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HOMOTOPICALLY STRATIFIED SETS 

FRANK QUINN 

The objective is to give a setting for the study of purely topological strati- 
fied phenomena, particularly group actions on manifolds. The "geometrically" 
stratified sets developed by R. Thom [211 and others [22] have given an effective 
context for smooth and PL phenomena (for example real semialgebraic sets are 
smoothly stratified, and polyhedra are PL stratified), but the topological version 
has been less successful. Among other problems, there are examples which are 
very nice locally but which do not admit global geometrically stratified struc- 
tures. As a result stratified topological questions have had to be approached in 
a somewhat ad hoc fashion. 

In a homotopically ' stratified set the strata are related by homotopy rather 
than geometric conditions. This makes them easier to construct and far more 
general, but makes it harder to see that they have any useful properties. None- 
theless they do; the principal results of this paper give extensions of isotopies, 
collars for boundaries, recognition theorems, an h-cobordism theorem, and ob- 
structions to the existence of regular neighborhoods and geometric stratifica- 
tions. The isotopy extension theorem, for example, implies that the skeleta are 
topologically homogeneous. 

We give some background on stratifications, then discuss group actions, pre- 
vious work, and the organization of the paper. 

A geometrically stratified set is a filtered space XO c X' c . . .  c X" such 
that the strata are manifolds. ("Skeleta" refers to the subsets x i ,  "strata" the 
differences X' - xi-' .) The strata are also related to one another in a very 
precise way; if k > i then a neighborhood of X' -xi-' in (xk-xk-I)u 
(xi-xi-')is a bundle of some kind, and there are compatibility conditions 
on these bundles at points where three or more strata come together. We get 
smooth, PL, or topological stratified sets depending on the types of strata and 
bundles used. 

In a homotopically stratified set the strata are related by homotopy condi- 
tions. Roughly, neighborhoods of X' -xi-' in (xk-xk-I)U (xi- xi-') 
have the local homotopy properties of mapping cylinders of fibrations. No 
compatibility conditions are required. 
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Geometrically stratified sets (of any category) can often be manipulated by 
standard manifold techniques and induction on skeleta; after doing something 
to the k-skeleton, extend to a neighborhood in the (k + 1)-skeleton using bun- 
dle theory, and then use manifold theory to manipulate the rest of the stratum. 
Stratified versions of surgery, transversality, and h-cobordism theorems are de- 
veloped this way in [4]. Our treatment of homotopically stratified sets also 
proceeds by induction on strata, using the controlled topology of [13] instead 
of bundle theory to deal with neighborhoods of strata. The theory is very sat- 
isfactory except in one regard; strata of dimension less than 4 or 5 cannot be 
effectively manipulated. Consequently the structure theorems have restrictions 
on low dimensional strata. 

Quotients of group actions on manifolds provide an important class of ex- 
amples. Suppose a group G acts on a manifold M . The orbit typefiltration of 
M is defined by: if H c G and V is a component of the set of points with 
isotropy subgroup H , then V cM' if dim (V) 5 i . 

If G acts smoothly on M then the quotient M/G with the orbit type fil- 
tration is smoothly stratified. If G acts piecewise linearly, then the quotient 
is PL stratified by orbit type if and only if the action satisfies a local product 
condition, satisfied for example if the action is locally linear. Therefore isotopy, 
h-cobordism, surgery theorems, etc. for smooth or PL actions follow from the 
corresponding theorems for smoothly or PL stratified sets. 

If G acts topologically then fixed sets need not be ANRs, let alone something 
nicely stratified. But even if we assume the action is locally linear the quotient 
is often not topologically stratified by orbit type. For example there are locally 
linear actions whose quotient cannot be geometrically stratified, because the 
singular set does not have an equivariant mapping cylinder neighborhood [13 
11, 2.1.41. Even when geometric structures exist they are not determined by the 
data, so "invariants" defined using them (e.g. Whitehead torsion) are often not 
well defined. 

We define a group action to be "homotopically stratified" if the quotient 
with the orbit type filtration is a homotopically stratified set. Such actions are 
characterized by local conditions and include the locally linear ones. In fact 
they include nearly all actions with manifold fixed sets (1.6). The results of this 
paper specialize to give geometric properties for these actions. The flexibility of 
these actions also makes possible new directions of inquiry. For example CW 
actions on finite complexes are often concordant to ones whose only isotropy 
subgroups are p -groups and the whole group [14]. There can be no analog of 
this for locally linear actions because it is false for the linear ones. However it 
is reasonable to hope some version is valid for homotopically stratified actions. 

We mention some previous work in contexts weaker than geometrically strat- 
ified sets. Siebenmann [17] has proved isotopy extension theorems for locally 
cone-like sets. Theorem 1.1 applies to more general spaces, but has a dimension 
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restriction. Also [17] gives information about the space of isotopies, where 1.1 
concerns single isotopies ( no of the space). 

Siebenmann's results are essentially local. Anderson and Hsiang have devel- 
oped a global version with strata related by microbundles and obtained pseu- 
doisotopy information [2] and obstructions to triangulation [3]. Again the re- 
sults here apply more generally but give information about no rather than the 
whole spaces of pseudoisotopies and triangulations. 

There has been much work done on locally linear group actions by Mad- 
sen, Rothenberg, Dovermann, and many others. The theory presented here 
generalizes many of the basic results discovered in this context. For example 
Steinberger and West [19] describe an equivariant h-cobordism theorem for lo- 
cally linear actions which "admit handle structures," and this has been extended 
to locally linear actions with "codimension > 2 gaps" by Steinberger [18]. The- 
orem 1.8 applies to much more general actions, as well as stratified sets which 
do not arise from group actions. 

$ 1 contains statements of the geometric results. In $2 the basic properties of 
homotopy links and tameness are developed. General homotopically stratified 
sets are defined in $3, and their basic structure described using the material 
of $2. The properties of ANR homotopically stratified sets, and layered sets, 
are developed in $4. This includes stratified versions of "finiteness" and sim- 
ple homotopy theory, and connections with the controlled topology of [13]. 
$5 concerns manifold homotopically stratified sets, and provides proofs of the 
geometric theorems. 

In this section the geometric results are stated. Homotopy links are briefly 
described so that the geometric statements will make sense, but details are de- 
ferred to $52 and 3. 

The "homotopy link" (holink (X,  Y) ; see 2.1) is a topological analog of the 
boundary of a regular neighborhood in a PL pair. It is defined for any topo- 
logical pair, and there are maps (X - Y) c holink(X, Y) -* Y, which are 
natural with respect to maps of pairs which preserve complements. There is a 
natural map from the homotopy pushout of these maps to (X ,  Y) , which is 
the identity on Y .  (The homotopy pushout is the double mapping cylinder.) 
In the PL case if N is a regular neighborhood of Y then the holink diagram 
is homotopy equivalent to (X - int(N))+- a N  -, Y . The homotopy pushout 
of the PL diagram is actually isomorphic to X .  In general there is a "tame- 
ness" condition under which the pushout of the holink diagram is homotopy 
equivalent to (X,  Y) (by homotopies preserving complements; see 2.1). 

A filtered space X is homotopically stratijied if X' - is tame in XI- '  

(xk-xk-I)u (xi-xi-')when k > i , and the homotopy link of this pair is a 
fibration over X' -xi-' (see 3.1). These fibrations are the homotopy analogs 
of the bundles relating strata in a geometrically stratified set. We remark that 
"compatibility conditions" involving three or more strata follow from this, so 
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need not be assumed. For example it follows (see 3.2) that X' is tame in xk, 
and the homotopy link is a stratified system of fibrations over X' in the sense 
of [13 111. 

As above if X is a filtered space the subsets xi are called the "skeleta" and 
the differences X' -xi-' the "strata." A map X + Y preserves strata if every 
component of a stratum of X has image in a stratum of Y . The image stratum 
is not required to have the same index, because the indexing is usually artificial. 
For instance an isovariant map of G-spaces induces a stratum-preserving map 
of quotients, but strata are taken to ones with the same isotropy subgroup rather 
than the same dimension. 

We can now define the main objects of interest. A manifold homotopically 
stratified set is a locally compact homotopically stratified metric space X whose 
strata are manifolds, which satisfy a boundary condition. Define the boundary 
d X  to be the union of the boundaries of the strata, Ui a (xi- xi- ') .Then 
d X  is required to be a stratum-preserving neighborhood deformation retract in 
X . Equivalently, X u , ~d X  x [0 ,1 )  is homotopically stratified. In the official 
definition (5.1) the boundary condition is given in an equivalent "local" form 
which is more complicated but easier to verify. 

The geometric results are stated next, beginning with ones which do not in- 
volve obstructions. X , Y , etc. are understood to be manifold homotopically 
stratified sets, with strata indexed by dimension. 

1.1. Theorem. Suppose Y c X is a closed union of components of strata which 
contains Cdimensional strata. Then an isotopy of Y which preserves strata and 
Jixes the boundary extends to an isotopy of X which preserves strata and fuces 
the boundary and the complement of a neighborhood of Y . 

An "isotopy of Y " is an isotopy which starts with the identity of Y .  Iso-
topies which do not fix the boundary can be extended by "absorbing the bound- 
ary into the filtration" (5.1), or by using two applications of 1.1 and the next 
result. 

1.2. Theorem. Suppose ax4has a stratum-preserving collar in x4. Then d X  
has a stratum-preserving collar in X. 

We give a simple but useful application of the extension theorem. The in- 
terior of a connected manifold is "isotopically homogeneous" in the sense that 
any point can be isotoped to any other. The results above can be used to extend 
such isotopies to homotopically stratified sets. 

1.3. Corollary. Suppose x and y are points in the same component of the 
interior ( o r  of the boundary) of a stratum of X ,  and adjacent strata ( o r  
boundaries) have dimension at least 5. Then there is a stratum-preserving iso- 
topy of X which moves x to y . 
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For example if X is the quotient of a group action, and the action can be 
shown to be locally linear at a few strategically selected points, then it is locally 
linear everywhere (eg. [13 11, 2.1.41). 

We recall that isotopy homogeneity characterizes the PL intrinsic skeleta of 
a polyhedron [I]. In [15] the corollary is used to develop a topological version 
of intrinsic skeleta; it is shown that any manifold homotopically stratified set 
is a "subdivision" of a canonical minimal one, and the strata of this minimal 
structure can be effectively recognized from the given data. 

Next we give criteria for group actions to be homotopically stratified; the 
most important is Corollary 1.6. 

1.4. Theorem. Suppose G is a discrete group which acts on a filtered metric 
space X ,  so that isotropy subgroups are locally constant on strata and N(H) /H  
acts properly discontinuously on the set ofpoints with isotropy subgroup H . Then 
X is a manifold homotopically stratified set i f  and only i f  X /G  is, and isotropy 
subgroups of adjacent strata have finite index. 

If G is a finite group most of the hypotheses are automatic, and the statement 
is simply: filter X by orbit type, then X is a manifold homotopically stratified 
set if and only if X/G  is. The more general statement applies for example 
to actions resembling the action of a crystallographic group on euclidean space 
(see the example after 1.9). The theorem itself is a special case of a result about 
"multiply branched covers" (3.6). 

This result means we can determine if the homotopically stratified theory 
applies to a group action (via its quotient) by inspecting the orbit type filtration 
of X . We do not have to produce slices, local product structures, etc. The next 
result often applies to the filtration of X . 
1.5. Proposition. Suppose M is a manifold with a finite collection {M,) of 
closed submanifolds such that the intersection of any two is again in the collection. 
Filter M by M' = U{M, ;dimMs < i )  . Then with this filtration M is a 
manifold homotopically stratified set provided either 

( 1 )  i f  Ms c M, then it is 1-LCembedded, or 
(2) the collection is locally flat in M . 

Case (1) is the most useful because it is a homotopy condition; a subspace 
is 1-LC embedded if small loops in the complement extend to small maps of 
2-disks in the complement. For manifolds this is equivalent to locally flat and 
not codimension 2 [13 I], so the point of case (2) is that codimension 2 subspaces 
are allowed. A collection is locallyflat if each point has a neighborhood U with 
a homeomorphism to R" such that each U nM, is taken to a linear subspace. 
Note that there are no complicated transversality conditions like those needed 
in the geometrically stratified analogs. 

* There is an error in [15];  Theorem 2, p . 239, should be weakened to say there exists a filtered 
space Lx with the stated property. Generally Lx is not given by the construction preceeding the 
statement, although in the special situation where the theorem is used on p .  247 it does apply. 
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We combine 1.4 and 1.5 in the case of finite groups. 

1.6. Corollary. Suppose G is a finite group acting on a manifold M ,so that for 
all subgroups G 1H 3 J ,  M~ is a manifold locally flat and not codimension 
2 in M~ . Then M/G with the orbit type filtration is a manifold homotopically 
stratified set. 

So (for example) by applying 1.3 in the quotient we see that components of 
strata are equivariantly isotopically homogeneous in M . 

The remaining results involve obstructions. To explain the setting for these, 
suppose p: E -X is a map. Let 2% denote one of the spectrum-valued func- 
tors of spaces whose homotopy groups are n12%(F)= Wh(nlF) ,  ni2%(F) = 

ki( ~ n ,F) for i 5 0 .  In [13 111 the "finite structure spectrum" constructed from 
pseudoisotopies is used. There is also a controlled version of algebraic K-theory 
(mentioned in [16]) whose associated "Whitehead spectrum" which would serve 
equally well. These functors differ in their higher homotopy groups, but this 
does not effect the homology groups used here. 

A "spectral cosheaf" Y ( p )  + X is formed roughly by applying the func- 
tor 2% to p fibenvise. Homology groups Hi(X ; Y ( p ) )  with spectral cosheaf 
coefficients are defined in [13 11, $81. If X is locally compact, "locally finite" 
homology HI' is defined (and is often the reduced homology of the 1-point 
compactification). These groups can sometimes be computed using a spectral 
sequence which relates them to ordinary homology [13 11, $5 1, 81. 

The first result concerns mapping cylinder neighborhoods in a single stratum. 
It is a direct consequence of [13 11, Theorem 1.11, and tameness properties (2.13, 
and the first lemma in 5.5). 

1.7. Theorem. Suppose X is a manifold homotopically stratified set and i > 5 . 
Then there is an invariant q o ( ~ ' ,x") E H:' (xi-,;2%(pi)) which vanishes if 
and only if xi-' has a mapping cylinder neighborhood in X' . 

The map in the coefficient spectrum is pi: holink(xi, xi-')-xi-' . When 
X is the quotient of a group action this is the obstruction to the existence of an 
equivariant mapping cylinder neighborhoods, see [13 11, $2.11. These invariants 
are also, in the case of quotients of locally linear actions with "codimension > 2 
gaps," closely related to the "controlled equivariant finiteness" obstructions of 
Steinberger and West [20]. 

The next theorem is a basic statement of the h-cobordism theorem. The 
general setting for "stratified simple homotopy" is described in 1.10, after a 
discussion of the obstruction groups, and applications to group actions. A more 
elaborate h-cobordism theorem is given in $5. 

An h-cobordism in this context is (X ;Yo, Y,) ,where X is a compact man- 
ifold homotopically stratified set, dX = Yo u Y, , and if A is a stratum of X 
then the inclusions A 1 nA are homotopy equivalences. If A is a stratum 
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component 6A denotes the "frontier" (the complement of A in its closure in 
X ), and is a union of components of lower dimensional strata. 

1.8. Theorem. Suppose Yo is a compact manifold homotopically stratified set, 
and let {A,) denote the components of the strata of Yo. If ( X ;  Yo, Y,) is a 
stratified h-cobordism then a "stratified Whitehead torsion" 

is defined. If there is a stratum-preserving product structure on the 5-dimensional 
skeleton of X then there is a stratum-preserving product structure X -- Y,x I if 
and only if s ( X ,  Yo) = 0 .  

The maps q,: E, -,conedA, in the coefficient spectrum Y ( q i )  are obtained 
by taking mapping cylinders of the horizontal maps, and identifying cone6A 
with the mapping cylinder of 6A -,pt. : 

6A -pt. 

To explain the significance of the obstruction groups we consider the long 
exact sequence of the pair (cone 6A , GA) . The absolute groups of the cone 
are the groups of a point, which are the homotopy groups of the coefficient 
spectrum. Making this substitution, the exact sequence is: 

Torsion invariants for geometrically stratified sets lie in the Wh(nl A) term [4], 
and these can be thought of as h-cobordisms obtained by adding finitely many 
homotopically cancelling handles to the interior of the stratum. This geometric 
torsion is not "topologically invariant" since the existence of a product structure 
depends only on the image in the next group down in the sequence; the image 
of HI(GA ; Y ( p ) )  is lost. Roughly HI(6A ; Y ( p ) )  corresponds to infinite but 
controlled collections of handles near 6A , so the image in Wh(n, A) consists 
of elements which can be "pushed off the edge" of A by a controlled infinite 
process. 

On the other side of the h-cobordism group is the group H o ( 6 A ; Y ( p ) ) ,  in 
which lie the mapping cylinder obstructions of Theorem 1.7. These invariants 
are actually controlled finiteness obstructions, defined for finite dimensional 
ANRs as well as manifolds. The image of the torsion s(f )  is the difference of 
the end finiteness obstructions of X and Y . For h-cobordisms what this means 
is roughly that if X and Yo have the same mapping cylinder obstructions on a 
stratum, then there is a product structure near the frontier of the stratum. The 
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nontrivial part of the h-cobordism is concentrated in the interior of the stratum, 
and the obstruction lies in the image of Wh(z, A )  . 

From this point of view, the reason ordinary Whitehead groups classify geo- 
metrically stratified h-cobordisms (even topological ones) is that mapping cylin- 
der neighborhoods of strata are included as part of the structure. 

We give a concrete application to group actions, where the obstructions can 
be arranged to vanish. This extends a result of Steinberger [18, Corollary 
41 for locally linear actions. An "isovariant h-cobordism" is a G manifold 
triple (W,  M ,  M I )  such that for all subgroups G 1H 1 J the inclusions 
(MJ - MH) --+ (wJ- wH)+- (MIJ - MIH) are homotopy equivalences. 

1.9. Corollary. Suppose G is a finite group and ( W ,M ,M') a compact iso- 
variant h-cobordism, so that for all subgroups G > H > J ,  wH is a manifold 
locally flat and codimension at least 3 in wJ . Suppose also that M and each 
MJ  is l-connected and nonempty. Then an equivariant product structure on fuced 
sets of dimension less than 5 extends to an equivariant product structure on W . 

According to 1.6 the quotient X = M/G of this action is a manifold homo- 
topically stratified h-cobordism, so 1.8 applies. (We have not required product 
structures on 5-dimensional strata to be given since finite groups are "good"; 
see the remark below). The connectivity assumptions imply that the obstruc- 
tion groups of 1.8 vanish, so product structures exist. 

The reason the obstruction groups are trivial is as follows: Let A be a 
stratum component, the quotient of a component in W with isotropy sub- 
group G, . Let J denote NG,/G,, then under the codimension and con- 
nectivity restrictions z1  A = J . There is (see [13 11, 2.11) a spectral sequence 
H,(SA ;Whj(Jx))+H i + j ( ~ n - l;Y ( p ) ),where Wh, denotes Wh if j = 1 and 

kj if J < 1. Jx is the system of isotropy subgroups over SA . Since the fixed 
sets are connected and nonempty, the Ho(- ;Whj) term is just Wh,(J) . Be-
cause of this, the exact sequence for (cone SA ,SA) (written out above) shows 
that the obstruction group goes injectively to the part of Ho(SA;Y(p)) which 
comes from terms in the spectral sequence with i > 0 .  The Hl (- ;Wh,) term 
vanishes by the simple-connectivity assumption on fixed sets. The others are 
trivial by Carter's vanishing theorem for lower K groups [5]. 

We describe a much more sophisticated example. Suppose G c L is a 
uniform, discrete, cocompact subgroup of a Lie group with finitely many com- 
ponents. Let K c L be a maximal compact subgroup. The quotient K\L is 
a contractible manifold on which G acts smoothly. If G is torsion free then 
it acts freely on K \L ,  and K\L/G is a manifold. If G is not torsion free 
then the torsion subgroups occur as isotropy groups, and K\L/G is a smooth 
stratified set. 

