BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 4, July 1971

$B_{(TOP_n)}$ ~ AND THE SURGERY OBSTRUCTION¹

BY FRANK QUINN

Communicated by M. F. Atiyah, February 16, 1971

This note announces "calculations" of the homotopy type of $B_{(TOP_n)}$ ~ and the nonsimply-connected surgery obstruction. Proofs, more precise statements, and consequences will appear in [6].

Remove the extraneous 2-torsion from KO by forming the pullback

and define

$$L = B_0^* \times \prod_i K(Z/2, 4i+2).$$

L is a periodic multiplicative spectrum with product \otimes in B_0^* , and cohomology multiplication in the Z/2 part. B_0^* acts on the Z/2 part by reduction mod 2, which gives $\prod_i K(Z/2, 4i)$, and inclusion in $\prod_i K(Z/2, 2i)$.²

Students of surgery will recognize Sullivan's calculation in [7] as $G/\text{TOP} \times Z \simeq L$. The Whitney sum in G/TOP, however, is given by $a \oplus b = a + b + 8a \otimes b$ in L.

THEOREM 1. Topological block bundles are naturally oriented in L. If B_{LG_n} is the classifying space for L-oriented G_n bundles, this induces a diagram of fibrations, for $u \ge 3$,

Copyright @ 1971, American Mathematical Society

AMS 1970 subject classifications. Primary 57D65, 55F60, 57C50; Secondary 55C05, 57B10, 55B20, 20F25.

Key words and phrases. Surgery, Poincaré duality, topological block bundles. ¹ This work was partially supported by the National Science Foundation grant GP 20307 at the Courant Institute of New York University.

² (ADDED IN PROOF.) This cohomology structure was deduced using product formulas inferred from [7], [8]. This formula is now known to be wrong, and modified versions have been obtained by several groups. A slightly more complicated structure is thus required on L, and will be corrected in [6].

where $Q = \prod_i [K(Z/8, 4i) \times K(Z/2, 4i+2) \times K(Z/2, 4i+3)]$, and L^* classifies the units of $H^0(X; L)$.

 $L^* \simeq G/\text{TOP}$. Thus a $S(\text{TOP}_n)^\sim$ bundle is an *L*-oriented G_n bundle, with a cohomology of the resulting cocycles $q^{\#} \in C^*(X; Z/8 \text{ and } Z/2)$ to zero. The Thom isomorphism comes from a "cobordism" interpretation of *L*. The natural product in this interpretation is essentially \oplus in G/TOP, hence $8\otimes$. Naturality shows the Thom isomorphism is multiplicative when taken $\otimes Z[\frac{1}{2}]$. For Z[1/odd], the fact that MSTOP is a product of Eilenberg-Mac Lane spectra allows construction of the *L* Thom isomorphism from the one in topological cobordism. It is therefore multiplicative with respect to \otimes , and is a product with a Thom class. *Q* is evaluated by showing $G/\text{TOP}\simeq L^* \rightarrow L^*$ is $a \mapsto 1+8(a-1)$.

This theorem, when taken $\otimes Z[\frac{1}{2}]$, is

$$B_{(\mathrm{TOP}_n)} \sim \simeq B_{KOG_n},$$

which has been announced by Sullivan [8]. The form of our result has been greatly influenced by Sullivan.

COROLLARY. If X is a simply-connected Poincaré space of dimension $\geq 5 \ (\geq 6 \ if \ \partial X \neq \emptyset$, and then $\pi_1 \partial X = 0$ also), then X has the homotopy type of a topological manifold iff it satisfies Poincaré duality in L, and certain Z/8 and Z/2 characteristic homology classes of $[X]_L$ vanish.

PROOF. The SW dual of a fundamental class is a Thom class for the normal bundle ν_X . The homology characteristic classes are the ones which dualize to q^* of Theorem 1, so their vanishing implies ν_X has a reduction to B_{TOP} . Standard surgery now implies that X is homotopy equivalent to a manifold.

The different manifold structures on X correspond to liftings of ν_X to B_{TOP} with zero surgery obstruction. The liftings may be specified as different L fundamental classes, together with homologies of the

q-cycles to zero. The vanishing of the surgery obstruction can be expressed as follows:

THEOREM 2. Suppose X is a Poincaré space of dimension $n \ge 5$ $(\ge 6 \text{ if } \partial X \neq \emptyset)$, with a reduction of ν_X to B_{TOP} which has surgery obstruction $\theta \in L_n(\pi_1 \partial X \rightarrow \pi_1 X)$, then the diagram commutes. Here the

inclusion is via $G/\text{TOP} \times Z \simeq L$, and A is a universal homomorphism.

There is a similar diagram for boundary fixed $([X, \partial X; G/\text{TOP}, *] \rightarrow L_n(\pi_1 X))$ and for simple homotopy equivalences (just add superscript *s* to L_n and *A*). Note that if $\eta \in [X, G/\text{TOP}], \eta \cap [X]_L$ is not the corresponding *L* fundamental class for *X*, but " $\frac{1}{8}$ " of it.

