A GEOMETRIC FORMULATION OF
SURGERY

Frank Quinn

1. Motivation

Herc a theory of spaces is presented whose homotopy groups are the
surgery obstruction groups of Wall [7]. These ideas form part of a thesis
written at Princeton University in 1969 {3] and are similar to a treatment of
the simply connected case given by Rourke in [4]. To motivate such a con-
struction we begin with a problem such a space can be used to solve, or at
least characterize.

A general question in the study of manifolds is : Given a map f : M™ — N"
of compact manifolds, when is it homotopic to some particularly nice type
of map, given that some obviously necessary homotopy condition is satisfied.
An example is the theorem that, if n > m — 3 and M can be Poincaré
embedded in N (a homotopy condition), then fis homotopic to an embedding
of M in N. The question we pose here is the complementary one, namely if
m > n when is f homotopic to some sort of fibration of M over N.If m = n
this 1s essentially the problem of deforming a homotopy equivalence to an
isomorphism, which was considered by Sullivan in his thesis [6]. A partial
solution for N = S"and m > n + 5 is given by Casson in {2].

The obviously necessary homotopy information for this problem is:
make f into a fibration z : E - N with a homotopy equivalence h : M — E
and nh = f; then the fiber F of = must have the homotopy type of a finite
complex. In this case a spectral sequence argument shows that F must be a
Poincaré duality space, and that if V < N is a submanifold transversal
to f, then h: f (V) - n~ (V) is a degree one map. The normal bundles
of M, N, and V can be used to cover A f ~ (V) by a bundle map of the normal
bundle of f~!(V), and so we actually get a surgery map. Thus if we take a
triangulation of N and make f transversal to i1, we get a surgery problem
h:f Y% — n~ Y6*) over each simplex 6*e N. If this surgery problem is
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solvable over each simplex, then the solutions essentially make f into a
block fibration with fiber f~'(¢°) ~ n~'(¢"), i.e, a map f: M — N trans-
versal to a triangulation of N such that f ~ '(¢*) is isomorphic with = (¢”) x
ot o*e N.

Now we notice that if we were to define a simplicial set of surgery problems
with k-simplices surgery maps with the structure of '~ !(¢%) — 7~ (¢, call
it L,_,(F), the transversality construction gives a map N — L, _ (F). If
solvability correspond to null homotopy in L,,_(F), then this map must be
trivial for f to fiber. If the map is trivial, moreover, then (M, ) is homotopy
equivalent and normally cobordant to a map which is a block fibration, and
we are only one surgery obstruction away from a “‘solution” of the problem.

2. The L Spaces

Motivated, we turn to the definition and properties of the surgery spaces.
First, objects with the boundary structure of a k-simplex must be defined.
If A* is the convex closure of k + 1 independent ordered vertices (vo,..., U)
in a real linear space, then define ¢;,A* = convex closure of ({vg,.., v} — {v;}),
and for « < {0...,k}, let 8,A* = (M, &;A*. A topological n-ad is a space
together with n — 1 subspaces denoted (X ; dyX,..., ¢,_,X), or just X. Note
n denotes the number of things appearing between the parentheses. A
k-simplex A* has k + 1 faces, however, so a space with the boundary structure
of A* would actually have to be a k + 2-ad. For an n-ad X and « < {0,...,
n— 2}, let 8,X = (), &;X. CW n-ads are defined similarly, but something
more elaborate is required for manifolds and Poincaré complexes. A mani-
fold n-ad is a topological n-ad (M, doM...., ,-,M) which is a manifold
(topological, PL, or differentiable with corners on the boundary) with
¢;M codimension 0 submanifolds of the boundary, \_J};M = éM, any two
faces ¢;M and ¢, M intersect in a codimension 0 submanifold of their bound-
aries, and so on. Poincaré n-ads are finite complex n-ads with the homology
structure of a manifold n-ad; (K, UI ¢;K) is a Poincaré complex, as is each
face (¢,K, Um 0ij..K), and the fundamental classes are related by the
homology boundary map. A map of n-ads is just a face-preserving map of
the total spaces.

