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Preface

This paper is designed to give a careful treatment of some ideas which
have been in use in casual and imprecise ways for quite some time, partic-
ularly some introduced in my thesis. The paper was written in the period
1984–1990, so does not refer to recent applications of these ideas.

The basic point is that a simple property of manifolds gives rise to an
elaborate and rich structure including bordism, homology, and “assembly
maps.” The essential property holds in many constructs with a bordism fla-
vor, so these all immediately receive versions of this rich structure. Not ev-
erything works this way. In particular, while bundle-type theories (including
algebraic K-theory) also have assembly maps and similar structures, they
have them for somewhat different reasons.

One key idea is the use of spaces instead of sequences of groups to orga-
nize invariants and obstructions. I first saw this idea in 1968 lecture notes
by Colin Rourke on Dennis Sullivan’s work on the Hauptvermutung ([21]).
The idea was expanded in my thesis [14] and article [15], where “assembly
maps” were introduced to study the question of when PL maps are ho-
motopic to block bundle projections. This question was first considered by
Andrew Casson, in the special case of bundles over a sphere. The use of ob-
struction spaces instead of groups was the major ingredient of the extension
to more general base spaces. The space ideas were expanded in a different
direction by Buoncristiano, Rourke, and Sanderson [4], to provide a setting
for generalized cohomology theories.

Another application of these ideas was a “homological” description of the
surgery sequence. The classical formulation of this sequence describes “nor-
mal maps” as a cohomology group—in particular contravariant—while the
surgery obstruction is covariant. Applying duality in generalized homology
describes the normal map set as a homology group and relates the classical
surgery obstruction to an assembly map. This idea was made precise and
useful by Andrew Ranicki [19].
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The careful development of the material in the generality given here was
largely motivated by the work of Lowell Jones [10], [11]. He developed an
approach to the classification of piecewise linear actions of cyclic groups
as a profound application of surgery theory. This material allows direct
recognition of one of Jones’ obstructions as a generalized homology class
with coefficients in the “fiber of the transfer.” The relation to Jones’ work
is sketched in section 6.4.

I would like to thank Andrew Ranicki for his encouragement over the
years to bring this work into the light.

0: Introduction

Let Jn represent a group-valued functor of spaces, for example bordism
groups, or Wall surgery groups, or algebraic K-groups (of the fundamen-
tal group). In these examples there is an associated generalized homology
theory H∗(X;J) and a natural homomorphism

H∗(X;J) −→ J∗(X)

called the “assembly.” These homomorphisms are important for two reasons;
they offer a first step in the computation of the functors J∗(X), and some
of them arise in geometric situations. For example the assembly map for
surgery groups is closely related to surgery obstructions, and the “Novikov
conjecture” is equivalent to rational injectivity of the assembly when X is
a K(π, 1).

The objective is to give two descriptions of these homomorphisms. The
first description is very general, in the context of homology with coefficients
in a spectrum-valued functor. This yields a wealth of naturality proper-
ties and useful elaborations. However it is difficult to see specific elements,
particularly homology classes, from this point of view.

The second description is complementary to this. For certain types of
theories homology classes can be described explicitly in terms of “cycles.”
Assembly maps are directly defined by “glueing” (assembling) the pieces in
a cycle. This gives an explicit element-by-element view which is good for
specific calculations and recognizing homology classes when they occur as
obstructions. But the naturality properties become obscure.

The main result is that these two constructions do in fact describe the
same groups, spaces, maps, etc. Special cases been used in calculations of
surgery groups and obstructions [14], [15], [5], [28], [8]. With this description
the assembly map is seen to describe obstructions for certain block bundle
problems [15], and constructions of PL regular neighborhoods [10], [11]. The
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cycle description is well adapted to constructions divided into blocks, like
PL regular neighborhoods of polyhedra.

This paper begins with definitions of various types of homology; gener-
alized, twisted, Čech, and spectral sheaf. This logically comes first, but the
reader may find it more interesting to begin with the bordism material of
section 3.

The second section defines homology with coefficients in a spectrum-
valued functor. Assembly maps are part of the functorial structure of these
homology theories. The idea is to begin with a map p : E −→ X, apply the
functor fiberwise to point inverses of p to get a “spectral sheaf” over X,
and take the homology of this. In this setting the usual assembly appears
as a morphism induced by a map of data: the constant coefficient homology
H∗(X;J) is the J-coefficient homology of the identity map X −→ X, the
groups J∗(X) are the homology of the point map X −→ pt, and the assembly
is induced by the diagram

X
=−−−−→ X

y=

y
X −−−−→ pt

regarded as a morphism from the identity to the point map.
From this point of view the usual assembly is a small part of a rich

structure: there are lots of maps more interesting than the identity and
the point map. Special cases were defined by D. W. Anderson [2], and in
algebraic K-theory by Loday [12] and Waldhausen [24].

Bordism-type theories are described in section 3. This is a fairly primi-
tive notion, designed so the conditions can be easily verified in examples.
These have associated bordism groups, and bordism spectra. The spectrum
construction is used to define functors which satisfy the conditions of the
second section, so homology with coefficients in these spectra are defined.

This description applies naturally to surgery groups, and bordism groups
defined using manifolds, Poincaré spaces, normal spaces, or chain complexes.
There is an existence theorem in 3.7 which asserts that one can contrive
to obtain any homology theory from a bordism-type theory. However we
regard it as a conceptual error to use this result: the theory is designed to
take advantage of special structure in a class of examples, and has no special
benefits as an approach to general theory.

Roughly speaking the approach applies to theories with classifying spaces
which are simplicial complexes satisfying the Kan condition. There is a
general-nonsense construction which replaces a space with a Kan complex
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of the same weak homotopy type, and this gives the existence theorem.
However, for example, the natural classifying spaces for algebraic K-theory
do not satisfy the Kan condition, so the approach does not naturally or
usefully apply to K-theory.

In section 4 “cycles” are introduced as representatives for homology
classes in bordism-type theories. These are defined on covers of the space,
and associate to an element of the cover a “fragment” of an object, with
various “faces.” The prototypical example of such a fragment is a mani-
fold, with its boundary subdivided into submanifolds (this example leads
to bordism, hence the title of the paper). The pieces of a cycle fit together;
over an intersection of two elements of the cover corresponding faces of the
fragments are equal. Over three-fold intersections certain “edges” agree, etc.
The assembly map simply glues (assembles) the pieces together using these
identifications to get a single object.

Another way to view cycles is in terms of transversality. Suppose X is
a finite simplicial complex. The dual cone (or cell) decomposition of X de-
scribes X as being assembled from pieces, each a cone on a union of smaller
pieces. The boundaries of largest cones are bicollared in X; boundaries of
smaller cones are bicollared as subsets of the boundary of the next larger
cones. A manifold could therefore be made transverse to all these cones.
This breaks the manifold into pieces over each maximal cone, intersecting
in faces over the next smaller cones, etc. A cycle is an abstraction of this
pattern. Thus a J-cycle may be thought of as a J-object which is transverse
to a dual cone decomposition.

There is an associated description of cocycles, representing cohomology
classes, given in 4.7. These associate to each simplex of a complex an object
with the same pattern of faces as the simplex. Since there is a correspondence
between simplices and dual cones, a cycle also associates an object to each
simplex. But the objects in a cycle have faces corresponding to faces of the
cone dual to the simplex, rather than the simplex itself. So for example in
a cocycle dimensions of associated objects increase with dimension of the
simplex, while in a cycle the dimension decreases.

Section 5 contains the proof of the main theorem, that cycles represent
homology classes.

The final sections presents examples of bordism-type theories, and appli-
cations of the representation theorem. In section 6.1 manifolds are shown
to form a bordism-type theory. Details are included as a model for verifica-
tions in other contexts. In 6.2 this is extended to manifolds with a map to
a space. This construction defines a manifold-type theory depending func-
torially on a space, so leads to a full array of functor-coefficient homology
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groups, assembly maps, etc.
Transversality is used to show that the assembly maps in the manifold

theories are isomorphisms. This is an analog of the classical Pontrjagin-
Thom theorem that the bordism groups form a homology theory represented
by the Thom spectrum.

This suggests thinking of assemblies in general bordism-type theories in
terms of transversality. The fiber of the assembly map, which measures the
deviation from isomorphism, then classifies obstructions to transversality.

Poincaré chain complexes are considered in 6.3, and the relation of this
development to the work of Ranicki [20] and Weiss [26] is briefly described.

Finally in section 6.4 we sketch a sophisticated application. This begins
with the observation that in some circumstances PL regular neighborhoods
are equivalent to PL manifold cycles. Then a formulation of surgery in
these terms gives a classification of manifold structures on Poincaré cycles.
Putting these observations together gives a way to construct PL regular
neighborhoods. In particular an obstruction encountered by Jones [10], [11]
in the construction of PL group actions is reformulated as a generalized
homology class.

Important topics not covered here are applications to surgery classifica-
tion problems, product structures and duality, and computational aids like
spectral sequences.

We mention that there is another class of theories with a description of
homology classes and the assembly. These are the controlled theories, which
deal with objects with a naturally associated “size,” over a metric space.
The representation theorem asserts that objects with sufficiently small size
represent homology classes. The assembly map simply forgets the size re-
striction. These theories are well adapted to problems where things cannot
be broken into blocks, for example in the study of purely topological neigh-
borhoods [18]. The methods are more those of sheaf theory with things
given on overlapping open sets, rather than the articulated fragments of the
bordism-type theories.

This paper can be considered a completed version of the author’s thesis,
where some limited assembly maps for surgery were described, and the term
“assembly” was introduced.

1: Homology

Generalized homology spectra (with coefficients in a spectrum) are de-
fined in 1.1, and extended in 1.2 to homology with spectral sheaf coefficients.
Twisted homology is discussed in 1.3 as a special case. Finally in 1.4 there
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is a description of Čech (or “shape”) homology, which will be the setting
for the general theory.

1.1 Spectra

A “spectrum” is a sequence of based spaces Jn together with based maps
jn : Jn ∧ S1 → Jn+1; see Whitehead [27] The spaces in a spectrum will be
understood to be compactly generated space with the homotopy type of a
CW complex.

We usually require these to be Ω-spectra in the sense that the adjoint
of the structure map Jn → ΩJn+1 is a homotopy equivalence. An arbi-
trary spectrum has a canonically associated Ω-spectrum with nth space
holimi→∞ ΩiJn+i. Generally the homotopy limits used here will be those

defined by Bousfield and Kan [3]. In this particular case (a countable or-
dered direct system) it is just the mapping telescope (union of the mapping
cylinders). An Ω-spectrum will be denoted by a boldface character; J.

Given a spectrum J and a pair (X, Y ), the homology spectrum H•(X, Y ;J)
is defined to be the Ω-spectrum associated to the spectrum (X/Y ) ∧ J∗.

Referring to the definition just above of “associated Ω-spectrum” we see
that the nth space in the homology spectrum is given by

holim
i→∞

Ωi−n(X/Y ∧ Ji).

Homology groups are defined (by Whitehead [27]) to be the homotopy
groups of the homology spectrum.

We can at this point describe the simplest example of an assembly (see
also [2]). Suppose J is a functor from spaces to spectra. Then there is a
natural transformation

X = maps(pt, X) −→ maps(J(pt),J(X)).

The adjoint of this is a map X+ ∧ J(pt) −→ J(X). But the left side of this
gives the homology spectrum, so this is a map from the homology of X
to J(X).

1.2 Spectral sheaf homology

We think of the homology H•(X,Y ;J) as homology with coefficients in the
constant coefficient system given by J over each point in X. The twisted
coefficient construction extends this to coefficient systems which are “lo-
cally constant”; fibered over X. The next step is to generalize to coefficient
systems which vary almost arbitrarily. This construction is based on Quinn
[16, §8].
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The description takes place in the category of “spaces over X” described
by James [9]. Fix a base space X, then a space over X is E together with
maps i : X −→ E and p : E −→ X whose composition is the identity. Maps in
the category are continuous maps E −→ F which commute with the inclusion
of, and projection to, X.

The “suspension” of a space over X is given by Sk
XE = Sk × E/ ∼,

where the equivalence relation ∼ identifies each Sk × p−1(x) to a point,
and i : X −→ Sk

XE takes x to this identification point. A spectrum in this
category is therefore a sequence En of spaces over X together with maps
En −→ S1

XEn+1. Note that over each point the sequence of spaces p−1
n (x)

form an ordinary spectrum (except they might violate our convention about
having the homotopy type of CW complexes).

We refer to spectra in the category of spaces over X as spectral sheaves
over X. There are technical connection with ordinary sheaves, but at this
point the name is primarily intended to be suggestive.

The simplest examples of these spectral sheaves are products J × X.
Then come the twisted products J ×G X̂ described in the next section.
More elaborate examples will be constructed in section 2.3.

We now define homology with coefficients in a spectral sheaf. As motiva-
tion note that in the constant coefficient case we begin with the total space
of the product sheaf J×X, divide out X to get an ordinary spectrum, and
pass to the associated Ω-spectrum. More generally, note that identifying the
image of X to a point in a suspension over X gives the ordinary suspen-
sion; S1

XE/i(X) = S1E. Therefore if {En} is a spectral sheaf over X then
an ordinary spectrum is obtained by dividing out X. The homology is the
Ω-spectrum associated to this ordinary spectrum:

H•(X; E) = holim
n−→∞

Ωn(En/i(X)).

Similarly if Y ⊂ X then the relative homology is defined by dividing out
both X and the inverse image of Y ; En

/
(i(X) ∪ p−1(Y )).

We caution that we have not included the hypothesis that these “spectra”
should have the homotopy type of CW complexes. To ensure the smooth
functioning of the machinery of homotopy theory it is important to restrict
to cases where this can be verified.

1.3 Twisted homology

This is defined to give a class of examples of the general theory. It will not
be used here, so can be skipped by the purposeful reader. This construction
does occur in spectral sequences describing general spectral sheaf homology
in terms of simpler objects.
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Suppose that G is a discrete group (see below for a non-discrete version)
which acts on the spectrum J, and ω : π1X → G is a homomorphism. We
use this data to define a spectrum denoted H•(X;J, ω). Let X̂ → X denote
the covering space with G action associated to ω. Then define twisted ho-
mology to be the Ω-spectrum associated to the spectrum (X̂/Ŷ )∧G J. More
explicitly this means take (X̂/Ŷ )×Jn, divide by the diagonal G action, and
identify the invariant subset (X̂/Ŷ ) ∨ Jn to a point.

In the terms of the previous section, X̂ ×G J is a spectral sheaf over X,
and the twisted homology is the homology with coefficients in this sheaf;
H•(X, Y ; X̂ ×G J).

We give another description of this which has better space-level functo-
riality properties. First, the G action on J determines fibrations over the
classifying space BG by Jn ×G EG −→ BG, where EG denotes the universal
cover of BG. (This is a fibered spectral sheaf over BG.) The homomorphism
π1X → G determines, up to homotopy, a map ν : X → BG. The G-product
X ×G Jn is then obtained from the pullback of these two maps to BG. The
G-smash X ∧G Jn is obtained from this by identifying to a point the 0-
section and the inverse image of the basepoint in X. The twisted homology
is therefore the Ω-spectrum associated to these quotiented pullbacks.

The difference between a map X −→ BG and a homomorphism π1X −→ G
is that the first specifies a particular covering space (by pulling back the uni-
versal cover of BG) whereas the second only specifies a cover up to isomor-
phism. There are also problems with basepoints and disconnected spaces.
These are not important for single spaces since changes in basepoints, cov-
ers, etc. only change the homology spectrum by homotopy equivalence. The
differences become more significant when we consider families of spaces, in
section 2.

This point of view is also more general, since BG can be replaced by the
classifying space of a topological monoid (or anything else). We describe
an interesting example which can be expressed in these terms. Suppose ν
is an oriented vector bundle over X, and let Ωn(X, ν) denote the bordism
group of smooth n-manifolds together with a bundle map from the stable
normal bundle to ν. These groups occur in the study of intersections and
singularities. They have also been used to study surgery normal maps.

To describe this as a twisted theory, let Ωfr be the spectrum classifying
framed bordism. The infinite orthogonal group SO acts on this by changing
the framing, so defines a bundle over BSO with fiber Ωfr. The oriented vector
bundle determines a map X −→ BSO. The bordism groups defined above are
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then the SO-twisted homology groups defined by this data;

Ωn(X, ν) ' Hn(X; Ωfr, ν).

1.4 Čech homology

Finally we define Čech, or “shape” homology spectra. This is usually thought
of as a way to extend homology in a reasonable way to pathological spaces
(eg. not locally connected). This is not the motivation here; Čech homology
coincides with the usual notion for all the spaces we really care about. In-
stead, both the definition and the the transversality view of the assembly
naturally take place in Čech homology. It can be avoided, but only at the
cost of some technical awkwardness.

The discussion here is for constant coefficients. In section 2.3 we will use a
Čech version of spectral sheaf homology, which is a straightforward mixture
of this section and 1.2.

Suppose U is a collection of subsets of a space X. We usually think of
U as an open covering, though it is technically convenient to work with
more general collections. Also suppose U has a partial ordering such that
any finite number of elements with nonempty common intersection is totally
ordered. Then the nerve of the collection, denoted nerve(U), is a simplicial
complex with k-simplices the sets of k + 1 elements from U with nonempty
intersection. We do not (at this point) require these elements to be distinct,
so these sets are partially ordered, and fail to be totally ordered only as a
result of duplications. The face operator ∂j is defined by omission of the
jth element, and the degeneracy sj duplicates the jth entry. (Note that the
results are well defined even though the “jth entry” may not be well defined
because of the duplications.)

If Y ⊂ X and U is a collection of subsets of X, then U ∩Y is a collection
of subsets of Y . The nerve of this is a subcomplex; nerve(U∩Y ) ⊂ nerve(U).

Given a spectrum J and a collection U , we can form the homology of the
nerve; H•( nerve(U);J). Strictly speaking this should be the homology of
the realization, and denoted H•( ‖nerve(U)‖;J), but the simpler notation
seems to be clear. More generally if (X, Y ) is a pair then we can form the
relative homology H•( nerve(U), nerve(U ∩ Y );J), as an approximation to
the homology of (X, Y ).

A morphism of collections of subsets θ : U → V is a function compatible
with the partial orders, and such that U ⊂ θ(U). (So U is a refinement of V.)
A morphism induces a simplicial map of nerves nerve(U) −→ nerve(V ), which
in turn induces a map of geometric realizations and a map of homology
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spectra. Note that if U and V are two partially ordered collections then the
collection obtained from intersections U ∩V has natural morphisms to both
U and V.

The partially ordered open covers of X form an inverse system. We define
the Čech, or “shape” homology spectrum of (X, Y ) to be the homotopy
inverse limit of homologies of nerves of this inverse system:

Ȟ•(X, Y ;J) = holim←−U H•( nerve(U), nerve(U ∩ Y );J).

We are primarily interested in this as an alternative description of the
definition of 1.1, so we show

1.5 Lemma. If (X, Y ) is a metric pair with the homotopy type of a CW
pair (K, L), then there is a natural equivalence Ȟ•(X, Y ;J) ' H•(K, L;J).

Proof. The realization ‖K‖ of a simplicial complex K has a canonical open
collection of subsets consisting of stars of vertices. If v is a vertex the star ,
denoted star(v), is the union of all open simplices whose closures contain
v. An ordered simplicial complex comes equipped with a partial ordering of
its vertices so that the vertices of every simplex are totally ordered. This
induces a partial ordering of the covering. Further, a finite collection of
sets in the cover intersect if and only if the corresponding vertices span
a simplex, so this ordering satisfies the hypotheses above. This partially
ordered covering of ‖K‖ is denoted stars(K).

