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The object of this paper 1s to present a theory of surgery
on normal and Poincare Spaces, with some applications to
Poincare geometry and the topology of manifolds.

Other approaches to Poincaré surgery have been made by
Norm Levitt, and Lowell Jones. Levitt's approach i1s to use
sophisticated manifold theory to obtain a Poincaré embedding
theorem and then apply the usual manifold program. He has also
studied special cases of the transversality problem. However
the understanding of manifolds does not seem to be complete
enough yet to finish this program. Jones also uses manifoid
theory in the form of "patch" structures. These are a high-
powered sort of handlebody structure on Poincaré spaces. Agailn
sophisticated manifold thecry 1s used to manipulate the patches
and produce "stable" (after X(CPg)J) existance and trans-
versality theorems. An unstable existance theorem for patch
structures is given in section 5.

The present approach fo the problem was outlined by
W. Browder in the spring of 1969. He remarked "a problem in

homotopy theory should have a homotony theoretical soiutiocn",

and suggested the use of fibrations as a tool in the construction.

Recently he has been able %o do 0 and 1- surgery under very
general ccnditions, and has obtained interesting consequences
which are not accessible with our techniques. The main missing
ingredient in the program was "removing cells above the middle

dimenslon”, lemma 3.7. That this technique should have
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remained hidden so long 1s not surprising in view of the fact
that most of the theory of Poincaré spaces required for its
application also had yet té be developed (sections 1,2).

The central problem of surgery may te phrased as "given
a degree 1 normal map, what are the obstructions to it being
normally cobordant to a hcmotopy egulvalence?' We rephrase
this as follows. Take the mapping cylinder of the map, then
it has a sphericzczl fibraticn (normality), with a distirguished
map of a sphere to the Thom space of this Tibration (degrze 1).

Generally we call such an object a normal space (2.4), and

ask; given a normal space with part of its boundary Poincare,
when 1s it normzlly bordant to a Foincaré space, holding the
Poincaré boundary fixzd. When applied to the mapping cylinder
the resulting Poincaré space is a normal Poincaré bordism to
the identity map, answering the original question. Stating the
problem in this context has other advantages, since for example
bordism classes of normal spaces are geometrlc representatives
for homology with coefficients in the [ISG spectrum.

The main result 1s the normal surgery lemma 3.1, which
states that a normal pair (X,Y) with nlY = nlx is normally
bordant to a Poincare pair. This implies the Poincaré version
of Wall's "important special case"”, and is applied in section
4 to show the obstructions encountered are exactly the surgery
obstructions in the groups Ln(w). Section 4 also gives a

version of the more usual type of surgery on a Poincaré space.
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Section 3 is devoted to a proof of 3.1, of which the
central step is 3.7. Heavy use i1s made of a theory of stable
maps which induce cup and cap products cn homology. The
homotopy information in these maps 1is much stronger than the
corresponding algebra, and is erucial for %he argument.
éection 1l is a development of the properties c¢f such maps.

Section 2 gives the definitions and elementary prcperties
of Poincaré and normal spaces. The power of our herotopy-
theoretic appn:roach is illustrated by the large number of
characterizations of Poincars complexes given. For example
it 1s easily shown that in a fibration with fiber, base, and
total space dominated by finite complexes, the total space
satlsfies duality if and only if both the fiber &nd the base

~do also. Here, as everywhere in this paper, duality means 4
Poincare duality with universal local coefficients. The torsion
of a Poincaré space (torsicn of the chain equivalence giving
duality) is defined and some formulas derived.

The applications fall into two categories, local, and
global. By local we mean questions concerning the structure of
a particular Poincare space, whereas global questiohs concern
them en masse (for exanple bordism). Section 5 is concerned
with local applications. The first 1s transversality, extending
partial results of Levitt and Jones. Given a map from a
Poincaré'space to a space containing the disc bundle of a

Spherical fibration, the obstruction to making the map

LA EERRE IR < - A g8



iv

transversal is a surgery obstruction over a group manufactured
from the fundamental groups present (5.2). Next a Poincareé
embedding theorem 1s given from which a great deal of Poincare
surgery can be recovered. Finally the question of patch
structures on Poincaré and normal spaces is considered. Normal
spaces always have patch structures, and a Poincaré'space of
dimension n has a topological patch structure with no face of
dimension less than 4 i1ff it has a cover by n-3 open sets so
that the normal fitration restricted to each has a topological
reduction. Using the theory of (topological) category of
spaces one sees that a 4-connected Poincaré space, or XXCP2,
has a smooth patch structure.

Section 6 1s devoted to global applications. It is an
outline of special cases from a more gemeral treatment. 1In
particular the constructions of large simplicial sets are
omitted. Familiarity with the author's thesis will allow easy
reconstruction of the omissions. The first subject 1s the
long exact sequence + L (m,X) = Qioincaré'(x) + H_(X;sG)

+ L,_1(mX) +,which is immediate from the definitions (recall
H_(X;MSG) = ng°rmal(x)). This was deduced by Levitt for the
case X a point. The sequence for X a point arises from a

fibration of spectra L -+ & -+ MSG. Now if B is the

P
(2" ,MSG)G

n-1 e brations with an QF Thom class

classifying space for S
which reduces to the natural MSG class, we find that the

obvious map be% — B P i1s a homotopy equivalence
n (2 ,MSG)Gn
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for n > 3. When n = = this is a result of Levitt and Morgan.
Next, if X is a Poincaré space and Y is the normal space

of dimension 5 with oY = 1L, (0) = Z, then define the L-index

of X by I(X) = o(XxY) Ln(an). This has been independently

discovered by Wall in the manifold case, and solves a problem

of Novikov. It is easily seen that if X is normal with

Poincaré boundary, 3¢(X) = I(3,X). This expresses 8 times the
Surgery obstruction of a normal map as the difference of the
L-indexes of the domain znd range. t also shows that for any
space K, 8(H4(K;Z)) is representable by Poincar€ spaces.
(Complete results are obtained for special le). The L-index
also gives a map of spectra QP E L. There is a (difficult)
product structure on L for which this 1s a ring map. This

gives (via the Levitt-iorgan characterization)a homotopy equi-

valence Bfgbly? (L, Q)ﬂ , where Q = B[ fiber L—§9L] This re- ~
places the more difficult construction of the same map pre-

viously announced by the author.

The author apologizes for the many errors of spelling and
grammar. This version is somewhat preliminary, and will be

rewritten to attempt to increase clarity before publication.




- 1. Thom spaces, duality, and geometric products.

In [ 1 ]JAtiyah gave an arithmetic for manipulating Thom
spaces of vector bundles, which was extended to spherical
fibrations in [14]. We extend it to fairly general fibrations
to take advantage of the definition of a "normal fibration"
for a complex (Levitt, [ 6]). Normal fibrations and S-W
duality are extended to the equivariant theory of the universal
cover of a space dominated by a finite complex. Actually
since the Thom space is just the cofiber of a map it depends
only on the homotopy class of the map on the total space. The
context of fibrations, however, is useful for the Whitney
sum operation, and for later discussions of smooth, PL and
TOP bundles.

Next this arithmetic of Thom spaces is applied to construct
"geometric products". Given a geometric representative
Sk‘q XorX o Sk of a homology or cohomology clase, we con-
struct maps of spaces which realize cup or cap product with
the class on homology and cohomology. These constructions
.again generalize ones given in [ 1]. We close with a lemma
on the normal fibration of a fiber space.

To avoid loosing the fundamental group in stable homo-
topy theory, we work with the equivariant theory of a cover.
Let ™ be a (discrete) group, then a T-space will be a space
on which 7 acts freely, except at the basepoint if it has one,
and which has the equivariant homotopy type of a CW complex

of the same description. A w-complex is a countable polyhedron,




locally finite except pefhaps at the basepoint if it has one,
and a T action free on the complement of the basepoint. The
basepoint should also have an equivariant regular neighbor-
hood; the complex then can be represented as (K,*) = (KO/K »¥)
where (KO’Ki) is a locally finite m-free pair, and Ko/Kl is
the union of KO and the cone on Kl‘

As usual XVY denotes disjoint union with basenoints
ldentified, XAY = XXY/XVY, and 37X = S"AX. X, = XV(point),
and is X disjoint union a basepoint, provided it does not
already have one. If f: X. - Y is a map we denote the mapping
cylender XxIfo{l]Y by Y. This notation (suggested by
Kervaire) emphasizes the fact that Y and Yf are canonically
homofopy equivalent. X=Y denotes equivariant homotopy equi-
valence.

Fibrations are in the sense of Hurewicz. Any map may
be considered a fibration by application of the path space

construction, which is equivariant and very functional. If

n, v are fibrations over X, the Whitney sum n®v is formed by

pulling n back over the mapping cylender of v and taking the
total space of this union with the mapping cylender of the
restriction to the total space of v. The fiber is the join
F(m®v) = F(n)*F(v) of the fibters, and «@v can be described as
a subset of the join of total spaces E(n)*E(v). The first

description, however, does not require v to be a fibration.



If £€: E(£)> X is a fibration, then the the Thom space

of £ is the cofiber of £; T(!) = Xg/E({i), with the cone
point as basepoint.

1.1 Proposition. If €, n are fibrations over X,Y respectively,

then T(P,*ﬁ@Pen) ¥ TAT,, and if X = XUX,, TCT(£]X,)U

UT(¢[x0x,) T(E1%R)-
*

Here Plz XXY - X, so Plg is a bundle over XXY. The
natural maps are actually homeomorphisms.