Now to define the surgery space. Let X be a topological n-ad, me Z, and
w:m X — Z, be a homomorphism. Define LE(X) or Li(X) as a A-set (see
[5], essentially a simplicial set without degeneracies) with k-simplices the
set of topological surgery maps of (k + n + 3)-ads of dimension m + k,
f:M — K, homotopy equivalence on the (k + 3)rd face (simple for L%,
and with a reference map h: K — X with the orientation homomorphism
m, X — Z, factoring through w and hify+4+;K)  ¢;X. The first k + 2
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boundaries of this object are its boundaries as a k-simplex of the set. The
(k + 3)rd face, where it is a homotopy equivalence, is the connection with
surgery, and all the rest of the faces are there to map into the faces of X.

To get a good theory, we must also assume the “vertices” are all disjoint
like those of A, ie., let o = {0,.., k} — {j} and B = {0,...k} — {I} for j # |,
then 0,(f, h) N 84(f, h) = . Comparison with chapter 9 of Wall [7] shows
T;L5(X) = Ljin(m X, W(X)). Where the last denotes the surgery obstruction
group, so we have in fact geometrically realized the obstruction groups.

The L spaces are functorial on the category of topological n-ads with
orientation homomorphism, natural maps being formed by composition.
This functor actually takes values in the category of abelian h-spaces and
homomorphisms, since a natural h-space structure is induced on L,(X) by
disjoint union, The empty surgery problem serves as an identity element for
this structure, and will be taken as base point in what follows.

L,.(X) is also an infinite loop space in a natural way. The natural inclusion
L.(X) = Q(L.,.- ((X), &) obtained by considering an object in the first space
as the image of a map of A! with the trivial triangulation into L,,_,(X) with
empty ends, is a homotopy equivalence. An inverse is given by taking the
disjoint union (over common boundaries) of the images of the simplices in a
map A! - L,,_,(X). In fact, since objects of negative dimension are empty
if m <0, L,(X) has only {(J} in its |m — l-skeleton. Thus for m < 0,
L,.- 1(X) is a classifying space B ).

The next basic property of L is the appearance of the long exact sequence
of a cofibration as the homotopy sequence of a fibration. First some nota-
tion must be established. If X is an n-ad, 0,X is naturally an (n — 1)-ad with
faces the intersections of 8;,X with the other faces of X. Another (n — 1)-ad
;X is formed by omitting d;X from the list of faces of X, and the natural
inclusion 8;X — ;X is a map of n-ads. Adding the empty set as a new jth
face makes §; an n-ad again, and gives a natural map of n-ads §;X — X.
The sequence ;X — 8;X — X is a cofibration sequence, and induces a
sequence of maps L,(0;X) — L (6;X) — L(X). This sequence can be con-
tinued both ways using the natural map which takes the jth boundary of
an object; J; : LX) — L,,—1(¢;X). The geometric analogue of Theorem 9.6
of [7] is that each successive pair of maps in this sequence is a homotopy
fibration. By a homotopy fibration we mean a pair of maps A &5 B & C
with a homotopy of the composite g o f to a point so that the induced map
of A into the fiber of g is a homotopy equivalence. In the above situation
the definition gives a canonical homotopy of any composite to a point map,
and Wall’s theorem that z; applied to the sequence of spaces gives a long
exact sequence is equivalent to the statement that the induced map of the
first space into the fiber of the second map induces isomorphisms of homo-
topy groups, and is thus a homotopy equivalence.
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Since ¢;X and 6;X are (n — 1)-ads, this result is very useful in obtaining
general n-ad results from the 1- or 2-ad case. As an example consider the
proposition that a map X -» Y of n-ads which is an isomorphism on funda-
mental groups induces a homotopy cquivalence L,(X) — L,(Y) of L spaces.
Write the diagram

Lm(0;X) = Lu(0;X) = Lu(X)
l l l
La(@;Y) = L,(8;Y) - L(Y).

