APPENDIX Q

On the group completion of a simplicial monoid

DANIEL QUILLEN!

To any small category A endowed with a coherent unitary associative and com-
mutative operation there is associated a generalized cohomology theory K*(?;.A),
the K-theory with coefficients in A (see Segal [8], Anderson [1]). In the case
of the category Pgr of finitely generated projective R-modules and their iso-
morphisms endowed with the direct sum operation, the groups K~™(pt; Pr) are
isomorphic to the algebraic K-groups K,R for n = 0,1,2 of Bass and Milnor,
and to their generalizations which I have been able to compute for a finite field
(6]. In order to establish these isomorphisms and thereby compute the gener-
alized K-groups in many interesting cases, one uses a theorem calculating the
homology of the loop space of the classifying space of a topological monoid.
When translated into the (semi-)simplicial framework for homotopy theory, this
amounts to a theorem describing the behavior of the homology of a simplicial
monoid under the process of group completion. It is the purpose of this paper
to present such a theorem; a closely related result has been proved by Barratt
and Priddy [2].

To state the theorem, let M be a simplicial monoid and M its group comple-
tion. The canonical map from M to M induces a ring homomorphism

Ho(M, k) — H, (M, k)

for any commutative ring k. Elements of mqM are carried into invertible ele-
ments by this homomorphism, hence it is natural to ask if the homology of M

is obtained by localizing the homology of M with respect to the multiplicative
system mo M.

THEOREM. Assume i) moM is contained in the center of H,(M, k) and ii) M,
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90 ERIC M. FRIEDLANDER AND BARRY MAZUR

s a free monoid Joralln. Then the homology of if is obtained by localization:
Ho(M, k)[moM 1) =, Ho (M, k).

Consequently f My, s € moM, are the connected components of M and M, is
the identity component of M, then

lim.ind. H,(M,, k) % H, (7, k).

in the first and fifth sections respectively.

The applications of the theorem to K -theory, in particular the isomorphism
of K="(pt; Pr) and KnR, are given in Section 7. Anderson’s version of K-
theory has been used because it goes with the methods of this Paper, but there
is no difficulty in working in the more flexible and more geometric framework
provided by Segal’s special simplicial Spaces, once the group completion theorem

morphisms with compact support of the line can be obtained from the results of
this paper.

Let R be a ring (always supposed with identity, but not necessarily commu-
tative) and let S be a multiplicative system in R, ie. a subset closed under
multiplication containing the identity. Denote bY 5 & B = R[S1] the local-
ization of R with respect to S; ¥ is a universal ring homomorphism carrying

that R[S-1] is a ring of fractions of the form rs~!. The same holds trivially if
all the elements of § are already invertible in R. It is the Purpose of this section
to develop a common generalization of these two cases,

Let C be the category whose objects are the elements of S, and in which a
morphism from 51 to 52 is an element ¢ of S such that $1t = s3. We assume

1) C is a filtering category, which means that the following conditjons hold:

i') For GVery s1, s2 € S there exists t1, t2 € S with 8181 = s9t,.

i”) Given s, 51, 82 € S such that ss, = 852, there exists t € S with $1t = syt
Set

RS™1 = limbind.R
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where the right side denotes the inductive limit of the functor from C to the
category of R-modules sending each object to R and sending the arrow t : 8; — 89
into right multiplication by ¢. Elements of RS~ may be identified with fractions
rs~ !, where rlsfl = 7'232‘1 if and only if there exist €1, {5 in S with mt; = rot,
8111 = sate. There is an R-module homomorphism

w: RSN = RISTY w7 e y(r)y(s) !

and to make v an isomorphism we assume

it) For each s € S, left multiplication by s on RS- is bijective. This means
the following hold:

ii') Given r € R and s € S with sr = 0, there exists t € S with 7¢ = 0.

ii") Given r € R and s € S, there exist #' &€ R and { € S such that rt = sr',
'This condition implies that the ring homomorphism from R to the ring endomor-
phisms of RS™! as an abelian group given by left multiplication carries elements
of 5 into invertible elements, hence it factors through -, showing that RS™!
has a unique module structure over R{S~1] extending its R-module structure.
Since every element of R[S~'} is a finite product of elements of the form +(r)
or ¥(s)™%, it is clear that u is a homomorphism of R[S ]-modules. As RS-! is
generated by the fraction 1(1)~! over R[S™!] and u carries this fraction to the
identity of R[S}, it follows that u is an isomorphism as claimed.

