invariant planes are the span of 1 and u and its or- 
thogonal complement, and the rotation angles in appropriate planes are still \0 + | 
and |0 - I|. 

As an aside, we note the following special case of Theorem 1. When 04 = 0, which 
implies that p = 1 or q = 1, the differential equation (8) is equivalent to (6). Then for 
every x the associated curve x satisfies (8), and we see that every nonzero x lies in a 
C-invariant plane and is rotated through the same angle, namely, l0 + I|. 

We can now prove that every proper orthogonal transformation of H is of the 
form Cp,q and so can be described by Theorem 1 as well. First note that C = Cp,q 
is proper since its determinant is 1. This follows from the fact that det(Ct) is a con- 
tinuous function of t and can only take on the values ±1 (each Ct is orthogonal). 
However, CO is the identity, which has determinant 1. 

Theorem 2. If A is a proper orthogonal transformation of H, then there exist unit 
quaternions p and q such that A = Cp,q. 

Proof Let A be a proper orthogonal transformation of H, and let p = A(1). Clearly, 
p is a unit quaternion. Observe that Cp,1 maps 1 to p. Then Cp, o A fixes 1 and thus 
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defines a proper orthogonal transformation in E3. By Proposition 1, there exists a unit 
quaternion q such that C,1 o A = Cq,q. It follows that A = Cp,1 o Cq,q = Cpq,q. U 

It is not the case that each A is uniquely represented as Cp,q. Our final theorem 
shows precisely to what extent this representation is not unique. 

Theorem 3. Let Pi, P2, q1, and q2 be unit quaternions. The transformations Cpl,q1 
and Cp2,q2 are equal if and only if P2/Pi = q2/ql = -1. 

Proof The theorem follows from the observation that Cp,q is the identity transforma- 
tion if and only if p = q = +1. One direction of this equivalence is obvious, and the 
proof of the other direction is an easy application of Theorem 1, which we leave to the 
reader. 1 
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Another Proof of the Fundamental 
Theorem of Algebra 

Jose Carlos de Sousa Oliveira Santos 

The goal of this note is to prove the fundamental theorem of algebra. To be more 
precise, we show that the degree of an irreducible polynomial in R[X] is either 1 or 2. 
The same method can be used to prove that the degree of an irreducible polynomial in 
C[X] is always 1. 

Let n be an integer larger than 1, and let P be an irreducible polynomial in R[X] 
of degree n. We assert that n = 2. Denote by (P) the ideal generated by P in the 
ring IR[X]. Since P is irreducible, the quotient of the ring IR[X] by (P) is a field. If we 
define # : n" - R[X]/(P) by 

(ao, al ..., an-_) H ao + alX + +anlXn-1 + (P), 

then l is a group isomorphism from (IRn, +) onto (IR[X]/(P), +). This isomorphism 
induces in the obvious way a field structure in "Rn, the addition being the usual one. The 
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