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Introduction 

The object of this work is to give a treatment of surgery "Feo~ 

metric" in several senses. First in the sense of defining spaces of 

lurgery maps. structures. etc. so the usual groups appear as homotopy 

,roups and long exact sequences appear, as homotopy sequences of fibra­

tion.. Second. geom etric in the sense that the geometry of manifolds and 

.pace. h used as much as possible to prove the results. avoiding in 

particular the algebraic characterizaticn of the obstruction groups by 

Wall (Surgery of Compact Manifolds). Thl! first object is realized fairly 

c ompletely and has considerable advantages for some types of a.pplica­

tic!!.. (4.2). The attempt to remove the algebra is also successful. with 

the major exception of the properties of the Periodicity map of Wall. 

The first chapter is concerned witb set and homotopy theory. 

ma.Jnly d~finltion8 and fixing ~h.tl.on . Sir~.;:e many of the constructions 

are of the form I1take the space of all manifolds. 1/ and the justification 

for such constructions is rather vague. the set theory is handled fairly 

carefully. This has several intere&ting consequences, for example a 

"universal disjoint union" operation . At the close in 1.4 a simple example 

is given. A space is d efined whose homotopy groups are the unoriented 

bordism groups . 

Next is C!: treatment of homology and duality. the definition of 

.urgery maps. and the statement of the surgt.ry lemma. The version of 

homology used is essentially WallIs homology of the universal cover with 

! 

• 
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group ring coefficients_ It is made into a coherent theory by defining it 

on the category of spaces with reference maps to a fixed space, and 

taking homology with respect to covers pulled back from the universal 

cover of the reference space. This allows a treatment of non-simply-

connected duality essentially the same as that of Browder in Surgery on 

Simply connected manifolds. Our treatment of Poincare spaces is per-

haps more elaborate than necessary. but was written when an approach 

makblg much stronger use of the properties of such spaces was planned. 

Technical difficulties arose in this approach, which was designed to give 

information aoout G/TOP, and was rendered unnecessary by the recent 

ealculation of that space. 

The first l5ection of the third chapter contains the defi,..·tion of a 

• h 
sequence or functors llu. (K, aK) and llu. (K, aK) for j < ~ and (K, aK) 

J J 

a. topological pair with an orientation homorr.orphism 'IT 1 K -> ZZ' 

L.{K, oK} is essentially the t-set (simplicial set) of surgery maps of 
l 

dimension j over (K.21K), n.,h defined with homotopy equivalences and 

J!.,.8 with simple homotopy equivalences. IL../K.21K) depends only on 

~ I (oK) --?- "1 K, and llu.(K, aK) ::: (' llu. l(K, aK) eo llu. i. an infinite 
J J- J 

loop space. 1! .IL..{K, oK) = L. (tt
J 

oK --> 'lT1K) is the obstruction 
m J J+m 

group of Wall. Section 3.2 defines two special maps of IL.. spaces, the 

pullback and the assembly. If (M,21M) is a triangulable manifold, then 

the assembly is a map from the me.pping Bpal.":e t.(M. oM;lL.(K, oK»-> 
- J 

llu.+ (KxM), oKxM} obtained by taking the disjoint union (over common 
Jm 

facea) of tho images of the simplices of a map (M, oM) -> lLr The 
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pullback is defined for M -> E -> B a block fibration with manifold 

iibers l and is a map L.B -> lL. E which takes the pullback of the 
J Jtm 

fibration over each surgery map of the first space. WallIs periodicity 

maop is a special case of the pullback. 

Section 3.3 introduces the notion of transversality for a surgety 

map, and shows it is equivalent to an embedding problem. The splitting 

theorem of Cappell is then applied to give a transversality theorem. 

This is used to give proofs of geometric analogues of the restricted 

excision and Meyer-Vietoris theorems of Cappello Lastly transversality 

and the assembly map are used to calculate in terms of ma.pping spaces 

the J[.. spaces for a class of groups defined byWaldhausen. If nlM is 

a Waldhauaen group, then D(M, oM;ll..)(pt)) ---'> ll.. (M) haa a naturcl 
J J+m 

right inverse, and it is a homotopy equivalence if M is a K{r..l}. 

The last chapter contains the application of the lL.. spaces to the 

structure of manifolds. Given a Poincare space X of dimension m the 

space of manifold structures Sh (X, oX) in a category ;.; :::. T~? PL, 

or DIFF homotopy equivalent to X are defined. S8. the same sp3.ce 

using simple homo·...opy equivalences. is also defined. The usual .:!xact 

!Sequence then appears as the homotopy sequence of a homotopy fibration, 

5 IX, oX) -> D(X, oX; G Ie) -> ll.m (X) • 

A geometric proof. avoiding the algebra of Wall, is given. The results 

of 3.2 are then applied to this fibration in special cases. 