Next we need the rudiments of equivariant Spanier-White-
head duality (see [13] for 7 = 1 case). Let (X,L) = (K /K s
Lo/Ll) be a pair of finite dimensional T-complexes, then
(K 3Ky »Lg ) is a collared countable locally finite triad, so
embeds in R x[o,aa) with KR n-35 (0)}x[0,00) = K,, and
KdWR x[o ® )X{0} = Lo» for n sufficiently large. . Let
U be a regular neighborhood, 3,U=1U Rn'Bx{O}X[O,oO)
BQU = an“‘3x[o,oo)x{o], and BOU = SU-int(blUUBEU). T acts
freely on the 4-ad(U;3,U,3,U,3,U), so the dual D(K,L) = U/3,U
'is & T-complex. If n > 2 dim X + 2, then embeddings are iso-
topic so D" is well-defined. There is a cofibration sequence
D"(K,L) - D*(K) - D™(L), and D*(X,L) = D™(K/L).

1.2 Proposition. If K is a finite dimensional T-complex,

D"p"k=2"""K, where m > 2n+2 > 4 dim K + 6.
Proof. DK = U/BOU, so the corresponding pair is (U,BOU).

A regular neighborhood of U will be Im'nxU, and the correspond-

ing 3, is 3(I""xU) - (int 2oU)XI™ . Thus D"pk = 1™ Pxuy/

Sm<n-1xU Im-nxalU:Zm-nK. ///



pn is an equivariant'homotopy functor on nonempty
(g-- 2)- dimensional m-complexes whose quotients K/r are

finite complexes (m-finite complexes). Given K_, L, embed

(LO,L ) in Rn 2x[o,oo) with neighborhood U, then L=U R7" -2

%[;l,pl. Because they are m-finite the map is proper and
can be approximated by an embedding (K ,Ki)cR - x[-l,O] U
cR"" 2x[ -1l,0 ) with regular neighborhood.V. Now appropriate

eollap81ng gives a - map U/B U - V/Bov, the dual of the map

This clearly extends to a functor on proper maps of

eéuntabié complexes, a good setting for non-compact manifolds.
_ﬁe—ﬁre-less'iﬁferesféd in non-compactness than homotopy,
»ﬁéwévef, SO we extendAthe theory to a homotopy functor on
:£héwéafégory of w-spaces dominated by a w-finite complex.

If X is dominated, consider X = 1lim (dominating T-finite n-
—

complexes)(n large), and define D2n+2X = 1lim D2n+2(dominating
-n-complexes). The maps in the limit are ;;Qen by composing
_thé-préjeétions and retractions given in the data. That X

i1s such a limit follows from Wall's theory of finiteness for
CW complexes, thought of as the theory of complexes dominating

& given spacé.

Further since X is also lim(dominating complexes), DX
—

itself is dominated.

Now if (K,L) is a finite m-pair the normal fibration

([6]) v (K,L) is the inclusion 9 oU— U defined above, U is a



regular neighborhood of (KO;LO,Ki)cRn°3x[O,oo)2, so v(K,L)
is a “ibration over Kye We will be primarily interested in
the free case, and obtain a bundle over (K+)O = K. Clearly
™™ (K,L) = D*(K,L).

Extending the normal fibration to the category of
dominated complexes is a little more difficult, but fruitful.
1.3 lemma. If f: (K,L) - (M,N) is a map of free finite pairs,
then a left inverse for f induces a fiber map vn(K,L) - vn(M,N)
over f.

Proof. Let U be a regular neighborhood of (M,N)CRn'zx[O,oo),
and approximate f by an embedding with neighborhood VCU.

Now if r (M,N) - (K,L) has rf~ then approximating

L, m)

r: (M,N) - (V,0V) by an embedding with neighborhood U!',

uniqueness of regular neighborhoods tells us that U—U'taox[o,l).

The inclusion BOCU-U' then induces the desired fiber map. ///
We remark that this map is degree 1 as a map of (manifold)

pairs (K,v%(X,L) Lvn-l(L)) - (M,v?(M,N) an_l(N)). The lemma

can be improved to a characterization of degree 1 fiber maps

of normal fibrations in terms of stable retractions of covers.
Now if (X,Y) is a free dominated pair, define v™(X,¥)

= 1im(v"(K,L), (K,L) m-finite dominating (X,Y)). In this case

-_— '
the 1limit is over commutative diagrams (K,L) — (K!',L')

N (X,Y)/

where the map (K,L) - (K',L') is also a retraction, and so

induces a map of normal fibrations. To see this 1limit is



justified requires more careful use of [15]. For example
if (K,L) and (Kl,Ll) both dominate (X,Y), then there is a’
common dominator (although no least common dominator unless
X is finite). Also there is a retraction (K,L)— (X,Y) which
is a homology isomorphism except in one dimension, where the
kernel is projective. Using two such which differ in different
dimensions and a common dominator for comparison purposes,
an infinite number of cells can be added in each of four
dimensions to vn(K,L) to obtain vn(X,Y).

Now that vn(X,Y) is defined (for large n), we give an
application generalizing the main theorem of [ 1].

1.4 Proposition. If (X,Y) is a free dominated m-pair, £ a

Sk"1 1 fivration such

fibration over X, and (-£) is a st
that ¢ @(-£)=065 21 then D/ Mpe=y(X) @(-¢) and
DM (me /1 () 1) )=V (X, Y) @X-€).

Proof. Suppose (K,L) is finite and dominates (X,Y), then

pPre = D(K,,E(€)). Since (K@(_Q)E(g@(-g))=’(K><Dz+k,K><Sﬂ’+k-1),
a regular neighborhood of this pair will be given by
(UxD£+k,UXSZ+k'l), where Un'l is a regular neighborhood of K.
Embedding (Kg,E(ﬁ))C(Ung+k,stZ+k'l) (assuming ¢ is large)
this becomes a regular neighborhood of this pair with
appropriate boundary =aU(_g) E(-ﬁ)' This last is exactly

the definition of vP(K) @(-t), so D™ ¥re=r (v (k) @(-¢))

as desired. The relative version is obtained by either

relativising the proof, or from the cofibration sequence.

The statement for (X,Y) results from passing to the limit. ///



Geometric products: If f: X Y we can form X—— XXY and

X— X AY, which on H, are essentially "[fl1". We generalize
to stable maps ZnX—»Y, and maps where the bundle over X is
not trivial; T¢{ - Y.

Suppose n is a fibration over X so that both E(n) and

X are dominated by w-finite complexes. Then from a map
Tn &.ZY we construct a stable map Tﬁﬂq T (XXY) £’x+AZY. Suspena

until Y is highly connected, then E(n) — X — Tn is a co-

fibration which induces an exact sequence

[2X,%Y] — [2E(n),2Y] - [T, 5¥] - [X,5¥]. \
o IE(m),Y] | - Lo

Y highly connected implies that the end terms are zero.

Thus the map Tn - ZY defines E(n) - Y. Cross with n and this

gives a fiber map E(n) - XXY, whosgf%ﬁom spaces is the desired

object. -Regard XX? as the pullback of the Y-bundle over a

point, then 1.1 shows T(XXY) ¥ Z¥AX,. ‘

1.5 Definition. If f: Tn - ZY¥ is a map as above, then the

geometric product is the stable map Nf: Tn - SYAX, -

Further if p is another fibration over X, then f induces
a product Nf: T(nPp) — ZY¥"Tn. This is obtained by Whitney
sum of p with the fiber map constructed atove. Note that
the original map Tn - ZY can be recovered by composing Nf

with projection on the first factor.



Example. If n is a fibration with fiber, base, and total
space dominated by m-finite complexes, n is stabily trivial
iff the the inclusion of the fiber sF(n) - Tn has a left
inverse.
Proof. The stable fiber map n - XXF(n) constructed above is
an equivalence. Milnor and Spanier developed an early form
of the geometric product (see [1]) to prove a special case
of this example.///

Dually, suppose we are given a map of dominated m-spaces
Y - T¢, where now £ is a s¥1 rivration with st-1 inverse
(-£). Then the dual is D%g: D"T¢ — DY, or by 1.4,
vP-K-L(x) @ (-£) —» " 1Y. Apply the above to obtain a

N-ly  add £ to each side

stable fiber map v(X) @ (-£) — XxXD
to get v(X) » ¢t @ (x>0""1Y), and apply T to obtain

p"x, - T¢ DY.

1.6 Definition. If g: Y » T{ is a map as above, £ a sphere

fibration, then the geometric product is the map gfi: DnX+a TE¢ py
We can also define the product with a map with "Z
coefficients" by starting with a bundle ¢ on X/m, and a map
Y o, T¢. Dualize to Tv(X/m) @ (-£)2DT¢ - DY. Denote the
projection X - X/m also by T, and observe v(X) = T*v(X/T).
Thus there is a map Tv(X) @ (-m*¢) - Tv(X/T) @ (-¢) - DY,
yielding as above gn: DX+,_,T(W*5)ADY.
Another variant is the relative product. Given ¢ on a
pair (X,z), and g :Y - T¢/T(£]|2), then the construction using
the relative form of 1.4 gives gh: D(X/Z). - TEADY. Other

versions will appear in the next section.



When both products are defined so they can be composed,

they " commute".

