70-23,630

QUINN,III, Frank Stringfellow, 19%6-
A GEOMETRIC FORMULATION OF SURGERY.

Princeton University, Ph.D., 1970
Mathematics

University Microfilms, A XEROX Company . Ann Arbor, Michigan




70-23,630

QUINN,III, Frank Stringfellow, 19u6-
A GEOMETRIC FORMULATION OF SURGERY.

Princeton University, Ph.D., 1970
HBathematies

University Microfilms, A XEROX Company , Ann Arbor, Michigan




for Barbara




Introduction

The object of this work is to give a treatment of surgery 'geo-
metric' in several senses. First in the sense of defining spaces of
surgery maps, structures, etc, so the usual groups appear as homotopy
groups and long exact sequences appear, as homotopy sequences of fibra-
tions. Second, geometric in the sense that the geometry of manifolds and
spaces is used as much as possible to prove the results, avoiding in
particular the algebraic characterizaticn of the obstruction groups by

Wall (Surgery of Compact Manifolds). The first object is realized fairly

completely and has considerable advantages for some types of applica-
tions (4.2). The attempt to remove the algebra is also successful, with
the major exception of the properties of the Periodicity map of Wzil.

The first chapter is concerned with set and homotopy theory,
mainly definitions and fixing notation. Since many of the constructions
are of the form ''take the space of all manifolds, ' and the justification
for such constructions is rather vague, the set theory is handled fairly
carefully. This has several interesting consequences, for example a
"universal disjoint union'' operation. At the close in 1.4 a simple example
is given. A space is defined whose homotopy groups are the unoriented
bordism groups.

Next is a treatment of homology and duality, the definition of
surgery maps. and the statement of the surgery lemma. The version of

homology used is essentially Wall's homology of the universal cover with
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group ring coefficlents. It is made into a coherent theory by defining it
on the category of spaces with reference maps to a fixed space, and
taking homology with regpect to covers pulled back from the universal
cover of the reference space. This allows a treatment of non-simply-
connected duality essentially the same as that of Browder in Surgery on

simply connected manifolds, Our treatment of Poincaré spaces is per-

haps more elaborate than necessary, but was written when an approach
making much stronger use of the properties of such spaces was planned.
Teachnical difficuities arose in this approach, which was designed to give
information about G/TOP, and was rendered unnecessary by the recent
calculation of that space.

The first section of the third chapter containg the defir'tion of a2
sequence of functors IL; {K,oK} and L?(K,BK) for jeZ and (K,3K)
& topological pair with an orientation homomorphiem rrlK — ZZ.
LJ.(K,EK} is essentially the A-set {simplicial set} of surgery maps of
dimension j over {¥,3K}, J.Lh defined with homotopy equivalences and
L® with simple homotopy equivalences. IL.j(K,BK) depends only on

-.:I(BK} T

1K,. and ILJ.{K,BK}:Q ILJ_ l{K,BK) g0 ILJ. is an infinite

loop space. rij(K,aK) = Lj+m(‘n'l oK —> -an) is the obstruction
group of Wall. Section 3.2 defines two special maps of IL spaces, the
puliback and the assembly. If (M,3M) is a triangulable manifold, then
the 2ssembly is 2 map from the mapping space A(M,BM:JLj(K.aK)) —>

Lj+m(1{ XM}, 3K xM) obtained by taking the disjeint union [over common

faces) of tha irmages of the simplices of a map (M, 3M) —> I["j' The




iii.

pallback is defined for M —> E —> B a block fibration with manifold
fivers, and is a map IL,jB —_ n“j-:—mB which takes the pullback of the

fibration over each surgery map of the first space. Wail's periodicity
map is a special case of the pullback.

Section 3.3 introduces the notion of transversality for a surgery
map, and shows it is equivalent to an embedding problem. The splitting
theorem of Cappell is then applied to give a transversality theorem.

This is used to give proofs of geometric analogues of the restricted
excision and Meyer-Vietoris theorems of Cappell. Lastly transversality
and the assembly map are used to calculate in terms of mapping spaces
the X. spaces for a class of groups defined by Waldhausgen. If ﬂ'lM is
a Waldhausen group, then A(M, aM;IL.j}(pt)) ——— Lj+m(M) has 2 natural
right inverse, and it is a hormotopy equivalence if M iz a2 Kir,1}.

The last chapter contains the application of the L. sapaces to the A
structure of manifolds. Given a Poincard space X of dimension m the
space of manifold structures sP (X,3X) in =2 category = = TDP, PL,
or DIFF homotopy equivalent to X are defined. Ss, the same space

using simple homo.opy equivalences is also defined. The usual 2xact

sequence then appears as the homotopy sequence of a homotopy fibration,
S {X,3X)—> pX,2X;G/E Y —> I[«m(x} .

A geometric proof, avoiding the aligebra of Wall, is given. The results
of 3.2 are then applied to thiz fibration in special crees.

We then close with section 4.2 which applies the theory to the
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problemn: given a map f:M -—> N of closed manifolds with fiber the
komotopy type of a finite complex, when is it homotopic to a block fibra-
tion over N ? The answer (a rather formal one} is given in terms of
maepping spaces and the fiber of the assernbly map of 3.2. More complete
sclutions in special cases, and a number of corollaries including part of
an asseTtion of Sullivan about topological bundles, are given. A few

proeblemns suggested by this work are ziso discussed.

This thesis was written under the direction of W. Browder, to
whom I am indebted for many helpful suggestions and discussions. 1
would also like to express my gratitude to G. T, Whyburn and E. F.
Floyd for their earlier direction and instruction, and to M. A. Kervaire
for teaching me surgery. Thanks are due many friends for helpful dis-
cassions, about half the people listed in the Bibliography, and D. Sullivan

and 8, Cappell in particular. I am grateful to Miss Florence Armstrong

for her fast and accurate typing of the manuscript,
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1. Set 2nd homotopy theory
i.i TFoundational remarks .

Fix a set § with at least 2I elernents, where I is the unit
interval, ‘and an injective function €: § x §~—=> 5. Henceforth manifolds,
txpological spaces, and complexes will usually be understood to have
zoderlying point sets contained m ¢ . Since they all have the order of I,
2il separable metric spaces or countable complexes are isomorphic to
w28 contained in §. Moreover, the classes of things with this restric-
tism will be sets, as desired for the constructions.

The set of subsets of $§ has operations “product” and "disjoint

mzien’ induced on it by ¢ and a choice of two distinct elements @, @' ¢¥:

B X, YTed @ then

XrY=¢€(XxY}

XUuy= g{Xxfaluyx{el) if x£#2#8Y
XUY if one is empty.

== can be elaborated to "union over a subspace®; if ¢ is a function from
zome gubset of X to Y, thin define X U o Y = {X \domain {p} )} 4 Y.
Iz case X and Y have topologies, manifold structures, etc., and o is
an appropriate function, then the sets X ¢ ¥, X 14 " Y are to be endowed
with the induced topology, rmanifold structure, or whatever.

£ and = also induce operations on functions between subsets of
§ via the canonical bijection with the categorical product and pushout of

sets. Furtber properties of w and i will be investigated in section 1.3,




}.2. =-ads and maps

The notion of an n-ad enters strongly in the constructicns to be
made. Our use of the term is essentially that of Wall [27].

Let An denote the standard n-simplex with {ordered) vertices
{’e’o, e ,Vn}. 2nd let aja" be the base containing 211 but the ;B vertex.
¥ ¢c{0,1,...,n} define aa At = a0 (N B.An). Consider the collec-

a jeo

oz of all aa;}, &5 a category, with morphisms the natural inclusions.

¥ /= is another category, then the category Fun{a", & ) with objects
feovariant) functors A° —> o and morphisms natural transformations
¢f functors is defined, Fun (A", I} will be called the category of
& -in+Z)-lattices (sece J. H. C. Whitehead and othersin| ], voi. 1v,
op. 104-227).

There are numercus functors on categories of lattices formally
induced from the structure of AT. Sormz useful ones are given below

{ike notation varies from that of Wall {27]}. Suppose <« {0,...,n} 2and

FeFun (8%, 2 ).

1) The inclusion Baﬁn RSN A" induces ba: Fun ([,-n, )y —>
Fun (An‘! al . L 1. This corresponds to taking the face BGF and all

lower faces which map into it.

2} 6 : Fun (An. 1‘: }——> Fun {én~ ]0:

o l . ,(: } is induced by regarding

Ba&n as an {n+2}-lattice with B,(Baﬁn} =3 and the inclusion as
Fod

n
<sz3A ’

a map of (n+2)-lattices. Some of the faces coincide, however.




e e 27y ay(aaan} f 2yg=vyU 2} and {(n-|a| +2)-ads are obtained
&
zirer forgetting the ¢ uplications. 6& corresponds to just omitting all

fzces BSF from F with 8Na#»o. The identity aaﬁn — a&An induces

& materal transformation of functors Ba——> 60: {isz a morphism of 2

fm - il + 2)-lattices 3 F—> § F).
o [#

3} Ifferevery Bc{0,...,n-21 the pullback P, of the morphisms

B

At 3 An) and F(3 s 3 bn} exists, then we

24 {a-1) 8 guia)t g

wEm celine n-1 ¥ = - , ith
zz define G ¢ Fun (A . &) by B.BG aﬁr, Bﬁ U (01} G PE wi

£ =2t sbove, and the naturally induced morphisms. This operation corre-

L&) |

gpomce to combining the last two faces of F.

Naturally if & has products or coproducts, etc, the corresponding

I

caizgories of lattices will have similax structures {the product of an n-
lzttice and an me-lattice will be an {nitm-1}-lattice, etc.}), In general the
zzme symbol used in & will be used for such operations, and the pre-
¢ise meaning will depend on the context.

Lattices are z little too general to be useful when working with
manifolds, so we add a few restrictions to get n~ads. A more general
definition is possible, but the category theory involved is unenlightening.
Suppese [ has a {forgetful) functor to the category of sets whose values
we won't distinguish from the original, an operation 3 on the objects of
£ suchthat 8% M =p, and a notion of subobjects which are subsets.
Inthis case a 7 n-ad is a ¢ n-lattice with each 3 M=—>M the

inslusion of a subobject, 3 M = aaM na

C . - f
QUB M for aURc {0, n-2}

£




i, and each ajM q.ﬁ' (n-1)-ad. The category of n-ads is the

zorresponding full subcategory of &  -n-lattices.

Examples are categories of manifolds; topological, piecewise
iimezr, and sinooth. In the smooth case corners on the boundary must
e 2ilowed so the boundaries of an n-ad will fit together. A manifold with
sorners is one with charts diffeomorphic to open sets in sets of the form
ixgmmi,\j(xJ >0, j=1,...,k, where lj: ey R is linear}.
Nothing new is introduced by this, however, since the classical "'straight-
ening the angle” trick (Cerf [ 6 ]} shows that such a thing has a unigue
zatural differentiable structure.

Another example is o = topological or CW pairs with 3(X,Y) =
{Y,p) and objects subspaces. A topological or CW n-lattice, however,
iz hometopy eguivalent to an n-ad by a generalization of the mapping

cylinder construction.

1.3. L[-objects

In 1.2 objects over a category were defined which have internal
structure similar to that of [,sn. Mow objects with the external structure
of the collection of 211 4" will be introduced. The theory of p-objects
iz due to Rourke and Sander;on [13], and is essentially the same as the
theory of simplicial objects {May [i0]}.

Let A be the category with objects An, n>0, and r.norphisnﬂ.s

I
x

- c
{zere 2 {0,...,n} and we regard az v o] —> " asa map).

o

2 s a category, then Fun (4, &), the category of contravariant




famctoT® & —> Je, i8 called the category of 5 A-objects. When [T is

% sategory of things, we will also call an object of Fun {8, & ) & A-thing
f4-wet, L-gToup, etc}. Our primary interest is in A-gsets, often with
Foome edditional structure. I X is a g-set, the elements of X{An) are
waulled the n-simplices of X .

In the category of A-sets, mapping "spaces™ are defined. Let X
azd ¥ be p-sets; then A(X,Y) is the A-set defined by AX,Y)Ha™ =
fa~maps Y x A" ~—> X}, with face maps given by restriction. For our
gurpcses Y X An denctes the categorical product, although the general
ghenry teems to require something more elaborate. If P is a polyhedron,
iZaz 41P,X) is the A-set with n-simplices the set {some triangulation of

x ;:-a in which the faces P ¥ aagn are subcomplexes together with a

d

4-map of this triongulation into X}. Again face maps are defined by
reatriction. Mapping spaces of A-set and polyhedral lattices and n-ads
are dofined in the'straightforward manner,

The set of path components of a A-set X is the set X(8%) divided
by the relation a -~ b iff there i8 a map ¢: I —> X (I is hexe regarded
ax & polyhedron, distinct from a') withl p(0) = a and (1) =b . Similarly
the path components -n-o(X,Y) of a p-set pair (X,¥) is the set of path
components of X not intersecting those of ¥ . Nowif *# ¢ ¥ we can
define the loop space (X, Y,*} = 80", 21%, % X,Y,%) of a pair. and the
relative homotopy sets TAX Y, = (X1, ).

