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K, for nonunital rings and Morita invariance

By Daniel Quillen at Oxford

The subject of this paper is a variant Ky A of K, A4 for a nonunital ring 4, which has
the advantage of being invariant with respect to the kind of Morita equivalences considered

in [Q].

To explain how K A4 arises, let R be a unital ring containing A4 as ideal, for example,
the ring 4 obtained by adjoining an identity to 4. Let # (R, A) be the category of finite
projective complexes U over R such that U/AU is acyclic, and let K,Z (R, A) be the
associated Grothendieck group in which homotopy equivalent complexes are identified
and short exact sequences provide the usual relations. Our main result says that this group
is Morita invariant in the following sense.

Theorem. (1) If A, A’ are ideals in R such that A" < A', A'" = A for some n, then
KoL (R, A) ~ K, L (R, A).
R Q
P S

linking the unital rings R and S, then Ky &£ (R, QP) ~ K, Z(S, PQ).

(2) Given a Morita context

As a corollary one obtains the excision result
Ko (4, A) —— K, L (R, A)

which shows that K,.# (R, A) depends only on the nonunital ring 4, and justifies using
the notation K4 for it.

To gain a better understanding of K,A4 we prove
K, % (R, A) —— K, Z(R, A)

where #1(R, A) is the full subcategory of £ (R, 4) consisting of 1-dimensional chain com-
plexes. An object of this subcategory is the same as a map f: P — Q in the category #(R)
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of finitely generated projective R-modules, such that the induced map f: P/AP — Q/AQ
is an isomorphism. In terms of these maps K; A4 can be described as follows.

Theorem. KyA ~ K, %*(R, A) is the abelian group generated by elements [ f], where
[fis any map as above, subject to the relations:

WL P>+ P->0]l=[f®f:POP->Q0Q]
@ L/:P->Pl+[g:P->Ql=[gf: P~ Q]
(3) [f] = 0 when [ is an isomorphism.

On the other hand, K, 4 can be identified with the relative group K,(R — R/A)
consisting of classes of triples (P, Q,w) with P, Q in #(R) and w: P/AP —=— Q/AQ.
There is a canonical homomorphism

KyA - Ky A

induced by sending f: P — Q to the triple (P, Q, f), which is always surjective but not an
isomorphism in general. When A is a C *-algebra we prove this surjection is an isomorphism,
and deduce the following application (compare [A], § 2.6).

Theorem. Let Y be a closed subspace of a compact space X. Then the Grothendieck
group of complexes of vector bundles on X which are acyclic over Y is isomorphic to the
topological K-theory group K°(X,Y).

In proving Morita invariance of K; we need to enlarge the category of finite projective
complexes to include all complexes homotopy equivalent to some finite projective complex.
In the first section we characterize such complexes as those whose identity map is homotopic
to a ‘nuclear’ map, and the second section contains a corresponding A-nuclearity criterion
for complexes homotopy equivalent to complexes in £ (R, 4). We use this criterion in the
next two sections to establish Morita equivalence up to homotopy for the categories
Z(R, A) and £ (R, A), and Morita invariance of their Grothendieck groups.

The fifth section is concerned with the reduction of K, Z (R, 4) to K, #'(R, A). By
Morita invariance it suffices to treat the case R = 4, where we exploit the fact that a
complex in # (4, 4) can be easily compared to the contractible free complex obtained by
reducing modulo 4 and the tensoring with 4.

The next two sections discuss situations where the canonical map Ky 4 — K, 4 is,
or fails to be, an isomorphism. In the eight section we examine K,.#'(R, A4) in detail and
derive the presentation of it we have mentioned. Finally, the last section is devoted to a
Whitehead type formula which decomposes the class in K, A4 of a complex in Z(R, 4)
into classes of 1-dimensional complexes.

§ 1. We fix a unital ring R and work with unitary left modules over R and R-linear
maps. Given modules M, N there is a canonical map of abelian groups

(1) Homg (M, R) ® g N = Homg (M, N)

sending A ® » to the map (1.n)(m) = A(m)n.



Quillen, K, for nonunital rings and Morita invariance 199

A module map f: M — N will be called nuclear when it lies in the image of (1). This
is equivalent to f factoring through a finitely generated free module. The identity map 1,,
is nuclear iff M is a finitely generated projective module, and in this case (1) is an isomor-

phism for all N.
We next extend these ideas to complexes of R-modules: U = P U, ne Z, with dif-
ferential d of degree —1. All complexes will be assumed bounded unless stated otherwise.
Let U, V be complexes over R, and let Homg (U, V') be the mapping complex, where

Homg (U, V), is the abelian group of graded module maps of degree n and the differential
isfr[d f1=d-f—(—=1)V!f-d Thereis a canonical map of complexes of abelian groups

2) Homg (U, R) ® V — Hom,(U, V)
sending 1 ® v to (4.0) (u) = (—1)!!"*I A ()v. We call fe Homg (U, V) nuclear when it lies

in the image of (2), equivalently, when each component f,,,: U,, — ¥, is a nuclear map of
modules.

By a finite projective (resp. finite free) complex we mean a bounded complex of finitely
generated projective (resp. free) modules. Clearly the identity map 1, is nuclear iff U is a
finite projective complex, and in this case (2) is an isomorphism for all V.

This nuclearity criterion will now be extended to describe complexes which are (chain)
homotopy equivalent to finite projective complexes. We recall that U is said to be dominated
by ¥ when U is a homotopy retract of V, i.e. there exist maps i: U — V,j:V — U of
complexes, such that ji is homotopic to 1.

Proposition 1.1.  The following are equivalent:

(1) U is homotopy equivalent to a finite projective complex.