Now suppose X is a metric space, and U is a partially ordered open
cover. A partition of unity subordinate to U can be used to construct a map
f : X −→ ‖nerve(U)‖. Specifically, suppose hU : X −→ [0, 1] are functions
with locally finite support, and that the support of hU is contained in U .
Let x ∈ X, and let hUi for i = 0, . . . , n denote the functions which are
nonzero on x. Then x ∈ ⋂n

i=0 Ui, so (U0, . . . , Un) defines an n-simplex in
the nerve. Represent the simplex ∆n as the points in real (n+1)-space with
nonnegative entries with sum 1, then f takes the point x is to the point
(U0, . . . , Un)× {hU0(x), . . . , hUn(x))} ∈ nerve(U)n ×∆n ⊂ ‖nerve(U)‖.

This map induces a morphism from the inverse image of the open star
cover of the nerve to the original cover: θf : f−1(stars(nerve(U))) −→ U . It
follows that the inverse system of inverse images of star covers of complexes
is cofinal in the system of all covers. Therefore the homotopy inverse limit
over maps to complexes is homotopy equivalent to the limit over covers.
Explicitly, if X is metric then

Ȟ•(X,Y ;J) ' holim
(K,L)−→(X,Y )

H•(K,L;J)
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where (K, L) is a complex pair.
Note there is an analogous definition of “singular” homology obtained

by taking the homotopy direct limit of homology of complexes mapping to
(X,Y ).

If (X, Y ) has the homotopy type of a CW pair then there is a homotopy
equivalence to the realization of a pair of simplicial complexes, (X,Y ) −→
(K,L). The simplicial approximation theorem implies that the subdivisions
of (K,L) are cofinal up to homotopy in the inverse system of complexes to
which (X, Y ) map. Therefore the homotopy inverse limit over the subsystem
is homotopy equivalent to the limit over the full system. But homology of the
realization of a complex is independent of subdivisions, so the homology is
constant on this subsystem. Therefore the inverse limit of the whole system
(the Čech homology) is equivalent to H•(K,L;J) as required. ¤

2: Functor coefficient homology

In this section we define the homology of a map with coefficients in a
spectrum-valued functor. The functors are discussed in 2.1. A simple special
case of the construction, which gives the constant coefficient assembly maps,
is described in 2.2. The full construction is then given in detail in 2.3. This
construction takes place in Čech homology, which involves a homotopy in-
verse limit. Proposition 2.4 shows that these limits are unnecessary in some
cases.

2.1 Spectrum-valued functors

Suppose that J(X) is a covariant functor which assigns an Ω-spectrum to
a space. In detail this means each space is functorially assigned a sequence
of pointed spaces Jn(X), with natural maps Jn(X) ∧ S1 −→ Jn+1(X).

A functor is homotopy invariant if a homotopy equivalence X −→ Y
induces a homotopy equivalence J(X) −→ J(Y ). Alternative descriptions
of this property are that homotopic maps induce homotopic morphisms
of spectra, or that the inclusion X × {0} −→ X × I induces a homotopy
equivalence of J spectra.

A homotopy invariant functor induces a functor on the associated ho-
motopy categories, but we will not use this. For our purposes it is quite
important that J be a functor on maps, and take values in morphisms of
spectra, not just homotopy classes.

A slight extension will be required in the applications. Consider the cat-
egory of pairs (X, ω) where ω : X −→ B, for some fixed B (= BZ/2 in the
applications). Morphisms in this category are X −→ Y which commute with
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the maps of B. Then our functors will be defined on this category; J(X,ω).
In this context “homotopy invariant” means J(X,ω) −→ J(Y, ν) is a homo-
topy equivalence if X −→ Y is a homotopy equivalence. Note this require-
ment on X −→ Y is weaker than homotopy equivalence in the category of
spaces over B, since the homotopies are not required to commute with maps
to B.

The results of this chapter can be extended to this setting simply by
including ω in the notation. Since it plays no essential role we have simplified
the notation by omitting it.

2.2 Constant coefficient assembly

Now suppose that J is a homotopy invariant spectrum-valued functor of
pairs. We will define a natural (up to homotopy) morphism of spectra
H•(X,J(pt)) −→ J(X).

Heuristically the construction is described as follows: Think of X×J(pt)
as obtained by applying J fiberwise to the identity map X −→ X. Similarly
we can obtain J(X) by applying J fiberwise to the projection X −→ pt. Then
the commutative diagram

X
=−−−−→ X

y=

y
X −−−−→ pt

maps the first construction into the second. Dividing out X in the first
construction and passing to associated Ω-spectra gives H•(X;J(pt)) −→
J(X), as desired.

Rather than literally applying J fiberwise we do an analogous simplicial
construction.

Suppose X = ‖K‖ is the realization of a simplicial complex K. Regard K
as a category, with one objects for each simplex σ and morphisms generated
by the face and degeneracy maps ∂j , sj . If F is a covariant functor from
K to spaces, then

∐
σ∈K F (σ) is a simplicial space. In particular it has a

“geometric realization,” defined by:

‖F‖ =
( ∐

k,σ∈Kk

F (σ)×∆k
)
/∼

where ∼ is the equivalence relation generated by: if x ∈ F (∂σ), t ∈ ∆k−1,
and u ∈ ∆k+1 then (x, ∂∗j t) ∈ F (σ)×∆k is equivalent to (∂jx, t) ∈ F (∂jσ)×
∆k−1, and (x, s∗ju) is equivalent to (sjx, u). The following properties of the
realization are immediate:
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2.2A Lemma.

(1) Realization is natural in K and F ,
(2) the constant functor F (σ) = X has realization ‖K‖ ×X, and
(3) suppose ‖F‖ −→ ‖K‖ is defined using the natural transformation

F −→ pt and statements (1), (2). If σ is a nondegenerate simplex of
K then the inverse image of int‖σ‖ ⊂ ‖K‖ is F (σ)× int‖σ‖. ¤

We use this to construct a simplicial version of the assembly.
Consider the covariant functor from K to spaces which takes a simplex

to its open star; σk 7→ star(σ). Compose this functor with the nth space
functor in Jn, to get a functor σ 7→ Jn(star(σ)). Denote the realization of
this functor by Jn(I‖K‖). Substituting in the definition above this is

Jn(I‖K‖) =
( ∐

k,σ∈Kk

Jn(star(σ))×∆k
)
/∼ .

Next define maps by realizing natural transformations, as in the lemma. The
natural transformation Jn(star(σ)) −→ pt gives a projection Jn(I‖K‖) −→
‖K‖. Next, begin with the transformation from star to the point functor.
Apply Jn to this and realize to get a map Jn(I‖K‖) −→ ‖K‖ × Jn(pt). This
fits with the previous construction to give a commutative diagram

Jn(I‖K‖) −−−−→ ‖K‖ × Jn(pt)
y

y
‖K‖ =−−−−→ ‖K‖.

It follows from the homotopy invariance of J that this is a fiber homotopy
equivalence over ‖K‖; according to (3) of the lemma the inverse image of the
interior of a nondegenerate simplex σ is Jn(star(σ))×int‖σ‖ on the left, and
Jn(pt) × int‖σ‖ on the right. But star(σ) is contractible, so Jn(star(σ)) '
Jn(pt). Thus Jn(I‖K‖) −→ ‖K‖ × Jn(pt) is a homotopy equivalence.

In the other direction, the inclusion star(σ) ⊂ ‖K‖ gives a natural trans-
formation from the star functor to the constant functor with value ‖K‖.
Applying Jn and realizing gives Jn(I‖K‖) −→ ‖K‖ × Jn(‖K‖). Compose
this with the projection to Jn(‖K‖).

Now consider the spectrum structure of Jn. The spectrum maps give
maps Jn(I‖K‖)×S1 −→ Jn+1(I‖K‖), which in fact give J(I‖K‖)the structure
of a spectral sheaf over ‖K‖. Divide by the 0-section i : ‖K‖ −→ Jn(I‖K‖) to
get a spectrum, and pass to the associated Ω-spectrum, to get the homology
with coefficients in the spectral sheaf. The analogous construction on ‖K‖×
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Jn(pt) gives the constant coefficient homology. J(‖K‖) is already an Ω-
spectrum so this construction gives

H•( ‖K‖;J(pt)) ←− H•( ‖K‖;J(I‖K‖)) −→ J(‖K |).

We have shown that the left of these maps comes from a sequence of homo-
topy equivalences, so is a homotopy equivalence. Composing with a homo-
topy inverse gives the desired map H•( ‖K‖;J(pt)) −→ J(‖K‖).
2.3 Functor coefficient homology

In this section we begin with a spectrum-valued functor J, and a map
p : E −→ X. Roughly, a spectral sheaf J(p) −→ X is constructed by applying
J fiberwise to p, generalizing the construction of the previous section. Ho-
mology with coefficients in this sheaf is then defined. As pointed out in the
introduction, when the construction is done in this generality the assembly
does not have to be treated separately; it is functorially induced by the
morphism from p to the map which projects E to a point.

The definition takes place in Čech homology. This gives a definition for
arbitrary maps, which is useful in naturality arguments. The maps encoun-
tered in applications are essentially simplicial, and the definition is shown
(in 2.4) to simplify in this case.

Now suppose p : E −→ X is given. If U is a partially ordered open cover
we define a covariant functor from nerve(U) to spaces, by σ 7→ p−1(∩σ).
Recall that a simplex of the nerve is given by a monotone sequence of
elements of U , σ = (U0, . . . , Uk), and ∩σ denotes the intersection ∩σ =
∩iUi. Compose this functor with J to obtain a functor from nerve(U) to Ω-
spectra. Geometric realization, as in the previous section, defines a spectral
sheaf J(p,U) −→ ‖nerve(U)‖. The spectra associated with this spectral sheaf
have the homotopy type of CW complexes since the total space of the sheaf
is defined by geometric realization. We therefore get a homology spectrum
H•( nerve(U);J(p,U)).

Next suppose θ : U −→ V is a morphism of partially ordered covers, as con-
sidered in 1.4 (U “refines” V). This induces a simplicial map nerve(U) −→
nerve(V), and a natural transformation of inverse image functors σ 7→
p−1(∩σ). Composing with J gives a natural transformation of spectrum-
valued functors. Realizing defines a morphism of spectral sheaves J(p,U) −→
J(p,V) covering the map ‖nerve(U)‖ −→ ‖nerve(V)‖. This in turn induces a
morphism of homology spectra;

H•( nerve(U);J(p,U)) −→ H•( nerve(V);J(p,V)).
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These maps give the homology spectra the structure of an inverse system
indexed by the partially ordered covers. We define the (J coefficient, Čech)
homology to be the homotopy inverse limit:

Ȟ•(X;J(p)) = holim←−U H•( nerve(U);J(p,U)).

We caution that this homology may not actually be obtained from some
spectral sheaf J(p) on X itself, as the notation suggests. Proposition 2.4
below does imply this when the map p is simplicial.

As an aside we remark that the construction can be simplified to involve
only sheaves over simplices, rather than over nerves. If the non-empty in-
tersection requirement is dropped in the definition of the nerve we get a
simplex with vertices U . The spectral sheaf J(p,U) extends to a sheaf over
this by the same formula: σ 7→ J(p−1(∩σ)) = J(φ) if σ is not in the nerve. If
J(φ) is contractible—and J can always be redefined so this is the case—then
the spectral sheaf over the simplex has the same homology as the sheaf over
the nerve. This point will be developed further in section 5.3.

2.4 Naturality

Naturality for this definition follows from the naturality of all the ingredi-
ents. Specifically, suppose

F
f̂−−−−→ E

q

y
yp

Y
f−−−−→ X

commutes. If U is a partially ordered cover of X then f−1(U) is a cover of
Y . There is an induced simplicial map (an inclusion in fact) nerve(f−1U) −→
nerve(U). Covering this is a natural transformation of inverse image func-
tors; f̂ : q−1(∩f−1(σ)) −→ p−1(∩σ). Compose with J to get a natural trans-
formation of spectrum-valued functors, and realize to get a morphism of
spectral sheaves J(q, f−1U) −→ J(p,U) covering the map of realizations of
nerves. This induces a morphism of homology spectra,

H•( nerve(f−1U);J(q, f−1U)) −→ H•( nerve(U);J(p,U)).

Now take homotopy inverse limits. These are both indexed by the inverse
system of covers of X, so there is a natural induced map between the limits.
On the right we get homology of X. The homology of Y is obtained by
taking the limit of spectra on the left over the larger inverse system of all
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covers of Y . But there is a natural map from the inverse limit over the larger
system to the inverse limit over the subsystem. Composition with the map
above gives

Ȟ•(Y ;J(q)) −→ Ȟ•(X;J(p)).

We define this to be the morphism functorially associated to (f, f̂). The
Čech homology is thus a functor of X and p (and J).

Definition

Suppose J and p : E −→ X are as above. Then the total assembly map is
defined to be the map Ȟ•(X;J(p)) −→ J(E) induced by the commutative
diagram

E
=−−−−→ E

p

y
y

X −−−−→ pt.

2.5 The long exact sequence of a pair

We can define the relative homology spectrum Ȟ•(X, Y ;J(p)) to be the
cofiber (in the category of spectra) of the natural map Ȟ•(Y ;J(q)) −→
Ȟ•(X;J(p)) induced by the inclusion Y ⊂ X. Applying π∗ then gives the
usual long exact sequence of homology groups.

The same spectrum can be obtained less trivially by taking the homotopy
inverse limit of relative homology spectra of nerves:

Ȟ•(X, Y ;J(p)) ' holim←−U H•( ‖nerve(U)‖, ‖nerve(U ∩ Y )‖;J(p,U)).

The reason these two constructions agree is that the relative homology spec-
tra for nerves was also defined by taking the cofiber, and homotopy inverse
limits preserve cofibers, up to homotopy.

To see this last point, note that cofibers in the category of spectra can
also be described as deloopings of homotopy fibers of maps of spaces. But
it follows from Bousfield and Kan [3, XI 5.5] that homotopy inverse limits
preserve homotopy fibrations.

As an application of the long exact sequence we get a description of the
cofiber of the total assembly map defined just above. Let p̂ : E×I −→ coneX
denote the map obtained from p× 1 by dividing out X ×{0} ⊂ X × I. The
map p̂ fiberwise deformation retracts to E −→ pt, so the homology of the
cone is just J(E). The homotopy fibration for the pair (coneX, X) therefore
gives a homotopy fibration

Ȟ•(X,J(p)) −→ J(E) −→ Ȟ•(coneX, X;J(p̂)).
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The long exact sequence of homotopy groups of this homotopy fibration
therefore give

· · · −→ Ȟn(X,J(p)) −→ Jn(E) −→ Ȟn(coneX, X;J(p̂))

−→ Ȟn−1(X,J(p)) −→ · · · .

2.6 Simplicial maps

The point here is that when the coefficient map is simplicial, the functor
coefficient Čech homology is equivalent to one of the terms in the inverse
limit which defines it. This will be used to avoid homotopy inverse limits.

Proposition. Suppose p : E −→ X, Y is relatively fiber homotopy equiv-
alent to the realization of a simplicial map q : A −→ K, L, with L ⊂ K a
subcomplex. Then the Čech homology is equivalent to the homology of the
open cover of (‖K‖, ‖L‖) by stars:

Ȟ•(X, Y ;J(p)) '−→ H•(K, L;J(q, stars(K))).

A “fiber homotopy” of a map between maps p and ‖q‖ is a commutative
diagram

E × I −−−−→ ‖A‖
P×1

y
y‖q‖

X × I −−−−→ ‖K‖
such that P restricts to p on E×{0} and ‖q‖ on E×{1}. Such a homotopy
is “relative” if the image of Y × I is contained in ‖L‖. Accordingly two
maps are fiber homotopy equivalent if there are maps both ways between
them and fiber homotopies of the compositions to the identities. Note that
this notion of homotopy equivalence preserves the homotopy type of point
inverses.

We recall the definition of the star cover (see the proof of 1.5). The star
of a vertex v ∈ K is the union of all open simplices in the realization ‖K‖
whose closures contain v. More generally, if σ is a simplex of K, then star(σ)
is the intersection of the stars of the vertices. Note such intersections also
define simplices in the nerve, and in fact the function σ 7→ star(σ) defines
an isomorphism of simplicial complexes K −→ nerve(stars(K)).

Proof. First, the homology is homotopy invariant so

Ȟ•(X;J(p)) −→ Ȟ•(K;J(q)))
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is a homotopy equivalence. Next, the star covers of subdivisions of K are
cofinal in the system of all covers of ‖K‖ so it is sufficient to consider
the inverse limit over this subsystem. We show that H• is constant (up to
homotopy) on this subsystem, so they are all homotopy equivalent to the
limit.

It is sufficient to consider a subdivision obtained by adding a single vertex;
let K ′ be obtained by adding v′. The choice of ordering for the new vertex
determines a simplicial map K ′ −→ K. This is covered by a map of spectral
sheaves J(p, stars(K ′)) −→ J(p, stars(K)). We will show that this map is
a homology equivalence in each degree. This implies that the associated
map of homology spectra (obtained by dividing by the bases and passing to
associated Ω-spectra) is a homotopy equivalence.

Next suppose σ ∈ K is a nondegenerate simplex, and consider the interior
of the realization int(‖σ‖) ⊂ ‖K‖. It is sufficient to show that the inverse
image of this in J(p, stars(K ′)) maps by homology equivalence to the inverse
image in J(p, stars(K)). To see this is sufficient, consider the filtration of the
realization of K by skeleta, and show by induction that the restriction of the
spectral sheaves to the skeleta are homotopy equivalent. The induction step
follows from the long exact sequence relating skeleta of adjacent dimensions,
and the homology equivalence fact for individual simplices.

Now consider inverses of int(‖σ‖), first in the subdivision K ′. If σ does
not contain the new vertex v′ then the inverse is again the simplex σ. If σ
contains both v′ and its image v under the simplicial map, then the inverse
image of the interior is an open simplex in the interior of ‖σ‖. Finally
suppose σ contains v but not v′. Then the inverse image is a (k+1)-simplex
γ of K ′ with σ as a face and v′ as additional vertex. Let σ′ denote the face
of γ with the same vertices as σ except with v′ substituted for v. The map
‖γ‖ −→ ‖σ‖ is the linear projection which is the identity on ‖σ‖ and takes v′

to v. The inverse image of the interior is therefore the interior of ‖γ‖ union
with the interiors of the two faces ‖σ′‖ and ‖σ‖.

To complete the proof we consider inverses in the spectral sheaves. Since
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σ is nondegenerate the inverse image of its interior in J(p, stars(K)) is
J(p−1(star(σ))) × int‖σ‖. (This follows directly from the definition of the
spectral sheaf as the realization of a functor; see the lemma in 2.2.) If σ
does not contain the new vertex, then the inverse image in J(p, stars(K ′))
is the same, so the condition is satisfied.

Suppose next that σ contains both v′ and v. Then the inverse image in
K ′ is a simplex τ in the subdivision of σ, whose realization is taken home-
omorphically to the realization of σ. Further, the map star(τ) −→ star(σ)
is a homeomorphism. In the spectral sheaves the inverses are given by this
homeomorphism times the morphism of spectra induced by the inclusion
q−1(star(τ)) ⊂ q−1(star(σ)). For any simplex α the set q−1(star(α)) defor-
mation retracts to q−1(t) for any t ∈ int‖α‖. This implies that the inverses
of the stars of both σ and τ deformation retract to the inverse of any point
in int(‖τ‖), so the inclusion is a homotopy equivalence. According to the
homotopy invariance the morphism induced on J is also a homotopy equiv-
alence, so inverses of σ satisfy the homology equivalence property.

Finally suppose σ contains v but not v′. According to the above, the
inverse image of the interior in ‖K ′‖ is the union int‖γ‖∪ int‖σ‖∪‖σ′‖. The
inverse image in J(q, stars(K ′)) thus has the homotopy type of the union of
the mapping cylinders of the morphisms of J induced by the inclusions

q−1(star(σ)) ←− q−1(star(γ)) −→ q−1(star(σ′)).