When R and § satisfy the conditions i} and ii}, we shall say that the local-
ization of R with respect to S admits calculation by right fractions.

Q.2. Grading of RS™!

Suppose in addition to the assumptions of the preceding section that the ring
R admits a grading
=G,

sES

with respect to S, i.e. R, R, C R, Let § be the group completion of S, i.e. the
target of a universal homomorphism from S to a group. In virtue of 1), elements
of § may be identified with fractions s's~1. It is easy to see that RS™! admits

a grading
RS_l - @ .R_';
ses
where Ry is the subgroup of fractions of the form rs~1 with » € Hyandts™! = 5.
We claim this grading is compatible with the ring structure. Indeed, given
rs™t e Ry with v € Ry and ts™) = §, and similarly with primes, we have

(?'S—l)(‘.’"'sl"-l) — T‘T‘”(S"S”)"l

where v and 5" are chosen so that »'s” = sr’. Right multiplying s and »"
by the same element of S if necessary, we can suppose that r & Ry with
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t's" = st". Then the above product lies in Rsz/, because rr”’ € Ry and ss’ =
(ts_l)(t"s'_l) - tt”(s"s”)_l.

It follows from the fact that RS~! is graded as a ring with respect to S that
R. (e = identity of S) is a subring and that the group S acts on this subring
by conjugation. Furthermore, if k is any commutative ring over which R is an
algebra, there is an algebra isomorphism

k[3) @k R. = RS
where on the left is the semi-tensor product of the group algebra k[—S] acting
on R. by the conjugation action.

It will be useful later to note here that elements of R, may be identified with
fractions of the form »s~1 with » € R,, or equivalently

R, 5 lim.ind. R,

where on the right is the inductive limit of the functor from C to abelian groups
sending s to R, and sending the arrow ¢ : s — s’ into right multiplication by ¢
from R; to R,

Q.3. The Eilenberg-Moore spectral sequence

Let M be a simplicial monoid and let Nerv(M) : (p, ¢) — (M,)? be the bisim-
plicial set which for fixed ¢ is the nerve of the monoid M,. Define the classify-
ing “space” of M, denoted BM, to be the diagonal simplicial set of Nerv(M).
(One can use instead the simplicial set WM, as there is a weak equivalence?
BM — WM.) Let S = moM be the monoid of connected components of M.
As My = BM; and BM is reduced, there is a map S — m BM; one sees eas-
ily that this is a monoid homomorphism and that it allows one to identify the
fundamental group with the group completion of S:

S' = ‘JTlBM.

If L is an S-module, then one of the two spectral sequences associated to
the bisimplicical abelian group (p, q) — Z[M?] ® L of chains on Nerv(M ) with
coeflicients in L is of the form

E}, = Hy(M?,L) => Hpy(BM,L).

Let k be a field and R = H,(M, k) the homology ring of M. If L is a k[S]-module,
the Kunneth formula

H.(MP,L)=R® QL
shows that the E! term is the bar resolution of k over R tensored L over R,
hence we obtain the Eilenberg-Moore spectral sequence:

E2 = Torl(k,L)g = Hpq(BM,L).

2 A weak equivalence is a map inducing isomorphisms on homotopy groups.
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Suppose now that the localization R = R[S™!] of R with respect to S admits
calculation by right fractions (§1). Then R is a flat left R-module as it is a filtered
inductive limit of free S-modules, hence if P is a resolution of k by projective
right R-modules, P®g R is a resolution of k®g R by projective right R-modules.
Passing to homology on both sides of the canonical isomorphism

P®RL:(P®RR)®EL
yields an isomorphism
Torf(k, L) ~ Torf(k ®r R, L).