1.7 Proposition. Suppose X, Y are T-spaces dominated by

T-finite complexes, X free, w a finite complex, and € a
spherical fibration on X/T. Given maps g:» - Té and

£: X 5 Y, then the following diagram commutes;

i
D, = ™vO(x) LE, vao™y,
J/m YA(gN)

T (T*¢& )AD™W Qf_)ﬁl_)iw_., Y T(vfg) D™

The composition is denoted (gAf)n.

Proof. The top Nf is obtained by adding vm(X) to the unadorned
product, the bottom is ¢ added. Consider the corresponding
diagram of bundle maps constructed in the definition, and
commutativity is clear.///

Normal fibrations do not behave very well with respect
to cofibrations, because the fiber tends to change wildly.
The situation with fibrations is somewhat better. It is
easlly seen for example that v(XXY) = P;V(X) C)P;V(Y), and
v(X/m) = v(X)/r. The following generalizes the situation of
differentiable fiber bundles.

1.8 Proposition. If (F,,F;) - (XgsXy) 3 Y is a fibration with

(FO’Fl)’ (XO,Xl) and Y all dominated by finite complexes,
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then tﬁere is a fibration v(io,ii) over X,with i*v(io,il) =
v(FO,Fl), and v(io,il) @ rev(Y) = v(XO,Xl) .

Proof. First assume that Y is finite, by pulling the fibration
back over a retraction. If (FO’Fl) were also finite, we
c;uia.approximate (XO,Xl)(Elf” Yan"zx[O,aa) by a fiber map
which is an embedding in each fiber. The boundary of a
regular neighborhood of the image would clearly give the
desired fibration. The general case is obtained by going
through the construction of v(F_,Fl) over each cell in Y.
Choose a pair dominating (FO’Fl) and start constructing
(xé,xi) by taking a copy of this pair over each O-simplex
of Y, mapped to the appropriate fiber of (XO,X ). When

done over the k-skeleton of Y, this gives for each (k+l) -cell

a retraction (Xg,X,)S"s (X5,%;)[s ¢ (Fy,Fy x5, Lift

the projection to (FO’Fl) through the given retraction, and
form the mapping cylinder to define (Xé,xi) over DFVL,

Note that the inverse image of each simplex is collared
in the inverse of a simplex containing the first. Now using
this we can approximate v': (Xé,xi)-e Yan, some large n, by
a map which commutes with v' and projection on Y, and which
is an embedding. Let yn(r’) be the boundary of a regular

neighborhood of the image, then the desired vn(io,il) is the
direct limit of v?(r') over all such constructions.///
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2. Normal and Poincaré spaces.

Poincaré spaces occupy a special place in homotopy theory.
For example they are characterized by having the fiber of the
normal fibration dominated by a finite complex. After a
review of homology from the appendix, the equivalent definitions
of Poincaré spaces are given. Next normal spaces are introgduced,
a few properties given, and normal maps are defined. Normal
spaces are useful because the mapping cylender of a normal
map is a normal space. Finally the torsion of a Poincaré space
is defined and some properties developed.

Suppose X is a space and w: T X - z/2 = {-1,1} is a
homomorphism. We regard the chains C*(i) as a left Z[WIX]

complex and define

B (X;B) H(homz[vl(c*(i),B))

Hy(X;B) = H(3y1Ce (X)) .

Here B is a left Z[7] module, and the notation H® indicates

the use in the tensor product of the right module structure

ba = o(a)b, ® the antiinvolution 5(2ngg) = Znéw(g)g'l on

Z[WIX]. The definition of the relative group 1is similar.
There are two products in algebra which do not come from

geometric products. First if (X,Y) is finite, then the collap-

n sn-l

sing map (D, ) — (DnX,Dn'lY+)_» (D"X/¥,*) gives
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an element [S] € Hn(DnX/Y,*;Z). The product with x gives
an isomorphism [S]( : H*(X,Y;Z) i»Hon (D"X/Y,*; z). NI[S]
-%

also induces an isomorphism with Z[G] coefficients, G any

n=1

quotient of m.X. Second, for an S -bundle £ over X define

1
w, (&) = ®:T X - Z/2 = (-1,1} by whether or not the bundle

1l

pulled back to S~ is trivial. A local orientation for £ is

an element UeH"(TE;Z ) whose product NU:HO (T, *;2[7X]) -
Hf(x;z[le]) is an isomorphism. There are exactly two such
orientations.

2.1 Definition. A pair (X,Y) is a Poincaré pair iff it is

dominated, and (X,Y), (Y,$) satisfy one of the following
equivalent conditions.

1) the fiber of v™(X,Y) is dominated by a finite complex

2) v™(X,Y) is a spherical fibration.

3) there is a spherical fibration £ and a map a: Sk'a TE/TE|Y

whose geometric product an: Dn(i/?)-q T‘é/\sn'k
is a homotopy equivalence, where Y is the cover induced
from i.

4) there is a homomorphism w: T X - Z/2 and a class
[X,Y]eﬁﬁ(X,Y;Z) whose product induces an isomorphism
[X,YIn:H*(X,Y;2[7 X]) 5 B° ,(X52[7T X]).

The dimension of the pair is n-(dim fiber vi(X,Y)) in
(1) and (2), k-(dim ¢) in (3), and m in (4). The class [X,Y]
in (4) is called a fundamental class for (X,Y). We show the

various conditions are equivalent.
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3)= ) > (2) The geometric product comes from a bundle map
v (X,Y) — g @ Sn'k'l, which is a fiber equivalence because
i is simply connected and the Thom map is an equivalence.
(2) = (3) The bundle map v(Y) — v(X,Y)|Y gives

S o Tv(X,Y)/T(v(X,Y)|Y). The associated geometric product
is the identity map D™ (X/X) = TvE(X,T) @ s KL,
(3) = (4) Let w = wl(ﬁ), U a local orientation for ¢, of
dimension k, and [S] the homology class of the sphere

s? Dn(X/Y). Then [X,Y] =[nU, and the product is given by

[s

N ] n-k
B (X,Y; ) — H (D (X/—),A)-a H (T(€@5 ))-—e (X5 4

(n k) -
Here A = [le].

(4) (2) Let U be a neighborhood of (X,Y;, then using
duality in U gives a class U inducing a Thom isomorphism for
vn(i,Y). Since Wli = {1}, a simple spectral sequence arguement
(Browder [3 ], section 1.4) shows the fiber of vn(i,Y7 is a
sphere.

(2)@:?(1) Clearly (2) implies (1). For the converse we make

use of a lemna.

2.2 Proposition If (FO,F ) S (XO,K,) > Y is a fibration with

everything dominated by finite complexes, then (Xo,xl) is
a Poincaré€ pair iff (FO,Fl) and Y are Poincaré.

Proof. According to proposition 1.8 there is a "normal bundle

along the fibers" v(i)over X, with i*v(i) = v(Fo,Fl), and
v(i) @ r*v(Y) = v(Xo,Xl). In particular the fiber of the
normal fibration of (xO'Xl) is the join of those of (FO,Fl)

and Y, and is a sphere iff the two components are.///
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Now to show (2)=3}(1), we note that 2.2 applied to
v (X,Y) and (X,v®(X,Y)) shows both the fiber F and the

pair (CF,F) are Poincaré. Since m.F = {1}, this can only

1
happen if F=Sk, some k.

We remark here that Y must be assumed Poincaré because
Wwe are using universal coefficients, as in Wall [16], [17].
With Z coefficients [ 3] or consistant coefficients [11] this
is a consequenéé'of;thé assumption on (X,Y) (see also 2.5
below). Universal coefficients are a result of our use of
the sphere in duality. Browder has developed a theory of
Poincarée embeddings in homotopy spheres which promises to
give a geometric setting for the algebra of [11]. The
present setting, however, is adequate for our purposes.
Example. Manifolds are Poincaré spaces, since they are well
known to embed in Euclidean space stability with a normal
disc bundle.

Implicit in the equivalence (2)¢(3) is a uniqueness
result for the normal fibration as a spherical fibration. The
next proposition makes this explicit and sharpens it a little.

2.3 Proposition Suppose (X,Y) is a Poincaré pair with funda-
k-1

mental class [X,Y] of dimension n. If € is a S fibration
with o) (£) = o) (V(X,Y)), a map a: S™ , T¢/7(¢|Y), and a
local orientation U such that UN[aq] = [X,Y], then there is
a (unique) stable bundle isomorphism ¢ ¢ v(X,Y) which takes

a to the canonical collapsing map.
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Proof. As above the geometric product gives a bundle map;

the dual of o is D™(Te/T(¢|Y))=Tv(X,Y)ef-¢) — s™PK
m-n-k-1

, which
gives a map v(X,Y) ® (-¢) - S of the total space.
Cross with the projection and add ¢ to each side to obtain
a stable bundle map v(X,Y) —» £. By construction the composition
S & ™(X,Y)/T(v|Y) - T¢/T(¢]|Y) is ¢. Now using Poincaré duality
for X and Ugﬂ[a]-= [X,Y] establishes Tv(i,?)-» TE is a homo-
topy equivalence. Therefore the bundle map v(X,Y) - £ is a
homotopy equivalence of total spaces, hence a bundle iso- .-
morphism./// |

~_ The main question wé invéétigate (in the next section)
v;s, if the structure of a Poincarée space is weakened, when
can a Poincaré space be reconstructed from the data? To

that end we introduce normal spaces, which will also be useful

in other contexts.

2.4 Definition A normal pair is a dominated pair (X,Y) with

a sphere bundle ¢ and either
(1) a map S—T&/T(£(Y)), or
(2) a fiber map v(X,Y)—¢€.
As .in the proof of definition 2.1, these are equivalent.
This structure is inherited by the boundary, however.