The rightmost map is a homotopy equivalence: both inverses deformation
retract to point inverses in the interior of the respective simplices, but these
point inverses are homotopy equivalent since int‖σ‖ ∪ int‖γ‖ lies in the
interior of one of the simplices of K. From this we conclude that the union
of mapping cylinders deformation retracts to the left end, J(q−1(star(σ))).
Thus the preimage of int‖σ‖ in J(q, stars(K ′)) has the homotopy type of
the preimage in J(q, stars(K)), as required. ¤

3: Bordism-type theories

A “bordism-type theory” consists of a class of objects with faces, indexed
by arbitrary sets. The prototype example of oriented manifolds, with faces
codimension 0 submanifolds of the boundary, is presented in 3.1. The defi-
nition itself is given in 3.2. Bordism groups and spectra are defined in 3.3
and 3.4. Morphisms of these theories are defined in 3.5; these are necessary
to define functors taking values in the category of bordism-type theories.
The relative theory associated to a morphism is defined in 3.6. Finally in
3.7 the existence theorem is given, which asserts that up to weak homotopy
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any spectrum can be obtained as a bordism spectrum of some bordism-type
theory.

3.1 An example

Before giving the abstraction we describe an example which displays the
essential features. This example leads to the bordism theory of oriented
manifolds; further examples are given in section 6.

Suppose A is a set. A manifold A-ad is a manifold with subsets ∂aM ⊂
∂M for each a ∈ A. We require the union to be ∂M , and allow only finitely
many of these to be nonempty. Finally we require each ∂aM together with
the subsets ∂bM ∩ ∂aM to be a manifold A− {a}-ad.

Logically speaking this is an inductive definition: we should define A-ads
with at most k nonempty faces inductively in k, so that the requirement that
the faces be “-ads” is well defined. In any case the faces are codimension 0
submanifolds of ∂M , which intersect in codimension 0 submanifolds of their
boundaries, etc.

For example the n-simplex ∆n with its faces ∂i∆n is a manifold [n]-ad
of dimension n. Here we use the notation [n] for the set {0, 1, . . . , n}.

The “bordism theory” consists of the collection of all manifold -ads, to-
gether with some operations on them. More specifically,

(1) for all sets A and integers n, the collections of compact oriented
manifold A-ads of dimension n;

(2) face operations ∂a which take n-dimensional A-ads to (n−1)-dimen-
sional (A− {a})-ads;

(3) reindexing operations which change the labels on the faces and add
empty faces;

(4) an involution obtained by reversing the orientations; and
(5) a “Kan” condition wherein a collection of -ads with appropriate

incidence relations are assembled to form a single manifold.

The only odd thing which occurs is a sign change in iterated boundaries:
when a 6= b then ∂a∂bM = −∂b∂aM , due to the way boundaries work in
homology.

Note that the finiteness condition on faces and the reindexing of (3) imply
that an arbitrary A-ad is obtained by reindexing a [k]-ad, for some [k] and
injection [k] −→ A. It follows that it is logically sufficient to define [k]-ads,
for each k. However direct definition of general A-ads is no more difficult,
and saves a lot of trouble with reindexing.

The thing which gives these theories their characteristic flavor is the
addition of empty boundaries in reindexing, i.e. reindexing using injections
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rather than only bijections.
We now abstract this. The symbol “J ” is a script “J”, representing a

generic theory just as J represented a generic functor in the previous section.

3.2 Definition

A bordism-type theory , J , consists of :

(1) For every set A a collection J n
A of “A-ads of dimension n,” with a

basepoint denoted φ ∈ J n
A ;

(2) for each a ∈ A a function ∂a : J n
A −→ J n−1

A−a such that ∂aφ = φ, and
if M ∈ J n

A then ∂aM = φ for all but finitely many a;
(3) corresponding to each injection θ : A −→ B a basepoint-preserving

function `θ : J n
A −→ J n

B which is natural in θ. Further this satisfies
∂θ(a)(`θM) = `θ(∂aM) and `θ is a bijection onto {M ∈ J n

B | ∂bM =
φ for all b ∈ B − θ(A)};

(4) there is an involution (−1) on each J n
A which commutes with `θ

and ∂a, and leaves φ fixed. Further, if a 6= b in A then ∂a∂bM =
−∂b∂aM ; and

(5) these satisfy the Kan condition described below.

The most restrictive aspects of this are the bijection hypothesis in (3),
and the Kan condition. In manifolds the bijection hypothesis is obvious,
and the Kan condition follows from glueing together manifolds along faces
in their boundaries. To see these axioms verified in a non-geometric situation
look at the proof in 3.7.

Suppose A is a set and a ∈ A is a fixed element. Then define an n-
dimensional Kan (A, a)-cycle in J to be a function N : A − {a} −→ J so
that N(b) ∈ J n

A−{b}, and if b 6= c are in A − {a} then ∂bN(c) = −∂cN(b).
Also assume only finitely many of the N(b) are different from φ,=. Note no
object is assigned to a. The principal example is: if M is an object in J n+1

A

then the function b 7→ ∂bM for b 6= a is an n-dimensional Kan (A, a)-cycle.
The Kan condition asserts that all Kan cycles arise in this way: if N is

an n-dimensional (A, a)-cycle then there is an (n + 1)-dimensional object
M so that N(b) = ∂bM , for all b 6= a.

The name is by analogy with the Kan condition for simplicial sets, which
requires that a simplicial map defined on all but one of the faces of a simplex,
extends to a simplicial map of the whole simplex.

3.3 Bordism groups

Suppose J is a bordism-type theory. Define ΩJ
n to be the set of equivalence

classes of n-dimensional φ-ads (no faces), where the equivalence is defined
by M ∼ N if there is an (n + 1)-dimensional [1]-ad W with ∂0W = M ,
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and ∂1W = −N . (The symbol “Ω” is a slanted version of Ω, used to try to
distinguish between bordism groups and loop spaces.)

Proposition. ∼ is an equivalence relation, and the set of equivalence classes
ΩJ

n has a natural abelian group structure.

“Naturality” will not make sense until we have defined morphisms of
bordism-type theories in 3.5.

Proof. The direct proof is elementary but long; we sketch a few pieces of it.
The most efficient proof comes from the recognition as homotopy groups of
a spectrum, in the next proposition.

We show that ∼ is transitive. Suppose W0 expresses the equivalence M ∼
N and W1 expresses the equivalence N ∼ P . Then the function i 7→ Wi for
i = 0, 1 defines a ([2], {2})-cycle, in the sense defined in the Kan condition.
The Kan condition therefore asserts there is an (n+2)-dimensional [2]-ad V
such that ∂0V = W0 and ∂1V = W1. Then ∂2V is an (n+1)-dimensional [1]-
ad. Calculations using the axioms reveal that ∂0∂2V = −M and ∂1∂2V = P .
Thus −∂2V expresses an equivalence M ∼ P , and ∼ is transitive.

The group structure is defined by: if W is a [2]-ad with ∂0W = M and
∂1W = N , then [M ] + [N ] = [−∂2W ]. The Kan condition can be used to
show that given M and N such a W exists, and that the equivalence class of
∂2W is independent of the choice. This implies the operation is well defined.

The identity element is the equivalence class of the basepoint, [φ], and
inverses come from the involution: −[M ] = [−M ]. To see the inverses, con-
sider M as a ([1], {1})-cycle and apply the Kan condition to get a [1]-ad V
with ∂0V = M . Now define a ([2], {0})-cycle by 2 7→ V and 1 goes to −V
reindexed so ∂1 = −∂1V and ∂2 = −M . Then apply the Kan condition to
get a [2]-ad W with these as faces. The new face, ∂1W , has faces M and
−M . Reindex to introduce φ as a third face, then it expresses the relation
[M ] + [−M ] = [φ].

The fact that the group is abelian comes directly from reindexing: let W
be as above, expressing [M ] + [N ] = [∂2W ]. Let θ be the bijection [2] −→ [2]
which interchanges 0 and 1. Then ∂0`θW = M and ∂1`θW = N , showing
[N ] + [M ] = [∂2W ] and therefore [M ] + [N ] = [N ] + [M ]. ¤

For example if SDiff is the theory of oriented smooth manifolds defined as
in example 3.1, the bordism groups ΩSDiff

n are the classical smooth oriented
bordism groups.
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3.4 Bordism spectra

The next step is the construction of spectra which serve as classifying spaces
for these theories.

We work with ∆-sets, in the sense of Rourke and Sanderson [22]. A ∆-set
K is like a simplicial set in having sets K(i) of “i-simplices,” the 0-simplices
are appropriately partially ordered, and face operators bj : K(i) → K(i−1)

are given for 0 ≤ j ≤ i. (We sometimes denote face operators in ∆-sets
by ∂i, but this conflicts somewhat with face operators in the bordism-type
theory.) ∆-sets do not have the degeneracy operators of a simplicial set.
Geometric realizations are defined for ∆-sets in essentially the same way as
for simplicial sets.

Define the ∆-set ΩJ
n to have k-simplices the J -[k]-ads of dimension k+n.

We also require that the “total intersection” of all faces ∂0∂1 · · · ∂nM is the
basepoint φ. The face operator biM is defined by reindexing the (n−{i})-ad
(−1)i∂iM using the order-preserving bijection [n− 1] −→ [n]− {i}.

The notation for this ∆-set is the same as for the bordism group. This
doubling up of notation seems to be relatively harmless since the group is
π0 of the ∆-set. At any rate it is less harmful than introducing yet another
notation. The boldface analog ΩJ is reserved for the associated Ω-spectrum.

We define the Ω-spectrum ΩJ by geometrically realizing the ∆-set: ΩJn =
‖ΩJ

−n‖. Note the minus sign in the index on the ∆-set: this results from an
incompatibility in the indexing conventions for bordism and spectra.

Proposition. The spaces ΩJ∗ have a natural Ω-spectrum structure with
homotopy groups the bordism groups defined above; πnΩJ = ΩJ

n .

As with bordism groups, the naturality will be considered after mor-
phisms of bordism-type theories are defined.

Proof. First we verify that the simplices described above do in fact give a
∆-set, namely that the face identities bjbi = bibj+1 (if j ≥ i) hold. The
only interesting thing about this is is the role of the sign (−1)i. The point
is that when ∂iM is reindexed to define biM the previous faces with index i
or higher are all shifted down by one. This shift, with the (−1)∗, gives a net
change of −1 on these faces. This cancels the −1 in the iterated boundary
formula in definition 3.2(3).

Next we observe that the ∆-sets ΩJ
n satisfy the Kan condition. Let Λk

j

denote the subcomplex of the k-simplex which consists of all but the jth

face. The Kan condition asserts that any ∆-map Λk
j −→ ΩJ

n extends to a
∆-map ∆k −→ ΩJ

n . A ∆-map Λk
j −→ ΩJ

n defines a ([k], {j})-cycle in the
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sense of 3.2, so the Kan condition in 3.2(4) implies the Kan condition for
the ∆-set.

The Kan condition implies a simplicial approximation theorem ([22, §5])
which in turn implies that the homotopy groups are the bordism groups:
elements in the homotopy group πk are represented by maps ∆k −→ ‖ΩJ

n ‖
which take ∂∆k to the basepoint. Simplicial approximation asserts that this
is homotopic to the realization of a ∆-map, which is exactly a k-simplex with
all faces are φ. This in turn is obtained by reindexing a k + n dimensional
φ-ad to get a [k]-ad. This φ-ad defines an element in the bordism group
ΩJ

n+k. Similarly homotopies can be interpreted as maps of ∆k+1 which take
all but two faces to the basepoint. These can be approximated by ∆-maps
which can be interpreted as bordisms.

Now we describe the spectrum structure. The cone on a ∆-set K can be
described as a ∆-set with k-simplices Kk ∪ {coneσ | σ ∈ Kk−1}. The cone
point is put last in the partial ordering, so if σ is a k-simplex ∂icone(σ) =
cone(∂iσ) if i ≤ k, and ∂k+1cone(σ) = σ.

Now define a ∆-map cone(ΩJ
n ) −→ ΩJ

n−1 by taking both ΩJ
n and the

cone point to the basepoints, and cone(M) 7→ `k(M). Here `θ reindexes
the [k]-ad M to be a [k + 1]-ad using the inclusion [k] ⊂ [k + 1]. Taking
geometric realizations, and dividing out the end ‖ΩJ

n ‖ of the cone gives a
map ‖ΩJ

n ‖ ∧ S1 → ‖ΩJ
n−1‖. This defines a spectrum structure.

To see this is an Ω-spectrum we show that the adjoint ‖ΩJ
n ‖ → Ω(‖ΩJ

n−1‖)
is a homotopy equivalence. For this we use the model of the loop space of
a based Kan ∆-set given in [4, p. 36]; the k-simplices of ΩK are defined to
be (k + 1)-simplices σ ∈ K with bk+1σ = φ = vk+1σ. Here vk+1 denotes the
k+1 vertex, and is obtained by applying all the face maps except bk+1. It is
shown in [4] that there is a natural homotopy equivalence ‖ΩK‖ ' Ω‖K‖.
The adjoint of the spectrum structure maps defined above are homotopic
to the realizations of ΩJ

n → Ω(ΩJ
n−1) defined by `k on k-simplices. But ac-

cording to condition (3) of the definition, this is an isomorphism of ∆-sets.
It therefore induces a homotopy equivalence on realizations. ¤

3.5 Morphisms and naturality

Suppose J and K are bordism-type theories. A morphism J −→ K is a
collection of basepoint-preserving functions J n

A −→ Kn
A for all n and sets A,

which commute with face functions, the involutions −1, and the reindexing
functions. Clearly these can be composed, and form a category.

3.5A Example

If X is a space, define the oriented manifold bordism theory of X to have A-
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ads (M, f), where M is an oriented manifold A-ad as in 3.1, and f : M −→ X.
The same operations as defined in 3.1 give this the structure of a bordism-
type theory. A map of spaces X −→ Y induces, by composition, a morphism
from the bordism theory of X to that of Y .

3.5B Lemma. The bordism groups of 3.3 and the bordism spectrum of 3.4
are natural with respect to morphisms of bordism-type theories. Further,
for a morphism F : J −→ K the following are equivalent:

(1) F induces isomorphisms of bordism groups,
(2) F induces homotopy equivalence of bordism spectra, or
(3) for every [0]-ad M in K such that ∂0M = F (N1) for N1 ∈ J , there

is a [1]-ad W in K such that ∂1W = M and a {1}-ad N ∈ J with
∂1N = N1 and ∂0W = F (N).

We say that a morphism which satisfies the conditions of the lemma is
a “homotopy equivalence” of theories. The last condition is the one which
will be checked in practice; it can be paraphrased as saying a pair in K with
boundary from J deforms rel boundary into J . It is also equivalent to the
vanishing of the relative bordism groups defined in the next section.

Define a functor from spaces to bordism-type theories to be “homotopy
invariant” if homotopy equivalences of spaces induce homotopy equivalences
of theories. Then the following is immediate from the lemma.

3.5C Corollary. If J is a homotopy invariant functor from spaces to
bordism-type theories then the associated bordism spectra ΩJ define a ho-
motopy invariant spectrum-valued functor in the sense of 2.1.

Proof of the lemma. The naturality is evident from the definitions. The
equivalence of (1) and (2) follows from the fact that the bordism groups are
the homotopy groups of the spectrum. It remains to show that conditions
(1) and (3) are equivalent. We give a direct proof here; a much slicker one
comes from the relative bordism groups of 3.6.

Suppose (3) holds. Let [M ] represent an element in the group ΩK
n , and

reindex M as a [0]-ad with ∂0M = φ. Since φ = F (φ) we can apply (3) to
find a [1]-ad W with ∂1W = M , ∂0W = F (N), and ∂1N = φ. This is a
bordism showing [M ] = F∗(−[N ]), so F∗ : ΩJ

n −→ ΩK
n is onto.

Similarly we show F∗ is injective by showing F∗([N1]) = 0 implies [N1] =
0, for [N ] ∈ ΩJ

n . The hypothesis implies there is a [0]-ad in K with ∂0M =
F (N1). Condition (3) implies there is a bordism from M to F (N). But
∂1N = N1, so [N ] = 0. Thus (3) implies (1). The other direction is simi-
lar. ¤
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4: Cycles

In this section we describe “cycles” which represent functor-coefficient
homology classes, when the coefficient functor is obtained from bordism-
type theories. Fix a homotopy invariant functor (in the sense of 3.5) J from
spaces to bordism-type theories. The associated spectrum-valued functor is
denoted ΩJ (X). The homology to be described is Hn(nerve(U); ΩJ (p,U)),
where p : E −→ X is a map and U is a cover of X.

Cycles are described in 4.2, and induced morphisms in 4.3. Groundwork
for the main theorem is laid in 4.4 with the development of a bordism-type
theory whose objects are themselves cycles. The proof is given in section 5,
where the bordism spectrum of this theory is shown to be equivalent to the
homology spectrum.

4.1 ∆-nerves

Cycles will be defined using the nerve of a covering. For ease and efficiency
we use a more compact model for the nerve than the simplicial complex
described in 1.4.

Suppose U is a set of subsets of a space X, partially ordered as in 1.4.
The ∆-nerve, denoted nerve∆(U), is defined to be the ∆-set with k-simplices
the collections of k + 1 distinct elements of U with nonempty intersection.
(We caution that this distinctness is in U , and does not imply that the
corresponding subsets of X are distinct.) The face operator bj is defined by
omitting the jth set; this is well defined since a collection with nonempty
intersection is totally ordered.

The ∆-nerve is exactly the set of nondegenerate simplices in the simplicial
nerve (the degenerate simplices are ones in which some set is repeated). It
follows (see [22]) that the geometric realizations of the two nerves are equal.

Some notations are needed involving a k-simplex σ = (U0, . . . , Uk) of the
nerve. ∩σ denotes, as before, the intersection ∩k

i=0Ui. The complement of σ
in U is denoted U − σ. And as indicated above ∂jσ = {Ui | i 6= j}.
4.2 Cycles

Suppose U is a partially ordered cover of X, and p : E −→ X is given. Then
a J -n-cycle in (X, p;U) is a function N : nerve∆(U) −→ J , specifically

(1) if σ is a k-simplex of nerve∆(U) then N(σ) is an (n−k)-dimensional
(U − σ)-ad in J (p−1(∩σ)),

(2) let incl∗ : J (p−1(∩σ)) −→ J (p−1(∩bjσ)) denote the morphism in-
duced by the inclusion, then incl∗(N(σ)) = (−1)j∂Uj N(bjσ), and

(3) all but finitely many of the N(σ) are φ.
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For a source of geometric examples, suppose X is the realization of a
simplicial complex and U is the covering by stars, as in 1.5. The dual cones
provide a refinement of this cover in which the faces of the cones have collars.
Suppose M −→ X is a map from a manifold, then M can be made transverse
to the cones. This breaks M into pieces which are manifolds with boundary
faces indexed by the cones. The function (simplex) 7→ (inverse image of cone
dual to the simplex) defines a cycle in the manifold bordism-type theory.
The incidence relations in (2) record how these pieces fit together inside M .

Next define a “homology” between two cycles. This is a function

H : nerve∆(U) −→ J

which takes σ to an (n−k +1)-dimensional (U −σ)q [1]-ad in J (p−1(∩σ)).
The disjoint union means H(σ) is an -ad with faces ∂U for U not in σ,
and in addition faces ∂0 and ∂1. These are required to satisfy the cycle
conditions above on the ∂U faces, and also ∂0∂1H = φ. It follows that ∂0H
and ∂1H are n-dimensional cycles in the sense above. We then say that ∂0H
is homologous to −∂1H.

In these terms the main theorem can be stated as:

4.2A Theorem. Suppose U is a partially ordered cover of X, and p : E −→
X is given. Then there is a canonical isomorphism from the group of ho-
mology classes of J -n-cycles in (X, p;U) and the homology group

Hn(nerve∆(U); ΩJ (p,U))

defined in 2.3.

