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1. The object of this note is to announce a theory of surgery on Poincaré 
and normal spaces, with applications to Poincaré geometry and manifolds. 

The present point of view on Poincaré surgery was outlined by W. 
Browder in the spring of 1969, and is purely homotopy-theoretic. The main 
missing ingredient in the program was Lemma 1.5, and the (considerable) 
machinery required for its application. Other approaches to Poincaré 
geometry have been made by N. Levitt [3], [4] using engulfing and mani
fold surgery, and by L. Jones [2] using patch structures (see 2.4 below). 

Results in this area have also been obtained recently by W. Browder, 
A. S. Mischenko, and C. Morlet. 

By a Poincaré space we mean one which satisfies duality with local 
coefficients (Wall [8]). Duality then gives a chain equivalence of the chains 
and cochains, which has a Whitehead torsion. This is the torsion of the 
space. The surgery groups Ls, Lh, etc. are encountered according to restric
tions put on the torsion of the spaces considered. We neglect further 
mention of the torsion. 

If X is Poincaré, one constructs the Spivak normal fibration vx with 
Thorn class U, which is distinguished by a map p:Sn+k -+ Tvx such that 
P*[Sn+k] nU = [X]. An abstraction is useful. 

1.1. DEFINITION. A normal space is an X with a Sk_1 fibration Çx and a 
map px'-S

n+k -» Tt;x. A normal map of normal spaces is a map ƒ :X -* Y 
with Çx ~ /*£F, and pY = T/* opx. 

The fundamental class of X is P;r[Sw+fc] n U> a nd has dimension n. A 
normal map is automatically of degree 1. Normal pairs (X, Y) have a map 
p:Sn+k->TÇ/T(Ç\Y). 

The usefulness of normal spaces is twofold. First transversality holds for 
spherical fibrations in the normal category. Thus if pairs are used to define 
the normal bordism groups Q*(X), we get Q£(X) ~ H^(X ; MSG). Secondly 
the mapping cylinder of a normal map is a normal pair. Therefore know
ledge of the obstructions to improving a normal space to be Poincaré gives, 
by the first remark obstructions to Poincaré transversality, and Steenrod 
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representability, and by the second remark, obstructions to Poincaré 
surgery. 

Our main theorem is the following. 

1.2. THEOREM. If (X; Y0, Yx) is a normal triad of dimension n, with 
( Y0, Y0 n YJ Poincaré (and a PL manifold if n = 3,4), and n1 Yx ~ n, X, 
then there is a normal map (W; Y0, Z) -> (X ; Y0, Yx) wftfc (VF; Y0, Z) Poincaré. 

This is used to construct a normal bordism of an arbitrary normal space 
to the mapping cylinder of a smooth surgery map, showing the obstruc
tions are the same as the smooth case. 

1.3. THEOREM. If(X; Y0, Yt) is normal of dimension n^5(4ifYl = 0 ) , 
(Y0, Y0 n Yx) Poincaré, then there is an obstruction G(X) e Lw_ i{n1Y1 -* nxX) 
which vanishes iff (X ; Y0, YJ fs normally bordant, keeping nx and Y0 fixed, 
to a Poincaré triad (or ifX is a normal Poincaré image as in 1.2). 

1.4. COROLLARY. The obstruction to a normal map of Poincaré spaces 
being normally cobordant to a homotopy equivalence is the same as the 
manifold case. 

SKETCH OF PROOF OF 1.2. Dimensions less than 5 use obstruction theory 
and PL transversality. For n ^ 5 w e indicate only the absolute case below 
the middle dimension. 

Let (X, Ç, p) be normal, then kernels K^(X) are defined so that 

-> Kj(X) -> H"-j(X)^>Hj(X) -> Kj-^X) -> 

is exact. We say X is j-Poincaré if KJX) = 0, m S f Km(X) ~ Kn~m- \X), 
so if X is [(n — l)/2] Poincaré then it is Poincaré. The construction pro
ceeds by induction on;. If Kj(X) is the first nonvanishing kernel, a Hurewicz 
type theorem gives geometric representatives for elements of Kj. The 
images in Hn~j(X) are cohomotopy elements 9:X -• S"~j. 

The argument is completed by extending 0 backwards as a cofibration : 
gn-j-i _> y -» X -^ Sn~j. Exact sequences reveal Y is essentially X with 
9 killed in Kj(X). Killing generators of Kj(X) completes the induction. 