Note that k @z R = k as the elements of S go into 1 under the augmentation
map from R to k.
Since R is graded with respect.to S:

R=P H.(M,)

SES

where M, denotes the connected component indexed by s, we have an isomor-
phism (§2)

R~kS) & R., R.=limind H.(M,).

Consequently R is a free right R.-module, hence arguing as before, there is a
canonical isomorphism

Tory* (k, k) =~ Tor, (k, k[5])
since R®g, k = k[5)].
Putting these two Tor isomorphisms together, we conclude that when the
localization of R with respect to S admits calculation by right fractions, then
the Eilenberg-Moore spectral sequence of M with L = k[S] takes the form

B2 =Torl(kk)y = Hyyo(BM,K[S]).

The abutment of the spectral sequence is isomorphic to the homology of the
universal covering BM of BM

H.(BM, k[S)) ~ H,(BM,k),

because the spectral sequence for the map BM — BM is degenerate.
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Q.4. A comparison lemma

Let u : M — M’ be a homomorphism of simplicial monoids. We continue with ;
the notations of the preceding section, denoting with primes the corresponding "
objects for M'.

LEMMA. Suppose the localizations of R with respect to S and R’ with respect
to S’ both admit calculation by right fractions, and assume that u induces iso-

morphisms 1 BM 5 mBM', H.(BM,k) % H.(BM ,k), (e.g. if BM — BM'
is a weak equivalence). Then u induces an isomorphism

R[S™Y S R[S

PRroOF. The hypotheses imply that R[S~1] = k[S]® R. (resp. with primes),
and that § = &', hence it suffices to show that the homomorphism R. - R,
induced by u is an isomorphism. To save writing denote this homomorphism by
A — A’. We apply the Zeeman comparison theorem to the homomorphism of
Eilenberg-Moore spectral sequences induced by u:

B2, =Tory (k,k); = Hpte(BM,k)

! =

/B2, = Tor? (k,k)y => Hpis(BM',F)

in the range p > 1, ¢ > 1 (this includes everything but the trivial copy of k
in degree 0,0). We argue by induction that A, 5 A for ¢ < n, this being
clear for n = 1 as both A and A’ are connected. The induction hypothesis
implies that E2, = 'Ej for all p and all ¢ < n. Since the map on abutments
is an isomorphism, the comparison theorem tells us that E?, = 'EZ, and that
E2, maps onto 'E?, (compare [5], 3.8). Computing Tor(k, k) using the bar
resolution gives exact sequences

0> Zn— P 4i®4j — An — Efy —0
i+j=n
§,7>0
@ Ai®A; @ Ay — Zn — E3, —0
i+j+k=n
i,5,k>0
where Z, is defined so the top row is exact. Applying the five lemma to the
homomorphism of the lower exact sequence to the similar one with primes, we see
that Z, maps onto Z.; using this in the case of the upper exact sequence shows
that A, = A’ establishing the induction hypothesis for n + 1 and concluding
the proof of the lemma. O
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Q.5. Good simplicial monoids

Let M be a simplicial monoid and M its group completion, i.e. the simplicial
group with M, = the group completion of M, for all n. We say that M is
good (for group completion) if the canonical homomorphism M — M induces a
weak equivalence BM — BM. Since m BM 5 myBM = woM, the Whitehead
theorem tells us that M is good if and only if

H.(BM,L) = H.(BM,L)

for all moM-modules L (it suffices in fact to have this only for L = Z[moM]).
We say that a monoid S is good if the associated constant simplicial monoid is
good. As there is a canonical isomorphism in this case

H.(BS, L) = Toe™%)(z, L),
one sees that S is good if and only if
Tor™8)(Z, L) & Tor™5)(z, L)

for any S-module L.

PROPOSITION Q.1. If S is a free monoid, then S is good. If S — S admuts
calculation by right fractions in the sense that condition i) of §1 holds, then S
1s good.

The first assertion is proved by using the standard resolutions for computing
the homology of free monoids and free groups ([3], X, §5). In the second situation
Z[S) = Z[S)S~ is a flat Z[S]-module, so the map of Tor’s is an isomorphism as
in section 3.