(2) For any V the map (2) is a homotopy equivalence.

(3) 1y is homotopic to a nuclear map.

(4) U is dominated by a finite free (resp. finite projective) complex.

Proof. The implications (1) = (2) and (2) = (3) are easy.

(3) = (4). Assuming (3) there is a homotopy operator h € Homg (U, U), such that
f=1—dh— hd is nuclear. In each degree f factors through a finite free module which
we can take to be zero when f is zero in that degree. Thus there is a finite free graded
module 7 and graded module maps i:U — T, j: T — U such that f=ji Since
idj - idj = id(1 — dh— hd)dj =0, T becomes a complex with the differential idj. Also
i'=i(l—=dh):U - T,j'=(1—hd)j: T - U are maps of complexes, since

idj-i(1—dh) =id(1 —dh—hd)(1 —dh) = i(1 — dh) - d
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and similarly for j'. Finally
Ji'=01—hd)1 —dh—hdY(1 —dh) =1—2dh —2hd + hdhd + dhdh =1 —dW — h'd
where ' = 2h — hdh. Thus U is dominated by the finite free complex T.
(4) = (1). See [R1], p.106. O

§ 2. Let 4 be an ideal in R. We now study finite projective complexes over R which
are acyclic modulo 4, and also complexes which are homotopy equivalent to them.

Lemma 2.1. Let U a complex over R whose identity map is homotopic to a map [
such that f(U) = AU. Then for any ideal A’ containing A" for some n the inclusion AU = U
is a homotopy equivalence.

Proof. Let h be a homotopy operator such that f =1 — [d, k]. Then
f(A"U) < AU, h(A4"U)< A"U forallneN,

and hence f, h provide a homotopy inverse for the inclusion 4"*'U < A"U for all n.
Consequently A"U < U is a homotopy equivalence for all »#. In particular 1, is homotopic
to a map with image contained in 4"U, and hence in 4’U when A" = 4’. By the same
arguments with A4’ in place of A4, we conclude that 4'U < U is a homotopy equivalence. 0

Proposition 2.2. Let U be a finite projective complex over R. The following are equi-
valent:

(1) U/AU is acyclic.

(2) U/AU is a contractible complex over R/A.

(3) 1, is homotopic to a map with image contained in AU.

(4) The map A ®xU — U, a ® u> au is a homotopy equivalence.

Proof. The hypothesis on U implies that U/AU is a finite projective complex over
R/A. Thus (1) = (2), because any right bounded acyclic complex of projective modules
is contractible.

Assuming (2), let 2 be an R/A4-linear homtopy operator on U/A U such that [d, k] = 1.
As U is projective in each degree, we can lift / to an R-linear homotopy operator 4 on U.
Then f =1 — [d, h] induces zero on U/AU, so f(U) = AU, yielding (3).

Next note that the multiplication map 4 ® f U - AU is an isomorphism when U is
a complex of projective modules. Assuming (3), we know the inclusion AU< U is a

homotopy equivalence by the preceding lemma, so (4) holds.

Finally (4) = (1) by the homology exact sequence arising from the short exact
sequence A @, U - AU —» U/AU. O
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Define # (R, A) to be the category of finite projective complexes over R which are
acyclic modulo 4, and hence satisfy all the conditions of the preceding proposition.

Proposition 2.3. Let A and A’ be two ideals in R which define the same adic topology,
ie. A > A" and A > A" for some n. Then ¥ (R, A) = L (R, A").

This follows from the preceding lemma and proposition.

Although we are mainly concerned with complexes in £ (R, A), it will be necessary
when we discuss Morita equivalence to consider more generally complexes homotopy

equivalent to complexes in £ (R, 4). We now derive a useful nuclearity criterion for these
complexes.

Let % (R, A) be the category of complexes over R which are homotopy equivalent
to complexes in £ (R, 4). Clearly any complex in % (R, A) has the properties (1)—(4) of
2.2.

Theorem 2.4. A complex U over R is in U (R, A) iff 1, is homotopic to an A-nuclear
map f, by which we mean that f lies in the image of the canonical map

Homg (U, 4) ® g U - Homg (U, U)
sending A ® u to (A.u)(w) = (=)' L) u.

Proof. Assume 1, is homotopic to the A-nuclear map f. Then f is nuclear and
f(U) = AU, so U is homotopy equivalent to a finite projective complex by 1.1, and satisfies
condition (3) of 2.2. Thus U is in % (R, A).

Conversely, assume U is in # (R, A), and consider the commutative square of
canonical maps
Homg (U, R) ® g4 ®x U — Homgz(U, R) ®x U

! !

Homg(U,4) ®x U —  Homg(U, U).

The top arrow is a homotopy equivalence by 2.2, (4), and the right arrow is a homotopy
equivalence by 1.1, (2). Consequently 1, is homotopic to a map f coming from the upper
left corner, hence contained in the image of the bottom arrow. Thus fis A-nuclear. O

§ 3. We consider a Morita context

R 0

P S
that is, a unital ring equipped with a splitting into four abelian subgroups such that when
the elements are written as 2 X 2 matrices the multiplication is consistent with matrix

multiplication. It follows that R and S are unital rings, P is an (S, R) bimodule, and Q is
an (R, S) bimodule. Also we have an R-bimodule map Q ®s P - R, ¢ ® p+> gp and an



202 Quillen, K, for nonunital rings and Morita invariance

S-bimodule map P®,Q — S, p ® q +> pgq, satisfying the associativity conditions
gp)q' = q(pq’), (pg)p’' = p(gp’). Conversely this data gives an equivalent description of
a Morita context.

