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Abstract. Versions of the finiteness obstruction and simple homotopy 
theory "within ~ over X"  are developed. This provides a setting for ob- 
structions to the map analogs of the end and s-cobordism theorems for 
manifolds. These are applied to study equivariant mapping cylinder neigh- 
borhoods in topological group actions, triangulations of locally triangulable 
spaces, and block bundle structures on approximate fibrations. 

Introduction 

This paper continues the investigation of completions of ends of maps begun 
in Part I. The principal question is: given f :  M ~ X  with M a manifold and f 
not proper (i.e. preimages of compact sets may not be compact), when can 
boundary be added to M and the map extended to a proper map on the 
completed manifold? 

In Part I we saw that f can be completed in this way if the end o f f  is tame 
(a necessary homotopy condition), the local fundamental group is locally 
constant, and satisfies Wh(~x7/")=0 for all n. Here we explore the con- 
sequences of relaxing the fundamental group hypotheses. As in the X =* case 
(Siebenmann's thesis) there is an obstruction, which can be thought of as a 
finiteness obstruction of a dominated space (e, over X). Similarly the obstruc- 
tion for the h-cobordism problem is a simple homotopy obstruction. The 
major part of the paper is concerned with development of the obstructions. 

To illustrate the theory we consider an example. Suppose a finite group G 
acts topologically on a manifold M. Let M* denote the singular set: M* 
={xlgx=x for some g + l } ,  and suppose the quotient M*/G is an ANR. Then 
there is a closed neighborhood of M*/G in M/G which retracts to it; let 
r: U~M*/G be such a retraction. Then M/G-M*/G is a manifold, and r(U 
-M*)/G~M*/G has an end. As with the example in the introduction to Part 
I, this end has a completion if and only if M* has an equivariant mapping 
cylinder neighborhood in M. However the results of Part I do not apply. First 
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the local fundamental group of this end over x6M*/G is the isotropy subgroup 
G~, so is usually not locally constant. Second and more serious is the fact that 
usually Wh(G x 71 n) :4= O. 

In dealing with the first problem we note that M*/G has a finite closed 
filtration X i ~ X i _ l D . . .  (determined by conjugacy classes of isotropy sub- 
groups) such that the local group of the end is locally constant over X j -  X j_ 1, 
and the pieces fit together in a nice way. This is a "stratified system of 
groups". Essentially we are able to piece together locally constant theorems to 
obtain results in this case. Such an extension of some of the material of Part I 
has been worked out by Farrell and Hsiang [15]. 

The second problem leads to the "finite structure spectrum" J~(~), designed 
to measure problems related to the existence and uniqueness of finite complex 
structures on spaces. It is also closely related to pseudoisotopies, and in fact we 
use a pseudoisotopy description of it. Applying 5 P fiberwise to a stratified 
system of group yields a "stratified system of spectra" which can be used to 
define homology groups. The end obstructions lie in one of these groups. 

Returning to the group action example, the mapping cylinder obstruction 
lies in the locally finite stratified spectrum homology group H~oS(M*/G; 5e(Gx) ). 
An Atiyah-Hirzebruch spectral sequence (8.7) and the vanishing theorem of 
Carter [7] relates this to the sheaf homology group HloS(M*/G; /~o(~Gx)) and 
H~(M*/G; K_~(;gGx) ). These are quite practical to deal with. This example is 
explored in more detail in Sect. 2.1. 

Organization of the Paper 

Section 1 contains statements of results, the principal of which are the end and 
h-cobordism Theorems 1.1 and 1.2. There are e versions of C.T.C. Wall's 
finiteness obstruction (1.3), and of J.H.C. Whitehead's simple homotopy theory 
(1.4). There are also approximate versions of the principal results, and formulae 
relating various of the invariants. 

Section 2 is devoted to applications. In 2.1 the group action question given 
above is worked out. Proposition 2.1.4 provides examples with nontrivial 
obstructions. These are locally smooth actions of finite groups on discs, which 
are not even equivariantly homotopy equivalent to PL actions on compact 
polyhedra. In 2.2 block neighborhoods of polyhedra are considered. An n- 
dimensional polyhedron P has a subcomplex L (the intrensic n - 1  shelelon) of 
dimension less than n, such that P - L  is a PL manifold. Further a neigh- 
borhood of L is a mapping cylinder of a PL map. Now suppose X D L  is a 
space, L a polyhedron, and X - L  is a (topological) manifold. The obstruction 
to finding a mapping cylinder neighborhood is given by the end theorem. We 
find further obstructions to breaking the map up into blocks over L analogous 
to a PL map. This block structure is related to triangulation question for X 
because if X - L  is triangulable then the triangulation is isotopic to one in 
which the mapping cylinder neighborhood is PL. These results are applied to 
the triangulation of finite group actions (2.2.5, see 2.2.6 and the notes follow- 
ing), and locally triangulable spaces (2.2.7). 
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As the final application, in 2.3 we discuss obstructions to approximating 
approximate fibrations lay block bundles. 

The remainder of the paper is devoted to proofs. Section 3 describes the 
algebraic obstructions, essentially a codification of the material of Part I. 
Section 4 gives the stability theorem for these obstructions. This states roughly 
that for small enough e the obstructions to e problems are independent of e. 
The proof is rather formal, and is used again in Sect. 5 for pseudoisotopies. 

Section 5 develops the finite structure spectrum. This is defined using 
pseudoisotopies, continuing the work of Hatcher [17, 18], Anderson-Hsiang 
[1], and many others. 

Sections 6 and 7 apply these developments to prove the main results. 
Section 8 is an appendix on homology groups and spectra. 

The most complex part of the paper is the development of the spectrum ,~ 
We actually use rather little of it (dimensions __<i) but are unable to avoid 
developing the whole thing. Further, it would be preferable (at least astheti- 
cally) to have a finite complex description of it along the lines of Hatcher [17], 
rather than using pseudoisotopies. There are great technical difficulties in this, 
however. For example, to use contractible pairs and contractible maps it seems 
to be necessary to work with pairs with a fixed retraction. This changes the 
theory considerably. Waldhausen [34] encountered a similar difficulty, and 
required some fairly complex category constructions to repair the damage. 
Needless to say, category theory does not adapt gracefully to situations with e 
estimates. 

Metric Conventions 

Suppose X is a metric space. We continue the convention of Part I that if 
K c X ,  e>O then K ~ is the e-neighborhood of K, and K - ~ = X - ( X - K )  ~. If 
H: Y x l - + X  is a homotopy, 6: X--+(O, oo), then H has radius <6  if for every y, 
d(H(y,O), H(y,t))<6. This is slightly different from, and more convenient 
than, the diameter notion used in Part I. There are similar modifications 
in the notion of size for geometric group phenomena, etc. 

1. Main Results 

The section begins with some background material on stratified systems of 
groups, and on the homology groups in which the obstructions lie. Homology 
groups in general are discussed in more detail in the appendix, Sect. 8. The 
main results of the paper are the end and h-cobordism Theorems 1.1 and 1.2. 
Theorems 1.3 and 1.4 give the e analogs of Wall's finiteness theorem and 
Whitehead's simple homotopy theory. Theorems 1.5 and 1.6 are approximate 
versions of the main results. Technically they are stronger than the exact 
versions in several important respects. However they are also more com- 
plicated, so should be thought of as refinements. Finally there are formulae 
relating various invariants. 1.7 and 1.8 are analogs of well-known composition 
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and boundary formulae. 1.9 and 1.10 give global versions of the duality 
formulae for finiteness and Whitehead torsion invariants of Poincar6 spaces. 

Recall that a groupoid is a disjoint union of groups, and is the appropriate 
notion of fundamental group for spaces which are not connected. A stratified 
system of groupoids on X consists of 

1) a closed filtration X = X I = X I _ ,  ... = X  o, 
2) neighborhoods U i of X i -  X i_ 1 
3) a locally constant system of groupoids Ai--*U~ for each i, and 
4) for each i>j  a homomorphism Oij: A ~ A j  over U~mUj, such that if 

i > j > k  then Oik=OjkOij o v e r  UioUjoU k. 

Given a map f :  M--*X it is a little awkward (because of basepoint prob- 
lems) to define directly a fundamental group system of X. However given a 
stratified system of groupoids p = ( X , , A , , O , )  we can define what it means for 
f to have fundamental group system equal to p (within some 6>0,  say). One 
way is to pressume the existence of regular covers on which the groups A~(x) 
act. This is the approach used in Ends I. Here we will find it technically more 
convenient to apply the classifying space functor B fiberwise to obtain Bp-~X.  
If the X~ are ANRs then this is a stratified system of fibrations in the sense of 
8.2. Having fundamental group system p within 6 is equivalent to a 3-factori- 

f ^  zation o f f  as M ~Bp-~X such t h a t f  ^ is (3,1) connected. By mild abuse of 

notation, if p: E ~ X  has a stratified fundamental group system then we will 
denote the system by ~I(P). 

In the statements we often express the invariants in terms of a stratified 
system of fibrations p: E-~X. This is mostly a notational convenience. It is the 
fundamental group system which is important, since the passage to the as- 
sociated system of groups E-~B(~  p) induces an isomorphism of obstruction 
groups. 

Given a spectrum valued functor of spaces, 5~(Y), and a stratified system of 
fibrations, p: E-~X, we describe in Sect. 8 how to define the "spectral sheaf" 
homology H , ( X ;  5Z(p)). For reasonable functors there is a spectral sequence of 
Atiyah-Hirzebruch type (8.7) which relates this group to ordinary (sheaf) ho- 
mology groups 

Hi(X; lzj,_,CY(p)) =a Hi+ d(X ; ,9~ 

Notice in particular that Ho(X; 5~(p)) involves the lower homotopy of the 
spectrum, ~j 5P(p), j < 0. 

The particular spectrum we use is the "finite structure spectrum" 5P(Y) 
=Sg(, ;  Y ~ * )  defined in Section 5. The first space in the spectrum is Hatcher's 
space 5~ though for technical reasons we use a pseudoisotopy description 
of it. This space has received a lot of attention recently. With the exception of 
Anderson and Hsiang [1], most of this attention has been centered on the 
higher homotopy groups. As explained above it is the lower homotopy groups 
of the spectrum which interest us. These groups are ~1 5~(Y)~Wh(rc~(Y)), 
~_j~t~(Y)=K_j(~1~ 1 Y) for j__>0. 

In 1.1 and 1.2 we assume X is a locally compact metric ANR. Tame ends 
are defined in Ends I, 1.1. 
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1.1. End Theorem. Suppose M is a manifold and f: M ~ X  has a tame end with 
A N R  stratsfied fundamental group system (denoted rq 8( C f)). Then 

a) there is an invariant qo(f)~Hlof(x; 6r which, if dimM>__6, 
vanishes if and only if f has a completion. 

b) I f  dim M > 5 then any two completions are h-cobordant in the sense that 
there is a completion of M x I ~ X which restricts to the given ones on M x {0, 1}. 
(The boundary of such a completion is an h-cobordism over X . )  Conversely given 
a completion and an h-cobordism of the boundary, the h-cobordism occurs as the 
boundary of  a completion of M • I extending the given one on M x {0}. 

c) given two completions, then the invariant qx6H]f(X; $'~(Blra ~3(Cf))) of  the 
associated h-cobordism is zero if and only if for every s: X ~ ( 0 ,  c~) and neigh- 
borhood U of the end there is an e automorphism of M which extends to an 
isomorphism of the completions and is the identity outside U. 

An h-cobordism over X is a manifold (W;doW, O~W)--*X which s defor- 
mation retracts to either ~o W or 01 PC, for any s: X ~ ( 0 ,  ~) .  

1.2. h-cobordism Theorem. Suppose f: M - ~ X  is proper and has A N R  stratified 
local fundamental group system. 

a) I f  F: (W; M , M ' ) - ~ X  is an h-cobordism over X and F / M = f ,  then there is 
an invariant q t ( F , f ) ~ H ~ ( X ;  ~9~(Bnlf)), 

b) I f  d imM:>5 and o~H~f(X; SP(Bnlf)) then there is an h-cobordism over 
X with ql(F,f)=ct.  

c) I f  dim:> 5 then two h-cobordisms over X beginning with M are e isomor- 
phic for every e: X-~(0, o~) if and only if they have the same ql invariant. 

We remark that if the local fundamental groups are locally constant, the 
geometric group material of Ends I allows relaxation of the conditions on X in 
1.1 and 1.2 to locally compact  locally 1-connected metric space. In this case 
the obstructions lie in the Cech homology groups I:II,I(X~(Bn)). 

In Theorems 1.3 and 1.4 we assume X is a locally compact metric ANR, 
p: E-~X  is a stratified system of fibrations, and Y c X  is a closed p - N D R  
subset (see 8.2) so that ( X - Y ) -  is compact. We will be considering phenom- 
ena on X - Y  with hypotheses which break down near Y The conditions on Y 
are to enable us to get obstructions in H , ( X , Y ; ~ ( p ) ) ( = H ~ ( X - Y ; ~ ( p ) ) .  
More complicated and general statements can easily be obtained from these, 

A space Z I > E is said to be 6 dominated by a proper polyhedron over C 

c X if there is a polyhedron K J >Z such that K - ~ X  is proper, and a 

m a p / : ( p f ) - l ( C ) ~ K  such that j i  is 6 homotopic  to the inclusion 
(P f ) -  ~( C)--* Z. 

1.3. Existence of Finite Complex Structures. There is 6 > 0  such that if f :  Z ~ E  
is c5 dominated over X - Y  ~ by a proper polyhedron, then an invariant 
qo(Z)~Ho(X , Y;~(p))  is defined. Given n and sufficiently small e > 0  there is 
6(n,s) such that if f is (a, 1) connected and 6 dominated over X - y a  by a 
complex of dimension <=n, then Z is e equivalent to a proper polyhedron over 
X -  Y~ if and only if qo(Z)=0.  
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1.4. Uniqueness of Finite Complex Structures. There is 6 > 0  so that if 
f :  K I ~ K  2 is a 6 homotopy equivalence of proper polyhedra over X - Y  ~, then 
there is an invariant q l ( f ) ~ H l ( X ,  Y; ~(p)). Given n and sufficiently small ~>0 
there is 6 > 0  such that if f is a 6 equivalence and K 2 is (6, 1) connected over X 
-Y~ ,  and the dimensions of K1, K 2 are less than n, then q l ( f ) = 0  if and only if 
there is a proper polyhedron K 3 and an ~ commutative diagram 

K3 

K 1 / f K 2  

such that gl, g2 are PL  and contractible over X -  Y~. 
We recall that a map is contractible over C if point inverses over C are 

nonempty and contractible. These are the straightforward generalizations of 
the classical existence and uniqueness theorems of Wall [35] and Whitehead 
(see Cohen [13]). We point out the dramatic difference between the e and 
fibered version of simple homotopy theory. Hatcher [17] obtains invariants in 
HI(X;  6P(p)) (our notation), so they are contravariant and involve the higher 
homotopy of ~ .  

Notice that although the invariants are well defined generally, a dimension 
restriction is necessary for a geometrical conclusion. We can replace the 
restrictions on K by the assumption that X is finite dimensional, but so far 
cannot omit some such hypothesis. This will not be a hinderence in our 
applications, but is certainly an asthetic blemish. 

We note a refinement of 1.3. If K ~ _  ~ Z is an ~ domination, then K can be 
J 

given the structure of a finite complex projection. This is a mapr :  K ~ K ,  a 
homotopy h: r ~ r  2, and a symmetry condition on h; r h ~h (1  x r)rel ends. The 
invariant qo is most naturally defined for finite complex projections (see 6.5), 
and qo(Z) =qo(K, r,...). 

The reason this is a refinement is that unlike the traditional X = p t .  case 
not every projection comes from a dominated space. The usual construction is 
the infinite mapping telescope of r, but this does not satisfy any e estimates. 
There are finite approximations to this construction (the CW analog of the end 
theorems) but the size of these is estimated in terms of the dimension of K, an 
undesirable dependence. 

The reason this refinement is useful is that the invariant in the end theorem 
is qo of a finite complex projection constructed very easily from a tame 
structure (6.6). 

Suppose p: E--*X, Y c X  satisfy the conditions given above 1.3. Tame struc- 
tures are as defined in Ends I, 2.4, except that we substitute for the regular 
cover hypothesis (2) the condition 

2') the maps ( U j _ I - W j + I ,  U j - W j ) ~ ( E , E  ) and (Uj_I-Uj+2, Uj-Uj+I) 
~(E,  E) are relatively (6, 1) connected. 
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1.5. Approximate End Theorem. I f  n > 6 is given, e>0,  and D ~ X, then there is 
6 > 0  with the following property: Suppose f: M " - , E  is a manifold with a (6,j(n)) 
tame structure U., W. over X -  Y~ which is parallel to a (6, Wo, W1) approximate 
completion given on ~M and over D ~. Suppose the invariant qo( f )6Ho(X 
- D  ~/2, Y: 5P(p)) of the finite complex projection associated to the tame structure 
vanishes. Then there is an approximate (e, Wo, Wjt,)) completion over X - Y ~  
which agrees with the given one over D and on OM, and which lies between U o 
and Uj~,). 

Here, as in Ends I, we can take j (n)=2 ~"+1)~"+2)/2. See 6.6 for the "as- 
sociated finite complex projection". 

1.6. Approximate h-cobordism Theorems. Suppose n=>6, e>0,  and D ~ X  are 
given. Then there is 6 > 0  such that if f :  (M, OoM)--+E is a (6, h)-cobordism over X 
- Y~, f:  M-+E is (6, 1) connected over X -  Y~, a 6 product structure is given over 
D ~, and the homotopy equivalence invariant ql(M, O o M ) ~ H I ( X - D  ~/2, Y; ~ga(p)) 
vanishes, then there is an ~ product structure over X - Y ~  which agrees with the 
given one over D. Further, given N--+E (6,1) connected over X - Y  ~, N a 
manifold of dimension >5 proper over X, and given o~6HI(X-D ~, Y; Y(p)) then 
there is an (~, h)-cobordism (M, N) over X -  Y~ with a product structure o v e r  D ~/2 

whose invariant in H l ( X - D  ~, Y; oGa(p)) is the image of c~. 
We now turn to formulae relating various invariants. Some of these, such 

as naturality with respect to p, are too straightforward to justify a formal 
statement. Similarly although we give a composition formula (1.7) we omit the 
various union formulae. 

g 
1.7. Proposition. Suppose K 1 ~ K 2 ~K 3 are 6 homotopy equivalences as in 

1.4. Then q l (g f )=q l (g )+  ql(f) .  In particular /f(W; M,M')  and (W'; M' ,M") are 
(6, h) cobordisms as in 1.6, then q l ( W U W ' , M ) = q l ( W , M ) + q l ( W ' , M ' ) .  Further, 

M '  

if N is a finite comp'lex, qa(g• is z(N) times the image of ql(g) in 
H d X ,  Y; 5~(1N • p)). 

The next proposition has an approximate version stated in 6.8. 

1.8. Proposition. Suppose f :K-~E•  is a polyhedron proper over X 
• [0, oo), and the end of p f: K ~ X  is tame. 

a) K is e dominated over X for all e>0,  and qo(K)=qo(pf). 
b) I f  h: K ' ~ K  is proper and a (6, 1/t) homotopy equivalence over X • (a, oo), 

then for sufficiently small 6 the end of pfh" K'-+X is also tame, and qo(pfh) 
= qo(Pf) - • q~(h). In other words c)q, (h) = qo(K) - qo (K'). 

c) I f  N is a finite complex, then N x K - ~  K f-~ E • [0, oo) also satisfies the 

hypotheses and qo(f  n) is z(N) times the image of qo(f) in Ho(X , Y; 5~(1N • p)). 

The next results concern Poincar6 duality. If M, 0M is a manifold, and 
(U, O1U)~(M, OM ) is a regular neighborhood in IR "-1 • [0, oo), then OoU--+M 
is a sphere bundle of some kind. By analogy we say that ( K , L ) ~ X  is e 
Poincar~ over X if there is a Euclidean regular neighborhood (U, 01 U)D(K, L), 
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a spherical fibration ~:S(- - ,K,  and an e homotopy equivalence 
b:(U, 0 o U,O 1 U)~(D~, S~,D(r Here D~ denotes the disc bundle (mapping 
cylinder) of the sphere fibration. 

There is a homological characterization of e Poincar6 in terms of Poincar6 
duality over little pieces of X, like the homological characterization of tame- 
ness in Ends I, 1.6. There is also a definition for dominated spaces, or more 
generally finite complex projections (see 7.7). 

In order to study the invariants of Poincar6 spaces some involutions are 
necessary. If p: E ~ X  is a stratified system of fibrations and co: n~ E--,7l/2(= 
{ -1 ,1} )  then we define an involution ~:Hi(X;6~(p)) , i<l ,  in 7.4. The in- 
volution T corresponding to the trivial homomorphism is related to Spanier- 
Whitehead duality. Generally oS=l[co], where [co] is a geometric operation 
defined using the line bundle over E corresponding to c~. On E~j 
=Hi(X;/( j (Zzclp))  f j < l )  it is the involution induced by the standard antiin- 
volution of the group ring, o3(2: ng g) = Z ng co(g) g -  1. 

1.9. Proposition. Given n there is 6 > 0  such that if (K ,L )~E  is 6 dominated 
PoincarO pair of dimension k<n  over X - Y  ~ such that the first Stiefel-Whitney 
class of the bundle of (K, L) factors through co: 7z 1 E~71/2, then qo(L)=qo(K)+ 
( -  1)k (Sq0(K) in HZo: ( X -  Y; 5P(p)). 

For example suppose f :  M ~ X  is a manifold with tame end with stratified 
fundamental group. Then we can define a homotopy completion 
Cf:(CM, OCM)~X by attaching the homotopy inverse limit of neighborhoods 
of the end, OCM (see 7.8). (CM, OCM) is a dominated Poincar6 pair. Restrict- 
ing to a small manifold neighborhood of the end and applying 1.8, 1.9 gives 
qo(f)+(-1)mNqo(f)=qo(OCM).  This gives a duality formula for qo(f) in 
situations where OCM can be shown to be finite (see 2.2.3). 

Now suppose (K,L) is a finite 6 Poincar6 pair over p. We will see in 7.3 
that there is an essentially unique finite complex structure on a spherical 
fibration, so b: (U,0 o U)~(D~,Sr is an e homotopy equivalence of finite pairs. 
The torsion z(K,L) of a Poincar6 pair is essentially ql(b) (exactly, r ( K , L ) =  
(-1)=iq~(b), where s is the fiber dimension of D~. See 7.5). Since a manifold 
has b a homeomorphism, its torsion is 0. 

A Poincar6 triad is a triad (K;OoK, O~K ) such that (K, OoKuO~K), 
(01K, 0 0 Kc~0~ K) are all Poincar6. 

1.10. Proposition. Given n there is 6 > 0  such that the following hold. PoincarO 
means 6 Poincar~ over X - Y ~ ,  dimensions are assumed <n, and bundles are 
assumed to have w I factoring through co: x1E~Tl/2. Invariants all lie in Htlf(X 
- y ;  5e (p) ) .  

a) (duality) if (K,L) is Poincar~ of dimension k, then v(L)=z(K,L)+ 
( - 1) k o5"c (K, L). 

b) (unions) I f  (K;OoK, OaK) and (K';OoK',OIK') are PoincarO triads and 
0oK=c~oK' , then (KuK' ,O1KuOIK')  is Poincar~ and ~(K~oK';O1KuO1K' ) 
= z(K, c3K) + z(K', 0K') - z(0 o K, c3 3o K). 

c) (h-cobordisms) I f  (K; 01K, O2K ) is a finite Poincar~ triad of dimension k 
which is a (6, h)-cobordism, then 

z(O2K, O OzK ) -  ~(K, OK) = (3 q~ (K, OzK ) + ( -  1) k ql(K, O 1K). 
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d) (homotopy equivalences) I f  f:  (Ko,OKo)~(K1, OK1) is a homotopy equiva- 
lence of finite k-dimensional PoincarO pairs, then 

r(Ko,OKo)- z ( K x , O K j ) = ~ q l ( f ) + ( - 1 ) k  q~(f c~f). 

e) (products) I f  (K,L) is PoincarO over p: E-~X and (N, ~N) is finite orient- 
able Poincar~ (over a point) then (K x N, K x ONuL x N) is PoincarO, and has 
torsion X(N, ON). r(K, L). 

We note that (c) specializes to the duality formula for manifold h-cobor- 
disms. 

2. Applications 

2.1. Finite Group Actions. Suppose G is a finite group which acts continuously 
on a manifold M. We are concerned with equivariant mapping cylinder neigh- 
borhoods of the singular set, continuing the example of the introduction. 

Some notation will be helpful. If x~M, G x is the isotropy subgroup 
{geGlgx=x}. If H ~ G  then M{H} is the subset of points whose isotropy 
subgroup is a conjugate of H. M{_~H} denotes the union of M{J} for J_~H. 
Finally the singular set M { D 0} will be denoted more briefly by M*. 

An action is said to be ANR i f M { ~ H } / G  is an ANR for each H~G.  It is 
effective if M* 4= M. 

For the first result we note that for an ANR action the isotropy subgroups 
form a stratified system of groups over M. This system is G equivariant, so 
defines a system over M/G, which we will denote by G. .  