ProposiTiON Q.2. If M, is good for all n, then M 1is good.
In effect there is a spectral sequence
El, = Tor®™\(Z, L) = Hyye(BM, L)

which is the other spectral sequence associated to the bisimplicial abelian group
of chains on Nerv(M) with coefficients in L (compare §3). Considering the mor-
phism of such spectral sequences induced by the map M — M, the proposition
follows.

Although not necessary for the sequel, it is perhaps worthwhile to give the
relation between the notion of goodness and the left derived functor of the group
completion functor from simplicial monoids to simplicial groups. The derived
functor is defined by the formula

Mrllzl_J




e

96 ERIC M. FRIEDLANDER AND BARRY MAZUR

where P is a free simplicial monoid resolution of M, that is, a free simplicial
monoid endowed with a map P — M, which as a map of simplicial sets is a
fibration with contractible fibres. One knows (e.g. [9], §4) that up to homo-
topy such a free resolution is unique and that it depends functorially on M,
hence M — M L .5 a functor from simplicial monoids to the homotopy category
of simplicial groups. There is a canonical natural transformation M~ — M
represented by the completion P — M of the given map P — M.

PROI;OSITION Q.3. A simplicial monoid M is good if and only if the canonical
map M~ — M is a weak equivalence.

PRrOOF. We consider the square of classifying spaces

BP —>— BM

Bp —~— BM

where v is induced by the resolution map P — M, v by its completion, and
the vertical maps by the canonical homomorphism to the completion. As P is
free, it is good by propositions 1 and 2, hence ' is a weak equivalence. We
show v is a weak equivalence using the Whitehead theorem. First of all, 7P -
moM and w1 BP is the group completion of mo P (resp. for M ), so v induces an
isomorphism of fundamental groups. On the other hand, the map from P to
M is a homotopy of equivalence of the underlying simplicial sets, hence induces
isomorphisms of the homology of MP and PP with arbitrary coefficients; using
the spectral sequence

Ei, = Hy(M?, L) = Hpyq(BM, L)

and the similar one for P, one sees that v induces isomorphisms on homology with
coefficients in any 73 BM-module L. Therefore u’ and v are weak equivalences,
hence u is a weak equivalence if and only if @ is, proving the proposition. [J

Remark: Instead of group completion one can consider the functor M — GW (M)
from simplicial monoids to simplicial groups, where T is the classifying “space”
functor of MacLane and G is the loop “gpace” functor of Kan [4]. there is a
natural transformation
GW (M) — M

obtained by composing the map GW(M) — GW (M) induced by canonical ho-
momorphism M — M with the adjunction morphism GW(M). When M is
good, the former map is a weak equivalence, because W (M) — W (M) is a weak
equivalence by definition, and because G preserves weak equivalences. As the
adjunction morphism is always a weak equivalence, it follows that the above

k b
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natural transformation is a weak equivalence for good M. Therefore the group
completion functor for good simplicial monoids corresponds geometrically to the
functor sending a topological monoid into the loop space of its classifying space.

Q.6. Homology of the group completion

THEOREM Q.4. Let M be a simplicial monoid, M its group completion, and
let k be a commutatlive Ting. Assume:

i) The localization of H.(M, k) with respect to moM admits calculation by right
fractions (e.g. if oM is in the center of the ring H.(M,E).)

ii) M is good for group completion (e,g, if My is free for all n).
Then the canonical map M — M induces an isomorphism

Ho(M, k)[moM~1] = H, (M, k).

Moreover if My, s € moM, are the connected components of M and M. is the
identity component of M, then

lim.ind. H.(M,, k) = H.(M., k),

where the inductive limit is taken with respect to the right multiplication action

of S (end of §2).