If the proposition is true for (n — 1), then it follows for n by the 5-lemma.
In the 1-ad case (no faces) it is sufficient to consideramap f: X — K(n, X, 1) =
K. Let (M, X) be the mapping cylinder ; then the fibration sequence of the
sequence X — K — (M, X) reduces the problem to showing that Lo(M/, X)
is trivial. The homotopy groups x; j > 6 are zero by the surgery lemma
[7, 3.3]. For low dimensions we construct inverses for the homomorphisms
n;Lo(X) - 7;Lo(K) directly. In dimension 4 surgery can be used to correct
the fundamental group. In dimension 3 a surgery problem can be made an
isomorphism on a disk. Removing a neighborhood of a 1- or O-skeleton
respectively reduces the homology dimension of the result to where obstrug-
tion theory can be used to pull the reference map into K back to X.

The same technique establishes the general case of the periodicity theorem
from the 1-ad case. The periodicity theorem states that the map x
CP?: L,(X) - L, ;4(X) which takes each surgery problem M — Y - X to
the problem M x CP? - Y x CP? - X, is a homotopy equivalence if
m > 5. The 1-ad case is essentially a product formula for the algebraic
characterization of the L groups given in [7, chaps. 5-8]. (This is the only
place the algebra is necessary in this treatment.)

Next a construction generalizing the periodicity map is given which gives
an example of a general philosophical point—that simple operations on
spaces can correspond to very complicated operations on groups. Suppose
M™ is a polyhedron which is a closed topological manifold, and form the
A-set mapping space A(M, L(X)). Taking disjoint union (over common
faces) of the image of a map M — LX) produces by classical gluing in the
domain and a spectral sequence in the range, a degree 1 normal map of a
manifold to a Poincaré complex. A reference map to M x X can also be
asscmbled, but many different orientation homomorphisms may be cn-
countered. Choose some w:n, (M x X) - Z, which commutes with pro-
jection on X and the orientation homomorphism of X, and lct this be
the orientation homomorphism of M x X. If A(M, L, (X)), denotes the
path components whose assembled images have orientation homo-
morphism commuting with w, wc¢ have constructed a map A(M, L{X)),
S L, M x X).
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L,.« {M x X) depends only on n,(M x X), so most of the structures of
AM, Li(X)),, is irrelevant. This suggests investigating the case where M is
a manifold K(G, 1). We restrict ourselves to a special case where most of the
details have already been worked out [8].

A P-group of rank 0 is the trivial group, and inductively a P-group of
rank r > 0isa group G which fits in an exactsequence | - G' > G - Z - 0,
where G’ is a P-group of rank r — 1. According to [8] there is a manifold
K(G, 1), Mg, for every P-group G. This manifold is (essentially) a fibration
over S! with fiber Mg.. The result is that if X is an n-ad with Wh(z,(X) x
G') = 0 for every P-group G’ of rank < r, and G is a P-group of rank r, then
the map A(Mg, Li(X)), — L+ (X x Mg) 1s a homotopy equivalence for
k—m—nZ>=3.

To construct a homotopy inverse by induction over the skeleta of
L. (X x M), we must take a surgery problem N —» ¥ — (X x Mg) x A%,
and a triangulation of M so that on the boundary [i.e., over X x Mg x
A(A%)] the inverse images of thc triangulation split the boundary of the
problem into many smaller surgery probicms, and extend this splitting over
the inside. A little surgery to correct fundamental groups and an application
of the Farrell-Hsiang splitting theorem to the composition Y - (X x Mg) —
S! splits it so that the resulting split object and its new boundary are objects
over X x M. Induction on the rank of G allows us to assume that the
proposttion is true for ', so the desired decomposition of the G object is
obtained by decomposing the split object over M.

The Whitchead group hypothesis enters in the application of the Farrell-
Hsiang theorem, which can also be applied to get a more complicated result
with no such conditions. This proposition is essentially a generalization of
the calculation of L(G x Z)by J. Shaneson. Substitution of a recent improved
version of the splitting theorem due to S. Cappell would allow enlargement
of the class of P-groups to allow cxicnsions by fundamental groups of
closed 2-manifolds. The Whitehead group hypothesis is satisfied by any
P-group (even in the extended sense), and free groups, so in particular we
have L, , (G) =~ A(Mg, Li(0)), kK = 5.