This isomorphism is also natural with respect to the functorially induced
functions of cycles defined in section 4.5. This statement will follow from
Theorem 5.1.

There is also a relative version of the theorem, and for that we define a
relative version of cycles. The idea is that a cycle as defined above is “closed”
in the sense that all (n− 1)-dimensional pieces correspond to intersections
U ∩ V , and consequently occur as faces of the two n-dimensional pieces
lying over U and V . We obtain “free boundary” which occurs only once as
a face simply by failing to define pieces corresponding to certain subsets.
Specifically, if Y ∈ U then a relative cycle over (U , Y ) is defined to be a
function (nerve∆(U)− {Y }) −→ J satisfying the conditions (1)–(3) above.

The “Kan cycles” used in the definition of the Kan condition in 3.2 are
relative cycles in this sense, taking values in a constant functor. To see these
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as cycles in a covering, embed the set A as a linearly independent set in a
real vector space, and let X be the convex hull. Then X is covered by sets
Ua consisting of all points with nonzero a coordinate when expressed as a
convex linear combination. An (A, a)-cycle in the sense of the Kan condition
is a relative cycle over ({Ub | b ∈ A}, Ua).

If N is a relative J -n-cycle in (X, p;U , Y ), then there is a boundary
∂Y N defined. This is the (n− 1)-cycle in (Y, p; (U −{Y })∩ Y ), specified by
(∂Y N)(σ) = ∂Y (N(σ ∪ {Y })).

4.2B Proposition. There is a canonical isomorphism from the group of
homology classes of relative J -n-cycles in (X, Y, p;U ∪ {Y }) to the relative
homology Hn(X, Y ; ΩJ (p,U)). The homomorphism of cycles induced by
the boundary operation ∂Y agrees with the boundary homomorphism in
homology.

4.3 Naturality of cycles

In this section we construct functions of cycles induced by morphisms of
data. According to the representation theorem, cycles represent homology
classes. According to the general construction in section 2, morphisms of
data induce homomorphisms of homology groups, including assembly maps.
The objective here is to give cycle-level descriptions of these natural homo-
morphisms.

The simplest case is the total assembly corresponding to the map X −→ pt,
and this is considered first. For this the construction is a simple application
of the Kan condition. In general the functoriality of J is applied to get from
a cycle on a cover of X a “multivalued” cycle on a cover of Y . The Kan
condition is used to assemble the multiple pieces to get an honest cycle on
Y .

Suppose p : E −→ X and U is a cover of X, as usual, and M is a J -n-cycle
in (X, p;U). Let incl∗ : J (p−1(U)) −→ J (E) denote the morphism induced
by the inclusion. Then incl∗(M) is a function from U into J (E). (Note that
once we are in a single theory J (E) the values of M on higher simplices of
the nerve are determined by values on U , so are unnecessary.)

If we add a disjoint element a and reindex the M(∗) to add ∂aM = φ,
then this defines a (U ∪ {a}, a)-cycle in the sense of the Kan condition.
Apply the Kan condition to obtain a (U ∪ {a})-ad N with ∂UN = M(U)
for U ∈ U . Then define A(M) = ∂aN . Since ∂U∂aN = φ this is a reindexed
n-dimensional φ-ad in J (E).

We can now state the following, which is a special case of 4.3B.
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4.3A Proposition. This construction induces a homomorphism from ho-
mology classes of J -n-cycles in (X, p,U) to ΩJ

n (E). Under the canonical
isomorphism with homology this corresponds to the total assembly

Hn(nerve∆(U); ΩJ (p,U)) −→ Hn(pt; ΩJ (E)) ' ΩJ
n (E) .

Now begin the general construction. Suppose (f, f̂) is a map between
maps p, q, ie. there is a commutative diagram

E
f̂−−−−→ F

yp

yq

X
f−−−−→ Y.

Suppose U is a cover of X, V a cover of Y , and θ : U −→ V is a morphism.
By this last we mean an order-preserving function so that f(U) ⊂ θ(U) for
every U ∈ U .

The construction will be in two parts; first a function from cycles in
(X, p,U) to cycles in (Y, q,Vθ), where Vθ is a cover of Y obtained by intro-
ducing multiple copies of the elements of V indexed by U . The second part
goes from cycles in (Y, q,Vθ) to cycles in (Y, q,V), by assembling pieces over
multiple copies using the Kan condition as above.

Define Vθ to be the collection of subsets of Y isomorphic as a partially
ordered set with U , by the correspondence U 7→ VU = θ(U). This may not
be a cover of Y . There are morphisms of covers (or perhaps just collections
of subsets) U −→ Vθ −→ V, the first defined by U 7→ VU and the second by
VU 7→ θ(U). Since the first is an isomorphism of partially ordered sets it
induces an injective ∆-map nerve∆(U) −→ nerve∆(Vθ). The second induces
a simplicial map of simplicial nerves, as does any morphism, but usually not
a ∆-map.

Next suppose M is an n-cycle in (X, p,U), so for σ a k-simplex in
nerve∆(U) we get an (n − k)-dimensional U − σ-ad M(σ) ∈ J (p−1(∩σ).
Let Vσ denote the image of σ in nerve∆(Vθ). Then f̂ induces a function
f̂∗ : J (p−1(∩σ)) −→ J (q−1(∩Vσ)). Therefore we can define a function

f̂∗M : nerve∆(Vθ) −→ J

by: if τ is the image of a simplex in nerve∆(U), so τ = Vσ, then f̂∗M(τ) =
f̂∗(M(σ)). If τ is not in the image define f̂∗M(τ) = φ.
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It is immediate that this f̂∗M is an n-cycle in (Y, q,Vθ), and further that
the same procedure defines a function on homologies. This therefore defines
a function on homology classes of cycles.

Now we begin the second step; the passage from Vθ to V. This is broken
into simpler pieces by a relative version of the θ-construction: suppose V ′ ⊂
V, then define (V,V ′)θ to be the collection V ′ ∪{VU | θ(U) 6∈ V ′}. There are
morphisms Vθ −→ (V,V ′)θ −→ V. By using a sequence of V ′ which differ by
single sets we get a factorization of Vθ −→ V into a sequence of morphisms
which are bijections except over a single set. It is therefore sufficient to do
the construction for such morphisms. Note that the finiteness requirement
on cycles implies that for a given cycle only a finite number of such special
morphisms are required, even if V is infinite.

Suppose then that V is a cover of Y , V1 ∈ V, and V2, . . . , Vr are additional
copies of V1. Given an n-cycle in (Y, q,V ∪ {V2, . . . , Vr}) we construct an
n-cycle in (Y, q,V), by constructing a type of “homology” in which the cover
changes. For a given simplex the construction depends on whether or not
the simplex contains V1.

Let M be the n-cycle over V∪{V2, . . . , Vr}, and let a, b, c be elements (to
be used for indices) not in the cover. On simplices of nerve∆(V) containing
V1, say σ ∪ {V1}, we think of M(σ ∪ {V∗}) as a ({V∗, a}, a)-cycle and fill in
using the Kan condition. Specifically we want a function N so that N(σ ∪
{V1}) is an (n− k +1)-dimensional (V −σ∪{V∗}∪{a})-ad in J (q−1(∩(σ∪
{V1}))) which is finite, satisfies the face relations as in (2) of the definition
of cycles, and ∂ViN(σ ∪ {V1}) = M(σ ∪ {Vi}) for 1 ≤ i ≤ r.

The function N is constructed by induction on dimension, beginning
with large dimensions and working down. M(τ) = φ for all but finitely
many τ ∈ nerve∆(V ∪ {Vi}), so there is a dimension above which M = φ
and above this dimension we can set N = φ. Now suppose N is defined for
simplices of dimension greater than k, and suppose σ ∪ {V1} has dimension
k. Then a Kan-type cycle over (V−σ∪{V∗}∪{a}, a) in J (q−1(∩(σ∪{V1}))
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is defined by U 7→ N(σ ∪ {V1, U}) and Vi 7→ N(σ ∪ {Vi}) for 1 ≤ i ≤ r.
Apply the Kan condition to obtain N(σ ∪ {V1}).

We would like to continue applying the Kan condition to extend N over
simplices which do not contain V1. However the pieces M(σ) and N(σ∪{V1})
do not fit together correctly; the intersection is the cycle Vi 7→ M(σ ∪{Vi})
rather than a single face. To fix this we introduce some new pieces, which
should be thought of as subdividing a collar neighborhood of ∪M(σ∪{V∗})
in M(σ).

Let C be a homology from ∂aC = M to some other cycle ∂bC. (We think
of C as a collar M × I, but construct it by inductive application of the Kan
condition as in the construction of N above.) Next we construct a function
W on simplices of nerve∆(V) which do not contain V1. We want W (σ) to
be a (V − σ ∪ {V∗} ∪ {a, b, c})-ad in the same theory as M(σ) satisfying

(1) ∂UW (σ) = W (σ ∪ {U}) if U 6= V1, and U /∈ σ;
(2) ∂ViW (σ) = C(σ ∪ {Vi}); and
(3) ∂bW (σ) = ∂bC(σ) and ∂cW (σ) = N(σ ∪ {V1}).

As with N we define W to be φ on high-dimensional simplices and work
down by induction. If σ has dimension k and W is defined on higher di-
mensional simplices then all the faces specified above are defined and form
a (V − σ ∪ {V∗} ∪ {a, b, c}, a)-cycle. Applying the Kan condition yields an
-ad which we define to be W (σ).

Now define a function on nerve∆(V) by σ 7→ ∂aN(σ) if V1 ∈ σ, and
σ 7→ ∂aW (σ) if V1 /∈ σ. This defines a J -n-cycle in (Y, q,V), which is
defined to be the functorial image of M .

4.3B Proposition. This construction induces a homomorphism from ho-
mology classes of J -n-cycles in (X, p,U) to J -n-cycles in (Y, q,V). Under
the canonical isomorphism with homology this corresponds to the induced
homomorphism

Hn(‖nerve(U)‖; ΩJ (p,U)) −→ Hn(‖nerve(V)‖; ΩJ (q,V)).
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4.4 The bordism-type theory of cycles

Fix p : E −→ X and a cover U of X. In this section we define a bordism-type
theory denoted CyclesJ (X, p,U) whose φ-ads are J -cycles in (X, p,U).

Suppose A is a set. An A-ad of dimension n in CyclesJ (X, p,U) is a
function N : nerve∆(U) −→ J satisfying exactly the definition of cycles given
above, except that it takes values in A-ads. Explicitly,

(1) if σ is a k-simplex of nerve∆(U) then N(σ) is an (n−k)-dimensional
(U − σ ∪A)-ad in J (p−1(∩σ)),

(2) let incl∗ : J (p−1(∩σ)) −→ J (p−1(∩bjσ)) denote the morphism in-
duced by the inclusion, then incl∗(N(σ)) = (−1)j∂Uj N(bjσ), and

(3) all but finitely many of the N(σ) are φ.

In (2), Uj is the jth element of σ with respect to the partial ordering, as
in 4.2.

4.4A Proposition. CyclesJ (X, p,U) has the structure of a bordism-type
theory. The n-dimensional bordism group of this theory is exactly the set
of homology classes of J -n-cycles in (X, p,U).

Proof. The homologies defined in 4.2 are exactly the type of [1]-ads used to
define the equivalence relation in the bordism group, in 2.3, so the assertion
that the bordism group is homology classes of cycles is just the definition.

We describe the bordism-type theory structure. The n-dimensional A-
ads have been defined. Face operators are defined by (∂aN)(σ)) = ∂a(N(σ).
The reindexing operations `θ are defined by reindexing all the pieces, and
the bijectivity condition in 3.2(3) is immediate. Similarly the involution −1
is defined by applying the involution in J to each piece.

The remaining ingredient is to see that the Kan condition holds. This
construction is similar to a step in the construction of induced maps of
cycles in 4.3.

Suppose M is an n-dimensional (A, a)-cycle. This is a function from A−
{a} to cycles so that M(b) is an n-dimensional (A− {b})-ad in

CyclesJ (X, p,U).

Unraveling a little further, this is a function M : (A−{a})×nerve∆(U) −→ J
so that M(b, σ) is a (A−{b})∪(U−σ)-ad of dimension n−k in J (p−1(∩σ)),
where k is the dimension of σ. We can think of this as a cycle of (A, a)-cycles,
over U .

What we want is a cycle of A-ads over U , so that for each σ the (A, a)-
cycle N(∗, σ) is obtained from it by taking faces. In more detail this is a
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function N : nerve∆(U) −→ J so that N(σ) is a A∪ (U −σ)-ad of dimension
n − k + 1 in J (p−1(∩σ)). This should satisfy M(b, σ) = ∂bN(σ), and the
cycle face relation 4.4(2) relating N(σ) and N(bjσ).

We construct N by induction downward on dimensions of simplices in
nerve∆(U). Since M(b, σ) = φ for all but finitely many (b, σ), there is a
dimension for σ above which M = φ and we can set N(σ) = φ.

Now suppose M is defined on simplices of dimensions greater than k, and
consider a k-simplex σ. Define a Kan-type (A∪U−σ, a)-cycle in J (p−1(∩σ))
by: take b ∈ A−{a} to M(b, σ). Take V ∈ U − σ to incl∗N(σ ∪ V ), if σ ∪ V
is a simplex in the nerve (ie. ∩σ ∩ V 6= 0), and take it to φ otherwise. Note
N(σ ∪ V ) is defined since σ ∪ V is a simplex of dimension greater than k.
This formula does in fact form a cycle, so the Kan condition in J (p−1(∩σ))
implies there is a (A∪U − σ)-ad which has this cycle as faces. Select one of
these to be N(σ), then this satisfies the conditions required for the induction
step. ¤

4.5 Naturality of theories

The constructions of 4.3 give homomorphisms of homology groups of cycles,
corresponding to appropriate morphisms of data. The definitions of 4.4 ex-
tends the homology groups to entire bordism-type theories. It would be nice
to similarly extend the homomorphism construction to give morphisms of
bordism-type theories. Such morphisms would by naturality induce maps of
the associated bordism spectra. The constructions of 4.3 are not canonical
enough to give morphisms of theories, but they do extend directly to the
bordism spectra.

Proposition. Suppose (f, f̂) : p −→ q is a morphism of maps and θ : U −→ V
is a morphism of covers, as in 4.3. Then there is an associated morphism of
bordism spectra

(f, f̂ , θ)∗ : Ω(Cycles(X, p,U)) −→ Ω(Cycles(Y, q,V))

which is natural up to homotopy, and on homotopy groups induces the
homomorphism defined in 4.3.

Proof. We will not give the proof in detail. It is primarily an elaboration on
the construction in 4.3, and although the idea behind it can be described
easily, the indexing on the various -ads considered gets too complex to be
informative. Also relatively little use is made of it here; it is primarily used
to replace the word “canonical” in Theorem 4.2A with the word “natural”
in the final result (however, see 4.6).
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The spaces Ω(Cycles(X, p,U)) and Ω(Cycles(Y, q,V)) are geometric re-
alizations of ∆-sets (see 3.4), so we get a map between them by realizing
∆-maps.

A k-simplex of Ωn(Cycles(X, p,U)) is by definition a [k]-ad in the bordism-
type theory Cycles(X, p,U), which in turn is a function nerve∆(U) −→
([k]-ads in J ). If θ is an injection then it induces a ∆-injection of nerves
nerve∆(U) −→ nerve∆(V). In this case we get a k-simplex of

Ωn(Cycles(Y, q,V))

by applying morphisms induced in J by (f, f̂), and then extending the
function to nerve∆(V) simply by defining it to be φ on the complement of
nerve∆(U).

As for single cycles this reduces the construction to X = Y and θ a
morphism which eliminates duplicate copies of a single set V1. In this case
we define the map by induction on skeleta of Ωn(Cycles(X, p,U)). If M

is a 0-simplex then it is a cycle, and we define (f, f̂ , θ)(M) as in 4.3A.
Suppose the map is defined on the (k − 1)-skeleton and M is a k-simplex.
The construction from this point is essentially the same as that of 4.3A,
except there are more faces. As in 4.3A we proceed by induction downwards
on dimension of simplices of nerve∆(V). The induction is started by setting
the values to be φ for simplices of sufficiently high dimension.

On simplices containing V1 we basically want a cycle of solutions to Kan
extension problems. For a given simplex we get a Kan cycle with three
types of pieces: from the construction on higher simplices, ones of the form
M(σ ∪ {Vi}), as before, and also pieces from the construction on bjM .
According to the induction hypotheses all these are already defined, so the
Kan condition can be used to extend the construction to (σ ∪ {V1}).

On simplices not containing V1 the construction involves first construct-
ing a “collar” to introduce more faces, then finding a cycle of solutions to
the resulting Kan problems. Again if this has been done for higher simplices
of nerve∆(V) and also for faces bjM then we get extension problems whose
solutions extend the construction over the simplex.

Finally we indicate why this is well-defined and natural up to homotopy.
To see it is well-defined suppose there are two such constructions, and think
of these as defined on nerve∆(V)×{0, 1}. Then use the same proceedure to
fill in between these to get a homotopy defined on nerve∆(V) × [0, 1]. The
only difference is that there are yet more faces, coming from the ends of the
homotopy where the construction is already given.

This, together with the ∆-set model for the loop space used in 3.4, also
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shows that these maps of spaces fit together (up to homotopy) to give maps
of spectra.

The proof of naturality is straightforward except for changing covers. For
this we need to see that if V is obtained from U by eliminating duplicates of
two different sets, then the compositions are independent (up to homotopy)
of the order in which this is done. Filling in a homotopy between the two
compositions proceeds by double induction as before, but the proceedure for
each piece is substantially more complicated. It separates into four cases,
depending on whether or not the sets being changed are contained in the
simplex. The worst case, when the simplex contains neither, seems to require
four different applications of the Kan condition. It is not too difficult to
guess what to do, but it does seem to be a lot of trouble to verify that the
resulting formulae do in fact give Kan-type cycles. ¤

4.6 Nonsimplicial situations

Cycles are associated with a covering, and describe homology of the nerve
of that cover. A homotopy inverse limit is used to define general homology,
and although this can be avoided if the situation is simplicial (by 2.6) it
is necessary in general. The maps in the inverse system are induced by
morphisms of the data, so the proposition gives a description of the system
in terms of cycles. This leads to a cycle description of general homology
classes.

When the space is reasonable, for example metric, the description of such
homotopy inverse limits in terms of arcs can be employed. In these terms a
homology class is represented by a half-open arc of cycles: a triangulation of
[0,∞) is given, the vertices are mapped to (X, p,U)-cycles, where U depends
on the vertex. Edges are mapped to homologies of the type considered in 4.3
which change the covering. Finally we require that the covers have diameters
which go to 0 as we go toward ∞.

Carrying out this algorithm using the constructions as given results in
an unpleasantly complicated mess, so we will not do it here. For this to
work better it would be helpful to have a direct description of homologies
which change covers arbitrarily, not just by duplicating a single subset. Also
better naturality constructions would be needed. For this it might be useful
to consider more elaborate forms of the Kan condition, for example allowing
pieces to intersect in cycles instead of just faces.

4.7 Cocycles and cohomology

There is a representation result for cohomology which is easier than cycles
and homology, and we describe this here. They are particularly useful in
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descriptions of products and duality, but these will not be discussed here.
We restrict to the constant coefficient case. The reader who needs the functor
coefficient analog should not have trouble working it out.

These representative are basically the same as the unfortunately named
“mock bundles” of [4].

Cohomology with coefficients in a spectrum J is defined, dually to ho-
mology, by maps:

Hn(X;J) = π0(maps(X,Jn)).

When J is an Ω-spectrum this involves the single space Jn, as written. For
general spectra it has to be interpreted in terms of maps of spectra.