PROOF. When k is a field this follows by applying the comparison lemma
to the map M — M. The general case may then be deduced by dévissage as
follows. Hypothesis i) implies that S = moM satisfies condition i) of §1, whence
the limit with respect to the right S-action

F,(A) = lim.ind. Hy(M, A)

is a homological functor of the abelian group A. Hypothesis i) also implies
that the left multiplication operator L, acts bijectively on F, (k). One shows by
induction that L, is bijective on F.(A) for all k-modules A4; assuming this to be
so in degrees < n and writing A = P/K with P free, it follows by applying the
five lemma to

Fa(K) — Fa(P) — Fu(A) — Fa_1(K) — Fa1(P)

that L, is surjective on F,(A) first of all, then that it is bijective. Thusif ¥’ is any
field such that there exists a homomorphism from k to k', one has that hypothesis
i) holds for H.(M, k'), hence applying the theorem for field coefficients, one finds
that the canonical map

(%) F.(A) — H.(M, A)
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is an isomorphism for A = k'.

This means (x) is an isomorphism for A = k ®z Q, for if this is non-zero, then
(¥) is an isomorphism for some field of characteristic zero, hence also for Q, and
hence for any Q-module. Similarly it is an isomorphism for k/pk, p prime, and
arguing again by induction on the degree, one sees it is an isomorphism for all
k/pk-modules. By induction on n, (%) is an isomorphism for all k/p"k-modules,
hence by passage to the limit, for all k-modules which are torsion abelian groups.
Thus (*) is an isomorphism for three of the terms in the exact sequence

0—T —k—k®zQ—T —0

50 it is an isomorphism for A = k, proving the theorem. [

Q.7. Applications to K-theory

Let A be a small category endowed with a coherent unitary associative and i
commutative operation. In [3] Graeme Segal showed how to construct an - '
spectrum of iterated classifying spaces for A, thereby defining a generalized
cohomology theory which will be denoted K*(?;.A) and called the K-theory
with coefficients in A. Segal’s procedure also yields a double classifying space for
category A with only a coherent unitary associative operation, hence it furnishes
a connected sequence of K-functors K™(7;.A) for n < 1 in this case. In this and
the next section we give some applications of the preceding theorem to this K-
theory. We work in the alternative framework of Anderson [1], as it goes with
the simplicial setup of this paper.

Given simplicial sets X and Y, let [X,Y] denote the set of morphisms from
X to Y in the homotopy category; such a morphism may be identified with a
homotopy class of maps between the geometric realizations. Let A be a category
endowed with a coherent unitary associative operation & : A x A — A. If BA
denotes the nerve of A, then this operation induces a map BA x BA — BA,
which in turn provides a monoid structure on the set [X, BA] for any X. One
way of thinking of the functor K°(?;.4) is as the result of converting the monoid-
valued functor [?, BA] to a representable group-valued functor in an intelligent
way. In Anderson’s framework, one chooses a monoid category A’, that is, a
category with an operation making the set of arrows into a monoid, such that A’
is equivalent to A in a fashion compatible with the operations. The nerve BA' is
a simplicial monoid; one chooses a free simplicial monoid resolution M — BA’,
which is unique up to homotopy ([9], §4), and defines K° to be the functor
represented by the group completion

K°(X; A) = [X, M), |
There is a canonical natural transformation of monoid-valued functors

[X,BA] - K°(X;A)
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represented by the canonical homomorphism from M to M. As pointed out at
the end of section 5, M has the same homotopy type as the loop space of the
classifying space B(BA'); in general one has

KX A) = [X 0" B(BAY], i 1

The integral homology ring H.(M) is isomorphic to H,.(B.A) with product
induced by the operation @ : A x A — A. If this operation is commutative in
the sense that there is a natural isomorphism X @ Y ~ Y @ X, then the ring
H,(M) is commutative, hence Theorem 1 applies to M yielding

THEOREM Q.5. Assume moBA is in the center of H.(BA), e.g. if the opera-
tion @ is commutative. Then the homology of the representing space For K (T 4)
is obtained by localization:

H.(BA)[meBA~] 5 H,(M).