This Morita context determines a functor P ® ;- from R-modules to S-modules,
and a functor Q@ ® ;- in the opposite direction, together with natural transformations
Q@ PRrM - M, PRrQ ®sN — N. These functors and natural transformations
extend to complexes over R and S in an evident way.

Let A be the ideal QP in R, and let B be the ideal PQ in S. When A = Rand B= S
we have the classical Morita equivalence situation, where the categories of modules over
R and S are equivalent.

Recall that # (R, A) is the category of complexes over R which are homotopy equi-
valent to finite projective complexes acyclic modulo 4, and define % (S, B) similarly.

Theorem 3.1. The functors P ®g-, Q @g- map U (R, A), U(S, B) into each other,
and the canonical maps Q @s P RQrU - U, PRgQ ®sV — V for U in U (R, A), V in
U (S, B) are homotopy equivalences.

Proof. We first show that Q ® 3 P ®x U — U is a homotopy equivalence for U in
4 (R, A). Consider the commutative diagram

QR PR®rA » A®zA
l v l
Q®sP - A

where the horizontal and vertical arrows are given in the obvious way by multiplication
in the Morita context. To define the diagonal arrow, let g, a’ € 4 and choose representations

!

a=Yy q;p;, a =Y q;p; From ¢,p,q; ® p; = 9, ® p;q;p; we obtain
a(Yq;®p) =0 4:@p)d
j i

in Q ®¢ P. The first (resp. second) expression shows this element is independent of the
choice of representation of a (resp. a’). We thus get a well-defined map 4 x 4 - Q ®¢ P,
which extends to give the diagonal arrow.

Now apply the functor — ®z U to this diagram. The vertical maps become homo-
topy equivalences as A ® U — U is a homotopy equivalence. Here we use the
equality aa’ ® u = a ® a’u of the two possible multiplication maps from 4 @ 4 @z U
to 4 @z U, and similarly in the case of the left vertical arrow. It then follows formally
that the horizontal maps become homotopy equivalences. In effect, the diagonal arrow
provides the required homotopy inverses. Thus we have homotopy equivalences
OQQRsP®rU - A®zU — U, yielding the desired result.
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Next we show that if U is in % (R, A), then V= P ®, U is in % (S, B). We consider
the commutative diagram of canonical maps

Homg (U, R) ®; Q@ ®s P ®x U —*— Homg(U, R) ® x U —~— Hom (U, U)

l !

Homg(V,P) ®x Q0 ®sV  —2— Homg(V, B) @3V —— Homg(V, V)

where the vertical maps arise from the effect of the functor P ® z-. The map y is induced
by sending 4 ® g € Homg(V, P) ® Q to v — A(v)q in Homg(V, B), and w is induced by
the map Q ®s P ®z U — U, which we have just shown to be a homotopy equivalence.
Hence w is a homotopy equivalence, and x is a homotopy equivalence by 1.1, (2). Thus
1y is homotopic to a map coming from the upper left corner. It follows then that 1, is
homotopic to a map in the image of z, i.e. a B-nuclear map, so V is in % (S, B) by 2.4.

By symmetry it follows that if ¥ is in (S, B), then Q ®4V is in % (R, A), and
P®r 0 ®sV — Vis a homotopy equivalence. O

Let Ho% (R, A) be the homotopy category having the same objects as % (R, A) and
homotopy classes of maps for its morphisms. It is a triangulated category where the
distinguished triangles arise from short exact sequences of complexes which are split exact
in each degree. Theorem 3.1 yields immediately the following Morita equivalence for the
homotopy categories.

Corollary 3.2. The functors P @ -, Q ®g- give inverse equivalences of triangulated
categories between Ho% (R, A) and Ho % (S, B).

§ 4. The Grothendieck group K, % (R, A4)is defined to be the abelian group generated
by elements [U] for each object U in % (R, A) subject to the relations:

(@) [U] =[U’]+ [U"] when there is a short exact sequence U’ — U — U" which
is locally split, i.e. split exact in each degree.

(b) [U] =[U'] when U and U’ are homotopy equivalent.

We define K, % (R, A) similarly. Note that any short exact sequence in £ (R, 4) is
locally split.

Proposition 4.1. On has an isomorphism K, % (R, A) —— K, % (R, A) induced by
the inclusion of % (R, A) in U (R, A).

Proof. Given U in % (R, A) we can choose a T in £ (R, A) which is homotopy
equivalent to U. The element [T] € K, Z (R, A) is clearly independent of the choice of T,
so we have a well-defined map ¢ : U — [T] from objects of % (R, A) to K, £ (R, A).

The map ¢ clearly equalizes homotopy equivalent complexes, and we now check
that it is additive for a locally split short exact sequence U’ - U — U"”. We can assume
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U= U'@® U"” with differential &' + d"” + 0, where 6 : U” — U’ has degree —1 and satisfies
d'0 +0d" = 0. Choose homotopy equivalences a: T" — U”, b:U’' - T’, and let T be
T'® T" with differential d’'+ d” + b0a. We then have a locally split short exact se-
quence "> T — T” in £(R, A) such that T is homotopy equivalent to U, so
o(U) =o@(U") + o U").

Consequently ¢ induces a homomorphism K, % (R, A) - K,Z (R, A), which is easily
seen to be inverse to the obvious map going the other way. O

Theorem 4.2. (1) K, Z (R, A) is Morita invariant, i.e. it depends only on the adic
topology associated to A and in the situation of 3.1 there is a canonical isomorphism
K, Z (R, A) ~ K, Z(S, B).

(2) Let A =7 @ A be the ring obtained by adjoining an identity to A. Then we have
an isomorphism K, % (A, A) —=— K, % (R, A) induced by extension of scalars with respect
to the canonical unital ring homomorphism A — R. In particular, up to canonical isomorphism
K, Z (R, A) depends only on the nonunital ring A.