Now suppose X = ‖K‖ is the realization of a ∆-set, and Jn = ΩJn
is the bordism spectrum of a bordism-type theory J . According to the
simplicial approximation theorem a map of realizations is homotopic to the
realization of a ∆-map f : K −→ ΩJ

−n. (Note, as in 3.4, the sign difference on
the subscripts on the spectrum and ∆-set.) Thus to obtain representatives
for cohomology classes we have only to refer to the definition of ΩJ

−n and
spell out what such a ∆-map looks like. The result is:

Proposition. Classes in Hn(‖K‖; ΩJ ) are represented by functions f from
simplices of K to -ads in J such that

(1) if σ is an k-simplex then f(σ) is an [k]-ad of dimension k − n, and
(2) f(bjσ) is obtained from (−1)j∂jf(σ) by reindexing by the order-

preserving bijection [k − 1] −→ [k]− {j}. ¤

To contrast this with the definition of a cycle we make explicit some of
the differences. For this consider an n-cycle M in the star cover associated
to the triangulation of ‖K‖. Since the simplices of the nerve of this cover are
indexed by simplices in K, the n-cycle M is also a function from simplices
of K to -ads in J . However

(1) the dimension of M(σ) is the negative of the dimension of f(σ). In
particular the dimension of f(σ) increases with the dimension of σ
while the dimension of M(σ) decreases.

(2) the face structures are also dual: f(σ) has faces corresponding to
the faces of σ, while roughly speaking M(σ) has faces corresponding
to simplices disjoint from σ.

In its face and dimension structure a cocycle behaves like a product K×F ,
or more generally like a bundle over K. It can be thought of as a sort of
block bundle over K in which the fibers are allowed to change from point
to point (hence the term “mock bundle” in [4]).
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5: Proof of the representation theorem

We now show that cycles represent homology. This is done on the spec-
trum level; the bordism spectrum of cycles is equivalent to the homology
spectrum.

5.1 Theorem. Suppose U is a cover of X, and p : E −→ X. Then there is
a homotopy equivalence of spectra,

Ω
(
CyclesJ (X, p,U)

) −→ H•
(
nerve(U); ΩJ (p,U)

)

which is natural up to homotopy.

Before giving the formal proof we describe the idea. Given a cycle we want
to construct a point in one of the loop spaces in the direct limit defining
the homology space. So we seek a map Sk −→ Ω(p,U)/nerve∆(U), where
Ω(p,U) −→ nerve∆(U) is the spectral sheaf constructed as in 2.3, and the
quotient indicates dividing out the 0-section.

A cycle is a function M : nerve∆(U) −→ J , but not any sort of ∆-map;
M(σ) has the wrong face structure to be a simplex which is an image of σ.
However, assume U is finite with n+1 elements. There is a natural simplicial
embedding nerve∆(U) ⊂ ∆n+1, and we can associate to each simplex a dual
simplex Dn(σ). The cycle has the correct face structure to define a ∆-map
M(σ) : Dn(σ) −→ ΩJ (p−1(∩σ)).

Geometric realization of this ∆-map gives a map of spaces ‖Dn(σ)‖ −→
ΩJ (p−1(∩σ). This is natural in σ, so defines a natural transformation of
functors. Here both ‖Dn(σ)‖ and ΩJ are regarded as functors from

nerve∆(U)

into spaces. The geometric realization of the functor σ 7→ ΩJ (p−1(∩σ)
gives the spectral sheaf ΩJ (p,U). The central geometric fact in the argu-
ment is that the geometric realization of the dual simplex functor σ 7→
‖Dn(σ)‖ can be canonically identified with Sn. The realization of the nat-
ural transformation gives a map between these spaces, and therefore Sn −→
Ω(p,U)/nerve∆(U), as required.

To reverse the process begin with a map f : Sj −→ Ω(p,U)/nerve∆(U).
First f is deformed to be transverse with respect to the simplex coordinates
of Ω(p,U) coming from the construction as a realization. This describes f
as coming from the realization of a natural transformation of functors, but
defined on some manifold-valued functor usually different from the dual sim-
plex functor. After stabilizing to get into the stable range (for embeddings)
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we can embed this functor in the dual simplex functor. Extension of the
natural transformation to the whole dual simplex functor corresponds to
suspension in the spectrum structure. Therefore after suspension the map
becomes homotopic to a realization of the desired kind.

5.2 Functors on ∆-sets

Functors on simplicial nerves, regarded as categories, are used in 2.3 to
define functor-coefficient homology. Since we are now using the ∆-nerve, we
need a ∆-set version of this.

Suppose K is a ∆-set, and regard it as a category with morphisms gener-
ated by identity maps and the face operators ∂j . If F is a covariant functor
from K to spaces, then

∐
σ∈K F (σ) is a ∆-space. The geometric realization

of this is defined by:

‖F‖ =
( ∐

k,σ∈Kk

F (σ)×∆k
)
/∼

where ∼ is the equivalence relation generated by: if x ∈ F (∂σ), t ∈ ∆k−1,
and u ∈ ∆k+1 then (x, ∂∗j t) ∈ F (σ)×∆k is equivalent to (∂jx, t) ∈ F (∂jσ)×
∆k−1.

This construction is natural, with the same properties as the simplicial
version in 2.2A. The reason, by the way, that we did not use the ∆ version
from the beginning is that morphisms of covers defines simplicial maps of
simplicial nerves, but not ∆-maps of ∆-nerves. This makes changing covers
awkward in the ∆ version, and is part of the difficulty encountered in the
naturality constructions in section 4.

Now we relate this to the simplicial version. If K is a simplicial set then
coreK ⊂ K is the ∆-set of nondegenerate simplices; the example of partic-
ular concern is nerve∆(U) ⊂ nerve(U).) Then core K is a subcategory of K.
If F is a functor from K to spaces, in the sense of 2.2 then the restriction
to core K is a functor in the sense above. The inclusion coreK ⊂ K induces
a map of realizations.

5.2A Lemma. Suppose K is a simplicial set and F is a functor from K to
spaces. The natural map, from the ∆-realization of the restriction of F to
coreK, to the simplicial realization of F , is a homeomorphism.

This is straightforward, basically the same argument as the proof that the
∆-realization of the core is the same as the simplicial realization of K. ¤
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5.3 Extensions to simplices

For convenience we extend both cycles and the spectral sheaves over a sim-
plex containing the nerve. When the cover is finite we will actually work
with the extension over K = ∂∆U , rather than over the whole simplex.

Suppose U is a totally ordered collection of subsets of X. Define a ∆-set
∆U with k-simplices all collections of k + 1 distinct elements of U . If U is
finite this is a simplex. With this notation the simplex ∆n is ∆[n]. The nerve
is a sub-∆-set of this; nerve∆(U) ⊂ ∆U .

Now suppose J is a bordism-theory valued functor of spaces, which on
the empty set consists only of basepoints. A J -n-cycle over (X, p,U) is
defined to be a function from nerve∆(U) into J which takes a simplex σ
to a U − σ-ad in J (p−1(∩σ)). We can consider cycles defined on all of
∆U satisfying the same conditions. The value on the additional simplices is
determined: if σ /∈ nerve∆(U) then ∩σ = φ so J (p−1(∩σ)) = J (φ), which
consists only of basepoints. We formalize this as a lemma.

5.3A Lemma. Suppose J (φ) consists only of basepoints, and K is a ∆-set,
nerve∆(U) ⊂ K ⊂ ∆U . Then restriction defines a bijection from J cycles
defined on K to cycles defined on nerve∆(U). ¤

Spectral sheaves extend in a similar fashion. Suppose J is a spectrum-
valued functor of spaces. The spectral sheaf over ‖nerve∆(U)‖ is defined by
realizing the functor σ 7→ J(p−1(∩σ)). This functor is evidently defined on
all of ∆U , not just nerve∆(U). Realization of the extended functor defines
a sheaf over ‖∆U‖, which we continue to denote by J(p,U).

5.3B Lemma. Suppose J is a spectrum-valued functor such that J(φ) is
contractible, and K is a ∆-set nerve∆(U) ⊂ K ⊂ ∆U . Then the induced
inclusion of homology spectra

H•(nerve∆(U);J(p,U)) −→ H•(K;J(p,U))

is a homotopy equivalence.

Proof. The homology of nerve∆(U) comes from the sheaf over nerve∆(U),
divided by nerve∆(U). Similarly the homology of K comes from the sheaf
over K, divided by K. The cofiber of the inclusion is the sheaf over K,
divided by K and the sheaf over nerve∆(U). This is homeomorphic to (K×
J(φ))/(nerve∆(U)×J(φ)∪K×∗), which is contractible because J(φ) is. Since
the cofiber is contractible, the inclusion is a homotopy equivalence. ¤

Note that if J is a bordism-theory valued functor as in 5.4A then the
associated bordism spectrum is a spectrum-valued functor which satisfies
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the hypotheses of 5.4B. The bordism spectrum of the empty set is the
realization of the ∆-set {φ} with a single simplex in each dimension. This
realization is easily seen to be contractible (the fundamental group and
homology groups are trivial).

5.4 Dual simplices

Fix an integer n. The “dual simplex functor” is a function Dn : ∂∆n+1 −→
∂∆n+1, where ∂∆n+1 denotes the ∆-set. If σ is a simplex of ∂∆n+1 then
Dn(σ) is defined to be the simplex spanned by the vertices of ∆n+1 not in
σ.

So for example ∆n+1 is the join σ ∗Dn(σ).

Lemma.

(1) The function σ 7→ ‖Dn‖ defines a functor from ∂∆n+1 to spaces,
and

(2) there is a canonical homeomorphism from the realization of this
functor to Sn.

Proof. Dn is contravariant in σ, in the sense that if τ ⊂ σ then Dn(τ) ⊃
Dn(σ). The face maps are contravariant with respect to inclusion, so Dn is
a covariant functor on the category with morphisms generated by the ∂∗.

The realization of this functor is built of pieces ‖σ‖×‖Dn(σ)‖. Geometri-
cally we think of this as a tubular neighborhood of σ. The homeomorphism
to Sn gives the handlebody structure obtained by thickening up the cell
decomposition of ∂∆n+1.

The proof uses some spherical geometry, so we understand Sn to mean
the sphere with its usual Riemannian metric. Suppose X ⊂ Sn is contained
in the interior of some hemisphere. Then we define the convex hull of X,
denoted hull(X), to be the smallest set containing X, contained in the
hemisphere, and intersecting each geodesic in a connected set. The hull
is also the intersection of all hemispheres containing X, so in particular is
independent of any particular hemisphere.

The fact we will use is that certain convex hulls are naturally homeo-
morphic to simplices. There is, for each set of points V = (v0, . . . , vj) in Sn

which are equidistant from each other, and lie in the interior of a hemisphere,
a homeomorphism fV : ∆j −→ hullV . This is continuous in V and natural
with respect to faces and isometries; the restriction to the face obtained
by omitting the ith vertex is the function associated to the set obtained by
omitting vi, and if g : Sn −→ Sn is an isometry then fV g is fg(V ).

Choose points x0, . . . , xn in Sn which are equidistant and the maximal
distance apart; these are the vertices of an inscribed regular simplex. To
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make the construction canonical these points should be chosen in some
canonical way. The point −xk is the barycenter of the simplex determined
by {xi | i 6= k}. Define the point yi,k for i 6= k to be the midpoint of the
shortest geodesic between xi and −xk.

Note that given i, j there is an isometry of Sn (in fact a reflection)
which interchanges xi and xj and leaves the other x∗ fixed. Since isome-
tries preserve geodesics this reflection also interchanges yi,k and yj,k, and
interchanges yk,i and yk,j

Next we define, for each σ ∈ ∂∆n+1, a map Fσ : ‖σ‖ × ‖Dn(σ)‖ −→ Sn.
This will be natural in σ and a homeomorphism onto the convex hull of
the points {yi,k | i ∈ σ, and k /∈ σ} (here we have written i ∈ σ if the ith

vertex of ∆n+1 is in σ). These facts will imply the lemma: the naturality
implies these fit together to define a map from the realization of the functor
‖Dn(∗)‖ to Sn, and the homeomorphism statement implies this map is a
homeomorphism.

Suppose (s, t) ∈ ‖σ‖ × ‖Dn(σ)‖. For any fixed k /∈ σ the points in the
set yσ,k = {yi,k | i ∈ σ} are equidistant from each other. This is because the
reflections which interchange the {xi | i ∈ σ} also interchange these points,
and reflections preserve distances. Therefore the functions fyσ,k

are defined.
Let V = {vk} denote the set obtained by applying these functions to the
point s.

The points in the set V are also equidistant from one another. This is
because the reflections which interchange xk with i /∈ σ interchange the sets
yσ,k and therefore—by naturality with respect to isometry—the functions
fyσ,k

. This implies the reflections also interchange images of a specific point,
in this case s. From this we conclude the function fV is defined, and we define
Fσ(s, t) = fV (t).

The function Fσ is continuous because the f∗ are continuous in ∗. It is
natural in σ because the f∗ are. It therefore remains to verify that it is a
homeomorphism.

Consider the function fV again. The image of this intersects σ in a single
point, and is perpendicular to σ at that point. This is because the reflections
which interchange points of V leave σ invariant; if w is a vector in σ it makes
the same angle with each of the geodesics from the intersection point to a
vertex of the image of fV . This angle must therefore be 0. This identifies
fV as the intersection of the linear sphere perpendicular to σ, and the hull
of {yi,k | i ∈ σ, and k /∈ σ}.

We can now reverse the construction. If z is a point in the hull then it lies
in some sphere perpendicular to σ. Let V = {Vk} denote the intersection
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of this sphere with the hull of yσ,k, where k /∈ σ. The sphere is invariant
under isometries which fix σ, so invariant under the reflections used above.
Since these interchange elements of V the same argument used above implies
these are equidistant. The point z is therefore fV (t) for some t ∈ ‖Dn(σ)‖.
Further for each k /∈ σ the point zk is fyσ,k

(sk), for some sk ∈ ‖σ‖. Using
the symmetry again we see that all the sk are equal. This identifies z as
Fσ(sk, t).

Explicitly we have explained why Fσ is onto. But the points s and t are
easily seen to be uniquely defined, so it is also injective. Therefore it is a
homeomorphism. ¤

5.5 From cycles to homology

Suppose U is a finite collection of subsets of X. In this section we describe
the map, from the bordism spaces of cycles to the homology spaces, both
over U . We verify this is a map of spectra in the next section, and consider
infinite collections in the section 5.7.

Denote the elements of U by U0, . . . , Un+1, so the simplex spanned by
this is canonically ∆n+1. Suppose that U0 is empty. This assumption implies
that nerve∆(U) ⊂ ∂0∆n+1, and in particular nerve∆(U) ⊂ ∂∆n+1.

Suppose M is a J -r-cycle in (X, p,U), extended trivially to ∂∆n+1 as
in the previous section. Then M(σ) is a (U − σ)-ad of dimension r − j in
J (p−1(∩σ)), where j is the dimension of σ. Using the canonical bijection
[n− j] −→ U − σ we can regard M(σ) as an (n− j)-dimensional simplex of
the bordism ∆-set ΩJ

r−n(p−1(∩σ)). Or, since Dn(σ) is the simplex spanned
by U − σ, this can be regarded as a ∆-map Dn(σ) −→ ΩJ

r−n(p−1(∩σ))
The geometric realization of this ∆-map defines a map of spaces

‖Dn(σ)‖ −→ ΩJn−r(p
−1(∩σ)).

(Remember that indices are reversed in forming the bordism spectrum Ω.)
This is a natural transformation of functors defined on ∂∆n+1, in other
words

‖Dn(∂iσ)‖ −−−−→ ΩJn−r(p
−1(∩∂iσ))

y
y

‖Dn(σ)‖ −−−−→ ΩJn−r(p
−1(∩σ))

commutes. This is condition (2) in the definition of cycles in 4.2. This natural
transformation induces a map of realizations of these functors. According
to 5.4 the realization of σ 7→ ‖Dn(σ)‖ is Sn. The other realization is the
spectral sheaf (over ∂∆n+1) so we get a map Sn −→ ΩJn−r(p,U).
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The initial hypothesis that U0 = φ implies that the basepoint of Sn (the
0th vertex of ∂∆n+1) maps to the basepoint. Thus this map defines a point
in the loop space Ωn(ΩJn−r(p,U)). Divide by ∂∆n+1 and include into the
homology spectrum to get a point in H−r(∂∆n+1; ΩJ (p,U)).

This defines a function from the vertices of the bordism spectrum of J -
cycles on (X, p,U) to the homology spectrum of ∂∆n+1. Next we extend this
to a map of the whole space of cycles, essentially by adding a ∆i coordinate
to the construction above.

Let M be an i-simplex of the bordism space of r-dimensional cycles. This
takes a j-simplex σ of ∂∆n+1 to a ((U − σ) ∪ [i])-ad of dimension r − j + i
in J (p−1(∩σ)). Regard M(σ) as an (n− j + i+1)-simplex of the associated
bordism space. More precisely regard it as a ∆-map of the join simplex
Dn(σ) ∗ ∆i into ΩJ

r−n−1(p
−1(∩σ)). Realize this to get ‖Dn(σ)‖ ∗ ‖∆i‖ −→

ΩJn−r+1(p
−1(∩σ)).

Again this is a natural transformation of functors of σ, so induces a map
of realizations of functors. The realization of the left side is Sn ∗ ‖∆i‖, and
that of the right side is the spectral sheaf, so this gives a map Sn ∗ ‖∆i‖ −→
ΩJn−r+1(p,U). Note ‖Dn(σ)‖ and ‖∆i‖ are taken to the basepoint: The
image of Dn(σ) corresponds to ∂[i]M(σ), which is φ by definition of simplices
of the bordism space. The image of ∆i corresponds to ∂(U−σ)M(σ) which
is φ by condition (3) in the definition of cycles.

Regard the join as Sn × ‖∆i‖ × I with identifications at the ends of the
I coordinate. Then the realization of M(σ) defines a map Sn×‖∆i‖× I −→
ΩJn−r+1(p,U). Let Sn× I ⊂ Sn+1 denote the standard embedding, then the
map extends by the point map on the complement to give Sn+1 × ‖∆i‖ −→
ΩJn−r+1(p,U).

Regard this map as a simplex in the ∆-set of maps from Sn+1 to ΩJn−r+1(p,
U). These also preserve basepoints, so this is a simplex in the loop space.
We denote the loop space by maps(Sn+1, ΩJn−r+1(p,U)), using “maps” to
avoid another Ω. We get one of these for each i-simplex M of the bordism
∆-set of cycles. The naturality of the construction implies these fit together
to define a ∆-map

R0 : Ωr

(
Cycles(X, p,U)

) −→ maps
(
Sn+1,ΩJn−r+1(p,U)

)
.

Homology is obtained from the geometric realization of the right side of this
by dividing by the image of the 0-section, including into

maps(Sn+j ,Ωn−r+j),
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and taking the limit as j −→ ∞. Therefore realizing R0 and including the
right side in this limit defines maps

R : Ω−r(Cycles(X, p,U)) −→ H−r(∂∆n+1; ΩJ (p,U)).

(Again we note the reversal of the index on the left upon realization of
the bordism ∆-set.) The right side of this is equivalent to the homology of
nerve∆(U) by lemma 5.3B, so this gives the desired maps from cycles to
homology.

5.6 The spectrum structure

For each r ∈ Z we have a map from the space of r-cycles to the rth homology
space. The next step is to show these form a map of spectra, ie. commute
up to homotopy with the spectrum structure maps.

It is sufficient to show that the ∆-map R0 homotopy commutes with
appropriate spectrum structure maps. The appropriate diagram is

Ωr

(
Cycles(X, p,U)

) R0−−−−→ maps
(
Sn+1, ΩJn−r+1(p,U)

)

`

y
y

Ω
(
Ωr−1

(
Cycles(X, p,U)

)) ΩR0−−−−→ Ω
(

maps
(
Sn+1, ΩJn−r+2(p,U)

))
.

The outer Ωs in the bottom row denote loop spaces. The right vertical map is
induced by the structure map in the spectral sheaf, which roughly speaking
is the fiberwise union of the structure maps over points in ‖∂∆n+1‖. We
refine the diagram so we can use a ∆-model for this.