2.1.1. Theorem. Suppose the action of G on M is effective and ANR, that 
M * c M  is 1-LC embedded, that the dimension of M is >6, and that an 
equivariant mapping cylinder neighborhood is given for a neighborhood of 
M*c~OM. Then there is an invariant in H~I(M*/G; 9~(G.)) which is zero if and 
only if there is an equivariant mapping cylinder neighborhood of M* which 
agrees with the given one near 3Mc~M*. 

Proof. Since the action is ANR there is a closed neighborhood N of M*/G 
with a retraction e: N~M*/G,  and such that N - M * / G  is a manifold. Since 
M * c M  is 1-LC embedded, the end of ( N - M * / G ) ~ M * / G  has fundamental 
group system G..  In fact there is an equivariant retraction e ~ of the inverse 
image N ~ c M  to M*. Then since N ~ - M *  is free, e -  factors (N ~ - M * ) ~ E  a 

x M * ~ M * .  This gives a factorization ( N - M * / G )  I - -*(EGxM*)/G~M*/G.  
f is locally 1-connected at the end, and p is a stratified system of fibrations 
with fiber EG/Gx~-B6x over [x]eM*/G. 

Next, also since M* is 1-LC embedded, the end of N - M * / G  is homologi- 
cally tame (see Ends I, 3.1.1) therefore tame (Ends I, 5.5). 

Finally since an equivariant mapping cylinder neighborhood is equivalent 
to a completion of the end of N - M * / G ,  the theorem follows from the End 
Theorem 1.1. 

We note that the uniqueness aspect of 1.1 shows that if a mapping cylinder 
neighborhood exists, then different ones are classified up to ambient isotopy by 
H~ff (M*/G ; ..~(G,)). 



362 F. Quinn 

Notice that there is a natural map of group systems from G, over M*/G to 
G over a point. This defines a homomorphism Hlof(M*/G; 5~(G,))~/s 

2.1.2. Proposition. Suppose M is as in 2.1.1 and is compact. Then (M-M*) /G is 
dominated by a finite complex, and the image of the (Wall)finiteness obstruction 
is the image of the mapping cylinder obstruction under the homomorphisms 

H~or ; 5~(Gx))--* Is Ko(7ZZCl((M- M*)/G)). 

Proof This is because the end obstruction is the finiteness obstruction of a 
neighborhood of the end (1.5), and the complement of the neighborhood is 
already finite. 

Another view of this piece of the invarient is that it is equivalent to the 
obstruction to (M,M*) being equivariantly homotopy equivalent to (K,M*), 
where K is obtained from M* by attaching cells which are freely permuted by 
G. Such obstructions have been encountered by Oliver [26, 27] Oliver and 
Petrie [28], and Quinn [30]. More precisely the finiteness obstruction of 
(M/G, M*/G) is ( -1 ) '05  applied to that of (M-M*) /G (by Poincar6 duality, 
still assuming as in 2.1.1 that OMc~M* has a mapping cylinder neighborhood 
so that (SM-M*)/G is finite). 

The next remark is that Carter [7] has shown that for a finite group 
K j (ZG)=0 for j>2 .  The bottom corner of the spectral sequence therefore 
gives an exact sequence 

H~f(M*/G; K_I  (7~,G,)) d2 Htof(M,/G; i~o(71G,))_, H~of(M*/G; 5~(G ,)) 

-~ H]f (M* /G ; K_ ~ (Z G,))--~ 0. 

2.1.3. Corollary. Suppose M is as in 2.1.1 and is compact. I f  the fixed point set 
M{G} is nonempty, and M { ~ H }  is 1-acyclic (i.e. Hi(; Z)=O for i=0,  1)for all 
isotropy subgroups H 4:1, then M* has an equivariant mapping cylinder neigh- 
borhood extending the one given near OM if and only if (M-M*) /G has the 
homotopy type of a finite complex. 

Proof The acyclicity hypothesis reduces the exact sequence to 

a2> I~o(TIG)_,Ho(M,/G; 5P(G,))___ ~ 0. 

The construction of 2.1.2 shows that this is an isomorphism and identifies the 
invariants. Then 2.1.1 connects the invariant to mapping cyclinders, and 1.3 (or 
Wall [35], since we are over a point) connects it to finiteness. This completes 
2.1.3. 

We also note that if a fixed point is deleted from M*/G then the obstruc- 
tion group vanishes entirely. Therefore there is a mapping cylinder neigh- 
borhood of the complement of any fixed point. 

The 1-acyclic hypothesis on the sets M{H} in 2.1.3 imply that the singular 
set is 1-acyclic. This is a fairly strong assumption, but it may well be a context 
for reasonably general constructions of actions (see Quinn [30]). The main 
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reason for imposing the requirement here is to avoid K _  1. Since Carter [8] 
has explicitly calculated K_I(ZG),  these obstructions can surely be understood 
in more general circumstances. 

The final result provides some examples with nontrivial obstruction. 

2.1.4. Proposition. There are locally smooth actions of finite groups on discs 
which have nonvanishing mapping cylinder obstructions, and in particular are not 
equivariantly homotopy equivalent to finite contractible G complexes with cellular 
actions. 

More precisely there is an action of  G = (a, b[a t 5 = b 4 = 1, b a b -  1 = a 2 ) ,  with 
fixed point set an arbitrary finite complex homotopy type with Euler characteris- 
tic congruent to 1 or 3 mod4. By contrast Oliver [27, Part II] has shown that a 
cellular action of this group on a finite contractible complex must have fixed 
point set with Euler characteristic congruent to 1 rood4. This group is metacyclic 
2-hyperelementary, and has order 60 (Oliver [27, Part II], p. 263). 

In relating these examples to 2.1.1 allowance must be made for the bound- 
ary, since in general the action on the boundary sphere does not have a 
mapping cylinder neighborhood. 

Proof. Begin with a G-resolution X in the sense of Oliver [26], with nonempty 
fixed point set. A resolution is a finite G complex with a single nonzero 
(reduced) homology group, which is projective as a 7ZG module. Equivariantly 
PL embed X into a linear representation of G with fixed point set of dimen- 
sion at least 2, and with singular set of codimension greater than j. Let M be 
an equivariant regular neighborhood. If H~(X) were free, then we could attach 
sets of ( j+l)-handles to aM on which G acts freely, to kill H~(X). This new 
manifold would be a disc with a G action. This is the construction of Oliver. 

If Hi(X) is not free, we will describe how to "wrinkle" c~M in a neigh- 
borhood of a fixed point. This changes M - M *  by adding an e,h-cobordism, so 
the effect on the end invariant is given by 1.8(b). The specific construction 
changes Hi(M) by adding a complementary projective module. Therefore the 
homology can be killed by adding free handles as above, giving a disc. 

Let K be a finite connected 1-complex on which G acts freely. Let cK 
denote the cone K x [0, 1]/K • {0}, and let h: cK--+OM be an equivariant PL  
embedding. The image of the cone point is a fixed point, which we denote by 
X. 

Next let p: A--+A be a projection (i.e. p2 =p) on a finitely generated free •G 
module with im(p)=Hj(X).  Let q be the complementary projection ( q - - l - p ) .  

Now let keK,  and for each i>  1 trivially attach j-handles to aM represent- 

i n g a b a s i s f o r A ,  i n a v e r y s m a l l n e i g h b o r h o o d o f h ( G k x { ~ } ) .  

po t s  

This is topologized so that these handles converge to x. 
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The next step is for each i add j +  1 handles, again corresponding to a basis 

of A. These handles are to be added in a small neighborhood of h l K  
\ 

and to the j-handles near h(Gk x {i})and h(Gk • {i+ 1}). This can 
• Li i+  1 J]  

be done so that the boundary homomorphism to the i th set of j handles is p, 
and to the (i + 1) st is q. 

j + l  A A A A A 

j A A A A A 

Again these handles are topologized to converge to x. 
The result of this construction is a smooth manifold in the complement of 

x. The homology is that of M except H~ which is Hj(M)GA/p(A). Since p was 
chosen so that this is free, free sets of handles may be added to make it 
contractible. Call the result D. D is a contractible G-space which is smooth in 
the complement of x, and whose boundary is 1-connected. It remains to see 
that D is a manifold, and the action is locally linear at x. This will be done by 
a sort of engulfing. 

Since the representation was assumed to have fixed point set of dimension 
at least 2, there is a neighborhood o f x  in M of the form Vx [0, 1), where V is a 
half space in a representation of G and x corresponds to (0, �89 Let W be the 
neighborhood in D obtained by adding to Vx [0, 1) the j and j +  1 handles 
which intersect it. Since only the free part is changed, W * =  V*x [0, 1). Fur- 
ther, the end of (W-W*)/G~(V*/G)x [0, 1) is changed only over x, and there 
it is not changed homotopically. Therefore the end is still tame, with the same 
fundamental group system. 

the new h a n d l ~  

xed 

- -  [ o ,  1 ) - - , -  

point set 

Now we apply the end theorem, first on the boundary. O(W-W*)/G~(OV 
[ , 3]; the product com- - V*)/G x [0, 1) has a completion over (OV- V*)/G • 0 1 

pletion of the corresponding end in V • [0, 1). The obstruction to extending this 
completion from over [0,�88 to over all of (OV-V*)/Gx[O, 1) lies in H~I((dV 
-V*)/G x [�88 1); 5e(G.))=0. Therefore there is such a completion. Similarly 
this extends to a completion of the whole end which agrees with the given one 
over (V-  V*)/G • [0,�88 Let f :  N ~ ( V -  V*)/G x [0, 1) denote the new boundary 
in this completion. 
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The next step is to change f by h-cobordism. Then end in V x [0, 1) has 
completion a product P x [-0, 1-]~(V-V*)/G x 1-0, 1). Since the two ends are 
homotopically the same, the projection N--,[0, 1) is an approximate fibration, 
and is Px1-0,�88 The restriction of N x I ~ V * / G x [ O ,  1) x I  to {(y,s,t)ls<l 
- 3 /4 t }  gives an h-cobordism from f (over V*/G x [0, 1) x {0}) to the product P 
x 1-0,�88 x {1}--,V*/G x [0,�88 x {1}. According to 1.1(b) a map h-cobordant to 

the boundary of a completion can be realized as a completion of the same end. 
Therefore the end in W has a completion which is a product over [0, 1). It 
follows that a neighborhood of x in D is a product, so D is a manifold and the 
action is locally linear. 

We have shown that any G-resolution can be thickened and completed to a 
locally linear action on a disc. But Oliver has shown that these often have 
nonzero finiteness obstruction, and that for a few groups the wrong choice of 
Euler characteristic for the fixed point set of X actually forces the finiteness 
obstruction to be nonzero. The proof of 2.1.4 is therefore complete. 

2.2. Block Neighborhoods of Polyhedra. Suppose X is a space, L a polyhedron 
closed in X, and that X - L  is a topological manifold. The question is, when 
can a neighborhood of L be decomposed into blocks in a manner analogous to 
the decomposition of a PL regular neighborhood? If the end of X - L  is 
assumed to have an appropriate homotopy structure, then various completion 
obstructions are encountered. The main result is 2.2.4. This should be regarded 
as preliminary, because the obstructions are not yet effectively organized. The 
application to triangulation of finite group actions in 2.2.5 is reasonably 
satisfactory because Carter 's vanishing theorem avoids most of the inefficiency 
of the general case. Finally 2.2.6 contains a comparison with the triangulation 
work of Anderson and Hsiang [23. 

The first step is to recall the dual cone decomposition of a polyhedron 
(Cohen [13-]). Choose a triangulation of L, take the first barycentric subdivision, 
and then consider the stars of the original vertices. These are cones (on the 
links), their union is L, and the intersection of two is a cone contained in the 
boundary of each. In fact any intersection of cones has a natural cone struc- 
ture, and is contained in the boundary of the larger cones. 

L dual cones in L 

Next we note that if N ~ L  is simplicial with respect to the first tri- 
angulation of L, then N decomposes into mapping cylinders over the cones in 
L. This is essentially Hatcher 's  [19] iterated mapping cylinder decomposition. 
The first consequence is that point inverses in N change in a very controlled 
way. 
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2.2.1. Lemma.  Suppose f: N-- ,L  is proper and PL. Then there is a stratified 
system of fibrations with PL filtration p: E ~ L  and an approximate homotopy 
equivalence over L, N ~ E .  Further, all of the fibers of E have the homotopy type 
of finite complexes. 

An approximate homotopy equivalence is a map which commutes with the 
maps to L, which is an e homotopy equivalence for every e>0 .  Alternatively it 
is a map whose restriction f - l ( U ) ~ p - l ( U )  is a homotopy equivalence for 
every open set U c L. 

The next observation about  the cone decomposition is that boundaries of 
maximal cones are bicollared. Further, smaller cones have boundaries bicol- 
lared in the boundaries of the next larger cones. Therefore the intersection of k 
distinct maximal cones has a D k product neighborhood (or perhaps more 
accurately A k, since it comes from a simplex in the original triangulation). If 
f :  N-- ,L  is a manifold it therefore makes sense to speak of N being transverse 
to the dual cones. If f were simplicial, as above, then f is automatically 
transverse to the cones. The next lemma is in a sense a converse to this 
observation. 

2.2.2. Lemma.  Let f: N ~ L  be a proper map, N a manifold, and f approximately 
homotopy equivalent to a stratified system of fibrations p :E-~L  with PL 
filtration. Suppose f is transverse to the cones dual to a triangulation in which 
the filtration of p is simplicial. Then f is s-cobordant over L to a map f ' :  N--,L 
which decomposes as mapping cylinders over the cone decomposition. Finally if 
dim N > dim L + 5, then any combinatorial PL structure on N is isotopic to one 
in which f '  is PL. 

We recall that the significance of s-cobordism over L is that s-cobordant 
maps have homeomorphic  mapping cylinders (1.1). This therefore gives a 
criterion for splitting up, or triangulating, a mapping cylinder. 

Proof, Since f is transverse to the boundary of a maximal cone cB, the inverse 
of a small collar is a product 

f - X ( B  x [ l - e ,  1 ] ) = f - l ( B )  x [ l - e ,  1 ] ~ B  x [ l - e ,  1]. 

If we compose f with the map  cB x I ~ c B  which squeezes the subcone B x [0, 1 
- e ] / B  x {0} to the cone point, then we get F: N x I ~ L  so that Fo=f, and F1 is 
a mapping cylinder over cB. Compose p with the same squeeze to obtain a 
commutative diagram 

N x I  , E x I  

which is an approximate homotopy  equivalence over L. But p is a stratified 
system of fibrations, and this squeeze preserves the filtration. Therefore use of 
the homotopy  lifting property in the pieces gives an approximate homotopy 
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equivalence 

E •  ~ E x I  
' \ \  / 

e ~ \  L / / / / p o  (projection) 

Composing with the mapN x I--+E x I shows that F: N x I ~ L  is an h-cobor- 
dism. It is an s-cobordism because it can be broken up into little segments 
with ~ trivializations, (hence trivial qx invariant) and the invariant is additive. 

Now proceed by induction going down on the size of the cones. A defor- 
mation over a small cone can be extended to the larger cones using the 
mapping cylinder structures. 

Finally suppose N is a PL manifold. The topological Caurns-Hirsh Theo- 
rem (Kirby and Siebenmann [23]) shows that the structure may be deformed 
to make a codimension 1 submanifold PL, provided the dimension is >6. 
Using this inductively on inverse images of cones, we see that the structure can 
be deformed until the map f is PL transverse to the cones. The construction of 
f '  then displays N as the union of PL mapping cylinders (with the usual 
cautions about these, so the projection to the cone complex is PL. 

This completes the proof of Lemma 2.2.2. 
The final clue is that transversality is an end problem. 

2.2.3. Lemma. Suppose f :N- -*L  is approximately homotopy equivalent to a 
stratified system of fibrations p: E--*L with PL filtration and with fibers equiva- 
lent to f n i t e  complexes, and suppose that L o c L is bicollared subcomplex trans- 
verse to the filtration. I f  N is a manifold of dimension n > 6 then f is s-cobordant 
to a map transverse to L o if and only if the end of one side of N - f  - l(Lo) has a 
completion over L o. The end invariant satisfies qo=(-1)"oS(qo), where c5 is the 
involution induced by the first Stiefel-Whitney class of the normal bundle of 
N, co: ~1E--'7//2. Finally, if there is a completion then any completion can be 
realized as the transverse inverse image. 

Proof First note that since L o is transverse to the filtration we can choose a 
neighborhood L o x [ - 1 ,  1] so that p over this neighborhood is equivalent to 
the product Pox 1~_1,1~ , where Po is the restriction o fp  to Eo=p-~(Lo  x {0}). It 
follows from this that the end of f - t ( L o x ( 0 , 1 ] )  over L o is tame and has 
homotopy completion equivalent to P0- 

To show the only if part, suppose W - , L  o is an h-cobordism with O o W = N  
and invariant q~eH~f(L;,Cf(p)). Then 1.8b and 1.10c show that the restrictions 
of C~o W and 01W to Lox(0 ,  1] have end invariants which differ by ~?(q~ + 
(-1)"(SqOEHloI(Lo; 5P(Po)). In particular they are equal if W is an s-cobordism. 
Therefore if f is s-cobordant to a transverse map, the original end has a 
completion. 

The next step is to construct a finite complex approximation to E. This is a 
proper polyhedron r: W--*L and a map W ~ E  which commutes with projection 
to L and is an approximate homotopy equivalence over L. Take as usual a 



368 F. Quinn 

cone decomposition dual to a triangulation in which the filtration of p is 
simplicial. We construct W inductively over the "skeleta" L~=union of cones 
of dimension <j. Suppose rj: W ~ L j  is defined, and Wj~p-I(Lj) is an approxi- 
mate homotopy equivalence. Suppose (cB, B)c(Lj+ 1, L j) is a cone of dimension 
j +  1. Since p has the homotopy lifting property with respect to PL homotopies 
which move points in a monotone decreasing way between strata, and because 
the stratification of p is simplicial with respect to the triangulation, we can lift 
rfl(B) X [0,1]--*cB into E so that rfl(B) x {1}~p- l (B)  is the given equiva- 
lence. Choose a homotopy equivalence p- l (c )~Z ,Z  a finite complex. Then 
define Wi+ 1 over cB to be the mapping cylinder of the composition rf~(B) 
x {O}--*p-l(c)~Z. Define the projection rj+ 1 by (x,t)er.:-l(B)x [0,1] goes to 

(rj(x),2t-1)eBx[O, 1] for t>�89 and goes to c for t<~.  Then a homotopy 
inverse for p-l(c)~Z, and the lift found above, can be used to lift rj.+l into E 
in an appropriate way. 

The first consequence is the duality formula, r-~(Lo) is a polyhedron 
proper over Lo, and is approximately homotopy equivalent to p-~(Lo), which 
in turn is equivalent to the boundary of the homotopy completion of f - ~ ( L  o 
x (0, 1 ] ) ~ L  o. This gives a manifold neighborhood of the end the structure of 

an e dominated Poincar6 space over Lo, with finite boundary. The duality then 
follows from 1.9. (See the comments following 1.9.) 

The next consequence of the finite complex approximation is that if (a, b) 
( - 1 ,  1) then the invariant of one end of f - I ( L  o x (a, b))~L o is the negative of 
the invariant of the other end. This is because the invariants are finiteness 
invariants of neighborhoods of the ends, so gluing the neighborhoods together 
we see that the sum of the invariants is the finiteness invariant of f - l ( L  o 

 his is  quiva, ent to which is so the sum 
is zero. 

Applying this conclusion to (a, b) = ( - �89 0), 1 1 0 ( - 5 , 3 )  and ( ,~ )  shows that the 
invariants of the ends of f - I(L 0 x (0, 1 ] )~L  o and f - l ( L  o x [ -  1, 0))--,L o are 
negatives of each other. In particular if one has a completion so does the 
other. 

Now suppose we are given a completion of f - ~ ( L  o x (0, 1]) over L o x {0}. 
Then by the argument above, there is also a completion of f -~(L  o x [ - 1 , 0 ) )  
over L o x {0}. Consider these as a completion on the boundary of the end of 
f - l ( L  o x [--1,  1]) x [0, 1 ] - - f -  l(Lo x {0}) • {1}. 

Completion on f -  I(L o x {0}) x {1} deleted 
the boundary from here 

/'- l(L~ x [-  1' 1]) ~ / ~  

I I t 
--1 0 1 

The obstruction to extending this boundary completion to the whole end is the 
finiteness obstruction of a neighborhood of the end. This is zero because the 
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original description as a subset o f f - ~ ( L  0 x [ - 1 ,  1]) x [0, 1] gives a completion 
(though not a relative one). This completion of the interior gives an h-cobor- 
dism o f f - l ( L o  x [--1,  1]) which is a product a little outside L 0 x {0}. We can 
change the completion of the interior by an h-cobordism (by 1.1) to get an s- 
cobordism of f Finally by pushing everything over L 0 x {0} except the original 
completion o f f - l ( L 0  x (0, 1]) a little toward - 1 ,  we obtain an s-cobordism to 
a transverse map with this as inverse image. 

This completes the proof of Lemma 2.2.3. 

2.2.4. Theorem. Suppose L is a polyhedron, L ~ X  is closed, and X - L  is a 
manifold with dimension r > d i m L + 6 .  Suppose the end of X - L  over L is tame 
and the boundary of the homotopy completion is a stratified system of fibrations 
p: E-*L with PL filtration and fibers equivalent to finite complexes. Then there 
are obstructions 

a) the end invariant qo(X-L)eHto:(L; 5e(p)), which satisfies qo = ( - 1 )  r co(qo)- 
b) a sequence tje ~ Hli:(L; Hi+J+r(TZ/2; I( j(Tllr I p),CO)) for j>O, such that 

i>j  
t j_ I is defined if tj is defined and is zero. 

c) if the obstructions in (b)  vanish then a sequence 

uj~Hr+J+~(2~/2; H'fj(L(j); 5g(p)), CO), j__>0. 

I f  all of these vanish, then L has a mapping cylinder neighborhood whose map 
decomposes as iterated mapping cylinders over a dual cone decomposition of L. 

Note: The obstructions in (b) and (c) are 2-torsion: if K is a group with 
involution cO then HP(7//2;K,cO) is a fancy notation for the subquotient {keKIk 
=(-1)PcO(k)}/{k+(-1)PcO(k)}. This group has exponent 2, so the obstructions 
in (b) are ordinary homology classes with coefficients in a sheaf whose stalks 
are 2~/2 vector spaces. In (c) L~j) denotes the union of dual cones of L of 
codimension >j. Finally we may allow X - L  to have boundary if the bound- 
ary is already properly decomposed over L. 

Proof. The plan is this: Suppose the end of X - L  has a completion with 
boundary Nr-~-~L. Since the circle T I has Euler characteristic 0, multiplying 
by T ~ kills end obstructions (and therefore by 2.2.3 transversality obstructions). 
Therefore (roughly) we can make N x T1--,L transverse to codimension 1 
cones, N • T J ~ L  transverse to cones of codimension j, etc. Eventually we get a 
map N x T"--*L which is properly decomposed into blocks. The obstructions in 
(b) come from trying to remove T" factor from each block (by unwinding one 
coordinate at a time and completing blockwise). If this is successful we get 
M o ~ L  decomposed, such that M o x T" is h-cobordant to N x T". The obstruc- 
tion in (c) arise in trying to construct an h-cobordism from M o to N (again by 
unwinding and completing). Since h-cobordant maps have homeomorphic open 
mapping cylinders, this would give the desired conclusion. 

Since the union of the codimension 1 cones is not itself codimension 1, we 
begin with a modification of the cone decomposition. A relative cone decom- 
position of a polyhedral pair (L, OL) is a presentation L=~?LucBi, such that 
any intersection of maximal cones cB i is again a cone whose interior is disjoint 
from 0L, and is contained in the boundary of larger cones. 
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Fix a tr iangulat ion of  L in which the filtration of  p : E ~ L  is simplicial. 
N o w  for each j > 0  we define Sj=L with 0Sj (defined to be Sj~(L-S;)-) 
bicollared in L, and such that Sj intersects the dual cone decomposi t ion  of L 
in a relative cone decomposit ion.  For  n = d i m L ,  define S,+~=L. If  Sj is 
defined, there is a disjoint collection of  embeddings, one for each ./-simplex or, 
of  the form ~r x cBc_Sj. Here B is the link of a. The embedding intersects 0Sj 
in a x B, and intersects the filtration of  Sj in (the cone on the filtration of (?a 
by skeleta) x B. Define S;_ 1 by deleting the images of a x (int cB). 