We now consider the case where A is the category Pg of finitely generated
projective modules and their isomorphisms over a ring R with identity, and
where the operation on Pg is direct sum. Let S = T9BPr be the monoid of
isomorphism classes of Pr and let P, denote an object in the class s. Then there
is an isomorphism

H.(BPR) ~ (P H.(B Aut(P,))
SES
where BG denotes the nerve of the group G. The ring structure on this homology
is induced by the direct sum homomorphism

Aut(P,) x Aut(Pys) — Aut(P; ® Pyi)

together with the isomorphism of the last group with Aut(P,4,) furnished by
any isomorphism of P, @ Py: and P, (which one does not matter, since in-
ner automorphisms of a group act trivially on homology). As the direct sum
operation is commutative, Theorem 2 implies that the representing space M
for K°(?;Pr) has for its homology the localization of H.(BPgr) with respect
to S. Since the group completion of S is the projective class group KoR, this
localization takes the form (§2)

H,(BPR)[mBPg'] = Z[KoR] ® lim.ind. H.(B Aut(P,)),

where the limit is taken over the category C having elements of S for its objects,
and for morphisms from s to s’ the elements ¢ of S with s+¢ = s', and where the
map H.(B Aut(Py)) — H.(B Aut(P,:)) assigned to ¢ is induced by the injection

Aut(P,) — Aut(P, @ P,), a— adid

followed by the isomorphism of the latter group with Aut(P,) furnished by any
isomorphism P, @ P, >~ P,,. As the functor from the ordered set N of natural
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numbers to C sending n to the free module R™ is cofinal, the limit can be taken
over N yielding isomorphisms

lim ind. H. (B Aut(P,)) 2 lim.ind. H,(BGL,R) = H.(BGL(R)).
n
Therefore from Theorem 2 we obtain isomorphisms

H.(M) ~ Z[K,R] ® H.(BGL(R))
H.(M.) ~ H.(BGL(R))

for the homology of the space representing K 0 and its identity component.

We are now going to make the second isomorphism explicit and show that it is
induced by a map. Following Anderson, let A’ be the monoid category equivalent
to A consisting of pairs (n,u), with n € N and u a projection operator on R",
in which a morphism from (n,u) to (n’,u’) is an isomorphism of the images
of u and u’; the operation on A’ is given by (n’,u’) + (n",u") = (n' + n",u)
where u corresponds to the operator u’ @ u” on R™ @ R™" under the obvious
isomorphism with R". Let b be the vertex of BA’ represented by the object (1,d)
of A’, and let ¢ be a vertex of M lying over b with respect to the resolution map
p: M — BA', which we recall is a fibration with contractible fibres. Consider
the composite homomorphism

H.(BGL, R) 22 H.(BA') 25 H.(M) — H.(H)

where j, : BGL, R — BA' denotes the map of nerves induced by the inclusion
of the full subcategory consisting of the object (n,id), and where the last map
is induced by the canonical homomorphism M — M followed by right multipli-
cation by the vertex ¢~ of M. This homomorphism has its image contained
in the homology of M., and the family of these homomorphisms is compatible
with the maps i, : BGLyR — BGLp41 R induced by the standard inclusion of
GL, in GLu41. The limit homomorphism H.(BGL(R)) — H.(M.) is clearly
the isomorphism described above.

To show this isomorphism is induced by a map, we construct a sequence of
maps f, : BGL,R — M such that pf, = jn and (.e)fn = fat1in, where (.c)
denotes right multiplication by the vertex ¢. We start with fo equal to the map
sending the unique vertex of BGLoR to the identity vertex of M; the covering
homotopy extension theorem guarantees that (.c)f, compatible family of maps
BGL,R — M., z — faz.c™™, hence to a map f : BGL(R) — M. in the limit.
It is clear that f is the desired map, hence we have proved

PROPOSITION Q.6. There ezists a map f: BGL(R) — M. inducing isomor-
phisms on homology.
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As the fundamental group of a simplicial monoid is abelian, 7 (f) : GL(R) —
71 M. kills the subgroup E(R) = (GL(R), GL(R)) generated by elementary ma-
trices. In the version of K-theory for a ring announced in (6], it is shown that
there is a map

9 : BGL(R) — BGL(R)*
in the homotopy category of pointed spaces which is universal subject to the
requirement that m(g) kill E(R), and that moreover g induces isomorphisms on
homology with coefficients in any m1 BGL(R)*-module. Thus f factors into g
followed by a map
BGL(F)t - M,

inducing isomorphisms on homology. As BGL(R)* and M, are both simple, the
Whitehead theorem implies this map is a homotopy equivalence, proving

COROLLARY 4. The identity component of the representing space for the func-
tor K°(?,Pr) is homotopy equivalent to BGL(R)*.