The map R0 is defined by realizing functors, so we factor it through a ∆-
set of functors. Suppose F and G are functors from ∂∆n+1 to ∆-sets. Then
nat(F, G) will be a space of natural transformations between these (actually
we define something closer to the natural transformations from F to the
loopspace ΩG). An i-simplex of this space associates to each σ ∈ ∂∆n+1 a
∆-map F (σ)∗∆i −→ G(σ), compatible with the maps induced from the face
maps in ∂∆n+1. We also require that F (σ) ∗ {φ} and {φ} ∗∆i are taken to
the basepoint of G(σ). Here K ∗∆i is the ∆-set with simplices τ ∗ σ where
τ ∈ K and σ ∈ ∆i. τ ∗ σ denotes a simplex with vertices the union of the
vertices of τ and σ, ordered so that those of σ are last.

The construction of the map R0 proceeds by constructing such natu-
ral transformations, from Dn(σ) to ΩJ

r−n−1(p
−1(∩σ)), then geometrically

realizing. R0 therefore factors as

Ωr

(
Cycles(X, p,U)

) R1−−→ nat
(
Dn(∗), ΩJ

r−n−1(p
−1(∩∗)))

−→ maps
(
Sn

n+1Ω
J
n−r+1(p,U)

)
.
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The second map is obtained by realization (twice; the ∆-sets to get space-
valued functors, and then the functors). In fact unraveling all the definitions
will show that R1 is an isomorphism.

Realization preserves spectrum structures, so the part we are concerned
with is R1. It is sufficient to show the following diagram commutes:

Ωr

(
Cycles(X, p,U)

) R1−−−−→ nat
(
Dn(∗), ΩJ

r−n(p−1(∩∗)))

`

y
y

Ω
(
Ωr−1

(
Cycles(X, p,U)

)) −−−−→ nat
(
Dn(∗), ΩΩJ

r−n−2(p
−1(∩∗))).

In these terms we can be more explicit about the right vertical map; this
is induced by composition with the natural transformation

` : ΩJ
r−n−1(p

−1(∩σ)) −→ ΩΩJ
r−n−2(p

−1(∩∗)).

As in the definition of the spectrum structure in 3.4 we will use the ∆-set
model for the loop space: the k-simplices of ΩK are the (k + 1)-simplices
of K with ∂k+1 and the opposite vertex both equal to basepoints. (And we
denote this opposite vertex by ∂k+1

0 σ.) In this model the map ` is defined
by reindexing a [k]-ad (= a k-simplex) to a [k + 1]-ad using the natural
inclusion [k] ⊂ [k + 1].

We now describe the lower horizontal map. This is a composition of two
maps, first

ΩR1 : Ω
(
Ωr−1

(
Cycles(X, p,U)

)) −→ Ω
(
nat(Dn(∗), ΩJ

r−n−1(p
−1(∩∗)))

obtained by restricting R1 to the models of loopspaces as subsets with face
restrictions. Then there is the identification

Ω
(
nat(Dn(∗), ΩJ

r−n−1(p
−1(∩∗))) ' nat

(
Dn(∗), ΩΩJ

r−n−2(p
−1(∩∗))).

We discuss this identification.
A k-simplex of Ω

(
nat

(
Dn(∗), ΩJ

r−n−1(p
−1(∩∗)))) is a (k + 1)-simplex

of nat
(
Dn(∗), ΩJ

r−n−1(p
−1(∩∗))) with ∂k+1 = φ = ∂k+1

0 . This is a natu-
ral transformation Dn(σ) ∗∆k+1 −→ ΩJ

r−n−1(p
−1(∩∗)), so associates to an

(n−j)-simplex σ ∈ ∂∆n+1 a (j+k+2)-simplex of ΩJ
r−n−1(p

−1(∩∗)). By defi-
nition of “nat” the restrictions to ∆j∗{φ} = ∂k+2

j+1 , and to {φ}∗∆k+1 = ∂j+1
0

are both φ. Further, the restriction imposed to get the ∆ loopspace is
∂j+k+2 = φ = ∂k+1

j+1 .
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Similarly a k-simplex of nat
(
Dn(∗),ΩΩJ

r−n−2(p
−1(∩∗))) is a natural

transformation which takes an (n− j)-simplex σ ∈ ∂∆n+1 to a (j + k + 1)-
simplex of ΩΩJ

r−n−2(p
−1(∩∗)), again with ∂k+1

j+1 = φ = ∂j+1
0 . This is a

j + k + 2-simplex of ΩJ
r−n−2(p

−1(∩∗)) with face restrictions ∂j+k+2 = φ =
∂j+k+2
0 . These are the same conditions as in the previous paragraph, so the

two sets are equal.
It is now straightforward to verify that the diagram commutes. Let M be

a k-simplex of bordisms of cycles, so it assigns to σ ∈ ∂∆n+1 a (U−σ∪[k])-ad
in J (p−1(∩σ)). Both compositions take this to the natural transformation
which takes Dn(σ)∗∆k to the (j+k+2)-simplex of ΩJ

r−n−2(p
−1(∩∗)) defined

by `j+k+2M(σ), where `j+k+2 reindexes by the inclusion (U − σ ∪ [k]) ⊂
(U − σ ∪ [k + 1]).

This completes the verification that the maps defined in the previous
section give a map of spectra, from the bordism spectrum of cycles, to
homology. ¤

5.7 Reduction to finite collections

Elsewhere in this section we assume the collection U of subsets of X is finite.
In this section we show this is sufficient for most purposes, and indicate the
modifications necessary in the others.

The finiteness condition on cycles implies that any finite subcomplex
of the bordism space Ω(CyclesJ (X, p,U)) is contained in the image of
Ω(CyclesJ (X, p,V)) for some finite V ⊂ U . In particular homology classes
of cycles can be defined solely in terms of finite subsets.

Similarly the homology spectrum is obtained from loop spaces of a quo-
tient ΩJ (p,U)/nerve(U). A map of a finite complex into this deforms into
the inverse image of a finite subcomplex of nerve(U) under the projection
ΩJ (p,U) −→ nerve(U). But this corresponds to the homology spectrum of a
finite subset of U . The conclusion is that maps of spheres and homotopies
between them lie in homology spaces of finite V ⊂ U .

It follows from this and naturality that if the passage from cycles to ho-
mology is a homotopy isomorphism for finite U then it is an isomorphism
in general. Also, to define this passage on the group level it is sufficient to
consider finite collections. The only ingredient for which this is not suffi-
cient is the definition of the map on the spectrum level, when U is infinite.
Therefore we discuss the construction of the map in this case.

Suppose V is a finite subset of U . Denote by ∆V the simplex with vertices
V. In these terms the construction of 5.5 defines a map

Ω(CyclesJ (X, p,V)) −→ maps(‖∂∆V‖, ΩJ (p,V)/‖∂∆V‖).
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This construction is natural in V, so forms a direct system of maps.
Suppose V is enlarged by addition of a copy of the empty set. This does

not change the cycles and on the mapping space is equivalent to the sus-
pension (since ∂∆U∪{φ} ∼ S1 ∧ ∂∆U ). This means the direct limit used to
define the homology can also be obtained as the mapping spaces associated
to the sequence of inclusions · · · ⊂ V ∪ n{φ} ⊂ V ∪ (n + 1){φ} ⊂ · · · .

In general expand U by adding infinitely many copies of the empty set,
and take the direct limit over all finite subsets V of the map above;

lim
V→

Ω(CyclesJ (X, p,V)) −→ lim
V→

maps(‖∂∆V‖,ΩJ (p,V)/‖∂∆V‖).

It follows from the discussion above that the left side of this is equivalent
to the cycle space for U , and the right side is equivalent to the homology
space. This therefore defines the desired map when U is infinite.

5.8 Completion of the proof

Again assume U is a collection of n+2 subsets of X, with the first one empty.
The objective is to show that the map defined above, from the bordism
spectrum of cycles over U to the homology with coefficients in the spectral
sheaf ΩJ (p,U) is a homotopy equivalence.

In the previous part of the proof the cycle spectrum has been identified
with the ∆-set of natural transformations nat(Dn(σ), ΩJ

r−n+1(p
−1(∩σ))),

so it is sufficient to show the map from this to homology is a homotopy
equivalence.

The first step is to compare the ∆-natural transformations with topo-
logical ones. Suppose F and G are topological functors on ∂∆n+1. Define
nat∗(F, G) to be the ∆-set with k-simplices the topological natural trans-
formations F (σ) ∗ ∆k −→ G(σ) which take F (σ) and ∆k to the basepoint.
The subscript ∗ indicates the use of the join to define the simplex structure
(there will be a product version below).

5.8A Lemma. Realization defines a map of ∆-sets

nat(Dn(σ), ΩJ
r−n+1(p

−1(∩σ))) −→ nat∗(‖Dn(σ)‖,ΩJ−r+n−1(p
−1(∩σ))).

As usual note the reversal of the index upon realization; ΩJ−r+n−1 =
‖ΩJ

r−n+1‖.

Proof. It is sufficient to show the map induces an isomorphism of homotopy
groups. These are both Kan ∆-sets so we can work with single simplices.
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Specifically suppose M is a k-simplex of the topological version, ∂0M is
the realization of N0, a (k − 1)-simplex of the ∆ version, and ∂jM = φ for
j > 0. Then it is sufficient to construct a (k-simplex N of the ∆ version
with ∂0N = N0 and a homotopy rel ∂0 of ‖N‖ to M . This N is to be a
functor on ∂∆n+1, and will be constructed by induction downward on the
dimension of σ.

Suppose N(σ) is defined for σ ∈ ∂∆n+1 of dimension greater than j,
and suppose τ is a j-simplex. Then N is defined on Dn(∂τ) ∗∆k ∪Dn(τ) ∗
∂∆k = ∂∆n−j+k+1. Realize this, then the induction hypothesis provides a
homotopy of this realization to the restriction of M to ‖∂∆n−j+k+1‖. Regard
this homotopy as an extension of ‖N‖ over a collar of ‖∂∆n−j+k+1‖, then
M provides an extension over the rest of ‖∆n−j+k+1‖.

Now apply the simplicial approximation theorem, [22, Theorem 5.3]. This
asserts that a map of a realization into the realization of a Kan ∆-set is
homotopic to the realization of a ∆-map. Further, it can be held fixed
where it is already a realization. Applying this to the map of ‖∆n−j+k+1‖
constructed above gives an (n − j + k + 1)-simplex which we define to be
N(τ), together with an extension of the previous homotopies to a homotopy
of ‖N(τ)‖ to M(τ). This completes the induction step, and therefore the
proof of the lemma. ¤

The next step is a minor modification, replacing the join by the product
in the definition of the spaces “nat.” If F , G are topological functors as
above, define nat×(F, G) to have k-simplices the natural transformations
F (σ)×∆k −→ G(σ).

Recall the definition of the join F (σ) ∗ ∆k as the product F (σ) × I ×
∆k with identification of the subset with I coordinate 0 with F (σ), and
identification with ∆k when the I coordinate is 1. A map of the join defines
F (σ)×I×∆k −→ G(σ). Use adjointness to shift the I coordinate to G, then
this gives a map to the loopspace F (σ) ×∆k −→ ΩG(σ). This construction
defines an isomorphism of ∆-sets nat∗(F, G) ' nat×(F, ΩG).

When we set G to be a bordism spectrum the loopspace is obtained by
shifting the index by one. Putting these definitions and remarks together
we get

5.8B Lemma. The natural morphism

Ωr(CyclesJ (X, p,U)) −→ nat×(‖Dn(σ)‖, ΩJr−n(p−1(∩σ)))

is a homotopy equivalence of spectra. ¤

The task is now to show the nat× spectrum is equivalent to homology.
The realization of a natural transformation Dn(σ)×∆k → ΩJr−n(p−1(∩σ))
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defines a k-simplex of the space of pointed maps maps(Sn, ΩJr−n(p,U)).
The mapping space then maps into the homology, which is defined to be
the limit limj→∞ maps(Sn+j ,ΩJr−n−j(p,U)/Sn).

To see this is a homotopy equivalence it is sufficient to see it induces an
isomorphism on homotopy. Since these are Kan ∆-set it is sufficient to see
that a k-simplex of homology deforms rel boundary to a k-simplex of the
natural transformation space. In what follows we do this for 0-simplices, ie.
set k = 0. The reason this is sufficient is that these are Ω-spectra, so any
homotopy group appears as a 0th homotopy group by adjusting the index
r. Or we could note that the proof for k-simplices is obtained simply by
multiplying everything by ∆k. In any case this will usefully simplify the
notation.

The first step is to deform a point in the homology space to the realization
of a natural transformation of functors, but not quite the right functors.

Let f : Sj −→ ΩJr−j(p,U)/Sn represent a point in the homology space
Hr(X; ΩJ (p,U)). Think of dividing by Sn as adding the cone on Sn, then
make f transverse to the 1

2 level in the cone. This gives a codimension
0 submanifold W ⊂ Sj and a map f : (W,∂W ) −→ (ΩJr−j(p,U), Sn). The
original f is obtained up to homotopy by dividing ΩJ by Sn and extending
the map to all of Sj by taking Sj −W to the basepoint.

We now will use a transversality construction on W , f to produce

(1) a functor σ 7→ (W (σ), ∂αW (σ)) from ∂∆n+1 to pairs of spaces, and
a homeomorphism of the realization ‖W (∗)‖ ' W taking ‖∂αW (∗)‖
to ∂W ,

(2) a natural transformation F : (W (σ), ∂αW (σ)) −→ (ΩJr−j(p
−1(∩σ), pt)

of functors of σ, and
(3) a homotopy of maps of pairs from the realization of the transfor-

mation ‖F‖ to the map f .

This construction proceeds by downward induction on dimensions of sim-
plices in ∂∆n+1. To describe this we need some notation for realization of
functors defined on part of ∂∆n+1.

Suppose W (σ) is defined for r-simplices. with r ≥ k. Define the realiza-
tion, as in 5.2, to be

‖W (∗)‖k =
(∐

W (σ)× ‖σ‖)/∼

where the union is over simplices of dimension ≥ k, and ∼ is the equiva-
lence relation generated by: (x, ∂∗r (t)) ∼ (W (∂r)(x), t). Here ∂∗ denotes the
inclusion of the realization of a face in the realization of the whole simplex,
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and W (∂r) denotes the map functorially associated by W to the face map
∂r. Finally, denote by ∂β‖W (∗)‖k the part of this coming from simplices of
dimension less than k; the image of W (σ)× ‖∂rσ‖, where σ is a k-simplex.

The induction hypothesis for the construction is, for given k,

(1) a functor (W (σ), ∂αW (σ)) defined for r-simplices, r ≥ k, and a
homeomorphism ‖W (∗)‖k −→ W onto a codimension 0 submanifold
so that ‖∂αW (∗)‖k is taken to the intersection of the image with
∂W and ∂β‖W (∗)‖k is taken to the interface (intersection of the
image with the closure of its complement),

(2) a natural transformation F : (W (σ), ∂αW (σ)) −→ (ΩJr−j(p
−1(∩σ), pt),

and
(3) a homotopy of maps of pairs from f to fk, whose restriction to

‖W (∗)‖k is the realization of ‖F‖, and which takes the complement
to the part of ΩJr−j(p,U) lying over the (k − 1)-skeleton of ∂∆n+1.

For the induction step we split off a piece of the complement suitable to be
the realization over the (k − 1)-simplices.

Define Wk to be the closure of the complement of the realization ‖W (∗)‖k.
This has boundary ∂β‖W (∗)‖k∪∂αWk, where the second piece is defined to
be Wk∩∂W . According to (3) the map fk restricts to a map of this into the
part of the spectral sheaf lying over the (k − 1)-skeleton of ∂∆n+1, namely
∪{σr|r<k}ΩJr−j(p

−1(∩σ))× ‖σ‖.
Consider the barycenters of the simplices of dimension k − 1; bσ. Since

the restriction to ∂β‖W (∗)‖k comes from the realization of a natural trans-
formation, this restriction is transverse to ΩJr−j(p

−1(∩σ)) × bσ. Modify fk

by homotopy fixed on ∂β‖W (∗)‖k to make it transverse to these barycenters
on all of Wk. Define the preimage of σk−1 to be W (σ).

There is a normal bundle for W (σk−1) whose fibers project to concentric
copies of ‖σ‖ about bσ. By a small additional homotopy we may also arrange
that on this normal bundle fk composed with the projection

ΩJr−j(p
−1(∩σ))× ‖σ‖ −→ ΩJr−j(p

−1(∩σ))

is constant on fibers. Finally since both these conditions are already satisfied
on ∂β (since it is a realization there) we may assume this normal bundle
extends the one given in ∂β by the realization structure. Then use radial
expansion in ‖σ‖ to stretch each fiber out to a homeomorphism to ‖σ‖.
This gives a homotopy of fk to fk−1 which takes the complement of these
normal bundles to the part of the spectral sheaf lying over the (k − 2)-
skeleton, and is a product over each k − 1 simplex. This map satisfies the
induction hypothesis for k − 1, and so completes the induction step.
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This construction produces manifold-valued functors, specifically W (σ)
is a manifold (U − σ ∪ {α})-ad of dimension j − k, when σ is a k-simplex.
Strictly speaking this should have been included in the induction hypothesis,
since it was used (for transversality) and does not quite follow from the other
hypotheses.

Recall that the original goal was to construct a cycle representing a par-
ticular homology class. At this point we can describe the cycle corresponding
to the class represented by f . We will not actually use this; after a brief de-
scription we return to the more technical goal of constructing an appropriate
natural transformation.

Corresponding to a simplex σ ∈ nerve∆(U) we have a map W (σ) −→
ΩJr−j(p

−1(∩σ)). Triangulate W (σ) and approximate this map by a ∆-map
into the ∆-set ΩJ

j−r(p
−1(∩σ)). This can be interpreted as a Kan-type cycle

and totally assembled to give a single J object. Since W (σ) is a manifold
(U − σ ∪ {α})-ad, with ∂αW (σ) = φ, the assembly can be arranged to yield
a (U −σ)-ad in J . By doing this inductively downwards with respect to the
dimension of σ these can be arranged to fit together. The result is a J -cycle
in (p,U).

The final step in the proof is to modify the construction to yield a natural
transformation defined on the dual simplex functor, and therefore a cycle.

Enlarge the collection U by adding m copies of the empty set put at the
end in the ordering; we denote the result by U ∪m{φ}. This does not affect
the homotopy type of either the homology spectrum or the cycles. There is
a natural inclusion ΩJr−j(p,U) ⊂ ΩJr−j(p,U ∪m{φ}) covering the inclusion
∂∆n+1 ⊂ ∂∆n+1+m. The homology class represented by the map f is also
represented by the composition with this inclusion, (W,∂W ) −→ (ΩJr−j(p,U∪
m{φ}), ∂∆n+1+m). Further, the functor and natural transformation W (∗)
and F constructed above for f also gives the composition. The point is that
by this construction we can adjust n to be arbitrarily large. In particular
we can assume n > 2j.

There is a natural transformation of topological functors on ∂∆n+1, from
W (∗) to Dn(∗). This is constructed by induction downwards on dimensions
of simplices, using collars of boundaries in W (∗) and the contractibility of
Dn(∗). Further for each σ this can be arranged to be an embedding with
natural trivial normal bundle W (σ) × Dn−j ⊂ Dn(σ). Again we proceed
downwards on dimension of σ, using the facts that the dimension of Dn(σ)
is greater than twice that of W (σ). The triviality of the normal bundle
comes from the fact that W (σ) has trivial normal bundle in Sj .
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Next we use the Ω-spectrum structure

ΩJr−j(p
−1(∩σ)) ∼ maps0(Dn−j ,ΩJr−n(p−1(∩σ))).