L cone decomposition S 2 $1 
=S 3 

Now we make N x T j transverse to something. (S1,0S1) consists only of 
maximal  cones. By 2.2.3 we can find an s-cobordism of N x T I ~ L  to f l :N  
x T ~ L  which is transverse to 0S~, therefore to the relative cone decom- 

posit ion of S 1. Now suppose f j :  N x TJ---,L is transverse to the cones and 
boundary  of  Sj. Sj+ 1 is obtained from this by adding things of  the form r x cB, 
where tr is a ( j+  1) simplex. The restriction to the boundary  (tr x B, 0cr x B ) _ ( L  
- in t (Sj ) ,  ~?Sj) is bicollared, and c~cr x B =  0Sj is transverse to the filtration of 0S; 
by cones. This gives a lot of finiteness obstruct ions:  in each s tratum of 0S i the 
corresponding s tratum in 0a x B is bicollared. Take the finiteness obstruct ion 
of  the end o f f j  lying over one side of  the complement  of  ~a x B. Crossing with 
T 1 kills all these obstructions. Therefore we can find an s-cobordism of f j x  1 
through map transverse to filtration of  S; to g: N x TJ+I---,L which is trans- 
verse to a x B as well. Fo r  this we use 2.2.3 inductively beginning in the lowest 
s t ra tum of r and working up. At each step the finiteness obstruct ion is 
interpreted as the obstruct ion to making the next s t ratum transverse. 

The region lying over a x cB is now an h-cobordism with respect to any 
face 0itrx cB. The final step in construct ing fj+~ is absorb these h-cobordisms 
into the part  of  g lying over a maximal  cone, and adjust the remainder  to 
match  up with the stratification of  S j+ 1. 

transverse to transverse to absorb h-cobordisms to 
S 1 a 1 x (0 codim 1 cones) make transverse to S 2 
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By induction we obtain an h-cobordism of f0  • 1, to fn: N x T"--,L which is 
transverse to the cone decomposition of L. 

The next step is to unwind the circle factors in the blocks of f , .  Suppose 
gj: Mj-- ,L  is transverse to the cones of L, and M~- 'E  x T j is an appropriate 
homotopy equivalence. Define M [  to be the cover of M r corresponding to E 
x T J- 1 x IR. Then M [ - ' L  has two ends. Choose a manifold neighborhood W 

of one end such that c~W is transverse to the inverse images of the cone 
decomposition. The transversality splits W into "half-open" pieces over cones 
in L, each of which is dominated. If all the finiteness obstructions varnish then 
there is a completion of M~ which is also transverse. The boundary of this 
completion would be the next stage, Mj 1 ~ E x T J -1. 

We organize the finiteness obstructions of the pieces of W into a homology 
class as in (b). This will be done using bordism of dominated Poincar6 spaces. 

Suppose Y is a space and c o : n l Y - ' ~ / 2 .  We define a A-set f2~'h(Y, co) by: a 
k-simplex is dominated Poincar6 ( k + 3 ) - a d  of dimension j + k ,  
(V; 0oV, 0~ V,...,~kV, c~ § V), such that 0+V is a finite complex, together with a 
map V-,Y, and such that co is the first Strefel-Whitney class of the normal 
fibration of V. It is easily seen (see eg. Quinn 1-31]) that these form a spectrum: 
~r~(~'~P'h(Y~co))~._~t~f~_hl(Y~co ). Next, a small amount of Poincar6 surgery (Quinn 
[32]) shows that the homotopy groups of the spectrum are 

~Z~(Y2P'h(Y, CO))=H'(~/2; /s Y]), eS), i>=4. 

This is because a map Si-'(2P'h(Y, ~o)corresponds to an /-dimensional dominated 
Poincar6 pair with finite boundary (V,d+ V)-'Y. The finiteness obstruction in 
/s Y) satisfies the duality formula qo=(-1)ioS(q0), and changing V by a 
bordism with finite boundary changes the obstruction by the symmetrization 
of the finiteness of the bordism. It is therefore well defined in 
Hi(Z~2;/~o(7~7~1Y),oS)). The surgery is required to reduce ~1 r to rc 1 Y, and in 
case q0(V,~?+ V ) - - a + ( - 1 ) i  eS(a), to construct a bordism with invariant a. 

The spectrum (2 p'h (or at least its homotopy groups) are familiar from 
surgery theory, where it appears in the Rothenberg sequence relating L p and/2.  

Next note that f2 p'h has a natural module structure over 0 s~ the smooth 
oriented bordism spectrum (by cartesian product). Further since the homotopy 
of f2 p'h is 2-torsion (above dimension 5), it is a module over the localization 
(Os~ But the orientation homomorphism (~s~ splits, so in a 
standard way it follows that s is a product of Eilenberg-MacLane spectra (B 
is used here to denote the E - M  spectrum, to avoid confusion with K-theory). 
This fact globalizes: We can apply fjp, h fiberwise to a stratified system of 
fibrations p : E - ' L  to obtain f2P'h(p,~,)-'L a stratified system of spectra 
(Sect. 8). Since the Qso module structure is natural, this system of spectra is 
equivalent to the product of Eilenberg-MacLane systems z~B i 
(Hi (Z /2 ; / (0 (Z~l  p),aS)) (for dimension i>4). Therefore we get homology classes 
as in (b) from homology with coefficients in the system of spectra fjv, h(p, O)). 

A cohomology class, in H k, corresponds to a section of the projection 
fJP'~,(p, co)-'L. This means an assignment which takes a j-simplex a to a 
dominated Poincar6 (j + 3) - ad (V~ ; c~ o V, ..., c3~ V, c~ + V) of dimension j - k, with 
6+ V a finite complex. 
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Now return to the situation M j ~ N r - l x  T J and neighborhood of the end 
W in M ; .  We can form the homotopy completion of W (7.7) blockwise over 
the cones of L. Further, since the fibers are equivalent to finite complexes, the 
boundary of the completion is approximately homotopy equivalent to a finite 
complex decomposed as iterated mapping cylinders over the dual cones of L 
(see the proof of 2.2.3). Replacing the boundary of the completion by this gives 
a dominated Poincar6 pair over L, with finite boundary, transverse to the dual 
cones. 

The next step is to interpret this as a homology class. Choose a simplicial 
embedding of L in R m, and let U be a regular neighborhood. Then the dual 
cones of U intersect L in the dual cones of L. Since U is a manifold, the dual 
cones are cells. They can therefore be subdivided into simplices. If this is done 
linearly, then generically L is transverse to the subdivision and is subdivided 
also (though not into cones). Finally the Poincar6 spaces lying over the cones 
of L can be subdivided (by adding collars on parts of the boundary) to be 
transverse to the subdivision of L. Composing, we get a Poincar6 space 
mapping to U transverse to a triangulation and disjoint from ~U. Since the 
total dimension is j + r - l  this gives a cohomology class (as explained above) 
in n m-(r+j-1) (U, OU; ~2P'h(p* ),( TJ-  I, (D)). Here p* is the pullback of p to U 
over the collapse U--*L. The Poincar6 dual of this is a class in 

nr+j _ I f  l(U;Qp, h(p.• TJ-l,o)))~=nr+j_lf l(L;~2p, h(p• T-l ,o))) .  

The hypothesis that r > dim L + 6 ensures that the low dimensional problems in 
f2p, h do not arise, so this defines an element in 

~Hll f (L;  Hr+J+i-l(7Z/2; Ko(Tzlp x 7ZJ-1), 03)). 
i 

The final modification of the invariant is to observe that since we will 
unwind the T j-1 factors anyway, we can permit changing the invariant by 
passing to finite covers in these coordinates. Recall that the definition of 
Kl_j(2g~) in Bass [4] is the summand of/(o((Z~ x 2U-~)) consisting of elements 
invariant under finite transfers in the 2U -~ factor. It essentially follows from 
this that if the image in this submodule is zero, then the whole invariant 
vanishes in some finite cover. Therefore we define t j_ a to be the image in 

H'if (L ; nr  + i + j -  l (7[,/2 ; I~i_ j(7]~X 1 P), (D)). 
i 

Now suppose t j_ l  =0.  Then in some cover the dominated Poincar6 pieces 
are bordant  to finite Poincar6 complexes. But by 1.10(c) and 1.8(b) an h- 
cobordism of M r can be used to achieve the same effect on the finiteness 
invariant as an arbitrary bordism. Therefore there is a (transverse) h-cobordism 
of Mj--',L to a map whose cover o v e r  TJ-I• can be completed to be 
transverse to the cones of L. The completion is the next manifold, M r_ ~.. 

For the obstructions in (c), assume that Mj is h-cobordant to N x T j. Then 
tj_~ = 0  implies that there is a transverse h-cobordism of an appropriate cover 
of M r to Mj whose infinite cyclic cover over the last T 1 coordinate has a 
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transverse completion, with boundary M j_ 1. The corresponding cover of the h- 
cobordism has an end which if completed gives an h-cobordism from Mj_~ to 
N x T j -  1. Since the boundary of the homotopy completion is finite (as in 2.2.3) 
the obstruction satisfies qo=(-1)r+J05(qo). It can be changed by h-cobordism 
rel ends, and this changes qo by a symmetrization. This gives a class in 
H'+~(Z/2; HZoI(L; 5~ x ri-1)), 05). As above by passing to finite covers in the 
T j-1 coordinate (essentially up to ~ ( IR~- l ; px l )~S~_ j (p ) )  the significant 
part of the obstruction is seen to be the image in H'+J(Z/2; H~~(L;  5C~ 05). 
Define this image to be u j_ 1. 

The final refinement is to recall that in the process of splitting up N by 
crossing with T 1, at the jth stage it is split over cones down to codimension j. 
Keeping track of this restricts the obstruction tj to H i for i>=j, and uj to 
homology of the "skeleton". Details of this are omitted. 

This completes the proof of 2.2.4. 

2.2.5. Corollary. Suppose G is a finite group with an action on a compact 
manifold (M; ~o M, ~?, M) of dimension r which satisfies 

1) O 0 M u M  * has a PL structure in which the action is PL. 
2) The pair (M{_H},  ~71M{~H}) is 1-acyclic for all isotropy subgroups H 

#:1. 
3) M* has codimension >6, is I-LC embedded, ~?IM*c~?IM is 1-LC embed- 

ded, and the homotopy link of M* at each point has the homotopy type of a 
finite G-complex. 

Then there are obstructions 
a) The Kirby-Siebenmann triangulation obstruction in 

H 4 ((M - M*)/G, 9 o (M - M*)/G; Z/2). 

b) The mapping cylinder obstruction in Ho(M*/G ; 5~(G ,)) 
c) Splitting obstructions 

t ~ H , ( M * / G , ~ o M * / G ;  H'+~+~(Z/2;K_~(ZG,),~)), and if t 1 =0, 
i 

toe ~ H,(M*/G, 0 o M*/G ; Hi+r(7~,/2; /~o (7],G,), (,O)). 
i 

I f  these all vanish, then there is a combinatorial triangulation of M extending 
the one given on ~?oM~M *, in which the action is PL. 

For a simpler corollary see 2.2.6. The "homotopy link" in (3) is the fiber of 
the boundary of the homotopy completion of the end of the complement. This 
condition is satisfied if the action is locally triangulable, but the cone on 
(boundaries of, or doubles of) examples given in 2.1.4 shows that it may not be 
in general. Notation is that of Sect. 2.1. 

Proof. By the analysis of the end of the complement given in Sect. 2.1, Theo- 
rem 2.2.4 (in a relative version) applies to (c3 oMUM*) /GCM/G.  Carter's [7] 
vanishing theorem for K j(71G) reduces the obstructions in 2.2.4(b) to the ones 
in (c) above. The vanishing and the acyclicity hypothesis (2) shows that 

H_j(d~ M*/G; 5a(BG,))--*H_j(M*/G; 5P(BG,)) 
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is an isomorphism for j > 0 .  This and the duality formula for boundaries 
resulting from the fact that the boundary of the homotopy completion of the 
end is finite shows that the mapping cylinder obstruction for 01 M* is de- 
termined by that for M*. Further it follows that the obstructions in 2.2.4(c) 
(there is only one) can be avoided by changing the h-cobordism of the bound- 
ary. 

Therefore if the obstructions (b) and (c) vanish, the conclusion of 2.2.4 
applies. Suppose that the triangulation obstruction (a) also is zero. Then 
according to 2.2.2 the resulting PL structure on ( M - M * ) / G  is isotopic to one 
in which the mapping cylinder is PL. It remains only to see that the resulting 
equivariant triangulation of M is combinatorial (is a PL manifold). For this we 
need to show that the link in M of x e M *  is a sphere. Take an equivariant link 
of the orbit of x, then the link of x itself has a natural action of the normalizer 
N(Gx). This link is a homology manifold which is a manifold in the comple- 
ment of the singular set, and is a homotopy sphere (n 1 =1 by the 1-LC 
hypothesis (3)). If it is a manifold it must be a sphere by the Poincar6 
conjecture. So the triangulation is combinatorial at x. 

We can now proceed by induction. To show M is a PL manifold it is 
sufficient to show that a link, which satisfies the same hypothesis but has 
smaller dimensions, is a PL manifold. Since the codimension of M* is > 6, the 
induction starts with links of dimension >5, so the Poincar6 conjecture (the 
only dimension-dependent ingredient) is available. Therefore M is a PL man- 
ifold. 

2.2.6. Corollary. Suppose G is a finite group containing an element of order 2. 
Suppose there is a semifree action of G on M x I, M a compact PL manifold, 
which satisfies 

I )  The action is PL on M x {0} u~?M x I and the triangulation extends to a 
triangulation of M x {0} u c?M x I w ( M  x I)*. 

2) The f ixed point set (M x I)* has codimension >=6, is 1-LC embedded, and 
(M x {1})*cM x {1} is 1-LC embedded. 

3) (M xI)*  and (M x {1})* are 1-connected. 

Then there is an isotopy of the action rel M x  { O } u O M x I  to a PL  action if 
and only if (M x I - ( M  x I)*)/G has the homotopy type of a finite complex, and 
the homotopy link of each point of (M x I)* in (M x I)/G has the homotopy type 
of a finite complex. 

Notes. The question addressed here is roughly "if  a topological action is 
concordant to a PL one, can it be triangulated?" The answer is nearly yes for 
the actions specified above. 

The role of the element of order 2 in G is to conclude from Smith's theory 
that Hi(M x I)*, M x {1}*," Z/2)=0.  This assumption can be substituted for the 
one on the group. 

The setting is similar to that of Jones [22], where it is shown that given the 
action on M x {0} and a PL  potential fixed set (M x I)* satisfying the Smith 
theorems, (and a few other conditions) there exists a PL concordance with 
fixed set (M x I)*. If the Z/2 acyclicity hypothesis is dropped, Jones [21] has 
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announced that there are 7Z/2 homology obstructions to constructing a PL 
concordance. Comparing with 2.2.5 shows that there are 7Z/2 homology ob- 
structions to triangulating a topological concordance. One might expect that 
some of these are the same: there probably usually is topological concordance, 
and the PL concordance obstruction is part of the triangulation obstruction. 
Note the analogy with the relation of 2.1.4 with Oliver's work. 

Finally note that in some cases one can get information about the finite- 
ness obstructions (e.g. nilpotent actions Quinn [30], Jones [22]). The link 
obstructions are trivial if the action is locally triangulable. 

Proof. Corollary 2.2.5 applies, but as remarked in the notes Smith theory 
implies that H.((M• ( M •  7Z/2)=0. Therefore the obstructions in 
2.2.5(c) are zero. It also follows that the complements are 7Z/2 acyclic, so the 
Kirby-Siebenmann obstruction is zero. Finally, the mapping cylinder obstruc- 
tion is identified with the finiteness of the complement as in 2.1.2 and 2.1.3. 

2.2.7. Locally Triangulable Spaces. Theorem 2.2.4 applies directly to the tri- 
angulation question for locally triangulable spaces. After a discussion of this 
we compare the conclusions with the work of Anderson and Hsiang [2]. 

A locally triangulable space is stratified by the topological intrensic skeleta: 
two points are in the same stratum if there is an ambient isotopy carrying one 
to the other. These strata are manifolds, so we may apply 2.2.4 inductively to 
triangulate. Suppose X is locally triangu]able, Xi~X  is a closed union of 
strata, and Y is a stratum such that X iu  Y is closed. If Xi is triangulated then 
(X~u Y, Xi) satisfies the hypothesis of 2.2.4 except for the codimension con- 
dition dim Y~__dimX~+6. If this holds also then we get a list of obstructions: 
(a), (b), (c) from 2.2.4, and the Kirby-Siebenmann obstruction to triangulating 
Y. If these all vanish then the triangulation can be extended to X i u  Y Note 
that no restrictions are put on the intrensic skeleton of the triangulation. In 
particular it need not agree with the topological skeleton. 

A few direct conclusions can be drawn from this. For instance if the skeleta 
are •/2 acyclic then the worst of the obstructions vanish. Also product for- 
mules for the obstructions show that if X is locally triangulable and satisfies 
the codimension condition, then X is triangulable if and only if X • CP 2 is. 

The most complete previous treatment of this topic is that of Anderson and 
Hsiang [2]. Their approach is dual to the one given here in several senses. 
First they consider the problem of extending triangulations to a neighborhood 
of a single (manifold) stratum, rather than the whole lower skeleton. However 
they allow this neighborhood to be stratified rather than just a manifold as in 
our case. 

Restrict to a situation where both approaches apply, namely two tri- 
angulated manifold strata, one in the closure of the other, and consider the 
problem of triangulating the union. Under a fairly stringent form of the local 
triangulability hypothesis they show (Theorem A) that there is a lifting prob- 
lem for the classifying map of a "tangent microbundle", if there is a lift then 
there is a global triangulation which agrees with the ones given on the strata, 
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and further the lower stratum is the P L  intrensic skeleton of the triangulation. 
Our approach begins with less data: a weak (homotopy) form of local tri- 
angulability. There is then a list of obstructions whose vanishing implies a 
global triangulation. The conclusion is also less stringent in that no restrictions 
are put on the P L  intrensic skeleta. 

Next we compare the obstructions. Anderson and Hsiang [2], page 227 
describe a spectral sequence for the homotopy groups involved in their lifting 
problem. The lifting obstruction can therefore be considered as a sequence of 
cohomology classes. These classes are for the most part Poincar6 dual to the 
classes in 2.2.4(b). The differences are: they have an extra set of Wh obstruc- 
tions on their q = 0  line, which come from requiring the lower stratum to be 
the intrensic skeleton of the result (see 2.3). We have obstructions on their p + q  
= 0  line coming from the weaker local triangulability hypotheses. Finally the 
mapping cylinder obstruction 2.2.4(a) shows up on their p = m  line. Notice that 
our obstructions 2.2.4(c) do not appear. Presumably this means that they are 
redundant. This illustrates the final difference: their obstructions are well 
organized (as a lifting problem) and efficient in the sense that there is a 
realization theorem. Our obstructions are more functorial and defined in more 
primitive circumstances, but are not as well organized and are not efficient. 

Finally we remark that our techniques, especially 2.2.3, can be used to find 
the relative homotopy groups of Anderson and Hsiang's classifying spaces. 

2.3. Approximate Fibrations. Suppose M is a topological manifold without 
boundary, L a polyhedron, and f :  M ~ L  an approximate fibration. If the 
homotopy fiber has dimension >5 and satisfies Wh(n 1 x 2Ek)=O for all k, then 
by Ends I, 3.3.2, f is concordant to a topological block bundle projection. The 
result here is that if the Whitehead group hypothesis is relaxed then obstruc- 
tions are encountered. The obstructions are almost the same as those for block 
neighborhoods in 2.2.4. In particular they are preliminary to the same degree: 
there is no realization theorem, and in fact there are indications that some of 
them are redundant (see 2.2.7). Chapman and Ferry [11] have constructed 
examples realizing some of these obstructions. 

2.3.1. Theorem. Suppose f : M ~ L  is an approximate f ibration of  a manifold 
without boundary over a polyhedron. Suppose dim M = m__> dim L +  5. Then there 
are obstructions 

1) a sequence t ~  ~, Ht / (L;  H i+i+m+ 1(Z/2; g j ( Z n l f  ), ~)) for  j >  - 1, such 
i>j  

that t j_ 1 is defined if  t i is defined and is zero. 
2)  I f  the obstructions (1) are zero, then a sequence 

uj6Hm+J(77/2; Htf j (L( j ) ;  5a(f)), 05), j > O  

such that u s_ 1 is defined if u i is defined and is zero, and then 

u_ l ~H]I(L;  5 e ( f ) ) / { a + ( -  1) "+1C)(a)[a~H]Y}. 

I f  all o f  these vanish, then for  every e > 0  there is an approximate fibration M 
• I ~ L  •  which is f over L • {0}, is a topological block bundle over L • {1}, 

and has radius < e as a homotopy. 



Ends of Maps, II 377 

The group /~l(7Zn) which occurs in (1) for j = - I  is understood to be 
Wh(n). L(j) in (2) is the "coskeleton," union of dual cones of codimension >j ,  
as in 2.2.4. Appropriate analogs of variations 1-3 of Ends I, 3.3.2 are valid. 

Proof The proof is essentially that of 2.2.4: N r - 1  is replaced by M", and is 
multiplied by circles until it is transverse to the dual cones. The obstructions 
t j, j > 0  are encountered in deleting circle factors from the blocks. If these 
vanish we get a map transverse to the triangulation. Inverse images of cones 
are then h-cobordisms with respect to top dimensional faces. The obstruction 
t i is the obstruction to changing these to be s-cobordisms. It is constructed 
the same way as to, except that we use the bordism spectrum O h's of finite 
Poincar6 complexes with simple (z=0)  boundary. Lemma 4.1 of Ends I shows 
that a transverse map with cone inverses s-cobordism is concordant to a block 
bundle. 

The obstructions u~, i > 0  also arise as in 2.2.4. If these are zero then M is h- 
cobordant to a block bundle. The obstruction u_1 is q~ of this h-cobordism, 
taken in the quotient of H t because the h-cobordism can be changed by h- 
cobordism rel ends. 

3. The Algebraic Obstructions 

In this section the obstruction for h-cobordisms with constant local fundamen- 
tal groups are expressed "algebraically" in terms of geometric groups. This is 
essentially a summary of the material of Ends I. Then a "local cancellation of 
inverses" procedure is developed for e isomorphisms. This procedure is a main 
ingredient of the stability theorem of the next section. 

Suppose 7c is a group and X is metric space. The definitions of geometric 
;g[n] module, e isomorphism, deformation, etc. are given in Ends I, Sect. 8. 
The only modification we make is that radius will be used instead of diameter. 
Thus h: G I ~ G  2 has radius < e  if for each generator x of Gl,h(x)c_x ~ (t7 the 
underlying set function). Similarily a deformation has radius <e  if the com- 
position of the underlying set functions has radius <e, both for the defor- 
mation and its inverse deformation. Finally let h be a homomorphism of 
radius < e of geometric modules on X. Then an ~ deformation of h over X - Y is 
a homomorphism of the form H~ hH2, where H1, H 2 are compositions of an 
deformation, and a geometric (basis preserving) isomorphism of radius <e. 

3.1. Theorem. Suppose X is a metric space, Y~_X, e : ( M " , O o M ; ~ I M ) ~ X  is 
proper, and ATI~M is a regular cover with group n. 

(1) Suppose further that (M, •o M) is an (~, h)-cobordism over X - Y .  Then a 
choice of ~ handlebody structure and e deformation retraction of M to ~o M over 
X -  Y defines a geometric 7Zn module isomorphism over X -  y3~ of  radius 3~. 

(2) Changing the choice of  handle structure and deformation changes this 
isomorphism by stabilization and 2he deformation over X -  y2,,~ 

(3) Suppose X is locally 1-connected in a neighborhood of  X -  Y, X -  Y is 
compact, and n >=6 and ~ > 0  are given. Then there is 6 > 0  such that if e as above 
is a (6, h) cobordism over X - Y , ,  M ^--*X is (6, 1) connected over X - Y  and the 
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isomorphism of  (1) can be stably b-deformed over X - Y  to one induced by a 
bijection of bases, then (M, ~o M) has a product structure (OoM • I, c~ o M • {0}) 
over X - Y~ of  radius < e. 

Proof (1) Choose an e handlebody structure on (M, ~o M): Then this defines a 
chain complex of Zn module on X, C . = C . ( M ^ , O o  MA) with boundary ho- 
momorphisms of radius <~. A deformation retraction defines a contracting 
homotopy s: C,----~C,+i, i.e. s~?+c?s=l over X - I ( .  Then sOs+~?s~?: 

C j ~  ~ Cj is a 3e isomorphism over X - y 3 ~ .  In fact the same formula 
j even j odd 

from odd to even gives the inverse. 
(2) Changing the deformation retraction changes the isomorphism by 

something which raises degree, so is "upper triangular," hence a deformation. 
Two handle decompositions are related by introduction (or deletion) of can- 
celling pairs, isotopy between layers of handles, and handle additions. The first 
operation stabilizes (or removes stabilization in) the chain complex. The sec- 
ond operation does not change the complex. The third changes boundary 
homomorphisms, therefore the isomorphism, by multiplication by elementary 
matrices. 

In the PL case the fact that two handlebody structures are related by such 
operations results from the fact that any two triangulations have common 
subdivisions. This also makes it clear that the deformations can be arranged to 
have small radius. See Hatcher and Wagoner [19] for the smooth case. 

The third statement is the result proved in Ends I, Sect. 6. This completes 
the proof of 3.1. 

There is a similar statement for approximate completions, and projections 
on geometric modules, which is essentially proved in Ends I, Sect. 7. This 
statement is omitted since it is a bit elaborate, and not used very strongly. 

3.2. Local Cancellation of Inverses. If A is an isomorphism there is a matrix 
identity 

['o ;] ['o o_,] ['o -'i] [I ['o -',3 
-['0 ?]. 