Next we consider the transfer map. Suppose = is a finite group, X an n-ad,
and p: X — K(n, 1) a map. The induced covering spacc X — X is also an
n-ad with orientation homomorphism to Z, induced by onc from X. The
transfer T,: LX) — LX) is defined by taking the induced cover over
each object in L;(X). Since these covers are finite, the result will be an object
in LX). The transfer is clearly natural on the category of n-ads with a
homomorphism 7, X — 7 to a finite group.

At the present time all that seems to be known about the transfer is a
calculation for Z" — (Z/PZ)",and Wall’s algebraic result that T, : Ls(Z,) -»
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Ls(0) is onto in homotopy. We generalize the first result to P-groups, in our
geometric setting.

Supposep; : ;M — n,p, : ;X — #', mand #’ finite groups. Let o : M - M
and X - X be the corresponding coverings, then

A(Ma Lk(X))w—) Lm+k(X X M)

JAe. T, 1%
AM, L{ X)), — Lol X x M)

is commutative. In particular, if M = Mg, G a P-group, p, is onto, and
7, X, ny X satisfy the Whitehead group requirements, then the horizontal
arrows are homotopy equivalences, giving a calculation of T, ,, in terms
of T,, and mapping spaces.

Exact sequence arguments show that an extension of a P-group by a
P-group is again a P-group (the ranks add), and a normal subgroup of
finite index in a P-group is a' P-group (of the same rank). This shows that if
M = Mg, G = n,(M) is also a P-group, and in fact M; = M.

3. Surgery

Having defined the L spaces to realize the L groups, we now define spaces
of homotopy structures, and of normal maps to obtain a fibration realizing
the structure sequence [6, chap. 10].

Suppose X is a Poincaré n-ad of dimension m, and that 8, X is a manifold
(n — 1)-ad in the category ¥ = (diff, PL, or top). Define A-sets S&(X) and
S%(X) with k-simplices homotopy equivalences (simple for §) M — X x A*
of (n + k + 2)-ads with M e ¥, and 8, ;M — 3o X x A* a €-isomorphism.
Under the same conditions define NM(X) as the A-set with k-simplices
normal degree one maps of (n + k + 2)-ads M — X x A* which is a %-
isomorphism g, , ;M — 3oX x Ak,

Since a homotopy equivalence is a normal map there is a natural forgetful
map S(X) —» NM(X) (sub and superscripts are omitted when a statement
holds for all € and s or h). Moreover since a $-isomorphism is a simple
homotopy equivalence, there is a natural map NM(X) — L,(6,X). The
sequence S(X) - NM(X) - L, (6oX) will turn out to be a fibration for
m + n > 4, and thus S(X) - NM(X) will be a homotopy principal Q(L,.(6¢X))-
fibration. To establish that it is a fibration without reference to the algebra
involved in Wall’s proof, we construct directly the action of Lm+,(5oX ) >
L,.(60X)) on S(X).

A construction like that of [7, 10.4] gives the general n-ad case from the

“absolute” case X of a 2-ad. Thus suppose X is a 2-ad, and construct a
homotopy of the projection L, , ;(3,X) x S(X) — L, (50X) to a map such
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that the image of a k-simplex (N***¥*! 5 ¥ 5, X, M™'¥ 5 X x A¥ is an
object N' = X x I x A*¥ - §,X which is a normal cobordism from M —
X x {0} x A* to a homotopy equivalence M’ — X x {1} x A, rel 0X x
I x A*, The action L,,, (6oX) x S(X) — S(X) will then be given by taking
the second homotopy equivalence in the image of each simplex. The con-
struction will also show that any two actions gotten this way are homotopic.