We then close wiL'l sec{;ion 4. 2 which appUc,s the t.i.eory to the 
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problet:l: given a map f:M -> N of closed manifolds with fiber the 

homotopy type of a finite complex, when is it homotopic to a block fibra­

tion over N? The answer (a rather formal one) is given in terms of 

mapping spaces and the fiber of the assembly map of 3.2. More complete 

solutions in special cases. and a nwnber of corollaries including part of 

&ll assertion of Sullivan about topological bundles, are given. A few 

pl'oblems suggested by this work are ~so discussed. 

This thesis was written under the direction oi Y;; Browder. to 

,.hcm I am indebted for many helpful suggestions and discussions. 1 

wculd also like to express my gratitude to G. T. Whyburu and E. Po, 

Floyd for their earlier direction and instruction. and to M. A. Kervaire 

for tea.crJ.ng me surgery. Thanks are due ma.."1y friends for helpful dis­

cusslons# about half the people listed in the Bibliography, and D. Sullivan 

and S. Cappell in particular. I am grateful to Miss Florence Armstrong 

fur her fast and accurate typing of the manuscript. 
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L Set and homotopy theory 

Fix a set $ with at least 21 elements. where I is the unit 

m-terval, and an injective function t: $.X S --> S. Henceforth manifolds, 

-ez,?=>-logical spaces, and complexes will usually be understood to have 

~erlying point sets contained in S • Since they all have the order of I. 

ill ~eparable metric spaces or countable complexes are isomorphic to 

~·::.ce$ contained in $. l.,1oreover, the classes of things with this restric-

"t1C~:::': -;rill be sets, as desired for the construction ... 

The 8et of subsets of $ has operations Uproduct" and "disjoint 

;:...tc:;;" i...'1.d"<lced on it by t, and a choice of two distinct elements C3), €II ($: 

X"y = C(X xY) 

X 1l. Y = {C (X X (Cll } u Y X (G 'J) if 

XUY if one is empty. 

- can be elaborated to lIunion over a subspace!!; if cp is a function i::orn 

some subset of X to Y, then define X 11 Y:: (X \ domain (:p) 11 Y. 
:p 

In case X and Y have topologies, manifold structures, etc .• and 'p is 

an appropriate function, then the sets X 'TT' Y, X 11 Yare to be endowed 
tp 

wi.;"''l;. the induced topology, manifold structure. or whatever. 

1J. and 'tt also induce operations on functions between subsets of 

S via the canonical bijection with the categorical product and 'pushout 'of 

sets. Further properties of "IT and II will be investigated in section 1.3. 



1 < 2. ::,~a.Gs a..."').d maps 

The notion of an n~ad enters strongly in the constructions to be 

n:-.ac.e. Our use of the term. is essentially that of Wall [17]. 

Let ~n denote the standard n-simplex with (ordered) vertices 

[V z'" ~ V 1. and let "O_t:.
D 

be the base contaicing all but the jth vertex. 
o n J 

If ere {O.l, .••• n} define 0 tn:: fj,n n ( n 0_6n ). Consider the collec-
0: j(a J 

tion of all 0 fj,n as a category, with morphisms the natural inclusions. 
Ct 

II C is another category. then the category Fun(t:.
D

• C ) with objects 

(coYa.riant) functors 6
n 
-> ?;; and morphisms natural transfonnations 

ci iUllctors is defined. Fun (b,ll. J;;) will be called the category of 

;. ~i.n+2)-latticeB (see J. H. C. Whitehead and others in I 1. vol. IV, 

pp. 104-227). 

'There a.re numerous functors on categories of lattices formally 

induced from the dructure of !JD. SOT[":2:) useful ODes are given below 

(the notation varies from that of Wall [2-7J). Suppose ae £0 •.... D} and 

1) The inclusion a IJ.n ~> "D induces 0 : Fun (6n
z b )-> 

'" " 
Fun {6.

n
- 1 0:1 .];}_ This corresponds to taking the face "0 F and all 

" 
lower faces which map into it. 