COROLLARY 5. The groups K=" (pt;Pg) forn = 0,1,2 are respectively iso-
morphic to the projective class group KoR, the K1 R of Bass, and the KoR of
Milnor.

The assertion for n = 0 follows from the fact that KoR and wgM are both
group completions of 7o BPr =~ moM. The assertions for n = 1,2 follow either
from Corollary 1 using the theory of the space BGL(R)*, or as Anderson points
out, directly from Proposition 4 in the following way.

First of all, m; M, is abelian, so

Tr]_Me :> Ml(ﬂc) :> Hl(BGL(R))
establishing the isomorphism for n = 1. Next, consider the map of fibrations
BE(R) —— BGL(R) —— BK,R

A
M, —— BEK:R.

The comparison theorem for spectral sequences can be used to show that f
induces isomorphisms on homology, provided it is known that K 1R acts trivially
on the homology of BE(R). Given a € K1R and 8 € H,(BE(R)), @ and 8
come from finitely generated subgroups H C GL(R) and H' C E(R). Replacing
H' by a conjugate subgroup, one can suppose that elements of H centralize I ks
whence « acts trivially on 8. Thus f~ induces isomorphisms on homology, so

ﬂ'gﬂe i Tz(ﬂ;) fon Hg(ﬂ;f;) bt (BE(R)),

M; ——

proving the n = 2 part of the corollary.
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Q.8. A theorem of Mather

Denote by G the group of diffeomorphisms with compact support of the line R.
John Mather has shown that its classifying space BG has a classifying space BBG
and that the canonical map BG — QBBG induces isomorphisms on homology.
We will show how his results can be obtained from Theorem 2.

It will be convenient to replace G' by the isomorphic group, denoted by the
same letter, consisting of diffeomorphisms of the unit interval [0, 1] with support
in the interior. Denote by G the category with one object defined by G. Given
u,v € G, let u+v denote the diffecomorphism of [0, 2] such that (u+v)(z) = u(z)
for 0 < z < 1and (u+v)(z) = viz—-1)+1for 1 <z <2 Choosing a
diffeomorphism A : [0,2] — [0, 1] such that h(z) = z for  near 0 and h(z) = 21
for ¢ near 1, we obtain a homomorphism (u,v) +— h(u + v)h~! from G x G to
G, whence a functor G x G — G. As h is unique up to left multiplication by
an element of G, this functor is independent of the choice of h up to canonical
isomorphism. This means that the category G has an intrinsic internal operation,
and it is with respect to this operation that Mather’s double classifying space
BBG is constructed. Observe that the operation is associative up to canonical
isomorphisms, but it is not unitary, because there is no element of G' conjugating
h(u + id)h~! to u for all u in G. Thus it will be necessary to adjoin an identity
object to G before obtaining a situation to which Theorem 2 applies.

Let A’ denote the category whose objects are the intervals I, = [0, n] for each
integer n > 0, in which a morphism h : I, — I is a diffeomorphism between
these intervals such that h(z) = z for  near 0 and h(z) =  — n+ n’ for & near
n. We endow A’ with the operation + : A’ x A" — A’ sending (In, Im) = In4m
and (u,v) ~ u+ v, where if w: I — Iy and v : I, — I/ are morphisms, then
w+v: Ingm — Inigm is the diffeomorphism given by

(u+v)(r):{u(m)’ 0<z<n
viz—n)+n, n<z<n+m
It is clear that A’ is a monoid category equivalent to its full subcategory consist
ing of Iy and I;, and that this subcategory is the result of adjoining an identily
object to G.

As the nerve BA’ is a simplicial monoid, it has a classifying “space” BBA'
as in Section 3. There is a canonical map in the homotopy category

BA' — QBBA’

represented in the simplicial setup we have been using by the canonical map
M — M, where M is a free simplicial monoid resolution of BA'. We are going
to apply Theorem 2 to determine the homology of this loop space.