Proof. (1) The part concerning adic topologies is clear from 2.3. For the rest it
suffices by 4.1 to produce a canonical isomorphism K, % (R, A) —— K,%(S, B) in the
situation of 3.1. This follows from 3.1 and the definition of K, using the fact that the
functors P @ -, Q ®¢- respect homotopy equivalences and locally short exact sequences.

(2) We apply 3.1 in the case of the Morita context

R R

A A
sitting inside 2 x 2 matrices over R. The functor Q ® ;- is extension of scalars with respect
to the canonical homomorphism 4 — R. Thus we have K,%(A, A) —— K, % (R, A)

induced by extension of scalars. Then (2) follows using 4.1 and the fact that extension of
scalars preserves finitely generated projective modules. 0O

We now briefly mention the analogous result for n-dimensional chain complexes. Let
L"(R, A), %" (R, A) be the full subcategories of # (R, A), % (R, A) respectively consisting
of complexes U such that U, = 0 for £ < 0 and k > n. Corresponding to 4.1 we have

K, &"(R, A) —— K,U"(R, A)

proved in the same way. The only new point is to observe that if U is an n-dimensional
chain complex which is homotopy equivalent to a finite projective complex 7, then on T
there is a homotopy operator 4 such that [d, 4] =1 in degrees k<0 and k >n, and
consequently we can split off contractible complexes from 7 and assume 7 is a finite
projective n-dimensional chain complex.

Corresponding to 4.2 we have the following with the same proof.
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Theorem 4.3. (1) K, %"(R, A) is Morita invariant.

(2) There is an isomorphism K, #"(4, A) —— K, %"(R, A) induced by extension of
scalars with respect to the canonical homomorphism 4 — R.

§5. The category of all finite projéctive complexes over R is known to have the
same Grothedieck group as the subcategory of 0-dimensional chain complexes, i.e. Z(R).

The analogous result for £ (R, 4) requires 1-dimensional chain complexes in general. We
shall prove

Theorem 5.1. The inclusion of ¥*(R, A) in #(R, A) induces an isomorphism
Ko L' (R, A) —— K, L (R, A).

By 4.2, 4.3 it suffices to treat the case R = 4. Let #* stand for #!(4, 4) and similarly
for &£. We begin by establishing surjectivity.

Given U in %, we put U* = 4 ®,(U/AU). Since U/AU is a contractible finite
projective complex over Z, U* is a contractible finite projective complex over 4. Note
that there is a canonical isomorphism U*/4U* = U/AU.

Lemma 5.2. There exist maps of module complexes f: U* — U, g: U — U* which
cover the canonical isomorphism modulo A.

Proof. Since U is projective, the exact sequence
0> AU* > U* > U*/AU* > 0
gives rise to an exact sequence of mapping complexes
0 » Hom;(U, AU*) » Hom;(U, U*) - Hom (U, U*/AU*) - 0.

The mapping complex on the left is contractible because AU* is contractible. It follows
that the cycle in the mapping complex on the right, which is represented by the map
U - U/AU = U*/A* U, can be lifted to a cycle in the middle complex. This yields the
desired map g, and f is obtained by a similar argument. O

Letf: U* — Uas above, and let C be the mapping cone on f; thatis, C, = U,* ; ® U,

) . . —-d f
with d1ﬁ”erent1al< 0 d)’

Let F,C be the subcomplex made of Uy and U, for k < n. These subcomplexes form
a locally split filtration of C such that F,C/F,_,C is the n-th suspension of f, : U}* - U,
considered as an object of #*. Hence we have [C] = Z (=1"[f,] in K, £, showing that
[C] lies in the image of K,#'. On the other hand, U and C are homotopy equivalent
because U* is contractible, so [U] = [C], proving surjectivity.

Our next task is to refine the preceding argument to produce a homomorphism
K,% — K,%'. We first prove two lemmas which are valid when R is any unital ring
containing A4 as ideal.

14 Journal fir Mathematik. Band 472
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Observe that an object U of (R, A) is the same as a map f: P —» Q in Z(R), which
is an isomorphism modulo 4. We write [ f] for the element [U] of K, £ (R, A).

Lemma 5.3. Iff:P — P, g: P — Q are maps in #(R) which are isomorphisms
modulo A, then [gf] = [f]+ [g] in K, £ (R, A).

Proof. There are short exact sequence in Z!(R, A)

0 —— P S PP 23 P—50

fl &f® 1l gl

0—— P -5 0eP-L50—0

1
with i = <f>,j=(f —1),i'= (f) andj'=(1 —g). Hence [f1+[g]l=[gf® 1]1=[gf]. O

Lemma54. Letf:U - V, g:V — W be maps of finite projective complexes over R
which are isomorphisms modulo A, and define

AN =L (D' f1e KL (R, 4)
and similarly for g. Then:

(M) 2N =x() +x(®).

(2) If both U and V are contractible, then y(f) = 0.
Proof. (1) follows immediately from the preceding lemma.
(2) As U, V are contractible, we have a map of short exact sequences in 2 (R)

0-2U->U - Z,_,U->0
zr|  h) z.f|
0->ZV >V, »>2Z V-0

where Z, denotes the kernel of d in degree n. Since each f, is an isomorphism modulo 4,
the same holds for each Z, f by induction. Thus [£,] = [Z, f]1+ [Z,-, /] in K, £ (R, A),
so Y (—=D)"[f,]=0. O

Returning now to the situation R = 4, let f: U* - U, g: U - U* asin 5.2. By 5.4
the elements y (1), x(g) in K, £ satisfy x(f) + x(g) = x(gf) = 0, since U* is contractible.
Thus y(f) = — x(g) is independent of the choice of f.