If L is virtually solvable, so G is poly-(finite or cyclic), and G is torsion 
free then Farrell and Hsiang [9] have shown that h-cobordisms of K\L/G are 
products because the Whitehead group of G is trivial. Now suppose G does 
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have torsion, and nontrivial fixed sets, but that if one fixed set is contained in 
another it has codimension at least 3. Then the stratum with isotropy subgroup 
exactly H has quotient with fundamental group N ( H ) / H  , where N denotes 
the normalizer in G . The obstruction group for equivariant smooth (or PL) 
h-cobordisms of this action is the sum CWh(NH/H) , where H varies over 
conjugacy classes of finite subgroups of G . These are usually nonzero, contain- 
ing for example Whitehead groups of finite subgroups. Using 1.8 we see that 
the homotopically stratified obstructions lie in C Nil, ( ( K \ L ) ~ .NHIH ;Z) , the 
generalized Nil groups of [16]. These are not always trivial, but there are much 
better vanishing results for them than for the Whitehead groups. 

We return to the discussion of simple homotopy. In the unstratified case 
torsions are defined for homotopy equivalences of compact ANRs. Further, the 
torsion of a homotopy equivalence vanishes if and only if the map is homotopic 
to a composition of cell-like maps and their homotopy inverses [7], [6]. Recall 
that a map is cell-like if it is proper and each point inverse is contractible inside 
any neighborhood of it. 

The objects in the stratified version are "layered sets," locally compact and 
finite dimensional homotopically stratified sets with ANR strata and reverse- 
tame skeleta. These are defined and discussed in 4.5; here we mention only that 
manifold homotopically stratified sets are layered, and the obstruction used in 
1.8 is a special case of the next theorem. 

1.10. Theorem. Let {A,) denote the components of strata of a compact layered 
set Y.  

( I )  A stratum-preserving map f :  X -* Y which is a homotopy equivalence 
on strata has a "Whitehead torsion" z(f )E XiHl(cone 6A, , 6Ai ;9 ( q i ) ). 

(2) 	Given cu in the obstruction group there is a compact layered set X and 
a stratum-preserving homotopy equivalence f:X -,Y with z(f )= cu . 

(3) If f :  X + Y and g: Z + X are stratum-preserving homotopy equiva- 
lences, then z(fg) = z(f) + f ,z(g) .  

(4) 	If f:X + Y is a stratum-preserving homotopy equivalence of compact 
layered sets, then z( f )  = 0 i f  and only i f  there are Z and stratum- 
preserving cell-like maps g :  Z -X ,  h :  Z -+ Y, and a stratified ho- 
motopy from fg to h . 

In (3) f, denotes the homomorphism, induced by f ,  from the Hl groups 
of X to those of Y. 

Putting the parts of 1.10 together gives a "classification" result: Say that two 
maps Xi -* Y ,  i = 1, 2 ,  are "CL equivalent" if there is Z and stratum- 
preserving cell-like maps Z + Xi so that 

z - XI 
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is stratified homotopy commutative. Then the theorem implies that this is 
indeed an equivalence relation, and that z induces a bijection from the set of 
equivalence classes to the sum of homology grorlps. 

The PL unstratified version of this "classification" was developed by Cohen 
[7] as a geometric approach to the Whitehead group. PL versions are much 
more elementary, so we mention that every layered set is the cell-like image of 
a PL one, and that if X and Y are both PL in (3) above, then 2 ,  f ,  and g 
can be chosen to be PL. Note that "PL" in this context means that the strata are 
polyhedra and does not imply that the space itself is even locally triangulable. 

The unstratified ANR version is due to Chapman [6] and applies also to 
infinite dimensional ANRs. The restriction here to finite dimensions-a result 
of delicate dimension-dependent arguments in [13]-seems not to affect the 
applications. 

There is also a manifold version, following essentially from 1.8; h-cobordisms 
with a given compact manifold homotopically stratified set on one end are clas- 
sified up to homeomorphism by the torsion of the inclusion. See 5.6. 

The next characterizes layered sets, up to homotopy. 

1.11. Theorem. Suppose Y is a homotopically stratified set. Y is stratified 
homotopy equivalent to a compact layered set if and only if the strata, andjibers 
of homotopy links of strata, are dominated by finite complexes, and for each 
stratum component A the Wall jiniteness obstruction o(A) is taken to 0 by 

go( ~ n, A) -+ Ho(cone 6A ,6A ;9(9)). 

For unstratified objects the analog is the finiteness criterion of Wall [23] for 
spaces dominated by finite complexes. That result requires the vanishing of 
an invariant in go, so by analogy one expects a stratified obstruction in the 
homology group Ho . The fact that it can be identified as the image of ordinary 
obstructions is a consequence of the "rigidity" of finiteness obstructions. 

1.12. Geometric stratifications. When does a homotopically stratified set have 
a geometric stratified structure? If we use the geometric structures with topolog- 
ical strata and topological block bundles in the incidence data, the obstructions 
are the same as the obstructions to triangulation described in [13 11, 2.2.71, with 
the exception of the Kirby-Siebenmann obstruction for the strata. We mention 
these briefly, without a formal statement. 

Suppose there is a structure given on xi.There are three levels of ob- 
structions encountered in extending it to xi+'. First is the mapping cylinder 
obstruction of 1.7. If this vanishes there are obstructions to splitting the result- 
ing map into pieces over mapping cylinders in the lower strata. If these vanish, 
the resulting pieces are approximate fibrations over lower strata. Last there are 
obstructions to these approximate fibrations being block bundles. 

1.13. Low dimensions. The controlled boundary and h-cobordism theorems 
used in this development have been extended to dimension 4, provided the local 
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fundamental groups in the coefficient maps are "good." This is done in [13 1111 
for "good" = trivial. It is extended in [l  11 to a class of groups containing poly- 
(finite or cyclic) groups, and in particular finite groups. Consequently 1.2 gives 
collars in 4-strata provided local fundamental groups of p: holink(x4,x3)-. 
x3are "good." With similar "goodness" hypotheses 1.7 gives mapping cylinders 
in 5-strata, and product structures need only be assumed on 4-dimensional strata 
in 1.8. In particular this is the case in quotients of finite group actions, and this 
improvement is already incorporated in Corollary 1.9. 

At present there are no results on controlled pseudoisotopy in dimension 4, 
so the isotopy results 1.1, 1.3 are not known to extend. 

Finally we speculate that a 3-dimensional homotopically stratified set is tri- 
angulable. This would imply that many of the results hold for all strata except 
possibly 4-dimensional ones with bad fundamental groups. 

Proposition 2.2 and Corollary 2.3 show how homotopy links are used to 
construct, for tame subsets, the strict maps and homotopies which are central 
to the theory. Good information about links and tameness is therefore vital, 
and most of the section is devoted to developing this. The corollary to 2.4 
gives relations between tameness and homotopy links in products, triples, and 
subsets. Proposition 2.6 concerns group actions, 2.8 treats unions. The most 
significant result for the structure of homotopically stratified sets is 2.9, which is 
used to describe how unions of strata fit together. These results give tameness 
conclusions but with some tameness hypotheses. Initial input is provided by 
2.10, which gives a homological characterization of tameness, and 2.12 which 
shows 1-LC subsets in ANRs are tame. Finally 2.13 relates the "tameness" used 
here to "reverse tameness," the notion used in controlled topology. 

2.1. Definitions. Suppose f:  X -. Y is a map. The mapping cylinder will be 
denoted by cyl (f) , and we mean precisely the set X x (0,  I] u Y x (0) with the 
minimal topology such that the inclusion X x (0,  11 c cyl(f) and projection 
cyl(fl + Y x [O,1] are continuous. Y is put at the 0 end of the mapping 
cylinder so that the [O, 11 coordinate is the "distance" from Y,  as in polar 
coordinates. This topology is sometimes different from the quotient topology. 
A particular fact about it that we will use is that if Z is a metric space and 
G: X x (O,1] -. Z , h: Y -. Z are continuous, then G u h defines a continuous 
map cyl(f) + Z if the restrictions F,: X x {t) -+ Z converge uniformly to h f 
as t goes to 0 .  

A map f :  (A, B) -+ (X,  Y) is said to be a strict map of pairs if f (B) c 
Y and f (A - B) c (X - Y) . The space of strict maps (with the compact- 
open topology) is denoted map,(A , B ;X , Y) . Similarly strict maps of triples 
( A ,B,  C) + (X,  Y, Z)  preserve the indicated subsets and complements. 
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The homotopy link3 is holink(X. Y) = maps([O, 11, (0) ;X .  Y) . A point in 
holink(X, Y) is therefore a path in X which begins in Y but immediately 
leaves it. There is a homotopy commutative diagram 

The maps p and q are given by evaluation at 0 and 1 respectively. The homo- 
topy between the compositions is given by the evaluation map holink(X, Y) x 
I -.X . This diagram and homotopy are natural with respect to strict maps of 
pairs. 

Let Z denote the homotopy pushout of p and q . (The homotopy pushout is 
the double mapping cylinder cyl(p)~,~,~~,cyl(q)  .) The homotopy in the diagram 
defines a strict map (Z,Y) -+ ( X ,  Y) . This map is universal with respect to 
strict maps of homotopy pushouts into ( X ,  Y) . Since a pair is a homotopy 
pushout if and only if the subspace has a mapping cylinder neighborhood, this 
means the holink homotopy pushout is in an appropriate sense universal with 
respect to strict maps of mapping cylinders to ( X ,  Y) . 

The homotopy link is a topological analog of the frontier of a regular neigh- 
borhood in a PL pair. Suppose ( X ,  Y) is PL, and denote a regular neighborhood 
by N ,with frontier d N  . Then N is the mapping cylinder of a map d N  -+ Y , 
and so X is isomorphic to the homotopy pushout of Y + d N  -+ (X - int N)  . 

A subspace Y c X is tame if there is a neighborhood N and a strict map 
( N  x I ,Y x Iu N x (0)) + ( X ,  Y) which is the identity on Y and the inclusion 
on N x (1) . Such a map is called a nearly strict deformation retraction of 
a neighborhood into Y.  It is "nearly" strict in the sense that points in the 
complement of Y do not get pushed into Y until the last moment, when it 
is absolutely necessary. The homotopy can be used to define a strict homotopy 
inverse for the natural map of the holink pushout to the pair, and in fact Y is 
tame if and only if the natural map (pushout, Y) -+ ( X ,  Y) is a strict homotopy 
equivalence (see 2.4). 

Example. Let X be the 1-point union of countably many arcs, with lengths 
going to 0; X = ~ r , { i )x [0, +] , and let Y = 0 .  Then Y is tame in X . 

We will see that tame subsets have many of the properties enjoyed by subsets 
with mapping cylinder neighborhoods. This X is strictly re1 Y homotopy 
equivalent to the mapping cylinder of the map from a countable discrete set to 
a point ( holink(X ,Y) has countably many contractible components). However 
this Y does not have a mapping cylinder neighborhood, and fails to have an 
important property of mapping cylinders; the reverse tameness of 2.13. 

This construction seems to have been first used by Fadell [8, $41to homotopically locate the 
normal bundle of a submanifold. It also appears in [13 11, 57.81. 
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2.2. Proposition. Suppose (A,B)  , (X,  Y ),and fo:B -.Y are given, and B c 
A is tame. Then strict homotopy classes of maps (A,B )  + (X ,  Y )  extending
fo correspond to homotopy classes of morphisms of diagrams 

P'
Y -holink(X. Y )  X - Y 

in which the left square commutes and a homotopy is given which makes the right 
square homotopy commute. 

Proof. The naturality of the holink diagram associates commutative diagrams to 
strict maps. Conversely a "morphism" of diagrams induces a map of homotopy 
pushouts (C,B )  -+ ( Z ,Y )  which is strict because the left square commutes. 
There is the natural strict map (2,Y )+ (X ,  Y ),and since B is tame there is a 
strict homotopy inverse (A,B )  -+ (C,B )  (see the corollary to 2.4). Composing 
these with the induced map gives a strict map (A,B )  -+ (X,  Y ). It is easily seen 
that these two constructions are inverses on the level of homotopy classes. 

We think of the projection holink(X, Y )  + Y as a sort of "normal bundle" 
for Y , and use some bundle terminology. We say a commutative diagram 

E - F  

fB - Y  

is a "fiber map" from E to F ,  over f .  So for example a strict map induces 
a fiber map of holinks. Fiber homotopy is defined similarly, and again strict 
homotopy induces fiber homotopy of holinks. The next result is a very useful 
converse to this last observation. 

2.3. Corollary. Suppose B is tame in A, and a strict map 

is given. Then it extends to a strict homotopy if and only if the fiber map of 
homotopy links over fo induced by Fo extends to a fiber homotopy of homotopy 
links over f . 

This follows from 1.2 and the observation that holink(A x I ,  B  x I )  2: 

holink(A ,B )  x I . 

We refine some of this slightly. Suppose 6: Y -. (0,oo) is given, and define 
the controlled homotopy link, holinks(x, Y ),to be the set of j in holink(X, Y )  
with image within 6( j (0))  of j (0 ) .  
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2.4. Lemma. Suppose X is metric, and Y c X is closed. 

(1) The inclusion holinks(x, Y) c holink(X, Y) is a Jiber homotopy equiv-
alence over Y . 

(2) If Y is tame and E: X -. (0, m)  is given, then there is 6: Y -+ (0,m)  
such that the natural map from the homotopy pushout of Y t 
holinks(x, Y) +X -Y to X is a strict E homotopy equivalence re1 Y . 
Conversely ifthe map is a strict homotopy equivalence re1 Y then Y is 
tame. 

An E homotopy equivalence is one such that the image of the homotopies in 
X have radius less than E . A homotopy equivalence "re1 Y " is one in which 
the maps and homotopies are all the identity on Y . 
Proof. For (1) we observe that given r: holink(X, Y) + (0,1] we can define 
Mr:holink(X, Y) + holink(X, Y) by composing each map j E holink(X, Y) 
with multiplication by r (j) . MI,+(,- , )  for t E [O,1] defines a fiber homotopy 
from the identity to M r .  If r is small enough the image of Mr lies inside 
holinks(x, Y) ,and gives a homotopy inverse for the inclusion. We show that a 
small enough r exists. For each f E holink(X, Y) there is rf > 0 so that the 
restriction of f to [0, rf] lies within 6 (f (0)) of f (0) . By continuity there is a 
neighborhood Uf of f so that for g in the neighborhood g[O, rf] lies within 
d(g(0))  of g (0) .  Cover holink(X, Y) by such neighborhoods, say Ufo, and 
choose a partition of unity 8a subordinate to this cover. Then r = CaOarfu 
has the desired property. 

For the proof of (2) suppose r: N x I -+ X is a nearly strict retraction 
of a neighborhood to Y. Choose 6: Y -. (0,m)  so that: if y E Y and 
d (x ,y ) < 6(y)  then the arc r (x  ,I) is defined and has radius < E . Define 
s :X -. [O,m) by s(x)  = inf{d(x, y) /d(y) ,y E Y).  Note s-'(0) = Y and 
s(x)  < 1 iff there is y such that d ( x ,y)  < 6(y)  . The hom~topypushout can 
be written as (X - Y) x (1) u holinks(x, Y) x I u Y x (0) ,with identifications 
induced by evaluating paths in the holink at 0 and 1 . The natural map to 
X is given by projection of the first and third pieces, and evaluation on the 
second. To go back, take x to ( x ,  1) if s(x) 2 1, ( x ,0) if s (x)  = 0 ,  and 
to ( r ( x ,I),s(x))  if s (x)  I 1 . Homotopies of the two compositions to the 
identities are easily constructed from r ,and by choice of 6 have radius < E . 

The converse of (2) follows from the observations that strict homotopy equiv-
alence re1 Y preserves tameness of Y ,and that since Y has a mapping cylinder 
neighborhood in the pushout it is tame there. 

Corollary. In the following we assume the spaces are metric and the subsets are 
closed. 

( I )  Y c X is tame if and only if Y x Z c X x Z is tame. Further, the 
inclusion holink(X, Y) x Z c holink(X x Z ,  Y x Z )  , is a j b e r  homotopy 
equivalence over Y x Z . 
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(2) If X 1Y 1Z and Y c X is tame, then (Y -2)c (X - Z)  is tame. 
Further, holink(X -Z ,Y-Z)  = p-l ( Y  -2), where p is the projection 
p: holink(X, Y) + Y . 

(3) If X 1 N 1 Y and N contains a neighborhood of Y ,  then Y c 
X is tame if and only if Y c N is tame. Further, the inclusion 
holink(N , Y) c holink(X, Y) is a fiber homotopy equivalence over Y . 

Statements (1) and (2) and the tameness part of (3) are elementary. The 
holink part of (3) follows from 2.4(1). 

Tameness is a local property. Define locally tame to mean that each point in 
Y has a neighborhood V in X so that V nearly strictly deformation retracts 
re1 V n Y into Y .  

2.5. Lemma. Suppose X is a metric space. Then X 1Y is locally tame at 
each point ifand only if it is tame. 

Proof. Cover Y with sets y c X with almost strict deformations r,: x I + 

X into Y . Extend these to X x { I )  u Y x I by the identity. Let N denote 
the number (possibly infinite) of sets y . ,  and define a map R, on a sub-

Nset of X x I to X by composition: Let Rl(x ,t) = r, ( x , t) , R2(x,tl ,t2) = 

r2(R1(X , t l ),t2),and inductively Ri(x,t, , ... ,ti)= ri(R,-, ( x ,  t, , ... ,ti-1), ti) . 
Then define R, = limi+, R, . We will only use this when all but finitely many 
of the ti are 1 (and thus ri is the identity), so nothing sophisticated about 
limits is needed. 

Next, if functions a,: X -. [O ,  11 are given we can define a function R ( x ,t) 
on a subset of X x I by restricting R, to the line in INfrom (ai(x)) to ( I )  . 
Explicitly, R(x , t) = R,(x, t + (1 - t )a l (x) ,... ,t + (1 - t)ai(x),.. . )  . Now 
choose functions a, so that ai = 1 on the complement of y , the product
nia, = 0 in a neighborhood of Y , and so that any point has a neighborhood 
in which all but finitely many of the a, are identically i.  Such functions are 
constructed in the same way as partitions of unity, using the fact that X is 
metric and ( 5 )  cover a neighborhood of Y . This map R satisfies R(x ,  1) = 
x ,  and where it is defined in the neighborhood where the product of the a, 
vanishes, it gives a nearly strict deformation into Y . 

To complete the proof we show that R is defined on a neighborhood of 
Y . Choose a point y E Y, and let U be a neighborhood so that there are 
finitely many indices i(1) , ... , i(k) so that for i not in this set a, is 1 on 
U , and for i in the set r, is defined on U x I .  Define R' to be the restriction 
of R, to the appropriate arc; ~ ' ( x .t) = r , ( ~ ' - '(x,t) . t + ( 1 - t)ai(x)), when 
defined. Suppose 5 c U is a neighborhood of y so that R"" is defined on 

9x I .  Since ~ ' ( j ) ( y ,t) = y for all t ,and U is a neighborhood of y , there 

is a neighborhood U,,, c 5 of y so that R'("(U, x I) c R . For indices 

( j )< i < ( j+ 1) ai = 1 on U ,  so R"') = R ' ( ' + ~ ) - ~. Since r , ( j  + I )  is 
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defined on U , Ri('+')(x .t) = ri(,+,)(Ri("(x .t) , t + (1 - t)aiuil, (x)) is defined 

for x e U,+, . Since R = Ri(k) on Uk, R is defined on Uk as required. 

The next result is used in the study of group actions and "branched covers"; 
see 3.6. 

2.6. Proposition. Suppose X ,  X* are metric spaces and X is locally finite 
dimensional. If (x*,Y*)-+ ( X ,  Y) is strict, open, strongly light, has the unique 
lifting property for strict arcs, and the restriction X* - Y* -+ X - Y is a cov-
ering space, then Y* c X* is tame if and only if Y c X is tame. Further, 
holink(X*,Y*) is the pullback of 

X* - Y* -+ X - Y c holink(X, Y) . 
Explanations. Denote the map by q . The arc lifting property is that if j :  ( I ,0) 
-+ (X,  Y) is strict and x E X* is a lift of j(1) ,then there is a unique lift of j 
beginning at x . Strongly light means each point z E X* has arbitrarily small 
neighborhoods U containing no other points in the preimage of q(z) and such 
that U is separated from q-'q(U) - U .  ("Light" traditionally means point 
inverses are separated from each other. Here we are more specific about the 
separating sets.) 