A simplicial object (May fich) is = fp-object by forgetting the




ZegeneTacy operaters. All the homotopy theory of simplicial sets is valid
. : . . ias n . n
sizo for A-sets which satisfy an extension condition. If !\j is Uk#jakA R

thep a p-set X1 b~ {sets) satisfies the exiension condition, or is said

4o Te Haan, if each A-map f\;1 +X extends over & , for any n>j.

Feor example the Whitehead theoxem that a map is a homotopy equivalence

167 it induces isomorphisms of all homotopy groups is valié for Kan A-sets.
nfortunately many of the A-sets we will want to define do not at

#iret sztisfy the extension condition. To remedy this we will routinely

;de in our constructions an application of the functor Ex {(Kan {71

=ikichk essentially adds simplices until the extension condition is satisfied.

xt X = A (%, X), Ex"X = Ex’ (Exn-l(X) }, and Ex" ¥ is the direct

4

1
im:it of the natural inclusions ... & Ex' Xc Exﬂ+ Xc.... BEx pre~

ot

serves homotopy and many other things, and since a review of the defini-
$ions reveal that a p-map .v'\? - Exm}{ extends to a map An - E;s:m-'-I X,
£x X satisfies the extension condition.

One important consequence of the Kan condition is that it implies
a stronger extension condition: if K51, are p-sets, ]L] is a retract
of K] (i.e. there is a continuous map of geometric realizations
K] - ]I} which is the identity on [L}}, and L ~X isa A-map ,
then it extends to 2 Ap-map K - X. This is the key lemma in proving the

¥ hitehead theorem. Our A-sets will satisfy a "slow countable extension

condition, ' namely that if K is as above and countable, then any A-rnap

I. = X is homotopic to one which extends to all of K. When X satisfies
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this condition the inclusion X cC Exs(X) induces isomorphisms of homo-
S=py groups.. Thus the homotopy type of Exa(X) is uniquely specified
By X, and for purposes of investigating homotopy groups we can use

Beseof X.

1.4. An example

¥We now take up an example which embodies many of the major
poits of later constructions. Let & be a category of compact manifolds
fall contained in the set § of 1.1 and hence a small category), or more
ge==7ally 2 small cobordism category in the sense of Strong [17]. Define
e p-set &: , for ke Z , by flf (Anj is the set of 5 (n+2)-ads of
Simension n+k, and face maps are induced by taking faces aa of the
objects.

Here a deviation from the theory of n-ads must be introduced.
Note that although the intersection of all the faces of [;n is empty, we

-

bave not assumed this for (n+2)-ads. Since for example in Qi we want
closed manifolds as vertices of the simplices, this assumption must be
added. In general when forming a A-set with simplices n-ads of some
sort, we require that the faces of the object which form its vertices as a

simplex are 2ll disjoint.

= ® A7
Now set Dk = Ex (Dk ¥

\.4.1. Proposition

1) ﬂ; is a A-monoid with operation induced by ;] , with identity

the empty manifold. It is homotopy associative and commuta-

tive, and has a homotopy inverse.




There is a natural map of s-monoids ‘?-1; - 9(’:;1 )

Fad
Sat

which is & homotopy equivalence.

The homotopy groups ‘rrj (Q;:, *} are the (unoriented) bordism
e "; .
gﬁc“psr 7j+k{" }

& few comments before an indication of the proof

_1; has

which induces the standard

r aonoid structure induced by v,

ing structure in the homotopy groups. This is omitted since

>t investigate products in our other constructions. Part 2)

is an infinite loop space, and in fact since zn n-ad of

= w
&imension is empty, :’I:‘l is a classifying space for QI{ . k<o0.

i¥ 3} indicates the usefulness of the construction. Most sequences

TouD
=

s arising in topology can be realized as homotopy groups of some

]

sharally defined A-set, and exact sequences usually arise as the homo-
oy seaquence of fibrations of these sets. 7The spaces, however, contain

.

14

more information {k-invariants} than the groups, and a formulation

ing spaces often gives stronger results than the corresponding groups

is will be our approach to surgery.

. . L= n
1! induces an operationon %, {A},

£ all n, with ¢ as

ztity element by definition, and which commutes with boundary operators

the faces of an n-ad are subsets. From the definition of Exm, C‘;

The homotopy inverse is, as usual with

f

has the same structure.

riented bordism, the identity map. The homotopy statements are

d for 2 while.
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"
Next Q; will be shown to satis{y the slow countable extension condi-

5
k

Zpid (n+l)-ad. If they were disjoint except for the necessarily common

n -~
Hom.  Suppose A j'—-—-> 2, is a p-map then each in {az Anj) is a mani-
fzses  then we could take any set with I points in the complement in § of
e Image and give it the structure of Mx[0,1}, where M is obtained by
gizing the faces together over the common subfaces. Now Mx[0,1) union

e original set has an obvious compact manifold (n+2}-zd structure, which

)

-

, . N n . .
ix waT desired extension A ——> I . Thus extension problems arise

W

x non-disjointness problems.

In fact the above argument shows that if K is a A-set with strictly
fewer points than §, KoL with [K} a retractof |X|, and a2 o-map
- L

%

disjoint except for common faces), then the map exiends to 2 A-map K——>

which is nonsingular {i.e. has all image manifolds mutually

. The restriction on the size of K insures that im{l) does not {fill
@y ¥, and there is always room to choose a set {or a set for each point
of K} with 1 points disjoint from it all to use in defining 2n extension.

To apply this, we must make 2 £-map ;L —> E‘; nonsingular.

?\'G

Tk inductively

Tz¥k2 an injection of gets i:L.—>g , and define g:L —>

on the skeletaof L by : if g is an n-simplexof L, glo)} = é{int(f{c}),

Hu (Ujg{a}} , with the canonically induced manifold structure. Since

i iz 3z injection, g is nonsingular. It is alsc hoinotopicto f by a

remark we will state as a lemma, since it will be used again.
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-
-

§.7. l.oroma: Suppose f,g i L—> ?}k are A-maps with f(sn) iso-

o

mwrpkic te gly) as e {n+2)}-ads for each simplex o’n eL. If I. has

s¥rictty fewer points than &, f and g are homotopic.

Frooi:  Using the restriction on the size of L make f nondegenerate and

izt from the images of both f and g in ¥ . The resulting map T is

momrotopic to both f and g since we can choose sets disjoint from every-
#rimg wwith the structure of int(f{g) x 1} for 231 o ¢ L, then glue the images
st iz} on one end, flg) or g{o)} on the other using the iscmorphism
Ewpoihesis, and inductively defined lower faces along the edges to get 2
mman of Lox AT e :2‘1;; .G

The slow countable extension now follows, since a countable set is
wmch smaller than § . In fact this shows the slow extension condition is
zziisfied with respect to A-sets with fewer points than § .

These considerations also suggest how to prove the homotopy state-
ments in part 1) of the proposition. The commutivity statement, for

[ fod s

example, would follow from homotopy of two maps £ K ¥ f*; —r f’;

-

-
=%ose images on each simplex are isomorphic. Ok b

ﬁi is far too big,
bowever, being closer to the order of 2% . To zvoid this we do it 21l over
2gain with a set § which is bigger than ﬁi , and an injection § —> Z
which commutes with the product maps € and €. From this we define a
much bigger than the old one, with a canonical inclusion
a2 - {Al‘: . Lemma 1.4.2 now applies to the composition of the two

a5
mape with the inclusion, giving a homotopy in _Q_k . A countable A-set
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waz giweys be deformed from ék into { k’ ®° the inclusion induces

- ImpmmeTykism of homotopy groups, and passes to a homotopy equivalence

Application of 2 homotopy inverse gives the
#mzired bomotopies in Q’i . cornpleting the proof of statement 1) of
Fopgesition 1.4.1.

The following strengthened version of Lemma 1.3.2 is also obtzined:
T pmaps k> ék with isomorphic images of each simplex are homotopic
ws maps Lo—> ng .

The map in 2} is an optical illusion; take a simplex of éi and

-

Jwelk 2t it differently and it becomes one of 2 ﬁk-l’ *¥}. An n-simplex of

’i‘"; isa & {ntk)-ad of dimension n+k, whichis an (n4)-ad with

JEH = an—l-ZM = 0, which in turn is the image of a A-map ¥: AT AT ey

it

with the product triangulation on A% x1 and o(a” x {0} =

o4

€ .
1’ ) which passes

= s . - c .o~
#e x {1V =¢ . This gives an inclusion W 0

%2 iz desired map on application of E x .
Note, however, that the reverse of this procedure shows that any

¢.p* ) defined on the product triangulation of A" X1 lies in

£
k

waonpiexes produces an inverse to the map on homotopy groups, so the final

e mzge of O Thus an application of disjointness and gluing on finite

may Ff}; —> Of ni_l,*) is a homeotopy equivalence as asserted in 2).

Fizzlly, we evaluate the homotopy groups. By the glow extension
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2 with 211 faces emepty; hence a closed manifold of dimension n+k.

# Beoentopy between two such similarly becomes a compact manifold

i t¥¢ original cnes as boundary. This is the definition of the bordism

as asserted in statement 3). The proof of 1.4.,1 is

This example has been treated in some detzil gince similar consid-

zre often skipped over in the literature. This kind of construction

seaiiral o our approach, however, as it seemed desirable to include a

prwsiment., Propositions similar to 1.4.1 will be stated without proof in

- ziapters, since the proofs are essentially the same.
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2. Poincaré complexes

#.% Hemeslogy and duality

Iz ¢his section the versions of {singular} homology and cohomology
g ke waed zre defined, and extensions of standard Poincare duality lemmas

sm wteted in the context. The format of Browder [ 7 ] is followed fairly

with allowances for the fundamental group.

sppose {X,Y) is a connected and locally l-connected topological

sl @:‘5’1}{——922 = {-1,1} is a homomorphism. « defines an

cwmngledmesistion on X {‘171}() by
Tn = Twlg.ln -1
18y T HUg BE

et (X ,.'}‘) denote the universal cover of X and the correspending

= of Y , then the singular chain cemplex CJR‘,? } has a natural

# = E (=, X })~complex structure induced by the covering transforma-

#Weme., I B is a right A-module, define

¥ —
H (X,Y; B) = H{hom (C(X,Y); B))

t —
H (X,Y;B) = H(ctti, Y)eB).

The T oom Ht* signifies the use of the left module structure ib = BX on

Z iz forming the tensor prcduct, a notation introduced by Wall,

To chtain a coherent theory, it is often necessary to use covers

ez the universal one.

Suppose w facters 7, X —>GC—> Z that B is a2

2
' moduele, and that {X,%Y ) is the cover of {X,¥} corre-
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gpeading 2o G, then there are natural isomorphisms of right I-modules:

C*(X » ¥ )®I\B

g c*(x, Y)&I,B
hom (G, (X, ¥),B) ‘=‘homr (c*(ii,if ), B .

First note that C_{¥,Y) ® T = C,(X,Y), whichis cleax from

nition of @A and properties of covering spaces. The top isomor-

: zow follows from asgsociativity of the tensor product, while the

 follows from adjcintness of hom and @ . 10

From this we see, for example, that if {X,Y)} is z pair, an-—b G

> #. @ homomorphism, and B a right Z(G) meodule, then the exact

| Bmmeiegy and cohomology sequences for the pair (X, Y } give exact

t t t t .
---=>H_(¥;B) —>H_ (X:B} —>H_(X,¥;B} —> H__,(¥;B)~—>

Y — Hn(X,Y;B} -_—> Hn(X. B} —> H'n(Y;B] e Hn'l(X Y;B) —=

The next definition generalizes and combines most of the good
festzTes of previous ones (Wall [25], [27], Browder [2 ], Spivak [12]}.

Lat (3. Y) be a connected and locally l-connected topological pair with
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z if there is 2 fundamental class
[x,.Y] ¢ H:: {X,Y;% ) suck that the cap product

x,v]n:afxe) — H';_z(x,i';:s)

[x,¥] n = BAX, ¥iB) —> HE (X:B)

&m-. isomorphisms, all £ . Further, {X,Y)} is G-simple if itis a Z(G)-
Paincaré pair, and the cap product on the cellular chains of the covers

‘#ux finite complexes) induced by cap product with £e¢ [x,Y]

.. . e
homi{C° (X}, Z & —=0 c:_*(x,y)

war ww »

n .
Bom(CS (X, ¥), B G) = C__(X)

e zimple equivalences of finitely generated free based Z(Q) cormplexes.

%.¥) is called simple if it is IIIX simple.