Julius Shaneson has pointed out that since A is a homomorphism, and, for π finite of odd order, $H_{odd}(K(\pi, 1); L)$ has odd order, and $L_{odd}(\pi)$ has exponent 4 [3], $\sigma - \theta$ must be zero.

COROLLARY. The surgery obstruction of a normal map over a closed manifold of odd dimension and with π finite of odd order is zero.

A much deeper proof for π cyclic has been given by Browder [1].

The universal homomorphism A may be used to obtain information on $L_n(\pi)$ in special cases. We define a class of groups we can treat.

If G_1 , G_2 are groupoids, f, $g:G_1 \rightarrow G_2$ are homomorphisms, then the generalized free product of G_2 amalgamated over f, g is given by: for a component $G_{1,\alpha}$ of G_1 , if f, g map it into different components of G_2 take their free product and amalgamate over f, $g \mid G_{1,\alpha}$. If f, g map it into the same component of G_2 , say $G_{2,\alpha}$, form $G_{2,\alpha} * J/N$, where J, infinite cyclic, is generated by t, and N is generated by $f(x) = tg(x)t^{-1}$ for $x \in G_{1,\alpha}$. Take a direct limit to get a groupoid.

 π is accessible of order 0 if each component is trivial, and accessible of order *n* if it is a gfp with amalgamation, where the groupoids are accessible of order n-1, and the amalgamating homomorphisms are all injective. This definition is due to Waldhausen [10], who shows that if π is accessible of order 3 then Wh(π) = 0, and conjectures this result for all accessible π . An accessible group has a $K(\pi, 1)$ of finite dimension.

Further, call π 2-sidedly accessible if each of the amalgamations is over 2-sided subgroups: $H \subset G$ is 2-sided iff $HxH = Hx^{-1}H \Longrightarrow x \in H$ (e.g. all 2-torsion is in H), see [2]. This condition arises in the codimension 1 splitting theorem of Cappell [2]. An early version of this theorem was applied in [4] (see also [5]) to obtain

THEOREM 3. If π is 2-sidedly accessible, the universal homomorphism $A: H_n(K(\pi, 1); L) \rightarrow L_n(\pi)$ has kernel and cokernel finite 2-groups.

The discrepancy comes from $Wh(\pi')$, π' in the construction of π , so if Waldhausen's conjecture is true, A is an isomorphism. In particular if π has order ≤ 3 , then A is an isomorphism.

COROLLARY. If π is free, free abelian, or a 3-dimensional knot group, $A: H_n(K(\pi, 1); L) \simeq L_n(\pi)$ is an isomorphism. In the last case abelianization $L_n(\pi) \rightarrow L_n(Z)$ is an isomorphism.

PROOF. These groups are accessible. That $\pi_1(S^3-C)$, C a curve, is accessible is due to Waldhausen [9], that it is of order 2 is in [10]. Abelianization $\pi \rightarrow Z$ is a homology isomorphism, so since both L groups are homology groups, they are isomorphic.

Finally from the groups $L_n(G)$ we can construct a spectrum L(G) with $\pi_*L(G) = L_*(G)$. (L is L(0).) The same analysis as Theorem 3 gives

THEOREM 4. There is a natural homomorphism $A: H_n(K(\pi, 1); L(G)) \rightarrow L_n(\pi \times G)$, which has kernel and cokernel finite 2-groups if π is 2-sidedly accessible.

This calculation generalizes (up to 2-groups) that of Shaneson for $G \times Z$. For modest π (e.g. Z) the 2-groups can be kept track of. Finally extensions $1 \rightarrow G_1 \rightarrow G_2 \rightarrow \pi \rightarrow 1$ can be described as homology of $K(\pi, 1)$ with twisted coefficients in $L(G_1)$.

References

1. W. Browder, "Free Z_p -actions on homotopy spheres," *Topology of manifolds*, Edited by J. C. Cantrell and C. H. Edwards, Jr., Markham, Chicago, Ill., 1970.

2. S. Cappell, A splitting theorem for manifolds and surgery groups, Bull. Amer. Math. Soc. 77 (1971), 281-286.

3. T. Petrie, Surgery groups over finite fields (to appear).

4. F. Quinn, A geometric formulation of surgery, Thesis, Princeton University, Princeton, N. J., 1970.

1971]

5. ——, "A geometric formulation of surgery," *Topology of manifolds*, Edited by J. C. P. Cantrell and C. H. Edwards, Jr., Markham, Chicago, Ill., 1970.

6. ——, Geometric surgery (to appear).

7. D. Sullivan, *Triangulating and smoothing homotopy equivalences*, Lecture Notes, Princeton University, Princeton, N. J., 1967.

8. ——, Localization, periodicity, and Galois symmetry in topology, Lecture Notes, M.I.T., Cambridge, Mass., 1970.

9. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 36 #7146.

10. ———, Whitehead groups of generalized free products, Preliminary Report (to appear).

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012