The first and last three terms on the left side are canonically products of 
elementary homomorphism, so this is a deformation from 

0 0 to 

This is the cancellation of inverses. 
Now suppose X is a metric space, Y__ X, and we have an e homomorphism 

on a geometric module on X which over X -  Y has the form 



Ends of Maps,  II 379 

The goal is to chancel it away from Y, but leave it unchanged over Y This is 

[A 0 ]FoFl, whereEo, Fo done by factoring the deformation above as E 1 E o A-  1 

are constant on Y, and E1, F 1 are constant on X - y 3 ~ .  Applying Eo,F o then 
cancels the inverses over X - y6~.  

The deformation on the right is easy to factor. If we set 

Vo=[e~ over X -  Y~ and Fl_fconstant ,  over X -  Y~ 
( c o n s t a n t  over Y~' - ( F  over Y~ 

then F o, F 1 are de format ions  and  F o F~ = F. 

]],define 
W ~ = [ ;  B/5~], and 

m x -  ] 
W - ~ =  [10 I ] '  

r l  flq 
Similarly for W = [ R  ; ] .  Notice that W=WoW 6, and that if V, Wboth  have 

radius <~ then W ~ and V -~-~ commute (since one is the identity where the 
other is not). Now we can factor the left hand deformation WVW by 
( w  3~ w -3~) ( v  2' v -2~) ( w  ~ w ~ ) = ( w  3~ v 2~ w ~) ( w  -3~ v - ~  w - z ) .  

Notice that this defines a function on the set of e homomorphisms which [;,0] 
are of the form A_ 1 over X - Y .  It is important to note that this function 

is responsive to the size of the input in the sense that if the homomorphism is 
actually a 6 homomorphism, 6<e,  then the result is a 46 homomorphism. In 
fact if the data has radius <6  o n  K3~s~X, then the result has radius <36  on 
K. 

The next object is to extend this cancellation function to deformations. The 
reader can skip this part without jeopardizing his understanding of the rest of 
the proof. 

Suppose RAS is a deformation of A. The cancellation process above gives 
deformations 

E 0 A_ 1 F o and E ~  S - 1 A - 1 R - I  Fo, 

so there is a composite deformation between the results of the process. The 

results are both [10 ~[ over X - y 3 ~  however, and we would like to modify this 

deformation to be constant off some neighborhood of Y. 
Over X - y 3 ~  the composite deformation is 
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on the right, and on the left is 

RAS] 

The idea is to write these as products of elementary matrices, and use identities 
to replace some sequences in the product by different sequences. 

Begin with the right side, (1). Define W = [ I 0 - I i ]  [I I ~] [ I 0 - ~ ] '  then the 

[ ~ 0  ] W_I. The identity we want to use i s deformation is W R- 1 

o f i  
R and S are deformations, so R=I-[Ri, S= St, with elementary factors. 

0 0 

0 1 so consider the piece (~ [lo R~,_i]) W-1. 
Change the deformation as follows: suppose it has the form 

0 

-1 k+l L0 

off of the inverse image of y3~ under the composition of the underlying set 

functions for l~ [ R~-~i 0] Then leave the deformation unchanged on this 
k + l  I " 

inverse image, and replace it by 

0 
o ols w oro 

Do the same for the [~ ~] part. This process gradually deforms the 

deformation to one unchanged over y2~, but of the form 

WW-~[ R-1 0S] over X - Y  4~. 

We refer to this process as "substituting the identity over X -  y3~,,. Similar- 

ly substitute the identity WW-I=I over X-Y4~, to end up with [ R-I  ] ]  
over X -  y4~ on the right side. 
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On the left side, (2), the middle three factors are 

Substitute the identities 

and 

This leaves 

[t0 R A S ] [  I -1 0 l] [I A -  7] [t0 - ; ]  

o~o~ ~ ~ ~t~tut~on o~ two ~mi,a~ i~on~,~ ~.v~s [0 " 0 _  ~ ~ ~ ] o ~  

~ o  ~e~ormatio. o~ ['0 ~] now ~as t~o ~orm Putting them together, 

Substitution using the cancellation of inverses leaves just the constant defor- 
mation over X - Y l ~  

Again we note that the construction is responsive in the sense that if the 
original data was small, the result is small. Notice also that these manipu- 
lations of deformation are essentially calculations in the Steinberg group. For 
example the process used in reducing (1) corresponds to a special case of 
Lemma 9.2 of Milnor [25]. 

4. The Stability Theorem 

The main result of the section is that many geometric objects with e control 
are stable with respect to e, in the sense that they are equivalent to 6 objects 
for any smaller 6. The proof is presented in the special case of e isomorphisms 
of geometric modules. This is done to avoid the unpleasantness of an abstrac- 
tion general enough to encompass all the situations which will arise. However 
the proof is quite formal, and the properties used are discussed in 4.2. 

4.1. Theorem. (absolute stability theorem for e isomorphisms). Suppose X is a 
locally compact metric ANR.  Then there is e o : X~(O, 0o) such that 

I )  for any e (eo>e>0)  there is 6 (e>c~>0) such that e deformation is an 
equivalence relation on (locally finite) 6 isomorphisms of geometric 7s [n] modules 
any group n, and 
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2) the set of equivalence classes forms an abelian group, which is naturally 
isomorphic to the inverse limit of such groups as e--+O. 

The fact that makes (1) nontrivial is that generally e deformation is not 
transitive: the composition of two ~ deformations may only be a 2~ defor- 
mation. The remedy for this is a "shrinking function" which takes e defor- 
mations (of 6 isomorphisms) to ones of radius <e/2. These can then be 
composed to yield an 5 deformation. Similarly the statement (2) results from a 
shrinking function defined on objects. 

Theorem 4.1 can be extended to stratified coefficient systems using the 
relative version 4.5. However in this setting the function e o depends on the 
structure of the coefficient system. 

4.2. Properties of ~ Isomorphisms. There are four that we will use: functori- 
ality, pullbacks, naive homotopy,  and the local cancellation of inverses. 

Functiorial images are defined for proper maps. Suppose f :  X-~ Y is proper, 
e: Y~(0, ~ )  and 6 : X ~ ( 0 ,  ~ )  are such that if d(xl,x2)<6(x 0 then d(f(xl), 
f(x2))<e(f(x)) , and suppose D_cY. Then a homomorphism A:M1--+M 2 of 
modules of X which is a 6 isomorphism over X - f - I ( D ) ,  has a functorial 
image f , A : f ,  M1--+f,M 2 which is an e isomorphism over Y - D .  If M 
=7Z,~[xi], then f , m , = z ~ [ f ( x l ) ] ,  and the homomorphisms are defined in 
the evident way. 

Pullbacks are defined for local homeomorphisms.  Suppose f : X ~ Y  is a 
local homeomorphism, with D c X ,  5: X ~ ( 0 ,  oo) and 6: Y~(0, oo) such t h a t f  is 
injective on any ball of radius ~, and if x e X - D  then the image f ( x  ~) contains 
the ball (f(x)) ~. (This is a uniform continuity type estimate on f - 1 . )  Then a 6 
isomorphism over Y - C ,  A:MI--~M 2, has a pullback f*A: f*M1--+f*M 2 
which is an e isomorphism over X - ( f - I ( C ) w D ) .  For modules it is defined by 
f*Tlg[{y~}]=7l~[f-l({yi})].  If A : ~ [ y i ] ~ Z ~ ( y j ]  then define f*A(x)  for 
x~f- l (y i )  by: let A(yi)=Znjyj, then f *A(x )=s  where xj~f-~(yj), and 
d(xj, x)<e.  Such an xj may not exist, but if it does it is unique. 

Naive homotopy is a natural deformation between functorial images of 
homotopic  maps. Suppose f : X x I ~ Y  is a proper homotopy,  and suppose 
A: M1--+M 2 is an isomorphism of geometric modules. Then there is a defor- 
mation ( f o ) ,A~( fO ,  A: let Bi(fo),Mi-~(fO, Mi be the isomorphism induced 
by the bijection of bases fo(Xj)~fl(xj). Then B i is an isomorphism and ( f 0 ,  A 
=B2((fo),A)B~ ~. If the homotopy f has radius <5, then the deformation also 
has radius < e. 

The cancellation of inverses involves the additive structure. There is a sum 
operation (direct sum), a natural inverse function, and a natural cancellation 
(deformation to 0) of the sum of an object and its inverse. More specifically if 
A is an 5 isomorphism over X - Y  then A-~ is also, and the cancellation is a 
stable 3~ deformation which takes A O A  -~ to a homomorphism on a geomet- 
ric module which is trivial over X -  y3~. 

This cancellation can be localized in the sense that if W c X  then the 
deformation A O A - ~ O  can be factored canonically into two deformations. 
The first deformation is trivial over X - W  3~, but cancels AOA -~ over W. The 
second deformation is trivial over W, and finishes cancelling the sum over the 
rest of X. Finally this localization procedure extends in an appropriate way to 
deformations. The cancellation of isomorphisms is discussed in detail in Sect. 3. 
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We also use the fact that  two e deformations can be composed to yield a 
2e deformation.  

The canonical  nature of  these operations, and the consequent  constructions, 
is impor tant  in several ways. Many  of the applications of this theorem involve 
A-sets rather than just sets (see 5.6). So the construct ion must  be canonical  for 
simplices of various dimensions to fit together. But even with sets of  isomor- 
phisms our approach will be to use the canonical  nature to define functions 
which are "responsive" in the sense that the size of the output  can be 
estimated in terms of  the size of the input. These a priori estimates are 
necessary for the construct ion as it is set up here. 

Outline of the Proof. We begin with the h o m o t o p y  lemma, which is useful in 
other situations. The main body begins with a precise statement of  a relative 
form, 4.5. There is a series of  reductions, ending with a handle in an n- 
manifold. Here we use a Kirby type torus argument ;  pull back over an 
immersion of a punctured torus, use a complet ion lemma to fill in the punc- 
ture, pass to the universal cover. The desired reduct ion in radius is then 
achieved by shrinking radially in IR". 

4.3. Lemma.  There is a responsive function Cy defined on ~ homomorphisms 
which are ~ isomorphisms over X - Y ,  and ~ deformations of these, with values in 

6e isomorphisms and deformations, such that C~(A) is equal to A -  ~ over X 

_ y2o~, and is 0 over Y. C~ acts similarly on deformations, and the standard 
deformation 

[o~ 
extends canonically to a deformation Cy(A)~I .  

The point  is that  Cr(A ) is an isomorphism everywhere, not  just over X - Y .  

A -  1 . Hold  it fixed over Y ~ X - y 2 O ~ ,  and apply the local 

cancellation of  inverses to cancel o v e r  y l l e y 9 ~ .  The resulting h o m o m o r -  
phisms and deformations are then trivial over y l l ~ y 9 ~  This " b a n d "  sep- 
arates X - y l 1 ~  from y9~:, so we can discard the part over ylO~. This removes 
the part  which failed to be an isomorphism. What  is left is Cy(A). 

This construct ion is represented pictorially as follows: 

(not isomorphism) 
\ 

cancel ~ Ct(A~) discard 
. ~ ~ ~ 

A-1 

X !  I I ! I I I I I I 
20~ l ie  9E 0 Y 20~ l ie  9E 0 

[A 0 ] and cancel. (ii) discard over Y 1~ (i) form 0 A-1 
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The next lemma states that if f is homotopic to lx, then the functorial 
image f ,  A can be stabily deformed to A by a deformation much shorter than 
the one given by the naive homotopy property. A more elaborate statement 
(for pseudoisotopies, but the appropriate analog holds) is given in 5.7. 

4.4. Homotopy Lemma. Suppose F: X x I ~ X  has F-I (Y)  = Yx I, Fo= Ix, and F 
satisfies the Lipschitz condition with constant r. Let  e > 7 > 0 .  Then there is a 
function ff defined on e homomorphisms which are e isomorphisms over X - Y, and 
e deformations of  these. I f  A is one such, then 

I )  i f ( A ) = A  over Y 
2) if(A)=(/71), A over X - Y2~ 
3) F is responsive in the sense that if A is a 6 isomorphism (deformation) over 

X - 11,, e > 6 > y, then if(A) is a 6r6 isomorphism (deformation) over X - Y. Further 
there is a canonical stable 13r6 deformation A ~ i f (A )  which is constant over Y. 

Proof  Fortunately the proof is little longer than the statement. Choose 0 
= t o < t  1 ... < t , =  1 such that d(F,,, F,,+l)<y. Suppose A is a 6 isomorphism over 
X -  Y. Then there is a stable 6r6 deformation 

Over X -  y6ro this is 

A ~A| ~ cy((6,), A). 
i=1 

Zl~i__~l (Ft,), [A 0--1 ]" 

Rearrange as (F , ,_ I ) ,AO(Ft , ) ,A  -1 |  and use the naive homotopy 
i_ 

property to y deform (Ft, 1), A--~(F,,), A. This gives 

[ ~ (Ft ) , ( A O A -  ' ) ] O ( F O ,  A, 
i=l 

so we can apply the local cancellation A O A  -1 NO over X-y13ra .  This gives a 
stable 7r6 deformation, constant over y6r~ to something which is (F~),A over 
X -  y~3ro. Define the result of this last deformation to be if(A). 

We represent this pictorially: (the homotopy F pushes things straight up). 

Y F Y 

(ii) introduce the 
c~(~ A) 

(i) the data 

(F1) , A ) 
P 

(iii) cancel adjacent 
inverses to yield if(A). 
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The responsiveness of ff follows from that of Cy. However it is bounded by 
7 because of the spacing chosen between the F~. 

The main body of the proof begins with a relative version of the theorem. 
To state this, presume X is a locally compact metric A N R ,  X ~ W x ~ W2, X 

Y,,Z all closed. Suppose that the closure ( X - Y ) -  is compact, and Y is 
disjoint from ( Z -  W2)-. 

~ ~  boundary = Y 

W2 
J "t- 

W1 

The goal is to define a "shrinking function" which takes an isomorphism over 
X -  Y which is small over I411, and deforms it to one which is also small over 
Z. The statement is complicated by the fact that while shrinking over Z it 
expands everywhere else. Clearly the rate of expansion has to be very carefully 
controlled if we are to get any benefit from the process. 

4.5. Theorem. In the situation above there is e > 0  and a homeomorphism 
r: [0, oo)-*[0, oo) with r(t)>=t such that for every 7>0,  ~,<~, there is a "'shrinking 
function" Se defined on endomorphisms of geometric modules on X which are e 
isomorphisms over X -  Y, and e deformations of these. This function satisfies the 
following: 

1) S~(A)=A over Y. 
2) I f  ~>~>fl>=~; and A has radius <fi over W 1 and <ct over X,  then S~(A) 

has radius < r(fl) on W 2 ~ Z, < r(c 0 on X. Sr acts similarly on deformations. 
3) I f  the bounds of (2) hold, there is a stable deformation from A to S~A 

constant over Y, of radius <r(fl) over W 2 and <r(ct) over X. 

Proof The proof begins with a sequence of reductions. We indicate only the 
salient details. 

First isometrically embed a neighborhood of ( X - Y ) -  in the Hilbert cube. 
Since X is an ANR,  neighborhoods of the image retract to it. Note that if the 
theorem holds for a neighborhood which retracts properly to the image (with 
appropriate W~, etc.), then the theorem holds for X'  just project the solution in 
a neighborhood down to X. The control function r changes by uniform 
continuity estimates on the retractions. This is why we need a retraction and 
not just nearby approximation as in part I. 

Next note that (just because of the topology on the cube I ~176 the neigh- 
borhood can be chosen of the form V x I ~-k, where V ~ I  k is a codimension 0 
submanifold. The subsets similarly can be chosen to be of the form W~ x I ~ 
for W~ c V, etc. Now we claim that if the theorem holds for compact manifolds 
it holds for V x I ~176 W/x I ~176 Y x I ~, Z x I ~~ The shrinking function is defined by 
using the homotopy lemma and the standard deformation to V x {0} to deform 
things on V x I ~ tel Y x I ~ so that a little way out from Y x I ~ they lie over V 
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x {0}. Then apply a shrinking function in V x {0}. The use of the homotopy 
lemma here (and elsewhere) introduces the lower bound ? on the amount  of 
shrinking which can be achieved. 

The final reduction is to note that if it holds for handles, it holds for 
compact  manifolds. In piecing together shrinking functions in a handlebody it 
is quite important to know ahead of time (via the control function r) how 
much peripheral swelling there will be. It can then be allowed for by a little 
extra shrinkage in earlier steps. 

Therefore let 

X = D J x D  k, Y=~?(DJxDk),  W ~ = W E = D J x ( D k - - � 8 9  Z = ( � 8 9 2 1 5  k. 

The first step in shrinking things on Z is simple. Consider the linear homotopy 
on D J from the identity to the radial map which is the identity on the 
boundary and takes 1DJ to 0. Cross with the identity on D k. The result has 
Lipschitz constant 2, so the homotopy lemma gives a function which compres- 
ses the part of an isomorphism over 1DJ x �89 k to {0} 1 k X 7 D ,  and increases 
radius by less than a factor of 12. 

D k 
small me- small 
(<13) dium (<fl) 

(<cO 

<12fl 

O t 

(i) the setting (ii) the first step 

Call the resulting homomorphism A. 
! D k  and even there the radius is A is good everywhere except over {0} x 2 , 

sufficiently small in the D J coordinates. It remains to shrink in the D k coor- 
dinate over {0} 1 k X 2 D .  This is achieved with a Kirby type torus argument. 

Let f : ( T k - , ) - * D  k be a smooth immersion which is the identity on a 
1 k neighborhood of ~ D .  Since it is smooth there are d > l  such that if 0 < 6 < d  

and t e T  k such that d(t, *)>r6,  then f i t  ra is a homeomorphism onto an open set 
which contains the ball (f(t))  ~. 

Suppose 12e<6. Then 1 2 e < 6  also, so there is a well defined pullback (1 
x f ) * A  over D ~ x (Tk- - , ) ,  which is at least an r6 isomorphism over DJx T k 
__ (S  j -  1 • T k ~ D k • (,)r,5). 

The next step is a lemma which extends the isomorphism across the 
puncture in the torus. 

4.6. Completion Lemma.  Given (X, Y), and e > O, there is a completion function D 
defined on e isomorphisms over X x I - ( Y x l u X  x {0}), and e deJormations of  
these. This function satisfies 

1) D(A) is a 6~ isomorphism or deformation over X x I - Y 6 E X  I, and is equal 
to A over X x (20e, 1]. 
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2) D is responsive in that if  A is a 6 isomorphism then D(A) is a 63 
isomorphism. 

Proof  Let B be the image of A -1 under the retraction X •  • 
which takes 1-20~, 1] to 20e. Then over X • 2 0 e ) A O B  is A O A  -1. Cancel in 
the center of this strip as in 4.3, and discard the part over X • [0, 10t]. The 
result is D(A). 

We resume the proof  of 4.5. Let g: Tk~[0 ,  1] be distance from ,r~, and 
project (1 •  to D J •  by 1 xg. Apply the completion lemma to the 
result. We obtain an isomorphism over (at least) ( 1 - 6 r 6 ) D  j x I, which agrees 
with A over D j • (20r6, 1]. Since it agrees we can lift it back up to D ~ x T k by 
putting the new stuff over D j • {,}. This yields a homomorphism on D J x T k 
which is an isomorphism over ( t - 6 r h ) D  j • T k. 

Pull this homomorphism up to the universal cover D j • IR k, and call the 
result B. We list the properties of B. 

1) B is an isomorphism over ( 1 - 6 r 6 ) D  j • IR k, and agrees with A over �89 j 
x �89 k. 

2) In the D i coordinate B has radius < 6 . 1 2 / / ( t h e  only expansion coming 
from the completion lemma). 

3) In the IRk coordinate B has radius <6 .12r f l  except over 0 • IRk, where it 
is <6 .12r~ .  (Expansion coming from b o t h f a n d  the completion lemma.) 

X D k and by Next project B to D j • D k by the identity on D j, the identity on 2 , 

radial compression IRk - - IDk~Dk- - � 89  This gives a homomorphism which 
satisfies the estimates of B, but in addition gets very very small near D r x S k-  1 
(where it also fails to be locally finite). Call this C. Then we can cancel 
C |  -1 as in 4.3 near S J x D  k, and over D J •  k) where t is very close to 
1. This yields a global isomorphism (now locally finite) over D ~ • D k, with a 
small natural deformation to the identity. 

The penultimate step is to add this to A. Over ~ i ,  ~,~k 7D x~c ,  this has the form 
A O A - I ( ~ A .  Cancel A and the copy of A -~ in the new piece over �89215189 k. 
The result still looks like A over �89 D ~ • D R, but this part is embedded in a copy 
of C (cancelled near the edges). We can apply the homotopy lemma to this 
piece, using the homotopy obtained from multiplication Is, 1] • k by 
conjugating by the projection I R k ~ B  k used above. If t is chosen sufficiently 
near 1 and s sufficiently near 0, then the homomorphism over 0 • �89 k will be 
shrunk to radius <7  in the D k coordinate by this operation, and expanded at 
most by a factor of 6 elsewhere. 

very, very small 

I cancel C- 1 cancel t 

A cancel 

compress 
- - 4 1 ~  q - -  

D k D k 
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This completes the proof of Theorem 4.5, 
easily be deduced from this. 

F. Quinn 

and the stability Theorem 4.1 can 

5. Finite Structure Spectra 

Given a map p: E - ~ X  we define a spectrum 5~(X;p) designed to measure 
obstructions to existence and uniqueness of finite complex structures with e 
control in X. The main theorem of the section is that for reasonable p these 
are homology spectra: 5 ~ can be applied fiberwise to give a "spectrum over 
X",  5V(p)-*X, and n .  SP(X;p )=H~(X;~ (p ) ) .  The actual identification of 
these as the end obstruction groups takes place in the next section. 

These spectra extend the "Whitehead spaces" defined by Hatcher [-17], 
although for technical reasons we use a pseudoisotopy description of them. 
Pseudoisotopy spaces have been considered by Anderson and Hsiang [1], 
Burghelea and Lashoff [6], Hatcher [17, 18], and many others. 

5.1. Definition. Fix a locally compact metric space X, p: E - ~ X .  If C~_X is 
compact, e > 0, and K a polyhedron, then a family over K with support C, radius 
e and dimension n consists of (U, r, 0), where 

(a) U is a codimension 0 submanifold of 1R", r: U--~E is continuous and pr 
is proper. 

(b) 0 is a topological embedding, 0: (pr)- 1(C) x I • K -~  U • I x K which 
satisfies 

(1) 0 commutes with projection to K, 

(2) 0 restricted to 

[(pr)- l(U) x {0} x K] w [(0 U c~ (pr)-i  (C)) X I x K] 

is the inclusion, 

(3) 0( (pr) - l (C)x  {1} xg)___ U x {1} x g ,  

(4) the image of 0 contains (pr)- I(C ~) x I x K, and 

(5) p ro  and prO-1 (where defined) have radius <e  when considered as 
homotopies of (pr)- x(C) x {0} x K in X. 

Although not displayed, the support and radius are part of the data of the 
family. 

To understand this definition, consider some special cases. First let X 
=point .  Then this is a family (parametrized by K) of pseudoisotopies of a 
compact manifold; isomorphisms U x I - - * U x l  which are the identity on U 
x {0} and OU • I. The map to E serves to control the fundamental group. 

Next consider a family of pseudoisotopies with a reference map to E, and 
suppose p: E--~X is nontrivial. Then (b5) is the straightforward way to in- 
troduce an e condition into the situation. Finally the general situation (with 
the conditions involving the subset C) formalizes what one gets by restricting 
an e family of pseudoisotopies to (pr)-I(C~). 
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5.2. Operations on Families. Suppose (U,r, 0) is a family over K with support 
C and radius e. 

1. Reduction. Suppose D c_C is compact, and 3>e.  If U ' c U  is a closed 
codimension 0 submanifold which contains 0 ( (p r ) - l (D) •  • and r', 0' are 
restrictions, then (U',r',O') is a family with support D and radius 6. This is 
called a reduction of (U, r, 0) to D. 

2. Deletion. Suppose that V_c U is a closed codimension 0 submanifold such 
that O][(U-V) -c~pr  1(C)3 x l x K  is the inclusion. Denote by r', 0' the re- 
strictions of r, 0 to V, V x I  x K. Then (V,r',0 ~) is a family over K with support 
C and radius e. This is said to be obtained by deleting the region U - V ,  where 
0 is the identity. 

3. Suspension. Consider I j x U. (id) x 0 satisfies the axiom 5.1 except for b2: 
it is not the identity on (0P)x  U x I x K. To remedy this, let Sj: I J x I---~I j x I 
be an isomorphism which carries 0I j x I w I J x {0} to 1 i x {0}. Define an isomor- 
phism on P x U x I x K  (also denoted S j) by using S i on the first and third 
factors, the identity on the second and forth. Then the suspension of (U, r, 0) is 
(P • U, rq, S f  i ((id) x O)Sj), where q: I ~ x U-~ U is the projection. We will also 
denote this by XJ(U,r, 0). 