Standard arguments show that if IIIX —>G,—> GZ—-'> Z 2 and (X,Y)

B g Gl {simple} Poincaré pair, thenitis a GZ {simple} Poincaré pair.
The advantage of this coherent introduction of the fundamental group
%z ¥hat the exact sequence arguments of the eimply-connected case apply

BT

iittle change. An example is the structure of the boundary.

[
.
£

2.3 3. lLemma: I 1.*1}{ >G> Z, is a homomorphism, B a right

< module, and (X,Y) z {G-simple) B-Poincaréd pair of dimenaien n,

£7.4% is a (G-sizmple} B-Poincaré pair of dimension n-l, with

12} class 2[X.Y].

The duzlity statement follows from appiication of the 5-lemma to a
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map of exact sequences, which by Theorem 1.1.5 of | & ] is commutative
wp to sign;
—> HYX, ¥;B) —> HI(X:B) - —> K (¥;B) >

ln{x,*z] in[x.Y} 1 Ra[X, Y]

t t ot
——r : — X, Y;B)— :
TpogfsB) == Hy 1% Y H (B

The simplicity statements follow from the sum theorem for Whitchead

sorsion applied to the sequence of.chain complexes:

er s

0—-'>C*(Y}-~>C*(X)—~">C*(X,Y}-—->O. i

A Poincaré n-ad is essentially an n-ad with the h.omologica_l struc-
mre of a manifold n-ad, as defined in 1.2. However, we will need %o be
able to use different reference groups for the different faces. For con-
wenience in the next chapter, this is done using the fundamental group of
zmother n-ad. Thus suppose 'K is an n-ad, with an orientation homomor-

Fhism -nrlK — 2

¥.1.4. Definition: Ann-ad X withamap D:X—> K isa (simple)

W-Peincard n-ad if, for n=1 (X,€) is a {simple) 'n'iK Poincaré pair and

zr n>1 {X Ujan) is a {simple) -:rlK Poincaré pair with ozientation
«izss ¥V , and each an is a {simple) ajK Poincaré (n-1}-ad with

wesmect to fundamental classes Vj such that 3V = f’.'.?(-l)3 Vj .

In case 3K = K all j, thensuchean X is called 2 =, K = G{simple)
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».%.5. Proposition: If {X;BOX, alx) is a triad dominated by a finite CW
grizd, IIX s G > L 2 and B a right Z G module, then the following
zre eguivalent.

13 {X;aOX,B,X} is a {G-~simple} B-Poincard triad with respect to

o ot H
¥ o ﬁn{X,BOX U 31X, Z)

2} {aOX, 6{0 1}}{) ig 2 (G-simpie) B.Poincaré pair with respectto 3V,
222 the homomorphisms

. 119 B e 1T ;
V A HAX,3;X:B) >Hn_q(x,aox,3)

. 5 : t .
Y 0 BUX 3 X:B) > Hn’q{X,BIX,B)

zre isomorphisms for all q {are induced by 2 s imple equivalence of LG

zhain complexes).

Troof: The 5-lemma applied to

Pt

— HYX,3.X:B) —> u? (x;p) ———> HQ‘I(BQX;B) —_—

0 I

; i
ivn l vn , =R
d ¢ 0

-t - [ Yt - t . -
— hn_q(X.alx.B) > hn‘q(x,aoxu 3, %:B} —> Hn_q_l(aoxvaxx,alx,ﬁy——>

t
H 1{30X,B{0’1}X,B)

n-g-

— %%, 5. %:B) ~— HYX,3, XV XiBl —> 1 e %, KB —>
R S o 1T 02 %0,17"
v V0 L avn

_ i g 9

e Sp— N T - R
n-q n-q-1

0
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There is also the Ysum theorem, " with statement essentially iden-
tical to Theorem 1.3.2 of [ 2. }. Suppose (XI’YI) U (XZ,YZ} = {X,Y),

(Xl'Yl) n (XZ,YZ) = {A, B}, wIX——-) G > I B a right Z G module,

2’
and ¥V cH; (X, ¥:Z)

2.1.6. Proposition. Any two of the following imply the third.

1) {X,¥} is 2 {G-simple) B-Poincaré pair with respect to V.
2} (A, C) is a [G-simple) B-Poincaré pair with respect to aox.
3) (.‘.{i,'&’,1 U A) are (G-simple) B-Poincaré pairs with respect to jAV for

i=1,2, and ji the inclusion (Xi,YiUA) C(X,YiUX ).

121

Proof: Again the 5-lemuma applied to the sign commutative dizgram

{Coefficient B)

— 1t lg) —— 1t (%) ————s Hq(Xl) oy (X,) —>

a. va vn E J VN2V
€W O ¥ @ 1 2
t t t k4
—_— —>H —n X .
B (A,C)—> KL _(X.Y)=> ] (XY, 04) SH, (X,.Y,UA)

The simplicity statement iz from the sum theorem for Whitehead torsion

zzplied to the corresponding short exact sequence of chain complexes.

The situation of 2.1.6 is varicusly called a splitting of (X,¥Y)}, ora

wodiznansion O embedding of (XI;YI’ XIRXZ} {or (XZ;YZ'XInXZ) } in

. ¥ More generally z splitting of a pair (X,Y) is a {G-simple)} homo-

gguivalence with another pair which decomposes as above. A wider
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class of embeddings is similarly defined.

2.1.7. Definition. U {X,Y} is a [G-simple} B-Poincaré pair with respect

to -rlX — G —> Z 5 s and (M, N} a topological pair, then a {G-simple}
embedding of (M,N) in {X,Y)} is a splitting (%,Y) %(XI,YI)u(xz,YZ)
and 2 homotopy equivalence (G-simple) {M,N} == {X,.Y,).

This can be used to show manifolds satisfy simple duality,

2.1.8. Definition. An elementary handlebody (differentiable, PIL., topo-

logical, or Poincaré) is a triad (X;aOX,al}{] with BOX a compact manifeld

2 ; . : ; : k - n-k
or Poincaré space of dimension n, a codimension O embedding 5 xD "¢

int{BOX), and an isomorphism

~ k41 _n-k
{x.aox,alx) ={ (BGXXI) U (O T xDT Txf1l i

s¥xo™ ¥ %11}

kK _n- K+l -k
3. Xxf0}, 33, X xIui(d Xx{l]-im{skan k)x{l})u D xap™ x{1}.
Q O 0 k n-k
& 'xab
s?x p™°k
.
wicture: - T Dkan'k
b3
i
> X p/
0 33, X I ivA
I
BOX

ne manifold case it is a classical argument that this construction

manifold triad. Using Proposition 2.1.5, we see that the situation

Poincaré spaces.

M

fo
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2.1.8. Lemma: If aox is a (simple) Poincaré space, then an elementary

bandlebody (X;BOX, alX) -is. a {simple} Poincaré triad.

1

% R
Proof: H (X2 X:B}x H " s5p) B

~k+l -
Hi (%, X:8) n Hy (0" s ) nn

k”x Dn‘k} )1 N is an isomorphism. The

and the cap product {IEOX} xI+[D
alternating duality lemma 2.1.5 now applies to give the result. D
The group, and in particular the orientation hornomorphism with

respect to which it is simple is the same as 3, X if k# 0, butinthe

o
I.pandie cage k = 0 the group may have to be enlarged if one component of

-0 n . . e .
57 x D is attached by an orientation-reversing iscmorphism.

A handlebody is 2 triad (X;3,X,3,X) with a finite filtration
-f;::‘%'xk;aﬁx,alxk) } such that for each k (X~ X773, aixk’1 n S XYy

Elxkf} (Xk- Xk‘I) } is an elementary handlebody. Inducting using 2.1.9,
& kzndlebody iz 2 simple Poincaré space. The lermma is actually necessary
Zzx the definition, in order to know the upper boundary of each elementary

#yndlebody in the filtration is a ¥, X-simple Poincaré space and thus can be

1
%= base of an elementary handlebody.

The theorem that every manifold {dimension > ¢ in the topological

 z#32} has a handlebody structure yields the following corellary.

12\{—-9- Z z is the

R AT T T A YR N T T T £
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2.2. Surgery maps

The use of the term "'surgery map' here is entirely standard,
nmamely 2 degree one normal map from a manifold to a Poincaré space.
The only diffexence is that the n-ad case is treated, and a reference n-ad is
fixed and Poincard n-ad is understood to mean with reapect to this n-ad.
Mostly for reference, then, the definitions are given and the main re sults
1o be used are stated. Standard references here are Browder {2, Chap. 1},
and Wall [27, Chaps. 1,2].

Let 72 denote one of the categories of manifolds, diff, Pl, or top,

and let X be a topological n-ad with an orientation homomorphism ‘WIK——;" ZZ.

2.2.1. Definition: A map of n-ads M—> X—> K, with M and X

¥-simple) Poincaxé spaces is degree 1 if {acxf)*([B:ﬂM]) = {auX] for every
z¢c {0,...,n-2}.

The main property of a degree one map is that the
%zmomerphism defined by duality and the map in cohomology is a right

izverse for the map in homology. It is thus a split surjection in homolegy.

2imilarly it is a split injection in cohomology {with a canonical cokernel).
>4 P )

W 34 —> X —> K is a degree onc map define
kb (M:B) = ker( (MiB) —> B (3GB) ) = B (X, M;B)
n > = ke n Ly n * - n+i s VL,

KPOMB) = coker(HHUX:B) —> HUM;B) ) = 1 g, MiB) .

v groups Kt*(M, Z:B} are alsc defined with respect to .any union of

Z = J-iE}{I BjM , and the K-groups satisfy Poincaré duality in the
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sense that K*(M,g ajM;B) is carried isomorphically to K;_-*(h&,gajM;B)
by the duality isornorphism of M. . *

These groups have many other properties, and in fact a detailed
investigation of these properties leads to an a2lgebraic characterization of
gurgery {27, Chaps. 5-8]. The approach taken here is completely geometric,
and except for one theorem (the periodicity theorem} is independent of this

algebra.

2.2.2. Definition: A normalmapofa & n-ad to a Poincaré n-ad over K

is an n-.ad map M —> X together with a reduction of the stable normal

fibration of X to B, such that the diagram

M B
N
A
A\
A
\
A
\
\
&

comrnmutes.

Note that if M ——> X is a normal map, then the orientation homomorphism

=f M is induced from that of X, and hence from K.

Z.2.3. Definition: A (1) surgery map over K is z degree 1 normal

mmap from a {5 n-ad to a Poincard n-ad over K.

Z.Z.4. Theorzm: (the surgery lemma) Suppose f£: (M;BOM,BlM} —>

—

,,Z-*I,EIX) s {K;BOK,B:{K} is a surgery map of & 5 triad to a {simple}

<ard triad over K with aof a {simple) homotopy equivalence and
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a) If nla}x — -r:lX iz an isomorphism, then there is a surgery map
N—> X xI-—>KxI with

1) aoN —> X x {0} isomorphic to M-—>X

2} 3 N— BOX ®x I isomorphic to aOM xI—>3,X x1

3) aZN ~> X x {1} a (simple) homotopy equivalence.
b) If 'u'laiK —— wIK is an isomorphism, then there is a surgery map
N-——>¥Y —>K x1 with

1) 3 N—>3,Y —>Kx {0} iaomorpmc to M—>X—> K

2} BIN—*)BOY —> BOK x 1 isomorphic to 3 MXI-=>3 X X1==>3 KxE

0
3} 3,N—>3,¥ —>Kx {1} a (simple) homotopy equivaience .
The tecond part of this assertion follows from part a) by showing
wnder the conditions of b} 2 cobordism can be found to a map satisfying a).
This involves low-dimensionzl surgery on Poincaré spaces, which actually
proves a bit more which we will need. Rather than complicate the state-
zment further, we will refer to the proof ( [27, Chaps. 4 and 9] } when

zacessary.

This theorem and the s-cobordism theorem are essentially the only

gaometric facts about I -manifelds we will ne=d.
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3. Surgery spaces

2,1. Definition and basic properties

In this section the spaces I[..m(K) for K a topologiczl n-ad are
defined, and the basic properties explored. These include naturality; the
infinite loop space structure, fibration sequences of an n-ad, dependence
on the fundamental group lattice, and the relation between ]I.h and LS.

Let K be an n-ad with an orientation homomorphism rlK 2 2’.2.

3.1.1. Definition. If me Z , LI:n(K} } is defined to be the p-set with

k-simplices {K-simple} compact topological surgery maps of {nt+k+3)-ads

‘Of dlmen.ﬁlon m“l"k »
f:M >X"‘"‘>S {ﬂ*K)

=ith akﬂf 2 (K-simple) homotepy equivalence. The first k faces of f

gerve as its boundaries as a k-simplex, so we also require 3{0 X=g.
y e

ek}
We note that as in the example in 1.4, we should require zll sets to
%=z subsets of ¥, apply Ex&, etec. The considerations worked out in
#etail in 1.4, however, show that it is sufficient to make a blanket state-
et at the beginning that this ie to be done uniformly, and not mention

& wgein.