Here we are using maps0 to indicate maps of the disk which take the
boundary to the basepoint; the (n− j)-fold loop space. The adjoints of the
maps W (σ) −→ maps0(Dn−j , ΩJr−n(p−1(∩σ))) define natural maps W (σ)×
Dn−j −→ ΩJr−n(p−1(∩σ)).

These maps take W (σ)×∂Dn−j ∪∂αW (σ)×Dn−j to the basepoint. But
this is the interface between the embedding in Dn(σ) and its complement, so
these extend by the basepoint on the complement to give maps F̂ : Dn(σ) −→
ΩJr−n(p−1(∩σ)). These form a natural transformation of the type equivalent
to a cycle, so if we show these extended maps represent the same homology
class as f then the proof is complete.

Let Sj ×Dn−j ⊂ Sn denote the standard embedding. Part of the direct
limit used to define homology is the suspension operation: composition with
the spectrum structure map

Sj −→ ΩJr−j(p,U)/∂∆n+1 −→ maps0(Dn−j ,ΩJr−n(p,U))/∂∆n+1

followed by adjunction to Sj × Dn−j −→ ΩJr−n(p,U)/∂∆n+1, extended by
the point map to give f̃ : Sn −→ ΩJr−n(p,U)/∂∆n+1. Since this is part of the
limit, the maps f and f̃ represent the same homology class.

Recall that the realization of the functor W (∗) is Sj , and the realization
of Dn(∗) gives Sn. The embeddings W (σ) × Dn−j ⊂ Dn(σ) thus realize
to give an embedding Sj × Dn−j ⊂ Sn. Since n > 2j this embedding is
isotopic to the standard embedding. The adjunction construction on the
functor level realizes to give the adjunction of maps. Therefore the isotopy
between the embeddings defines a homotopy from ‖F̂‖ to f̃ .

This represents the homology class of f by the realization of a transfor-
mation from the functor Dn(∗), and therefore completes the proof of the
representation theorem. ¤

6: Examples

A few of the main examples of bordism-type theories are described here,
along with their special features. In section 6.1 the prototype examples of
manifolds are described. Then in 6.2 these are extended to functors from
spaces to bordism-type theories, by including a map in the data. From these
the general machinery developed earlier gives bordism spectra, functor-
coefficient homology, and assembly maps.
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Applying the representation theorem gives manifold cycles which rep-
resent homology classes in these theories. Cycles are identified with maps
transverse to dual cones, so the total assembly is seen to be just a matter
of forgetting that a map is transverse. The fact that maps of manifolds can
be made transverse to bicollared subsets is then used to reverse this: an
arbitrary map can be made transverse to dual cones, thus can be realized
as a cycle. This shows that assembly maps are isomorphisms for these cat-
egories. This is an analog of the classical Pontrjagin-Thom theorem which
asserts that manifold bordism is a homology theory with coefficients the
appropriate Thom spectra.

The second class of examples are constructed from chain complexes. The
Poincaré chain complexes developed by Mishchenko, Ranicki, Weiss, and
others fit into this framework, giving assembly maps described by glueing
cycles. This is related to the papers of Ranicki [20] and Weiss [26] on alge-
braic assemblies.

6.1 Manifolds

We begin with the definition of manifold A-ads, adding precision to the
sketch in 3.1. Let SM denote one of the categories of oriented manifolds,
TOP, DIFF or PL.

The definition is inductive in the number of elements in A, or equivalently
after reindexing, the number of nonempty faces. To begin the induction,
suppose A is empty and define an A-ad to be a compact oriented SM
manifold without boundary. Define the involution by letting −M be the
same manifold with the opposite orientation. The basepoint is the empty
manifold φ.

An -ad has an underlying manifold (forgetting the face structure) which
for the purposes of the definition we denote by |M |. If A is empty define
|M | = M .

Now suppose -ads with k faces have been defined, and A has k + 1 ele-
ments. Then a manifold A-ad is a compact oriented manifold with boundary
|M | together with an (A− a)-ad ∂aM for each a ∈ A such that

(1) |∂aM | ⊂ ∂M as an oriented codimension 0 submanifold, and ∪a|∂aM |
= ∂M ,

(2) if a 6= b then |∂a∂bM | = |∂aM | ∩ |∂bM |, and further
(3) ∂a∂bM = −∂b∂bM as (A− a− b)-ads.

The involution−M is defined to have underlying manifold |M | with opposite
orientation, and face structure ∂a(−M) = −∂aM .

By induction this defines A-ads for all finite A. If A is infinite then an
A-ad is defined to be a B-ad for some finite subset B ⊂ A, and ∂aM = φ if
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a /∈ B.
A manifold -ad has dimension n if its underlying manifold has dimension

n. In the notation of section 3 this completes the definition of classes SMn
A,

of A-ads of dimension n. These objects can be reindexed via an injection
θ : A −→ B simply by defining ∂θ(a)`θM = ∂aM , and ∂b`θM = φ if b is not
in the image of θ.

This definition needs to be refined in the smooth category. Strictly speak-
ing we need manifolds with “corners” so that three or more can fit together
around lower-dimensional face to give a smooth structure. The iterated
codimension-1 approach used here can be made to work in the smooth cat-
egory using the “straightening the angle” device to change face angles when
necessary. We have chosen this approach because it requires less detail on
the structure of cone complexes, and it emphasizes that only the simplest
type of transversality—to trivial 1-dimensional bundles —is needed. The
more direct approach would be required if we were considering more rigid
objects, like manifolds with a Riemannian metric, or a conformal or affine
structure.

We briefly describe the more direct approach, which gives a technically
better way to approach the topic in any category. The basic idea is to con-
sider -ads as objects modeled on specific examples of -ads, just as manifolds
with boundary are modeled on disks.

To get an appropriate model suppose A is a collection of points in Rn

equidistant from each other (so the number of points is no greater than
n + 1). Let Ra denote the points in the space whose distance from a is less
than or equal to the distance to the other points. This has faces Ra ∩ Rb

lying in the (n − 1)-plane orthogonal to the center of the edges joining a
and b. Similarly an iterated intersection ∩a∈SRa lies in the affine subspace
orthogonal to the center of the simplex spanned by S.

A smooth manifold -ad of dimension n should have coordinate charts
modeled on open sets in some Ra, so that faces in the -ad correspond to
faces of Ra. The model establishes particular angles at which faces meet.
This particular model is chosen so that when pieces of a Kan cycle of smooth
-ads are glued together the result has an obvious natural smooth structure.

Lemma. The collections SMn
A together with the reindexing operations

form a bordism-type theory.

Proof. The reindexing hypothesis is clear, that reindexing defines a bijection
from SMn

A to {M ∈ SMn
B | ∂b = φ if b /∈ θ(A)}.

The other thing to check is the Kan condition. Suppose N : (A − a) −→
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SM is a Kan cycle, in the sense of 3.2. Let ∪bN(b) denote the union of
these, then this is a manifold (assuming the interiors are disjoint; see the
appendix) with boundary ∪b∂aN(b). The fact it is a manifold can be seen
by inductively adding one piece at a time to the union, and observing that
the union is over codimension 0 submanifolds of the boundary. Or, thinking
of the pieces N(b) as locally modeled on convex regions Rb ⊂ Rn as above,
then the union is a manifold because the union of the model regions is a
manifold.

We define an A-ad M of dimension n + 1 by: the underlying manifold is
∪bN(b)×I, and the faces are ∂bM = N(b)×{0} for b 6= a. Finally ∂aM has
underlying manifold (∪N)×{1}∪ ∂(∪N)× I. The face structure of ∂aM is
specified by ∂b∂aM = ∂aN(b)× {0}.

This A-ad satisfies the conclusion of the Kan condition, so the SM are
bordism-type theories. ¤

The bordism groups associated to these theories by 3.3 are exactly the
classical manifold bordism groups (see [23]). The bordism spectrum of 3.4
is similarly homotopy equivalent to the Thom spectrum, whose homotopy
groups are identified with bordism groups by the Pontrjagin-Thom con-
struction.

6.2 Manifolds over spaces

We augment the construction above with a map to a space, to obtain a
(bordism-type theory) valued functor. Then we show that assembly maps
in the associated homology theory are isomorphisms.

If SM is a category of oriented manifolds as in the previous section,
and X is a topological space, then define SMn

A(X) to be the collection of
(M, f), where M is an n-dimensional A-ads in SM, and f : M −→ X. Define
∂a(M, f) to be (∂aM,f |∂aM), and define the involution and reindexing
using these operations on M , without changing f .

6.2A Lemma. The collections SMn
A(X) together with these operations

are bordism-type theories, natural in X. The resulting (bordism-type
theory)-valued functors of spaces are homotopy invariant, in the sense of 3.5.

Proof. The only part of the bordism-type theory structure which might need
comment is the Kan condition. Since the maps are part of the structure,
the maps on pieces of a Kan cycle N fit together to define a map on the
union used in the previous proof, ∪bN(b) −→ X. A suitable map M −→ X
for the solution to the problem is obtained by projecting on the first factor
M = ∪bN(b)× I −→ ∪bN(b), and composing with the map on the union.
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To check the homotopy invariance we use the criterion in Lemma 3.5B
(3). Also, rather than general homotopy equivalences it is sufficient to check
invariance under inclusions Y ⊂ X which are deformation retracts. (Because
both spaces in a homotopy equivalence embed as deformation retracts in a
mapping cylinder.)

Suppose, then, that X deformation retracts to Y by a deformation H : X×
I −→ X. Suppose M is a [0]-ad in SM(X), so a pair (M, f) with M a mani-
fold with boundary, which is the face ∂0M , and f/ : M −→ X. Suppose ∂0M
comes from SM(Y ), which means f(∂M) ⊂ Y . We deform M into SM(Y )
rel ∂0M . Define W = M × I as a [1]-ad with ∂1W = M ×{0} and ∂0W the
rest of the boundary. Define a map to X by H(f × id). Then since H is a
deformation retraction the restriction of this to M × {0} is f , and the rest
of the boundary maps into Y . Therefore ∂0W is an element of SM(Y ), as
required. ¤

According to Corollary 3.5C the bordism spectra of these theories de-
fine homotopy invariant spectrum-valued functors of spaces. The notation
established in Section 3 for these spectra is ΩSM(X). The constructions of
section 2 define homology with coefficients in these functors.

6.2 B Proposition. Suppose SM is one of the manifold theory func-
tors defined above, and p : E −→ X is fiber homotopy equivalent to the
realization of a simplicial map. Then the assembly Hn(X; ΩSM(p)) −→
Hn(pt, ΩSM(E)) = ΩSM

n (E) is an isomorphism.

This is a version of the classical result that bordism groups form a ho-
mology theory. It also identifies the coefficient spectrum of the theory as
the bordism spectrum of a point, which is therefore equivalent to the ap-
propriate Thom spectrum.

Proof. The proof uses the transversality to dual cones referred to several
times, and here we describe the process in some detail. There are three stages
to the discussion: first define the dual cone decomposition and transversality
to it, second observe that manifold cycles are exactly manifolds transverse to
the dual cones, and finally show that any manifold can be made transverse.

Suppose K is a simplicial complex. Take the first barycentric subdivision
of the realization. If σ is a simplex of K define the dual D(σ) to be the
union of all simplices of the subdivision which intersect σ in exactly the
barycenter. The dual of a vertex is the closure of the star used in 1.5.

It is not hard to see (eg. in [6]) that

(1) D(σ) is the cone on ∪D(τ), where the union is over τ which contain
σ as a face, and
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(2) the boundary of D(σ) is bicollared in the boundary of D(∂iσ) (or
in ‖K‖ if σ is a vertex).

(3) the boundary of D(σ) is naturally equivalent as a union of cones to
the dual cone decomposition of the link of σ.

For example we give a picture of a complex K and its dual cones:

A little more information about the collaring in (2) is necessary. ∂D(σ)
separates ∂D(∂iσ) (or |K| if σ is a vertex) into two pieces: the cone and
the exterior. There is an obvious collar on the cone side given by the cone
parameter. On the outside the collar is also radial. In consequence it re-
spects intersections with other cones: if ∂D(σ) ∩ D(τ) = ∂D(τ) then the
intersection of D(τ) with the collar is a collar on ∂D(τ). Further, the collar
mapping is transverse to the interior of D(τ).

Now if M is a manifold then we say f : M −→ |K| is transverse to the
cone structure (or “trans-simplicial” [6]) if for each σ the restriction of f
to f−1(D(∂iσ)) −→ D(∂iσ) (or −→ |K| if σ is a vertex) is transverse to the
bicollared subset ∂D(σ).

This should be understood inductively: if v is a vertex then f is transverse
to the bicollared subset ∂D(v) ⊂ K. Therefore f−1(∂D(v)) −→ ∂D(v) is a
manifold. Next, if τ is an edge with vertex v then f−1(∂D(v)) is transverse to
the bicollared subset ∂D(τ) ⊂ ∂D(v), and so on. Note this is all codimension
1 transversality (to trivial line bundles) so no sophisticated theory of normal
bundles is necessary.

Finally some technical adjustments should be made in the smooth case,
along the lines of the comments following the definition of -ads. Namely,
rather than iterated codimension 1 situations the local structure around
∂D(σ) should be recognized as a product with some Rs, which the other
cones intersect in the pattern described in the earlier comment. Smooth
transversality to this gives -ads with face structure with the correct angles,
etc.

The next step identifies cycles and transverse maps as being essentially
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the same. More precisely we show a transverse map naturally determines a
cycle, and that any cycle is homotopic to one obtained this way.

6.2C Lemma. Suppose p : |E| −→ |K| is the realization of a simplicial map,
and f : M −→ |E| is a map such that pf is transverse to the dual cones in
|K|. Then the function σ 7→ pf−1(D(σ)) defines an SM cycle in E in the
inverse of the star cover of |K|. Conversely, any such cycle is homotopic to
one obtained in this way.

There is an important space version of this, namely there is a ∆-set,
and even a bordism-type theory, of transverse maps defined similarly to
the cycle theory in 4.4. In this language the lemma asserts that there is a
natural inclusion of theories from the transverse maps into cycles, and the
corresponding inclusion of bordism spectra is a deformation retraction.

Proof. Recall that a cycle is a function on the nerve of the cover, and the
nerve of the star cover is K. The cover itself is indexed by the vertices
of K, which we denote K0. Similarly denote the vertices of σ by σ0, then
the vertices of K not in σ are K0 − σ0. With this notation the definition
4.2 becomes: a ΩSM-cycle of dimension n in (|K|, p, stars(K)) is a function
N : K −→ ΩSM such that

(1) if σ is a k-simplex then N(σ) is an (n−k)-dimensional (K0−σ0)-ad
in ΩSM(p−1(σ)),

(2) let incl∗ : ΩSM(p−1(σ)) −→ ΩSM(p−1(bjσ)) denote the morphism
induced by the inclusion, then incl∗(N(σ)) = (−1)j∂Uj N(bjσ), and

(3) all but finitely many of the N(σ) are empty.

The function σ 7→ pf−1(D(σ)) does satisfy these conditions. If σ is a k-
simplex then pf−1(D(σ)) is the result of k layers of codimension-1 transver-
sality, so has codimension k in M , therefore dimension n− k. The faces of
pf−1(D(σ)) correspond to the faces of D(σ), therefore to simplices τ which
have σ as a face. Such simplices are determined by their vertices not in σ0,
so pf−1(D(σ)) is naturally a (K0−σ0)-ad. Finally, since M is compact only
finitely many of these inverse images can be nonempty.

Now for the converse suppose N is a cycle. N(σ) is a SM-ad with a map
to p−1(starσ), and its faces N(τ) map to subsets p−1(star τ) ⊂ p−1(star σ).
But the inclusions p−1(D(σ)) ⊂ p−1(starσ) are homotopy equivalences
(both spaces deformation retract to the inverse image of the barycenter
of σ). Therefore the reference maps are (coherently) homotopic to maps
N(σ) −→ p−1(D(σ)).

Next take the union of the pieces N(σ) to get a manifold M with a map
f : M −→ |E|. (See the proof of the Kan condition to see that this is a mani-
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fold. (M, f) also represents the total assembly of the cycle N , in ΩSM
n (|E|).)

This map has the property that the inverse images f−1(D(σ)) = N(σ) are
manifolds, but may need a little modification to actually be transverse.

Since p : |E| −→ |K| is transverse to the dual cones, the inverse image
p−1(∂D(σ)) is collared in p−1(D(σ)). But N(∂σ) = fp−1(∂D(σ)) is the
boundary of the manifold fp−1(D(σ)) so is also collared. Thus the map
from the second to the first can be change by homotopy rel boundary to
preserve collars. f is then “transverse on one side” to p−1(∂D(σ)).

To arrange transversality use this construction inductively beginning with
the largest simplices (smallest dual cones) over which N is nonempty. Sup-
pose S is a collection of cones, so that for each D(σ) ∈ S the map

pf−1(∂D(σ)) −→ p−1(∂D(σ))

is transverse to the inverse images of the cones in ∂D(σ). Change f rel
all these boundaries so that it preserves collars of boundaries of D(τ) for
D(τ) ∈ S. Then f is transverse with respect to the larger collection obtained
by adding to S the c ones whose boundaries lie in S.

In the smooth category a little more precision is appropriate. The interior
of each cone in |K|, thus the inverses in |E|, have neighborhoods canonically
isomorphic to the cone crossed with one of the smooth models described in
6.1. Neighborhoods of pieces of cycles also have such structures. Rather
than working with collars inductively one works directly with the models,
arranging the maps to be the identity on the model coordinate near the
center stratum. ¤

Since transverse maps are the same as cycles, we can complete the proof
of the proposition by showing that any map f : M −→ E with M a manifold,
is homotopic to one such that pf is transverse to the dual cones in |K|.

The basic idea is that since the boundaries of duals of vertices are bicol-
lared in |K|, ordinary transversality can be used to make f transverse to
them. The inverse image f−1(∂D(v)) −→ ∂D(v) is again a map of a mani-
fold to a complex with dual cones, but the dimension (of both the manifold
and the complex) is smaller. Therefore this serves as the induction step in
obtaining transversality by induction on dimension.

In more detail first note that since p : |E| −→ |K| is transverse to the dual
cones, the inverse images p−1(∂D(σ)) have the same collaring properties
as the boundaries themselves. Next suppose f is transverse over an open
set U ⊂ |K|, and let v be a vertex. Then there is a homotopy fixed over
a closed set slightly smaller than U to a new f which is also transverse to
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p−1(∂D(v)). Then pf−1(∂D(v)) −→ p−1(∂D(v)) is a map of a manifold to a
complex over the dual cone decomposition of the link of v.

By induction on dimension we can assume this is homotopic, fixed over
a closed set slightly smaller than U ∩ ∂D(v), to a map transverse to the
inverse images of the cones. Use this homotopy to modify f to a map which
restricts to the new one on the inverse image. Since the collar on p−1(∂D(v))
is transverse to the inverse images of the other cones, this new f is transverse
to all the cones over a neighborhood of ∂D(v). Add this to the set U . By
induction the links of all vertices of K can be added to U , at which point f
is transverse to all cones.

This completes the proof of Proposition 6.2B. ¤

6.3 Chain complexes

A chain complex together with a chain equivalence with its dual serves as
an algebraic analog of a manifold. This idea and elaborations have been
developed by Mishchenko, Ranicki, Weiss, and others as a powerful tool for
the investigation of surgery theory.

Assembly maps have been important in the algebraic theory: we mention
particularly the total surgery obstruction of Ranicki [19], [20] which lies in
a fiber of an assembly map, and the visible theory of Weiss [26], for which
an assembly map is an isomorphism and provides a calculation.

In this section we describe the constructions of Ranicki and Weiss, roughly
and with little detail, and relate them to the approach taken in this paper.
Specifically the first subsection describes the theory, and the way in which
cycles appear in it. Section 6.3B describes how chain A-ads are defined,
thereby giving bordism-type theories to which this paper applies. Then
6.3C extends additive and algebraic bordism categories to be functors of
spaces, thereby defining (bordism-type theory)-valued functors. This leads
to functor-coefficient assembly maps, etc. resulting from the general the-
ory. Finally in 3.6D there are some remarks about an analog for “bounded”
chain complexes over a metric space.