So for any U in % we have a well-defined element y(U) of K, &' given by
x(U) = x(f), where f: U* — U is any lifting of the canonical isomorphism modulo 4.
We will show that U+ y(U) satisfies the defining relations for K, (%), and hence induces
a homomorphism K, % — K,&'.
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First we verify that y is additive for short exact sequences in .. Consider

0 - U* 55U >U™* 50
rioorlorl

0> U - U -> U -0

where the bottom row is exact in %, and the top row is obtained from it by applying #.
We want to construct liftings /7, f, /" of the canonical isomorphisms modulo A4 such that
this diagram commutes. In this case [f,] = [f,]+[f)] in K, %' for each n, and so
x(U) = x(U") + x(U").

Now the top row splits by the contractibility of either U”* or U’*, hence there is a
subcomplex K such that U'* @ K —=— U* We choose f’, f and then replace f by the sum

of " on U’ and the restriction of fto K. Then f’ and f are compatible, and they induce
the desired map f™.

Next we check that y(U) = (V) when U, V are homotopy equivalent. If s: U —» V
is a homotopy equivalence, then one knows that the mapping cylinder M of s splits:
M=U® C(s) =C(1,) ® V, where the mapping cones C(s), C(1,) are contractible.
Now 5.4 implies y(C) = 0 when C is contractible, so using the additivity of y we have
x(U) = x (V).

At this point we have defined a homomorphism K, ¥ — K, ¥ sending [U] to x(U).
We consider

(3) K%' - K, & - K,L!
where the left map is already known to be surjective. In order to show that both maps
are isomorphisms inverse to each other, it suffices to check that the composition is the
identity.
Let U= (d: U, —» U,) be in £, and choose f:
U AN ug

4l L7

Ul—i_’ Uo

lifting the canonical isomorphism modulo 4. The composition (3) sends [U] = [d] to
[fo] —L[f.]. Now [fo] = [fod*] = [df,] = [f1] + [4], since d* is an isomorphism. This
shows the composition is the identity, finishing the proof of Theorem 5.1. O

We next derive the analogous result for n-dimensional chain complexes.

Theorem 5.5. One has Ky L*(R, A) —— K, &"(R, A) for n 2 1.

Proof. As before we can suppose R = A. The injectivity is already clear from 5.1,
so we need only prove surjectivity. We will modify our surjectivity argument above. Let
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Ubein #£"(R, A),and let f: U* — U be as in 5.2. Since U* is contractible, it splits into
the direct sum of the elementary complex consisting of U* in degrees n—1, n and an
(n — 1)-dimensional contractible chain complex V. Let f': V' — U be the restriction of £,
and let C’ be its mapping cone. Then C’ is in £"(R, A) and is homotopy equivalent to U.

Furthermore C’ has a filtration F,C’, 0 < p < n, where F,C'= C"and F,C’ forp<n
is the subcomplex made of ¥V, U, for k < p. The successive quotients of this filtration are
suspensions of complexes in #!(R, A), hence [U] = [C'] in K,#(R, A) is a sum of
elements coming from K, #'(R, 4). O

§ 6. Define the group K 4 for a nonunital ring 4 by
KyA =K, %' (4, A).

We have seen that Kj 4 maps isomorphically to K, £"(R, 4) for n = 1 and to K, £ (R, A)
whenever A4 is embedded as an ideal in the unital ring R.

Recall that K, 4 can be defined using K|, for unital rings by
K,A=Ky,A/K,Z.
It is the group of stable isomorphism classes of finitely generated projective 4-modules.
There is a canonical surjection
KyA - K, A

sending [U], where U is a complex U, — U, in #(4, A), to [U,] — [U,] in K, A. To see
that this map is surjective, let P be in 2(A4), and choose f: P* — P lifting the canonical
isomorphism modulo 4, where P* = 4 ® ,(P/AP). Since P/AP is in #(Z), we have
P/AP =~ 7" and P* = A" for some n, hence [P*] = 0 in K, 4. Thus [f] in K, 4 maps to
[P] in K, A.

In general K, 4 does not have the Morita invariance property we have established
for K} A, e.g. K,(A?) can be different from K, A. So it is of interest to examine when the
canonical map above is an isomorphism.

Proposition 6.1. One has KA —— Ky, A iff for all n and ae M, A the map
1+a: A" > A" represents zero in Ky A.

Proof. The necessity is clear. Conversely, assuming the second condition we will
define a homomorphism K, 4 — K| A inverse to the canonical map going the other way.
Given P in #(A4), we choose f: P* » P and g: P — P¥* lifting the canonical iso-
morphism modulo A. Since P* = 4" for some n, gf has the form 1 + a: A" — 4", and so
[f]+[g] =[1+4a] = 0in KA by our hypothesis. Consequently [ /] = — [g] is indepen-
dent of the choice of f and depends only on P. It is then easy to check that P > [f]
induces a homomorphism K,4 — KA inverse to the canonical map. O
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We now discuss some situations where K; 4 —— K, A. The first covers the case
where 4 has ‘local identities’.

Proposition 6.2. Assume for any ae A there exists be A such that ba = a (resp.
ab = a). Then KA —— K, A.

Proof. Using the fact that the set of 1 — b in 4 with b € 4 is closed under multipli-
cation, one sees by induction that for any a,, ...,a, in A there is such a be 4 with
(1—b)a; =0 for all i. Now let a = (a;;) € M, A, and choose b so that ba;; = a;; for all i, j.
Then we have (1 —b)(1+a)=1—5b in 1+ M, A4, hence [1—b]+[1+a]=[1—-5] in
KyA,s0[14+a]l=0. O

Proposition 6.3. If A is a C*-algebra, then KjA —— K, A.