2.5 Proposition If (X,Y) is a normal pair, Y is normal. If

(X,Y) satisfies the conditions of 2.1 and ﬂl(Y)-—>wi(X) is
injective, then Y satisfies these conditions, so (X,Y) is

Poincaré.
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Proof. For the first part the fiber map is given by the
composition v 1 (Y) — v*(X,Y)|Y - £|Y, the sphere map is the
boundary in stable homotopy. For the second statement the

fiber map of Y as a normal space gives a map of cofibrations

p"Y(¥,) — p(x,T) — D(X,)

| |

T(¢/T) — > TE — 5 TL/T(E/T) .

The center map is the geometric product (3) of 2.1, so a
homotopy equivalence. The product is the Thom map of a

bundle isomorphism v(X,T) - E. Add (-£) to each side to

obtain v(X,¥) @ (-£) XXS. The dual of the Thom map of this
equivalence is D(X,) 5 D(Tv(X,T) @ (-€)) = D(D(TE/T(E|T))

= TE/T(EIY), the right-hand map, also a homotopy equivalence.
Therefore the Thom map of v(Y;) - EIY is a homotopy equivalence.
If rlY - T X is injective (for each component of Y) ¥ has
simply-connected components, so the bundle map itself is an
equivalence.///

This is a geometric version of I.2.2 of [3 ]. Note we
have exact commutativity rather than up to sign. Algebraically
this is due to non-standard sign conventions suggested by the
geometry (see the appendix).

A triad is just a space with two subspaces, denoted

(X;Y.,Y¥,). A Poincaré triad is a triad (X;Y,,Y,) such that
1’72 1’°°2
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: . .
‘(X,YfJYe), (Yl,YlﬂYE),(YQ,YlQYa) are all Poincare pairs.
-There are refinements of duality in such a situation, for
example the product [X,¥]n:B* (X, ¥,) d,Hﬁ_*(x,Yz) is an iso-
morphism. This is H, applied to the center map in the map

of cofibrations

D(Y,,) — 3 D(X,Y)) —— D(X,)

b

TCEAY)) /TOETTY,) — 3 Te/T(e]Y,) — Te/n(e YUY,

The map on each end is a homotopy equivalence since (Yl,Yl Y2),
'(X,YlUYz) are both Poincaré.

—- - Next we have the " sum theorem" , see [ }J §$1.3, or [17]

276 - .-
2.6 Proposition Suppose (X,Y) = (Xl’Yl)U(XE’YQ) and denote

(XlAXQ,YfWYz) by (XO,YO). Then (X,Y) is a normal space iff
(Xl,YfJXO) and (X2,Y2UXO) are normal, and thg induced structures
oni(XO,YO) agree.- If (X15Y1,X0) and (X2;Y2,XO) are Poincare

triads, (X,Y) is Poincaré. If (X,Y) and (X55Y,,X,) are

0
Poincaré ang T,X; - T,X and T,Y¥, — T,Y are injective, then
(Xl;Yl;XO) is also Poincareé.

Proof. From the definition there is an inclusion of total
spaces v(xi,YiUXO)Qv(X,Y), which induces a bundle map
V(Xy,Y,0X,) - v(X,Y) %,
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, . n
Further the union v (Xl,YfJXO)U n

n
v (X,,Y
-1 : 2°
v (XO,YO)

oUX)
-»vn(X,Y) is a homotopy equivalence. Thus if there is a
bundle map v(X,Y) - &, the restriction to X; gives a normal
éfrﬁéfﬁré fbr each piece, and bundle maps on each piece which
agree on vn'l(XO,YO) glue together to give a bundle map for
v(X,Y). This gives the statement about normal spaces.

- The Poincaré assertions follow also, since if the bundle
maps on each piece are isomorphisms they glue together to
give an }sqporphism. If they are isomorphisms over (XO,YO)
?99,‘?2’Yéuxo) then exersion shows thaf>Q(X1,YlUXO)-q.§|Xl
is“g homology isomorphism on the cover of X1 induced from
the universal cover of X. If this cover has simply-connected
components (lel q'wlx injective) then this is also an iso-
morphism. The same considerations applied to Y shows v(Yl+)
is also spherical, so the pair (Xl’Yl) is Poincaré. Clearly '
ftherglare many other such statements possible, with appropriate
restfictions.on the fundamental groupéi///

Next we investigate normal maps.

2.7 Definition A map f: (W,X,¢) - (Y,Z,p) of normal spaces

is a normal map if an isomorphism b: &=f*p 1is given such

that the diagram

S S

l T{*0Tb l

TE /T (€ ]X) y Tp/T(p|2)
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commutes. Further if the pairs are oriented (local orienta-

tions UQ and Up are given) then f is degree 1 if U@ = b*Up.
Since there are exactly two choices for Uﬁ’ f is either
degrees 1 or -1. If the pairs are Poincaré and the map
c_qgggeg_l, ‘then £,[W,X] = [Y,2], since £ [X,0] = f*([s]ﬂUe)
= fu(lsInf'u ) = [sInu) = [v,2].

2.8 Proposition Suppose f: (W,X,6) - (Y,2,p), b: £=f*p 1is

a normal map of normal spaces.

(1) The mapping cylender (YesW,Y, ZfIX) is a normal %4-ad
(2) If £ is a homology equivalence of Poincare pairs, with

Z[le], Z[v Z] coefficients, the mapping cylender is

a Poincare 4-ad.

gggg{ Let»pf denote p pulled back over Y. (and identified
with'e via b over W). The mapping cylender of the diagram

in the definition gives (SxI,Sx{0,1}) — (Tpf/T(prZf),
Tp/T(p|Z)UTE/T(L]X)). Collapsing the second member of each
:pgiy pn a point‘gives Yf & normal structure which restricts
_to_the given one on the boundary. (2) 1is included primarily
for reference, since in this case Yf=(W,X)x(I,{O,l]), which
is clearly Poincar€.///

- Nnte élso that if (w,X), (¥,Z) are oriented and f degree
l, then the mapping cylender has a (unique) orientation which
restricts to the given ones on the boundary.

To close tn}s section we discuss the torsion of a Poincaré

pair. Recall [9 ] that if A is a ring (associative with unit),
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Kl(A) is the abelianization of lim GLn(A), and for a group T

Wh(m) = Kl(Z[v])/[tv]. For a groupoid with finite components

(eg le, X not corrected), we define Wh(Uwi) = ZWh(vi).

Suppose f: X — Y is a homology equivalence of m-finite 7-

complexes, then fy: C,X - C,Y is a chain equivalence of free

based Z[7m] modules, the basis being canonical up to actron

of (#m}. Thus there is a Whitehead torsion 1(f)eWh(r) defined.
Now if (X,Y) is a finite Poincaré pair, then v(X,Y) is

a sphere bundle, hence has a finite complex structure. However,

for any (X,Y) v(X,Y) is defined as part of the boundary of a

regular neighborhood, so v(X,Y) and D(X,Y) have finite complex

structures from the definition. The torsion of a Poincare

pair is the discrepancy between the two structures on v(X,Y).

2.9 Definition If (X,Y) is a finite Poincaré'pair of dimension

n, the torsion t(X) eWh(le) is (_l)m-n times the torsion of
the geometric product (identity map) Dm(i Y - Tvm(i Y).
The torsion«(X,Y ) of a Poincaré triad (X; YO,Y ) is (-1)™
times the tor31on of the product D" (X, 7)) - TV/T(VIY')
Another way to view this is as the torsion of the chain
map which induces the product([X,Y]:H*(X,Y¥;Z[7]) — HY , (X;2(7]).
To describe the relationships between the various torsions
(eg ©(X,Y) and t(X) ~ some involutions on Wh(m) are needed.
If R:A - A is an automorphism, an automorphisms of GLn(A) is
defined by A ._;(Rn)'lA R™, which induces an automorphism K

of Kl(A). In terms of matrices this replaces (aij) by (R(aij))‘
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If R is an antiautomorphism (R(af) = RKB)R(a)) then the auto-
morphism is (aij),a (R(aji)), again inducing R on Kl(A). In
particular if w:T - 2/2 = {-1,1)} is a homomorphism, as at the
beginning of the section, then (ang).a anm(g)g-l is an
autiinvolution of z[m] which induces an involution @ on Wh(T).
We denote O(t) by 7. Also angpa anw(g)g is an involution

of Z[w] inducing an involution ® on Wh(m). Clearly o = Tw = wO.

Now some rules for maninulating torsions of m-complexes.

(1) 1 W—s X 5 X /w

R S R

Y— Z — 2/Y

is a homology equivalence of cofibrations of finite m-complexes,

t(B) = 1(a) + t(v).

(2_)_‘ If_ _fi= (X;,X10X,) - (¥;,¥nY,), 1 = 1,2, are homology
equivalences which agree on Xiﬂxz, then flUf2 is homology
equivalence and r(flUfz) = T(fl) + 1(f2) - T(fiﬂfa).