Suppose as an induction step that the projection is homotopic to a map
which has the desired property on the k — 1 skeleton. If the image of each
k-simplex has a cobordism to an object of the desired type keeping the
faces fixed, then these cobordisms can easily be used to define a homotopy of
the map to a new one keeping the k — 1 skeleton fixed, and having the desired
property on the k-skeleton. Thus we show how to improve a k-simplex.

Since faces are to be held fixed, we can forget the face structure of the
objects, replacing A* by the ball B*. Recording the data, the k-simplex of
S(X) is a homotopy equivalence

(M™% 0oM, 0, M) » (X x B*; X x $¥1,0X x BY

which is an isomorphism on the last face. The image of it and some k-simplex
of L, +1(8,X) is a surgery map of 4-ads,

(N"*5* 180N 19, N, 0,N) - (Y;0,Y, ¢, Y, 8,Y)

which is a homotopy equivalence on ¢,, an isomorphism on ¢;N ~ X x
I x B" on &y, its boundary as a k-simplex in L,,. (5,X), it has the structure
of a normal map

(60N '; 640,13N, 010,23N; 010,2N) = (80 Y ; 810,13Y, 050,2 Y, 06,2, )

(X xI xS 10X xIxS 1L X x {0} xS, X x {1} x §&1),

which is an isomorphism on the first face, homotopy equivalences on the
other two, with

5{6'2}N - X x {0} X Sk—l
R |
aoM - X x Sk—l.

The cobordism to be constructed has a nice simple form if k > 3, so we give
the argument in that case and then describe how to modify it.

Assume, either as part of the induction hypothesis or by a preliminary
cobordism, that N - Y — X and 0oN — 0,Y — X x §*”! are restricted
objects in the sensc of Wall [7, chap. 9], ie., that fundamental groups are
mapped isomorphically. Now since the other boundaries of N are mapped
by homotopy equivalence, and n,(0oY) = n,(X x S* )=, X = =, Y for
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k > 3, the surgery lemma provides a cobordism, fixing 6, and d,, of N - Y
to a homotopy equivalence. The cobordism induced on doN gives a surgery
map N — 6,Y x I restricting to d,N on one end, fixed on 8(6,Y) x 1, and
a homotopy equivalence on the other end. The whole cobordism is a homo-
topy of N— Yto N —» 8,Y x I as a k-simplex of L,,, ;(5oX). Thinking of
oY x I~ (X x I x $* 1) x Iasacollarof(X x I x ¥ Y)inX x I x B,
we must extend the cobordism over the rest of X x I x B*. The homotopy
equivalence d5,,N - X x {0} x §~! x {0} is isomorphic to the original
homotopy equivalence oM — X x §*~!. Thus a collar of this map in the
face over X x {0} x $*~! x I is isomorphic to the product doM x | —
X x §1 x I, Attach the map M x - X x B*x I to N—> 0y x I by
this isomorphism. The base is then isomorphic to X x I x B*, and the total
space is the desired cobordism of M — X x B* to another homotopy
equivalence.

This construction may be desired as ““use surgery to push the obstruction
" into a collar of X x I x S*~! which is a homotopy equivalencc on the inside
faces, and then extend over X x ] x B*byattaching M x I = X x B* x [
on a collar of the edge isomorphic to oM — X x S In case k < 3, and
in particular if k = 0, we cannot push the problem near the boundary sinee
the fundamental group is wrong. Thus we push it into some nice “*neighbor-
hood”* of the boundary (which is empty if kK = 0), glue on the homotopy
equivalence as before, and do a little more gluing to make it the desired object,

First replace X x B*in the range M — X x B* by the mapping cyclinder
of the inverse on the boundary Z = €(X x $*~! —» M) (recall a mapping
cylinder of a homotopy equivalence is a Poincaré h-cobordism). Let H be a
handlebody on doM, which is the union of the 0-, 1-, and 2-handles of
(M, 0oM), then as the union of the boundary spheres of these handles is onc-
dimensional, the homotopy equivalence X x S*~! — J,M can be made an
isomorphism over them, and the mapping cylinder Z then contains a copy
of H. We can assume, moreover, that H is mapped isomorphically under
M — Ztoitscopyin Z.