These hypotheses are not independent. For example if X - Y is locally 
1-connected then the path lifting hypothesis implies q is a covering space over 
X -Y . Also a covering space is strongly light, so this hypothesis is unnecessary 
except near Y . 
Proof. The first step is to establish the continuity of the lifting property. Sup-
pose j:E x ( I ,0) -+ ( X ,  Y) and a lift of E x (1) are given. The lifting 
property implies there is a lift j* of j extending this, which is continuous on 
arcs {e) x I . Since q is a covering space in the complement of Y ,  j* is 
continuous on E x (0,  11. To show it is continuous at ( e ,0) choose a neigh-
borhood of j*(e,0) . There is a smaller one, say V ,which satisfies the strongly 
light property. Since q is open q(V) is a neighborhood of j ( e ,  0) ,and there-
fore contains the image of j ( W  x J), where W is a neighborhood of e and 
J an interval containing 0. Since j* is continuous on arcs and on E x (0,  11, 
there are a smaller neighborhood W' and interval [O,G] so that j* takes 
W' x {G) u{e) x [O,GI  into V . But now j* takes all the arcs {w) x [O,61 into 
q-'q(V) , and one end into V ,which is separated from q- 'q(V) . Therefore 
j*(W' x [O,GI) c V . This implies j* is continuous. 

The continuous lifting property is equivalent to the holink statement; the 
lifting property gives a lift of the pullback into the holink, and the uniqueness 
of lifts implies it is a homeomorphism. Similarly suppose Y c X is tame, and 
r: N x I -+ X is a nearly strict retraction of a neighborhood. Let N* = q-'(N) , 
then we can lift r on N -Y to a strict map (N*-Y*)x (I,0) + (x*,Y*). To 
see this extends continuously to the identity on Y* we need: arcs which start 
in a sufficiently small neighborhood of y E Y* , and have small diameter when 
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mapped into X ,have small diameter in X* . The reason for this is almost the 
same as that for continuity. 

Finally we show that Y* c X* tame implies Y c X tame, by showing that 
Y* is locally tame at any particular point. Since X is locally finite dimensional 
we may restrict to a neighborhood, and assume finite dimensionality. 

Suppose X has dimension n ,and we want to show local tameness at y E Y . 
Let R :  V x I + X* be a nearly strict deformation of a neighborhood of y* into 
Y*,where q ( y * )= y . Choose neighborhoods N,,, 3 N, 1 ... 3 No of y* 
in X* which satisfy the strongly light property and R(Ni  x I)c Ni+, . Choose 
open sets Uo, .. . , U, c q(No)-Y so that Y u {U,) is a neighborhood of y ,and 
each Ui lifts into N o .  These are obtained as follows: Since X* - Y* -.X - Y 
is a covering space, each point in q(No)-Y has a neighborhood which lifts into 
N o .  Choose a locally finite covering {V,) of q(N,,) - Y by such sets. Since X 
has dimension n there are open sets Uo, ... ,U, such that each Ui is a union 
of disjoint open sets each contained in some V' . Lifts defined independently 
on these disjoint open sets give a continuous lift of U,. 

We now construct, by induction, nearly strict deformations si of Uj5i { U,)  
into Y , inside q(Ni+,). Assume si is defined, then there is a lift 

of the restriction of si ,extending the lift of U,+, into No . By the strongly light 
property of Ni+, , Si has image in Ni+, . Now "splice" together R and Si  . The 
composition R ( S , ( - ,  - ) , - ) : ( U j 5 i { U i } n U , + l ) x I x I-.X* hasimagein Ni+2. 
Define S,+,: ( U j 5 i { U i )n Ui+,)x I +X* by restricting this; choose a ,  b:X -. 
[ 0 ,I ]  and for each u restrict to the straight line in I x I from (0,O) to 
( a ( u ),b ( u ) ). If the product ab is 0 then this gives an almost strict deformation 
into Y* . If a is 1 off U j 5 , { U i )then Si+, extends continuously to Uiil x I by 
R off U j l i { U , ) nU,+,)x I .  If b is 1 off U,,, then qS,+, extends continuously 
to Uj5 i{Ui )x I by si off U j l i  { U i ) nUi+,)x I . Therefore if all three conditions 
are satisfied we can define s,+, to be s, on ( U j l i { U i )- Ui+,)x I , qSi+, on 
(Uj l i{Ui)nu,+,)x I ,  and qR on (Ui+,-Uj l i{Ui) )  x I . We note it is impossible 
for all three conditions to be satisfied on the complement of Uj l i+ , {Ui ) ,so 
in fact we get s,+, defined on a slightly smaller open subset of Ujl ,+,{Ui) .  
It is easily arranged that there are such subsets so that their union with Y is 
still a neighborhood of y . Therefore at the end of the construction we get a 
deformation s, of a neighborhood of y into Y , and conclude that Y c X is 
locally tame. 

The next proposition (2.8) is a little less precise than the above in that it 
describes a holink only "approximately." To prepare for this we develop some 
notation. 
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2.7. Approximate fiber maps. Suppose p: F + Y is a map. An approximate 
lift of a map g : E  + Y ,  to F ,  is a map h :E  x (0 ,  I] + F so that ph u 
g: E x [0, 11 -.Y is continuous. If q: E -+ X is a map then an approximate 
fiber map covering f :X + Y is an approximate lift of fq to F . Similarly 
an approximate fiber homotopy,covering a homotopy f ,  is a map h: E x I x 
(0,1] + F such that ph u f :  E x I x [O,1] -+ Y is continuous. There are 
approximate analogs of all the usual definitions; for example an approximate 
fiber homotopy equivalence is an approximate fiber map, an approximate fiber 
map going back, and approximate fiber homotopies of the two compositions to 
the identities. 

Approximate fiber maps (or homotopies) define strict maps (or strict homo-
topies) of mapping cylinders. (This is a consequence of the topology we are 
using on the mapping cylinder.) So for example Proposition 2.2 could be gener-
alized by allowing the center vertical map to be an approximate fiber map over 
4.  Curiously, this is not really a generalization because for homotopy links the 
two notions are equivalent: 

Lemma. An approximate lift of a map into Y to holink(X,Y) is approximately 
fiber homotopic to a I$, relative to subsets where it is already a lift. 

We say an approximate lift B x (0,  11 + holink(X, Y) is "already a lift" 
if it is independent of the (0 ,  I] coordinate, i.e. factors through a map B -. 
holink(X, Y) . This map is necessarily an exact lift of the original map to Y . 

Proof. Let h denote an approximate lift of f :  B + Y . The adjoint of h 
is a strict map h*: (B x (0,  11 x I ,  B x (0, 11 x (0)) + ( X ,Y) . Since h is an 
approximate lift the union h*uf:B x (O,1]x I u B  x (0) x (0) -.X is continuous. 
Composition of this with the diagonal B x I -.B x ((0,  11 x I U (0) x (0)) 
gives an adjoint to an exact lift of f .  Composition with the retraction in the 
first coordinate of (O,1] x I u (0) x (0) to the diagonal gives an approximate 
homotopy of the original approximate lift to the exact one. Finally if h is a 
product on some subset C c B then this construction does not change h on 
C .  

This implies that holinks which are approximately fiber homotopy equivalent 
are in fact genuinely fiber homotopy equivalent. Similarly a homotopy link 
which is an approximate fibration, is in fact a fibration. The weaker notion 
of approximate fibration is still useful, for example in 2.8 because the pushout 
used there is not a homotopy link. 

Recall that if Y is a metric space, E: F -.(0, co)is given, and p , g are as 
in the definition of 2.7, then an " E lift" of g to F is a map j :  E -.F such 
that d ( p j ( x ) ,g(x))  < E(X)  . Approximate fibrations are usually defined (e.g. 
in [13 I, 3.31) to be maps with the E homotopy lifting property for all E . This 
is equivalent to the approximate homotopy lifting property defined above. An E 

lift can be obtained by restricting an approximate lift. Conversely approximate 
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lifts can be constructed by choosing E lifts for a sequence of E converging to 
0, and then using a relative form of the lifting property to fill in between them. 

2.8. Proposition. Suppose X is a metric space, X 3 Y , X, , X2 are closed, 
and let Y, = Xi n Y. Suppose (XI n X,, Y, n Y,) is a strict neighborhood 
deformation retract in both (XI, Y,) and (X, ,Y,) . Then Y c X is tame ifand 
only if Yi c Xi are tame, and in this case Y, n Y, c X, nX2 is tame. Further, 
holink(X, uX, ,Y, u Y,) is approximately fiber homotopy equivalent over Y to 
the homotopy pushout of 

holink(X, ,Y,) + holink(X, nX, ,Y, n Y,) + holink(X, , Y,) . 
Proof. The tameness conclusion is obtained by simple combinations of the 
given homotopies, so we concentrate on the homotopy link. We show that 
the natural map from the pushout has an E homotopy inverse, for every E > 0 .  

Let R: ( X ,  Y) x I + ( X ,  Y) be a strict homotopy which preserves X i ,  is 
fixed on (X, n X,) , and satisfies Ro = id, and R ,  (N)  c (X, nX,) for some 
neighborhood N of (X, n X,) . Further suppose that the restriction of R to 
Y has radius less than E . The existence of such an R is equivalent to the 
strict deformation hypothesis. Choose 6: Y -. (0,  11 with the property: If 
y E YlnY2,  Z E  Y and X E  X suchthat d ( y , z )  < 6(y)  and d ( z , x )  < 6 ( z ) ,  
then x E N . Define a homotopy R? holinks(x , Y) x I + holink(X, Y) by 
composition with R . Then we claim R: factors through the homotopy pushout 
indicated in the statement. 

Here the homotopy pushout can be written holink(X1,Y,) x (0) U 
holink(X, nX,, Y, n Y,) x I u holink(X,, Y,) x {I)  . 

Define s: Y + [O,m) by s(z)  = min{d(y ,z) /6 (y) ,y E Y, n Y,) . Note if 
s(z)  < 1 then there is y with d ( y  ,z) < S(y), so by definition of 6 any j in 
holink*(X , Y) with j(0) = z has image inside N . Consequently if sj(0) < 1, 
R:( j) is in holink(X, n X, . Y, n Y,) . If sj(0) > 1, R:( j) is in exactly one 
of holink(X, ,Y,) or holink(X,, Y,) . Define S:holink6(x.Y) x I -.(pushout) 

by S(j)= (R:(j) . t) ,  where t = 0 if sj(0) 2 1 and j(0) E Y,, t = 1 if 
s j (0)  2 1 and j(0) E Y,. If sj(0) 5 1 ,  t = (1 - s j (0)) /2  if j(0) E Y, , and 
t = (1 + sj(0))/2 if j(0) E Y, . The composition of S with the natural map 
(pushout) + holink(X, Y) is R: . 

If we compose S with a homotopy inverse for the inclusion holink*( X ,Y) c 
holink(X, Y) we get a homotopy inverse for the natural map (pushout) + 

holink(X, Y) . The homotopy R* constructed above gives a homotopy of the 
composition in holink(X, Y) to the identity, and the other homotopy is ob-
tained similarly. Finally we note that since R was assumed to have radius less 
than E on Y , the projections of these homotopies into Y have radius less than 
E ,as required. 

The next proposition relates holinks in a triple X 3 Y 1Z ,and is a converse 
of sorts to part (2) of the corollary to 2.4. It is less precise than the other results 
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in that it compares the holink over Y to something over an approximation 
to Y.  

The homotopy link of the triple is defined by holink(X, Y , Z )  = 
maps(I x 1,1x {O),{O,O):X,Y,Z).  Restrictions to { I )  x I ,  I x {O), and 
(0) x I define maps to holink(X - Z ,  Y - Z )  , holink(Y, Z )  , and 
holink((X - Y) U Z ,  Z )  respectively. These give a commutative diagram 

The homotopy pushout of the lower row is an approximation to Y , according to 
2.2. The proposition asserts that the pushout of the upper is an approximation 
to holink(X, Y) . More precisely we use the controlled versions of the middle 
two terms, so that 2.4(2) applies to the lower pushout. 

2.9. Proposition. Suppose X 1Y 1Z are closed, X is a metric space, r:  N x 
I + Y is a nearly strict deformation retraction of a neighborhood of Z in 
Y, and the restriction r: ( N  - Z)  x (O,1] -+ Y - Z is covered by a jiber map 
holink(X-Z , Y-Z )  x (O,1] + holink(X -Z ,  Y -Z )  which is the identity over 
1. Then 

(1) 	 Y c X  i s t a m e i f a n d o n l y i f Y - Z c X - Z  and Z c ( X - Y ) u Z  
are tame, and in this case Z c X is tame. Further, 

(2) 	given E: Y + (0 ,  oo) there is 6:Y + (0 ,  oo) such that the natural trans- 
formation from the map of homotopy pushouts of the rows of 

Y - Z  - holinks ( Y  , Z) - Z 

to holink(X, Y) -. Y is an E homotopy equivalence. Moreover the left 
square is E homotopy equivalent to a pullback, and 

(3) 	if Y c X is tame then the natural map from the homotopy pushout of 

to holink(X, Z), is a jiber homotopy equivalence over Z . 

Proof. We begin by showing that if Y - Z c X - Z is tame we may as- 
sume it has a pinched neighborhood in X which is the mapping cylinder of 
hol ink(X-Z,Y-Z)- .  Y - Z .  

Proposition 2.4(2) applies to Y - Z c X - Z . Thus given P: X + [0, oo) 
with p-' (0) = Z there is an a: Y -+ [C,  oo) with cu-' (0) = Z , so that the map 
from the pushout of X - Y t holinka(x - 2 ,  Y - Z )  -. Y - Z , to X - Z , 
is a p homotopy equivalence strictly re1 Y - Z . Let P denote this pushout, 
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with the following metric: The mapping cylinder is naturally homeomorphic to 
holinka(X-2,Y-Z )  x [0, a], by which we mean the union of { f )  x [0 , af (0)] 
for f E holink , and on this we use the product metric. On X- Y and Y - Z  use 
the given metrics. Then this extends to a metric on P u Z by the given metrics 
on X and Y , and by interpolating linearly on the arcs { f )  x [0,f (O)]. Denote 
this space by POZ,  then the map POZ + X is a f i  homotopy equivalence 
strictly relative to Y . Since holinks and tameness are preserved by such maps 
it is sufficient to consider these in P O 2  . 

We now have a nice pinched neighborhood of X -Z . As a first application of 
this modification we see there is a strict homotopy R: ( X ,  Y) x I + (X , Y) with 
R ,  the identity and the restriction to a neighborhood of Z in Y the nearly 
strict retraction r specified in the data. In the statement r was only assumed 
to be defined on N , but it can be extended to the rest of Y essentially to be the 
identity. Over (0, I] r is covered by a fiber homotopy of holinka(X-Z, Y -Z) 
(using 2.4(2) to substitute the controlled holink in the hypothesis). The fiber 
homotopy gives a homotopy of the mapping cylinder in PO2 which is the 
identity on holinka(X - Z ,  Y - Z )  x (1) and r on Y .  This extends by the 
identity to give R: (POZ) x I + POZ as required, and the strict equivalence 
gives such an R on X . 

Now we verify ( I ) .  If Y c X is tame then Y - Z  c X - Z  is tame by (2) of 
the corollary to 2.4, so there is a map R as above. Let N be the neighborhood 
of Z in Y which R deforms into Z , and let W be a neighborhood of Z in 
X so that the nearly strict deformation of X into Y carries W into N . The 
composition of R and the deformation to Y defines a map W x I x I + X .  
The restriction to the diagonal is a nearly strict deformation of W to Z , which 
preserves ( W  - Y) u 2 ,  so Z c X and Z c (X - Y) u Z are both tame. 

Conversely suppose Y - Z c X - Z and Z c (X - Y) U Z are tame, 
and conclude first that Z c X is tame. There is a nearly strict deformation 
S of W c (X - Y) u Z to Z . There is also a deformation R of a pinched 
neighborhood V of Y which is r on Y , nearly strict with respect to Z , keeps 
the complement of Y -Z in the complement, and pushes the intersection with 
a neighborhood of Z into Z . To see this recall that we may assume (by using 
Pi jZ ) that Y has a pinched neighborhood which is the mapping cylinder of 
the holink. Then R may be defined to be the mapping cylinder of the fiber 
map over r . The composition SR is defined ( V  - Y) x I x I -, X . Suppose 
a ,  b : X - Z +  [0,1] aregiven. Define S * : X X I  + X by R on Y ,  S on 
X - V , and if x is in V - Y , {x) x I is taken to SR restricted to the straight 
line from ( x ,  1 , l )  to ( x ,  a(x)  , b(x)) . This is continuous if a is 1 on X - V 
and b is 1 on Y. It takes a neighborhood of Z nearly strictly into Z if the 
product ab = 0 .  These three conditions can be satisfied on X -Z , so S* can 
be defined there. It extends continuously by the identity to Z . 

Several observations about this S* will be useful later. First, it keeps 
(X - Y) u Z in itself. This is because R , S do. Second, on Y it restricts 
to the retraction r given in the data. 
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To complete the proof of (1) we show that Y c X is tame. Let s*: X x 
I + X denote the nearly strict deformation constructed above, which pushes 
a neighborhood W into Z ,  and is nearly strict with respect to the subspace 
Y .  Let T: X x I + X denote a nearly strict deformation which pushes a 
pinched neighborhood V of (Y,  Z )  into Y. Suppose 6: Y + [O,m) is such 
that 6-'(0) = Z and V contains the ball of radius 36(y) about y . Both T' 
and S' are required to be the identity. 

The composition defines a map S*T:  X x I x I + X ; s * T ( x ,  a ,  b) = 
S*(T(X,  a ) ,  b) . A new deformation will be defined by restricting this. Define 
S(X)= inf{d(x ,y)/6(y) ,  y E Y - Z )  , and define 

and 
b(x) = 1 - maxi1 ,min{s(x) - 1,O)). 

Define a new homotopy R: (X-Z )  x I +X by mapping {x) x I to the straight 
line between (a(x),b(x)) and ( 1 , l ), and composing with S*T . Since s is 
continuous on X -Z , R is also. Since S* and T both are the identity on Z , 
R extends continuously by the identity on Z . On Y -Z it is T ,which is the 
identity, so R is the identity on all of Y . Since S*and T are nearly strict with 
respect to Y , so is R . Finally we observe that R pushes a neighborhood of 
Y into Y . On the pinched neighborhood of radius 26,  a (x )  = 0 so T takes 
points into Y and S* does not move them back out. Since T fixes Z there is 
a neighborhood U of Z which T keeps inside W . On the complement of the 
26 pinched neighborhood in U , b(x) = 0 so the S* part of R takes points 
into Z . The union of the 26 pinched neighborhood and U is a neighborhood 
of Y ,  and is pushed into Y . 

We now begin proof of (2). The equivalence of the bottom pushout to 
X is given by 2.4, and the upper part is very similar. We construct a map 
holinks(X, Y) + (pushout) . Note that p-' (Y - Z )  = holink6 (X - Z ,  Y - Z )  
and p - ' (2 )  = holink"(x- Y)uZ,  Z )  ,where p: holinks(x, Y) + Y is the pro- 
jection. These map to the homotopy pushout by inclusion, so to fill in between 
these we need a map of a deleted neighborhood of holinks((X - Y) U Z , Z )  
to the mapping cylinder part of the pushout, holinks(x, Y, Z )  x I .  This is 
constructed from the fiber map of holinks covering the deformation r . 