As with the example 1. 4.1, we have

.5, Proposition

% & {X} is an Abelian h-space with operation disjoint union, and

Sl

o

2ity the empty surgery map.
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2} The natural homotopy equivalence Lm(K} —> 0 (E’m-}(K)’ *) gives
E.m{K) the structure of an infinite loop space.
3} The hunetopy groups ITJ[.D:um(K) } are the Wall surgery obstruction

groups [27, Chap. 9 for L8] LK) i}

+3

In3.1.1 L means either L° or IL.h. When it is true of a functor
{here of 8 or h) independently of the value of the argument, the argument
is cften left out,

This construction is plainly a covariant functor cn the category of
n-ads with orientation homomozrphism, The induced morphisms are given

B2
A homotopy fibration (of A-sets) is a pair of maps A —E—:-.:"IC with
A
# homotopy of ba to the point map, such that the resulting map of A into

#imply by composition with the reference map of each simplex.

the fiber of b is a homotopy equivalence. The homotepy ba ~ % is usually

more or less canonically defined by the problem, and will seldom be men-

%wned explicitly. In this case being a homotepy fibration is equtwalent, by
®kitehead's theorem, to the homotopy groups fitting info a long exact

: #rgmence. A homotopy fibration sequence is 2 sequence of maps, each

. wmwisessive pair of which is 2 hotnctopy fibration.

The next property of IL is the fibration sequence of an n-ad. If K

Doz on-ad, 0 <) < n-2, then the cofibration sequence ajKi':v 55K 2. K

% imduces maps of L. . A natural map Bj: ]L.m(K) — Lm_liajK) is

by taking the boundary of each simplex lying over ajK (the {k+j+1)st

=y of a k-simplex).




26

3.1.2. Proposition. The sequence

i% j® 2j
R I R P N SRS N C S RSP
m ) m o} m m-1""}
is a homotopy fibration sequence.
Proof: This proposition is essentially {27, 9. 6} which says that the corre-

sponding seguence of groups is exact. The proof is an easy geometric

argurnent which also gives the necessary homotepies to zero. =

3,1.3. Proposition. If Kl_:; KZ is a morphism of n-ads with orienta-
tion homomorphism inducing isomorphism of fundamental group lattice
rlKl———b trle , then the induced p-map Lm(Kl) — IL.m(KZ) is a homo-

fopy equivalence.
Sreof: The fibration sequence 3.1.2 reduces the proposition to the 1-ad
zase, for Suppos; inductively that it holds for n-1 ads, then in the diagram

Lm(BjKll — Il..m(ﬁ.jKl} —— ]Lm(Kl)

l .

Ly (3.K,) —> K (6,,) —> L (1)

#e fop and bottom rows are fibrations, and the first two vertical maps
Smmmotopy equivalences. The 5-lemrma now applies to show the last vertical

= homotopy eguivalence. Now let M be the mapping cylinder

dw fewdd ol the map K1m> KZ of 1-ads: then the fibration seguence

§ — JLm(KZ) —_—% _TL.m(M) shows the problem to be eguivalent to the

sapetibility of LH{M). 2.2.4 b) is exactly the statement that 'ej}Lm(M) =0
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for j+M>6. This is one of the places where we regret our imptrecise
ataternent of 2.2.4, since Wall's theory using a more sensitive version
ghows [«7, 9.4.1] that fssﬂ..b{Kl) — n‘.SLO(KZ) is an isomorphism. Given
this, however, we can complete the proposition using obstruction thecry.
Ye can assurne K2 is 2 K(lel,I).

Let M __f__> X KZ be a 4-dimensional surgery map representing
an element of 1741100(1{2} {i.e. a 4~simplex with ernpty boundaries). Accord-
ing to walt:f25], X is homotopy equivalent to a complex dominated by a
2-complex attached to the upper boundary of a handlebody with 0 and 1
handles on 3 M. Surgery on the inverse images of the handles gives a
homotopy of { to a map which is an isomorphism over a neighborhood of
shese handles. Removing a regular neighborhood of these handles gives a
cobordism of { to a map with image dominated by a two-dimensional com-
plex. The obstructions to pulling the reference map X—> KZ back to Kl
iiz in Hj(X,r:j(Ka,Kll }. Since leI——'> K, is an isomorphism and
‘:2K2= 0, the coefficient groups are zero for j< 2. Thue the problem
=3tk image dominated by a 2-complex can be pulled back, giving an inverse
s a—.ém (Kl) — ‘|'T4(ILJ KZ).

Since representatives of Ty Ty and T have images already dom-~

imzied by a 2-complex, they are all isomorphic. U £ M —> X—>X

sants an element of ‘terLh(Kj} with 3X # ¢ then H3(X) =0 and it
sum Be pulled back, If 3X = ¢, then againby [25] X is eguivalent to a

jex dominated by a Z-complex with a 3.cell attached. f can be made

~orphism over this cell, which can then be removed to give 2 problem
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with nonempty boundary. This constructs 2n inverse for the map on Ty
To p2ss from the case K,= X(m X, 1} to generzl case apply Ly to
®,~—> K,—> Kir;K,,1). T

Next we consider the relation between the functors I{...h and 7.

Tenote the fiber of the natural map by A, {K)—> m"m(x} — n..hm{m.

mil
The homotopy of the fiber was determined by Rothenberg by geometric
arguments, and a {mostly) algebraic version is given by Shaneson in [17 ].
We give enough geometry to reduce the proof to facts about Whitehead
torsion. Not wanting to become involved with stable algebra, we would just
refer to [17 ] for the proof except that same of the conetructions are inter-
2sting for other reasons.

Given an element in Lhm(.K), it fails to come from an element in
I.’m(K] to the extent that the range Poincaré space fails to be K-simple,
a=d the homotopy equivalence boundary of the map fails to be K-simple.

e can concentrate the obstruction in either place. If It M — X —= K
iz a simplex of Lhm(K}, with the fzce carried by homotopy equivalence

demcted by 9, f, we can use z collar of ahM in M to replace X with

b

#er mapping cylinder of 3, M —> X. The map ahf is replaced by the

h

ty, Bo the obstruction to this problem coming from i’ s just the

s
iy

fmargicon of the duzality map of (X, ahxy. Conversely if K is an n-ad, and
me-m > %, the identity map an(K} — Lhm(K) is homotopic to a map for
wifiick the Poincaré complex in each image is a emooth manifold. Since

- e satisfy simple duslity, the entire obstruction lies in the torsion of
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Bhf. The construction of the homotopy is by induction over the skeleta of

E.,hm(K), and over the faces of each simplex.

Suppose X is a Poincaré space over K with part of its boundary
smooth, then it is equivalent to one with a amooth neighborhood of the
{-skeleton with respect to the smooth face, (X, 9,%}. Do smooth surgery
i reduce the fundamental group of this neighborhood to that of X , covered
by topologiczl surgery in the dornain, and take a thickening of a 2-skeleton

of the result rel BSX. By the dimension restriction, w of the upper

1
toundary of thie thickening is the same as that of X, 2o by the surgery
lemma 2.2.4 2 surgery problem M —> X can be deformed to one which
i a2 homotopy equivalence on the complement of the thickening. Incorper-
#ting thie into the face which is a homotopy equivalence, we have a cobord-
irm of a surgery map Tel faces where it is already smooth, to one with
wmooth target.

Now using the second conetruction in which the obstruction is the

. Zzreion of a map, the torsion muet satisfy a duality formula 7= (—i)n'r*.

C Eare ¥ Wh{wIK) —_— Wh(-:rlK) is induced by the gtandard involution of Wh

" mer¥ the antiinvolution —on Z {r;K). Anh-cobordism may be glued on the

1 %
CammeAspy face to change the torsion by 7 + (-1}n+ T , any T, 8o noting

st w1ih the ZZ module strucfure induced by * on Wh{ﬂiK},

-";?:h{ﬁlK} Y= {r¢ Wh('alK) l'.-' = {—l)nT /{'r + (-1)n‘r*] the following

siticn ie very reasonable.

5 Trsoasition: Mty Ly
. Froposition; oA (K) 3 7 (Z,3 WhizK) )
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Actually A_ (K) is homotopy equivalent to ol homzz{ZZ(C*(K(Z'LZ,i)),
Wh(ull()), if m is large enoupgk. Since we won't have occasion to need
even 3.1.4, we won't go into this.

Some remarks on the constructions above: First, the first character-
ization of the obstruction together with the final answer gives some informa-
tion on the torsicne which may appear in the duality map of a Poincaré space,
and how it can vary under certain restricted types of cobordisms. Second,
these two constructions give several characterizations of the surgery spaces.
The second construction shows that we could have used just sargery maps
of semooth manifelds to smooth manifolds. The first construction, together
with topological transversality {which requires a dimension condition at the
present time) shows we could have defined L as the cobordism space of
Poincaré spaces {over K) with one face 2 topological manifold, and an
extension of the normal bundie of this face to a reduction of the whole normal
bundle to Btop' Here it is essential that the objects be Poincaré spaces,
K-simple for LS{K). The definition 3.1.1 was chosen because it contains
both of these, and seems close to the widest most general and natural form

of the space.

3.2. Some specizl maps

Here we use geomeiry to construct two maps of L. spaces which in
some cases gives strong information about their structure. The first, the
pullback, is essentially 2 mystery since the only calculations have been

done ueing the zlgebraic characterization. The second, the assembly map,
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is slightly better understood. A geometric calculation in some interesting
special cases is made in 3.3, it turns up in the structure sequence in 4.1,
and is discussed a little more in 4.2 in connection with the fibrationproblem.
Suppese w:E—>B isa block fibration over a CW n-ad B, with
fiber a compact manifold k- ad MP. I N-— X-—>B is a surgery map

over B, then we can form the pullback fibrations

% *
N —> 7w X—=> E

l

v
> X —> B

s

Since the fiber is a compact manifold, this is a surgery map over E, with
* *
dimension raised by m. (¥ N is clearly a manifold. That w X isa

Poincaré space and the map degree 1 is an easy spectral sequence argu-

waent, }

3.2.1, Definiticn. : E <i
2.1 efinition. The map Pﬁ_ ]LJ,{B) —_— I[uj+m( } induced by taking
zzllbacks is called the puliback map.

Two special cases of the puliback are worthy of note: finite covers

- azd products. I B> B is a finite cover, then the pullback P is

wilback defined by the universal cover over K(ZP, 1}, p odd, is surjective

im Pemmotopy D (%P} — 1, {0}. On the other hand if the fibration is a

£ =B xM, the pullback is just the product map {27, Chap. 9}

M
4 I["j-z-m{B %« M). The other theoremn concerning the pullback is
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3.2.2. Proposition: (pexiodicity) I B is ann-ad, j-n >4, then the

product P 5 ¢ Lj(B) -— LjM{B) ie 2 homotopy equivalence. U

Again the only known proof is by the zlgebraic characterization of
Wall f27, Chaps. 5-8]. This is the only result we will rmake extensive use
of that does not yet have a geometric proof. It seems to be a very important
problem to get a botter geometric understanding of this map.

Now assume, dually, that F—> E -1> M is a fibration with a
{(polyhedral) manifold k-ad as base, and fiber a space with orientation

homomeorphism which factors through the image of #.F in wE . We

1 1

construct a fibration JI..j(.-:r) —> M with fiber N 'jiF). First the action of
M on F induces an action on Lj{F)’ and the tensor product of this
action with the universal fIM bundle over M gives the correct fibration.
We need a more geometric deacription, however., Define mj(n) =

U{,z( y Lj+£(r-1{c£) ), and for a simplex a.c-llvj+£(w-lc!') o JLj(w) with £
the least such, define the projectioneof a in M to be ot. ,Lj(w) —= M
is a block fibration over this triangulation of M with fiber lLJ,(F).

So far M could have been & A-set, but now consider the pa-set of
sections of this bundle, I‘M(Lj(w) }. I S:M—> IL,j(v) iz a section, then
over each simplex cr"'cM we get a surgery map N—> X -—> w-l(oz) of
dimension j +£ . Take the disjoint union of these surgery maps {over
common faces) to obtain a map of spaces N—sX—>E. If M is a com-

pact manifold, then by a classical gluing theorem N ie also. Similarly

the Poincaré sum theorem (in a generalization of its application to 2.1.10)
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show that X is a Poincaré space {simple for ]Ls) over E , with respect
to some orientation homemorphism w: le —_— 2:2 extending the homomor-

phism on the image of w,F. A spectral sequence, or the sum theorem for

1
surgery maps, shows that N—>X isa gurgery map of dimension m+j.
Similarly we can assemble the image of 2 P-simplex Ap % M —> Lj(?) to
get a surgery map of dimension j+tm+p over E X ﬁp.

Sections in different components of I‘M(R..j(s'r) } may assemble to
give surgery maps with different orientation hormomorphisms. Therefore
F,

given wim E ~>Z , extending the homomorphism on the image of =

2 1

denote by I‘M(Lj(rr} )w the components which assemble to give that homo-

morphism.