(3) f: X - Y homology equivalence, then D f: DY - DX has
torsion t(Df) = (-1)°%T.

k-1

(4) f: X - Y homology equivalence,fa .S bundle over Y, then

: . k —~
Tf*: Tf*¢ - T¢ has torsion 1(Tf*) = (-1) wl(g)(rf).
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(5) If f: n - u is a fiber map over X, total spaces with

m-finite complex structures and ¢ a Sk"l

then f @ ¢: 1@ ¢ - p @ ¢ has torsion 7(£E¢) = (-1)ka~g?ﬁ))('cf)-

bundle over X,

Rules (1) and (2) are from the sum theorem for short
exact sequences of free based chain equivalences. The third
and fourth result from special choices of CW structure for
DX and T€ which display Df and Tf* on thechain level as of

1 where R is 0 or Q;Tg) respectively. The signs

the form Rf,R™
come from dimension shifts. Lastly (5) results from application
of (1), (2), and (4) to the definition of @ .

2.10 Proposition Suppose (X,Y) is a Poincaré'pair of

Y - 7. X the inclusion. Then

1 1
Xy = (-1)°G((X,Y)) and 1,7(7) = t(X) ~ + (1) &5(x(x) ..

dimension n, and i:m

where w = ml(v(X,Y)). Further if (X;YO,Yl) is a Poincare

triag, T(X,YO) = T(X,Yl) - T(YdUYl) + T(YOﬂYl).

k-1

Proof. Let £ denote v(X,Y) as 2 s5°1 fibration, and let

(-¢) be a st-1 fibration inverse for £. The collapsing map

. K -k-
Sn+h\—>Tg /T(£|Y) gives rise to a bundle map v™ 54 (x,v) @ (-€)

o Xxsm-n--k-l

» the precursor to the geometric product. Now
this is an equivalence, since the Thom map gives the geometric
product which is an equivalence. The two products are

obtained by
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VIl (3,Y) @ (-g)  xx@nk-l

e \ *

vi(X,Y) — ¢P D v R R 3 ve-£) o x+ns’“'"‘k
- f
T p™(Te"/r (e |¥))
| -D2m-n—k
D"ufk,Y) - g™ " D (X,) - T¢" R Tie|Y) .

By definition the bottom left map has torsion (-l)m-nT(X),
- Which is the same as the map above it by (1). By (5) the
top map has torsion (-1)“"“‘ka(r(x), which again is the
same as the middle right map. Applying (3) shows

T(Xy)= (-1)T(-1) RO () ™IK Bg)] = (1) (e (X))
as claimed. Now apply (1) to the diagram

D™HY, )— D%, ¥) s D (x,)

! ! !

T(E]Y) ——a T8¢ ——— 3 Te/T(2]|Y)

to get 1,7(Y) = 7(X) - t(Xy)= t(X) + (-l)n-lﬁ(’r(X)
Finally apply (1) to the diagram

n‘l(Yl,YlnYo) — D%(X,¥,) ~ D7(x,)

L !

T(E1Yy)/T(1¥)nY) — T6/T(£[Y) —Te /T (8] Y Uy

D

1)
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to obtain[f(XlYo) = 7(XJ] - T(Y,YlﬁYO). The symmetric formula
and application of (2) to the Y gives the final formula. ///
These formulas can easily be applied to get relations
among the various torsions appearing in the constructions
in 2.6 and 2.9.
Note that using, the ideas of Gersten [4] on torsion
of self-equivalences, all of this can be extended to
Poincaré'Spaces dominated by finite complexes. This re-
finement becomes uéeful only in one application, so rather
than carry along another obstruction the problem will be

treated separately when it arises.
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3. Normal surgery

The objective in this section is to present a proof of

the normal surgery lemma.

3«1 Theorem Suppose (X; Yo,Yl,g) is a normal triad, with

. z ~
(YO,YoﬂYl) Poincaré. If T Y, 2T

is an [Eiil—connected normal map

lx and dim X > 5, then there

Toos (W;¥,2) = (X5Y,,Yq)

with (W;YO,Z) a Poincaré triad, with 1(W,2) = Oe Wh(n'lx).
-+-:Note that the rest of the torsions of the triad can be

calculated in terms of i*T(YO), using 2.10. The connectivity of

the map can be improved slightly, but is immaterial in most of

the applications. Also it seems very likely it holds for all

n; it is known for n # 3,k4.

The proof proceeds by inductively meking the geometric
product D(X,Y) = T¢ highly connected. Once it is connected to
%dim(X,Y) a sort of " duality'" implies it is a homotopy
equivalence, so X is Poincaré. It can be made connected to
Just below the middle with no T, Or dimension restrictions (3.5),
the middle is a little more complicated.

The major step in the proof is lemma 5.7, which is used
to remove excess cells from a space above the middle dimension.
The section begins with a discussion of kernels, which are used

to keep track of progress in the construction.
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3.2 Definition Suppose (XSYO:Yliﬁ) is a normal triad of
dimension n. Let i be the universal cover and Yi the induced
cover, and form the geometric product (denoted in section 2
by N[s]) PX: D°+k(§,Yb)_, ¢%/r(¢|¥,). For a z[mX] - module
B define the kernels of the triad;

K (X,Y,5B) = H,,,y,, (P5B)

%* ¥*
K (X,Y¥;;B) = H R+l pKopy |

This indexing convention is used because it is suggestive

of dimensions encountered later, and agrees with previous
conventions for manifolds.

By definition there is an exact sequence
Ne-
- K(%,7,) - 579(x,1,) o Hj(X,Y)) = K5 (5,Y;) o,
*
and similarly for K . The map of cofibrations

Dn+k(X,YO)-» D™ (x) Dn+k(YO)

l | !

TE/T(E1Y,) - Te/T(E]Y UY,) - T(e]Y,) /T(E|YNY,)

gives an exact sequence o Kf(X,Yl) - KE(X,YOUYI) - Kf_l(Yo,

YoﬂYl)d- There is also a Meyer-Vietoris sequence for K, in

situations like that in 2.6.
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The kernels of a normal _space also satisfy a sort of

duality.

3.3 Proposition If (X;YO,Yl;g) is an n-dimensional normal
triad, then for any left Z[r,X] module B there is a natural
isomorphism K2(X, Yo;B) 2 K%Ly, Y,5B). In particular if
(X,Y) is a normal pair of dimension n with Y Poincaré’and
K (X; Z[v X]) =-0 for J < [-§— » then K (X) = 0 for all ¥,

and (X,Y) is Poincaré€.

Proof. ([2: ] is the greatest integer less than or equal

k, n+k
1°

product_”phen K@(X Yl) “’H£+k+l(31)’ Apply D™ to obtain

DUPY): IR Y) ¢ (-g)d > PP KT ) with KP(X,Y;) =
m-K-* k . R

H (DmP . But by the Thom isomorphism this has the same
cohomology as Pm -n-k : Dm'k(X,Yl) - /T(gIY ). By
definition ™ X~ () - Kn‘*'l(x,fo),so Kp(X,v,) T k1

(X,YO).

n-1 ). Let P (X Y ) s TE/T(E IY ) be the geometric

m—n k

To prove the last statement note that if (X,Y) is normal
and Y’Poincaré, the exact sequence for (X,Y) shows
Ke(X) = K (X,¥). If K (X) = 0 § < k then kI(x) = 0 also.
Applying duality we see K (X) = 0, J > n-1-k. If k = [351],
this gives KJ(X) = 0 for all j. ///

The shift down one dimension in the duality of the kernels

can be illustrated in a special case. If f: W -» X is a
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normal map of Poincaré'Spaces then the kernels of f in the
sense of [ 8], [10] satisfy duality in the same dimension as
W,X. However the mapping cylender (Xf;W,X), a'normal space
of one dimension higher, has these same kernels.

3.4 Definition A normal pair (X,Y) is j-Poincaré if

Ky (X;2[m.X]) = 0, 1 < J.

The last part of 3.3 can be restated as; if Y is Poincaré
and (X,Y) is [231] -Poincaré then (X,Y) is Poincare. The
next proposition is " surgery below the middle dimension!' .
3.5 Lemma If (X,Y) is a normal pair of dimension n > 3, there
is a normal map f:(W,Y) - (X,Y) with f[gJ + 1 -connected and
(W,Y) [E%l] - 1 Poincare.

Proof. Suppose (X,Y) is (j-l)-Poincaré: J :_[E%l]-l, then we
find an (n-j)- connected normal map f:(W,Y) - (X,Y). Since
any normal pair is j-Poincaré for some j (eventually all the
groups are zero), the proposition follows by induction. W is
constructed by taking the fiber of a map of X to a wedge of
spheres and adjusting using another induction. We begin by
describing some maps to spheres.