Extend r (by the identity) to all of Y ; r: Y x I + Y . Let 

denote a fiber map covering r . We have used 2.4(1) to substitute the controlled 
holink. For each j E holinks(X - Z ,  Y - Z )  this gives a strict map 

which is r ( j (0),-) on (O,1] x (0) . Extend this to {0,0) using r ,and compose 
with a standard map I x I + (0,  11 x Iu (0 ,  0) which is the identity on I x (0) . 
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Denote the result by g (j):I x I + X . If j(0) E N (the neighborhood r 
pushes into Z ) then R(j )  is a strict map (Ix I ,I x (01, (0,O)) + ( X ,  Y, Z )  . 
In other words R ( j )  is a lift of j into holinks(x, Y, Z )  . This together with 
the function s: ( N  -Z )  + I defined in the proof of 2.4 gives the required map 
into holinks(x ,Y ,Z )  x I . All together these define a map holinks ( X ,  Y) + 

(pushout) . It is easily verified, as in 2.4, that for appropriately small 6 this is 
an E homotopy inverse for the natural map. 

Next we verify that the square 

Y - Z  - holinks ( Y  ,Z )  

is E equivalent to a pullback. A point in the pullback is a pair i ,  j with 
i: ( I ,  0) + (X - Z ,  Y - Z )  strict, j: (I,0) + (Y,Z )  strict, and i(0) = j(1) . 
A map I x I + X in the triple holink determines such a pair by restriction 
to (1) x I ,I x (0).  The map R(i)  constructed above gives a map from the 
pullback to the triple holink by taking i , j to i , r(i(0),-) . To show that 
is an E homotopy inverse for the restriction we need a canonical E homotopy 
from j to r ( j (1), -) . This is provided by r ( j(-)  , -) , since r (- , 1) is the 
identity. 

Finally we prove (3).  Since Y c X is tame then there is a deformation 
S* as above, which pushes a neighborhood V of Z into Z .  Also there is a 
nearly strict deformation into Y of the pinched neighborhood of Y of radius 
a ,  where a:Y + [O,m) has a-'(0) = Z . Let R denote this deformation. We 
define a map V - Z + (pushout) : If x has radius at least a from Y then x 
is taken to the arc S*(x, -) E holink((X - Y) uZ ,  Z )  . If x is in Y the same 
formula defines an arc in holink(Y,2 ) .  If x has radius d from Y ,with 0 < 
d < a ,  define fx(s,  t) = s*(R(x,s) ,  t ) .  Then (fx, d la )  E holink(X, Y, Z )  x 
I .  These fit together to give the desired map to the pushout. This map of a 
neighborhood induces a map from holink(X,Z )  to the pushout, which is easily 
seen to be a fiber homotopy inverse for the natural map. 

The next objective is to develop a criterion which in useful circumstances 
implies tameness. 

2.10. Homological tameness. Suppose X is metric, Y c X , M is a neighbor-
hood of Y ,and lr, (M- Y) + lr is a homomorphism. Then Y is homologically 
tame, with Zlr coefficients, if there is a retraction r: N + Y of a neighborhood 
to Y ,  and for every neighborhood U of Y and E > 0 there is V c U such 
that 

H , ( ~ - ~ ( K ) ~ V . K ; Z ~ ) + H , ( ~ - ' ( K ~ ) ~ U , K & ; Z ~ )  

is trivial, for every i and K c Y . 
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Here, as in [13], K~ denotes the set of points within e of K .  The Zn 
homology is the ordinary homology of the branched cover corresponding to the 
kernel of the homomorphism to n in the complement of Y . We do not require 
connectedness here. If U ,  V ,etc. are not connected, n l  is understood to be 
the groupoid obtained by disjoint union of fundamental groups of components, 
and similarly n may be a groupoid. 

A way to see the relevance of this condition is to suppose Y is tame, so 
there is a nearly strict deformation of a neighborhood V into Y ,  inside a 
neighborhood U . If K c Y this restricts to give a nearly strict homotopy of 
r -1 (K)nV into Y ,re1 K . If V is small enough this takes place in r- ( K ~ ) ~ u' , 
so the inclusion (r-' (K) n V ,  K)  + (r-' ( K ~ )  n U,  K ~ )  is trivial in homology. 

For Z coefficients this argument does not use strictness, so in fact a neigh- 
borhood deformation retract is Z homologically tame. If n is nontrivial the 
strictness is used to lift the deformation into the covering space of U - Y cor- 
responding to the kernel of the homomorphism to n .  

There is a corresponding notion of local homological tameness at a point 
y E Y ,  namely there is a neighborhood M of y in X so that the above 
condition holds for K c M n Y . We usually use the local version, since local 
fundamental groups are more often locally constant than globally constant. 

2.1 1. Proposition. Suppose X is metric, and y E Y c X . If Y is locally tame 
at y then it is homologically locally tame at y , with any coejicients. Conversely 
if X is finite dimensional, Y and X - Y are ANRs, and the complement of 
Y has constant local fundamental group n in a neighborhood of y , and Y is 
homologically locally tame at y with Zn coejicients, then Y is locally tame 
at y .  

The complement has constant local fundamental group n near y if there is 
a neighborhood M in X and nl  ( M  - Y) + n , and a smaller neighborhood 
N with the following property: Given e > 0 there is 6 > 0 so that a loop in 
N - Y of diameter less than 6 has a nullhomotopy of diameter less than e 
in M - Y if and only if it has trivial image in n . The condition "1-LC" for 
embeddings is equivalent to trivial local fundamental groups in this sense. 

Proof. That tame implies homologically tame follows from the remarks given 
in the explanation of the definition. 

The converse is proved using the controlled homotopy theory of [13 I, $51. 
Suppose Y is homologically tame over a neighborhood N of y in Y.  The 
half-way point in the proof is to show that given a neighborhood of Y , U and 
e > 0 there is V c U such that for every W c V there is Z c W such that 
there is a homotopy of radius < e (measured in Y ) of ( V  - Y) n r- ' (N - e) , 
re1 Z - Y , i n  U - Y , i n t o  W - Y .  

To complete the proof from the half-way point, choose ei > 0 so that e = 

C e i  exists, and N-E is a neighborhood of y .  Choose neighborhoods of 
Y so that r) y, = Y ,  and there is a deformation of radius < ei of (I/;. - Y) n 
r - l ( ~ - " ) ,  re1 q+,, in y-, , into I/;.+, . Then define H to be the limit of the 
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concatination h, h2 . . . hi . . . . More precisely suppose hi(-, 1) is the identity 
and hi(- ,0) takes T into + . Define g j  = hj(gjyl(x),0 )  , and define 
H ( x ,  t) = hi(gj- ,(x),  i ( i  + l ) ( t  - l l i ) ) ,  if t is in [ l /z ,  l / i  + 11. Then H 

extends to the required nearly strict deformation of (V - Y) n r - ' ( ~ - ~ )into 
Y. 

We describe how to get to the half-way point. To simplify notation we treat 
the case N = Y. Since X is a finite dimensional ANR it can be arbitrar-
ily closely approximated by n-complexes, for some fixed n .  Therefore it is 
sufficient to show that for every U and E > 0 there is V c U so that for ev-
ery W c V there is Z c W (all neighborhoods of Y ) such that the inclusion 
(V- Y, Z- Y) + (U- Y, W- Y) is ( E  ,n)-connected over Y , in the sense of [13 
I, 5.11. According to the eventual Hurewitz theorem [13 1, 5.21 this is the case if 
we can find appropriate I:1. . . 1Vk 1Wk 1. . . 1Wl for sufficientlylarge k . 
The condition required of these is that (?+,-Y , w.,, -Y) + (y -Y , w.-Y) be 
S homologically trivial with Zn coefficients, and T/;:+, -Y + -Y, y+,-Y + 

- Y have "local image" in n, equal to n (see [13 1, 5.21). These condi-
tions are easily achieved using the homological and local fundamental group 
hypotheses. 

2.12. Corollary. Suppose X is a locally finite dimensional metric ANR, and 
Y c X is a closedANR with trivial localfundamental group in the complement. 
Then Y is tame in X . 

Proof. Since X and Y are ANRs there is a neighborhood which deformation 
retracts to Y . This implies homological tameness with Z coefficients, according 
to the comments after the definition, so 2.1 1 implies Y is tame. 

Note that if Y and X -Y are ANRs then Y is a neighborhood deformation 
retract in X if and only if X is an ANR. If the local fundamental groups in 
the complement of Y are constant, then 2.12 and 2.6 show that Y is tame in 
X if and only if the branched cover (branched over Y ) is an ANR. 

2.13. Reverse tameness. Suppose X 1 Y are metric, and r: N + Y is a 
retraction of a neighborhood. Y is said to be reverse tame in X if for every 
E: Y + (0,oo) and neighborhood U of Y there are a neighborhood V of Y 
and a homotopy h: (X - Y) x I +X - Y satisfying: 

(1) h is the identity on (X - Y) x (0) u (X - U) x I ,  
(2) h takes (U - Y) x I into U - Y , 
(3) h ( ( X - Y ) x { l ) ) c X - V , a n d  
(4) rh has radius less than E . 

The homotopy in the definition of "tame" given in 2.1 pulls neighborhoods 
of Y toward-and finally into- Y . The property here is called "reverse tame" 
because the opposite happens; the homotopy h pulls X - Y away from Y . 
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If X is locally compact then reverse tameness is the same as "tameness of 
the end of X - Y over Y" of definition 1.1 of [13 I]. It is needed in 55 to 
apply the results of [13] and is also used in $4 in the development of "simple 
homotopy." 

2.14. Proposition. Suppose X is locally compact, Y c X is closed with locally 
constant fundamental group in the complement, and X -Y is a manifold without 
boundary. Then Y is tame in X if and only if it is reverse tame. 

Proof. Roughly, the two conditions are dual. With constant local fundamental 
group hypothesis there are homological characterizations of both notions of 
tame; 2.1 1and [13 I, 1.71. In terms of neighborhoods U 1V of Y as above, the 
definition in 2.10 concerns Hi(U,  V) where [13 I, 1.61 uses Hi(X- V ,X - U) . 
Homological tameness (either version) for X - Y implies "tameness" for the 
corresponding cohomology groups. But one version of tameness for cohomology 
is Alexander dual to the other version of tameness in homology, so the two 
conditions are equivalent. Essentially this argument, with more detail, is given 
in the proof of Theorem 3.1.1 of [13 I]. 

There is another criterion for reverse tameness, in terms of the homotopy 
link. Basically it says that the homotopy link must be very large for reverse 
tameness to fail. A consequence (actually an ingredient in the proof) is that for 
locally compact spaces, reverse tameness of a subset Y is preserved by strict 
re1 Y homotopy equivalence. 

2.15. Proposition. Suppose X is locally compact and metric and Y c X is 
closed and tame. Then Y is reverse tame i f  and only i f  holink(X, Y) 4 Y is 
properly E dominated, for all 8: Y 4 (0,co). 

"Properly E dominated" means there is r:K 4 holink, j: holink 4 K , 
and a homotopy h:r j  -- 1 so that phr is proper and ph radius less than 8 . 
This condition allows construction of a locally compact model for the mapping 
cylinder of the holink. 

Proof. Suppose first that Y is reverse tame in X and E is given. Use the tame-
ness to choose a closed neighborhood N which nearly strictly 814-deformation 
retracts to Y.  This deformation gives a map of N - Y into h ~ l i n k ' / ~ ( ~ ,Y). 
Using the local compactness we may assume the deformation is proper, and in 
particular the retraction is proper. 

Next suppose 6 is small enough that the 6 neighborhood of Y lies inside 
N . Then there is a factorization 

which is 812 homotopic to the identity. This means N - Y 812-dominates 
holink(X, Y) . Now use reverse tameness to find a 6 homotopy of N - Y into 
N - U ,  for some open neighborhood U of Y. This gives a 6 domination 
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of N - Y , so if 6 is small enough gives an c domination of holink(X, Y) . 
Finally note that since U is open the domination is also proper. 

For the converse we define the mapping telescope of a sequence of domina- 
tions of p: E + Y. Suppose we are given spaces Ki , maps ri: Ki + E and 
j,: E + Ki , and homotopies hi: r . j .  - 1 . Define Z to be the union of the 

I .
mapping cylinders of the compositions K, + E + Ki+,, and Y.  Explicitly, 
take Ui K, x [&,i ], identify points in K, x {&) with images in Ki+, x {&) . 
Then take the union with Y x (0) . Give this the topology so that the inclusions 
and projection to Y x [0, 11 (defined below) are continuous. 

Define a map Z + cyl(p) by: On K, x {&) +E x {&) use the projec- 
tion ri . On the mapping cylinder of ji+,ri to E x [+, & I ,  fill in with the 
homotopy -h,+,ri: ri - ri+, ji+,ri.  (Here " -h " denotes the homotopy ob- 
tained by reversing the I coordinate in h .) Finally define the map to be the 
identity Y x (0) + Y x (0) . The "projection to Y x [0, I] " used to define 
the topology on the telescope is the composition of this map and the projection 
cyl(p) + Y x [0, 11. The definition of the topology on the mapping cylinder 
implies that Z + cyl(p) is continuous. 

2.16. Lemma. Suppose Y is locally compact metric, p : E + Y is given, ci > 0 
converge to 0, and (K, ,ri ,ji ,hi) are proper ci dominations of E over Y . 
Denote the mapping telescope by Z . Then the map Z + cyl(p) is a strict re1 
Y homotopy equivalence, Z is locally compact, and Y is reverse tame in Z . 
Proof of the lemma. A homotopy inverse cyl(p) + Z is defined by ji on 
E x ($1+K, x {+),and filling in with the homotopies ji+,hi: ji+,ri ji - ji+,. 
The convergence hypothesis on ci implies that this is continuous. We describe 
a re1 Y hmotopy of the composition Z + cyl(p) + Z to the identity of Z 
(the homotopy of the other composition is similar and easier, so will not be 
described). 

The map Z +Z is obtained from homotopies making the diagram 

commute. This homotopy is the concatination of j,+,h,r,, which takes 
ji+,ri!iri to ji+,ri , and ji+,(-hi+,)ri which takes ji+,ri to ji+,ri+,j,+,ri ,by 
inverting the homotopy parameter. The map of mapping cylinders can therefore 
be described as a concatination; (j,h, r,) . . . (ji+, hiri)(- ji+,hi+, ri) (jif2hi+,ri+,) 

There is a homotopy from the identity of Z to the map which moves ev- 
erything down one place in the union of mapping cylinders. On the diagram 
level this map corresponds to composing with j i+,ri .  We compose this with 
the map Z + 2 .  Specifically, in the range of the concatination we push the 
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second homotopy in each pair down one level, and in the domain we push 
down into the domain of the first homotopy. This produces a homotopy to 
. . .(ji+lhi~i[ji~,-ll)(-[ji+2ri+llji+lhi+l~i)(ji+2hi+l~i+l[ji+lril). . . . NOWusing 
the homotopies r*j* - 1 this is homotopic to the concatination . . . (- ji+2hi+lri) 
(ji+2hi+lri). . . . This is homotopic, by cancellation of inverses of homotopies, 

to the map of mapping cylinders induced by the commutative diagrams 

This map, however, is obtained by pushing down in the chain of mapping cylin-
ders, so as above is homotopic to the identity. 

This completes the proof that Z is equivalent to cyl(p) . This general sort 
of argument comes from [lo], and is used in [13 11, 6.31. 

Next we show Y is reverse tame in Z . First define a retraction R, of Z -Y 
to the first n stages (the mapping cylinders of K, + . . . +K, ) by: On Ki with 
i > n use j,ri: K, + K, . Then map the mapping cylinder of K, + K,,, to 
K, by the homotopy -jnhif1ri: j,ri - jnri+,(j,+,r,). 

There is a homotopy Rn - R,+, : Push the K, mapped by R, into K, 
down into K,,, . This corresponds to composing the homotopies used with 
j,+,rn, soweget -j,+,r,j,hi+,ri. Apply h, tocancel r n j n ,andthe result is 
Rn+,. Composing these homotopies for all m > n gives a homotopy R, - 1, 
on Z - Y .  The radius of this homotopy (measured in Y ) is less than about 
4cn , SO by taking n large enough we get arbitrarily small homotopies pulling 
Z - Y outside a neighborhood of Y . 

Finally the local compactness of Z is an elementary consequence of the local 
compactness of Y and the properness assumption on the p,h,r, . 

Completion of 2.15. We show that proper E domination of the homotopy link, 
all E > 0 ,  implies reverse tameness. Choose E, dominations for E, converging 
to 0. According to the lemma the mapping cylinder of the holink is strictly re1 
Y homotopy equivalent to the mapping telescope Z .  Since Y c X is tame, 
X is strictly re1 Y equivalent to the holink homotopy pushout (2.4). Putting 
these together we get X + X and N + Z ,  for some neighborhood N of Y 
in X ,  together with strictly re1 Y homotopies of compositions of these to the 
identities, defined on some neighborhoods of Y . 

It is not hard to see that such a strict re1 Y equivalence of neighborhoods 
preserves reverse tameness. The key point is that Z is locally compact, so if U 
is a neighborhood of Y in Z then Z -U + Y is proper. The image in X - Y 
is also proper over Y , so lies in the complement of some neighborhood of Y . 
Since-by the lemma- Y is reverse tame in Z , it is reverse tame in X . 
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In this section the local homotopy material of 52 is used to develop the ho- 
motopy properties of general (as opposed to ANR, or manifold) homotopically 
stratified sets. The main structure result is 3.2, on tameness and holinks of pure 
subsets. Proposition 3.5 characterizes stratified neighborhood deformation re- 
tracts in terms of local data. Proposition 3.6 applies to quotients of group 
actions and is used in the proof of 1.4. Finally 3.7 gives a "pullback" construc- 
tion which can be used to modify lower skeleta of a homotopically stratified 
set. 

We require all spaces in the section to be metric and will omit this hypothesis 
from individual statements. 

3.1. Definition. A filtered space X is homotopically stratified if for k > i , 
Xi - is tame in (xk-xk-')u (xi- x i - ' ) ,  and the holink of this pair 
is a fibration over X' -xi-'. 

The subsets X, of a filtered space X are required to be closed, and as above 
called "skeleta." Differences xi-xi-' are called "strata." A map X + Y 
preserves strata if every component of a stratum of X has image in a stratum 
of Y. The image stratum is not required to have the same index. A stratum- 
preserving homotopy is a map A x I + Y with Y filtered, such that each 
arc { a )  x I taken to a single stratum of Y . This means that the inverse image 
filtration of A x I is the product with I of the filtration of A x (0) or A x (1) . 
Note this definition does not use a preassigned filtration of A .  

Apure subset Y of a filtered space X is closed, and a union of components of 
strata. In other words, Y contains each component of X' -xi-' it intersects. 
For example if a finite group G acts on M , M/G is filtered by orbit type, and 
M~ denotes the subset with isotropy subgroup contained in H ,then G M ~ / G  
is pure in M/G . 
3.2. Proposition. Suppose X is homotopically stratified and K c X is pure. 
Then there is a nearly (strict and stratum-preserving) deformation retraction of 
a neighborhood to K . Further, holink(X, K) + K is a stratified system of 
jibrations, with respect to the given filtration. 

Recall that a deformation is "nearly" something if it satisfies that property 
on (0,  I] ,  that is, until things absolutely have to be mapped into K . We recall, 
from [13], the definition of stratified systems of fibrations. A map p: E + Y 
is a stratified system of fibrations with respect to a filtration of Y if p is a 
fibration over strata ( p :p- l  (Y'  - Y '-') + (Y '  - Y '-I)  is a fibration), and each 
skeleton is a p-NDR. This last means there is a deformation retraction of a 
neighborhood in Y to Y, which is covered by a deformation retraction of a 
neighborhood in E to p-I(?.) . 
3.3. Lemma. Stratified systems offibrations have the approximate lifting prop- 
erty for stratum-preserving homotopies. 
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Proof. Suppose we are given a lifting problem 

A x I  f -Y 
with p a stratified system of fibrations and f stratum-preserving. An approx- 
imate lift (see 2.7) is a map G: A x I x (0, 11 + E ,  which is the projection 
followed by Fo on A x (0) x (0, 1] ,and such that pG uf x (0) is continuous. 

We actually show that for E :  Y + (0,oo) there is a similar 6 so that if B c A 
is pure, f: A x I + Y preserves strata within 6 and an exact lift is given over 
A x (0) UB x I ,  then there is an E homotopy of f re1 A x (0) u B x I and 
an extension of the given lift to a lift of this new map. 