.2.3. Definition: H i i
3.2.3 efinition: The map Amm I‘M(Lj(r))u*—:» E”j«!»m(z) obtained by

asgemnbling the images of the sections is czlled the assembly map.

An important special case is again when n» is a product F xM—> M.
In this case ]Lj(f.-) is also a product IL,j(F) ¥ M —> M, and the space of
sections is just the space of maps Q(M,IL.J-(F}). Since EL,j(F) depends only

onw. ¥, ¥ need only be 2 product on 7w, to decompose as ILJ.(F) x M.

1 1

The bundle IL.J.(T:} kas 2 canonical section {the base point of each

fiber}, and by I{uj‘!f we mean sections which agree with this one

Tine, 3 4
on BOM.
P-lr and A;r are clearly natural with respect to morphisms in the

category oh which they are defined (bundies with fiber or base a {ixed

manifold}, and with respect to boundary maps in either the basze or fiber.
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Further, they aTe natural with respect to each other in the following sense.
Suppose MmE —> M™ is a fibration with manifold base, and £:¥Y —>M
is a map of manifolds which is a block fibration with manifold fiber N° on

g-I(M “3gM) —>M-3 M. Take the pullback

*
ATy
*
T ¢

E ———— M

™

<
.
o

*
Now = £ is a bundie map covering £, which induces 2 bundle map

; *
_ 'b:]!..j{g v} —> Ruj(-u} covering f. The diagram

* Agfﬁ
P(Y,ao'k‘) LAg =) TR LIS
H
T b P &
(g3,8) g
Aﬁ
T(M,aDM)n“j‘“’ T T LalBe B

commutes.

This is =2 little clearer if E = F x M. The diagram becomes

A{Y,BOY: lL.jF) ——— ]Lj+n+m{F X 50’?)

a(g, 1) P, X&

A(M,BGM;ILjF) > L (Fx6,X)

Iz the cases we will be able to czlculate I, spaces in terms of the assembly

w2y, this constitutes a calculation of the pullback.
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3.3, Transversality and splitting

If K contains a homotopy disc bundle, we can define 2 notion of
transversality of a surgery map to this bundle. Transversality is very
useful in constructing maps on I spzaces, and a sufficient condition for
transversality due to Cappell results in several computations for I spaces.

Since we are mostly interested in trivial line bundles, the definition

can be considerably simplified by use of topological dise bundles. Let

K=K Df wkere SI and Df the topologiczl sphere and disc bundles

i
1 S¢
over an n-ad KQ. Suppose f: M —> X —> K is a topolegical surgery map

of n-ads with z distinguished face 3 f which is a homotepy equivalence.

h

3.3.1. Definition: The surgery map M —> X —>K is transversal to

the bundle £ if X has a Poincard splitting as XIUS,g*D‘E* ~—> K, UDg

1
where g* is the pullback of £ over the inverse image Xo of KO’ f is
transversal to the bundle g*, and on the hemotopy face the induced maps
ahf-l{ahXG} e ahXO and {ahM - Bhftl(Dg*} } ——> ah}{1 are homotopy
equivalences,

Similarly for a simple surgery problem simnle transversality is
defined by reguiring the splitting of X and the resulting homotopy eguiv-
alences be simple.

At the end of 3.1 we saw that the subset of JLJ_{K} with manifolds
as target Poincard space is homotopy equivalent to all of ILj(K) for

j+k> 5 (K ak-ad). Now in these dimensions if M —> N —> X is such

2 gpurgery map, N can be made transversalto £, and M can be made
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transversal to the resulting submanifold of N. This is not transversality
as a surgery map since the homotopy face may not be split into homotopy
equivalences. If ahM could be split into homotopy equivalences over the
submanifold of BhN , then relative transversality would apply to give a
transversal surgery map.

Obtaining transversal surgery maps is thus seen to be equivalent
to an embedding problem. The standard codimension > 3 embedding
theorem [27, Chap. 11] shows the problem to be trivial and uninteresting

in this case. If dimn Df = 2, then essentially nothing is known. 1In

codimension 1, however, there is the splitting theorem of Cappell [¢]:

3.3.2. Proposition: Suppese £: M —>N is a simple homotopy

equivalence of manifold pairs, and N 2P is atwo-sided codimension
one submanifold with 2 PCO N and -.rlP D -rrlN injective. If

£ ]13M is split into homotopy eguivalences over the embedding 3 PC3 N
and m > 6, then the splitting may be extended to a homotopy

splitting of M.

Neotice that we have lost a little here in starting with a simple

homotopy equivalence and getting only a homotopy splitting. Our reacticn

to this will be to assurne the appropriate Whitehead groups are zero. In
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simple applications {see [17])it can easily be allowed for, but gets too
complicated for what we will do here.

x1, K and K

Now suppose as above that K= K1 £ i o

K,x {0,1} K,

1
n-ads, and conszider K_x 1 as 2 trivial D' bundle over sz—.

2

3.3.3. Yemmaea: I 1:11{ —> -rrlK is injective and j-n > 5, then the

identity of sz(K} is hemotopic to a map with the image of each simplex

leaving fixed those alxeady transversal.

homotopy transversal to KOX —;— .

Proof: Call the subcomplex of transversal maps A, then this is just the

statement that A is a deformation retract of IL.SJ_ {K}. We show
um(n.‘j {K}, A}=0, all m . The usual assembly process and the com-
- ments above show that 2 relative homotopy element is equivalent to a

surgery map M -t:-:- N-£> K x D™ with N a manifold transversal to KOX%

and 3 M-—>3 N—>K x 5™ 1 transversal as a surgery map to K x L

To apply 3.3.2 to the homotopy facee of this map it is only necessary to

1

show that under the circumstances we can 2lso assume 7.3 g‘l(KoxExDm)

I'h’

i vlahN is injective. Given this relative transverszality as above yields
a transversal surgery map showing the relative homotopy element was
trivial.

There is a diagram

. m
3hl\ —_—m K x D
i
¥, ¥

g-1 1 m 1 m
ah (Koxzx D )——>Koxsz
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By assumption the right map is a L injection. Surgery can be done to
make the top map a my injection, for if .S1 is embedded in ahN it has
trivial normal bundle iff u{sl} = 0. By definition of L., w factors through
wIK , and s0 ig zero on the kernel of nlahN —_— 7:11{ . By the same argu-
ment the bottormn map can be made a L injection, and by doing surgery

1 g-1 m
on ahN by 8¢ ah (Kox b3 I e BhN » the result of the surgery on
ahg-l(KOx Dm} is realized as a transversal inverse image of Kox p™ in

N. This surgery does not disturb wlahN since an S1 trivial in Kox n™

is also trivial in ahN by the first injectivity. The effect on ahN there-
fore is connected sum with Szx Sn-Z. The left map is now a 'rrl-injection
‘as desired.

All this surgery on ahN can be covered by surgery of ahM .

3.3.2 now applies to split the boundary, and completes the preof. [
The main usefulness of transversality is in the following construc-

tion. let KD ¢ be a k-ad containing an n-dimensional topelogical disc

burdle as above, and denocte the pullback of the given maps by

R(K, &)

/\

L(K,58)

N

459

L. - .
Here j(Kl,Sgl denotesg Jluj of the {n+l)-ad {K BOKI" , 0 n-2 l,Sr}

The homotopy pullback is formed by making one map a {ibration, and taking
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the pullback fibration over the other. The set theoretic pullback is the
subset of the product cach factor of which is mapped to the same element
of the range. Here it is important to note that they have the same homo-
topy type, since ® is already essentially a fibration. Given amapofa
complex in E.j{Kl .52} and a homotopy of its projection, we can lift the
homotopy after it has been moved a little to make it disjoint {see 1.4) by
gluing the images on the boundary of the images of the complex in
Lj(Kl,Sg).

Thinking of R.j(K, g) as the set-theoretic pullback, there is a
natural map c: Rj{K, £ —> }Iuj(K} gotten by gluing an element of

Euj(K,Sg) and P of an element of ]L.j n(KGJ together on the houndary.

5¢
“Each simplex of the image of this mayp is transversal to the bundle £,
by definition. Conversely there js a map d from the transversal subset
of Lj(K) to Pj{K, g)‘ given by the inverse image of KO’ and the com-
plement of an open tubular neighborhood of this inverse image whickh is
mapped by 2 bundle map te £. de =1, and a homotopy I~cd is

cbtained by an expansion along the fibers of £ until a transversal sur-

gery map is traasversal to the whole disc bundle De.

3.4, n: = L i -
3 4. Theorem: Suppose XK K1 Kox{O,l}KoxI is an n-ad,

'ano--? -an is injective, and Wh(‘xrl.‘t{i) = Wh(ﬁlK) =0 , then

.Y RJ_(K, Kox Iy —> IL..j(K) is a hommotopy eguivalence, foxr j-nz5.
Proof: The argument above shows that ¢ is a hemotopy equivalence

with the subset of iLj{K} transversal to Kox% . 3.3.3 implies that
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under the conditions of the theorem this subset is a deformation retract

of }Lj(K). 13

This form of transversality is necessary for our most elaborate
applications. It can also be used to give quick proofs of some very useful

results which can be proved by easier arguments {compare [4]).

3.3.5. Theorem: Suppose K= KOU K1 is an n-ad, Wh(le) =

Wh{ﬁlKi} = 'Wh{rrl(Koﬂ Kl) y=0, and -.z'l{K1 n KZ) — le iz injective,

then for j - n>5 we have

1} {excision} Lj{Kz, K}. N KZ) — EL.j(K,Kl) is a homotopy eguivalence.
2} (Meyer-Vietoris) Lj{Kl N KZ} s Lj(Kl) ¥ KL,J_{KZ) — IE...j(K1 9] KZ) is

a homotopy fibration sequence.

Proof: First we define the maps in the "Meyer-Vietoris'' seguence.
The first map iz the product of the natural inclusion in one factor and
(-1} times the inclusion in the other. The second map is the sum of the
ﬁamral inclusions.

To start both proofs, set K3= Kl N KZ, and replace X by

v i
X, x {0} UK, x {13 UK,x1. Denote Ky X fo} UK,x (11 by K% K, ,

then we are in the situation of 3. 3.4 with Kl replaced by KliL KZ, and

KD replaced by K,. Thus we have a homotopy pullback diagram

/ N
& “\__\
L (K~ K, K= K;) /Lj_l(K3)

\B\ .‘«/ i, -1)
]Lj-l(K.'i— KB)




41

Now clearly ]L'j{AI - AZ} = IL,j(Al) X JLJ.(AZ), so the fiber of the
bottom left map is, by the fibration sequence, the natural inclusion of
JI.,j(Kl} X LJ.(KZJ. By definition of 2 homotopy pullback, however, this is
also the fiber of the top right map, which establishes the Meyer-Vietoris
sequence.

On the other hand, the lower right map is clearly the fiber of
the map Lj_‘l{Ke'* KS) — ILj_I(K3) induced by preojection Ksu Ks---b- Ks.

Therefore the upper left map is the fiber of 3 +a: Lju%.’ K3} X E”j(KZ’KEv)

e Lj_l(KB). Now take the natural map of fibration sequences

J' | |

EKL K ) —> LX), Ky) x Ll Ky) —> LK, K) )
!

| w

LK Ky) > Ly (K} > L (X))

* > 1[.,3_1{ e LK
v

Since the top and bottom row are also fibrations, the 5-lemma implies
the center is too. But now comparison of the center with the product
saquence Lj(Kl’ K3) —_ ILj(Kl,K3) X Lj{KZ, K3) — JL,j(KZ, K3) shows

the center splits, and establishes the excision theorem. i

Theorem 3.3.4 is the statermnent that under certain conditions
an N space is the pullback of some maps of other I spaces. If we
could build K from simply-connected spaces by operations like the
above, then we could build up L{K) from I {(pt) by pullback. Our next

object is to do just that, using the assembly map 3.2.3 to keep track of




42

things, since the function spaces turn out to have the same formal
properties.

We begin with the formal properties of the assembly. Let M be
a triangulable manifold n-ad, K a k-ad, and h: N—> M a proper

embedding as a sub-polyhedral n-ad with normal disc bundle £:Dg—> N.