4. Inverse. Condition b4 ensures that there is an inverse for 0 on 
(pr) ~ ( C - ~ ) x I x K .  Condition b5 implies that (U,r,O I) is a family over K 
with support C ~ and radius e. This is the inverse of (U, r, 0). 

Notice that the suspension operation is not quite canonically defined be- 
cause the isomorphism Sj is not. The reason for this ambiguity is that we want 
iterated suspensions to be suspensions, and there are no choices of Sj which 
satisfy all the necessary identities. However the space of such Sj is contractible, 
so the construction is well defined in a "homotopy  everything" sense. 

The next step is to define a space of pseudoisotopies. The usual approach is 
to use the A-set with k-simplices the families over A k, and boundaries the 
restrictions to  0jA k. However, we wish to "identify" families which differ by 
the first three operations of 5.2. This is achieved by incorporating the oper- 
ations into the boundary operations. If (U,r,O) is a family over A k, c?j(U,r,O) 
will denote the restriction to c~j Age_ A k. 

5.3. Definition. Suppose p: E - * X ,  X locally compact metric. The pseu- 
doisotopy space ~(X,p)  is the A-set with simplices defined inductively: a 0- 
simplex is a family over a point (with unrestricted support and radius). A k- 
simplex ~ consists of a family over A k, (U~,Vo, O~), together with k + l  ( k - 1 ) -  
simplices 0 o ~ . . . . .  O k tr. We require these to satisfy the usual 0 i (~j identities, and 
in addition require that the suspension of a reduction of the underlying family 
of 0~ ~ be obtained by deleting something from the family 0i(U~, V~, 0~). 

We define the support and radius of a simplex of ~ to be that of the 
underlying family. The space ~ will be a convenient place to work, but is not 
what we want because no restrictions have been placed on radius and support. 
Roughly speaking what we want is to index subspaces of ~ on support  C and 
radius e, and take the (homotopy) inverse limit as C ~  X and e - ,  0. The next 
definition has the limit built into it. 
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5.4. Definition. Suppose  X is locally compac t  metric, p: E---~X, and Y~_X. 
Then a k simplex of  ~ 2 ( X , Y , , p )  is defined to be a simplical m a p  A k 
x [0, ~ ) ~ ' ( X ; p )  which satisfies the following condit ions:  First there is a 

sequence of compac t  sets C i with Ci~_(Ci+I) ~ U c i ~ x - Y ,  and C i is con- 
tained in the suppor t  of  simplices in the image of A ~ x [i, ~).  Secondly there is 
a sequence e i of  numbers  m o n o t o n e  decreasing to 0, such that  the radius of  
simplices in the image of A k • [i, ~ )  is less than  ez. 

As yet the subscript  - 2  has no significance. Eventual ly it will be the index 
in the spec t rum structure. 

5.5. The Kan Condition. Before we do anything substantial  with these spaces we 
discuss a basic awkwardness :  they fail to satisfy the K a n  condition. The main  
value of  this discussion is to give the reader some sample  manipula t ions  of 
simplices. 

Consider  for example  two 1-simplices ao, Cr I of  ~@(X;p) with 8oao=~?oCr 1. 
The K a n  condit ion would assert  that  there is a 2-simplex r with 0or=a0 ,c~ l  r 
= a  1. The basic idea for cons t ruc t ing  such a family over A 2 is to take the 
union of  the underlying families of ao, cra to get a family over  (?oAZwc)lA 2. 
Next  cross with I to get a family over  (~oAZuc31z12) •  and then use an 
i somorphism zlz~(c3oAZ~(')lzlZ)xI. The prob lem is that the two families are 
not  equal  on the over lap 8 o A 2 m ~ A 2, but  are related by operat ions.  

Let  the underlying family of  ai be (U~, r~, Oi) , and let that  of  8o ai be (V,s, t~). 
Delet ions of 8o(Ui,r~, 0~) are equal to reduct ions of suspensions of  (V, s, ~k). As a 
first step suspend (Ks,  0) and  one of the (Ui,ri, Oi) so they are all the same 
dimension.  They  are then related by reductions and deletions. Reduce the 
suppor t  of all of  them to the intersection of the suppor ts  of  Cro,a ~. They are 
then related by deletions: V~_U~, and  ~00~ is the identity on U~-V. If  Uo-V ,  
/51- V have disjoint closures, then the union is a manifold  and we can con- 
struct a family (UowU~,r,O) over ~oZ12k)~lZI 2 by: over ~oZ120 is 00 on U o 
and the identity on ( U o u U O - U o = U 1 - V .  Over  ~ I A  2, 19 is 01 on  U 1 and the 
identity on (U o w U~)-Ua = U o - V .  Crossing with I as indicated above gives the 
desired Kan  extension. 

The  p rob lem occurs when U o -  V, U ~ -  V do not  have disjoint closures so 
the union is not  a manifold.  We remedy this by suspending once more,  and 
using the new I coordinate  to separate  them; we use I x Vw[0,�89 x U t w [  2-, 1] 
x U  2. 

union is 
singular 
along here I xV  

[2/3, 1] x U I 

[0, 1/3] x Uo 
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The formula above gives a family over A2 of pseudoisotopies of this manifold. 
To relate this back to a o for example, consider the restriction to 0o A2. After 
deleting [2, 1] x (U 1 - V) we get essentially a suspension of a reduction of the 
underlying family of o- o, so we can use this to define a 2-simplex of ~a with c? o 
essentially a o. 

This construction gives a 2-simplex with boundaries isomorphic to a0, al  in 
a straightforward standard way. They are not actually equal, however. Techni- 
cally the way to think of this is as a preliminary deformation (simplicial 
homotopy) of ao, a 1. 

More generally given a simplicial map K - - ~ ,  these ideas can be used to 
construct a simplicial homotopy (by making deleted pieces disjoint) to a map 
such that any Kan extension problem A~ * K ~  has an extension. (This 
simplicial homotopy also gives time to iron out problems with the non- 
canonical nature of suspensions, which we suppressed in the discussion above.) 
This method can be used to obtain satisfactory versions of most of the 
consequences of the Kan condition. 

The most succinct way to summarize this is that it is safe to pretend that 
these spaces do satisfy the Kan condition. We will proceed on this basis. 

The first result with substance is a version of the stability theorem. This is 
also the prototype for other "space level" stability theorems. 

To state the theorem we need some notation. Suppose C~_X is compact  
and c,>0. Then ~ (X ,  C;p,~:) is the subset of ~(X ,p )  of simplices with support 
containing C and radius less than ~,. If C ~ _ X - Y  then there is a restriction 
function ~S(X, Y; p)--, J)~ C;p,O defined by: a simplex of 5 f is a simplicial 
map p: Akx [0, or  The restriction is p(n), where n is such that the 
image of A k x In, o0) has support containing C and radius <e. Simplices with 
different choices of n can be patched together using the map on the interval 
between the choices. Technically this idea is used to define a map on a 
subdivision of ~ and then the " K a n  condition" is applied to obtain a sim- 
plicial map of the original space. 

5.6. Theorem. Suppose p: E--~ X is a stratified system of fibrations over a locally 
compact metric A N R  X,  and suppose Y c X is a p-NDR subset such that X - Y  
has compact closure. Then there is a compact set C o _  X - Y, and % > 0 such that 
for an), Co C _ C c _ X - Y  and any %__>c>0 there is a function S: 
:#(X, C,p,O--~?f 2(X, Y,p) such that the .lbllowing composition is homotopic to 
the identity: 

,Sf 2(X,Y;p) ,o~t,-,ct ..... , j a ( X , C , p , c ) ~ , ~ _ 2 ( X , Y ; p ) "  

The proof shows that a sufficiently small simplex Ak- - ,~  has an essentially 
unique extension to Akx [0, a v ) - + ~  a simplex of ~. It follows that in some 
appropriate sense the composition j,o__+,9 o__~ ~ is also homotopic  to the iden- 
tity. We will also have a little bit of control on dimensions of images of S, see 
5.8 (4). 

Proof The major part  of the proof is an appeal to the methods of Sect. 4. We 
therefore begin by verifying the ingredients of these methods. This yields the 
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pseudoisotopy analog of 4.5. This is used to prove a somewhat more global 
"shrinking lemma", 5.8. Finally 5.8 is used to prove the stability Theorem 5.6. 

Functorial images are defined by composition: suppose there is a com- 
mutative diagram 

F 
E 1 ~ E 2 

Pl I P2 

f 
X 1 - - +  X2, 

and let (U,r,O) be a Pl family over a polyhedron K. If f is proper, then 
(U, F r, 0) is a P2 family over K. Radii and supports behave as in 4.2. 

Pullbacks are formed by taking topological pullbacks: Suppose there is a 
diagram as above, F is a local homeomorphism, and (U, r, 0) is a P2 family over 
K. Then the pullback U' in the diagram 

g f  r" 

r 
U - - -  ' E 2 

is a manifold and 0 pulls back to a pseudoisotopy O' of U'. Thus (U',r',ff) is a 
P2 family over K. Again radii and supports behave as in 4.2. 

The third property is naive homotopy of functorial images. Suppose there is 
a commutative diagram of homotopies 

F 
I x E 1 , E 2 

id x Pl ] .6 

f 
I •  1 > X  2 . 

We need a natural homotopy from (Jo), to ( f l ) , ,  with radius the same as that 
of F. Suppose (U,r,O) is a Pl family over K. We describe a natural homotopy 
over t x X ~  from (U,{0} xr,  O) to (U,{1} xr, O). The desired homotopy of im- 
ages is then the image of this homotopy. 

Define a Pl x id family over K x [0, 1] by ([0, 3] x U, c~ x r, 0,) where: (a) ~: 
[0, 3] ~ [0,1] takes [0,1] to {0}, [2,3] to {1}, and is linear on [1,23, (b) 0 t is 
defined for tel0,  1] by O , = ( + 2 t ) S - l ( i d  x O)S( -2 t ) ,  the S denoting the suspen- 
sion homeomorphism and +_ 2 t translation in 1R. (c) 0, is the identity where (b) 
is undefined (i.e. off of [2t, l + 2 t ]  x U). Then when t=0 ,  0 o is the suspension 
on [0, 1] x U and the identity on [1, 3]. Similarly 01 is the suspension of 0 on 
[2, 33 and the identity on [0, 2]. The identity pieces on the ends can be deleted 
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to give suspensions of (U, ix  r, 0). Recalling that suspensions and delations are 
allowable operations in boundaries in ~ we see that after subdivision this 
defines a natural simplical hornotopy in ~ from (fo), to ( f 0 , .  

To describe the cancellation of inverses we must first discuss the additive 
structure. Addition in 2A ~ is by disjoint union, after suspending and reducing 
to make the dimensions, supports, and radii equal. As with the Kan condition 
there is a problem with the disjointness (e.g. Uc~U+O) so the addition may 
not always be defined. As with the Kan condition this can be delt with by a 
preliminary deformation to make things disjoint. Again the details are not 
interesting enough to write down, and the best way to proceed is to pretend 
everything is disjoint fl-om everything, including itself. 

The inverse of a family over A k, (U,r, 0), is defined in 5.2 to be (U,r,O-1). 
The cancellation is given by a family over Akx ! which over Akx {0} can be 
deleted to give the suspension of (U,r,O)u_(U,r,O 1), and over A"x {1} is the 
identity and so can be deleted to give 0. 

A notation will be useful: recall the homeomorphism S: I x I ~ I  x I used 
in 5.2 to define the suspension. Let S~b be the same homeomorphism defined 
on [a, b] x I. 

Now consider the union (U,r,O),-t(U,r,O-1). The suspension of this is 
canonically isomorphic to ([0, 1] x U, rq, So11(1 x 0)So0J_([2 , 3] x U, rq, $22(1 
x 0 ~)$23). This we can think of as obtained by deleting (1,2)x U from ([0,3] 
xU, rq, AB), where A is defined to be Soll(I• Sol on [0, I ] •  and the 

identity elsewhere, and B is defined similarly using 0 ~ over [2, 3]. Extend this 
to a family over A k x [0, 1] by defining 

(1) 
At=(1 +2  t)So11(1 x 0)Sol 

on [0,1 + 2 t ]  x U and At=id  on [1+2 t ,  3] x U. Similarly define B t by expand- 
ing B from [2,3] out to [0,3]. The family is then ([0,3]xU, rq, AtB,) for 
te l0 ,  1]. Let C be the support of the family. Then over Akx {1} and support 
C -~ the family is ( [ 0 , 3 ] x U ,  rq, (So3~(lx0)S03)(So)(1x0-t)S03))=([0,3]  
x U, rq, id). Therefore the whole thing may be deleted to give the empty 
family. 

This construction commutes with deletions, reductions and suspensions, so 
is well defined on simplices of ~.  Subdividing A ~ x I in the standard way gives 
an essentially canonical simplicial homotopy from (id)~_(inverse): ~ - ~  to 
the constant map at 0. Finally if a family has support C and radius e then the 
cancellation homotopy has support C ~ and radius <2e,. The homotopy 
therefore extends to one defined on ~ 

The next step is to localize the cancellation procedure. 
Suspend (U,r,O)~(U,r,O -1) as above, but instead of adding 

close manifold approximation to (1,2)x r-1(W3~). Let p = m i n  

X-W2~) ) ,  so p = 0  on X - W  2, and is 1 on W ~. Then define 
! 

x I  by ([0,3]xU, rq, A~.o,, Bs.o,) over Akx{s}. This is the 

Suppose W _  X. 
(1,2) x U  add a 

(1 , !  (distance to 

a family over A k 

identity near X 
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- W 3~, so extends by the identity outside W3fl Finally the family over W with 
s = l  is ([-0,3] x U, rq, id), and so can be deleted as above. This defines a 
deformation of the family which is (essentially) constant outside W 3~, and 
cancels it over W. 

This concludes the verification of properties analogous to 4.2. The first 
application is a generalization of the homotopy Lemma 4.4. 

$.7. Homotopy Lemma. Suppose there is a commutative diagram 

G A 
E x I - - - - *  F 

lpxl iq 
G 

X x I - - *  E 

with G a proper map. Suppose X,  Y are metric, W c  X ,  and ~ > 7 >0. Then there 
is a homotopy 

G~," ~(X,  O,p, ~) ~ ~(Y, q) 

such that 

1. (G2,)(~, 1)--(Go) * z, 

2. if  Z c Y such that the projection of (G) - I (Z )  to X is in the support oJ" r, 
then Z is in the support of (G~)({r} x I), 

3. i f  Z ~  Y satisfies G I(Z)~_ W x I, then (G~,~)(z, 1) = ( G 0 , ( r  ) over Z, and 

4. if r: [0, oo) ~ is a homeomorphism such that d(G(x, t), G(x'; t')) <r(max  {It 
- t'l, d(x, x')}), then if  v has radius < 6, G~({r} x I) has radius < 2 r(26) + 7. 

Proof Suppose z is a simplex with radius 6<e. Define C~(r) to be r ~ r  -1, 
cancelled over W 9~- W v~, and the part outside W 8~ discarded. The remainder 
of the cancellation of the inverses gives a 26 deformation 0 ~ C~(r). 

Next choose tleI, to=0, t =1 such that G I X x [ t ; , t j + ~ ]  is a homotopy of 
radius <6. Applying G to the deformation above gives an r(26) deformation 

(Go),z~(Go),( r )xa [ I (G , , ) , (Cwr) .  The part of this family which comes from 
i=l 

W 4~ is also the image of 

(Go) * ~ ~- H ((Gl,)~:("g) J_(G,,):~(~- 1)). 
n=l 

the naive homotopy induced by G l[t~_~,t~] gives a deformation of radius ? 
from (G.) .  ~-1 to (G,,_,). z-a  over W3L Over W 3~ we can then rearrange this 
to get 

n--1 

Finally we can cancel the inverses over W by an r(26) deformation to leave 
only (G1) , r over W. 
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The composition of these deformations gives one of radius < 2 r ( 8 ) + 6 .  
Viewed as a family over A" x I this defines the homotopy of the lemma. The 
properties are verified easily. 

This concludes the proof of the homotopy lemma. 
The proof of Sect. 4 also provides a stability theorem analogous to 4.5, as a 

consequence of these formal properties. The properties used are actually for 
"constant  coefficients" ; p: X x F --, X the projection. The stability theorem also 
applies to this context. The next statement is midway between 4.5 and our 
present goal, 5.6. 

5.8. Shrinking Lemma. Suppose p: E--~ X, Y co_ X are as in 5.6, and C ~ X -  Y is 
a compact set such that a neighborhood of ( X - C ) -  p-deformation retracts to Y 
in X.  Then there is 8>0 ,  a homeomorphism r: [0, or ~ with r(t)>=t, and an 
integer n such that for every ?' > 0 there is a homotopy 

S: ~ ( X ,  C, p, 8o) x I ~ ~ ( X ,  p) 

such that 

1. S [ ~  x {0} is the inclusion, 
2. S 72~ x { 1 } lies in ~ ( X ,  X - Y~, p, 6), 
3. !f r is a simplex with support ~_ X -  Y~ and radius < ~, .for ~ > 8, then S(r) 

has support ~ X -  yr~) and radius < r(~), and 
4. ~f z has dimension k, then S(T) has dimension < n + k. 
S shrinks families of pseudoisotopies, r bounds the amount of expansion 

which takes place in the shrinking process. 

Proof  o f  5.8. The first step is to extend the analog of 4.5 from constant 
coefficient systems to stratified systems. A version which applies to fibrations 
(stratified systems with a single stratum) easily follows from 4.5 by the same 
piecing process used to globalize 4.5. (The fibration must be specified before e 
and r can be chosen, however). 

Suppose as an induction hypothesis that the statement 4.5 is valid for 
stratified systems with fewer than k strata and let p: E - , X  be a system with k 
strata. Let f :  X o - - , X  be the inclusion of the smallest stratum, and let X I be 
the mapping cylinder. Since X 0 is a p -NDR subset of X there is a homotopy 
h: X x 1 ~  X I which is the inclusion on X x {0} and outside a neighborhood of 
X 0 x I, takes X o x {1} to X 0 x {1} in the mapping cylinder, and is covered by a 
homotopy of E. Construct a shrinking function as follows: Shrink outside a 
neighborhood of X 0 using the hypothesized extension of 4.5 to k - 1  strata. 
Use h and the homotopy  Lemma 5.7 to obtain a function into ~a(Xi) which is 
small except near X 0 x {1}. Now apply the single stratum result to shrink near 
X 0 x { 1 } while holding things fixed near X c X I. Finally project back to X. 

There is some expansion involved in the use of the homotopy lemma and 
the second application of 4.5. However  this expansion can be estimated before- 
hand, so can be allowed for in the earlier steps. 

The next problem is the support. By hypothesis there is a p-homotopy h: X 
x I--+X which contracts a neighborhood U of ( X - C ) -  to Y, and holds Y 
fixed. Use a shrinking function as constructed above to shrink things on X - U 
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while holding them fixed on X - C .  Then apply the homotopy lemma with h 
(and W = X )  to the result. The end of this is (hi), ,  which is small except over Y. 

The support and radius estimates follow from a straightforward com- 
bination of the estimates of 4.5 and 5.7. 

To verify conclusion 4, the estimate on dimension, we must briefly review 
the proof. First note that of the basic operations, taking inverses, images, and 
pullbacks do not change dimensions. The cancellation of inverses and naive 
homotopy both raise dimensions by 1. An application of the homotopy Lem- 
ma 5.7 may therefore raise dimensions by 2. Next note that in deducing 5.8 
from 4.5 we used the homotopy lemma once, and a shrinking function from 4.5 
once, for each stratum of X. Therefore if there is an estimate for the single 
stratum case (4.5), there is one in general. The proof  of 4.5 begins with a 
reduction to the manifold case, using a single application of the homotopy 
lemma. Suppose the manifold has dimension k. Then the theorem for the 
manifold follows by k applications of the theorem to handles in a handlebody. 
An estimate for the whole will therefore also follow from estimates for handles. 

The proof  for 4.5 for a handle begins with an application of the homotopy 
lemma, which may raise dimension by 2. Pulling back over a torus does not 
change dimensions. The completion lemma, which is proved via cancellation of 
inverses, raises dimension by 1. The pullback to the universal cover D j • IR k 
does not change dimension. The "penult imate step" is a cancellation which 
raises dimension by l, and the final step an application of the homotopy  
lemma which may add 2. Putting them together, we see that the shrinking 
function on a handle raises dimension by 6 or less. We conclude therefore that 
there is an estimate for suitable general X. 

Proof  of  5.6. Since ( X -  Y) is compact  and Y is a p - N D R  subset of X, there is 
a homotopy  covered by a homotopy of p, rel Y, from the identity of X to a 
map which retracts a neighborhood of Y into Y. Let C be a compact  set in X 
- Y  whose complement is retracted into Y. 

Next choose a sequence of numbers el as follows: Let 5 1=1. Then by 5.8 
there is 6 o > 0  , and control function r 0 for shrinking functions for pseudoiso- 
topies with support C. Let s o be small enough so that e0<30, and ro(eo)<e 1. 
Choose e 1 so that ro(eO<e o. Suppose ei, i < 2 k - 1  has been chosen, and there 
are control functions (for shrinking functions) rj, j < k .  Let 6k, r k be data for 
shrinking functions on X - Y  . . . .  . Then choose eZk, E2k+ I SO that 

1. s <t~k, rk(gZk)<eZk 1, 

2. rk(e2k + 1), rk- l(eZk+ 1) <e2k, and 

3. rk(~Ek + 0<~2k. 

NOW we can define shrinking functions S k as in 5.8, with control function 
rk, which shrink things on X - y ~ 2 k - ,  down to size ezk+4. 

The function S: ~ (X,C,p ,~o) -*5~  z (X ,Y ;p )  is defined by iterating and 
concatenating the S k. Suppose z is a family over A j. Define S(r)IA j • [0, 1] to 
be So(r), and inductively 

s ( o  [AJ • [k, k + 1] = s~(s(~)l~ j • (k}). 
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The restrictions on the ei ensure that this is defined, and is a simplex of b ~ 2. 
Most of the care in the choices is needed to construct the homotopy of 

restriction 
~2  '~'-L's ~2  

to the identity. To do this, suppose p: A j X [0, o0)-~ ~ is a simplex of 5 ~_ 2, and 
suppose (after reparameterization in [0, oe) if necessary) that p[[,k, oe) has 
radius <e2k+ 1, and support ~ _ X -  y~2~+1. We want R: A j x [0, or) x [0, 1] ~ 
such that when the last coordinate is 0 we get p, and when it is 1 we get S(p[A j 
x {0}). Define R[A j x {0} x I to be (p[ {0})x 1. Next suppose R is defined on A t 
x [ 0 , k ] x I ,  and R I A J x { k } x I  has support containing X - Y  ~2k, and radius 
< e2k. Then we can apply S k to R[A J x {k} x I w p[A ~ x [,k, k + 1] x {0} to obtain 
a family over this polyhedron x I .  Reparametrize the parameter  spaces as A k 
x [ k , k + l ]  x l ,  with R IDJx {k} x I  and p lA ~ x [ k , k+ l ]  x {0} in the indicated 

places, and Sk(RrA j x {k} x {1}) over A t x [k , k+ l ]  x {1}. 

~Sk(RIN • [k}, [ol]) at 
S k (R) 

R ~ S k l p J A J  • [ k , k + l ] )  a t l  

~ $k(p[N • lk+ll) 

0 . . . . . . . . . . . . . . .  k+!  

It iS easily seen that the induction hypotheses (RIAJ• { k +  I}  x Z has radius 
<e2k+2 and support ~ _ X - Y  . . . . .  ) are satisfied, that R l D J x [ k , k + l ] x I  is 
<e2k+l,  and that this process builds up S(pIA j x {0}) on the top. The desired 
homotopy R is therefore defined by induction. 

This completes the proof  of the stability theorem. 
The next result describes the spectrum structure, and is a decendent of 

Hatcher [-19], Proposition 10.2. See also Anderson and Hsiang [,1], Bur- 
ghelea and Lashoff [-6]. 

5.9. Theorem. Suppose X is a locally compact metric ANR, and p: E - - , X  is a 
stratified system of fibrations. Then there is a natural homotopy equivalence T: 
5 P_ 2(X; p)--~ (25 r E(X x IR; p x 1). 

Proof First define an intermediate function T 1. Suppose (U,r,O) is an (X,p) 
family over K with support C and radius ~. For every integer n we can 
suspend this family using the interval In, n + 1] to obtain (In, n + 1] x U, r, S-1(1 
x 0)S). Since these agree on overlaps (they are identity maps) they fit together 
to give a family of pseudoisotopies of R x U. We denote these pseudoisotopies 
by T 10. This family has radius <e  in the X coordinate, <1 in the v c o o r -  

dinate. We therefore 

xr, rl o). 
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The construction T 1 is periodic in the ~ coordinate. Denote translation by 
t by (+ t ) :  IR--~IR. Then ((+l)xid)TlO=TlO((+l)xid). We use this to de- 
scribe a family over K x I, 

by: 

is 

TO: ]Rx(pr l ( C - ~ ) ) x l x K x I - - ~ I R x U x l x K x I  

TOIIR x (pr-  1(C-~)) x I • K x {t} 

( - t x id)(T~ 0)( + t • id)(T~ 0- 1). 

Notice that because of the periodicity this is the identity when t = 0  or 1. 