Proof. Given a € M, A, we will show that 1+ a represents zero in Ky A4 by using
the functional calculus for self-adjoint elements in a C*-algebra.

Let ¢(?) be the continuous function on the nonnegative reals equal to 1 on [0, 1],
2—ton [1,2], and zero for ¢t = 2. Note that ¢(21)g(¢) = 0(2f) and o(f)*>t < 2. Since
2(0) = 1, the functional calculus applied to aa* in the C*-algebra M, A defines elements
o(saa*) el + M, A for s = 0 satisfying

0 (2saa*)(1 + a) = 9(2saa*)(1 + ¢(saa*)a).

It suffices to show for suitable s that the last factor is invertible, for it then represents zero
in K, hence 1 + a also represents zero.

Now with x, = g(saa*)a we have
1,112 = lIx;xF || = Ile(saa*)? (saa*)||s™! < 2571,
Thus for s > 2, we have || x,|| <1, hence 1 + x; is invertible, concluding the proof. O
As an application we deduce the following variant of [A], 2.6.1.

Theorem 6.4. Let X be a compact Hausdorff space, and Y a closed subspace. Then
the Grothendieck group of complexes of complex vector bundles on X Lvhich are acyclic over
Y can be identified with the topological K-theory group K°(X, Y) = K°(X/Y).

Proof. Let R= C(X) be the ring of continuous complex-valued functions on X,
and let A be the ideal of functions vanishing on Y, so that R/4 = C(Y) by the Tietze
extension theorem. By the Serre-Swan theorem 2 (R) is equivalent to the category of
complex vector bundles on X, and similarly for R/4 and Y. Moreover P+ P/AP corre-
sponds to restricting a vector bundle to Y. We see then that £ (R, A4) is equivalent to the
category of complexes of vector bundles on X which are acyclic over Y. Thus K 4 is the
Grothendieck group of the latter category up to canonical isomorphism.

Now K, 4 can be identified with K°(X/Y), starting with K, C(X/Y) = K°(X/Y) by
Serre-Swan, and splitting off the summand K, C = K %(pt) to obtain the reduced groups.
Finally we have K; 4 = K, 4, since 4 is a C*-algebra. O
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§ 7. We next present an example where Ky 4 + K, A4.

Proposition 7.1. Let A an ideal in a regular noetherian commutative ring R. Then
K4 A is isomorphic to the Grothendieck group of the abelian category € of finitely generated
R-modules M such that M/AM = 0.

For example, let 4 be the ideal mZ in R = Z. Then ¥ is the category of finite abelian
groups of order prime to m, so Ky(mZ) is a free abelian group with one generator for
each prime number not dividing m. On the other hand from

K,Z - K,(Z)mZ) - Ky,(mZ) - KyZ — K,(Z|mZ)
one obtains
Ko(mZ) = @/mZ)*|{+1}.

Using 8.1 below one can show that K;(mZ) — K,(mZ) sends the generator corresponding
to the prime p to the image of p in the latter group.

We now prove the proposition. Let M, denote the localization of the R module M
at a prime ideal x of R, and let Z be the closed subset of Spec(R) consisting of all prime
ideals containing A. We recall that M = 0iff M, = 0 for all prime ideals x, hence M/AM =0
iff (M/AM),= M, [A .M, =0 for all xe Z. Moreover, for M finitely generated and x € Z,
we have M, /A .M, =0 iff M =0 by Nakyama’s lemma. Thus % consists of all finitely
generated M such that M, = 0 for all x € Z (in other words, the support of M is disjoint
from Z). Since M — M is exact and R is noetherian, it follows that € is an abelian category.

Lemma 7.2. A finite projective complex U over R is in £ (R, A) iff its homology
HU)=@H,U)isin®.

Proof. As H(U) is finitely generated we know that H(U) isin € iff H(U), = H(U,)
vanishes for all xe Z. On the other hand H(U/AU) =0 ifft H(U/AU), = H(U,/A,U,)
vanishes for all x € Z. Thus it suffices to show for any x € Z that U, is acyclic iff U, /4, U,
is acyclic.

If U, is acyclic, then being right-bounded projective it is contractible, so U, /4, U, is
also contractible and hence acyclic. Conversely, if U, /A4, U, is acyclic, then 2.2 in the case
of R , A, U, yields a homotopy operator hon U, such that[d, h] = 1 — fwithf(U,) = 4, U,.
As A, is contained in the maximal ideal of the local ring R,, it follows that 1 — fis invertible,
so U, is contractible with contraction (1 — /)~ 'h, and hence acyclic. D

From this lemma we obtain a homomorphism
a:KyAd =Ky L (R, A) - Ko€, [Ulr Y (—D)'[H,(U)].

On the other hand, because R is regular noetherian any M in € has a finite projective re-
solution ¥ which is unique up to homotopy equivalence. This gives rise to a homomorphism

B:K, ¢ — Ky A
sending [M] to [V].
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Clearly aff = 1. To prove Ba = 1, it is enough to check this relation on classes [U]
with U in £'(R, A). Let P a finite projective resolution of H,(U). Then Q:

o P Py U - U
is a finite projective resolution of H,(U), and there is a short exact sequence U — Q — P[2],

sothat [U] = [Q] — [P]in Ky A. Then fa[U] = B[H,(U)] - B[H (V)] = [Q] - [P1=[U],
finishing the proof. O

§8. So far we have described the canonical surjection Ky 4 — K, A4 by means of
finitely generated projective modules over 4. Suppose now that A is embedded as an ideal
in a unital ring R. We would like to understand this map in terms of finitely generated
projective R-modules. We begin by reviewing the usual R-module description of K, 4.