3.6 Proposition Suppose (X,Y) is a T-pair with basepoint,

then

(1) (Hurewicz theorem) if X,Y are simply connected and

T (X,Y) = 0 § <k, then H (X,¥;2(7])=[v,D",v, s

(2) (Hopf theorem) if A is a free Z[w]-module of dimension n

(possibly countable) and HJ(X,Y;A) = 0 for J > k, then
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(3) (Freudental gzggension theorem) if K is an n-connected
T-space with base point, then [X,Y;K,*]v - [SV\X,SAY;SV\K,*]F
is surjective if dim(X-Y) < 2n+l, bijective if dim(X-Y) < 2n.
Proof. Here\.:ﬂ_sk has the obvious m-actian permuting the
components. (1) is exactly the usual theorem since the groups
are isomorphic to the integral nonequivariant ones. If
(X,Y) is dominated and n < o then (2) is the SW dual of (1).
In the general case the proof is the usual one 03, p.431]
with minor modifications for equivariance (4% J. Finally (3)
follows easily from the usual suspension theorem [ 13,p.458§
applied cell by cell and extended equivariantly to the trans-
lates of the cell. We use here the fact that the action is
cellular and free except at the basepoint. ///

Returning to the proof of 3.5, Wwe are supposing Ki(X) = 0,
i<3-1. 1f Pk: Dn+k(X,Y) - T is the geometric product,
3.6 (1) implies KJ(X) = Hy, . (P¥) ¥ [y DI*kH\ oI+k, g
Dn’“k(x,y)']w. Since (X,Y) is dominated K (X) is finitely
generated ([ 6]). Thus there is a T-map p:\’aQFSj+k-* Dn+k(X,Y)
with a mullhomotopy of Pkap so that the induced homomorphism
Hd+k+161myFDj+k+l,va#SJ+k) =2Z2[r]1" > K?(X) is surjective.
The dual of ¢ is a map DF(o): =E-P"K(x/y) vy BRI 56
(3) applies to desuspend DP(p) to ¢: X/Y—»vm%%sn'j, because

2(n-j-1) >2n - 2 - 2[955 ] +2 > n.
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Define F as the fiber over the basepoint of q:X — V™ _s7™J
made a fibration. F is a free m-complex, which is the first
step in the construction of W.

First, since o is a map of pairs, there is a canonical
lifting of the inclusion YcX to YCF, giving a map (F,Y) 3 (X,Y).
We define a '" normal" structure for (F,Y;i*¢) by lifting the
structure of (X,Y;¢) ((F,Y) will not be normal because it is
not dominated). Note there is a cofibration F 5 X % v™(v_s" Jp,)
(the geometric Wang sequence), and the composition (VmVWZn‘J(i))

W is the geometric product 1.5 with q. Consider the diagram

/ D™ (e X ppe | v) na 5 v~ Ip(Te /e |Y)
pa Jr\[S] l vE(n[s])
4
stnp 2L y 2Ry, W yysiod VEL L, gemedy

~ =

na
The first three terms in the bottom line form the Wang

sequence. In the stable range (k large) to 1lift [S]N to

Zm-nF+ (dotted arrow) it is sufficient to find a nullhomotopy

of W-([8]N). We have a nullhomotopy of (VSTi¥*) e W ° ([S]N)

since this is (np)-([S]N), which by 1.7 is (VE[S]IN)<(no) = ([S]np)
A nullhomotopy of [S]Np = P p was part of the data, so the
geometric product formed from it is trivial also. Now notice

i; F—>X is (n-j-1)-connected, and since n > 3 m,F < T X.
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By the Thom isomorphism Vgn-jilis m+n-2j-1l-connected, and
daim D™¥(1e/r(E|Y)) = m. Thus if i1 < nem-2j-1

the nullhomotopy can be lifted to a nullhomotopy of Wq([S]A),
and the dotted arrow exists. The dimension restriction is
=[x -1,

Next an expression for CyF will be found. Let CE( )
denote cellular chains in this paragraph. Any reasonable
manipulation of Ci can be realized as the cellular chains of
an equivalent compley, by [6 ]. The Wang sequence shows
cCF « Cx (Vi ="d(F,)) Q) CSX (see the appendix for details
on the algebraic mapping cone). Let An-j = z[m]™, then
GV, 2" ) = &

8o this is chain equivalent to B,® A

c : cy’
CyF. Since ™, F = X, HiCKF = 0, and

n-3° where B, = O for

*Iamdrl oy = W @, picp (K)—a . Thus oF 2
c,~”

13,*@9;;“F (An_J@%C*(X)).

Finally recall the diagram

D" (1" /e [v)

s nisd
e ~
M- m=-n
o 11F+—.-_9 > x+

Since (X,Y) is (j-1)-Poincare Hm_n+*(n[s]; Z[7r]) = 0 for

* > n-j. The existance of the 1ift of N[S] then implies
-n~

Zm'ni#——>2m°niyf deforms into the (m-j)-skeleton of s% Nz /F.
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All the hypotheses have been checked for application of
the following lemma to F to eliminate the B,.

3.7 lemma Suppose F—X is a map, X the universal cover and

F the induced cover, such that

l) dim X = n, and k > Eii], k > 2,
2) cgﬁ‘ﬂ AJC)Cgi, J >k, Ay free z[m X]-modules of countable
rank

3) for some m Zm§+—a Zmﬁ/F deforms into a (m+k)-skeleton.

CSF, *<k
Then there is (a unique) F!'— F such that c§§" =
CSX, *>k.

Proof. Note if F' exists X/F' is a (m+k) skeleton of X/F,

so these conditions are actually necessary and sufficient.
The uniqueness follows from observing that given such a F' it
maps into the construction to be given at each stage, ending
up with a homotopy equivalence. The chain complex hypothesis
is 1included to give control of which skeleton is used.

The proof is by downward induction on k. If k > n, then
we can take F' to be the (k-l1l)-skeleton of F. Suppose the
statement is true for k + 1, then we may apply it to obtain
F' F with CiF' = C,X, * > k + 1. There is a diagram

//”’/» ZTX/F'

. > =X /7

="x

Since the lower map deforms into a (m+k) skeleton, and IX/F!
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is a (m+k+l)-skeleton, we see me_i_—é ZmX/F' also deforms into
a (m+k) skeleton. Thus F' satisfies ail the hypotheses above,

and additionally the corresponding A, vanish above k.

Thus assume A, = O, * > k + 1. Now CS{X,F) = {O *>k+1
*=k+1

Ag

so H*(X,F;A ) = 0, * > k+#l, The identity c§+l(x-,F)—>A gives

k
an element in Hk+l(X,F;Ak) which by the Hopf theorem 3.6 (2)

m+k+1

is represented by a map p:(z“’v’E/F’,*ﬁ—a(vJvTrs ,*), where

J i1s the (possibly countably infinite) rank of A But

="x

a: =

k.
~ - -
.~ Z"X/F deforms into 2 (m+kj-skeleton so p = Ba,

m+1 m+k+1

F,— VjVn,S . Because k > [E%l ,» by the Feudental

theorem 3.6 (3) this desuspends to o:F -JVJVWSK. Let Fl be
the fiber of ¢ over the basepoint. We will be able to apply

the induction hypothesis to Fl‘

There is the Wang sequence 'F—l—* F’-"l'aV'jVTr Zk(Fl_,_). Now
171 _
chain equivalent to A, @By, B, =0, * <k +1. Also

cs (vIV, 5(F,,)) = A, ®,C,F,, and since = H,F = 0 this is

~ :
Wy = w*+ a*, a#:CkF—aAk the projection on Ak‘ Thus

C*Flﬁ B, @ﬁ#(Ak@) a*C*F)’ and the new A, can be cancelled with

the old to give c?jl with CiF; = C;X. The proof will be

completed by verifying the hypotheses of the theorem for Fl’

k +1, and CyF; = B,@, C,F = B® , C,X, X > k + 1. We lack

W W
only condition (3). d *

First consider the fibration sequence



k+1

x/Fi—->x/F-—$vJsz

(Fl+)-arZX/F .

As above dimX/F = k + 1, and the third term is k-connected.

The (k+1)-skeleton of the third term is VJV#Sk+1, with inclusion

i. The map X/F—> vy s

gives a formula for Zm+1x+~» sm+l

(Fl+) is iep, by construction. This

X/F;

m+1 . Y]
K »C,2"x Yy c-zx
="p, ho s cs"p
W J J

A 4
S ) . (VJV”Zm+k+1F1+)UiOp(ZmX/F)xI Yo OZXF L

Here P: X— X/F is the projection, and h is the homotopy
obtained above of ZmPDPM*o This homotopy was obtained by
composing Zp-P with the deformation of ZmX+ into the (m+k)-

skeleton of ZmX/F. Putting in the whole deformation, therefore,

gives a deformation of z%*1

m+k+1
)

This dimension is actually one better than what we need.

Pl into a (m+k+l)-skeleton of

vy s pCZ"X/F, heace into a (mk+l)-skeleton of =™ (x/F ).

Finally, applying the inductign hypothesis for k + 1 to

. CeX, *>k+l
F., there is F'—-—»Fl with C.F! = c . Recall, however,
1" CSF, *<k
that CiF, = CpX, and CfF, = CSF, * < k. Thus F' is the space

needed for the lemma. ///
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Before resuming the proof of 3.5 we give a few amusing

corollaries of 3.7.

3.8 Corollary SuppoSe X is j-connected of dimension n, Y is
k-connected of dimension m, &nd f: X—5Y is =z map with fiber
Fo If 4, J >1 and min{2k, j+k+1) > n [25}], then the natural
H map X/F—>Y has a right inverse v: Y —X/F, ond there is a

cofibration

sy L2y

1ff the map X —=X/F stably factors through v.

Specializing to Y = sm, so k=m- 1, we get

3.9 Corollary Suppose X l-connected of dimension n and p:X-asm
is a map, m > E%l_ Then there is a cofibration sequence

s™L 5y X 2,8™ irr pAl, : X—2"™X, stabily factors through

+
mﬁ:sq—5§&+.
This last condition may be interpreted as a very strong

way of saying that the clement p*[sm]eHm(X) has xnp*[sm] =0

for all erk(X), k > m, pAlx is the geometric product 1.5
+
which induces o*{S™] on homology.

e

Proof of 3.8 According to Serre there is a filtration of a

complex equivalent to C,X with graded associated CgF(g)C:Y.