Finally we define T on 5P 2 (X; p  ). A k-simplex is a map p: A k 
x [0, ~ ) - - + ~ ( X ;  p), with estimates on supports and radii. Think of the radius 

estimates as given by a function e: Akx [0, oo)-*(0, o0). Then for a simplex 
a~Akx [0, o0) with underlying family (U,r,O) use (IR x U, 1/~ x r, TO). Since T 
commutes with reduction, deletion and suspension, these fit together to give 
Tp: A k x I • [0, ~ ) - ~  ~(]R x X, id x p). Since the T pseudoisotopies are the iden- 
tity over {0 ,1}c l ,  they may be deleted to be the empty family there. Tp can 
therefore be considered as a k-simplex of the loop space f2(b~ 2 ( N x X ,  id 
x p), {0}). This defines the A-map of the theorem. 

The theorem asserts that T is a homotopy  equivalence. For this we need to 
show it maps into every component,  and that all relative homotopy groups 
vanish. For clarity we will do this in two steps. First we present the basic idea, 
but without sufficient attention paid to the ~ estimates. Then we indicate the 
contortions required to supply the estimates. We will also supress mention of 
supports. 

An element in the relative homotopy  nj(T) is represented by a map a: A j 
x[O, oo) x I - - ~ ( l R x X ;  i d •  such that a[giAJ=O for i<j, and a[91AJ=T p 

for p: A i-1 • [0, ~)--~(X,p) .  We need a deformation of a r.el 9 ja  to a map in 
the image of T. We give the construction for a single level A J • {t} x I, and will 
justify this later by appeal to the stability theorem. 

A map a: A i • I--~ ~(]R x X, id x p)) consists of families over simplicies of A i 
x I which are suitably compatible. These families can be fitted together (by the 

unions used in the " K a n  condit ion" 5.5) to give a single family over A J •  
Over 9 i A J since it is T of something, something is deleted to give a family on a 
manifold of the form ~, • U. We can arrange that the whole family is on a 
manifold ~,. x M by suspending using I x M c R x M and interchanging the two 
]R coordinates near ~iA i. Finally we may proceed as if M were compact. This 
is because 5 p is defined using compact  supports, but in the interest of compre- 
hensible notation we are not making the support explicit. Denote this family 

by (IR xM,  1 ) - x  r, ff . The restriction to 9 i A i x I is T(M, r, 0), and the restriction 

to 9 i A 1 x I is the identity if i <j.  
The first step is to consider the restriction of ~ to the 0 level in IR. 
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~ M x l x A ; x l )  

].first (pseudoisotopy) 
I coordinate 

second (loop parameter) 
" - ~ ' ~  ~ coordinate. 

Over  ~j A j x I, C = TO = { - t x id)(T 1 0) (+  t x id)(T 1 0-  ~). T 1 0-  ~ is the identity on 
{0} x M x~?j d j, so the restriction is a t ranslat ion of 7"1 0. Define T 2 0 on IR x M 
x I x dj A; by Z 0 on [0 ,1]  x M x I x 0j d j and the identity on the complement .  
Let (~jF denote  the family on I R x M  over c~jAJ• defined by ( - t x i d ) ( T 2 0 )  
( + t  x id) on IR x M x I x OiAJ x {t}. Extend this by the identity to a family OF 
over  the rest of  ~?A j. 

The next step is to apply  the isotopy extension theorem. The  family OF 
agrees with c~C when restricted to {0} x M. Let  ~F§ be the restriction of aF  to 
[0, o01 •  then we have a family of  embeddings  C0: {0} x M  x I - - , I R x M  x I ,  
over  A ~ x I. These embeddings  are the identity over AJx {1}, and we have  an 
extension over  c~A j x I to p roper  embeddings  dF+ : [0, or) x M x 1 - ,  1R x M x I 
which are the identity over 0AJx {1}, and on [1, o r ) x M  x I. Finally (by the 
estimates) the image of Co lies in [ - 1 ,  1] x M x I. The isotopy extension 
theorem of Edwards  and Ki rby  [14], and Lees [24] implies that  there is an 
extension of 0F~, Co to a family of proper  embeddings  F§ [0, o o } x M  x I - ~ I R  
x M x I over  A; x I, which is the identity on [1, oo)x M x I and over 3 j x {1}. 

Consider  F§ I[0, 1] x M x I x 3 k x {0} -~ IR x M x I x A k x {0}. By construc-  
t ion this is the identity on { 1 } x M x l ,  and agrees with Co on {0} x M x I .  
However  Co is also the identi ty when the last coordinate  is 0. Therefore  this 
defines a family of  au tomorph i sms  of [0, 1] x M x I which are the identity on 
{ 0 , 1 } x M x I .  Call  this family O, and notice that  over ~jA j, ~jO=~,O. T o  
complete  the p roof  of  the t heo rem (i.e. deform the relative h o m o t o p y  class into 
/ f  a(X; p)) it is sufficient to show that  TO ~ Z  C, rel c~A ~ x I. 

First recall that  the T cons t ruc t ion  begins by suspending to obta in  In, n + 1] 
coordinates.  O however  is a l ready defined on I x M ,  so we may  jux tapose  
copies of O to get Ooo: IR x M x I x AJ-~lR x M x I x A t, Note  that  (by rota t ing 
I factors) there is a deformat ion  ~ Ooo ~ 11 O through families which are the 
identity on  I x 7/. x M x I. Compos ing  with the same const ruct ion for O -  * gives 
a deformat ion  T O , , , Z [ ( - t x i d ) O o ~ ( + t x i d ) O G t ] .  Denote  ( - t x i d ) O o o ( + t  
x id )Og  ~ by O - .  It will be sufficient to describe a deformat ion  O ~ ~ C tel ~?A j, 
in ,9~ e (IR x X, p). 

The  restriction of O~ to { 0 } x M x l  is ( - t x i d )  O ( + t x i d ) .  F§ defines a 
deformat ion  of families of embeddings  C 0 ~ O o ( r e l 0 J )  so this can be used to 
modify C to agree with O ~ in a ne ighborhood  of {0} x M x I. 

By the cancel lat ion of inverses, it is sufficient to describe a deformat ion  O ~ 
si  C-  ~ ~0 .  On a ne ighborhood  of {0} x M x I we have a r ranged  C -  1 = ( O ~ ) -  t, 
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so the inverses can be cancelled there to get a deformation to a family which is 
the union of two pieces, one over [0, oe) x X and one over ( -  Go, 0] x X. Each 
of these may be deformed to the empty family, by using a slight modification 
of the homotopy lemma, and the homotopies which push things out toward 
+__oo. 

This concludes the description of the basic idea. It remains to describe how 
to add the ~ estimates to this argument. The basic difficulty is that we do not 
have very good e control on the extensions given by the isotopy extension 
theorem. 

The first step is to observe that it is sufficient to prove the theorem for X 
= K - L ,  K a compact  manifold, L a closed submanifold such that K - L  has 
compact  closure. This follows from the homotopy invariance and fibration 
axioms verified in the proof of the next theorem. Next choose e > 0 and C ~_ K 
- L  compact  which satisfy the conclusion of the stability Theorem 5.6. Let k be 
the dimension of K, and choose a handle decomposition of K - L  of diameter 
< ~/2 k + 1 

Now consider a relative homotopy  class, represented as above by o: A i 
• [0, ~ )  x I ~ ( I R  x ( K - L ) ;  p). Restrict to a level A j x {t} x I such that ~IA j 
x [t, ~ ) x  I has radius < ~/2 k§ 1, and support containing a compact  handlebody 

containing C. Go through the constructionn as above to obtain the family of 
embeddings ~o of {0} x M  x I  in ~ •  x I .  Now we can extend ~0 to the 
family F§ in steps: assume there is an extension defined on the inverse image 
of the handles of dimension __<i in K, of radius <2i/2k+1~. Over each i+1  
handle we get relative extension problem which stays inside a submanifold of 
diameter <2i+1/2 k+ 1 in K. There is therefore an extension which stays in the 
submanifold. 

This process yields an extension F+ with radius <5/2. The argument can 
easily be completed to give a deformation ~ ~ TO of radius < ~. Finally apply 
the shrinking function of the stability theorem. The deformation at the ~ level 
implies that there is a deformation of the entire families defining the homotopy  
class in ~. 

This completes the proof  of 5.9. 

5.10. Definition. The spectrum 5P(X;p) is defined to have jth space 5~ 2(JR j+2 
x X ;  id • if j = > - 2 ,  ~-22- J ~_  2(X ; p ) i f  j ~ - 2, and structure maps the natural 

maps T of Theorem 5.9. 

The next theorem is the main result of the section. Homology spectra are 
defined in the appendex, Sect. 8. 

5.11. Theorem. Suppose X is a locally compact metric A N R  and p: E--~X is a 
stratified system of fibrations. Then there is a natural homotopy equivalence of 
spectra 

A" lt-Itf(X; F,C~ ~ ( X ; p ) .  

Proof. This is a consequence of the characterization Theorem 8.5, so we verify 
the axioms for ~. 

The limit axiom (3) is essentially built in to the Definition5.4 by the 
requirements on supports. In more detail, notice that since X is ~-compact we 
can reduce the limit to a countable well ordered inverse subsystem, • ( X  
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- Y~;p). The holim can then be described explicitly as maps 

p~: [i, oo)--, ~ ( x -  r,,p) 

which agree under restrictions. Referring to 5.4, we see that this is just a map 
[0, oo)x [0, oo)~,r so a map from the limit to 5P(X;p) can be obtained 
by restricting to the diagonal. This is easily seen to be a homotopy inverse for 
the natural map induced by restrictions. 

Now consider the restriction axiom (1). The restriction map is defined by 
the reduction operation of 5.2. It is sufficient to show 

2(Y; P) --~ ,9 ~ 2(X; P) ~ ~_ 2(X -- y; P) 

is a homotopy  fibration, because the other spaces in the spectrum are defined 
to be ~2  of some other spaces. 

Let F denote the homotopy fiber of 5 P 2 ( X ; p ) - - , J 2 ( X - Y ; p ) .  Recall that 
a simplex of this fiber is defined to be a simplex of J 2(X;p), together with a 
homotopy of the image in 5'~ 2(X - Y;p) to the basepoint (empty family). Since 
the restriction of a family in O~ 2(Y;p) is already empty, a simplex together 
with the constant homotopy defines a map 5"  2(g;p)---~F. We will show that 
the relative homotopy of this map vanishes. 

By the Kan condition, an element in the jth relative homotopy group is 
represented by a simplicial map p: AJx [0, o o ) - . ~ ( X ; p )  whose boundary lies 
in ~(Y;p),  and a simplicial map or: A t x I x [0, oo)-~5~ - Y;p) so that alA J 
x {0} x [0, oo) is the restriction of p to X -  Y, and rrlc3A j x l  x [0, oo)wA j x {1} 
x [0, oo) is empty. Consider a level he[0, c~). Then p, is a family over A t which 
over (?A t is the identity over X - Y  (because it must delete to give something 
over Y). Similarly a,  is an isotopy of the reduction of this family to some 
compact  C, c X - Y  to the identity family (rel 0A J). This isotopy can be used to 
isotope the family p, rel c~A J to a family which is the identity over a slightly 
smaller compact, C,_ 1. Delete to obtain a family over X - C , .  

Now recall that Y is a p - N D R  subset of X. Therefore if C,_~ is large 
enough there is a homotopy which pulls its complement into Y. Use this and 
the homotopy lemma to deform the family obtained above to one over Y.. By 
arranging the rates of convergence of radii and supports properly to allow for 
expansion in the homotopy  lemma, this argument extends to the whole maps 
p, or. 

This shows that the relative homotopy element is trivial, so the restriction 
sequence is a homotopy fibration. This verifies axiom (1). 

Next consider the continuity axiom (2). First of all since we are working 
with A-sets the axiom must be interpreted in this context. For mot  (Pl, P2) we 
use the A-set with k-simplices diagrams 

E 1 x d k F ~ E 2  

p~xl l 

X 1 • d k f > X 2 . 
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This changes the problem from one of continuity to one of definition: the 
functoriality of ~ defines a map on 0-simplices which must be extended to the 
higher simplices. We construct the adjoint 

~ ( X 1 ;  Pl) x mor(pl ,  p2)--+ &a(X2 ; P2)' 

As a final modification we note that since these spaces are Kan we can use the 
categorical product of A-sets (n-simplices are products of n-simplices, see Rour- 
ke and Sanderson [33]). 

An n-simplex of 5/~j(x i ; P 1) is a map p: A" x [0, c~)- ,  .~(IR ~+ 2 x X i ; 1 x Pl). 
For simplicity consider first the restriction of p to a level A"x {t}, which is 
a family (U, r, 0) over A". Let (F,f) be an n-simplex of mor(pl ,p2 ). Then form 
the composition 

UxA"  "• 1 x ~  ]R.J+ 2 • E2, 

and denote it by r - .  Then (U x A", r ~, 0 x 1) is a family except that 0 x 1 is not 
the identity on U x ~?A" x I. The remedy is as in the definition of suspension in 
5.2: let S be a homeomorphism S: A " x I  ~ which takes c~AkxIwAkx {0} to A k 
x {0}, and then use (U x A ~, r ~, S-~(Ox 1)S). To obtain a family with small 

radius, use an S which is small in the A k coordinate. This construction 
commutes with suspension, deletion, and reduction (except for the nonunique- 
ness of S), so fits together to define a map A"x [0, oo)-~ ~(IR ~+ 2x X2; 1 X P2)" 
If the obvious care is taken with radii, this gives an n-simplex of ~j(X2;P2 ). 
This defines the map required for the axiom. 

6. Proofs of the Results 

This section assembles the proofs of the theorems of Sect. 1, except for the 
duality Theorems 1.9 and 1.10 which will be proved in Sect. 7. We begin by 
defining q~ of a homotopy  equivalence in 6.1. 6.2 contains the proofs of 1.4 
and 1.6. 6.3 contains the proof  of the existence of finite structures, 1.3. The 
approximate end theorem is proved in 6.4, and the main results 1.1 and 1.2 are 
proved in 6.5. Finally 6.6 contains proofs of the formulas 1.7 and 1.8. 

6.1. Definition of q~ of a Homotopy Equivalence. Suppose p: E--~X is a 
stratified system of fibrations, and Y~_X is a p - N D R  subset with ( X - Y ) -  
compact. It will be sufficient to define small pseudoisotopies over X x R with 
support  an appropriate C x R: the stability Theorem 5.6 provides a map 

S: P(X • C x ~ , p •  I,~)-~bP z(X • 2 1 5  l), 

and 

,~o ~ 2(x x F., Y x ~.; p x 1)57f6 n 1 G ( x ,  Y; p) g i  l /-/ , (x, Y; y(p)).  

Suppose r: (K,L)--+X is the mapping cylinder of a map of compact  poly- 
hedra, which is an e homotopy equivalence over Cc_X. Then there is an 
retraction d: (r - l (C)u  L) x I-~ K which is the inclusion on r ~(C) x {0} vo L x 1, 
and d(r-l(C) x {1})eL. (This is a contractible pair, see 6.3). Let n > 2 d i m ( k )  
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+3,  and embed (K,L)cR"x[O,  oo), R"x {0} with regular neighborhood 
(U,(3oU). Extend r to U by composing with the collapse U--,K, and define 
(31 U =((3U-(3 o U)-.  

The first step is to construct an inverse for (U,(3 o U) as an h-cobordism. By 
general position we can extend the embedding of ( r - I ( C ) u L ) x  {0}c U to an 
embedding of the mapping cylinder of d. By pushing along the mapping 
cylinder coordinate we get a 2~ ambient isotopy of U to U ' c  U such that 
U'c~r 1(C-2~) lies inside a collar on (3oU: O o U x l c U .  Let V = ( 0 o U  
• I ~r- I( C-4~)- U') -. 

~ ]  ~ t  O~ U x I U' 

! ! 

C 

Then from the definition of V, and from the ambient isotopy, we get 4e 
isomorphisms over C 4~: Uw,~, V~(3 o U x I, and VW~oU=(31 U x I. 

The next step is to find a 2e embedding c~: ( 3 o U X l c U  which is the 
inclusion on 0 o U x  {0}, and c~((3 o U x{1})c~? 1 U. Again this can be done by 
general position. A collar 3 o U x l c  U is a regular neighborhood of L x I. 
Make L x {1} disjoint from K, then it deforms into (31 U. The deformation can 
be approximated by an embedding of 3 o U x I by general position. 

vi ox o 
~,U 

Now rotate this around the bot tom copy of (31 U to get a copy of c~ o U x I 
embedding in (31 U x 12 

1~ I " ~  
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The embedding  of 9(9 0 U) x I can be extended to collars with edges in the top 
of 9 1 U x l  2. 

I J 
I 

/ 

N o w  push away f rom ~ O 1 U x l x l w g l U x l x { O  } to get an embedding  fi: 
(?o U x I--* 91 U x I x I such that  interior goes to interior, fl: 0 o U x {0} -~ 91 U 
x {0} x l is equal to fl: 0 o U x {1}--,91 U x {1} x I, and fl(0• o U x ( 0 , 1 ) ) c 9 1  U 
x ( 0 , 1 ) x  {1}. Next  we string copies of  this together  to get a periodic embed-  

ding fl^:  •o U x I R ~ ?  1 U x lR x I. Tak ing  a collar of  this embedding  gives a 
periodic decompos i t ion  ~31 U x N x I = A u ~o U x N x I ~ B, B being the upper  
pieces. 

Finally we define the pseudoisotopy.  Define 0 : 9 1  U x N x I ~ by: 0 is the 
identity on A, is the shift by 1 on B, and the evident isotopy between these two 
on 0 0 U x IR x I. Mapp ing  to E x R by (r, 10e) gives a pseudoiso topy  defined 
over  C - l ~  IR with radius < 10e. This defines an element in Hi(X, Y; 5~(p)) if 
e is small enough, as indicated above. Define ql(K,L) to be the negative of the 
element.  

We will need a more  careful descript ion of the decompos i t ion  A uB. 
D e c o m p o s e  91 U x I x I as shown, 

/ 

7_s• 

U 1 

J 

where the ar row indicates the direction f rom 90 to ~71, and  the t ransverse 
direct ion is the x I direction. 
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The embeddings are shown in half the picture: 

the collar on 

) c?~oU x I  

Vxl ~ Uxl 

(?oU xl 

In particular we see that B is obtained by glueing together copies of U 
x [0, 3J u~, V x ([0, 1] w [2, 3]) by their ends. 

6.2. Thin h-cobordisms, and Contractible Maps. Suppose f:  (M,0 o M ) ~  E is a 
(6, h) cobordism satisfying the conditions of 1.6, and that qt(M, 0o M)=0.  This 
means that there is a path in ,9~(X • IR; p • 1) from the construction of 6.1 to 
the empty family. A path is a map to the pseudoisotopy space I • [0, ~ ) - ~  P(X 
x 1R; p x 1). Restricting to {0} x to, t] w i  x {t} gives a path in P(X x 1R; p x 1) 
from 0 to the empty family. (We will be more specific about the choice of t 
later). Using the union method of 5.5 we can join these to get a single family 
over I. This can be assumed to be of the form (Z x IR, f x 1, r/). (The argument 
is in the proof of 5.9), and is such that over {0} a deletion is a suspension of 0, 
and over { 1 }, r/is the identity. 

To get back to h-cobordisms we construct an "inverse" to the construction 
of 6.1. This inverse will be called the V construction. 

Suppose (UxlR,  r x  1,0) is a pseudoisotopy of radius <~, over p x 1: E 
x l R - , X x l R ,  with support containing C x [ - ) , , 7 7 ] .  Then Vo=Ux[O, oe) 
x I c ~ O ( U x ( - o o , 5 7 ] x l )  is an h-cobordism fi'om c~oVo=Ux[O, 5e]x{O}wU 
x{0} x lwO(Ux{5e}  xI )  to 0 1 V o = U x N x { 1 } c ~ V  o. More generally i f ( U x l R ,  
r x l ,  0) is a family over A k, then this construction gives Vo---,d k which is a 
locally trivial fibration with h-cobordism fibers. 

The first step in the construction of qt(M, 3oM) is to embed (M, 0oM ) in 
N " x  [0, oe), and take a regular neighborhood. The result is the disc bundle of 
the normal bundle, (Dv~,DV~oM). Applying the construction gives a pseu- 
doisotopy (D volM x IR, r x 1/7, 0). Applying the V construction to this gives by 
the description of B given in 6.1 (after deleting cancelling inverses) exactly D v 
x [0, 3-1 ~ V x ([0, 1] w [2, 3]), (D v ~ V) x {0, 1 } ~ D VOo M x [0, 3-1. Therefore if we 

apply the V construction to the family (Z x IR, f x 1, t/) obtained above, we get 
a locally trivial fibration of h-cobordisms V , ~ I  which over {0} restricts to a 
suspension of this h-cobordism and which over {1} is a product. 
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Now we use the algebraic obstruction theory of Sect. 3 to see that an h- 
cobordism which is "concordant"  to a trivial one in this way, itself has a 
product structure. The general stratified ~l case follows from the unstratified 
one by induction, so suppose the fundamental group locally constant. Accord- 
ing to 3.1 the obstruction can be thought of as a isomorphism of geometric 
modules obtained from a handlebody structure on (M, OoM ). D v x [-0, 3], D v 
x {0, 1} u D  V~o M x [0, 3] has a handlebody structure with the same geometric 

intersections, algebraically changed by an involution of the ring. Therefore one 
is a product if and only if the other is. It is similarly unaltered by addition of 
the V collars, and by suspension. V,l~o ~ restricts to this, and by restriction here 
we mean deletion of a product, so it also has the same invariant. Finally since 
V,-+I  is a locally trivial fibration V,]{0} and V,I{1} have equivalent isomor- 
phisms, so since I/,] m has a product structure (M, ~?0 M) does also. 

We comment  on the last step, that ~1{1} and V,I{0} define equivalent 
invariants. The obvious thing to do is use the fact that a locally trivial 
fibration over I is trivial, so V,]{0}~ V,I{1}. It is a little tricky to do this with 
small radius. It can be done by going back to the V construction and using the 
isotopy extension theorem on r/(Z x {5e} x I). The proof  of 5.9 explains how to 
obtain sufficient control. 

A more natural approach to this problems is to generalize slightly the 
invariance statement 3.1(2). Since V, is locally trivial we can construct a small 
1-parameter family of handlebody structures on it, and then apply the argu- 
ment used for M x I - *  I in 3.1. 

Finally we come to the radius estimates for this proof. The problem is that 
some of the estimates are dimension dependent. We seek an e product struc- 
ture on (M,c~oM). There is a function 6(n) so that if the fibration V, has 
dimension n we need for it to have radius <6(n) to apply the invariance 
argument (see 3.1 (21). Going back one step, there is 7(n) such that if the path in 
P(X x N, p x  1) frt,m 0 the empty family consists of families of dimension < n  
and radius <7(n), for some n, then we get the desired product structure. To 
arrange this coincidence we use the stability theorem. 

In defining ql(f,~of) we required the radius be small enough so that 0 is 
small enough so that the stability Theorem 5.6 applies. Therefore q~ ~ 0  implies 
that there is a path in P(X x lR, p x 1) small enough as that the shrinking 
Lemma 5.8 applies. (This is the restriction on t alluded to in the beginning of the 
proof.) Let the maximum dimension in the path be k. The shrinking lemma 
asserts that there is an integer m and a shrinking homotopy  which shrinks 
smaller than ?(re+k) and increases dimension by at most m. This gives a new 
path to ~b; first the shrinking homotopy applied to 0, and then the shrinking 
function applied to the original path. In the first part  we have control on the 
dimension ( < d i m  M + m), and in the second we have sufficient control on the 
size (<7( re+k) )  to make up for the indeterminate part  of the dimension (k). 
We can therefore apply the invariance argument to this path. 

The characterization of the obstructions in terms of geometric group iso- 
morphisms makes the realization of obstructions simple: use the isomorphisms 
to construct a handlebody on M with 2 and 3 handles, and use the homotopy 
theory of Ends I to see that the result is an h-cobordism. Finally it is also 
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simple to use the realization theorem and the duality formula for the obstruc- 
tions to show that the invariant characterizes h-cobordisms: given A, A', then 

A'=IA '=(AA 1)A'=A(A 1A')=AI=A. 

This concludes the proof  of 1.6. It also proves half of 1.3: If f :  K 1 ~ K  2 has 
q 1 ( f )  = 0 then we have seen that the regular neighborhood 
(U,(?oU)~((K2)j.,K1) is a product (assuming the appropriate conditions on 
size and dimension). It therefore collapses to •0 M which collapses to K 1. But 
since it is a regular neighborhood U also collapses to (K2) f which collapses to 
K 2 . 

We observe that we have the dimension estimate dimK3_-<2max 
(dim K l, dim K 2) + 4. 

For the invariance statement we show that ql(f)  is unchanged by com- 
position with contractible maps. Suppose g: K 2 - - L  is contractible and let 
(U,c~ o U) be the (PL) regular neighborhood of ((K2)j.,K1) in Euclidean space. 
Let (U',c? 0 U') be obtained by identifying point inverses in K 2 to points. This is 
a regular neighborhood of (L~r,K1) in a PL CE image of Euclidean space, 
hence is a regular neighborhood in Euclidean space. Further, the quotient 
(U, (?o U)-~(U', ~0 U') is CE so can be approximated by homeomorphisms.  The 
starting points for the construction of ql(f) and q l (gf )  are therefore the same, 
so the invariants are equal. Compositions f g  behave similarly. 

