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This note announces "calculations" of the homotopy type of 
£>(Topn)~ and the nonsimply-connected surgery obstruction. Proofs, 
more precise statements, and consequences will appear in [6]. 

Remove the extraneous 2-torsion from KO by forming the pullback 

B* - > ü (K(Z[l/oddl U)) 

I ' i 
Bo®Z[±]-^->UK(Q,4i)y 

i 

and define 

L = B*oXUK(Z/2,U+2). 
i 

L is a periodic multiplicative spectrum with product ® in B*> and 
cohomology multiplication in the Z/2 part. B0 acts on the Z/2 part 
by reduction mod 2, which gives IJ t-üC(Z/2, 4i), and inclusion in 
f[iK(Z/2, 2Ï)? 

Students of surgery will recognize Sullivan's calculation in [7] as 
G/TOPXZo^L. The Whitney sum in G/TOP, however, is given by 
a®b=a+b+Sa®b in L. 

THEOREM 1. Topological block bundles are naturally oriented in L. 
If BhGn is the classifying space for L-oriented Gn bundles, this induces 
a diagram offibrations, for u^3, 
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2 (ADDED IN PROOF.) This cohomology structure was deduced using product for

mulas inferred from [7], [8]. This formula is now known to be wrong, and modified 
versions have been obtained by several groups. A slightly more complicated structure 
is thus required on L, and will be corrected in [ó]. 
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G/TOP 

SGn > SGn/S(TOPn)~ > Bs(To?ny~ » BsGn 

\\ I t U 
SGn > L* > BLGn • BSGn 

t i 
Q Q 

where Q=YLi [K(Z/8f 4i)XK(Z/2, 4i+2)XK(Z/2, 4*+3)] , and L* 
classifies the units of H°(X; L). 

L * ~ G / T O P . Thus a S(TOPn)~ bundle is an L-oriented Gn bundle, 
with a cohomology of the resulting cocycles q?ÇzC*(X; Z/S and Z/2) 
to zero. The Thorn isomorphism comes from a "cobordism" interpre
tation of L. The natural product in this interpretation is essentially 
0 in G/TOP, hence 8 0 . Naturality shows the Thorn isomorphism is 
multiplicative when taken ® Z [ | ] , For Z [ l / o d d ] , the fact that 
MSTOP is a product of Eilenberg-Mac Lane spectra allows construc
tion of the L Thorn isomorphism from the one in topological cobordism. 
I t is therefore multiplicative with respect to ®, and is a product with 
a Thorn class. Q is evaluated by showing G/TOP^L*—>L* is 
a » - > l + 8 ( a - l ) . 

This theorem, when taken ® Z [ J ] , is 

#(TOPn)~ — BKOQU, 

which has been announced by Sullivan [8], The form of our result 
has been greatly influenced by Sullivan. 

COROLLARY. If X is a simply-connected Poincaré space of dimension 
^ 5 ( ^ 6 if dX?e0, and then 7TidX = 0 also), then X has the homotopy 
type of a topological manifold iff it satisfies Poincaré duality in L, and 
certain Z/S and Z/2 characteristic homology classes of [X]L vanish. 

PROOF. The SW dual of a fundamental class is a Thorn class for 
the normal bundle vx- The homology characteristic classes are the 
ones which dualize to g* of Theorem 1, so their vanishing implies vx 
has a reduction to B TO P. Standard surgery now implies that X is 
homotopy equivalent to a manifold. 

The different manifold structures on X correspond to liftings of vx 
to i?TOP with zero surgery obstruction. The liftings may be specified 
as different L fundamental classes, together with homologies of the 
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g-cycles to zero. The vanishing of the surgery obstruction can be ex
pressed as follows: 

THEOREM 2. Suppose X is a Poincaré space of dimension n^S 
Cè 6 if 3 X ^ 0 ) , with a reduction of vx to BTOP which has surgery ob
struction OCELn^idX—ïwiX), then the diagram commutes. Here the 

[X, G / T O P ] — — ^ ( T n Z - ^ T n X ) 

ni 
H\X- L) 

\in[x]L 

Hn(X, dX; L)-—-±Hn(K(ir1XJ 1), KfaY, 1); L) 
ff»0n) 

inclusion is via G/TOPXZc^L, and A is a universal homomorphism. 