3.3.6. Yemma: The natural diagram

alM, BOM: LjK)

\ —
ﬁ N b
"

AN, 3,N; L, K) A(Mngsg,mx)

13
A(SE, 1) /
a(3,1}

8IS, 3,5 LsK)

ie 2 homotopy pullback. The assembly A(M,3,M; L, K) '—>JL K% 8 M)

factors through R (Kx 55 M, Kx £)-

Proof: The diagram is a set-theoretic pullback. and 4(3,1) is a fibra-
tion so it is a homotopy pullback also. That the assembly factors through
P is just the statement that surgery maps assembled from a map

M— LjK are transversal to K xN , which ie clear from the construc-
tion of the reference map. I

Next we define what we mean by groups built up from zero. If

¥

K=K, Kox {0,1]

K x1, then by Van Kampen's theorem -rrlK is the

free product of the groupoid ﬂ'lKl {lattice for n-ads n > 1} amalgamated
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. ) — s
over the homomeorphisms a,b: 11'1}{0 = lel. The requirement that
rrlKo---> -r:lK be injective is equivalent to the homomorphisms a,b being

injective. Thus an injective free product is a free product of a groupoid

amalgamated over injections.

et 'Wa.ldo be the class of groupoids with one element in each
component, and the empty groupoid. Inductively define Wa.ldn to be the
class of groupoids L which are injective free products of Lozg Ll’

with L ,L. ¢ Waldn

. and Wald = |y Wald . The name stems from
(YA 3 n n

1
the investigation of this class of groupoids by Waldhausen [21] in con-
junction with his work on Whitehead groups. A subgroupeid of 2 groupoid
in Wald is also in Wald, and an extension of one by another is again a

Valdhausen groupeid.

We can finally state the theorem.

3.3.7. Theorem: Suppose K is a k-ad with Wh(-ﬁlK xG)= 0 for each

G ¢ Wald, and M is a manifold n-ad.
a} If 1‘:160M is a lattice of Waldhausen groupe, then the assembly
AM,d ML K) —> L. (Kx§.M) is a natural retraction (has
o i'p J+m 0
2 natural right inverse} when j - k > 5.
b) I §M isa K{ﬁléoM,l) of Walcdhausen groups, then the assembly

is a homotopy equivalence, j- k> 5.

Proof: Here p denotfes the product orientation homomorphism

'-TI(K xéOM) — 1:1}{ —> ZZ,Z. a) is well known in the simply connected

case and is ezsy to sce in special cases using b).  b) is a generalization
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of Shaneson’s calculation [16],[17] {(essentially M =5, K =pt), and of
Wall's results in [26], which concern groups built up by extensions by Z,
aoM =@, and K=pt. The Whitchead group hypothesis can be weakened
in several ways, for example to vanishing on products with Waldn groups
if ‘ﬂ’lﬁoM is 2 lattice of Waldn groups. These hypotheses can be

stated in terms of the structure of vl{K) alone, {1], [21], and are sat-
isfied for example by the Waldhausen groupoids themselves.

In case 1:1501\{ is a Wa.ldn lattice, the proposition follows by
induction from the groupoid case {M =2 2Z-ad) using the boundary fibration
sequence and naturality.

To start the induction on n, we show that the proposition holds
for n=0, M a 2-ad. B-eginning with b}, M is contractible and M =2

homology sphere. Let (M,3M)—> (Dm, Sn-l) be z homology equivalence,

then since L.(K) is 2 loop space Lo™ s, LK) a0, M LK) is
a homotopy equivalence. The loop relations, which state that the assembly
map C?ml[..jl{——:- Lj+mK is a homotopy equivalence, shows b} for Waldo
groupoids.
: . m _m-1
Now for 2}, if 3M # § we can define a map §:(M,3M}—>(D,S )

which is an isomorphism on ﬁnl(i_nt D™}. Naturality of the assembly

gives & diagram

A
b4
—_—
a{M, 3M; LK) I (Kx§. M}
[ 3} +m 0
f
& !
m _n-1 ¥ m
a7, 5 ;ILJ-K) —_— 1L3.+m(Kx§UD }
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The bottom and right maps are homotopy equivalences, and composing
with a homotopy inverse gives a retraction.
iIf daM = § , then the inclusion DmC:M yields a fibration sequence

pM-int D™, 507N L) > &M, Ly —> AD™, L)
S
i

jtm Lji»m

and the retraction is given by the bounded case.

It is well defined up to homeotopy, and natural with respect to natural
maps of I..j{K), and boundary when extended to lattices.

Now suppose 3,3,7 holds for lattices of Waldn_l groupoids, and
consider a connected 2-ad M with ﬂIGOM € Waldn. Let ﬂlﬁgM be the

Suppose we

free product over injections L —rd Lo, L Lye Wald ;-

could find a 2-sided codimension 1 submanifold NxI<C M such that

“IN = LOJ ?I(M-N %{(0, 1)} = Ll’ and the inclusions on the ends of NxI

induce the homomorphisms LO == I_,1 above. Since T.’}GON — -rrléoM
is injective. ¢he transversality theorem 3. 3.4 applies. Take the natural
(as=-enbly} map of the mapping space pullback 3. 3. & to the L. space
pullback given by 3. 3.4.

By hypothesis since w, N, vl(M-N) are Waldn 1 groupoids, there

H
are natural right inverses for the lower three horizontzl maps. By nata-

ality they commute, and induce a map of pullbacks. This is easily seen to

be a retraction, as required by a) for Wald groups.
. n
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MM, aM;LjK} > IL.j +m(i‘{x60M)

/
s

A(N,BN:JLjK} > By ISR '\

M- Nx(ﬂ 1}, aM-aNx{0, 1}, K)—"““‘l‘> }L(KXB (l\”-NX(O 11

\ \/

A{2(N, aN; ILjK) (KxZ(" N

If GON and GO(M-N x {0, 1}) are K(Li,l)‘s, then the hypotheses
for b) is satisfied on the lower maps so they and thus the top map are
homotopy equivalences. This gives b) for Waldn groups.

Thuyr we have reduced 3.3.7 to a problem of splitting a manifold,

given a splitting of its fundamental group. To proceed reguires a lemma.,

. 1 . ——
3.3.8. Lemma: If KOKl are K(wI(Ki),l}s f,g.KG >K1 are

injections on w then K=K Kox Iisa K(-rrlK, 1}.

I
1’ 1 fxiolugx{l}
FThus each Waldhausen lattice has 2 K{L, 1} whizh is a finite complex.

This follows easily from inspection of the universal cover ®. By

the injectivity of f,g, it is composed of copies of 'Iv{ox I joining disjoint

copies of El' A huge Meyer-Vietoris sequence shows it has the homology

of & point, hence is contractible.

Note that 3.3.8 implies 3.3.7 is non-vacuous. Given G ¢ Wald,
embed a finite K{G,1) in E{'E, scme £ . A regular neighborhooa M
satisiies the hypotheses of 3.3.7 b}, so }Lj-i.é.(G) = A(M,bM;JLj(th }.

We must now split manifolds. First the dimension may have to be
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raised. Let n >0, then periodicity and adjoininess give a commutative

diagram

A -
A(M,BQM. Il'uj(K)) > Lj-l-m(KXOOM)

A, x(£ 25D | x(epl®

a3 M oFB LK) ——> L (K % 5,2)

jtmt4n

| A

s xD*, 3 M xDuMxs L (K))

The hypotheses on ﬁlaoM are preserved by this operation.
3.3.7b) can now be completed. By 3.3.8 let K be a {inite complex
K(ﬂrléoM, 1) with a splitting corresponding to the presentation of 1?150M as

an injective free product, K=K, x[0,1]. If we multiply M

Yk, x {0,130
by D% with 4n>2 dimK, MxD is a regular neighborhood of K by
the s-cobordism theorem. The regular neighborhood over KOKI is a
collar on 2 thickening of Ko embedded in codimension 1 in Mx D4n.
This gives the desired splitting of M xD4n, and the induction hypothesis
appliee to the pieces to show the bottom assembly mep in the diagram is a
homotopy equivalence. Since the periodicity maps are homotopy equiv-
alence_s the top map is one also.

To complete 3.3.7 a}, a splitting of M by a transversal inverse

. 1 sy . X
image of KO X= which induces isomorphism on fundamental groups must

2

be found. If m > 6 this can easily be done by modifying the standard

embedding theorem to correct the cobordism arising in the similar con-
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struction at the bottom of page 37, or directly by very low dimensional
gurgery ambiently on the inverse image. For low dimensional M the
retraction is defined by multiplying by D8 as above, and applying the high
dimensional case. Naturzality of the retraction with respect to natural
maps of ILJ.(K) {periodicity in this case) implies that it is well defined and

has the required naturality properties. !

We close with a simple calculation.

3.3.9. Corollary: Suppose G isa 3-dimensional knot group, and

G ——> Z is the quotient by the commutation subgroup. Then

L6(G) —_ 11.6(21 = Lﬁ(pt) X ]Lsipt) is a homotopy equivalence.

Proof: Let ¢ bea PL locp in S3 with 1:1(53-c}=G , and let M be
the complement of an open tubular neig-hborhood of ¢ . Thereis a
homology isomorphism (M, 3M) ~—=> (Sl X DZ,S1 e Sx). By [21], G isa
Waldhausen group and M iz 2 K(G,1). Since Ls(pt] is a loop space,

the following are all homotopy equivalences.

LglGl < &(M, 3M;IL pt) ~—> L(S xDZ, slxsl; L. pt)

~ 1 ~ ~
—> 4(8 ", L pt} — QL pt) x Lo, pt — Loaipt) x Tun(pt-

Periodicity applied to both sides brings the dimensions down to those
clazimed. In Chapter 4 we will see that ms(pt} Z o nc/ToP , so further

periodicity gives LS(G)l G/TOP x 1 G/ToP. D
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Corollary 3.3.9 was conjectured in the 1969 Princeton thesls
of 8. Cappell. A specizl case 1 treated there, and the cor-

responding statement for Y-gimensional knots 1s shown fto be

falze.
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4. Structures on Poincaré spaces

In this chapter we study the question of when a Poincard space is
homotopy equivalent to a manifeld, and the problem of classifying such
structures when one exists. This is the problem surgery was evolved to
answer (2], [27 , Chap. 18], [20]). This theory fits very well into our
geometric setting {see [13] for the simply connected case), and solves
some problems which cannot be effectively attacked with the group

formulation.

4.1. The structure sequence

Suppose X iz an {X-simple} Poincaré n-ad of dimension m, and
BOX iz a manifold {n-l}-ad in the category ; = diff, PL, or top.

Define A-sets SI;. (X,BOX) and S,s_ (X,BOX) with k simplices homo-

topy equivalences (simple for SB} M—> X x Ak of {n+k+2)-ads with
k

M e ,C and Bk+3M —_— aox XxXh a ; isomorphism, Under the gsame

conditions define NM . {X,BOX) as the p-set with k-simplices & -

surgery maps M —> X x Ak of (ntk+2)-ads whickis a & -isomorphism

k
ak+3M > aox X4 .

Since a homotopy equivalence is a surgery map, there is 2 natural
forgetful map S(X,ao){) -—> NM(X,BOX}. Moreover since a & isomor-

phism is a homotopy equivalence, there is a natural map NM(X,'BOX} —

JI"m(&OX)‘

4.1,1. Definition: The sequence S(X,BOX) — NM(X,BOXJ i ]L,m(é{)}{)
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is called the structure seguence of (X,BOX}.
Before considering the naturality properties of the structure segquence,

which are many, we prove the main theorem concerning it.

4.1,2, Theorem: If X is a Poincaré n-ad of dimension m, aOX is
& manifold {n-1}-ad, and m-n >4, then the structure sequence of

(X, aOX) is a homotopy fibration over the identity component of ]Lmag}{.

Proof: This is 2 geometric version of the structure sequence {27, Chap.
10]. The considerations there construct a map Lm+1(60X) —> S(X, BOX),
eo the long exact sequence of groups implies as usual that the maps form
2 fibration sequence. This map is constructed using the algebraic char-
acte-x'ization of the obstruction groups. To avoid the algebra, which we
do not find illuminating, we give an alternate proof by constructing this
map directly.

If the structure sequence is to be a fibration, then S(X,BOXJ —
NM({X, BOX) vill be 2 homotopy principal i Lm(ﬁo){) = ]L,mﬂ(ﬁo}()—ﬁbra-
tion. We actuzlly construct the action of E’m-i-l(é{!xj on S(X,aOX) by
constructing a homotopy of the projection 3{X, BOX) % Eam+1(503() —
]L,m+1(60X) to a map in which the image of each simplex iz a normal
cobordism from its homotopy equivalence factor to another homotopy
equivalence. A map from the product to S{X,BOX) is then given by taking

the second homotopy equivalence. The construction will alsc show that

any two actions constructed in this way are homotopic.
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+
4.1.3. lemmza: Suppose M" is a manifold pair m>5 and N ey

a map of manifold triads such that

1) 3.Y =3MxI, end 3 f is 2 normal cobordism from 1 over

0 0 M

3M x {0} to another homotopy equivalence.
2} 3,f is a homotopy equivalence.

3} the projection BOY ~—> 3M extends to a map (¥, BOY) —= (M, 3M}

making { a surgery map over M.

Then N-—=7Y > M is cobordant, as a surgery map over M and relaof,
to a2 map of triads N'— M x1—>M which is a normal cobordism from

IM to 2 homotopy equivalerce.