The effect of this is to establish a "bijection" between H 1 and contractible 
pairs. Begin with a contractible pair (K,L) and construct the pseudoisotopy 0 
of 6.1. Then apply the V construction to it. The result is equivalent to (K x I, K 
x {0; 1}wL x I) by a composition of contractible maps and deletions of trivial 

pieces. This suspension is the inverse for contractible pairs so V(O)~(K,L) 1 
However we defined ql = - [ 0 ] ,  so V(ql(K,L))~(K,L ). Similarly given a pseu- 
doisotopy c~, ql(V(~))~[c~J, providing the size and dimension estimates are 
satisfied. 

This correspondence will be used to obtain formulas in H 1 by manipulating 
contractible pairs. The only qualification is that it must be possible to predict 
in advance the effect of the manipulation on dimensions and sizes. 

6.3. Proof of 1.3. We derive 1.3 from 1.4. For this it is helpful to recall some 
notation for homotopies. Consider a homotopy as a map K x I - *  L x I which 
in the I coordinate is just projection. If a, b: K x I - ~  L x I let a. b denote the 
track sum, a, the map a( ,t): K--,L,  and T: K x I - * K  x l  the map T(k,t)=(k, 1 

- t). If a, b: K x I ~ K x I note that there are homotopies with ends fixed 

aob~((a o x ll)ob).(ao(b I x 1,))~(ao(b o x 1)).((a 1 x 1)oh). 

Now suppose we have a finite 6 projection over p. This is s: K---,E, r: 
K-+K, h: r ~ r  2, j: ( rx  ll)oh~ho(r x 11) rel ends, all having radius < 6  and all 
commuting with s up to 6 homotopy. Let M be the mapping telescope M 
= L [ [ n , n + l ]  x K / ~ ,  where (n ,k)e[n- l ,n]  x K  is equivalent to (n,r(k))~[n,n 

n 

+ I ] x K .  Define H:  M-+M to be r(h.((rxl)oh)): [ n , n + l ] x K ~ [ - n - 1 ,  
- n ] x  K for each n. 



408 F. Q u i n n  

n n + l  n + 2  n + 3  

This is a 106 h o m o t o p y  equivalence 

M 

H 
M ~ M  

E x l R  

H itself is a h o m o t o p y  inverse: on [n, n +  1] • K,H 2 is 

T(h. ((r x 1)o h))) r(h. ((r x 1)o h)) 
= ( T o  ((r • 1)o h)o roh). (Toho To(r x 1) o h). 

But 

ThTn ~(Toho To(r x 1)). (To(r x 1)o Toh) 

~J (r x 1)(Th T. h)~r 3 x 1 

(ThT. h~r2x  1 is the t radi t ional  cancellat ion of inverses). Therefore  the first 
piece of  H 2 is r 4 x 1. Similarly the second piece is homotop ic  to r 4 • 1, SO H 2 is 
homotop ic  to r 4 x  1. This is homotop ic  to r 5 x ( +  1) by pushing one stage to 
the right ( +  1: N---, IR is addi t ion  of 1). This is h o m o t o p i c  to r x ( +  1). Finally r 
• ( +  1) is h o m o t o p i c  to the identi ty by pushing one stage to the left. 

Define qo(K,r,h,j)=O + ql(H) in 

Ho(X, Y; 5P(p)) ~ -  HI(X x IR, Y x ~ ;  ~9~(p x 1)), 

where ~?+ denotes  the bounda ry  at the + oo end. The  next step is to define an 
inverse const ruct ion f rom contract ible  pairs over  X x N to projections. 

Suppose  s: ( K , L ) - , E x N  is an e contract ible pair, with re t ract ion t: K 
x I---~ K. For  a < b - 1 0 s  consider the complex 

N = s -  l(E x [a,b])ws- I(E x [a,b+ 3e])mL. 

Let ~: R-*I-0 ,  1] satisfy c~(x)=0 for x < a + 3 ~ ,  ~ (x)=  1 for x > b - 3 e ,  and define 
r: N - * N  by r(k)=t(k,~(sk)). This m a p  is the identity near  the a end, and is 
the re t ract ion into L near  the b end. It is a project ion because r2(k) 
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=t(t(k, ~(s k)), c~(r(k, ~(s k))), which is homotop ic  to r(k) by multiplying the last 
coordinate by fl and letting fl go from 1 to 0. Similarly there is a symmetry 
homotopy.  

This construct ion shows that qo is well defined, and will be useful in 
studying the obstruction. To complete 1.3 we show that if q o = 0  then the 

projection "splits", i.e. r factors K ~ L  Q K ,  b a ~ r ,  a b e l  L. There is a 
diagram of contractible maps 

N 

M ~M. 
H 

L is the intersection of  inverse images of partial stages of the telescope in each 
piece. 

The map b is defined by projecting to a copy of  K in the telescope, a is 
obtained by finding a small h o m o t o p y  inverse for one of these maps, on one of  
the intermediate copies of K. This construct ion is due to Ferry [-16]. 

6.4. Proof  of  1.5. We start with the construct ion of  a finite complex project ion 
from a tame structure. Suppose e: M ~ X  has a (W, 4) tame structure (refer to 
Ends I, except delete the covering space conditions. We will keep the same 
notat ion and not  reproduce the definition). Let the deformations be denoted 
S i, and let K ~ = M - U  i. We may assume K~ is a polyhedron.  Then  S o is a 
h o m o t o p y  from the inclusion M - W o r M  to a map into K z. We can use S I, 
S 2 to modify S o so that S o keeps K z in K 3 and K 3 in K 4. Denote  S o by S so 
that we can use the S~ nota t ion for the restrictions of S to ( M -  Wo) x {t}. 

To obtain a projection, let K =K4,  r = S  1. h=S(S  1 x 1) is a h o m o t o p y  from 
r to r a in M - W o ,  and in fact is a h o m o t o p y  in K 3 because S 1 ( K ) c K  2. 
Finally we want  ( r •  l o h ~ h o ( r •  1). =~(r• 1 ) h = ( S  1 x 1)oSo(S 1 • 1) and h(rx  1) 
=So(S  1 x 1)o(S 1 x 1), so it is sufficient to show that (S 1 x 1)oS~So(S 1 x 1) on 
K 2 �9 
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(S 1 x 1)oS ~(TST) .  (S. (S a x 1)oS)~(TST). (SOS) 

~(TST) . (S .So (S  1 x 1)) ~ S o ( S  1 x 1), 

and on K 2 this homotopy takes place in K4. 
The invariant qo of a tame structure of length > 4  and sufficiently small is 

defined to be qo of a finite complex projection defined in this way. It is easy to 
see that changing the tame structure by interpolation, etc. changes the pro- 
jection by a deformation, so does not change qo. Finally, it is also not difficult 
to see a sufficiently long and small manifold tame structure has a completion. 
Follow Ends I up to 7.4, where the end obstruction is interpreted as a pro- 
jection on a geometric group arising from a very nice tame structure. Interpret 
q0=0  as giving a deformation from the complex projection associated to this 
tame structure, to the empty projection. Then this geometric data implies that 
the geometric group projection can be deformed to a geometric one, and an 
approximate completion exists. 

6.5. Proof of  the End and h-eobordism Theorems. Suppose we have the data of 
1.1(a). Then by EndsI ,  5.5, there are tame structures on the end so that 1.5 
applies. If the invariant q o ( f ) = 0  then there is an approximate completion, N 
_cM. The existence part  of the theorem follows from the assertion that a 
sufficiently small approximate completion extends to a completion. By this we 
mean that there is a completion in which the approximate completion is a 
collar neighborhood of the boundary. 

First, since q o ( f ) = 0  then for any sequence of 61>0 there is a sequence 
Ni=Ni+l ... of 6 i approximate completions. Let ~?oN/ denote Nic~(M-N~) , 
then (N~-N~+I) is an h-cobordism between 0oN ~ and #oN~+l. By the re- 
alization part  of 1.6 there is a decomposition of 0 oN~ • I as a union of /l- 
cobordisms V/u W~, so that 

i 1 

ql(V~,0oN~)=-  ~ qI(Nj-Nj+I)-,FJoNj). 
j = o  

Consider these as lying in collars of 0 o N~. 

~oN, xl  

Then formulae 1.7 and 1.10 show that the h-cobordisms W/(Ni-Ni+ 1)--Vi+l 
have trivial invariants, so are products. By fitting these product structures 
together we get an open collar structure on the end. 

In order for this collar structure to give a completion, the collar arcs must 
be Cauchy in X. This will follow from appropriate estimates on the product 
structures on W,(N,.-N~+ 0 1/i+ 1. These follow from estimates on the size of 
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the h-cobordism structures on the pieces. We have direct control on (N~ 
-N~+a)- through the 6~. The W~,V~ come from the realization part of 1.6, 
which shows that the size may be estimated from the 1-connectivity of 
( ? o N ~ E .  This connectivity can also be controlled because M--*E is 1-con- 
nected at the end. Therefore the collar can be arranged to converge in X, and 
defines a completion. This finishes 1.1 (a). 

Next suppose /_/1 c U 2 c M are two approximate completions of a tame end. 
Then we can extend these to an approximate completion 
• E0,�89 u ul • E�89 

[ - -  U2 " 

I 

~ - -  U 1 --- 

M x I ~ U  z 

We use this in two places. If we begin with two completions and extend the 
approximate completion to a completion rel the ends, then we get an h- 
cobordism of the two completions. If one is the standard completion of N x I 
and the other is a thin h-cobordism A c A u B ~ - N  x I ,  then extending to a 
completion rel the one end gives an h-cobordism e isomorphic to the approxi- 
mate one. Combining this with the realization of approximate h-cobordisms in 
1.6 gives the realization of 1.2. 

Finally suppose as in 1.1(b) that M ' J - ~ X  is a completion and 
(W, O M ' , N ) ~ X  is an h-cobordism over X. We want to realize W as a 

completion of f :  M x I ~ X. Choose a small collar ~M' x [ -  oo, oo) c M'. Use a 
very small retraction of W x [ - o % o o )  to W w ( ? M ' x [ - o % ~ )  to extend g 

union with ~M'x  [ - o %  o o ) c M ' ~ X  to all of W x  [ - o o ,  oo). Let F be this 

extension. Then (F, 1): W x  [ -  o% o o ) - , X  x [ -  oo, oo) is a (6, h)-cobordism 
which is very close to g x 1. Now consider the interior W x IR--, X x IR. Again 
this is close to g x 1, so it has ql =0. Choose an isomorphism 0: W x IR-~c~M ' 
x IR x I of radius <(r,, e t) on X. Then f extends to W x [ -  o% oO)UoM x I to be 

g o n  W x { - ~ } .  
This completes the proofs of 1.1 and 1.2. 

6.6. Proofs of 1.7 and 1.8. As in 6.2 we translate into contractible pairs. First 
note that the pair ((Ka)g/,K1) is a contractible image of ((K3)gu(Kz)/,K1). 
Denote ((K3)g • (Kz)f ,  (Kz)f, K l) by (K, L, M), then (K, M) has a contraction r: 
K x I - * K  which restricts to give the contraction of (L,M). r defines a map 
from the mapping cylinder of q [ L - ,  M to K; r: (M)~IIL~K. This lies over a 2- 
simplex whose vertices we label as shown. 
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K 

K f L L 

the data 

0 ~""" ' - - -~  
1 

Consider the pair consisting of the whole thing rel M x A2 union with the copy 
of L over the vertex 0. This maps contractibly to (K,L) by collapsing the 
mapping cylinder of r. It also is a relative mapping cylinder from the 0,2 edge 
to the other two edges, so it collapses to 

(M~IL UM• x[1,2]ua4• L u M  x[0,2]). 

This is equivalent to (K, M),~(Mrl L, L uM • I) by deleting M • (1,2), on which 
the retraction is the identity. A similar argument shows (MrlL, L u M •  
J_(L, M) is "concordant"  to (r 0), so we see (K; L ) ~  (L, M)~(K,  M). Applying 
ql gives the formula. 

We begin 1.8 with a construction for an approximate version. Suppose that 
S: Kz-->E • [0, oo) is proper over X • [0, oo), and suppose that K 2 has a (c~,2k) 
tame structure with Ui=s-a(Ex(ai, oo) for ai+l>ai+lO(5 (a 1>__1), and sup- 
pose W~_s-l(Ex[b, ao)) for some very large b. Finally suppose that h: 
K I ~ K  2 is a proper map which is a 6 homotopy equivalence over ( X - Y  ~) 
x [ a o - 1 0 6  , b+106] .  Then K 1 has a (36,k) tame structure with U~=(sh)-l(E 
• [-a2i+56 , oo)): let g be a homotopy inverse for h, then the i th retraction for 

this tame structure is obtained by homotoping 

1 on (sh)-l(Ex[O, azi+7•)) 
IK1 ~ a =  gh on (sh 1)(Ex[a2i+96,~)) 

and then inserting between g and h the retraction for the 2 i +  1 set in K 2. 
To see the obstruction, suppose the retraction q in K 2 has been improved 

as in 6.4. Using the homotopy 1 K ~ g h  construct t: (K~)g-+(K~)~ which is the 
identity over E x [ 0 ,  ao] and maps into K 1 over E x E a o + 3 6 , ~  ). The pro- 
jection in K~ is obtained by composing this with the projection q in K 2, and 
projecting back to K1 by the mapping cylinder collapse. 

/ % /i; 
K2 

~ - r l ( i n  K2) - -  
[0, ~) 
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(K1, proj (rl, t))~((K1)g , r 1 t). The subcomplex [(K1)g over  E x [0, a 0 + 
3 6 ] ] w K  2 x {1} contains the image of the retraction so it defines the same qo 
(the mapping telescope of 6.3 changes by a countable map). Further we may 
delete s - I (E  x ( a 0+56 ,  % + 7 6 ) )  because the retraction is the identity there 
(delete an identity piece from the map of mapping telescopes). Therefore 
qo(K1)=qo([(K1)g over E x  [0, a o + 3 6 ] u s - 1 ( E x  [0, % + 5 6 ] )  x {1}, t) 

+qo(S- l (E x [ % + 7 6 ,  oe)), r 0. 

Reference to the construction of a projection over X from a homotopy equiva- 
lence over X x R  shows that the % ( 0  piece is exactly Oq~(h). This gives an 
approximate version of 1.8 which is easily seen to imply 1.8. 

7. Poincar6 Duality 

In this section the duality formulae of 1.9 and 1.10 are derived. The Spanier- 
Whitehead duality involution 1 is defined in 7.1 and 7.2. Finite complex 
quasifibrations are developed in 7.3. The torsion invariant ~ is defined in 7.5. 
Theorems 1.9 and 1.10 are proved in 7.6, 7.7, and finally homotopy com- 
pletions of ends are investigated in 7.8. 

Throughout this section we assume p: E ~ X  is stratified system of fi- 
brations, Y c X  is a p-NDR subset, with ( X - Y ) -  compact, and 6 is small 
enough that the Theorems 1.1-1.8 apply as long as dimensions don't get too 
big. 

7.1. Definition of 1. Fix p: E ~  X a stratified system of fibrations, and suppose 
(U",r,O) is a family of pseudoisotopies over K with support C and radius 6. 
Let 01 denote 0 restricted to (p r ) - l (C)x  {1} x K ~  U x {1} x K, and let T be 
the involution (id) x (1 - i d )  x (id) on U x I x K. Then we define 

( - 1)" i (U,  r, 0) =(U, r, TO r ( o  I 1 • 1)). 

What this does is first turn the pseudoisotopy upside down. It is no longer 
a pseudoisotopy because then it starts with 01 at {0}. This is repaired by 
composing with 0i-1. 

The operation ( -1 ) "  T is an involution on families (except for a slight loss 
of radius), and commutes with reduction and deletion. Up to isotopy it anti- 
commutes with suspension. A specific isotopy 

[(-- 1) n+l 1] Z(U,  r, 0)~ --~, [(-- 1)" i ]  (U, r, 0) 

is described in the appendix of Burghelea and Lashoff [1]. Therefore i (defined 
to be ( - 1 ) " [ ( - 1 ) " i ] )  commutes with suspension up to isotopy. Here ( - 1 )  
denotes the inverse for families, - ( U ,  r, 0)= (U, r, 0 1). 

This defines an involution, also denoted 1, on H~,:(X, Y;5:(p)). The ho- 
mology group is a homotopy group whose elements can be represented by 
families, by 5.11, 5.6, and the Kan condition. The operation defined by apply- 
ing i to such a family is well defined because T commutes up to isotopy with 
the changes encountered in a deformation of families. 
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Although this is satisfactory for our purposes, it falls short of what might 
be hoped for. Ideally one would construct a natural "homotopy  everything" 
involution on the spectra 5P,(X, Y;p). This would induce an involution on the 
homology spectrum, which presumably would commute with the characteri- 
zation 5.11. The most direct consequence would be to extend the involution to 
the spectral sequence 8.7. This can be done directly in the special cases were 
we actually need it (dimensions < 1). 

With some effort i on simplices can be pieced together to define a map on 
5r Y;p) whose square is homotopic to the identity. Current technology 
seems to be inadequate to construct involutions in a strong enough sense to 
pass to homology. Presumably this would be much easier if we had a direct 
finite complex description of 5~. 

Our point of entry to the proofs of the duality results is the case of flat h- 
cobordisms. 

7.2. Proposition. Suppose (U; c~ o U, 01 U) is a eodimension 0 submanifold of IR =, Y 
~_X as usual, and r: U ~ E makes U a (6, h)-cobordism over X -  Y. I f  6 is small 
enough, then ql(U, 0~ U) = ( -  1) n 1 ql(U, 0 o U) in H]I(X - Y; ~9~ 

Proof We resume the notation of 6.1. There is a periodic decomposition 0~ U 
x IR x I - ~  A u 0 o U x Ill x I • B, and the pseudoisotopy 0 defining q x(U, 0 0 U) is 

defined to be the identity on A, shifts by +1  on B, and is l x ( + t )  x{t} on 
0 o U x N x {t}. Reference to the "more  careful description" before 6.2 shows 
that TO T(O? 1 x 1) can be described as: rotate 01 U x I, ~ about  c?~ U to get a 
copy of 0 o U x l  embedded near the top of 0~ U • Extend the edges up to 
the top and string together to get: 

TOT(O~lx 1) is the identity on the lower piece, and shifts the upper piece by 
( - I ) .  

Since qo(U, OoU) is defined to be the class of the inverse of the pseu- 
doisotopy 0, ( -  l"+ I i)  qo(U, 0o U) is represented by the pseudoisotopy which 
shifts the top part of the picture by ( +  I). 

Next apply the V construction of 6.2. After deleting products, this yields the 
contractible pair (V x I, 0 o U x I) (where V is the inverse h-cobordism for U). 
The sum formula 1.7 shows that qI(V, OoU)=-q I (U ,  OIU), so since the V 
construction is an inverse for ql, we get ( - I )  "+I lq~(U,O o U ) = - q 1 ( U , O ~  U), 
as required. 
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This proof  also provides a contractible pair description of i :  if (K,L) is 
contractible, embed in a neighborhood in N",(K, L)c(U,  0 o U), then i(q1(K,L)) 
= ( -  1)"ql(U, c~ 1 U). 

7.3. Finite Complex Quasifibrations. To progress to the non-flat case we must 
make allowance for normal bundles. For Poincar6 spaces this usually means a 
spherical fibration, but here we need a finite complex structure. The appropri- 
ate compromise seems to be finite quasifibrations. 

If f :  X - ~  Y is a map, let X I - ~  Y denote the associated path fibration (X I 
={0: I-~ Y, xEXtO(O)=f(x)}). Then for our purposes a quasifibration is a map 
g: E--~ Y such that the natural inclusion E---~E ~ is a homotopy equivalence on 
inverses of each point in Y.. 

Now suppose K is a polyhedron, and g: E--~K is a quasifibration whose 
fiber is homotopy equivalent to a finite complex. Then there is a proper PL 
map L - * K  and a fiber map L---~E g which is an equivalence on fibers. Further 
given two such, there is a third and a PL commutat ive diagram 

g .... 3 ~ - - ~  L 2  

K 

which are equivalences on fibers. The construction of such an approximation is 
indicated in the proof of 2.2.3 (for stratified systems of fibrations). 

Several extensions will be useful. First, we recall that a map has the (n,e) 
lifting property if homotopies of polyhedra of dimensions < n  can be lifted 
within e (Ends I, 3.3). Now suppose L - ~ K  is a map of polyhedra which has the 
(e, n) lifting property for n > dim L, and sufficiently small e. Lifting a contraction 
of a neighborhood of a point in K gives a "project ion" on the inverse image of 
the neighborhood, in the manner of 6.4. The direct limit of copies of this gives 
the fiber of the map. It is not hard to see that if n,e, K are given, there is a 
6 > 0  such that if L - ~ K  has the (n, 6) lifting property, d i m L + d i m K < n ,  and 
the "fiber" is equivalent to a finite complex, then the map is e homotopy  
equivalent to a finite complex quasifibration. 

It is also useful to note that there is a homological characterization of the 
(~, n) lifting property (using the eventual Hurewicz Theorem 5.2 of Ends I, and 
the map L- ,U) .  As an application one has the existence of inverse sphere 
quasifibrations: if L ~  K has fiber ~ S J, choose an approximately fiberwise PL 
embedding L c K  •  N. Duality discloses that the complement of an open 
regular neighborhood satisfies the homological characterization, so can be 
approximated by a finite quasifibration. 

Finally we remark that if p: L - ~ K  is a quasifibration and HllI(K; Y(p) )=0  
(e.g. if the fiber is S k) then any two finite quasifibration approximations are 
related by small contractible maps (1.4). This implies that finite complex 
construction made with these are well defined. 

We use this development to define the operation ( + 0  on Hzf(X;5r 
i < l .  
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Suppose 4 is a homotopy S j 1 fibration over E, p: E-- ,X a stratified 
system of fibrations. Represent an element c~eH]Y(X;SP(p)) by a finite con- 
tractible pair (K, L ) ~  E (6.2). Pull ~ back to K, then (D 4K, D 4L ~ S 4a) is again 
contractible (D,S denote disc and sphere bundles respectively). According to 
the discussion above it also has a well defined finite complex structure over X. 
Therefore we can define 

( + 4)(c0 = ( -  1) s q I(D ~K, D 4L u S 4K). 

The sign (--1) j makes this depend only on the stable fiber homotopy type 
of 4; (+  S r @ 4)(~) = (+  S')((+ 4)(c0) is the (r + 1)-fold suspension of ( + 4)(c0. But 
suspension corresponds to ( - 1 )  in H 1. 

7.4. Lemma. Suppose 4 is a spherical fibration over E, and p: E---~X is a 
stratified system of fibrations. Then (+4) depends only on w14: nlE--~Tl/2. 
Further 1( + 4) = ( -  4) 1, so 4 = 1 (+ 4) is an involution on Ht~(X; ~(p)). 

By ( -  ~) we mean addition of the inverse bundle. 

Proof. For the first part, let w=w a ~. Let E XwB G denote the product of the 2- 
fold covers, divided by 2~/2. Let Pw denote the projection E x , ,BG~X.  E XwB ~ 
is the classifying space for maps h: Y ~ E ,  with a spherical fibration r/ over Y 
such that wl(~/)=wl(4)oTr 1 h. In particular a bundle r/ over E corresponds to a 
map E ~ E  XwB G which is the identity when projected to E, so is a morphism 
of stratified systems of fibrations P--'Pw. This defines a homomorphism 
H~Y(X; 6r 6r ). Since P~Pw is an isomorphism on n 1 of each 
fiber (it is a section of p-l(x)• wBa~p-l(x) which is a fibration with fiber Bsa, 
and this is 1-connected) it induces an isomorphism on H~ s. Finally since r/ is 
the pullback of the universal bundle 7 over E • wBG, the homomorphisms (+r/) 
and (+  ~) agree. 

For the second part we note that the remark just before 7.3 identifies i as 
being essentially Spanier-Whitehead duality. With the identification the for- 
mula i ( + 4 ) = ( - 0 i  is just the Atiyah [3] formula for the Spanier-Whitehead 
dual of a Thorn space. 

The next topic is the torsion of a Poincar6 space. As described in Sect. 1, a 
proper polyhedral pair (K,L) over X is Poincar6 if there is a spherical fibration 
4 with fiber ~ S  "- a, a Euclidean neighborhood (K, L)c(U, ~ U) of dimension 
n + k, and an e homotopy equivalence b: (U; c? o U, c~ 1 U) ~ (D 4; S ~, D 41L). 

7.5. Definition. If (K,L) is Poincar6 with data as described above, then r(K, L) 
=(-1 )" l  q~(b,~?ob). 

As in the definition of 1, the sign ( -1 ) "  is included to make it invariant 
under stabilization. 

7.6. Proof of 1.10a. Suppose as above that (K,L),4,b are an e Poincar6 space 
of dimension k over X. The object is to show that z(K,L)+(-1)k~r(K,L)  
=r(L). Let the dimension of (U; (30 U, 0~ U) be k+n. 