HOMOLOGY OF ALGEBRAIC VARIETIES 103

First of all, H.(BG) has an associative product induced by the operation on
G, that is, by the homomorphism (u, v) — h(u + v)h~1. We show that H,.(BG)
has an identity element, which is not evident a priori, because the operation of
G is not unitary. If ¢ denotes the unique element of mgBG, then for ¢ to be
a right identity in H.(BG) means that the homomorphism u — h(u + id)h~1
induces the identity on this homology. To show this, it suffices, as G is the
union of the subgroups G, consisting of the diffeomorphisms with support in the
interior of [0,a] for 0 < a < 1, to show that the inclusion homomorphism and
the homomorphism v — h(u + id)h~! from G, to G induce the same map on
homology. But this is clear, as these two homomorphisms are conjugate in G.
Consequently c is a right identity and similarly it is a left identity.

Clearly

H,(BA') = Z® H.(BG)

is the ring obtained by adjoining to the ring H.(BG) an identity element 1
representing the component of B.A’ corresponding to the identity object Iy. By
what has been shown, moBA’ = {1, c} is in the center of H.(B.A'), so Theorem 2
shows that the Homology of QBB.A' is obtained by localizing that of BA’. The
localization is the image of the idempotent ¢, hence we obtain Mather’s theorem

H,(BG) = H.(QBBA').

As with GL(R) in section 7, this implies that QBB.A’ has the same homotopy
type as the space BG™ obtained by killing the commutator subgroup of G.

Q.9. The group completion theorem in Segal’s setup

The operation of passing from a simplicial monoid to its group completion
corresponds geometrically to going from a topological monoid, or more generally
a special simplicial space in the sense of G. Segal [8], to the loop space of its
classifying space. In this section we state the theorem for special simplicial spaces
corresponding to the group completion theorem of §6, and indicate how it can
be proved by essentially the same method.

Let M, be a simplicial space which is special, i.e. it is reduced (Mo = pt) and
for each n, one has a weak homotopy equivalence M, — M7, where the map
has for its components the face operators associated to the simplices {i—1,i} of
{0,...,n}. Such a thing is a generalization of a topological monoid, which is the
case where M, = M} for all n. The space M1, isa homotopy associative H-space
in a natural way, in particular, the singular homology H. (M, k) with coefficients
in any commutative ring k£ has a ring structure, and moM; is a multiplicative
system in this homology ring.

As a functor from reduced simplicial spaces to pointed connected spaces, the
realization X, — |X,| has a right adjoint ¥ — Q,Y, where ,,Y is the space of
maps of the standard n-simplex to ¥ which carry all the vertices to the basepoint.
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It is easy to see that Q,Y is a special simplicial space, whence one has adjoint
functors M, — |M,| and Y — Q,Y between special simplicial spaces and pointed
connected spaces. One thinks of the former as the classifying space functor, for
it gives the classifying space for a topological monoid, and of the latter functor
as a more precise version of the loop space, as ;Y = QY. The adjunction arrow
M, — Q4| M,| is the analogue of group completion, hence the group completion
theorem (Theorem 1) in this setup reads as follows:

THEOREM. Assume that the localization of the ring H.(My, k) with respect to
the multiplicative system moMy admits calculation by right fractions. Then the
canonical map My — Q|M,| induces an isomorphism

H.(My, k)[moM{ ] 5 H, (2 M|, k).

As in section 6 it suffices to prove this when k is a field, in which case the
spectral sequence of the simplicial space M, [7] takes the Eilenberg-Moore form

qu =Torf’(M‘)(k,L)q = Hpyq(IM,], L)

for any local coefficient system on |M,|. We consider the map of these spectral
sequences induced by the adjunction arrow M, — Q,|M,|. The induced map
of realizations |M,| — |Q,|M,|| is a weak homotopy equivalence, because its
composition with the other adjunction map |Q,|M,|| — |M,| is the identity,
and because the adjunction map |2,Y| — Y is a weak homotopy equivalence
for connected Y by a theorem of Segal [8]. Thus the map on abutments is an
isomorphism, and from this point one can argue with the spectral sequences as
in sections 3 and 4 to prove the theorem.
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