Recall ([M], §4) that associated to the canonical surjection R — R/A there is a
relative Grothendieck group K,(R — R/A) fitting into an exact sequence

4) K.R - K,(R/A) - K,(R - R/A) - KyR - K,(R/A)
which is defined by
K,(R - R/A) = K, D/A, (Ko R)
where D = R %, , Ris the double of R along 4, and A : R — D is the diagonal embedding.
By [M], §2, (D) is equivalent to the category of triples (P, Q, w) such that P, Q

arein Z(R)and w: P/AP—— Q/AQ is an isomorphism in 2 (R/A). The finitely generated
projective D-module corresponding to (P, Q, w) is given by the fibre product

M(P9Q’W)=PXQ/AQQ

of the maps P - P/AP —— Q/AQ and Q — Q/AQ. We write [(P, Q, w)] for the class
in K,(R — R/A) represented by M (P, Q, w).

It is then clear that K,(R — R/A) is the abelian group generated by the elements
[(P, 0, w)] for each such triple, subject to the relations guaranteeing that the function
(P, 0, w) — [(P, Q, w)] equalizes isomorphic triples, is additive with respect to direct sum,
and is such that [(P, P,1p,4p)] = 0 for all P in Z(R).

Applying [B], IX, 5.4 to the cartesian square

A - R
! l
Z - R/A

we obtain an excision isomorphism

Ko(A > Z) —=— Ko(R - R/A).
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On the other hand, (4) gives an exact sequence

0 Ky(A - 2Z) » KA - K,Z - 0
hence
Ko(Ad = Z2) = K, A|K,Z = KA.

Thus K,4 and K,(R — R/A) are canonically isomorphic, which achieves the desired
description of K, A4 in terms of finitely generated projective R-modules.

We have seen that K;4 and K,%'(R, A) are canonically isomorphic, and that
ZY(R, A) is the category of maps f: P — Q in #(R) such that the induced map
f:P/AQ - Q/AQ is an isomorphism.

Proposition 8.1.  The functor sending f: P — Q to (P, Q, f) induces a surjection

(%) Ko %' (R, 4) > Ko(R - R/A)
which agrees up to canonical isomorphism with the map KjA — K, A of §6.

We first prove two lemmas.

Lemma 8.2. If (P,Q,w') - (P,Q,w) — (P",Q",w") is a short exact sequence of
triples as above, then [(P, Q, w)] = [(P, @, w')] + [(P", Q", w")].

Proof. The fibre product M (P, Q, w) is part of an evident short exact sequence
M/P,Q,w) - PO Q - Q/4Q
and similarly with " and ”. The nine lemma then gives a short exact sequence in £ (D)
M(P, Q' w") - M(P,Q,w) > M(P", Q",w")
which necessarily splits, whence the result. O
Lemma83. LetU=(d:U, = Uy)and U’ = (d': Uy — Uy) be homotopy equivalent
1-dimensional chain complexes. Then U® C' = C @ U’, where C= (1y,: Uy, = U,) and

similarly for C'.

Proof. Let x: U — U’ be a homotopy equivalence. Then the mapping cone on x
is contractible, i.e. the sequence

0— U —— Uy ® U] —L> Uj) — 0,

—d
i=<x >’ j=(x0 d’),

1

is split exact. A splitting of this sequence has the form

U,—— U, ® U, —— U,
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= (i) r=( ),

where y: U’ - U is a map of complexes and h, 4’ are homotopy operators such that
1—yx=1[d, h],1—xy=[d,l], and hy, + y;i' = — x,h + h'x, = 0. Then

U, e U, 25 U, @ U;
d@ll 11@(1'
Uy ® Uy —=— U, @ U,

_(—9 ¥ a_ [~k »n
al - <X1 h/>’ oy "= (xo d, 5
= -1 ¥y _ 1 0 -1
° xo d'H —Xxq 1 0 1

is the desired isomorphism of complexes. O

where

We now prove the proposition. Let ¢ be the map sending f: P —» Q to [(P, Q, f)].
A short exact sequence U' — U — U” in £ (R, A) is clearly carried to a short exact
sequence of triples, so @(U) = @(U’') + ¢ (U") by the first lemma. In particular, ¢ is
additive for direct sums. Using the second lemma and the relation [(P, P, 1p,,p)] = 0 we
deduce that ¢(U) = ¢(U’) when U, U’ are homotopy equivalent. Thus ¢ satisfies the
relations defining K,.%'(R, A), so we obtain the desired map (5).

The surjectivity is clear since w: P/AP —— Q/AQ lifts toamap f: P — Q as P is
projective.

Finally the identification of (5) with the map K4 — K, 4 is easily checked in the
case R = A4, and follows in general by naturality with respect to 4 — R together with the

excision assertions already mentioned. O

We end this section with another description of Ky4 = K,%*(R, A), which seems
interesting because of the similarity to K,; compare Ranicki’s isomorphism torsion [R2].

Theorem 8.4. K, %'(R, A) is the abelian group generated by elements [ f], where f
is any map in P (R) which is an isomorphism modulo A, subject to the relations:

WP+ P> Q]=/Rf:POP >Q0@Q],
Q [f:P > Pl+[g: P> Q]l=[gf: P = Q],
(3) [f] = 0 when f is an isomorphism.

Proof. Let G be the abelian group defined by these generators and relations, and
put K, = K, £*(R, A). Note that K; and G have the same generators. Now (1) and (3)
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clearly hold in K;, and (2) also does by 5.3. Thus we have to show that the relations defi-
ning K|, namely:

(a) additivity for short exact sequences,
(b) [U]l=[U'] when U, U’ are homotopy equivalent
hold in G.