F is min(j,k-1)-connected so below (k+l) + min(j+l,k) we have
CuX < C,F @C,Y, and C,X/F % C,Y. Since dim ¥ = m < min(j+k+1,
2k) this shows Y is an m-skeleton of X/F, and the retraction
exists as asserted. The stable factoring of X—X/F through
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this retraction is thus a deformation into an m-skeleton, so

the extra cells, which are of dimension > min{2k,j+k+1} + 1

> [n+l] can be stripped off by lemma 3.7. This constructs

Z. Since 2k > m Y desuspends to 2 lY, and the map of this to
Z is constructed using the relative Hurewicz theorem.///

Proof of 3.9 Let F be the fiber of o: X—>S", then i: F—X

is (m-l) connected. Now the Wang sequence gives

X-J?X/F ZmF ~——<9me . =™ is (2m-1)-connected, so since

n <2m-1, or m > le, X —X/F deforms to an m-skeleton iff the
composition X-9>me does. This composition is oAl , and the
inclusion S ->zmy ~ Now this corollary follows fro; 3. 8~///

Finally, for the last tlme, we return to the proof of
3.5; Jee;—eefore the statement of lemma 3.7 we had verified
all the hypotheses for its application. Thus starting with a
representative o: V'V 89" ™ (x,y) of Kj(X), and dualizing
‘to obtain Dp: (X,¥) = V™ _S"7J, we apply 3.7 to extend this
to & cofibration vV s" IS (w,v) L (x,v) Bv™ _s"J £ has
the.aesired connectiv1ty, so it only remains to see how Poincaré
it is. (W,Y) is dominated (by [¢ ] for example) so the 1lifting
oé-éﬁe-geometric product of‘kX,Y) defined above gives (W,Y)
a normal structure with f a normal map. Take the dual of the

cofibration and add the geometric products to get

vmV Sn+J n+k(X Y) Df n+k(w Y)

\lr\[SJ RN lr\IS]
grel e TTY Soeeg

Da >va1rslc+j~:-l
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: w
Temporarily denote H*-+1<+1(”[S]°Df) by K,(X), then there

is an exact sequence
3 ~N
- 2H,,, (v89) okx —o gWoH () .

nN
Thus K. X = KW, * £ j, j - 1, and

O->ﬁ X—K.W _Z,[':r]m—>l’€,j X— K, -W—0 is exact. The

PR L XK
segment o
Dn+k(x,Y)
IR lﬁ’s}\ﬂ[s}wf
Tef o TIY  rexg

of the diagram also gives an exact sequence. By the Thom
isomorphism H, .. (Tf*) 2 H, . (£) = K, (vs"J), so this

(vsP~J) >k, .x— . Thus

. Hepy 1l
K*(X) = K*(X): * £ n-j-1, n-j-2, and
—>
0—=2K,_ 1 X Ky 51X z[m] —K,_j.oX 2K, s X—>0 is exact.

~
Therefore if 2j < n-3, K, X = K, X for * < j and we get
KM = KX =0, * < j-1, and

m O
Z[m] -—-—-9KJX—-—->KJ.W—>O
is exact. p was originally chosen so p, onto, however, so

K0 = 0 as well, and (W,Y) is j-Poincare.
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This all started as an induction on j,supposing (X,Y)
(j-1)-Poincaré. The construction of (W,Y) completes the
induction step, and therefore the proof of 3.5. ///

The middle dimension —

The proof of 3.1 can now be compl=ted. This done by
considering several cases and showing in each how to extend
the proof of 3.5 to the middle dimension. There is a
similarity in outline between these a?guements and those in
the manifold case [17 §4].

Suppose then that (X;YO,YI;E) is a normal triad of
dimension n, with (YO,YORYl) Poincar€ and T, ¥;—7,X an
isomorphism. By applying 3.5 we may also assume (Yl,YOﬂYl)
is [gJ - 2-Poincaré, and (X,¥, ¥y) is [Eéij- 1-Poincare.

All homology is with Z[7] coefficients, T = T X = T,

Case 1l; n =2k + 1 > 5 In this case the kernels vanish except

fo? the sequence 0 - K.Y, — Kka—>Kk(X,Yl)—e»K .1¥—0. If
KK(X,Yl)ann be killed withou§ q%sturbing Kk-lx = Kk-eYl = 0,

the whole would vanish. The exact sequence shows the new

Kik_lY1 vanishes, as its "dual" Kle does also, which forces
ka = 0.

Now by [15] Kk(x’Yl) as a sole nonvanishing relative

homology group is finitely generated stably free over zZ[7].

k+1

k+1
Replacing (X;YO,Yl) by (XVs 3Yy,Y, VS ) replaces Kk(lel)

by Kk(x’Yl) ® Z[m]}. Thus we may assume it is free. It can
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also be based in such a way that killing this basis will

‘ ‘make \[S]: Dn+J(X,YO)—*9T£J/T(e|Yl) a simple homotopy

R equivalence.

' 4 As in the proof of 3.5 (Jjust after 3.6) this basis is

) representedvﬁy a map. o ZJX/Y — vy Sj+k+l, together with
1 a8 nullhomotopy of Da\[S]. By 2.6(c) since dim x/yO <2k +1

o desuspends to a: (X,Y,) —> (vavskﬂ,*). Let F—> X — yvs©*l
¢ and -y —vystt

denote the fibers over the basepoint. As
¢ in the proof of 3.5 we verify the hypotheses of 3.7 for F and G.

i The first step is to pull the geometric products of X, Y
}

,bé??,t? F G. Refer to the appropriate diagram in the proof

1

of 3 5. There is a cofibration sequence of such diagrams

; _whlch somewhat abbreviated looks like

D™ (ze /me [ YUy, ) = D™ (m¢ /7 | ¥,) —> D (Te |, /78 | ¥y )

i ,/ P ’
L - /
. SF. — 53R /GE > 56 ]
! \, v \ % \, <4
; sm2k=ly ¥ ome2k-1 A ky
] \ \ 1 1+
VSF - VIF/G . VG .

We wish to construct the dotted lifts, and as before it is

sufficient to construct nullhomotopies of the compositions

down and forward. The composition of the center projection

A,
™
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with an m-connected map (Vzm°k1F/iG) is trivial. Now however,
since T,X = 7,Y dim Dm+J(TgS/TQ|YO) <m - 2 (note the connecti-
vity is slightly better than needed). Thus the nullhomotopy
can be pulled back to VZ F/C,‘showing the middle dotted 1ift
exists. Similarly dim D‘“’*’j(TgJ/TQIYOqu) <m - 2, so there

is a compatible 1ift on the left. Finally the cofiber of

| these two provide a 1lift for Yl'
H The calculations of CiF, CSG apply as before, so lemma
H 3.7 applies to remove the extra cells. This ends with

(W;YO,Z), YNZ = Y NYy s and cofibrations

VP s* 3z v % vm\/vsk’“l

oLl

Qmo,,-sk — W—s X 2> \Jm\/n.sk'{'l

It is easily seen directly (since Tg/TﬁlYl does not change)

that there is an exact sequence 0-49Z[v]m _Qgﬂka(X,Yl)-—;Kk(W,Z)
Thus the geometric product D(W,YO)—<>TE*/T(£!Z) is a simple
homotopy equivalence. Reference to the exact sequences at the

end of the proof of 3.5 show we have not disturbed the lower

K, so all kernels vanish. Since le = lel = vlw = le (k>2),
g this implies (W;YO,Z) is a Poincaré’triad as required.

Case 2; n =2k + 2 > 6 1In this case both X and Y, are (k-1)-

rd
Poincare, sc the remaining kernels are
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o-—aKk+lx—<>xk+l(x,Y)-faxkyl-ﬁ>xkx-—;xk(x,yl)-f;o .

The first step is to eradicate Kk(X’Yl)’ leaving the middle

three terms of the seduence nonzero, Kk+l(X’Y) is then

- killed to complete the surgery.

Kk(X’Yl) is finitely generated, so we represent generators
as usual by a map g (i,?b)-f9vmwnsk+2, together with a
nullhomotopy of DoN[S]. This is exactly the situation treated
in the odd dimensionail case, except the connectivity is
slightly better. Thus there is a new triad (X';Yo,Yi), also
(k-l)-Poincaré; and an exact sequence
Z[11’]m -Dﬂ-aKk(X,Yl)—%Kk(X',Yi)—PO. Since Dg was chosen to
be surjective, Kk(X',Y'

1

Now we have O-<>Kk+l(X,Yl)*4>KkYi—‘>KkX-f>O exact. As

lone nonvanishing homology groups they are all finitely generated

) = 0.

stably free. Kk+1(X’Y1) can be made free as above by replacing
(XYSk+2;YOY£/Sk+2). Choose a basis for Kk+l(x’Y1) which if
killed will make the geometric product D(X,YO)~—>T§/T(lel) a
simple homotopy equivalence. Represent this basis by a mep

a’ (X,YO)-—avmVWSk+l. o desuspends this far because le = le
implies dim X/YO < 2k.

Again we are in the situation considered in the odd
dimensional case. This time the connectivity is slightly
worse, but still enough for the arguement to work. This
produces (w;YO,z) as above, with D(W,Y,)—>T¢/T(¢|2) a simple
equivalence. The exact sequences show W and Z are still (k-1)-

Poincaré, thus Poincaré: and the surgery is complete.
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The reason the proof fails for n < 5 is fiberings over
52 are required. This may change the fundamental group. It
seems likely, however, that the result is true for all n. For
example for n = 2, 1 it follows from Steenrod representability

in those dimensions.
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4, Poincaré surgery and the obstruction.