Now suppose the surgery problem N — Y is restricted (already adjusted
on 7y [7, chap. 9]), and that Y contains a copy of H x I. The boundary
then has the same fundamental group as the complement, so surgery can
be used to push the obstruction over H x I (i.e., a cobordism to a surgery
problem over H x I, homotopy equivalence over the boundary). Now if we
giue on M x I - Z x I as above, we can obtain Z x I in the range by
identifying the copy of H in Z x {1} with the copy H x {0} contained in
the range of the surgery problem. If M x I - Z x I and the new surgery
problem N’ — H x I were isomorphisms over these copies of H, then the
identification can be duplicated in thec domain to give a surgery problem
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with the properties desired. By construction M x I - Z x [ is an iso-
morphism over H x {1}. On the other hand, N’ — H x I restricted to
6(H x I) — dgH x I is a homotopy equivalence, which by construction
will be normally cobordant to the identity. Thus it can be made an iso-
morphism over low-dimensional handles, in particular H x {0}.

To complete the construction we must obtain a cobordism of N - Y
(rel d,) to a restricted object which contains a copy of H x I. This is easily
done. Suppose first that N —» Y is restricted, then we can assume that
(Y, 8, Y) has the same 1-skeleton as (H, doH). Take a manifold neighborhood
of this 1-skeleton as in [9], then to obtain a copy of H we need only do
surgery on the copies of S* embedded in the boundary of this 1-skeleton by
the handle decomposition of H, and take the handles of index < 2 in the
result. This surgery is done on embedded copies of S*, and hence can be
covered by surgeries of N. The resulting object is still restricted and con-
tains H x I.

Thus we have obtained an action L, ;(80X) x S(X) — S(X). The same
formal considerations as in [7, chap. 10] now prove that S(X) - NM(X)
is a homotopy principal L, ., (0,X)-fibration, and that

L+ 1000) = S(X) = NM(X) - L(80X)

is a sequence of homotopy fibrations, m — n > 4. This is called the structure
sequence for the Poincaré n-ad X,

The structure sequence is natural in the following sense. Let X be a
Poincaré n-ad, n > 2, and let S, X denote the (n + 1)-ad with 64(S,X) = &.
In the following commutative diagram any two consecutive horizontal or
vertical maps are a homotopy fibration.

S(X) - NMX) - LidX)

! | !
S(SoX) — NM(SoX) — LX)
do 1 !

S(8000X) = NM(Sq00X) — L, —1(00X).

The structure of NM(X) can be refined somewhat. Since part of the
structure of each object of NM(X) is a reduction of the stable homotopy
normal bundle to the classifying space of the category, which agrees with
the given onc on X, we get a map

NM(X) > A(X, By).

Now supposing that NM(X) # &, choose one such map and subtract it
off all the others. Since they are ali reductions of the same G-bundle, the
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difference maps to the base point in By, and so the map lifts to the fiber,
NM(X) - AX, 3,X ; G/, *).

In case ¥ = 1lop, these mapping spaces are formed with X replaced by a
polyhedral n-ad ol the same homotopy type. This map is a homotopy
equivalence, with homotopy inverse constructed using transversality (in
the topological case the dimension restriction m — n > 5 is still required).
The reduction of normal bundle v, to B, gives X a ¥-normal bundle in the
Thom space Tvy. %-transversality applied to the canonical reduction
f: 8t - TV representing the top homology class of Tvy givesa map f ~1(X)—
X which is covered by a bundlc map by the definition of transversality, and
1s degree one by the Thom isomorphism.
Thus if NM(X) # J, the structure scquence can be written

S(X) = AX, 00X G/, *) - L, (0o X).

Note however that this still does not imply S(X) # J, since it is the fiber
over the identity component of L,(d3,X), and the image of A(X, 8,X ; G/€, *)
may be disjoint from that component.