Here "preserves strata within 6 " means that if f ( a ,  t) E Y' then the arc 
f(a,-)  is within 6 of Y'. 

To get an approximate lift from this statement one defines G on A x I x 
{$)El by choosing homotopies to maps which lift, for going to zero. 
Then fill in between these using the relative version on A x I x {&,+) c 
A x I x [ & , $ ] .  

The proof of the "actual statement" proceeds by induction on the number 
of skeleta in the filtration. Suppose, therefore, that the statement is known for 
sets with n or fewer strata. 

The first step is to observe that this lifting property implies a relative version. 
Suppose j: A + [O,oo) is given, f preserves strata within 6 , and a lift into 
E is given on A x (0) U j-'([O, 1)) x I .  We want to conclude that if 6 is 
small enough there is an E homotopy of f re1 A x (0) u j-'(0) x I and a 
lift of the result into E which agrees with the given one on this subset. Define 
g:(A x (0) u j-'([o, 1)) x I) x I + Y by g ( a , s , t )  = f(a,max{s + t ,  1)) .  
Then a lift of this is given over (-) x (0) . Extend this to a lift G , after small 
homotopy re1 (-) x (0) , using the induction hypothesis. The relative lift is 
given by taking ( a ,  t) to G(a,  s t ,  (1 - s)t) , where s = min{j(a),1) . The size 
can be controlled by controlling the homotopy of g and reducing j . 

For the induction step suppose and Y has exactly n + 1 strata. Let N 
be a neighborhood of Y" which has a deformation into Yn covered by a 
deformation in E into p - ' ( ~ " ) .If a: Y" + (0,oo) is small enough then the 
2a neighborhood of Y" lies inside N . Define j: A + (-oo, oo) by j (a )  = 
2 - (distance of f,(a) from Yn)/a .  If f preserves strata within sufficiently 
small 6 then the restriction to j-'(-oo, 11 x I lies in Y - Y" ,and lifts to E 
because p is a fibration there. Next apply the deformation of N into Y" to 
get a homotopy of f to a map which takes j-'([o, oo)) x I into Y" and is 
covered by a homotopy of lifts over j-' (-oo, 11x I . If a is sufficiently small 
this homotopy will also be small. In particular we can arrange the new map 
j-'([O, oo)) x I + Y" to preserve strata within any preassigned y . Now apply 
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the relative lifting property in Y" to extend the lift over j-'([O, oo))x (0) U 

j-'(0) x I to the rest of A .  

Proof of 3.2. We begin with the case in which K has a single stratum and pro-
ceed by induction on the number of strata in X .  We may assume K is the 
smallest nonempty skeleton of X ,  since anything smaller must be separated 
from K and can be deleted. If X has two strata, then the definition of homo-
topically stratified asserts that K is tame in X and holink(X,K) + K is a 
fibration. Suppose the same is true for sets with n strata and X has n +1. Let 
Y c X be the lowest two strata, so Y -K has only one stratum. K is tame in 
Y so there is a nearly strict deformation r: N x I + Y of a neighborhood into 
K . Y -K is a single stratum pure subset of X -K ,so the induction hypothesis 
implies that holink(X -K ,Y -K) + Y -K is a fibration. This implies there is 
a lift of r: N x (O,1]+ Y -K to a fiber map of holinks, extending the identity 
over N x (1). 

Proposition 2.9 now applies to show that K is tame in X .  Further the 
homotopy link is shown to be, up to E ,  a homotopy pushout of fiber maps 
between homotopy links. The homotopy links are of single strata in sets with 
n or fewer strata, so are fibrations. The homotopy pushout of fibrations is a 
fibration, so holink(X, K) +K satisfies the E lifting property. Since this is so 
for all E ,it is an approximate fibration. Finally 2.7 implies that a holink which 
is an approximate fibration is a fibration, completing the proof in this case. 

The proof for general K is similar. The "key" step is: Suppose X K > J 
are pure and satisfy 

(1) a neighborhood of J in K has a nearly (strict and stratum-preserving) 
deformation retraction into K , 

(2) holink(X -J ,K -J)+K -J is a stratified system of fibrations with 
the given filtration of K - J ,and 

(3) K - J c X - J and J c (X -K) u J are tame. 

The conclusion is that (1) J c K is a p-NDR subset with respect to 
p: holink(X, K) + K , and (2) there is a nearly strict deformation of a neigh-
borhood of J in X into J ,which is nearly stratum preserving in K and strict 
with respect to (X,K) . 

This "key step" follows from the proof of 2.9. Let r denote the deformation 
assumed to exist in (1). Since it is stratum preserving on N x (0,  11 and the 
holink in (2) is a stratified system of fibrations, 3.3 gives an approximate lift 
of r to holinks. The lemma following 2.7 shows there is an exact lift. This is 
the first part of the hypothesis of 2.9. Next since K - J c X - J is assumed 
to be tame in (3), the first part of the proof of 2.9 applies to extend r to a 
strict map R: (X,K) x I + (X,K) . Composing arcs in (X ,K) with R gives a 
deformation of holink(X,K) ,and in particular a deformation of P-'(N) into 
p - l ( ~ )which covers the deformation r . This proves conclusion (1). Second 
since J c (X - K) uJ is assumed tame, 2.9(1) asserts that J c X is tame. 



472 FRANK QUINN 

More precisely the proof shows that there is a nearly strict deformation S* of 
a neighborhood which satisfies conclusion (2). 

Now we show the proposition follows from the "key step." Suppose the 
proposition is known for sets with at most n distinct strata, and suppose X has 
n + 1 . Suppose J c X is pure and we want to find a nearly stratum-preserving 
deformation retraction of a neighborhood to J . Let K be the next-to-the-top 
skeleton of X . Then K and (X - K) u J are homotopically stratified with 
n or fewer strata, so the hypotheses of the key step follow from the induction 
hypothesis. Conclusion (2) of the key step gives a deformation which is nearly 
stratum-preserving in K and nearly strict in ( X ,K )  . Since there is only one 
level of strata not in K ,this means the deformation is nearly stratum-preserving 
in X .  

Similarly suppose X has n + 1 strata, and we want to show p: holink(X, K )-K is a stratified system of fibrations. The single stratum case implies p is a 
fibration over the strata of K ,  so it remains to see that the skeleta J c K are 
p-NDR subsets. This is conclusion (1) of the key step, which applies since the 
induction hypothesis implies the hypotheses of the key step. 

Proposition 3.5 characterizes "neighborhood deformation retracts" in the cat-
egory, in terms of the local data. The main application is to boundaries in man-
ifold homotopically stratified sets. The global version is useful in recognizing 
"h-cobordisms." 

3.4. Definition. A closed subset V c X is homotopically transverse to Y c 
X if the inclusion holink(V, V n Y) - holink((X - Y) u V, V n Y) is a 
fiber homotopy equivalence over V n Y .  We note that by part (2) of the 
corollary to 2.4, holink((X - Y) u V,  V n Y) is the restriction to V n Y of 
holink(X, Y) - Y . The definition can therefore be generalized to strict maps 
(V,  W) - ( X ,  Y) by requiring that the natural map from holink(V, W) to the 
pullback of holink(X, Y) be a fiber homotopy equivalence. 

If X is a homotopically stratified set then we can consider Y c X homo-
topically transverse to the skeleta of X . If Y is homotopically stratified with 
respect to the induced filtration then the formulae for the holinks of skeleta 
show that this condition can be recognized locally. It is equivalent to: if A 
and B are strata of X ,  and B is in the closure of A ,  then Y n (A U B) is 
homotopically transverse to B c A u B . 

A stratum-preserving map X - Y of homotopically stratified sets is ho-
motopically transverse (to the given filtration) in this sense if and only if the 
mapping cylinder with the natural filtration is a homotopically stratified set. 
This condition is an analog of the "transverse" maps of [4]. 

3.5.  Proposition. Suppose X is homotopically stratijied and Y c X is closed. 
Then there is a stratum-preserving deformation retraction of a neighborhood in 
X to Y i fand only if Y is homotopically stratified with respect to the induced 
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Jiltration, the inclusion Y c X is homotopically transverse, and 

is a neighborhood deformation retract, for each i . 

This deformation is genuinely stratum-preserving, not "nearly" as in 3.2. 
There is also a global version: X itself deformation retracts if and only if 
Y is homotopically transverse, and (x'-xi-') deformation retracts to Y n 
(xi-xi-') for each i . 
Proof. The "only i f '  direction is elementary. For the converse we proceed by 
induction, and assume there is R,: Xi x I +Xi stratum-preserving, the identity 
on Xi x (1) u (Y n Xi) x I ,  and there is a neighborhood N of Y n Xi such 
that Ri(N x (0)) c Y . We want to extend this to Ri+, defined on Xi+, . For 
notational convenience we set X = Xi+' , Y = Y nXi+' . 

The first step is to observe that since R, is stratum-preserving and 
holink(X, Xi) is a stratified system of fibrations (3.2), there is a fiber homo- 
topy of the holink covering Ri ,and fixed over YnXi (3.3, 2.7). Further since 
Y is homotopically transverse we may assume that over N x (0) the holink 
maps into holink(Y, Y nXi) . We use this holink information to extend R, to 
a neighborhood of Xi ,  using an analog of 2.2 for pairs. For this we need to 
show that (Xi, Y nXi) is "relatively tame" in (X ,  Y) ,by which we mean there 
is a nearly strict deformation retraction of a neighborhood to Xi,  which keeps 
Y in Y. 

Since Xi is tame there is T:X x I + X nearly strict which deforms a 
neighborhood into Xi,  but does not preserve Y . To fix this we suppose S: X x 
I + X is nearly strict, preserves Y, is the identity on Xi ,  and pushes into 
Y nXi a set of the form (neighborhood of Y nXi)n (6 neighborhood of Y) , 
where 6: Y + [O.m) has F 1 ( 0 )  = Y nXi. S is obtained by following a 
deformation of a 26 neighborhood in X - Y into Y - Y nXi (obtained from 
the deformation hypothesis on strata), with a nearly strict deformation of a 
neighborhood in Y into Y n Xi (obtained from tameness in Y ). We now 
choose functions a ,  b: X + [O, 11 and define a deformation by T(S(x,  s) , t) , 
where (s,  t) lies on the line from ( 1 , l )  to (a(x) ,  b(x)) . If ab = 0 ,  b = 1 
on Y, and a = 1 on the complement of the 6 neighborhood of Y then this 
defines a relative nearly strict neighborhood deformation retraction, as required. 
We note that a ,  b satisfying these conditions must be discontinuous at Y nX, , 
but the composition extends continuously to be the identity there. 

The adjoint of the relative deformation above, and the distance from Xi,  de- 
fine a map from a neighborhood of Xi to the mapping cylinder of holink(X ,Xi) 
+Xi . This map is the identity on, and strict with respect to, Xi and takes the 
intersection with Y into the mapping cylinder of holink(Y, ?). Compose this 
with the map induced by the fiber homotopy of holinks covering R, constructed 
at the beginning of the proof. Follow this with the evaluation map, from the 
mapping cylinder of holink(X ,Xi) +Xi, to (Xi+' ;Y nXi+,,Xi, Y nXi). This 
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three-fold composition gives an extension of R i  to a neighborhood of Xi in 
X ,which is strict with respect to Xi and deformation retracts the intersection 
with a neighborhood of Y ,  into Y . 

Once Ri  is appropriately extended to a neighborhood of Xi it is easy to 
combine it with a deformation retraction of a neighborhood in X - Xi to 
Y - Y,, to get an appropriate deformation Ri+' . 

Next, "branched covers" and group actions. We define a stratum-preserving 
map of filtered spaces q:X + Y to be a multiply branched cover if it is open, and 
foreach i ;  q - ' (Y ' -Y ' - I )  Y ' -Y i - '  isacoveringspace, and q - ' ( Y ' )  - Y'  
has the unique lifting property for strict paths in (Y '  ,Y i p ' ) .  See the explana-
tions following 2.6 for definitions of these terms. 

3.6. Proposition. Suppose X and Y are finite dimensional. 
( I )  If q:X - Y is a multiply branched cover over a filtration of Y ,  then 

Y is a homotopically stratijied set if and only if X with the induced 
Jiltration is a homotopically stratijied set. 

( 2 )  If G is a discrete group which acts on a locally connected filtered metric 
space X so that isotropy subgroups are locally constant on strata, and 
N ( H ) / H  acts properly discontinuously on the set of points with isotropy 
subgroup H ,  then the quotient q:X -X/G is a multiply branched cover 
over the induced filtration of X /G  . 

Proof. It is not hard to see that a stratum-preserving open map of filtered metric 
spaces which is a covering on each stratum is "strongly light" in the sense of 2.6. 
Proposition 2.6 therefore applies to pairs of strata and shows that tameness in 
X is equivalent to tameness in Y or X/G . Further, a pullback over a covering 
space is a fibration if and only if the original map is one. Therefore the holink 
formula of 2.6 shows the holink fibration condition in X is equivalent to the 
condition in Y or X/G . Together these imply (1). 

For the second statement, note that a quotient map is automatically open. 
The covering space property is equivalent to the condition that N ( H ) / H  act 
properly discontinuously (where N ( H )  denotes the normalizer of H c G ) .  
This leaves the path lifting property to be verified. 

The quotient map is strongly light, as above. This can be improved with the 
local connectivity assumption: Suppose U is a neighborhood of x E X with 
the local light property, containing no other preimage of q ( x )  and separated 
from q - ' q ( ~ )- U .  Let V be the connected component of U containing x , 
then V is also a neighborhood and if g E G either gV = V or gV is disjoint 
from V . Further, if gV = V then gx = x . 

Now consider the strict lifting property. Suppose 

f :  ( [ 0 ,I ] ,  0 )  - ( x ' / G ,  xi-'/G) 
is strict, andalift of f ( 1 )  to X' isgiven. Since (xi-xi- ')- (xi-xi-')/Gis 
a covering space there is a lift F: (0, 11  - (x'-X I - ' )  extending this. We need 
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to see that F extends continuously to [O,1]. Choose some c in the preimage of 
f (0) and a neighborhood V of c with the separation property of the previous 
paragraph. Let t be small enough that f ( (0 ,t ] )c q ( V ), and choose a lift 
of f on (0,  t ]  which intersects V .  There is some g so that F = g F  on 
(0, t ], and we show that F extends continuously by F(0)  = gc . Let W be 
an arbitrarily small neighborhood of g c ,  inside gV and also satisfying the 
separation property. Choose s so that f (0, s]  c q(W) and a lift ? on (0,s]  
which intersects and therefore is contained in W .  Let h E G be so that 
F = h?. Since ? and F both intersect V ,  hV = V and h(gc)  = gc.  But 
this implies that hW = W , so F ( 0 ,s] c W . Since F is eventually in every 
neighborhood of gc , it extends continuously. This verifies the lifting property, 
so completes the proof of the proposition. 

The final result of the section describes a way to modify lower skeleta. The 
W , X , Y , etc. in the statement are understood to be homotopically stratified 
sets. 

3.7. Pullback Lemma. Suppose Y c X is a pure subset. and f :  Z + Y is 
a stratum-preserving map. Then there is a stratum-preserving F: W + X so 
that F-'(Y) = Z and F restricted to Z is f ,  and for each stratum com-
ponent A of X not in Y,  F:F- '(A) + A is a homotopy equivalence and 
h o l i n k ( ~ - ' z ,F - ' 6 ~ )  is fiber homotopy equivalent to the pullback of 
holink(z,6A) . 
Proof. The construction of W is nearly specified by the statement of the 
lemma. Proceed by induction on skeleta, and assume F"-': ( w"-' U Z )  + 

(Xn-' U Y) is defined. Let E + (w"-' U Z )  be the pullback of 
holink(XnU Y, x"-' U Y) + (Xn-' U Y) . Composition defines a map E + 

holink(Xn u Y, x"-' u Y) + (x"- X"- 1 
U Y) . Define W" U Z to be the 

homotopy pushout of 

By tameness there is a strict re1 x"-' u Y homotopy equivalence-from the 
homotopy pushout of 

to X" U Y .  Composing this with the natural map of pushouts gives the map 
F" required for the induction step. 

4. ANR HOMOTOPICALLY STRATIFIED SETS 

An ANR (Absolute Neighborhood Retract) is a space which when embedded 
as a closed subspace of a normal space, has a neighborhood which retracts to it. 
There are homological characterizations (4.1) of tameness and fibrations in this 
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context, so ANR homotopically stratified sets are relatively easy to recognize 
and manipulate. Proposition 4.2 gives a recognition criterion which is the basis 
for the proof of Proposition 1.5. Lemma 4.3 replaces top strata by polyhedra, 
and provides the contact with PL versions of finiteness and simple homotopy. 
Control Lemma 4.4 establishes connections with the controlled theory of [13]. 

Much of the section involves "layered sets" (defined in 4.4), roughly ANR ho- 
motopically stratified sets with reverse tame skeleta. Theorem 4.7 characterizes 
these up to stratified homotopy and implies Theorem 1.1 1. "Whitehead tor- 
sion" is developed in this context in 4.8, and the proof of the simple homotopy 
Theorem 1.10 is given there and in 4.10. 

As in the previous section, all spaces are required to be metric. 
A map p: E +X is said to have locally constant homology if each point has 

neighborhoods U 3 V with the following property: If A c V is a neighbor- 
hood of a point y , then there is a neighborhood B c A such that 

is an isomorphism, for all i .  Locally constant fundamental group and Znl  
coefficient homology are defined similarly, as above, using the indicated functors 
instead of Hi. 
4.1. Lemma. Suppose p: E + X is given and X is an ANR. If p has the 
approximate lifting property for polyhedra then it has locally constant fundamen- 
tal group and n l  coeficient homology. If X is finite dimensional the converse 
is true, and further i f  E is the homotopy link of X in an ANR then p is a 
Jibration. 

Proof. First the easy direction, that the lifting property implies locally constant 
homology. If U is given, let V c U be a neighborhood which contracts to x 
inside U . Similarly if a neighborhood A c V of a point y is given, choose B 
which contracts to y inside A .  Then there is a contraction of V to y inside 
U ,  which keeps B inside A .  To show that the homomorphism of images is 
injective we suppose c is an element in the chain group c , (~- '  0B) with dc = 

and suppose the homology class of c is trivial in p-' V . We want to show the 
homology class is trivial in p - ' ~. Triviality means there is d E c,,,(p-I V )  
with dd = c . Apply the deformation above to get a homotopy of pd to the 
constant map at y , such that pc stays in A .  Apply the approximate lifting 
property to this homotopy to get a homotopy of c in p - ' ~  to c' = ad' inside 
p-' B . The homotopy and d' give a chain in C , ( ~ - ' A )with c as boundary. 
Surjectivity is similar. 

For the converse we suppose n ,  and the homology are constant over U 3 V 
and take covers so the local fundamental groups are trivial. Let p*:E* + 

V be p-'V + V converted into a fibration. The fibration has the lifting 
property for any space, so it is sufficient to show that the pair (E*,p-I V )  is 
( 6 ,k)-connected over V in the sense of [13 I, 5.11. 
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The inclusion p-' V + E* is a fiber map over V so induces a morphism 
, of homology Leray spectral sequences Hi(V ;H, (p-'v)) + Hi(V;H, (p*-'v)) . 

These spectral sequences are defined and converge since X is finite dimen-
sional. The inclusion is a homotopy equivalence so induces an isomorphism 
of abutments. The coefficients in both sequences are constant, so the compar-
ison theorem for spectral sequences implies the morphism of coefficients is an 
isomorphism. Conversely if K c V is open then the Leray sequences over 
K have isomorphic E2 terms so H , ( ~ - 'K) + ~ , ( p * - ' K )is an isomorphism. 
This means the identity map of the pair ( p * - l ~ ,p - ' ~ )is relatively homo-
logically (6 ,k) -trivial in the sense of [13 I, 5.11 for all k and 6 > 0.  But 
according to [13 I, 5.21 this implies the pair is (6 ,k)-connected, as required. 