In this section we show that the obstruction to a map
(Xn,Y;E) + (X,L) from a normal pair to a pair to be cobordant
to a map from a Poincaré palr is exactly the nonsimplyconnected
surgery obstruction L__,(m I»m,K) defined in [17§9]. This
gives the solution to geometric problems of Poincaré complexes
in terms of “familiar" obstructions on the one hand (chapter 5),
and on the other allows use of Poincaré complexes in the in-
vestigation of these obstructions (chapter 6).

Also in this section is a lemma on the "restoration" of
Poincare duality which allows a fairly vigerous sort of surgery
on Poincar€ complexes.

Suppose (K,L) is a cw pair with a homomorphism w: n1K+Z/2.
w induces an involution w on Wh(ﬂlL) iﬁ Wh(le), (2.9). Suppqse
further that H is a pair of subgroups HIEE Wh(an),

= Wh(m L) with w(H,) = HJ, and 1.(H,) S Hy.

H, 3
4,1 definition. Given (K,L,w,H) as above, define Lﬁ(K,L) as

bordism classes of maps f: (X:YO,Yl) + (K;K,L), where (X;YO,Yl)

is a normal triad of dimension nt+l, wl(i) = w°ﬂ1f (YO,Y0 Yl) is
Poincaré, and t(Y¥j)€H,, T(YoﬁYl)GHz.

Here bordism means via the same type of object one dimension
higher.

Recall that Wall's definition [17,59] is bordism classes
of objects (M;BOM,alM)——£+ (N;EON,BIN)—-E* (K:K,L) where M 1is

a manifold of dimension n, N a simple Poincaré triad with
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by

wl(vN) = wem,g, f a degree 1 normal map, and aof a homotopy
equlvalence with Whitehead torsion in H. There is a map from
thls defintion to U4.1; the mapping cylinder of f is a normal
space with the required properties, by 2.8. To show this
induces an isomorphism of definitions for n > 5, a bordism 1s
constructed from a normal space as in 4.1 to a mapping cylinder
of a normal map. It 1s sufficient to consider the absolute
case L = ¢.

Let f: (X,Y) » K be & map, X normal of dimension n+l and
Y Poincaré with torsion t(Y)eH. Y has a smooth 2-skeleton;
Y = AUB where A is a smooth n-manifold with boundary with the
homotgpy type of a 2-skeleton qf Y, B is a Poincaré space with
boundary, and g:9B + 9A 1s a homotopy equivalence. This was
announced in [16], and will be proved in section 5. Also since

a bordism 1s harmless here we could start with a smooth 1-

skeleton [16] and do surgery to reduce the fundamental group

to that of Y, obtaining a bordism to a Poincaré space with such
a decomposition.

B 1s made simple as follows; 1f h:W + 3B is a homotopy
equivalence, then W and (Bh,W) are Poincaré. A little calcula-
tion shows r(Bh) = (—l)n'l?TKT + 1(B). Let h have
t(h) = (-1)"T(B), then T(Bh) = 0, and the torsion is concen-
trated in geh:W + 9dA.

Next let C& X be a homotopy 2-skeleton with CnY = A.

(X;B,C) is a normal triad with (B,B"C) Poincare, and nlC = wlx.
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By the surgery lemma 3.1 there s a normal map

h: (W;B,Z) —>(X;B,C) with (W;B,Z) Poincaré and (W,Z) = O.

Since t(B) = 0, all the torsions are zero.

Since C and A are 2-skeletons the 1lift given by the

smooth structure of A,
P
A——B;

E|A

extends to a 1ift of E|C. Now relative smooth transversality
applied to the normal triad (C;A,Z) gives a degree 1 normal map
(D;A,E)—>(C;A,Z) from a manifold triad. In particular we

have constructed a degree 1 normal map (E,3A)—>(Z,3B) from a
smooth manifold to a simple Poincaré space. The mapping
cylinders of the two normal maps constructed above give a normal
bordism from (X,Y) to (W:B,Z)Y,(D;A,E). However Poincaré

J
boundary is allowed in the. bordisms in the definition of L,

so
amalgamating W and D into the bordism, we obtain a bordism of
(X,Y) to the mapping cylinder of j.

If applied to something which is already a mapping cylinder
this does not glve back the same map. However using the surgery

lemma for manifolds it is not hard to see it 1s L-bordant to

the original.
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This shows the maps from the Wall definition of L tec

4.1 is surjective. The same argument with more notation
glves a relative version which extends such a splitting on
a boundary to the inside of a bordism. This shows the
equivalence relations are also the same, and the two

definitions are isomorphic. ///

The groups LE(K,L) only depend on the homomorphism
ﬂlL -+ le and w:an » 2/2. They lack only excision to be a
cohomology theory, and there 1s even a limited excislon
theorem. They are periodic period 4 above dimension 4 via
cartesian product with CP2. For an account of their
properties see [17], or [11] for a treatment more relevant
to the purposes here. Many of these properties can be
proved directly using 3.1.

4.2 Corollary Suppose (X;YO,Yl;E) is a normal triad of‘

dimension n > 5, or 4 1f ¥, = ¢, with ¥, Poincaré. Then
there 1s an obstruction o(X)eLn_l(X,Yl) to finding a normal
map (W;¥,,2) + (X;Y,¥;) with W Poincare. o(X) is an in-
variant of the bordism class of the map

(X;Yo) -+ (K(nlx,l),x(nlYo,l)), and vanishes 1if & has a
reduction to BTOP'

Proof. The "bordism class of the map" is of course by
bordisms of normal triads inducing Poincaré bordisms of Yo’
Also any Lﬁ can be used where H contalns the ‘torsions of

‘(YO,YuﬁYl), and then (w;YC,Z) will have torsions in H.
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The obstruction o(X) is the identlty map
(X;Yo,Yl) - (X;X,Yl). The exlstance of the normal map and
invariance are simple consequences of the definition and the
surgery lemma. If £ has a topological structure the desired
normal map results from topological transversality if the
dimension is not 4. In dimension L4 the obstruction to
transversality 1s essentially the possible nonexistence of an
almost parallizable toplogical manifold of index 8. There 18
such a Poincare space however, (#S(CPZ)) so there 1is Poincare
transversality for topological bundles in dimension 4. ///

Next a form of Poincare surgery below the middle dimension.

4,3 Proposition. Let (X,Y) be a Poincaré palir of dimension

n. Suppose (K;LO,L) ijs a finite complex triad with a map
$: (Ly,LgNLy) *+ (X,Y) so that ¢*v(X,Y) extends to a bundle
£ on K. If aim(K-L )<, aim(Ly-Lg)< Bl | and n 2 5(4 1f
Ll-L0=¢), then there 1is a Poincaré lU-ad of the form
(XUOK;X,YuoLl,z).

This formulation 1s essentially due to Browder, who
observed that if ¢: sK 4 X is an element on which one wants
to do surgery, then X/Sk has the right homotopy type for the
desired bordism. Thus what remains to be done is to find an
appropriate "other end" to make it a Polncare triad. The
content of 4.3 is to assert the existence of such an "other
end", Z.

Proof. 4.3 follows from a double application of the L,-Lg = ]
case. This in turn follcws from the case (K,LO) = (Dk+1,Sk)

by 4nduction on the skeleta of K.
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Consider ¢:Sk + (X,Y) wita k < % -1, and an extension of

¢%¥v(X,Y) over p¥*1. mhis glves an extension { of v(X,Y) over
X/Sk, giving 1t the structure of a normal space. (X/Sk;X,X/Sk)

is a normal triad of dimension n+l. The kernels of X/Sk are

K (X/5™;2Z[w]) = 2[n]. ¥k . nok 1, where w= nl(X/S ).
ELT],"=K,n-K-

Kg_k_l(x/sk) is generated by the dual of j. If we take the
fibers of this particular map in the proof of 3.5, the

resulting object will Poincare, the desired Z (compare with
3.9). When k = [%J-l the considerations of the proof of 3.1

are required to find a 1lift of the geometric product. The
restriction k < [%]-l is required so that k and n-k-1 are not
equal or adjacent, and will not interact. The more delicate
middle~dimensional situation will be considered in section 5.///

b.4 Corollary. If (X;£) normal of dimension n > 4, 7 1s a

finitely presented quotient of ulx through which wl(g) factors,
and N[X]:H*(X;2[n]) ~+ Hﬁ_*(x;z[n]) is an isomorphism, then there
is a normal bordism (W;X,Y) with w= wid= ulY, which is
algebraically Poincaré with %[n] coefficients. Thus Y is
Poincareé.

Proof. From the definition of normal, X is dominated, and so
an” is finitely presented. Let {ai} be normal generators

for ker Cnlx + m), and consider VSIXQ:X. By hypothésis

{a,}< her(m X+m) Cher wy (&), so (Vay)%E dis trivial. Now
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algebraically the properties of X/VSl are the same as required
in 4.3, so the same considerations give Y Poincaré, with
(X/VSl;X,Y) normal. ///

This 1s very similar to a theorem of Browder, who however
has 7 = {1}, and uses algebraic properties of Z to replace the
assumption that X is dominated by a finite complex. In fact he
is often able to conclude that X is dominated This hints at
the existance of a general geometric theory of spaces satisfying
duality with Z[wv] coefficients, but except for 7 = {1}

(Browder) and © = ﬂl(X) (sections 1,2 above) it is not clear

what this will be.

e oo

o
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