Now we apply some of the L space results to the structure sequence.
First the Poincaré conjecture for top and PL implies Spu(D>, §%) ~
Siop(D*,8%) = pt. This calculates the “coefficient”” space; Ls(0) ~ Q*(G/PL) ~
Q°(G/top). Now all of these satisfy some sort of periodicity induced by
cartesian product with CP2, G/top being exactly periodic by recent calcula-
tions of Kirby- Siebenmann. Define a map h : Ly(0) — G/top by

Lo(0) =75 L4(0) —— Q¥(G/top) < G/top.
Then we have shown that Q°h is a homotopy equivalence. As far as formulas
are concerned, however, k is a homotopy equivalence. For example, if G
is a P-group there is a commutative diagram

A(MGs Lk(O)) - Lm+k(G)
lA(MG.Q*m
A(M;, Q(G/top))
12
Swp(Mg x DX, Mg x §71) > NM(Mg x D", Mg x §*7') - L., (G),

where the bottom row is the structure scquence, and the top row is the map
defined in Section 2. If k > 5, then the top is a homotopy equivalence, and
so the bottom has trivial fiber. The map A(Mg, Q(G/top)) — L, +«(G) is a
homotopy equivalence for m + k > 5, however, since this is the range in
which periodicity holds on both sides, and the dimension may be raiscd by
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multiplying by CP? .until k > 5 and the argument above applies. Thus
Siwp(Mg x D* Mg x D*~1)is contractible if m + k > 5.

S¢(Mg x D¥) can also be computed this way for ¥ = diff, PL. Write the
structure sequence for € and top, with the natural forgetful transformation.
Let F : € — top denole the map of classifying groups, then

SdMg x DY) — A(Mg, Q*G/%) ~ L,+i(G)

] Jam 4R il
Stop(Mg % DY) - A(Mg, Q*Gjtop) > L,, , {G).

¢

pt

Thus S¢(M; x D*)is the fiber of A(Mg, QF), which is just A(Mg, Q¥(top/%)).
Since top/PL ~ K(Z,, 3), this shows

SPL(MG X Dk& MG X Sk_l) = A(MG’ Qk(K(Zb 3))) =~ A(MG: K(ZZ; 3 — k))

noSpL(X) is a set classically ([6]) called the homotopy triangulations of X.
The calculation shows that if M its a manifold K(z, 1) of a P-group G, then
homotopy triangulations of M x D* rel the boundary are in natural bi-
jection with H*> ¥ (M ; Z,).

4. Remarks

A geomctric formulation of non-simply connected surgery has been
presented. So far it has been like category theory in that it provides a con-
venient way to state rcsults gotten by other techniques, but is not useful in
proving things. Hopefully this will not always be the case. One direction in
which new results might be sought is in application of the theory to the
fibrations problem mentioned in the introduction, and application of the
results back to the L spaces.

Suppose M is a PL manifold (topological manifold with some triangula-
tion), N is a manifold, then form the mapping spaces of M into the structure
sequence of N. There is a natural transformation of this into the structure
sequence of M x N, which on the L spaces has been defined in Section 2.

QA - pt - A
! ! !
AM 15(11)) - AM, A(I];’, G/%) - AM, li-u(N))

S(M x N)= AMM x N, G/%) = L,,. (M x N)

where QA — pt —» A is the fiber of the transformation. S(M x N) can be
thought of as the set of trivial homotopy fibrations over M with fiber N
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and a manifold structure on the total space. A(M, S(N))is the set of homotopy
trivial block fibrations over M with fiber N [i.e., S(N) ~ Bgyyem)- Thus the
problem of when a homotopy fibration is a block fibration is directly a
question about L spaces.

This bears a strong likeness to Sullivan’s analysis of homotopically
trivial PL bundles ([6]) with a fundamental group put in the fiber. Anexample
of an unreasonably good answer to this problem would be that S(M x N)
has a classifying space, S(M x N) = A(M, B). In this case QA4 = A(M,
fiber (S(N) = B)), Lyins2lM x N} = fiber (Q4 — A(M, L, (N))) = AM,
fiber(fiber (S(N) = B)) = L, ;(N)).
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