To obtain such cofibrations we use a lemma (a more complicated version 
is required for nxX =£ 1 and in the middle dimension). 

1.5. LEMMA. If X is a 1-connected n-complex, 9:X^Sm a map with 
m ^ (n + l)/2, then there is a cofibration sequence S"1""1 -> Y-> X 4+ Sm 

if and only if 9 A \X:X -» Sm A X is stability nullhomotopic. 

Since X -> Sm A X induces f][9]:H^(X) -> H^+m(X), the homotopy 
hypothesis is a very strong way of saying that the product of [0] with any 
homology class other than its dual is zero. This indicates no higher dimen
sional cells are attached on top of the one we want to remove. 
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To verify such homotopy hypotheses for the 6 which arise in the surgery 
construction requires considerable preparation. A stable geometric theory 
of Poincaré spaces involving equivariant Spanier-Whitehead duality (of 
the universal cover when 7Ü! # 1) and Thorn spaces was developed for this. 
This theory seems quite useful, and has as a consequence a remark which 
answers a question of Wall. 

1.6. REMARK. If F -» E -• B is a fibration with F, E, and B dominated 
by finite complexes, then E satisfies Poincaré duality if and only if both F 
and B do. 

2. Local applications. By local we mean results concerning a particular 
space, rather than for example a bordism class. 

2.1. DEFINITION . If X is Poincaré, f:X-+BvçCa map where £ is an 
Sk~x fibration over C, then ƒ is Poincaré transversal to £ if X = (f~iB, 
f~xÇ) u (f~xC,f ~1Ç) is a decomposition into Poincaré pairs, and 
/ - 1 ^ - ^ / - 1 C i s a spherical fibration isomorphic to the pullback of £. 

There is clearly a relative version, as well as a definition for normal spaces. 
Transversality works for normal spaces by an easy construction, so the 
Poincaré problem is a matter of improving normal spaces. 

Suppose X - ^ B u ^ C i s a map where £ is a spherical fibration over C. 
Define n as the fundamental group of the homotopy pullback 

Z-+C 

i Ï 
X-+ BKJÇC. 

The normal transverse inverse image of C maps to Z, hence gives a surgery 
obstruction in Ln_k_x(n). 

2.2. {Transversality) If n ^ 5, k ^ 3 then a(f~1(C))€Ln-k^1{n) is the 
obstruction to making ƒ Poincaré transversal to £. If k ^ 2 then the 
obstruction is in the group L S ^ - . ^ ) defined by Wall [7, p. 126]. 

It is easily seen that the obstruction vanishes iff" X is the normal image 
of a Poincaré space transversal to Ç. A sort of surgery is done on the second 
space preserving transversality until it is homotopy equivalent to X, 
completing the proof. This last step also applies to prove a Haefliger type 
embedding theorem. 

2.3. (Embedding.) lff:Xm -> Yn is a map of Poincaré spaces, n — m ^ 3, 
and ƒ is m — [(n — l)/2] connected, then ƒ is homo topic to a Poincaré 
embedding of X in 1̂  

A little bundle theory and manifold surgery gives the usual smooth and 
PL theorems from this one. This result has as precursor the embedding 
theorems of Levitt [3], and can be used to recover the simply-connected 
version of 1.4. 
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The codimension 1 part of 2.2 applies to show Poincaré spaces of 
dimension ^ 5 have smooth 2-skeletons, a fact announced by Wall [6] 
and also proved by Levitt. Patch structures are an elaboration of this idea 
introduced by Jones [2]. They seem to be the natural replacements for 
handlebody structures and triangulations in the Poincaré category. A 
patch structure on X is a homotopy equivalence of X with an object formed 
by glueing together n manifold n-ads via homotopy equivalences of their 
faces. Moreover, each face is required to have the same fundamental group 
asX. 

Patch structures on normal spaces are the same, except the glueing is 
via degree 1 normal maps. 

2.4 (Patch structures.) A Poincaré space has a smooth patch structure 
with no face of dimension less than 4 iff it has a cover of open sets, no 
(n — 3) of which intersect, and over each of which the normal bundle 
reduces to a smooth bundle. Thus a 1-connected X, or X x CP2 has a 
smooth patch structure. 