Proof: First make f a product Bof X 11 on a collar BON x 1 of the

boundary. f is then laM X ll‘over M x [0} xICBOY xI, s0we can
glue a copy of IMxI to f over IaMxI' After a little homotopy, the
reference map Y =~ M c¢an be extended over Y BMXIM ¥ I by the
projection M xI—= M.
M M M x I
| o
I e I
I ,
Y

Call this object ¥', then -rrlY' —=> M is surjective since we glued on a

copy of M. Kill the kernel as usual by surgery on some copies of

S'cintY', and cover as in [27, Chap. 9] by surgeryon NUM x1.




¥

Callit Y' again, then = Al= 'rrl(M x 10} Jiav aM xIx{ol) :T!IY' .

1
g0 since the rest of 3Y' is covered by homotopy aguivalence, the surgery
lemma applies to (Y', M x {0} ”—aM 3M xI x {0}). The surgery lemma
provides a cobordims as a surgery map of ' to a homotopy equivalence,
keeping the rest of 3Y' {fixed. Altering perspective a little, this cobor-
dism is just a cobordism of ' as 2 surgery map over M to the map

over the cobordism of the boundary M x {0] J-La aM xI x{0}. This

M

last is a normal cobordism of Ilwi to 2 homotopy equivalence of M which

is Bof on the boundary, which is the conclusion of the lemma. T

Using the lernma it is simple to complete the proof of 4.1.2.
First, by a fibration over the identity component, we mean that if A is
the component of NLI(X, BOX} whose image lies in the identity component
]I..m(sox}e ., then S(X,BGX) CA, and S{X,BOX) — A IL,m(BGX)e is
a homotopy fibration. If A =3, then 5(X,5,X)=§, and the theorem
is trivially satisfied. On the other hand if A # ¢ , then a path {rom the
image of an element to § gives a surgery map over (60}(. 60}{} , and
the surgery map giver by the surgery lemmea in this circumstance pro-
vides an element of S(X,ao}i).

Thus suppose S{X,BOX) # ¢, 2nd suppcse inductively that a
homotopy of the prejection S(X, BOX) b E"mﬂ {GGX) - Ilumﬂ(ﬁox) has
been constructed to 2 map ™ such that ';he image of any j-simplex
has the correct form for j<k - 1. Consider the image of a k-simplex.

In the first factor (in S{X,BQX) } use a mapping cylinder coborgism to
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replace the homotopy equivalence with the identity map of the domain. We
are now almost in the situation of 4.1.3. The part of the boundary of the
jmage which form its faces as a k-simplex have the correct form by

hypothesis. Glue a copy of 1 2k x1 on a coliar neighborhood of its

3 OX X

boundary as a k-simplex and hold the side Ia X x ak ¥ {01 fixed, incor-
0

porating the rest in the face rapped by homeotopy equivalence. Now the

smallest faces of the image as an object over 50X {i.e. over

a{l’_‘ 23§41, ... ,n-23 X) satisfy the hypotheses of the lemma. Clue

on the resulting cobordisms to maps of the correct form, and zadd the
corrected part of the boundary to the part being held fixed. Now the next
faces satisfy 4.1.3. Applying 4.1.3 inductively to succes sively higher
dimensional faces we get a cobordism of the image to an object which
jtself satisfies 4.1.3, and thence to a normal coborxdism of the correct
form. A choice of such a cobordism for each k-simplex can easily be
used to construct a2 homotopy of Mk-—l to Mk satisfying the conditions
on the k-skeleton.

There is 2 canonical homotopy of S(X,BOX) — NM{X,BOX} —
I[..mf;oX to the trivial map. To show the sequence is a homotopy fibra~
tion, it therefore suffices to show the resulting homomorphisms
vj(NM(X,BOX), S{X,ao}(}) — wj(lium(éo}(), #*) are isomozrphisms. An
element in the left group is just a surgery map M-—>X x Dj of

{n+l)-ads which iz an isomorphism on BOX X o , and a homotopy

si-t,

eguivalence on X x The homomorphism is injective since = homo-
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topy of such an element to 0 in the right side provides 2 cobordism of
ftto 0, and by the surgery lemma a normal cobordism rel the boundary
to a homotopy egquivalence. This last, however, is just a homotopy to
zero in the left pair.

Teo prove surjectivity, since the result is only expected o hold

for j>1, we take a relative loop space,

81, {0,1}; NM(X, 3 X), S(X,3 X)—> QL _5X =% (5X).

The action above was just a factoring of the projection of S(X,BOX) %

Lm+1{60X) through this map, so it is surjective in homotopy. U

We make one further refinement in the structure sequence.
The B, reductions of the normal bundie give a map NM(X,BOX)
—_— A(X;B; } whose image under the composition with By —>Bg is
just the single point {Vx} . If NM(X,BOX) # ¢, then we can subtract
one reduction off of all the others, translating the classifying map over
to the base point, and 1ift to the fiber NM({X,3,X) —> (X, 3,X; G/zY .
aex is taken to tke base peoint since all reductions agree there by assump-
“tion. This map is a homotopy equivalence with homotopy inverse easily
constructed using transversality. For transversality in the topelogical
category we need m - n > & here [8], but we will always be able to aveid
this restriction using periodicity.
Thus if S(X,BOX) # % {(and hence NM{}C,BOX} #8), wegeta

homotopy fibration sequence

S @ (X,3,X) —> 8(X,3;XiG/p ) —> Ko (6%
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for m-n>4.

4.1.4. Proposition: (naturality of the structure sagquence} If X is an

(X-simple for 8°, L") Poincard n-ad of dimension m with 3%
givern a manifold structure, S{X,-aox) #¢, and m-n>4, then the

following diagrams commute.

a) boundary S{X,BOX) —_ A(X,BOX; Gl L y—> I[..m(GQX)

| } i

8{X) >MXG/L ) e L (X

} | a
A v ¥
5(3yX) —mm> MRGK;G/E ) — Lo ,{35X)

is a fibration square.

b) pullback Lre—>X (block)} fibration, compact manifold fibers
S(x,aOX)—» A(X,BGX;C}/E | L(%X)
P &g, 1) P
¥

S(E,2,E}— b(E, 3 E:G/5 ) — L{§(E)

¢} change of category if s 7 sz is a natural inclusion (one of

DIFF s PL. — TOP)} then there iz a fibration square

o
(x,aoxy —> X, 3,%; rlff?23 > ¥

S"gw:zl .

8. (X,3,X) > a(X.aOX;G/s1)~—~> L (54%)

{ n !

5o Z(X, 3K} — > 4X, 3, X G/ ) —>L (55%)

21
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d} apsembly: suppose T:E-—>3B is & homotopy fibration with fiber X
over a manifold Bb, and is a block fibration BGX —— aoz —> B and

X->3 E-—>3,M. Then
n-1 4

I‘B(S(w,aoﬂ)) "“'">A(E,BOE Uan_lE;Glx:; ) ————— rB(Lmaow)
Aw 1 1 A505n~1ﬁ

S(E,3,E U3, ) —>4(E,3 EUd_ [B:G/S) — > L. (§,6, E)

0 m+tb' 0 n-1

We omit the proof, which is just a long verification of the defini-

tions, and give some remarks.

First, since Lm(éo}{} does not depend on the category, c¢) gives
- - . . ‘_’:__' . - 3.
smoothing and triangulating theory; S‘gl /ﬁz (X,BOX} > A{X,BOX, 51/02)
To obtain this we have used immersion theory {{9] in ¢the topological case}
"to do surgery, and transversality {which we regard as the main import

of [8] in the topological category) to evaluate NM r {X,BOX).

Second, d) gives a geometric formulation of the fiber of the
a.s-sembiy map; the classifying space of the {iber of I“BS{ﬂ,aOﬁ) —

S{E,’3.E UBn E). This shows that it ig interesting rather than leading at

0 -1

once to calculations. Section 4.2 will explore this point a little further.
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If M is closed and simply connected, the structure sequence
gctually spiits. Let D be a disc embedded in M, and set
Mo =M - int D. Thinking of D as a framed embedding of & point,
then for m > 5 the codimension 3 embedding theorem [27] implies
any homotopy egulivalence N —> M can be split into homotopy
equivalences of pairs {NO,BNO) e (MO,BMO} and (ﬁjﬁé,BNo) ——
{D,3D). More generally a homotopy eguivalence of [k+2)-ads
N — Ak x M can be split into homectopy egulvalences over

Ak

x Mo and Ak %x D, extending & splitting given on the boundary.
Taking the first Tactor definesa map of A-zets S;(M) — %:(MO),

which fits intc a commuiative diagram

S;{M) —> &(M,6/z) —= L m(*)

| ’

8, (1) —> AM,C/p ) Lom{*,*)

The middle map iz the restriction, which has fiver ' (G/).
I m{*,*) = * since T X = T, if & = T0P, or PL, then the

fiber of the left vertlcal map is also trivial. £ homotopy
Inverse 1s constructed by: on fhe O-skeleton if m = 5, BNO

is a homotopy 4-sphere, thus h-cobordant to 84. The map
4

NO ~>= M, extends to N U {(h-cobordism awo to 87) — M, then
add the cone over the boundary of both, and extend linearly.
For higher dimensgional skeleta, and m > 5, after 2 map has
been defined on the k-skeleton, the missing part in an element

¢f the k+l skeleton has as boundary a homotopy sphere, hence a




i
[528
trd

sphere by the Poincard conjecture, and again adding the cone over
this boundary and extending the map linearly defines an element of
the k-skaleton of SE(M).

The fibers of the diagram are therefore

*

Y

dMo/gy = a{e/p)

! l W

Sg(M} —— A(N:G/f;) B T

l | l

S‘;(MO)—&?- A(MO,G/S}""'> *

For M = 0 and £ = PL or TOP, this gives a splitting of the
structure seguence, and calculates Sp{M) = A(MO,G[;),
35(*) = oP{G/T0P) = O?{G/PL). The exact perlodicity of G/TOP
undsr X mPE will
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allow us to improve dimension restrictions in many cases [8].

This shows that the map A(X,BOX;G/top} —_> Lm( GOX) is itself
an assembly map, being essentially A(X,BOX; }L.o{*} }—> ]Lm(* xéox).
Thue the results of 3.3 concerning the asgembly can be applied directly

to the structure sequence.

4.1.5. Corollary: Suppose M™ ie a manifold n-ad with 3 %MgWald,

and m-n >4, then

a) SpoptM:3,M) —> alM, 3, M: G /top) ~ L. (5,M) is naturally split

by the right inverse for the assembly given by 3.3.7 a).

b) i M isa K(ﬁoM,l), then § (M,BOM} is contractible.

TOP

Proof: First replace M by M xDS, and use adjointness in the mapping

space to obtain a diagram
s (M xDS 3 MxDsuM xs7) > AfM, D M-QSG/‘I‘OP)——> SESIL, (6. M)
TOP %o O m' 0

MILE )
p8

A
L (%)) — (%
80,3 ML (0) > I 1% x3 M)
The two vertical maps are homotepy equivalences, and the bottom map
has a natural retraction by 3.3.7 a). The top sequence is iscmorphic to
the one in 4.1.5% a) by periodicity (exact on G/TOP) so it is alse naturally

gplit. In case b), the lower map i6 a homotopy equivalence by 3.3.7 b},

8¢ the fiber is contractible. [J
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Note that change of categories now calculates S}: (M, BOM] in
case b) as .-].(I\:‘.[,BOM; TOP/x ). In particular since TOP/PL is a

K(Z,.3), S5 (M,3,M)}™> alM,3M; K(Z,3)) for M a Waldhausen

g
K(ﬂlﬁoM, n.

4.2. The fibration problem

Now we present a problemn which this formulation of surgery is
particularly well adapted to solve. Suppose f: M7 —>N" isa map of
closed manifolds F ——>E ——> N the homotopy equivalent fibration.
The question is, if F has the homotopy type of a finite complex, when
is f homotopic to a fibration of some kind. When m=n and F =pt,
thiz is the homotopy equivalence problem solved in 4.1 by a technique
essentially introduced in part Il of [2©]. The solution given below, for
dimF > 5, | is similar to the techniques of part I of [2¢)]. This problem
has also been considered in the case N = s® by A. J. Casson [5].

First we elaborate the problem to include the relative version.
Suppose M is a j-ad, N ‘2 k-ad jzk, and {tM—>N is a map of
k-ads after forgetting the Iast j-k faces of M. The fiber of f is a
k-lattice of (k-j+l)-ads, with FQ: fiber (BOM — BQN}, aec{0,... Jk-23.
Say that £ has fiber F if all the morphisms in the lattice are homotopy

equivalences Fa:’—>F = F {of (k-j+l}-ads).

B

Now suppose f:M —> N is a map of Poincaré k-ads, with

M g j-ad, wr€-—> N the equivalent fibration which has fiber a

{(j-k+l)-ad F with the homotepy type of a finite complex (j-k+l}-ad.
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4.2.1. Temma: F is a Poincaré (j-ktl)}-ad of dimension m-n.
Further f Vo N is a2 submanifcold k-ad with { transversalto V ,

- -1
f I{V} —> « {V} is a surgery map in a natural way.