The first step is to find an expression for lq~(b, Oob ). Pull 4 back to the 
Euclidean neighborhood U of K, and approximate the inclusion (S 4, S ~1(31 U) 
c ( U  x S J 1, c~ 1 U x S j -  ~) (very large j) by an embedding. Denote regular neigh- 
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borhoods of the image by (S 4, S 4 ]~1 U) again. Notice that the complement is 
equivalent to the complementary sphere bundle, so we denote (U x S J - ~ - S  ~)- 
=S( -4 ) .  

There is a homotopy from the inclusion ~?oUXDJ to the map (~0b: 
~o U - * S 4 ,  in U xS ~ 1. Presuming that j is very large, we can use general 
position to approximate this by an ambient isotopy: (z: U x DJx I - -*  U x D j 
such that ~o is the identity, c~t((? 1 U xDJ)=~I U x O  ~, and cq(C?oUXD~)cS4 is 
homotopic to c3ob. This displays q~(b, 3ob ) as q l ( U x D i x I ,  V), where V is 
U x D j x {0} union with the mapping cylinder of al : 00 U x D-i~S~.  According 
to 7.2 

(_l),+k+j+x iq l (b ,~0b)=ql (U x D ~ x I, (~(U x D j x I ) -  V)). 

The complement is the mapping cylinder of the inverse map 

0~1 1" (U x DJ, S ( - ~ ) w O U  x DJ)-*(U x DS, U x SJ- l  wc?l U x D j) 

(using the fact that cq(01 U x DS)=c91 U xDJ). Using the composition formula 
1.7, qa of this is 

q 1 ( ~: ? 1 : ( U • D j, ( - 4) w ~ o U x D j)--~ ( U  x D j, U • S j -  1)) 
-q1(~31 cq- 1. ((~1 U x DJ,(-  ~) we31 U • DJwc)oa U • DJ)~ (c31 U • D j, c) 1 U x S j -  1)). 

The next step is an expression for (+~)ql(~l l ) .  We can form the pullback 
of ~ by crossing with D j, and restricting to the part of the boundary denoted 
S ~. In these terms ~ pulled back over 

o~1 1. (U • S(_~)U6~o U • • ' U •  j 1) 

( D j • U • D j,( S ~) • D j U D j • S ( - 4 )  w D j • ~o U • D j) 

l e ~ ; ' ~ ( D  j x U x D  j , ( S 4 )  •  j w D  j • U x S j - l ) .  

The diagonal 

A: (U•  U x S J - l w O o U x D J )  

-* ( D j • U x D J, S( 4) • D j w D j • S( - 4) w D j • 3 0 U • D 2) 

is an e equivalence with ql =0  (this is the cancellation of inverse bundles). 
Then (1 G cql)A =-(1,0~1 1) can be composed on the right with the isotopy c~. 
This gives a homotopy of (1, cq 1) to 

• 1 : (U, •o U) x (D g, S j -  1) ~ (D j x U, S(4)) x (D j, S g- 1). 

Therefore 

ql(~@ c~; 1)=(_  1)~ q, (aa)= (_  1)jql(b, t~ ~ b). 

Referring to the definition ((+~)qL(a/-1)=( - 1)"ql(4@a~-l)) we see (+4)q l ( a [  ~) 
= ( - 1 ) i + " q l ( b ,  Oob), or alternatively q l ( ~ 7 1 ) = ( - 1 ) J + l ( - ~ ) q l ( b , ~ o b  ). The 
same is true for cq-1](01U • DJ). 

Putting these expressions for ql(~-1) together gives 1.10a. 
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7.7. Proofs of  1.9 and 1.10. The first topic is 1.10c (h-cobordisms). Let 
(K;OIK,  O2K)c (U;OIU,  O2U) be an h-cobordism, and a neighborhood in 
R "+k, and let b" (U;0 o U,01 Uu02 U)-~(Dr S~,D~I~I U u 0 2  U) be the struc- 
ture map. The proof in 7.6 expressed z(K, OK) as ( -  1) k§247 1 ql(c~{ l), where 

~11: (U x Dr, S ( -~)uc~U x D r ) ~ ( U  x D r, U x S r- i w(01 U uc~ 2 U) x Dr). 

The composition formula shows that ql of this is 

ql(cq 1: (U x D r, S ( -  ~)u(0 o U~.)(~ 1 U) • Dr)-->(U • r, U x S  r-1 k-)O 1 U • Dr)) 

--  q 1(~2 0~1 1 : (~2 U x D r, S(  - 3) ~ ~2 U x D j u 6q(0 2 U) • D r) 

--~'(6qU x DJ, c') 2 U • S j -  1 k.)6~1 2 U x Dr)). 

In 7.6 the second term was identified as ( - l y r  z(c? 2 K, 0c~ 2 K). Since K is an h- 
cobordism, the pairs in the first map are already contractible. Therefore ql of 
the map is the difference 

ql (U x D r, U x S r- 1 wO 1 U x D r) --ql(U • D r, S ( -~)w(O o U w? 1 U) • Dr). 

The first of these terms is ( -1) rq l (K,  6~ 1K)~ and by 7.1 the second is 

( -1 )  "+k+riq~(U • r,S(~)U(O 2 U) •  r )=(-1)k+r~ql(K,~2K).  

Putting these together yields the formula 1.10(c). 
The union formula 1.10(b) is a simple consequence of the union version of 

1.7. 
The homotopy equivalence formula 1.10(d) results from the fact that the 

mapping cylinder of f is a Poincar6 h-cobordism, and two applications of 
1.10(c). 

The product formula 1.10(e) follows easily from the product formula in 1.7. 
Finally we come to 1.9. Suppose (K,L) is a dominated Poincar6 pair, 

dominated by (M, N)-~ (K, L). Then the composition (M, N ) ~  (M, N) is a pair 
of finite complex projections. Since (K,L) is Poincar6, the mapping telescope 
used in 6.3 is a finite Poincar6 pair over X • ~,. (In fact this is the most general 
definition of "dominated Poincar6"). The formula 1.9 results from the ho- 
motopy equivalence formula 1.10(d) applied to the map H of mapping tele- 
scopes, recalling that qo(K) was defined as ?+ ql (H). 

7.8. Homotopy Completions. Suppose M, X are metric spaces, and f:  M--> X is 
not proper. A completion of the end of f is equivalent to a closed neigh- 
borhood of the end of the form 5/x  [0, 1), such that each arc in X obtained by 
{n} x [0, 1)-~ M-~ X converges; extends to a map [0, 1]--> X. As a homotopy 
analog we define OC(f) to be the space of proper maps [0, 1)-~ M such that 
the composition [0, 1) -~M--~X extends to a map [0, 1]-~X. 

The set ~C(f)  is topologized as follows: choose a map M-~[0,1)  so that 
the product M--~X x [0, l) is proper. Then take the union of (1) the compact- 
open topology on Map ([0, 1), M), (2) the inverse of the standard topology in 
the projection OC(f)-~ Map ([0, 1], [0, 1]), and (3) the inverse of the topology 
of X under evaluation at 1, OC(f)-->X. This is actually a metric topology. 
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We may regard any ne ighborhood  of the end, U, as a pair (U, ~C(f)). The 
map OC(f)--> U is obtained by construct ing a function p: (?C(f)-~ [0, 1) such 
that for each 0, O([p(O), 1))c  U, and then evaluating at p(O). Any two such are 
canonically homotopic .  By further restricting p we can obtain e homotopies  (e 
measured in X). 

If  the end of  M over X is tame and has stratified fundamental  group, and if 
M is a finite dimensional polyhedron (or manifold), then there are maps of  
neighborhoods  of the end to c~C(f). More specifically, given a ne ighborhood  
U 1 and ~:>0, then there is a ne ighborhood U2, and a map U z ~ C ( f  ) such 
that the composi t ion U z - ~ 0 C ( f ) ~  U 1 is e, homotop ic  to the inclusion. Such 
maps are obtained as follows: First, for each U 1 and e > 0, there is U 2 c U 1 such 
that for every V ~  U 2 there is an e, h o m o t o p y  of U 2 in U 1 beginning with the 
inclusion, and ending up inside V. 

Image of u 2 

C 
...- 

U 1 U 2 V 

Given this we can construct  U I ~ C ( f )  by repeatedly pulling it toward the 
end, by a sequence of homotopies  the i th of which has radius <1 /2  i. The 
homotopies  are obtained from the approximate  Hurewicz theorem Ends I, 5.1. 
Exactly such homotopies  are involved in the definition of an approximate  tame 
structure (I, 2.4), except that  they are going the wrong way: pulling things in 
away from the end. However  the definition of a homological  tame structure 
(before I, 5.3) is symmetric, replacing U,., W/ by M - W / ,  M - U , . .  Therefore 
making this replacement in I, 5.3 gives homotopies  pulling things out toward  
the end. 

Repeated use of  these homotopies  shows that under the conditions assumed 
above, ~C(f) is naturally e h o m o t o p y  equivalent to the h o m o t o p y  inverse limit 
of ne ighborhoods  of  the end. It then follows easily from the construct ions in 
the p roof  of the approximate  end theorem, I Sect. 7, that 0C( f )  is e domina ted  
by sets of the form ( U - V )  , U, V, PL or manifold neighborhoods  of the end, 
and that  for appropria te  U,(U, ~U w~C( f ) )  is ~ dominated  Poincar6. 

8. Appendix 
Homology with Stratified Coefficients 

The purpose is to briefly discuss homology with "twisted" spectrum coefficients. The main points 
are the definition, a characterization theorem, and an Atiyah-Hirzebruch type spectral sequence 
relating it to ordinary homology. 

Suppose 51 is a covariant functor from the category of spaces to spectra. Suppose p: E ~  IKI is 
a map, K a simplicial complex. Then we apply ,~ "blockwise" to p. Define <9~(p) to be 
LI 5~(p-l(a))xa/~, where the equivalence relation is generated by: (p,t)E.90(pl(~?sa))x0ja is 
a e K  
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equivalent to its image in ,~(p l (a ) )xa .  Denote by p ,  the natural projection of 5:(p) to the 
realization IKL 

Since a spectrum is a sequence of spaces o~, the construction above defines a sequence of 
spaces 5 j(p), with projections p , :  , ~ ( p ) ~  ]K I, and sections i: tK]-~ ~ (p )  defined by fitting together 
the basepoints of the pieces. Further the structure maps of the ~ ( a )  fit together to make Y(p) an 
"ex-spectrum over [K[" (see the remarks below 8.8). If L ~ K is a subcomplex, these structure maps 
define a map 

,~(p)/i(K)u(p,) I(L)-*Q(5,~j.+ i(p)/i(K)u(p,)- I(L)). 

8.1. Definition. The homology spectrum Ill(K, L," Y(p)) is the ~2-spectrum defined by 

IH(K, L; SP(p)) = ~ Ffl(~(p)/i(K) u (p,) I(L)). 

The homology groups are the homotopy groups of this spectrum, but  we will find it con- 
venient to work directly with the spectrum. Some background for this definitions is given after the 
statements of the theorems. 

In this generality the homology usually depends strongly on the triangulation used. We will 
give definitions for homology of spaces, but will eventually impose enough restrictions on p and 5: 
so that the general definition is equivalent to 8.1. 

Suppose p: E ~ X. Let S(X) denote the singular complex of X, and let p*: E*--~ IS(X)] denote 
the pullback of E over the natural map ]S(X)t ~ X. If U is a neighborhood of the diagonal d ~ X 
• X, define Sv(X ) to be the subcomplex of S(X) of singular simplices whose square lies inside U. 

Then we define 
IH(X; 5:(p)) = holim IH(Su(X); 5:(p), 

where the homotopy inverse limit is taken in the category of spectra, indexed by the neigh- 
borhoods U of A. 

Homotopy inverse limits are defined and discussed in Bousfield-Kan [5]. We will not make 
explicit use of the properties of these limits, since in practice we will use the inverse limit-free 
Definition 8.1. Therefore, none but the hardiest reader need try to make sense of this theory. 
Further, in practice we can usually use a simpler description. 

Suppose Yo ~ :1 1:1 ~ Y2 is a countable well ordered inverse system. Define Y~ to be the space 

of collections of maps  0~: [i, ~)---, Y~, such that f~O~=O, 1[[i, oo). Then there are maps  Y~-~ Y, for 
all i (evaluation O(i)) which homotopy commute  with the f .  This induces a natural map 
Y~ -~ holim Y,, which is a homotopy equivalence. 

In these terms the reader will recognize the inverse limit built into the definition of 5: in 5.4. 
Similarly if X is a metric space then the inverse system used in the definition of IH can be replaced 
by the system of 1In neighborhoods of the diagonal. The holim can then be described explicitly, as 
above. 

Note if X is a subspace of I ~, and p: E-§  V, V a neighborhood of X in I ~, then a (~ech-type 
theory can be defined by letting S~(X) be the space of singular simplices in V of diameter <e, and 
(distance from X) <e. 

The next step is to define a nicely behaved class of maps  p. We first modify a s tandard term. If 
p: E ~ X  and X_~ Y, then Y is a p-NDR (neighborhood deformation retract) subset of X if there is a 
neighborhood U of Y, and homotopies H: U x I ~ X ,  H^:p  ~(U)x l~E such that H is the 
identity on Ux{O} and Y x l ,  H(Ux{1})_~Y, H ^ is the identity on p~l(U) x{O} and p l(Y) x l ,  
and the diagram 

commutes.  

P l(U) x i  H^ ~ E  

H U x l  >X 

8.2. Definition. A stratified system of fibrations on a space X consists of a map p: E-~X and a 
closed (finite) filtration of X, X=X,~_X,_r. .~_Xo,  such that each Xi is a p -NDR subset of  X, 
and each p: p - I ( X j - X j _ I ) - ~ X j - X j _  1 is a fibration. 



Ends of Maps, II 421 

A pleasant example of this arises when X j = X  and p ~(X;)~E have mapping cylinder 
neighborhoods on which p is induced from a commutative diagram of maps. The neighborhood 
deformation retraction can then be obtained by collapsing the mapping cylinder coordinate. In 
particular the iterated mapping cylinder decomposition of a PL map described by Hatcher [173 
shows that any PL map can be filtered to be a stratified system of fibrations. 

Stratified systems of fibrations can be understood locally, up to homotopy. To take advantage 
of this we need a homotopy invariance hypothesis on the functor 5 ~. 

8.3. Definition. A functor 5e from spaces to spectra is said to be homotopy invariant provided a 
homotopy equivalence of spaces X ~ Y induces a homotopy equivalence of spectra 5P(X)~  5~(Y). 

8.4. Proposition. Suppose 5 P is a homotopy invariant functor .from spaces to spectra. Then IH( ; 5Q is 
a homology theory on the category of  spaces with stratified systems of fibrations. Further if (K, L) is 
a simplical pair, and p: E--~IK[ is simplicially stratified, then there is an equivalence with the 
spectrum of 8.1, 

IH(K, L; 5a(p)) ~ IH(IKI, ILl; ~(p)). 

By a "homology theory" we mean a functor which satisfies appropriate formulations of the 
axioms for homology. The locally finite versions of these axioms are given in 8.5. Some remarks on 
the proof of 8.4 are given after 8.7. 

Locally finite homology is defined for locally compact  spaces X and maps p: E ~ X by 

IHt J-(X; Y(p) = holim It-I(X, Y; ~(p)). 

Here "hol im" means homotopy inverse limit in the category of spectra, taken over Y c  X such that 
( X -  Y)- is compact. Note that if X is ~r-compact we can replace the inverse system by a countable 
well ordered one, and use the simpler version of holim given above. 

8.5. Characterization Theorem. Suppose ~9 ~ is a covariant spectrum valued functor on the category of 
locally compact and a-compact ANRs  with stratified systems of fibrations. Suppose 5 P satisfies 

1. (restriction) if X ~ W is open, then there is a natural restriction map 5~(X; p)---,5~(W;p/W) 
restrict ion 

such that if Y c X  is a closed p-NDR subset then ,S(Y; p/Y)--~ST(X; p) - ~ S P ( X - Y ; p / X  
- Y) has composition the point map, and is a homotopy fibration. 

2. (continuity) if Pl, P2 are stratified systems of fibrations, then the function 

m~ P2)--' m~ 1 ; Pl), O~ ; P2)) 

is continuous, and 

3. (inverse limit) the restrictions define a homotopy equivalence Y(X;p)--;---, ho l im,9~ p), 

the inverse limit being over Y closed in X such that ( X -  Y) is compact. 
Then there is a homotopy equivalence of  spectra 

A: IH'~(X; ~ (p ) ) -~ ,~ (X;  p) 

which is natural up to homotopy. 

Remarks. The functor of spaces used to construct 5#(p) is 5~(E)=.9~(pt;E-*pt). In the second 
axiom, for morphisms Pt ~ P z  we will use commutative diagrams with the compact-open topology. 
Similarly a map of spectra is a degreewise map of the sequence of spaces, together with homo- 
topies for the diagram with the structure maps. When the theorem is applied in 5.11 we will need 
to interpret the continuity axiom in a A-set context, but the proof is essentially the same. 
Sketch of  the proof The proof is in two parts; producing the transformation A, and then showing 
it is an equivalence. The first part generalizes a fairly common construction in algebraic k-theory. 

8.6. Lemma.  Suppose ,9" is a functor which satisfies the continuity and inverse limit axioms of 8.5. 
Then there is a transformation A: IHt I (X;~ ' (p) )~Sr(X;p)  natural up to homotopy, which is the 
identity if  X is a point. 

Proof of  8.5 from 8.6. Notice that the continuity axiom implies homotopy invariance for 5 p. This 
shows that A is an equivalence for fibrations E--,D ~ Restriction for D " ~ S " - I ~ D "  1 and in- 
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duction on dimension extends this to fibrations over N.", and then to finite unions of copies of N". 
The simplicially stratified case follows from the restriction axiom applied to the skeletal filtration 
of the base simplicial complex. Finally the general case follows from this, homotopy invariance, and 
the inverse limit axiom. 

Proof of 8.6. The inverse limit axiom and homotopy invariance reduces the construction of A to 
situations p: E -*  IKI-IL], where K is a finite simplicial complex and is simplicially stratified. In 
this situation 

IH'S(IKI-ILl; ~(p))~IH(IKI, ILl; S'~(p))-~ II-I(K, L; ,Of(p)), 

this last being the spectrum of Definition 8.1. Therefore we need 

Aj: ~ O k (5~ +k (p)/i K w p~ l L) ~ ~(IK] - ILl ;  p). 

It is sufficient to define suitably related maps ~ ( P ) ~ ( I K I ,  ILIp) (and then take the limit of loops 
of these). For this we alter the definition of ~(p)  a little. 

Since p: E , I K I  is simplicially stratified, it is fiber homotopy equivalent to a map with an 
iterated mapping cylinder decomposition. Define ~'(p) to be the realization of system of maps 
obtained by applying ,~ to the maps in the decomposition of p. In detail, there is a partial order 
on the vertices of K, and for each 1-simplex there is a map p l(~0z ) ~ p - l ( ~ l v )  such that the 
diagram corresponding to a simplex of K commutes. Let vo denote the smallest vertex of the 
simplex ~. Then the realization is E = L [  p l(v~)• , where a point in p l(v~)xl?,al is 

identified with its image in p l(ve,~) x I#jcr b. Therefore 

5:'(p)=oHK.C:(p '(%)) x lal/~. 

Define b~  5:(p) as follows: the piece of the mapping cylinder decomposition 

p t (v~)•  ~(~) 

I 1 
I~1 ~bcrl 

can be regarded as a map a ~ m o r ( [ p  ~(v~)~pt],plj~l). The continuity axiom therefore gives 
,~(p l(vo))x a~,~(p- l (cr ) ) .  The union over all ~ gives a map 5:'(p)-.,9~ This is a homotopy 
equivalence on each p ,  1(or), so 5:' can be substituted for S in the definition of HI. 

Next we define ,~ ' (p )~  ~( IKI- ILl ;p) .  As above regard the mapping cylinder decomposition 
as a map Icrl-~mor([p t(v~)--+pt],p) to define 

~ ( p  l(v~)) x I~rl ~(I/I-ILI;p). 
This assembles to give a map 

,~'(P) ~ ,~( [KI ;  P )~ ,~ ( IK[ - ]E l ;  p). 

Since maps of spectra preserve basepoint, i(K) is taken to the basepoint. Further since p,  ~(L) 
maps to ~(]L]; p) it goes to the basepoint in ~j(]KI-ILI; p). This therefore gives the required map 

59'~/(p)/i(K) u p ,  I(L) ~ J~(I/I- ILl; p). 

The next topic is the spectral sequence. For this we need the notion of a stratified system of 
groups. (See Sect. 1.) 

Suppose X is filtered by closed subsets X,. A stratified system of groups over X consists of 
neighborhoods U~ of X i - X  i 1, local coefficient systems A i over U~, and for i>j  a homomorphism 
Oij: A i ' , A  j over U/c~ Uj, such that if i > j > k  then OjkOij=Oik o v e r  U,c~U:c~U k. 

If A is a stratified system of abelian groups, we can apply the Eilenberg-MacLane space 
functor fiberwise. We denote this by B~r rather than K(A, n) to avoid confusion with algebraic K- 
theory. This gives fibrations B"(A(x))~B"x,(A,)~ U~, and the homomorphisms Oq defne  fiber maps 
over U/c~ U/. These maps can be used to define a topology on the union B"x(A ) =LI B"x,(A,). If each 

i 
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X, is an A N R  then B}(A)--* X is a stratified system of fibrations, and they fit together to give a 
spectrum over X; B*(A). Define IH~,I(X; A)=  IH~,S(X; B*(A)), and as usual the homology groups are 

H'/(X; A):~, ~H',~(X; A). 

8.7. Theorem. (Atiyah-Hirzebruch type spectral sequence). Suppose 5r is a homotopy invariant 
spectrum valued functor of  spaces, and p: E-*  X is an A N R  stratified system of  fibrations. Then the 
homotopy groups l t kY(p  I(X)) form stratified systems of  groups over X (denoted by ~k.9~(p)) and 
there is a (homological) spectral sequence with E 2= HSI(X; ~k(5'~(p)) which abuts to HI/+ k(X; 5 ~(p)). 

It seems inappropriate to include detailed proofs of these facts here; they are fairly straighfor- 
ward extensions of arguments  long understood. We will give some discussion of the setting for 
these arguments, partly as motivation for some of the constructions used. 

Suppose ~9 ~ is a spectrum. Whitehead [36] defines the homology groups H,,(X, Y; J )  to be n, 
of the spectrum X / Y  A. f .  Our point of view is to work directly with the spectrum, defining 
IH.(X, Y;SP)=Iimg2k(x/YA,~) .  The maps in the direct system are induced from the structure 
maps ~ ( 2 ~ + ~  in the spectrum. This defines the 0 th space of an sQ spectrum; the n 'h space is 
lim ~k " (X /Y  A ~).  

We define an ex-spectrum over X in the context of I.M. James'  [20] ex-homotopy theory, 
motivated by the structure of X x ,~. Recall that an ex-space over X is X ~  E ~  X with p i= id .  
The loop space over X, denoted f2~(E), is the space of maps p: X x l - - , E  which commute  with 
projection to X, and which agree with i when restricted to X x {0} or X x {1}. Q , E  is again an ex- 
space over X. Roughly speaking the fibers of (2~ E ~ X  are loop spaces of fibers of E ~ X .  An ex- 
spectrum over X is a sequence of ex-spaces E j, and morphisms %: E j ~  f2~ E j+ ~. 

We now recognize the construction Y(p)-~IKI at the beginning of the section (blockwise 
application of a spectrum-valued functor to p: E-~  IKI) as giving an ex-spectrum over IKI. Similarly 
application of the B* functor to a stratified system of groups as used in 8.7, gives an ex-spectrum. 

If E .  is an ex-spectrum over X, and if Y c X, define the homology spectrum by 

IH,(X, Y; E) = lim (2k(Ek/p 1 (y) w i(X)). 

The maps in the limit are loops applied to 

inclusion 
Ej/p a(Y)~i (X)  ~(~?xE~+ l)/p ~(Y)ui(X)  . . . . .  ~2(EI+1/p a(Y)ui(X)). 

As before this is the 0 th space of an Q-spectrum. 
The proof of 8.4 can be obtained by suitably extending the arguments of G. Whitehead [36] 

to ex-spectra. 
The (constant coefficient) Atiyah-Hirzebruch spectral sequence is derived in G. Whitehead 

[37]. An approach perhaps more suitable to our context is the following. A spectrum has a natural 
k-connected "cover" ;)~ Applying this construction fiberwise to an ex-spectrum (when this 
can be reasonably defined, e.g. for 5~'(p)-+IK1) gives a sequence of ex-spectra 
�9 .. -~5~(k)(p)~k_llp)  . . . .  which we can regard as a filtration of 5Y(p). Applying /7, to this 
filtration gives a spectral sequence which abouts to H , ( X ;  5P(p)). The E 2 terms are as described in 
8.7 because the fiber over X of ~ ) ( P )  - ' ~ k -  I~(P) is the ex-spectrum f2 x ~ 1 B,(/Tkj,(p))" 
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