A version of this is proved in [2] using intricate arguments on patch 
spaces. 

3. Global applications. These are the applications to bordism and 
homology theories. 

Let Q£(X) denote the bordism group of maps of Poincaré spaces dimen
sion n to X. Similarly fi^(X) is the bordism group of normal spaces, which 
is also Hn(X ; MSG) as remarked above. 

3.1. THEOREM. For n ^ 4, the sequence 

. . . - , Lm(n±X) 2Ç OZ(X) ^ QN
n(X) - L„_ faX) 

II 
Hn(X;MSG) 

is exact. 

Using 1.3, Ln(n) can be defined as bordism classes of normal spaces with 
Poincaré boundary, together with a homomorphism of ni to n. dP takes 
such an object to its Poincaré boundary and exactness is immediate. For 
X a point this sequence is essentially due to Levitt [4]. 

Next a definition which throws some light on the structure of this 
sequence. Let P be a normal space (with Poincaré boundary) of dimension 
5 and obstruction G(P) = 1 G L4(0) CZ Z. 

3.2. DEFINITION. If Xn is Poincaré, the L-index is defined by IL(X) 
= a(X x P)eLn(n1X). 

If X is a manifold, this definition has also been suggested by Wall [7, 
p. 263]. L. Jones points out that Wall's treatment is incomplete in that 
Lemma 2, p. 264, remains to be proved in the special case ƒ is a simple 
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homotopy equivalence. This follows at once from the above, and can 
probably also be proved using the techniques of [7]. 

If X is a normal space with Poincaré boundary, it is easy to see that 
$G(X) = IL(dpX). In particular iff :X -• Y is a normal map of Poincaré 
spaces, S<j(f) = S<r(Yf,X u Y) = IL(X) - IL(Y). The 8 in this formula is 
necessary even in the n1 = 1 case. 

Now we have IL :Q%(X) -• L^n^X), with IL oôP = 8. Thus the sequence 
in 3.1 splits® Z[\\The behavior at 2 when ^ X = 1 has also been com
pletely analyzed [5]. 

Further, if Y is normal without boundary, ƒ:7-» X, then %o(YJ) 
= IL(0) = OeLn(n1X). Thus a(SY) = 0. Since MSG-» K(Z) splits 
H^(X; MSG) -+ H^(X ; Z) is onto, and the obstruction having exponent 8 
implies Q£(X) -> H^(X;Z)is onto Sff^^Z). Since an odd multiple of 
any class is representable by a manifold, we get 

3.3. (Steenrod representability) £2£(X) -> H^(X; Z) is onto, * ^ 3. 
When nxX = 1, this is due to Levitt. 
Next there is a natural projection of any group to a free abelian group 

by abelianizing and dividing out torsion. The image of IL(X) in L^n^X) 
-» Lw(Zk)/torsion is Novikov's multisignature ; 2.2. and the splitting 
theorem for L groups shows it can be obtained as indexes of Poincaré 
subspaces of a Poincaré space bordant to X. 

3.4. {Multisignature) The Novikov multisignature is defined for Poincaré 
spaces and is an invariant of Poincaré bordisms preserving the projection 
toZ*. 

In particular it is a homotopy invariant of smooth manifolds, a conjec
ture of Novikov. The homotopy invariance was first proved by Hsiang and 
Shaneson. Up to some powers of 2, G. Lustig has also proved 3.4., and 
A. S. Mischenko also has a version. 

Lastly, we give a product theorem for surgery obstructions. Using the 
definition of Ln(G) as the bordism group of (n + l)-dimensional normal 
spaces with Poincaré boundary, there is a pairing by cartesian product 
x :Q£(X) x Ln(G) -* L^+^ iX x G). Composing with dP gives a pairing 
n'.LJjtiX) x Ln(G) -> Ln+JjtiX x G); n = x o(dP x 1). 

3.5. (8 Product theorem.) If Xm Poincaré, YeLm{G\ then 8cr(X x Y) 
= IL(X)na{Y) in Lm+ll(7ü1X x G). 

There is also a version for Z/p Poincaré spaces, etc., so for odd primes 
this gives a fairly complete result. For nxX = 1 the usual (multiplication 
by the index) theorem can be recovered from this one for Z/p Poincaré 
spaces, modulo 2-torsion. 

There are also applications of this theory to bundle theories which will 
be considered separately [5]. 
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