First we observe that (2) and (3) imply that [U] = [ V] in G when U, V are isomorphic.
Using 8.3 we see that (b) holds in G.

Now consider a short exact sequence U’ - U — U” where U'is f': P' -» (', and

similarly for U, U”. To prove additivity in G for this sequence, we can replace U by an
isomorphic complex and assume P = P"@ P", Q = Q' @ Q", where

_(S 9
f'_ (0 fu
with 6 : P” — Q' Then f factors

(5 20 6 2)
o fJ\o 1,.)\0 1,

and the middle factor is an isdmorphism. Using (1)—(3) we obtain

=0 1+e1l=01/1+1f]
in G as desired. O

§9. Accordingto 5.1 any element of K, £ (R, A4) can be expressed in terms of classes
of 1-dimensional chain complexes. We now derive a Whitehead type formula doing this
explicitly.

Theorem 9.1. Let U be a complex in & (R, A), and let h be a homotopy operator on U
such that 1 —[d, h] maps U into AU. Let A,=[d, h],: U, —» U,, and put U* = P U,,;,
U =@ U,y Then in KA = K, £ (R, A) we have i
j

(6) Y (=1'[Al=0,

n

)] [Ul=[d+h:U - U"] _Zj([AZj] - [A2j+1])~
j

Furthermore, the image of [U] in K,A = Ky(R » R/A) is (U™, U",d + h)].

Proof. The last assertion follows immediately from (7) and the fact that A, induces
the identity on U,/A4U,.
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Let C be the mapping cone of A = [d, h] : U — U. Then C has an increasing filtration
F,C such that F,C/F,_;C is the n-th suspension of the 1-dimensional chain complex
A, : U, = U,. This lies in £(R, A) for all n, so we have [C] = Y (—1)"[A,]. On the other

hand, there is a short exact sequence U - C —» U[1],s0 [C] = ['i]] — [U]=0, proving (6).

To prove the second formula we construct a suitable contractible complex W. Let V
be the graded module defined by

V=U]e U2]e U[3]®

where U[ p] denotes the graded module with U[p], = U,_,. Thus V is the ‘total’ graded
module associated to the bigraded module (V;,) such that V,, = U, forallp 21 and ge Z.

Define operators 6 and s on V by

—d -1 —h
d A h h?
0= —d -1 -—h )
d A h h?
0
-1 0
s = 0

Here the i, j-th entry gives the component U[j] — U[{] of the operator with respect to
the above direct sum decomposition of V.

Lemma 9.2. The operators 8, s have degrees —1, +1 respectively, and they satisfy
62=0,[d,s]=1.

Define operators on V by
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Then d, s have degrees —1, +1 respectively, and they satisfy d% =0, [d,s] =1. Also g
has degree 0 and is invertible. One readily checks that g~'dg = 8, g~'sg = s, which proves
the lemma. 0O

We now regard ¥V as an unbounded complex equipped with the differential . It is
contractible with the contraction s.

Choose m so that U, = 0 for > 2m + 1, and let W be the bigraded submodule of V'
consisting of the modules V,, = U, such that ¢ < 2m+1— 2k when p = 2k + 1, 2k + 2,
k = 0. Thus W can be viewed as the following staircase region in V:

Uimir «— Uspis
1-4 {4
U2m *——_1‘ U2m

—d ld

-1 A —1
U2m—-l U2m-—1 U2m—1 ¢ U2m—1

—d ld l——d ld

A -1
U2m-—2 U2m—2 U2m~2 U2m—2

—d ld l——d ld

-1 A —1 A -1
U2m-—3 ¢ U2m—3 U2m—-3 U2m—-3 U2m—3 U2m—3

—d ld l—d ld l—d ld

p: 1 2 3 4 5 6

Corresponding to the nontrivial diagonals in the matrix defining 6 we can write
6 =d®+d'+d*+d> whered),: V,, > V,_, .., like differentials in a spectral sequence.
Now d° and d! are given by the vertical and horizontal arrows respectively in the above
diagram, while d2 = (—1)?h, and d;, is equal to h? for p odd and 0 for p even. We see
then that W is closed under , hence W is a subcomplex of V.

Moreover, the operator s is given by — 1 in the opposite direction to each of the —1
arrows above. Thus W is closed under s, so W is a contractible finite projective complex.

Next let W’ be the bigraded submodule of ¥ consisting of the modules V,, = U, such
that ¢ < 2m+ 14 and such that ¢ <2m+1—2k for p=2k, 2k+1, k= 1. W’ can be
viewed as the staircase region obtained by shifting W horizontally one step to the left, and
it is a subcomplex of W.

Now observe that W' is made up of the column p = 1 and all the A arrows inside
W. In fact we obtain an increasing filtration of W’ by subcomplexes starting with the
column p = 1, which is the suspension of U, then adding in order of increasing g the A
arrows between the p = 2,3 columns, then the A arrows between the p = 4,5 columns, etc.
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As the successive quotients of this filtration are in Z (R, 4) we get

[W1=-[UI+ ) (-DA]+ Y (—1D)[A]+-
gs2m—1 <2m-3
=—[U]+ 'Sz—l (m _j)([AZj] - [A2j+l])

in K, Z (R, A). By the choice of m the last sum can be taken over all j, hence we have
[W/] = - [U] - Z]([AZJJ - [A2j+l])
J
using (6).

Finally W/W’ consists of the even submodule U™ in degree 2m, the odd submodule U~
in degree 2m + 1, and the map d + h between them, so

0=[W]=[W]+[d+h:U > U*]
proving (7). O
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