There is a similar diagram for boundary fixed ([X, dX; G/TOP, *] 
—>Ln(TT\X)) and for simple homotopy equivalences (just add super
script 5 to Ln and A). Note that if rj G [X, G/TOP], rjH [X]L is not 
the corresponding L fundamental class for X, but " | " of it. 

Julius Shaneson has pointed out that since A is a homomorphism, 
and, for w finite of odd order, H0^{K{TT, 1); L) has odd order, and 
£odd(y) has exponent 4 [3], a—6 must be zero. 

COROLLARY. The surgery obstruction of a normal map over a closed 
manifold of odd dimension and with TV finite of odd order is zero. 

A much deeper proof for T cyclic has been given by Browder [ l ] . 
The universal homomorphism A may be used to obtain informa

tion on Ln(w) in special cases. We define a class of groups we can 
treat. 

If Gi, G2 are groupoids,/, g'-Gi—>G2 are homomorphisms, then the 
generalized free product of G2 amalgamated over ƒ, g is given by : for 
a component GifCt of Gi, if/, g map it into different components of G2 

take their free product and amalgamate over/ , g\ Gi,a. If/, g map it 
into the same component of G2, say G2,«, form G2,a * J/N, where / , 
infinite cyclic, is generated by t, and N is generated by f(x) —tg(x)t~l 

for #£Gi , a . Take a direct limit to get a groupoid. 
7T is accessible of order 0 if each component is trivial, and accessible 

of order n if it is a gfp with amalgamation, where the groupoids are 
accessible of order n — 1, and the amalgamating homomorphisms are 
all injective. This definition is due to Waldhausen [lO], who shows 
that if T is accessible of order 3 then Wh(7r) =0 , and conjectures this 
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result for all accessible w. An accessible group has a K(w, 1) of finite 
dimension. 

Further, call w 2-sidedly accessible if each of the amalgamations is 
over 2-sided subgroups :H(ZG is 2-sided iff HxH = Hx~1H=^x^H 
(e.g. all 2-torsion is in H), see [2]. This condition arises in the codi-
mension 1 splitting theorem of Cappell [2]. An early version of this 
theorem was applied in [4] (see also [5]) to obtain 

THEOREM 3. If w is 2-sidedly accessible, the universal homomorphism 
A:Hn(K(ir, 1); L)—>Lw(7r) has kernel and cokernel finite 2-groups. 

The discrepancy comes from Wh(7r'), TT' in the construction of 7r, 
so if Waldhausen's conjecture is true, A is an isomorphism. In par
ticular if 7T has order g 3, then A is an isomorphism. 

COROLLARY. If w is free, free abelian, or a ^-dimensional knot group, 
A :Hn(K(w, 1) ;L)c±LLn(w) is an isomorphism. In the last case abeliani
zation Ln(r)~>Ln(Z) is an isomorphism. 

PROOF. These groups are accessible. Tha t TTI(SS — C), C a curve, is 
accessible is due to Waldhausen [9], that it is of order 2 is in [lO]. 
Abelianization w-*Z is a homology isomorphism, so since both L 
groups are homology groups, they are isomorphic. 

Finally from the groups Ln(G) we can construct a spectrum L(G) 
with 7r*Z/(G) = L*(G). (L is 1/(0).) The same analysis as Theorem 3 
gives 

THEOREM 4. There is a natural homomorphism A :IIn(K(T, 1) ; L{G)) 
-^>Ln(irXG), which has kernel and cokernel finite 2-groups if IT is 2-
sidedly accessible. 

This calculation generalizes (up to 2-groups) that of Shaneson for 
GXZ. For modest ir (e.g. Z) the 2-groups can be kept track of. Finally 
extensions l-̂ Gi-~»G:2—>x—>1 can be described as homology of K(w, 1) 
with twisted coefficients in L(G\). 
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