Proof: This is another spectral sequence argument, which we will write
out this time. By induction it is sufficienttolet k=2, j=3, so F is
also a 2-ad. Let wIF —-—> viE —> 2.2 induce the antiizvalution of
Z(v,F), and define v ¢ H:n_n(F,aF;Z), where F = '{x}, by:

let U be a disc neighborhood of x, then the projection U —> x induces

a map w‘l(U} ~~> F which is homotopy equivalent to the prejecticon

FxU-—>F. There is 2 Thom isomorphism

-IU,w-IaUUﬁ-IUnaF;Z)

l excision
4

B (E,3E:Z) —> B (E, v (N-TIU3E:Z ).
n : . *4n
inclusion

t ~ 4
H(F,aF;2) > H,, (=

and v is the preimage of the image of the fundamental class in

H:n(E,aE; Z}. We want to show v is a fundamental class for F.

Next assume N is a smooth manifold (by taking a thickening and
taking the induced thickening of N . The conclusions for ¥ will be the
same}. Take a handlebody decomposition of {N,3N}. Denote the cellular
chains with respect to this handlebody by C: (N,3N), and the cellular
chains of the dual handlebody by C: {N). Intersection gives an isomor-

phism I1: CJ (N,3N) > hom (CS (), T) where T'= Z (=,N). Use these
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filtrations of N to construct the homology and cobomology spectral

sequences of the fibration (E,BIE) —>N. These have E' terms

1 ; _ ot . c -
Eij(}z) = H (F, 2F; A)® C/(N,3N)
. ; ;
E;J(}{, ) = HJ(r;A)&rCC{N}.

Rotate the cohomology sequence so that it is a homology spectxal sequen.,

-3 I T
with Elij=E;1 L) 3 Y)Y, then the map (V) ® I is a map of

T
epectrzl sequences. This map resolves ME,JIE] in the homology and

cohomology of E, by construction of v . Since these spectral sequences
are bounded, I is an isomorphism, C;.: {N,3N) are finitely generated
free, and {Ov) L | abuts to an isomorphism, Moore's comparison
theorem [ 11 ] applies to skow that an isomorphism is induced on the o

* ~
terms. In particular the E2 maps are Nv: H (F;A}—>

*0
t

Hm - *(F.BF; A). Thus F is an E-FPoincaré space. It can also be

seen to be an F-Poincaré space since if F—> E is the induced cover

n‘li'_ acts trivially en ¥ .

If X is a regular value of £, then for some disc U about x ,

-1
{U} iz 2 disc bundle over { "(x}). Thus naturality of the Thom iso-

Iy

morphism shows £-1(x) ez ﬂ-l(x) is degree 1. The normal bundle
-1 -

of £ "{x} is the normal bundie of M restricted to £ 1(:r:.) minug the

normal bundle of x in M. Since the classifying map of the normal

- -1
bundle of M factors through M—> E, § l(x)-—vﬁ (%} can be made

2 normal map in 2 patural way.
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The analysis for a submanifold instezd of a point is similar;

only the notation changes a little. U

Now if N is a PL manifold {and m-n-k+j > 5 if L = TOP),
then we can make { transversal to a triangulation of N, and obtain 2
surgery map i'l(c) —> n“'l(a) over each simplexof N. If 0 isa
p-simplex this map is a p-simplex of Lhm_n(xr'lc} ., 80 a.n of these
maps fit together to give a section of the bundie mhm_n(ﬁ) —>N. If

BOM —— BON and 3 —> N are already fibrations, then holding

1M
them fixed gives a section in T(N,BON) ]Lhm_n{_go-rr }. By ﬁ_oxr of a
bundle m:E—> B over a k-ad we mean the bundle 6k-1E —>B.

The homotopy class of this section depends only on the homotopy \
class (rel the fixed fibered boundaries) of f, and is zero if { is homo-~
topic to a block fibration {with rna.nifoid fibers). Thus this section is
an obstruction to the sclution of our problem. Note that when assembled
into I[um{E} this gection is trivial, since it becomes the obstruction to
the structure on E as a surgery map to be cobordant to a hornotopy
equivalence. This is essentizlly the solution of the problem, zs a formal
globalization will show.

If w:E—>3B is a fibration with k-2d base and Poincaré
—>B

{j~k+l}-ad fiber ¥ of dimension p , and BOE —>3 B, 3

0 k-1¥

are manifold block fibrations, then there is 2 sequence of bundle maps

over N, S(‘l’f,éo‘n') “‘"’}NM('.T,_%T\') —— Lp{%ﬁ). Here S and NAL of a

bundle are defined _as L« in 3.2, by S{=, a{)n’] = che BS{?rqlca,akﬂlw-lcq},
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ete. If ptk-j> 4 this sequence is a homotopy fibration over N in the

sense that the maps of fibers over each simplex of N are a homotopy

fibration. Thus the induced maps of section spaces is 2 homotopy fibration.
The sections of the middle space are, by transversality,

TRNM - {n,3%) 5> NM-(E,3, B =>a(E,?, |E,G/Z). Thereisa

natural assembly map from this sequence of section spaces to the struc-

ture sequence of E , which is the main point of this section.

4.2.2. Diagram: Suppose N is a2 PL manifold k-ad, E Poincaré
j-ad, mE-—>N a fibration with {inite complex fibers which is a { -block
fibration BOE — aoN and ak-IB ~—> B . If the normal bundle of E
reduces to B = and p+k-j >4 then there is a natural square of fibra-

tions

Ox S % > X

|

v o
r(N,BON)Sg {m,3ym) ~—> olE, 3 E Uak-lE;G/ o) IiN,aoN}lIap(goﬂ)
A l 1 A

= T

B ki J—
SE(E, ao Uak_lE}—m(E, aOE Uak_l.m,G,v' =) > mn+p(505k_1E)

The construction of a section in the problem above is just the
econstruction of the analogue of the boundary homomorphism in homology,
and gives a meap SC {E, bGE uak 1EZ) —> X <whose fiber is now seen to be

Is 3.1},

z™2,
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This is a formal solution to the problem. Sections of PSg (w,gow)
assemble to give block fibrations if S;; is used, by the s.cobordism
theorem, and give maps with fﬁl(cr} — w'l[c) 2 homotopy equivalence
for Sh. The latter sort of map is easily seen to be h-cobordant fo a

block fibration, with torsion in a nice subquotient of the Whitehead group.

To reduce the corresponding block fibration to some finer sort of fibration
becomes a problem of maps of bundles with fibers different classifying
gpaces. This study of these classifying spaces is very rudimentary as
yet and has little to do with the technigues of this thesis. For example,
the problem of reducing a block fibration to a fibration involves the space
g N/ I (N), essentially "pseudoisotopy modulo isctopy. ' The best
result known is Rourke's theorem that if N is l.connected of dimension

> 5, then £ N/ LN is also I-connected.
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The sclution to the block fibration problem, however, is seen to
be again 2 question about the fiber of the assembly map of I spaces.
Conversely other attacks on the solution of this problem will yield informa-
tion about the assembly map and hence I spaces. In particular ermnbed-
ding (spiitting} theoremns apply directly to this in special cases, and it
teems likely that techriques providing a geometric proof of the periodicity
theorern would yield useful information here also. At the present we
cannot improve much on what can be deduced formally from what we
already know about the zsaembly map in special cases, so an independent
investigation will not be made.

Some resulis can be obtained immediately from the naturality of
the diagram 4.2.2, For example, if we change categories, independence
of I on the category shows the obstructions to fibering remain the same.

This gives a fibration version of Sullivan's hauptvermutung:

‘4.2.3. Corollary: M £:M-—» N is a TOP block fibration over 2 PL

ranifcld with fibers a k-ad F of dimension p, p-k>4, and M and
N are {7 {= PL or DIFF) manifolds, then { is homotopic to a { bleck

fibration.

Clearly there is a more complicated relative form as in 4.2, 2,
Morze detailed results also follow from restrictions on the fibration.

For example  F—>E —> B is =, -split (rrlF ~—> . E—>x.38 isa

1 1

split short exact sequence} the bundle ]L.j(_gofr) becomes a product, and

H

the section space a mapping space. In this form we can apply the results
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of 3.3. Note that although the base of the fibration must be PL to get

block fibrations, the category ,’; is still arbitrazy.

4.2.4. Corollary: Suppese £:M—>N isa al-split map from a Poincaréd

j-ad te 2 PL h-ad, whichis a block fibration on 301\{ — BON and

ak—lM —> N, and has fiber a finite complex (j-ktl)-ad. I m-n-jtk >4,
then
1) if ™ 50N ¢ Wald, then the columns of diagram 4.2. 2 are projec-
tions. Thus each I -manifold structure on M rel BOM Uak-lM
is homotopic to a 7 -block fibration in a natural (canonical} way.
2) if §;N is a Waldhausen K(G, 1), then any T structure on

M rel aoM Uak lM is homotopic to a unique 7 block fibration.

Proof: 3.3.6 applied to the lower right vertical map in 4.2. 2.

On the other hand if ﬁlF ¢ Wald we can apply the results of 3.3
to the structure sequence which 2ppears in the fibers of the bundle maps
whose sections form the middle row of 4.2.2 |
Slightly more generally, say that a TOF manifold p-ad K satisfies
8

the Poincard conjecture if S TOP(K’ BOK) is contractible. According to

3.3.6, Waldhausen K{(G,l}'s szatisfy the Poincaré conjecture,

Suppose the homotopy fiber of fiM —>N is a manifold (j-k+l}-ad
of dimension men >4 +j-k which satisfies the Poincaré conjecture.

s 8
ibrati 3 K)—>§ £,3 §) — ivial fi ,
Then the fibration S TOP{K’ 29 ) '.E‘OP( o ) —>N has trivial fibers

and the space of sections is contractible. In this situation 4.2, 2 becomes
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0x > % > X
. \i/
®— A(M, BOMUBk_lM;G/TOP) (N 3 N)E.- {f, aof}
1

X —> AlM,3 Mua MG/TOP)M?ILJ mi0p®
i

Okl)

‘I‘OP(M 3 MUB M)

and we have found another expression for the fiber of an assemily map.

4.2.5. Corollary: If (K,BOK) is & TOP p-ad of dimension k which
satisfies the Poincaré conjecture and k-p >4, then any two block fibra-
tions with fiber (K, BOK] which agree when restricted to 60 and have

homotopy equivalent total spaces are isomorphic as fibrations.

Proof: These are sections of STOP(i _B_Of} —> B which has trivial

fiber, so they are homotopic. {J

Lastly we apply 21l this to sphere {ibrations. ILet L:E—>B be
2 homotopy s fibration, n > 5, and M‘g the mapping cylinder, the

associated homotopy dise fibration. If the normal bundle of M, has a
S

reduction to BTOP’ then the boundary map and the assernbly give a

diagram of fibration:
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-
I}B,BOB)STOP‘D' £)—> 5(M,. Eut” (3 BYiG/TOP)—> (B, €6/ TOP)

l o l
i‘l‘ T ——> &(Mg:G/'IOP} s A(B, A(Dn,c«/Top))
T {g) ————> ME;G/TOP) —= £(B,{ G/TOP)

(B, BOB}STOP

The fibers cn the left are contractible if they are not empty {recall these
are fibrations over the identity component of the spaces on the right}.

If £ is equivalentte a Top (Sn) fibration, then the top map is
a homotopy equivalence. An investigation of the multiplicative structure
of I. spaces (involving yet another characterization of L. as a cobor-
dism space) shows that the top map is the inverse of a Thom isomorphism.
This would recover Sullivan's theorem that a TBP{Sn}—bundle has a Thom

class in X

G/ TOP theory. A good deal of his remarkable converse to

this theorem can also be obtained from this theory.
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Abgtract

In this thesis we present a theory of spaces whose homotopy
groups are the various sets of equivalence classes arising in nonsimply
connected surgery. Long exact sequences appearx naturally as the long
exzct homotopy sequences of fibrations of spaces. The treatment is
also geometric in that zlgebra is shunned for geometric technigues
whenever possible.

After the definition and elementary theory of the spaces is -
developed, two maps, the pullback map and the assembly map, are
defined (Section 3.2). The rest of the thesis is essentially devoted to an
investigation of the assembly map. Using it and a new theorem of
Cappell, some calculations of surgery spaces generalizing those of
Shaneson and Wall are given. In 4.1 the structure sequence for mani-
fold structures en a Poincaz"e' space is investigated and found to be a
special case of the assembly map. Finally in 4.2 the assembly is used
to give a formal solution to the problem: If a map f:M —> N of closed
manifolds has fiber the homotopy type of a finite complex, what are the

obstructions to it being homotopic to a block fibration with manifold fibers.