Finally we show that if X c Z is a tame pair of ANRs and holink(Z,X)  + 

X has the E lifting property for complexes, all E > 0 ,  then it is actually a fibra-
tion. It is shown in 2.7 that the E lifting property for arbitrary spaces implies it 
is a fibration, so we need to see this property for complexes implies it for spaces. 
As in 2.7 consider the adjoint; a map K +holink(Z ,X) corresponds to a strict 
map (K x [0, 11,K x (0)) + (2,X) . It is a property of ANRs that such a map 
factors within any E through a complex. To see this, extend the map to a map 
of linear spaces in which K , Z embed, use the ANR property of Z to retract a 
neighborhood to Z ,and approximate the preimage open set in the linear space 
containing K by a complex. This can be done to preserve strictness, using the 
tameness of X ,and applies also to a homotopy K x I +X . We can therefore 
approximately factor an arbitrary lifting problem through one for complexes, 
and use the lifting property for complexes to get an approximate solution to the 
original problem. 

The next result applies this when local fundamental groups are trivial. The 
definition of homotopically stratified set involves conditions on pairs of strata 
with intermediate strata deleted; one considers (x"-x"-')u (x'-xi-')3 

(x'-Xi-') . The point here is that these intermediate strata need not be deleted; 
we can consider (x"-xi-')II(x'- x i - ' ) .  In a homotopically stratified set 
the holink of this pair is a fibration (by 3.2 a stratified system of fibrations, over 
a single stratum). The proposition provides a partial converse. 

4.2. Proposition. Suppose X is a jinite dimensional ANR and has an ANR 
filtration. Suppose the next-to-top skeleton is homotopically stratified and 1-LC 
in X . Then X is homotopically stratified if and only if holink(X -xi-',X' -

+ (xi - xi- 1 )  is a Jibration, for all i . 

Proof. As remarked above the "only if '  part follows from 3.2. Assume the 
converse is known for skeleta with k or fewer strata, and suppose X has 
k + 1. Let Xi be the smallest skeleton. Then the induction hypothesis applies 
to (X-Xi)  > (x"-xi),so it remains to show (X-x")u xi2 X' is tame and 
has holink a fibration. This pair has trivial local fundamental group, so is tame 
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by 2.12. The holink, by 2.9(3), fits in a homotopy pushout diagram over Xi  : 

The lower left space is fibered over Xi since X" is homotopically stratified, 
the lower right space is fibered by hypothesis. The main step in the proof is 
that the triple holink in the upper left Corner is a fibration over X i .  Unfor-
tunately the fact that three of the spaces are fibered does not in general imply 
that the remaining one, in the upper right corner, is fibered. However since 
they are fibered they have locally constant homology, and this does imply that 
holink((X-x")U x',x') has locally constant homology over X i .  The 1-LC 
hypothesis implies that it has trivial local fundamental group. Lemma 4.1 in 
this case implies it is fibered over X' , so X is homotopically stratified. 

We begin the main step, showing that holink(X, X" ,x') + X' has the E 

lifting property for complexes. Suppose a lifting problem 

K x I  - x' 
is given. The map into the triple holink is adjoint to a map K x (0) x I x 
I +X . Consider the intermediate lifting problem into holink(Xn,Xi)  ,which 
corresponds to extending the restriction K x (0) x I x (0) + X" . If there 
is a stratum-preserving lift in the sense that the adjoint K x I x I x (0) + 

X" preserves strata with respect to the first I coordinate, then there is lift 
into the triple holink. According to 2.9(2) the triple holink (or rather the fiber 
homotopically equivalent controlled version) is E equivalent to the pullback of 
holink(X -X i ,X" - x') +X" -X' . Thus it is sufficient to lift the restriction 
K x I x (1) x (0) +X" -X' into holink(X- X' ,X" -Xi) . But the restriction is 
still stratum-preserving, and the holink is a stratified system of fibrations since 
X -Xi is homotopically stratified. Therefore by 3.3 the lift exists. 

We now consider stratum-preserving lifts of homotopies into holink(Xn,Xi) . 
Suppose K x (0) +holink(Xn,Xi)  is given. This can be arbitrarily closely ap-
proximated by a map whose adjoint Fo:K x (0) x I + X" has subcomplexes 
as inverse images of skeleta in X" . Assume there is a stratum-preserving ex-
tension F k :F c 1 ( X k )x I x I + Xk . Since it is stratum-preserving and X" 

is homotopically stratified it is covered by a fiber map of holink(xk+',Xk). 
F0-'(Xk)c F;' (xkI1)is tame because it is a subcomplex. Corollary 2.3 there-

fore implies that Fk extends to a stratum-preserving Fkf1. By induction there 
is a stratum-preserving lift on all of K . 
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The next lemma replaces the top stratum by a polyhedron. When X is a 
compact layered set, the corollary to 4.7 shows that all strata can be replaced in 
this way. 

4.3. Stratum Replacement Lemma. Suppose X is a locally compact finite di-
mensional ANR with a tame filtration and X" = X . Then there is another one, 
Y ,  with X c Y and r: Y + X a stratijied retraction such that Y"-' = X"- 1 

Y" - Y " - I  is a flat manifold mapping cylinder neighborhood of X" -x"-' , and 
r is the mapping cylinder retraction. 

Proof. Since X" -x"-' is a locally compact finite dimensional ANR, there is 
a proper embedding in R~ , some k , with a mapping cylinder neighborhood 
(see e.g . [13 I, $3.11). Denote this neighborhood by U ,with retraction r: U + 

(x"- x"-'). Define Y to be x " - I  U U ,  and extend r by the identity on 
X"- 1 . Topologize this with the smallest topology such that the inclusions and 
r are continuous. 

Continuity of r implies continuity of the mapping cylinder deformation re-
traction of Y to X . This shows the inclusion is a stratum-preserving homotopy 
equivalence. Since such equivalences preserve tameness, this implies Y is as 
required. 

Now the connection between strict homotopy and the " E  control" used 
in [13]. 

4.4. Control Lemma. Suppose Z is a metric space, A is compact, and f ,  
g: (A,B) + (coneZ ,Z )  are closed, strict, and agree on B . Then given any strict 
E: (cone Z ,Z )  + ([O, 11,(0)) there is a radial homeomorphism r of cone Z so 
that d (rf (x),rg(x))  < ~ ( r f(x)). 

Here "radial" means r ( z ,  t) E {z) x I ,  so in particular r is the identity on 
Z x (1) and r(0) = 0 .  Homotopies provide a particularly useful special case. 
Suppose h: (A x I ,B x I )  + (coneZ ,  Z )  is strict, proper, and has radius 0 on 
B (i.e. is constant on B ). Then we can radially reparameterize the cone to get 
a homotopy which has radius less than any given E . The definition of "radius 
less than E " for a homotopy is that it is within E of the projection A x I +A 
followed by ho:A + cone Z . Since h and this map agree on B x I , the lemma 
applies. 

Proof. Assume Z is compact (replace it with the union of the images of f and 
g if not). Using compactness one finds a strict a : ([0, 11,(1)) + ([O, 11,(0)) 
such that E(Z ,t) > a( t )  . Since d (f ,g )  = 0 when f (x) E Z (i.e. when x E B ) 
there is a strict p :  ([0, 11,(1)) + ([O, 11,(0)) so that if f (x) = (j,t) then 
d (f (x),g(x))  < P(t)  . The objective is now to find a homeomorphism r : I + I 
so that f (x )  = (f,t) and g (x)  = ( 2 ,u) then d ( ( j , r ( t ) ) ,( g , r ( u ) )< a ( t ) .  

The result is independent of the metric on the cone. For the next step we use 

the metric given by d ( (x.s)  , (y , t ))  = Js2 + t2 - 2stcos(min{d(x,y)  ,7112) . If 
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Z c S" and has diameter less than 7r/2 then this is the metric obtained by 
considering the cone as a subset of D"" . The properties we use are that if 
s >  t then d ( ( x , s ) , ( y , s ) )> d ( ( x , t ) , ( y , t ) ) ,and d ( ( x , s ) , ( x , t ) )= s - t .  

Divide [0 ,11 into consecutive intervals J, , i = 1 , ... ,oo so that there 
are a ,  > 0 such that the diameter of J, is less than a ,  and a > 4a,  on 
J,-, U J, U J,,, . Then choose intervals K , ,  i = 1 ,  ... ,m, so that if i > 1 ,  
K,  > Ji and p < a ,  on K,  . 

Choose a homeomorphism r of I which takes K,  to J , .  Denote f ( x )  
and g ( x )  by ( f ,t )  and ( 2 ,u )  as above, and let i be such that t E K , .  

Then d ( ( f ,r ( t ) ) ,( k ,r ( u ) ) )5 d ( ( f ,r ( t ) ) ,(i?,r ( t ) ) )+ d( ( i? ,r ( t ) ) ,( 2 ,r ( u ) ) )5 
P ( t )+ Ir(t) - r(u)l 5 4ai < a ( t ). Therefore this r satisfies the conclusions of 
the lemma. 

Next, we develop the objects used in stratified simple homotopy theory. 

4.5. Definition. X is a layered set if it is a locally compact locally finite di-
mensional metric space, is a homotopically stratified set with ANR strata, and 
for each n , X" c x"" is reverse tame. 

Remark. It seems likely there is a homological recognition principle for these. 
Specifically, if X 3 Y we say X has locally constant homology near Y , if each 
point in Y has neighborhoods U 3 V in X with the following property: If 
A c V is a neighborhood in X of a point y E Y then there is a neighborhood 
B c A such that 

is an isomorphism for all i . If V c X has constant local fundamental group 
near Y in the sense of 2.1 1 then it has locally constant Z n ,  coeficient homology 
if the branched cover of V corresponding to the kernel of the homomorphism 
to n 1V + n has locally constant homology. 

We then speculate that a locally compact finite dimensional filtered space X 
with ANR strata is layered if and only if (xk-xk-l)U(xi-xi-')has locally 
constant fundamental groups and Z n ,  coefficient homology near X' - xi-' , 
for all k > i . 

Locally constant Z n ,  homology hopefully implies homological tameness, so 
X i  1 should be tame by 2.1 1 .  This in turn means (xk-xk-')U ( X ,-xi-') 
is strictly and re1 Y homotopy equivalent to the homotopy pushout of the holink 
diagram, as in 2.2. This should imply that the holink satisfies the local constancy 
condition of 4.1, so it is a fibration and X is homotopically stratified. Finally, 
reverse tameness might follow from 2.14 and the eventual Hurewicz theorem 
of [13 I, $51, or perhaps more simply from 4.5, below. 

The next lemma is a key step in the construction of layered sets. 
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4.6. Lemma. Suppose p: E +X is a stratified system offibrations over a locally 
compact finite dimensional ANR. Then the following are equivalent: 

(1) 	There is n so that for every E: X + (0,oo), E is E dominated by an 
n-dimensional proper polyhedron over X . 

(2) 	p: E +X isfiber homotopy equivalent to holink(Z ,X) for some locally 
compact Z 1X in which X is tame and reverse-tame, and with Z -X 
a finite dimensional polyhedron. 

(3) 	Each fiber p- '( x )  is dominated by a finite complex. 

Part (2) can be sharpened a little: In one direction, it is sufficient to have Z 
with Z -X a finite dimensional ANR, since it can be replaced by a polyhedron 
by the Replacement Lemma 4.3. In the other direction, if p satisfies the other 
two conditions then the Z we construct is proper over X and strictly and re1 
X homotopy equivalent to the mapping cylinder of p . This is a bit stronger 
than saying Z has the right holink. 

(1) implies (2). Choose ei + 0 ,  and proper ci dominations (Ki ,ri ,ji ,hi),of 
E by polyhedra. According to Lemma 2.16, the mapping telescope is strictly 
re1 X homotopy equivalent to cyl(p) , and X is tame and reverse-tame in it. 
Closely approximating the maps ji+,ri used in the construction of the tele- 
scope by PL maps yields a space with the same properties, and with Z - X a 
polyhedron. 

(2) implies (1). The proof of 2.15 shows that E can be properly E dominated by 
a space of the form N - U ,where N is a closed and U is an open neighborhood 
of X in Z . If Z -X is a polyhedron these may be chosen PL, so this provides 
a domination of E by a proper polyhedron of the dimension of Z -X . 

(1) implies (3). Suppose Y c X is a closed p-NDR subset, then we show that 
the restriction EIY + Y is also E dominated in the sense of (1). Let U 
be a neighborhood of Y which p-deforms to it. Choose 6 < &/4 and small 
enough so that the 26 neighborhood of Y is contained in U ,and on this the 
deformation has radius less than ~ / 2 .  Choose E + K + E a 6 domination 
as in (1). EIY maps into the restriction to the 6 neighborhood K I Y *,which 
then maps into El y2*.  E +K is proper and Y is closed, so there is a closed 
PL subset K c L c El Y . Since there is an ~ / 2  deformation retraction of U to 
Y covered by a deformation of E , there is an &/2 retraction El y2* + E Y . 
Putting these together gives an E retraction of L to EIY . 

Now let Y be a discrete set with one point in each stratum component of 
X .  This is a p-NDR because the skeleta are, and the strata (which are ANRs) 
are locally contractible. The restriction to this Y is the disjoint union of the 
fibers of E , so by the argument above these are dominated. 
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( 3 )implies ( 1 ) .  This proceeds by induction on the number of strata, so we sup- 
pose the restriction E I X " - '  has proper PL E dominations of bounded dimen- 
sion and show the same is true of E I X "  . Since this only involves the n-skeleton 
we assume X = X" . 

We may assume the top stratum of X is a polyhedron. If not, apply Lemma 
4.3 to obtain a retraction from a filtered set with PL top stratum to X .  Pull E 
back to this, then if 6 is small enough, a proper 6 domination of the pullback 
is a proper E domination of El X . 

According to the definition of a stratified system of fibrations, Xn-' is a 
p-NDR. This means that if E > 0 there is an E homotopy h : X x I +X which 
is the identity on X x (0) and x"-' x I ,  there is an open neighborhood N of 
X"- 1 so that h,  ( N )  c x"-' ,and h is covered by a homotopy H :  E x I + E . 
Denote the frontier (closure of N intersect X -N )  by M , and choose N so 
that X - N is a compact polyhedron and M is collared in N . 

Let Y denote the homotopy pushout of x"-' +M -X - N ,  where the 

first map is hl and the second the inclusion. Then hl factors through Y .  
Similarly Hl factors through the pushout of E I Xn-l +- El M -E ( X  - N )  , 
which we denote by F . This shows that F &-dominatesE . It will therefore 
be sufficient to produce arbitrarily small proper PL dominations of F . For this 
it is sufficient to find dominations of the pair (EI(X-N ) , EIM) ;the induction 
hypothesis gives dominations of EIX"- '  ,and the pushout of dominations gives 
a domination of the pushout. Note that if the component spaces in a pushout 
are PL then the maps can be arbitrarily closely approximated by PL maps, to 
give a PL pushout. 

The situation is now that we have a genuine fibration with dominated fiber 
over a compact PL pair, and we want arbitrarily small compact PL dominations 
of the pair of total spaces, with bounded dimension. Let 3:E + B denote 
the fibration, and choose a triangulation of the base. We construct dominations 
j :  E -K ,  r :  K - E and h :  r j  - 1 so that if C is a subcomplex of 
the triangulation then ( rp) - ' C + EIC gives a domination. The radius of the 
homotopy is then bounded by the size of the triangulation, so arbitrarily small 
dominations are obtained by beginning with very fine triangulations. Also these 
can be constructed by induction on skeleta in the triangulation, so the problem 
reduces to extending over EIAk a domination of E ldAk . 

Suppose E d Ak -K -E d AX and Eo + L -Eo are dominations, where 
Eo is the fiber of E over the barycenter of A ~ .There is a homotopy triv- 
ialization f :  Eo x Ak - E I A ~ .Define a to be the homotopy pushout of 

L c L x dAk -
composition L x d Ak -K , where the second map is a PL map homotopic to the 

~ 1 -3K . It is straightforward to ~ ~-Ak13 xEo 

use the given data to construct a domination EIAk 4a --, EIAk extending 
the one given on K , so this completes the construction. 
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Note k is a polyhedron of dimension k + dim L , so if a fixed domina-
tion for the fiber is used the resulting domination of E will have dimension 
dim(X - N) +dim L . This is bounded independently of E ,as required. 

The next result characterizes compact layered sets up to stratified homotopy 
and extends Theorem 1.11. 

4.7. Theorem. Suppose Y is a homotopically stratified set, Z c Y is pure and 
a compact layered set. 

( 1 )  There is a compact layered X and a stratified homotopy retraction X + 

Y which is a homeomorphism on Z ,  if and only ifstrata, and fibers of 
holinks of strata, of Y are dominated by finite complexes. 

(2) If Y is stratified dominated as in ( I ) ,  then there is X -,Y as in ( I )  
which is a stratified homotopy equivalence, ifand only iffor each stratum 
component A the Wallfiniteness obstruction o(A) is taken to 0 by 

Before proving this we give a corollary which illustrates its use. 

Corollary; Layered pullbacks. Suppose Y c X is a pure subset of a compact 
layered set and f : Z -,Y is a stratified homotopy equivalence with Z compact 
layered. Then there is a stratified homotopy equivalence F: W -, Y with W 
compact layered so that F-'(Y) = Z ,  FIZ = f,and W - Z has PL strata. 

Note that by letting Y be empty we see that a compact layered set is stratified 
homotopy equivalent to a PL one. This extends (for compact layered sets) the 
Replacement Lemma 4.3, which changes only the top stratum. 

Proof of the Corollary. First construct an extension W of Z without the PL 
A A 

conclusion. Form some extension as a homotopically stratified set, F :  W +X , 
using the pullback construction of 3.7. The strata and fibers of holinks have the 
same homotopy type as those of X , so are dominated by finite complexes. 
According to the theorem there is a compact layered extension with the same 
stratified homotopy type if, for each stratum B of ^W, the image of a(B) 
in Ho(coneGB,GB ; Y ( q ) )  is trivial. Let A denote the image stratum of X . 
The induced homomorphism p* : Ho(conedB, dB) -, Ho(conedA ,GA) takes 
the image of a(B) to the image of o(A),which vanishes since X is compact 
layered. & is an isomorphism since F is a stratified homotopy equivalence, 
so the image of g(B) is also trivial. Therefore according to the theorem ^W 
can be replaced by a compact layered set. 

To obtain the PL conclusion suppose as an induction hypothesis that Wn+ 

X is a stratified homotopy equivalence with Wn a compact layered extension 
of Z ,  and strata in wnn- Z are PL. Apply the Replacement Lemma 4.3 to 
wnn+'u Z to change the ( n  + 1)-strata not in Z to be PL. This gives a layered 
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set stratified equivalent to wnn+'UZ . Apply the non-PL version to extend this 
to Wn+,+ Wn. This reproduces the induction hypothesis, so by induction we 
get the desired W . 

Proof of 4.7. To prove the "only if" part of both (1) and (2) we show that 
if X is a compact layered set then strata, and fibers of holinks of strata, are 
dominated by finite complexes, and the finiteness obstructions of strata satisfy 
the given condition. 

Let A be a component of the n-stratum of X . Since the statement does not 
involve higher strata we assume X = X" . Apply the Replacement Lemma 4.3 
to X to obtain an equivalent compact layered set 2 whose top stratum is PL. 
This does not change the homotopy type of strata or holinks, so it is sufficient 
to show that n-strata of 2 satisfy the conditions. 

(2,x"-') satisfies the condition of 4.6(2),so by (3) the fibers of the holink 
are finitely dominated. 

Since x"-' is reverse tame in 2 there is a homotopy from the identity of 
2 -x"-' to a map into 2 - U , where U is a neighborhood of x"-' . This 
gives a domination of 2-x"-' . Sincethere are arbitrarily small neighborhoods 
of x"-' with compact PL complement, we may assume U has this property. 
This gives a domination of the stratum by a finite complex. 

We refine this construction to get information about the finiteness obstruc-
tion. Let Â  be the stratum component corresponding to A.  The definition 
of reverse tameness is that given a neighborhood U of 6A which retracts to 
.6A , and E > 0, there is a neighborhood V (with compact PL complement) 
and a homotopy of Â  re1 Â  - U into Â  - V,  which has radius less than E 

when retracted into 6A. This defines a domination of Â  by Â  - V. Since 
the homotopy is the identity on Â  - U , it also defines a domination of U by 
U - V . If we choose U closed and PL then this is a domination by a finite 
complex. Since U and Â  differ by a finite complex, the finiteness obstruction 
of Â  is the image of the obstruction of U under &(z?U) +ko(zzlA) . 