6.3A Ranicki’s construction

These constructions take place in an additive category, rather than the usual
setting of modules over a ring. There are substantial benefits to working in
this generality, as will be pointed out later.

An algebraic bordism category Λ is defined by Ranicki [20, §3] to be a
triple Λ = (A,B,C). In this A is an additive category with chain duality [20,
1.1]: the model is the category of modules over a commutative ring, with the
functor which takes a module to its hom dual. (Make this a “chain” duality
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by thinking of M∗ as a very short chain complex.) C ⊂ B are subcategories
of the chain complexes in A. The models for these are: B is finitely generated
free chain complexes, with morphisms chain homotopy equivalences, and C
is the full subcategory of contractible complexes.

We describe the way this data is used. Consider complexes from B to-
gether with a duality structure, roughly a chain map C −→ C∗, whose map-
ping cone is in C. Depending on the type of duality structure used one gets
symmetric or quadratic Poincaré complexes, with bordism groups denoted
by Ln(Λ) and Ln(Λ). Adjusting B gives variations: finitely generated projec-
tive complexes gives the Lp

n groups, finitely generated free with homotopy
equivalences the Lh

n, and free based complexes with simple equivalences
gives Ls

n. In all these cases C consists of the contractible complexes. Other
variations are obtained by changing this: contractible over some other ring
gives the Cappell-Shaneson Γ-groups, and C = B gives the “normal” bor-
dism groups.

Ranicki’s next step is to construct new bordism categories Λ∗(K) and
Λ∗(K) depending on the original bordism category and a simplicial com-
plex K ([20, §5]). The two versions, distinguished by the position of the ∗,
correspond to cycles and cocycles in K. Applying the previous construction
gives symmetric or quadratic Poincaré objects in these categories. These, it
turns out, represent homology or cohomology classes of K , with coefficients
in an appropriate spectrum L(Λ).

When Λ is the bordism category of modules over a ring R, then a glue-
ing construction called “universal assembly” defines a morphism from the
bordism category Λ∗(K) to the bordism category of modules over the ring
R[π1K]. Naturality then gives morphisms of L-groups,

L(Λ∗(K)) −→ L(R[π1K]).

Using the identification of the L-groups of Λ∗(K) as homology then gives
an assembly map

Hn(|K|;L(R)) −→ Ln(R[π1|K|]).

6.3B Poincaré chain -ads

In order to engage the machinery of this paper in the chain complex con-
text we need -ads, and there are two ways to approach this. The low-tech
way is to observe that Poincaré pairs are defined, and appropriate glueings
are possible. Thus a definition of Λ-Poincaré A-ads can be pieced together
inductively as was done with manifolds in 6.1. The high-tech approach is to
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use Ranicki’s machinery, and obtain n-ads of dimension m as Poincaré ob-
jects of dimension m−n in the algebraic bordism category associated to the
n-simplex, Λ∗(∆n) (see [20, 5.4]). Then reindex the faces to get arbitrary
A-ads.

These -ads can be reindexed in obvious ways, and they satisfy the Kan
condition (Weiss [26,1.10]), so they form bordism-type theories in the sense
of §3. Denote by L∗(Λ) and L∗(Λ) respectively the bordism-type theory
of quadratic and symmetric -ads in Λ. There are then bordism spectra,
homology, cycles, etc. associated to this theory. We extend this to a functor
of spaces to get a full version in the next section, but first explain how this
is related to the Ranicki constructions.

The theory of Poincaré chain complexes may be thought of as being ob-
tained in three stages: first one has the category of modules over a ring
R, with the duality functor which sends a module to its dual. Next one
forms the category of chain complexes over R, again with a duality opera-
tion. Finally symmetric, quadratic, etc. Poincaré complexes are obtained as
chain complexes together with some sort of elaboration of a chain homotopy
equivalence with the dual complex. The L-groups appear as bordism groups
of these Poincaré complexes.

We could think of the formation of cycles as a fourth stage in this devel-
opment, using Poincaré chain A-ads. However the cycle construction “com-
mutes” with the other constructions. If A is an additive category one can
basically think of Ranicki’s category A∗(K) as the category of cycles of
A-objects. Chain complexes in this cycle category are cycles of A-chain
complexes. The duality operation becomes a little more complex, which is
why “chain duality” is introduced [20, 1.1]. Finally given a bordism cate-
gory the formal approach defines Poincaré objects in the chains-of-cycles
category, and these are exactly cycles of Poincaré complexes. Therefore by
doing the Poincaré chain constructions in general additive categories with
chain duality, cycles are obtained as a special case.

From our point of view the key to being able to see assemblies by this
approach is the functoriality of glueing. In the bordism-type theories of
section 3, pieces are glued together by application of the Kan condition: the
result is known to exist but not naturally or canonically. In the algebra it is
given by a natural formula (for manifolds too; see the proof of the lemma
in 6.1). Thus it works out that (in a sense) glueings of modules lead to
glueings of chain complexes, and glueings of the chain complexes underlying
Poincaré complexes lead to glueings of the Poincaré complexes. Because of
this, assemblies of Poincaré complexes can be obtained by naturality from
module-level assemblies.



Assembly maps in bordism-type theories 263

6.3C Categories over spaces

Our machinery is set up to produce functor-coefficient homology and as-
semblies from functors of spaces. Accordingly we extend the algebra along
the lines of [17] to incorporate a space.

Suppose A is an additive category, and X a space. Define a new additive
category AX with objects (M, S, i), where

(1) S is a set, and i : S −→ X a function which is locally finite,
(2) M : S −→ objectsA is a function.

Morphisms in this category are equivalence classes of paths in X together
with morphisms in A. Specifically a morphism (M, S, i) −→ (M ′, S′, i′) is a
collection (ρj , 0j , 1j , fj), where

(1) 0j ∈ S, 1j ∈ S′, and ρj is a path in X from i(0j) to i′(1j),
(2) fj : M(0j) −→ M ′(1j) is a morphism in A, and
(3) j runs over some index set, and each elem ent of S (respectively S′)

occurs only finitely many times as 0j , (respectively 1j).

The equivalence relation on morphisms is generated by:

(1) the paths can be changed by homotopy in X holding the ends fixed,
(2) if for indices j, k the endpoints and paths are the same, then

the data for these indices can be replaced in the collection by
(ρj , 0j , 1j , fj + fk), and

(3) if fj = 0 then the datum (ρj , 0j , 1j , fj) can be deleted from the
collection.

For example, if R is a ring and A is the category of finitely generated
free R-modules, and X is compact, then AX is equivalent to the category
of free finitely generated R[π1X] modules [17].

If X is a space then at least for the standard choices of subcategories
B, C there are standard ways to lift to subcategories BX , CX of chain
complexes in the category AX . (We will not try to mechanize this in general).
Therefore given an appropriate algebraic bordism category Λ there is a
functor from the category of spaces to the category of algebraic bordism
categories; X 7→ ΛX . The definition of Poincaré -ads in an algebraic bordism
category functorially associates bordism-type theories L∗(ΛX) and L∗(ΛX),
as explained above.

This now makes contact with the earlier development. Applying the bor-
dism spectrum functor gives spectrum-valued functors X 7→ Ω(L∗(ΛX))
and X 7→ Ω(L∗(ΛX)). Denote these functors more compactly by LΛ

∗ (X)
and L∗Λ(X). Associated to these functors are functor coefficient homology,
assembly maps, etc. For example taking p : E −→ X to the point map gives
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the total assembly

H•(X;LΛ
∗ (p)) −→ LΛ

∗ (E)

(and similarly for the symmetric case L∗.)
The main theorems of this paper identify the functor-coefficient homol-

ogy as represented by cycles, and describe assembly maps in terms of glueing
cycles together. If p is the identity map of K then unraveling the definitions
shows that cycles over the star cover of |K| are the same as Poincaré objects
in Ranicki’s category Λ∗(K). Further the algebraic assembly described in
[20, §9] is the same as the glueing via the Kan condition used here, since
the algebraic assembly is the mechanism by which the Kan condition is ver-
ified. Putting these together, we see that the algebraic assembly of Ranicki
coincides with the constant coefficient spectrum assembly. More generally
the straightforward generalization of Ranicki’s construction to variable co-
efficients using the algebraic bordism categories Λp−1(∗) coincides with the
associated spectrum-functor assembly.

Weiss [26] shows that the assembly for “visible hyperquadratic” Poincaré
complexes is an isomorphism. These occur as the relative theory relating
quadratic and finite, or “visible” symmetric complexes. The isomorphism
theorem provides a calculation, particularly as the coefficient spectrum is
a product of Eilenberg-MacLane spectra of 8-torsion groups. It also has
important theoretical consequences for example in the structure of Ranicki’s
total surgery obstruction [20,§17].

6.3D Bounded algebra

Ferry and Pedersen [7] have described a bounded version of surgery, ex-
panding on analogous K-theory work by Pedersen and Weibel [13] , and
controlled surgery by Yamasaki [2]. The constructions in this section are so
formal that much of it can be applied to the bounded theory.

The constructions of categories over spaces in the previous section can
easily be modified to give additive categories of bounded homomorphisms
over metric spaces, see [17]. Then using the machinery of Ranicki one can
consider chain complexes in these categories. Bordism groups of Poincaré
quadratic chain complexes in these categories give the obstruction groups for
bounded surgery. These Poincaré complexes also define algebraic bordism
categories, so bordism-type theories, cycles, assemblies, etc.

In some significant special cases an assembly map from homology into
bounded surgery groups is an isomorphism. This occurs for the L−∞ over
control space an open cone. On the chain complex level it is proved using
a transversality theorem of Yamasaki [28], beginning with a global object
and using transversality to divide it up into a cycle in exactly the same way
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as was done with manifolds in section 6.2. See also the second appendix in
[20].

6.4 An application to group actions

In this section we briefly sketch an application to the construction of PL
group actions, slightly reformulating work by Lowell Jones. We begin with
an outline of Jones’ construction, then use the machinery of this paper to
formulate the obstruction.

The problem is: given K ⊂ U a subcomplex of a PL manifold, and a
prime p, when is there a PL Z/p action on U with K as fixed set? This
breaks into two pieces: construction of an action on a neighborhood of K,
and the extension to the rest of U . Our focus is on the first part, so we will
assume U is a regular neighborhood of K. For the next step we note (see
6.4D, below) that a regular neighborhood is the “mapping cylinder” of a
PL manifold cycle over K. The problem is therefore to construct a free Z/p
action on such a cycle. More precisely, let M denote the cycle corresponding
to the boundary of the regular neighborhood. Suppose N is another manifold
cycle over K with a homomorphism from π1 of the assembly (glued up total
space) to Z/p, and suppose there is an isomorphism of cycles from M to
the associated Z/p cover N̂ of N . This gives an isomorphism of mapping
cylinders. The mapping cylinder of N̂ has an action of Z/p with fixed set
exactly K. Since the mapping cylinder of M is U this provides the desired
action on U .

This reformulates the problem to: construct a free Z/p action on a PL
manifold cycle M over K. The next step in Jones’ program is to construct
a homotopy action. This is a cycle of Poincaré spaces, together with a ho-
momorphism from π1 of the assembly to Z/p, and a homotopy equivalence
of cycles from M to the associated Z/p cover. There are obstructions to
this. The first come from Smith theory: K must be a mod p homology man-
ifold. The solution of the “homotopy fixed point conjecture” shows that
the remaining obstructions to finding a homotopy action are rational. Jones
avoids them by assuming that a PL action is already given on the cycle over
∂0K ⊂ K, and the rational homology H∗(K, ∂0K; Q) is trivial. This is a
very important special case, and under these conditions there is a unique
homotopy action on M extending the PL action given on ∂0M . Another
obstruction argument gives a normal structure on this Poincaré cycle. This
is a reduction of the stable normal bundle to the structure group PL, whose
Z/p cover agrees with the PL normal bundle of M .

6.4A The standard situation

The data is now close to a surgery situation. We have a Poincaré cycle X
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over K, together with a manifold structure on the restriction to ∂0K and a
PL structure on the stable normal bundle. There is a homomorphism from
the total fundamental group of X to Z/p, an equivalence of the Z/p cover
with a manifold cycle M , and a PL isomorphism of normal bundles covering
this equivalence. The problem is to extend the manifold structure over ∂0K
to a manifold structure on X with the specified normal bundle and Z/p
cover.

The objective is to extract an obstruction from this, whose vanishing
implies that there is a solution to the “problem” and therefore a Z/p action
on the cycle M .

We review some surgery theory. A “surgery problem” is a Poincaré space
Y with a manifold structure on part of it’s boundary, say ∂0Y , and an
extension of the PL normal bundle of ∂0Y to a PL bundle structure on the
stable normal bundle of Y . If we are given a homomorphism π′ → π then
the surgery obstruction group L(π, π′) is the bordism group of such surgery
problems together with homomorphisms

π1(∂1Y ) −−−−→ π′
y

y
π1(Y ) −−−−→ π

Here ∂1Y denotes the (closure of) the complement of ∂0Y in ∂Y . The
fundamental theorem of surgery states that if the obstruction is trivial in
L(π1Y, π1∂1Y ) (and the dimension is at least 6) then there is a “solution” to
the surgery problem: a manifold homotopy equivalent to Y with the given
∂0 and PL normal bundle.

We modify the definition of “surgery problem” to include the cover-
ing information in the standard situation. Suppose (A,B) is a pair with
a homomorphism ρ : π1A → Z/p. A “standard problem” over (A,B) is
a Poincaré triad (Y, ∂0Y, ∂1Y ) with ∂0Y a PL manifold, an extension of
the normal bundle of ∂0Y to a PL structure on the stable normal bun-
dle of Y , a map (Y, ∂1Y ) → (A,B), and a homotopy equivalence of triads
(M, ∂0M, ∂1M) → (Ŷ , ∂0Ŷ , ∂1Ŷ ). Here Ŷ is the Z/p cover of Y induced by
the homomorphism ρ, M is a PL manifold, the equivalence is a PL isomor-
phism on ∂0, and the resulting isomorphism of PL normal bundles over ∂0

extends to a PL isomorphism over Y refining the natural bundle homotopy
equivalence.

This is a lot of data, but it can be managed by recalling where it came
from. There is an empty standard problem, and it is straightforward—if
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tedious—to define ads of standard problems and verify that the Kan con-
dition is satisfied. This therefore forms a bordism-type theory which we
denote by L. This theory has bordism groups, spaces, etc. The bordism
spaces can be described in terms of traditional surgery problems. Recall that
ΩL(A, B, ρ) denotes the bordism space of standard problems over (A,B, ρ).
Then there is a homotopy fibration

ΩL(A,B, ρ) → L(A,B) → L(Â, B̂)

where (Â, B̂) is the cover induced by the homomorphism ρ, L is the surgery
space (the bordism space of surgery problems) and the second map is the
transfer. (The transfer is defined on the simplex level by taking induced
covers). As a consequence of this description the space ΩL is often called
“the fiber of the transfer.”

Now return to the standard situation in 6.4A. Assembling the cycle X
over K gives a map p : |X| → K. The rest of the data gives a cycle of “stan-
dard problems” mapping to |X|, subordinate to the cover of K by stars of
simplices. This cycle is constructed from the boundary of a regular neigh-
borhood in the original manifold M , so the dimension is m−1. Applying the
main theorem 4.2A identifies the homology class of this cycle as an element
in the functor-coefficient homology group defined in 2.3,

Hm−1(K, ∂0K; ΩL(p, star (K))).

In brief, this is a homology class with coefficients in the the “fiber of the
transfer.”

Again according to the main theorem this homology class vanishes if and
only if the cycle is homologous to the empty cycle. Applying the fundamental
theorem of surgery to a nullhomology shows that the original problem can
be “solved” and there is a Z/p action.

6.4B Vague Proposition. In the “standard situation” of 6.4A there is
an obstruction in the (m − 1)-dimensional homology of (K, ∂K) with co-
efficients in the fiber of the transfer, applied fiberwise to p : |X| → K, ie.
ΩL(p, star (K)). If the dimensions are sufficiently high then there is a Z/p
action on M with K as fixed set and link quotient in the quotient homotopic
to X, if and only if this homology class vanishes.

6.4C More precision

“Dimensions sufficiently high” means that no manifold encountered in the
cycle should have dimension less than 5. This happens if the codimension of
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K in M at least 6, and can be arranged if (K, ∂0K) is 6-connected. We have
neglected several issues in the discussion. One is orientation, though that
is easily incorporated by making the notation more complicated. A more
significant omission is discussion of simple homotopy issues. Since a PL
isomorphism is desired at the end, and this has to come from application of
the s-cobordism theorem, we want to work with Poincaré spaces, homotopy
equivalences, etc. with torsions lying in the kernel of the transfer to the
fundamental group of the fragments of the cycle M . This is only really a
problem if the embedding is “locally knotted,” and this can only happen in
codimensions 1 and 2.

In fact it is usual in this problem to assume that the embedding K ⊂ M
has codimension at least 4, so it is locally 1-connected. This simplifies the
situation a great deal: the coefficient functor becomes constant, and equal
to the fiber of the transfer Lh(Z/p) → L(1). The obstruction therefore lies
in an standard constant-coefficient homology group. In Jones’ treatment
the obstruction is not directly recognized as a homology class. Rather the
characteristic variety theorem is used to derive invariants from it, and these
derived classes are shown to characterize the obstruction and also define a
homology class. Directly recognizing the obstruction as a homology class
allows a simpler treatment of parts of the construction.

6.4D Cycles and regular neighborhoods

This section explains the equivalence between PL cycles and PL regular
neighborhoods. For more detail on this construction see Akin [1].

Suppose U is a regular neighborhood of a polyhedron K, and suppose
it is compact to avoid finiteness and subdivision problems. Then U can be
described as the mapping cylinder of a map ∂U → K which is simplicial with
respect to an appropriate triangulation. This map is transverse to the dual
cones of the triangulation of K, so it defines a function on the nerve of the
covering, as in 4.2. Assume in addition that U −K is a PL n-manifold, then
this function defines a PL manifold (n− 1)-cycle. This gives a construction
going from regular neighborhoods with U −K a manifold, to PL manifold
cycles over K. More precisely the output is a (K, id, star (K)) cycle in the
sense of 4.2.

There is a converse to this construction. If we begin with a PL manifold
cycle over the star cover of a triangulation of K then there is an associated
map from the pieces of the cycle to the dual cones. This is not well-defined,
but there is a standard construction which is well-defined up to PL cell-
like automorphisms of the cycle. The mapping cylinder of this map gives a
regular neighborhood U of K, with U−K a manifold, and this neighborhood
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is well-defined up to isomorphism rel K by the original cycle.
These constructions are inverses:

6.4E Proposition. Fix a triangulation of K in which stars of simplices
are contractible. These constructions give a bijection between isomorphism
classes of PL manifold cycles over the dual cells of the triangulation of K,
and isomorphism classes rel K of regular neighborhoods K ⊂ U with U−K
a manifold, and with embedding simplicial with respect to the triangulation.

A proof can be extracted from Akin [1] in a reasonably straightforward
way, though it is not stated explicitly. Here “isomorphism” of cycles means
the following: cycles are functions from the nerve of the star cover to PL
manifolds. Two such are isomorphic if for each simplex in the nerve there is a
PL isomorphism of the corresponding manifolds, and all these isomorphisms
commute with the boundary relations in the definition of a cycle. Note that
isomorphism is a much stronger relation than homology, and the associated
regular neighborhood is definitely not an invariant of the homology class of
the cycle.

The notion of “isomorphism” of cycles over K can be elaborated to allow
for subdivision of the triangulation. This gives a statement that isomorphism
classes of cycles correspond to isomorphism classes of regular neighborhoods,
with no reference to a particular triangulation. This refinement is not needed
here.
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