The domination of U has radius E over 6A . Also the retraction to 6A fac-
tors through p : holink(A^~6A, 6A) -,6A . Therefore according to Theorem 1.3 
of [13 I] if E is small enough there is a controlled finiteness obstruction qo(U) 
defined in Ho(6A; Y ( p ) ),and the uncontrolled obstruction is the image of this 
in g o .  This implies o (2 )  is the image of qo(U) under the left homomorphism 

This is a fragment of the exact sequence of the pair (cone6A ,6A) (see the 
,discussion after 1.8) so is exact. Therefore the image of o(A) in the right 
group is trivial, as required for (2). 

The "if' direction of both parts proceeds by induction on strata, so suppose 
Y satisfies the hypotheses, Xn is compact layered, and J': Xn -,Y" uZ is a 
domination, for (1),or a stratified homotopy equivalence, for (2). The objective 
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is to construct an appropriate Xn+, + Y"" U Z by adding (n + 1)-strata to 

xn . 
The first step is to extend Xn to a homotopically stratified set as in 3.7. 

Pull holink(Yni' U Z ,  Y" u Z)  - (Y" u Z )  back to Xn , and denote the result 
by p :  E -- Xn . Then define Tn+,to be the homotopy pushout of Xn c 

E - (Y"" - Y" U Z )  . According to 3.7, zn+,- Yni' u Z is a stratified 

homotopy equivalence. Write it more elaborately as the homotopy pushout of 
cyl(p) cE --, (Y"" - Y" u Z )  , then we construct PL approximations to this 

by approximating the pieces. 

p: E + Xn is a stratified system of fibrations satisfying 4.6(3), so by 4.6(2) 
it is fiber homotopy equivalent to the homotopy link of a compact PL extension 
of X,. More precisely, the proof shows that there is a compact W 1 Xn 
which is strictly re1 Xn homotopy equivalent to the mapping cylinder cyl(p) , 
and W - Xn is PL. Choose a finte PL domination K -, E (using 4.6(1)), 
and another L + (Y"" - Y" u 2).Then a domination of is obtained 
by taking the homotopy pushout of the dominations, W + K --, L .  This 

completes the proof of 4.7(1). 

To complete (2) we suppose Xn -- Y" u Z is a stratified homotopy equiva- 
lence and determine when the domination can be replaced by a stratified homo- 
topy equivalence. Denote the pushout of dominations constructed above by J 
and change the definition of Tn+,by substituting W in place of cyl(p) . Then 
the domination r :  J + Zn,,is a homeomorphism on a neighborhood of X, . 
Choose a closed such neighborhood N so that N - Xn is PL. Let M denote 
the closure of the complement and P the intersection, so Tn+,= M up N .  
Then r-'(M) + M is a domination which is a homeomorphism on P . 

If there is a finite complex pair homotopy equivalent to (r-' (M)  , P) then we 
can take the union with N to obtain the desired compact layered set equivalent 
to Y" u Z .  M may be enlarged a little so that for each component A of 
y"+l 

- Y" u Z the inclusion M n A + A is 1-connected. In this case the 
obstruction to finding such finite pairs are the Wall obstructions o ( M  n A) E 

K o ( z n , ( ~ ) ) .  

The next step is to show that o(MnA)+qo(end(NnA) = o(A) in KO(znl (A)) . 
To see this use the reverse tameness to pull N outside a neighborhood U of 
Xn with compact PL complement in N . This gives a domination of A by the 
finite complex r-' (A - U) , so this domination has invariant a(A) . However it 
is still a homeomorphism on P , so can be split into two pieces. One is a (M)  
as above, and the other is the domination of N n A by (N - U) n A. The 
analysis of part (1) shows the second piece to be the image of the end invariant 
qo(Nn A) . Since disjoint unions of dominations gives the sum of obstructions, 
the desired formula follows. 
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Now recall that the hypothesis in (2) is that a(A) has trivial image in 
Ho(cone6A, 6A ;Y ( q ) ) . Going back one term in the exact sequence, this means 
it is in the image of H0(6A;Y(q)) .Since qo(NnA) is also in this image, the 
difference a ( M  nA) must also be in this image. Suppose it is the image of an 
element a .  

Regard W nA as a proper polyhedron over 6A x (O,1] by the composition 
W -, cyl(p) + Xn x [0, 11. Use the realization clause of [13 11, 1.61 to find 
a proper polyhedron T and T + N n A which is a controlled equivalence 
over a neighborhood of N ,with ql = a .  (The referenced result is actually an 
h-cobordism theorem. Thicken N nA to a manifold, then T is obtained as an 
h-cobordism of that manifold.) According to [13 11, 1.8(b)]the end obstruction 
of T over 6A is the difference qo(end(N))-aa ,where a is the isomorphism 

a : H : ~ ( ~ Ax (0.1) ; y i p ) )  H ~ ( G A; ~ ( p ) ). 
Repeat the construction of the domination using T as a neighborhood of 

Xn instead of W . The interior piece corresponding to M now has invariant 
a(A) - qo(end(T)),which has been arranged to vanish. We conclude that this 
piece can be replaced by a finite complex, giving the required compact layered 
set equivalent to Y"" U 2 .  

4.8. Simple homotopy. We begin the proof of the simple homotopy Theorem 
1.10 with the construction of the invariant t , and the proof of the additivity 
property. 

Suppose f :  X -, Y is a stratum-preserving map of compact layered sets 
which is a homotopy equivalence on each stratum. Choose a stratum compo-
nent A of Y ,  with corresponding component B in X . Then we define the 
corresponding component of .r(f )  , 7, E HI(cone6A,6A ; 9 ( q ) ). 

Replace X and Y by the closures B,2 ,  so the strata of interest are the 
top strata. Then use the Replacement Lemma 4.3 to replace them by finite 
dimensional PL strata. 

The invariant 7, is defined by refining the geometric interpretation of the 
exact sequence following 1.8. The exact sequence of homology groups 

comes from no applied to a homotopy fibration of homology spaces [13 11, $81, 

Therefore to define an element in HI = noHl, it is sufficient to construct a point 
in Ho(6A;Y ( p ) )  and a nullhomotopy of its image in Ho(cone6A ;Y ( p ) )  . 

6A is tame and reverse tame in 2 since Y is a layered set. If E > 0 
we can choose a closed neighborhood N which nearly strictly E deforma-
tion retracts in 2 to 6A. This gives an E factorization of N - 6A through 
p : holink(2,dA) + 6A . Next there is a smaller open neighborhood U so that 
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there is an E homotopy of A into A - U ,  so that the nonconstant part of 
the homotopy maps into N - 6A. This gives an E domination of N - 6A 
by N - U ,  measured in 6A. Since A is PL, U and N can be chosen so 
that N - U is a compact polyhedron. According to [13 11, 1.31 (and its proof 
in 556.3, 6.4) if E is small enough this determines a point in H 0 ( 6 A ; 9 ( p ) ) ,  
whose homotopy class in no is denoted qo(endA) . 

Similarly there is a domination of the end of B , which determines a point 
qo(endB) in Ho(6B; Y ( p ) ). The map f induces a map of homology spaces, 
so there is an image point f*qo(endB) in the homology space for A .  The 
difference qo(endA) - f,qo(end B) is the starting point for the definition of 
r, . The definition will be completed by construction of a nullhomotopy of the 
image of this difference, in Ho(cone6A ;Y ( p ) ). 

The invariant qo(endA) corresponds to the domination of N-6A by N- U . 
Over the cone we can replace the complement of N to get a domination of A 
by A - U . Also contract the control map to the cone point to get control space 
a point. This defines a concordance of dominations, and so a homotopy of 
the image of qo(endA) . Similarly the image of qo(endB) is homotopic to the 
invariant of the uncontrolled domination of B by B -V , some appropriate V . 

The difference of these homotopies gives a homotopy of qo(endA) -
f,qo(end B) to the difference of dominations A - U -.A and B - V -.B . 
But we have assumed B -.A is a homotopy equivalence, so the proof of the 
homotopy invariance of finiteness obstructions gives a homotopy to the differ-
ence of two dominations of A.  Finally the proof that the finiteness obstruction 
is independent of the choice of domination gives a homotopy of this difference 
to the basepoint. 

This completes the construction of r , and we now consider the additivity. 
Suppose f :  X -. Y and g :  Z -.X are as specified in 1.10(2). Let A be 

a stratum component in Y with corresponding components B in X and C 
in Z . t,( f )  +f,t,(g) begins with qo(endA) - f,qo(end B) +f, (qo(endB) -
g,qo(end C)) ,which by cancelling the inverses is canonically homotopic to the 
starting point of 7,( fg) . Similarly the paths to differences of dominations of 
A ,  B , C ,are homotopic by cancelling B terms. 

We now have the sum of two paths, one from the difference of dominations 
of A and B to the basepoint using the fact that f is a homotopy equivalence, 
and a similar one for B and C .  We want a homotopy from the sum of 
these paths, to the path from the difference of A and C , essentially cancelling 
the two occurrences of B . The construction of such a homotopy comes from 
collapsibility properties of mapping cylinders, essentially as in the proof of the 
additivity of Whitehead torsion [13 11, 36.61. 

The next lemma relates 7 to controlled simple homotopy in a special case. 
The setting is [13 11, Theorem 1.41, which asserts that if E :  open cone6A -. 
(0,m) is small enough then an E homotopy equivalence of proper polyhedra 
has an associated invariant q, in the locally finite homology of the open cone. 
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4.9. Lemma. Suppose A is a stratum component of a compact layered set Y, 
X is compact layered, and f :X + Y is a homeomorphism on 6A , and a strict 
re1 6A homotopy equivalence. Then f-'(A) + A is a controlled homotopy 
equivalence over the open cone of 6A so q, (f) is defined, and t, is the image 
of this under the natural isomorphism 

H,(cone6A .6A ;Y ( q ) )  5~ r ( o ~ e ncone 6A ;Y ( q ) ). 

Proof. By 2.4(2), 2 is strictly re1 6A homotopy equivalent to the homotopy 
pushout of 6A +holink(3,dA) --, . Compose this with the projection of the 

pushout to the cone on 6A to get a strict map j: 2 -, cone6A . Then since 
f is a strict re1 6A homotopy equivalence, the Control Lemma 4.4 applies to 
give radial homeomorphism r of the cone so that with respect to the reference 
map r j  , f :  B + A is an E homotopy equivalence. This is what is meant by 
f being "controlled " and implies q, (f) is defined. 

According to [13 11, 1.8b], aq, (f) = qo(A) - qo(B). Therefore q, and 
z are both determined by homotopies of this difference to the basepoint in 
Ho(cone6A;Y(p)) .  A minor extension of the proof in [13 11, 56.61 gives a 
homotopy between these homotopies. 

4.10. Proof of 1.10. Parts (1) and (3) are proved in 4.8, so here we complete 
(2) and (4). 

To prove (2) suppose A is a component of the n-stratum of Y and a E 
H,(cone6A, 6A ;Y ( q ) ). It is sufficient to show there is a compact layered set 
and stratified homotopy equivalence f :  X +Y with t,(f) = a and t,(f) = 

0 if B is a stratum component in Y" -A . To get the general statement proceed 
by induction on skeleta, assuming Xn-, --'Y has the desired invariants on the 

(n - 1)-skeleton. Then use the single-stratum case and the additivity of (3) 
to construct Xn --, Xn-, so that the composition Xn --+ Y has the desired 

invariants on the n-skeleton. 
To prove the single-stratum case first use the Replacement Lemma 4.3 to 

obtain a compact layered set equivalent to Y" with manifold n-stratum. Apply 
the h-cobordism realization theorem [13 11, 1.2bI to find an h-cobordism of the 
stratum over A with controlled torsion q, = - a .  Let x,"denote the layered set 
with (n - 1)-skeleton Y"-' and n-skeleton the h-cobordism. The retraction of 
this h-cobordism to the end gives x,"+ Y" which is a strict re1 Y"-' homotopy 
equivalence. In this case Lemma 4.9 identifies the controlled obstruction with 
r ,  , so this map has t, = a .  Extend x,"+ Y to some stratified homotopy 
equivalence of layered sets Xn + Y using the corollary to 4.7. This has the 
properties needed for the "single-stratum" statement above, so completes the 
proof of 1.10(1). 
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For the "if" direction of (4) we show that a cell-like f :  X + Y has r (  f )= 0 .  
Regard Y as obtained from X by identifying point inverses to points, then in- 
termediate spaces X --, Xn +Y are defined by making the identifications only 

in the n-skeleton. These are compact layered sets. X --t Xn-l is a homeomor- 
phism on the n-stratum so r is trivial there. By additivity, then, Xn-I + Y 
has the same n-skeleton invariants as f .  

Xn-I +Y is cell-like and a homeomorphism on the (n- 1)-skeleton. There- 

fore if A is a component of the n-skeleton, the inverse image of the closure 2 is 
strictly re1 6A homotopy equivalent to 2.Under these conditions Lemma 4.9 
identifies t, with the controlled torsion of the map of strata. Ideally we would 
now refer to [13 11, Theorem 1.41, which states that cell-like maps have trivial 
controlled torsion. Unfortunately this theorem is only stated for PL maps, so 
some additional argument is required. 

The reference map used for the controlled torsion in 4.9 is the projection from 
the open mapping cylinder of g :  holink(A, GA) --t A to the open mapping 
cylinder of 6A + pt (the open cone). The inverse of the strict homotopy 

equivalence of 2.4 gives a commutative diagram 

A -open cone(6A) 

Since the map from the inverse image of A to A is cell-like it is a controlled 
homotopy equivalence with control measured in A itself. This means there 
is a controlled torsion defined in H : / ( ~ ; y ( i d ) ) ,  and the invariant of 4.9 is 
the image of this under the homomorphism H:/ (A ;Y( id ) )  -H:/ (A ;Y ( q ) )  

induced by the commutative diagram. But Y ( i d )  has fiber the finite structure 
spectrum associated to a point, which is contractible. Therefore the group is 
trivial, and the invariant vanishes. 

Finally we consider the "only if" direction of 1.10(4); a stratified homotopy 
equivalence with r = 0 is obtained from cell-like maps. This proceeds by 
induction on strata, so we suppose it is true for (n - 1)-skeleta and show it is 
true for n-skeleta. 

Suppose Y" = Y and f :  X + Y is a stratified homotopy equivalence. Apply 
the induction hypothesis to obtain zn-', cell-like maps gn-l  : z"-' + xn-l 
and hn-l. Zn- l  + Y"-', and a stratified homotopy fn-1 g n-1 - hn-' . Ac-

cording to the layered pullback lemma (corollary to 4.7) there is an exten- 
sion of zn-' and gn-l  to a stratified homotopy equivalence 2 :  2 + X .  
There is also an extension of h : According to Proposition 2.2 it is sufficient 
to find a morphism of the holink diagram. holink(2,zn-')+ zn-' is the 
pullback of holink(X,x"-')+ x"-' . These are stratified systems of fibra- 
tions, so the stratified homotopy f n-1 g n-1 - /,,n- 1 induces, by 3.3 and the 
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lemma following 2.7, a fiber homotopy equivalence of this with the pullback of 
holink(Y, Y"-I) + Y"-' . This homotopy commutes with the homotopy equiv-
alences of the n-strata, so gives a morphism of the diagram. Similarly there is 
an extension of the homotopy to a stratified homotopy f g  - h , using 2.3. 

We may assume that ~ ( g )= ~ ( h )= 0 .  ~ ( g )can only be nonzero on the 
n-stratum because the map is cell-like on lower skeleta. If the top invariant is 
nonzero, compose with a map (from the realization assertion 1.10(2)) which 
is the identity on the (n - 1)-skeleton and has the negative invariant. The 
composition with g then has trivial invariant by the composition formula. 
Since t(f )= 0 ,  this formula also implies the composition with h is trivial. 

The proof is now reduced to the case where x"-' 4Y"-' is cell-like. This 
case can be applied to the 2 + X constructed above to get 2 +- 2 --+ X ,  

and then applied to the composition 2 42 4Y to obtain a layered set Z 

satisfying the conclusion of the induction step. 
If Xn-' 4Y"-' is cell-like we can construct an intermediate space X + 

W 4Y as in the "if' part of the proof above, with the same n-stratum as X and 
same (n- 1)-skeletonas Y . W 4Y is a strict re1 Yn-' homotopy equivalence, 
so according to the control lemma is a controlled homotopy equivalence over 
the open cones of frontiers of stratum components. 

Let ? denote the layered set obtained by replacing the top strata by a man-
ifold mapping cylinder as in 4.3. Arrange also that the dimension of this mani-
fold is at least 2 dim (x" -x"-')+2. In this case W 4p can be approximated 
re1 Y"-' to be a 1-LC embedding on top strata; (x" - x" - I )  c ( p n- ?"-I). 
Let V denote a mapping cylinder neighborhood. 

Since the inclusion is a controlled homotopy equivalence over the open cones, 
the difference pn- ?"-I - int V is a controlled h-cobordism. The controlled 
torsion is the same as that of the inclusion, which is trivial since by 4.9 it is the 
same as the n-stratum part of the stratified torsion of f .  By [13 11, 1.61 this 
implies the h-cobordism has a controlled product structure. This gives a strict 
re1 Yn-' homotopy to a homeomorphism W - (V u Yn-I) . 

Define Z = x"-' U V ,  then the retraction in the mapping cylinder gives a 
cell-like Z -.X .  The composition Z + (Yn-' u V) - W -. + Y gives a 
cell-like map to Y . These give appropriate extensions of the maps given on the 
(n - 1)-skeleta, so complete the proof of the theorem. 

These are defined and discussed in 5.1. The Isotopy Extension Theorem 1.1 
and the Boundary Collaring Theorem 1.2 are proved in 5.2 and 5.3 respec-
tively. The group action results, 1.4 and 1.5, are proved in 5.4. The discussion 
of h-cobordisms in 5.5 begins with the proof that manifold homotopically strat-
ified sets are layered, so the material of the latter part of $4 applies. Then 
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h-cobordisms are shown to be characterized by their torsions in 5.6, extending 
Theorem 1.8. 

5.1. Definition. A manifold homotopically stratified set is a homotopically 
stratified locally compact metric space whose strata are manifolds, which satisfy 
a boundary condition. Define the boundary to be the union of the boundaries 
of the strata; 8X = U i8(x' -xi-'). Then 8X is required to be closed and ho- 
motopically transverse to the skeleta of X . (Homotopy transversality is defined 
in 3.4.) 

The homotopy transverse condition on the boundary is, by 3.4, equivalent 
to 8X being a stratum-preserving neighborhood deformation retract in X .  
It is also equivalent to the mapping cylinder of the inclusion being a homo- 
topically stratified set with respect to the given filtration. If X is a manifold 
homotopically stratified set with boundary we define the set obtained by absorb- 
ing the boundary into the Jiltration to be the same space with filtration whose 
i-skeleton is X' u8 ~ ' ". This has strata manifolds without boundary, but the 
original dX is not lost; it is a pure subset and can be characterized by certain 
homotopy link conditions. Boundaries are included in the definition because 
they considerably simplify notation, for example in the h-cobordism theorem. 

5.2. Proof of 1.1. The main ingredient is the Isotopy Extension Theorem 2.1 
of [13 IV]. That paper was written before the development of the tameness and 
homotopy link material, so the result is stated in terms of the more awkward 
"eventual equivalence of neighborhoods." These are translated as follows: 

(1) 	 Y c X has "neighborhoods eventually equivalent to neighborhoods 
in a mapping cylinder" if and only if it is tame (and then the map is 
holink(X, Y) + Y ). 

(2) If A 1Y and B 1Y ,  and Y is tame in both, then Y "has eventually 
equivalent neighborhoods" in these spaces if and only if there is a fiber 
homotopy equivalence holink(A, Y) + holink(B, Y) over Y . 

Now suppose ( V ,  W) and ( X ,  Y) are pairs and 

is strict. Then [13 IV, 2.11 translates to: 

Theorem. Suppose V , X are locally compact metric, X -Y is a manifold of di- 
mension at least 5, Y is tame and afinite dimensional ANR, holink(X, Y) + Y 
is approximately 2-equivalent to a stratified system of fibrations, and 
Fo:(V - W) + (X - Y) is a homeomorphism. Then there is a strict homotopy 
extending Fou f and which is an isotopy of complements, ifand only if there is a 
fiber homotopy equivalence holink(X x I ,Y x I)+ holink(Y x I UfV x I ,Y x I) 
over Y x I extending the one over Y x (0) induced by F, . 

Here Y x I uf V x I is the union with points in W x I identified to their 
f images in Y x I .  X - Y should not have boundary (i.e. the boundary is 
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contained in Y ). Note that 2.3 determines when there is a strict homotopy 
which is not an isotopy. 

This statement simplifies considerably in the context of isotopies beginning 
with the identity. If f is an isotopy then holink(Y x I uf V x I ,Y x I) is the 
pullback of holink(Y uX x I ,Y x I),which is a product. The fiber equivalence 
of holinks is therefore equivalent to a covering of f by a fiber homotopy from 
fo+hol ink(~,Y) to holink(X,Y) . Now suppose Y is a finite dimensional lo-
cally compact ANR which is tame in X ,  X - Y is a manifold, dX c X is 
closed and intersects X - Y in its boundary, and holink(X,Y) is a stratified 
system of fibrations with Y ndX pure in the filtration. 

Corollary. Suppose X , Y satisfb the conditions above, X - Y has dimension 
a t  least 5, and f is an isotopy of Y fixing Y n d X .  Then it extends to an 
isotopy of X fuced on a X  if and only if it is covered by a fiber homotopy of 
holink(X, Y) beginning with the identity and constant over Y ndX . 

Theorem 1.1 follows from this by induction on skeleta, using the fact that 
a stratum-preserving isotopy is covered by a fiber homotopy of holinks (3.2, 
3.3). 

5.3. Proof of 1.2. Again we proceed by induction on skeleta. For the induction 
step consider closed subsets Y x [O,m )  c X 1dX , with dX n Y x [O ,m )  = 

Y x (0) , and X - Y a manifold which intersects dX in its boundary. 

Lemma. Suppose in addition X is locally compact, Y x [O,m )  is tame, Y is a 
finite dimensional ANR, holink(X, Y x [0,m ) )  is fiber homotopy equivalent to 
holink(dX, Y x (0))  x [0,m )  , and holink(dX, Y x (0)) is a stratified system 
offibrations. If dim(X - Y) 2 5 ,  or = 4 and the fibers of holink(dX, Y x (0)) 
have poly- (finite or cyclic ) fundamental groups, then the open collar Y x [0 ,m )  
extends to an open collar of dX . 

We will show there is a neighborhood N of Y x (0) in dX and an ex-
tension of the collar to a collar of N in X . The standard collaring theorem 
for manifolds then implies it extends to a collar of dX . The collar of N is 
obtained by constructing a controlled h-cobordism from a neighborhood of N 
to a collar. The obstruction group for this h-cobordism is trivial, so the ends 
are homeomorphic and a collar exists. In the next statement, Y is a locally 
compact ANR and p: E + Y is a stratified system of fibrations. 

Proposition. Suppose E: Y x [0,oo) x (0,oo) 4 (0,m)  and n are given. Then 
thereis 6 :Yx[O,oo)x(O,oo)+(O,m)  s u c h t h a t i f ~ " + E x [ O , m ) x ( O , m )  
is (6 , 1)-connectedand a (6 ,h)-cobordism over Y x [0, m)  x ( 0 , l )  then a 6 
product structure on the boundary h-cobordism extends to an E product structure 
over Y x [0,m )  x ( 0 , l  - E),provided either n 2 6 ,  or n = 5 andfundamental 
groups offibers of p are poly- (finite or cyclic) . 
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Proof. If 6 is small enough then [13 11, 1.61 associates to W an invariant in 

which is the trivial group. Since the invariant vanishes [13 11, 1.61 asserts the 
existence of the product structure if n 2 6 .  The case n = 5 and fundamental 
groups of fibers of p are trivial is in [13 1111. Finally this is extended to poly-
(finite or cyclic) groups in [ l  11. 

Proofofthe lemma. Now consider X x [0,m) . We give a neighborhood of Yx 
[0,co) x [0,m) the structure of a controlled h-cobordism from X x (0) + dX x 
[1,m) , with the product dX x [0, 11 as boundary h-cobordism. To facilitate 
this we change the parameterization a little. Let W denote X x [O,m) , and 
let X c W denote X x (0) . Parameterize dX x [0,m) c X x [0,m) as 
dX x ((0) x I u[O,m) x (1)) c W ,  and parameterize Y x [O,m) x [O,m) as 
Y x [0,m) x I c W ,by a homeomorphism of the second two factors which is 
the identity on [O,m) x (0) u (0) x I .  Then Y x [0,m) x I intersects X in 
Yx[O,co)x{O), and dXx({O)xI~[O,m)x{1))in Yx({O)xI~[O,m)x{ l ) ) .  

By hypothesis Y x [O,m) is tame in X ,  and the homotopy link is fiber 
homotopy equivalent to a product with respect to the [O,m) coordinate. The 
first use made of this is to produce the deformation retractions needed for 
an h-cobordism. The deformations of Y x [O,m) x I to Y x [O,m) x {i) , 
for i = 0 , 1 ,  defined by pushing in the I coordinate, are covered by fiber 
homotopies of holink(W,Y x [O,m) x I) into holink(X, Y x [O,m) x (0)) 
and holink(dX x [0,m) x { I ) ,  Y x [0,m) x (1)) respectively. It follows from 
2.3 that the deformations extend to deformations Ri of W which are strict 
with respect to Y x [0,m) x I and which push some neighborhood N of 
Y x [O,m) x I into X and dX x [O,m) x (11, when i = 0 , l  respectively. 
The Riare also the identity outside some neighborhood of Y x [0,m) x I , so 
in particular can be chosen to be proper. 

The next step is to construct appropriate control map. Since Yx [O,m) x I is 
tame in W there is a nearly strict deformation retraction of a neighborhood N . 
This defines a map N -Yx [O,co)x I +holink(W,Y x [0,m) x I). As above the 
holink is fiber homotopically a product, so let j denote the composition of this 
map with the projection holink(W, Y x [0,m) x I)- holink(dX, Y) x [0,m) x 
I + holink(dX, Y) x [O,co) . Let J denote the further composition of this 
with p x 1:holink(dX, Y) x [0,co) 4 Y x [0,m) . Next choose e: N + [0,m) 
so that e-'(0) = Y x [O,m) x I ,  and (J,e) is proper. ( e  is essentially the 
distance from Y x [0,m) x I .) Then the Riare strict homotopies with radius 
Oon Yx[O,co) X I ,withrespectto ( J , e ) : N +  (Yx[O,co))x[O,co). The 
Control Lemma 4.4 implies that e can be changed to make the Rihave radius 
less than any given 6 ,  over ( Y  x [0,co)) x [O,l] .  

To verify the remaining hypotheses of the Proposition, note we have as-
sumed holink(dX, Y) -t Y is a stratified system of fibrations. Also the map 
j: N -Y x [0,co) x I -r holink(dX, Y) x [0,co) induces a strict local homotopy 
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equivalence of N with the mapping cylinder of the holink (by tameness), so 
again by changing e we can make it (6,n)-connected over Y x [0, co) x [O,l] 
for any given 6 and all n , so in particular (6 ,  1)-connected. 

Applying the Proposition, we conclude that given the hypotheses of the lemma 
andany E:(Yx[O,co))x[O,co) +[O,co) with E - ~ ( o )  = ( Y  x[O,co))x{O), 
we can find a function e so that with respect to control function (J,e) , 
N - Y x [O,co) x [0, I] is an E product over Y x [O,co) x ( 0 , l  - E ) .  But 
any such product structure gives homeomorphisms of the ends which extend 
by the identity on Y x [0,co) to give a homeomorphism of a neighborhood of 
Yx[O,co)x{O) c X toaneighborhoodof Yx[O,co)x{l) c dXx[O,co)x{l).  
This gives the required extension of the collar structure to a neighborhood. 

This proof can be modified to show that in some cases X itself is an open 
collar, generalizing a manifold result of Siebenmann. 

Corollary. Suppose dX is compact, the inclusion dX +X is a homotopy equiv-
alence on each stratum, and fundamental groups of strata near the end of X 
are the same as those of the stratum. Then a stratum-preserving homeomor-
phism x4= (ax4)x [O,co) extends to a stratum-preserving homeomorphism 
x =(ax)x [ o , ~ ) .  

The condition on "fundamental groups near the end" is that if K c X is 
compact then there is L 2 K compact so that image (n,(xk- X" u L) 4 

n1(xk-xk-'u K)) maps isomorphically to n , ( x k- x*-I). 

Proof. The proof proceeds by induction on skeleta, so suppose Y c X is the 
next-to-top skeleton, Y 2 dY x [0, ca), and X - Y is connected. The global 
version of 3.5 implies that there is a stratum-preserving deformation retraction 
of X to dX ,which on Y is the standard one. Let r: X + dX be the retraction 
at the end of this deformation, and let j: X + [0,co) be a proper map which 
extends the projection on Y.  We claim that j can be composed with an 
automorphism of [0,co) so that (r ,j) is an E stratified homotopy equivalence, 
E measured in [0,co) . First we show how the corollary follows from the claim. 

X x [O ,  co) can be parameterized, as in the proof of the lemma, to give 
a global E h-cobordism from X to dX x [0,co) , with control in [0,co) . 
The proof of the lemma gives control in this h-cobordism near Y over Y x 
( 0 , l )  x [O, co) . Putting these together we get a controlled h-cobordism over 
(open coney) x [O,co) , from X - Y to d (X - Y) x [O,co) . The dimension 
is 2 6 , and the obstruction group H:* ((openconey) x [0.m)  ;Y ( q ) )  van-
ishes, so there is a product structure. In particular there is a homeomorphism 
X - Y - d (X - Y) x [0, co) . The argument in the proof of the lemma shows 
this extends the structure given on Y . 

Now consider the claim that (r ,j) can be made an E homotopy equivalence. 
The concern is for the top stratum, (X-Y) 4 13 (X-Y) x [0, co) . d (X -Y) is 
noncompact, but by the lemma we can assume (r ,j) is a homeomorphism over 
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a neighborhood of the end, so the unknown part is compact. The nl condition 
implies ( r ,j) can be made ( 6 , l )  connected, so it is sufficient to show it can 
be made a 6 homological isomorphism (with nl  coefficients). This follows 
from reverse tamenes and reparameterization of [0,m) as in 4.4. We omit the 
details. 

5.4. Proofs of 1.4 and 1.5. Suppose G acts on X as in 1.4. On strata the 
quotient is a covering space, so the strata of X are manifolds if and only if those 
of X/G are. Assuming this, they are both finite dimensional, so Proposition 
3.6 applies to show that X/G is homotopically stratified if and only if X is. 
Finally, manifold homotopically stratified sets are required to be locally coct 
This is equivalent, in the context, to the finite index condition on isotropy 
subgroups. This proves 1.4. 

The next result is used inductively to prove Proposition 1.5. 

Proposition. Suppose X c M is a manifold homotopically stratified set embed-
ded as a closed and 1-LCsubset in a manifold, dX = X n d M ,  and dX is 1-LC 
in d M  . Then M '  with the filtration given by X and its skeleta is a manifold 
homotopically stratified set. 

Proof. M is locally compact and the strata are manifolds, so we need to see 
that it is homotopically stratified. According to Proposition 4.2 this is the case if 
h o l i n k ( ~-xi,X" -xi)4 (x" -xi) is a fibration for all i . But X" -xi 
is a proper 1-LC submanifold of M - x i ,  so it is locally flat. The homotopy 
link of a locally flat submanifold is a spherical fibration, and in particular a 
fibration. 

Proof of 1.5. In 1.5(1) we are given a finite collection of 1-LC submanifolds 
{Ms) closed under intersection, and want to show M filtered by the subsets 
M' = U{Ms: dim Ms 5 i )  is a manifold homotopically stratified set. It is locally 
compact and has manifold strata, so the problem is to show it is homotopically 
stratified. Assume as an induction hypothesis that the proposition is known 
if there are k or fewer strata, and suppose that M has k + 1 . Then each 
of the Ms of smaller dimension than M satisfy the induction hypothesis, so 
are homotopically stratified. The next-to-largest skeleton M"-I has the same 
components of strata as the MS so it is homotopically stratified. M"-I is 1-LC 
in M because the closed subsets Ms are, so the proposition applies to show 
M is homotopically stratified. 

In 1.5(2)the collection is assumed to be locally flat. Since homotopy stratifi-
cation is a local property it is sufficient to show Euclidean space is homotopically 
stratified by a collection of linear subspaces. Let I.; denote subspaces of V , 
and let V, be the minimal one. By induction on skeleta it is sufficient to show 
that V, c (V-U I.;)uVl is tame and has fibered homotopy link. Since Vl c I.;., 
all i ,  there is an isomorphism V - VIx V, so that each V; corresponds to 
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yLx 5 for some 5' c V' . By the product properties of tameness and holinks 
((1)in the corollary to 2.4) it is sufficient to show (0) c (v' -UTI)U (0) has 
the desired properties. Radial contraction gives an almost strict deformation 
retraction, so (0) is tame. Any map to a point is a fibration, so (0) does have 
these properties, and the theorem is proved. 

5.5. h-cobordisms. After some general remarks a sequence of lemmas are given, 
leading to a classification of h-cobordisms in Theorem 5.6. 

An h-cobordism was defined above 1.8 to be a compact manifold homotopi-
cally stratified set X with dX = You Yl , such that if A is a stratum of X then 
the inclusions Yi nA c A are homotopy equivalences. The first remark is that 
the homotopy transversality in the definition of boundaries, and the global ver-
sion of 3.5, imply that X stratum-preserving deformation retracts to y. . Thus 
the non-stratified nature of the homotopy hypothesis is only apparent. We also 
remark that there is a version in which 5 are allowed to have boundary, and 
ax = Yo u Yl u W ,  where W is an h-cobordism from dYo to dYl . This is 
obtained from the statement given by 'absorbing W into the filtration' in the 
manner described in 5.1. 

Lemma. A manifold homotopically stratijied set is a layered set. 

Proof. The hypotheses in Definition 4.5 are all included in the definition of 
manifold homotopically stratified set except finite dimensionality and reverse 
tameness of skeleta. Finite dimensionality follows from the finite dimensional-
ity of the strata. Reverse tameness follows from Proposition 2.14 after absorbing 
the boundary into the filtration, as in 5.1. 

This means the invariant 7 is defined for stratified homotopy equivalences 
of manifold homotopically stratified sets. According to the remark above, the 
inclusion Yo c X is a stratified homotopy equivalence. Not only does this 
mean 7 is defined, but it induces an isomorphism of the homology groups in 
which such invariants lie. Therefore if { A , )  denote stratum components of Yo 
we can consider 7(X, Yo) as an element of xiH,(cone6Ai,6Ai ; Y ( q , ) ). (Or, 
we could use the negative of the torsion of the retraction X 4 Yo ). 

Lemma. Suppose (X , Yo, Yl) is an h-cobordism with z(X, Yo) = 0 ,  and a prod-
uct structure Z - (Zny.)x I is given on a pure subset Z which contains strata 
of dimension 5 or less. Then the product structure extends to a homeomorphism 
X ~ X I .  

Proof. We proceed by induction, supposing that Z contains the n-skeleton and 
then enlarging it to contain the (n + 1)-skeleton. For the induction step it is 
sufficient to extend the product structure over a single stratum component A 
with 6A c Z . Denote A n Y, by Ai. 

The product structure defines a stratum-preserving deformation retraction of 
Sl to 62,  ,which by 3.5 can be extended to a stratum-preserving deformation 
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retraction of 1 to xi.Denote by r :  2 -, cone6Ao the composition of the 
retraction and the usual projection 2,-, coneGA, . Using r as control map 
and measuring in cone 6Ao,we see that the deformations have radius 0 on 6A. 
The Control Lemma 4.4 therefore implies (after radial reparameterization of 
the cone) that the stratum (A;A,, A,) is a controlled h-cobordism over the 
open cone. Lemma 4.9 identifies the invariant z with the controlled torsion 
qO(A,A,) . By hypothesis this is trivial, so the controlled h-cobordism theorem 
[13 11, 1.61 implies there is a controlled product structure on A . 

This product structure and the given one on 6A give a bijection 2 -,xix 
I .  The control on the structure on A implies that the projection to xi is 
continuous, but the projection to I may not be continuous initially. However it 
is straightforward to reparameterize the I coordinate in the product structure 
on A to make this projection continuous. The result is an extension of the 
product structure, as required for the lemma. 

We recall that an h-cobordism (X ;Yo,Y,) is said to be invertible if there is 
an h-cobordism (W ;Y, ,Y2) SO that the "composition" (X uy,W ;Yo, Y2) has 
a product structure, and similarly there is an inverse for composition on the 
other side. 

Lemma. If the 4-skeleton of an h-cobordism is invertible, the h-cobordism itself 
is invertible. 

Proof. First we observe that invertibility is equivalent to the existence of strat-
ified homeomorphisms X - Yi - Yj  x [0, 1),where {i , j )  = ( 0 , l ) .  Recall that 
inverses are unique; if XW 2: Yo x I and PX 2: Y, x I then V 2: V(XW) 2: 

(PX)W 2: W . Therefore we can unambiguously denote the inverse of X by 
-X . The infinite composition X (- X)X(- X) . . . can be associated two ways 
to give Yo x [O,m)  - X(Yl x [O,m)). But since boundaries are collared the 
second space is X - Yl . For the converse note that (again using the collaring) 
a homeomorphism X - Y, 2: Y, x [O,1) gives a bicollared embedding of X in 
Y, x I ,  whose complement is an inverse. 

In applying the Boundary Collaring Theorem 1.2 in this argument we must 
assume boundaries of low dimensional strata are collared. However boundaries 
of invertible h-cobordisms are collared, so this is satisfied in the situation in the 
lemma. 

Since the Cskeleton is invertible, the above implies X' 2: q3x [O. m)  . The 
corollary in 5.2 applies to extend these to homeomorphisms X 2: Y, x [0,oo), 
so X is invertible. 

5.6. Theorem. Suppose Yo is a compact manifold homotopically stratified set 
without boundary, 2, c Yo is pure and contains strata of dimension 4 or less, 
and (W ;Zo,2,) is an invertible h-cobordism. Then z defines an injection,from 
homeomorphism classes re1 You W of h-cobordisms of Yo extending W , to the 
obstruction group. 
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In fact, if {A,) denotes the stratum components of Yo not in 2 ,  then r 
gives a bijection from these classes of h-cobordisms to 

H,  (cone6 ~ ~ ,6Ai ; Y ( q , ) ) .  
i 

Since the h-cobordism W is fixed the other components of r do not change 
and are irrelevant. The main point of the bijection is therefore the assertion 
that all invariants can be realized, as for layered sets in 1.1O(2). The main step 
in this is a manifold version of the extension result in the corollary to 4.7. A 
treatment is planned in part V of [13]. Special cases of the realization can be 
done independently, for example when there is an extra I factor, as in [18, 
Theorem 51. 

Proof. Suppose X , X* are h-cobordisms of Yo, both extending W and with 
the same r invariants. Let -X be the inverse given by the invertibility lemma. 
Then X* 2: x(-X)X* . But by additivity r(-XX* , Y,) = r(-X, Y,) + 
r (X* ,Yo) = - r (X,  Yo)+ r ( X ,  Yo) = 0 ,  so the product lemma implies -XX* 2: 

Y, x I ,and so X* 2: X . On the sub-h-cobordism W this homeomorphism is the 
"uniqueness of inverses" homeomorphism W 2: ( W(- W))W - W((- W)W) 2: 

W ,and so is isotopic to the identity. The isotopy extension theorem implies 
this isotopy can be extended to X . Composing with the inverse gives a homeo-
morphism X* 2: X which is the identity on YouW . This shows h-cobordisms 
with the same invariants are equivalent in the appropriate sense and completes 
the proof. 
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