2) n _ n-Iod ?-o : Fun (6 • 1- ) --> Fun {u • y.- } 

" 
is induced by regarding 

"0 6
n 

as an (n+2}~lattice with o~{o t:.D )::: C Rt:.n , and the inclusion as 
0: jJ a:: aUt' 

a map of (ntZ)-lattices. Some of the faces coincide, however. 
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\"=-,.(2 !;."tl}::: C (0 6
n

) iff e U a::: y U ~) and (n~ jc.:\ + 2)-ads are obtained 
!:'".;:: yO:' 

a.!::~.1' forgetting the Cuplications. Da corresponds to just omitting all 

n n 
The identity '0 6 -> a l:. induces 

" " 
to. :at-~!'al transformation of functors '0 -> 6 {is a morphism of ~ 

a a 

;;'::0 - 1,,1 + 2)-lattices a F -" 6 F). 
a " 

3} l! fer every !3 c {o •... ,n-21 the pullback P f3 of 'the morphisms 

( 
tJ,D--:> '0 /::.n) and F(oll U (n)~n_> o~ 6

n
) exists, then we 

In-l) fJ p 

$ as above, and the naturally induced morphisms. This operation corre-

!;c::.:s to combining the last two faces of F. 

Naturally if 1: has products or coproducts, etc, the corresponding 

c,a.tegories of lattices will have similar structures (the product of an n-

la,ttice and an m-lattice will be an (ntm-l)-lattice, etc.). In general the 

$~e s)'--robol used in ;- will be used for such operations, and the pre-

cise ~.l.eaning will depend on the context. 

Lattices are a little too general to be useful when working with 

manifolds, so we add a few restrictions to get n~ads. A more general 

definition is possible. but the category theory involved is uncnlightening. 

Suppose G has a {forgetful} functor to the category of sets whose values 

we won!t distinguish from the original, an operation 0 on the objects of 

,;; such that 0 0- M = :p, and a notion of subobjects which are subsets. 

In this ca.se a f n-ad is a C;' n-lattice with each 21 M -> M the 

" 
inclusion of a subobject, o B M = 0 M n opM for "U~ c [0 •... n-zl aU. a ,... 
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o1£=:U2:.M, and each o.M\l...~(n-l)-ad. Thecategoryofn_adsisthe 
) J J . 

,z:-,;::,:o::e$p-otding full subcategory of 1; -n-lattices. 

Examples are categories of manifolds; topological, piecewise 

l~_aZ', and smooth. In the smooth case corners on the boundary must 

~- allowed so the boundaries of an n-ad will fit together. A manifold with 

c>o:mcrs is one with charts diffeomorphic to open sets in sets of the form 

[X~lRml;~}x)2:0. j= l •...• k. where X/ lR
m

-> lR. is linear}. 

Nothing new is introduced by this. however, since the classical "straight-

ening the angle" trick (Ceri [(, ]) shov.'s that such a thing has a unique 

.natural differentiable structure. 

Another example is ;; :: topological or CW pairs with O(X, Y) = 

{Y ,~) and objects subspaces. A topological or CW n-lattice t however, 

is homotopy equivalent to an n-ad by a generalization of the mapping 

cylinder construction. 

1. 3, [·-objects 

In 1. Z objects over a category were defined 'which have internal 

structure similar to that of fjn. Now objects with the external structure 

-of the collection of all nn will be introduced. The theory of 6-objects 

is d<.:.e to Rourke and Sanderson [\ C:]. and is essentially the same as the 

theory of simplicial objects (May [\0]). 

Let 6 be the category with objects and morphisn1s 

o~ (1:ere '): ~ fa .... ,n} and we regard 

Ii ~ is- a category, then Fun - (0, C ) , 

. IiL jJ 

n n-I"I c n o ! 6 --> 6 as a map). 

'" 
the category of contravariant 
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f~",c!,C'r~ 1::. -> .:, is called the category c! G /), -objects. When :r: is 

'~, ,:;.,u'e,',f;ory of things. we will also call C'.!l object of Fun -(6,' ) a 6-thing 

{!;.s,et. t-group, etc}. Our primary interest is in 6-sets, o!tenwith 

!lZ',~ ~cl,cliticna1 structure. If X is a A-set, the elements of X{6
n

) are 

--:.:,ill-ec the n-simplices o.f X. 

In the ca.tegory of 6-sets, mapping lIepaces" are defined. Let X 

""'," Y be l\-sets; then 6(X,Y) is the 6-set defined by 6<X,Y)(6
n

) = 

~'~?$ Y X /),n -> X}, with face maps given by restriction. For our 

;~w;;.<e-;~::-$es Y X on denotes the categorical product, although the general 

th4!o~ri I.eerns to require something more elaborate. If P is a polyhedron, 

~/~:::::: t,{P ,X) is the /::.-set with n-simplices the set [some triangulation of 

? x:;,r. in which the faces P x d 6
n 

are subcomplexes together with a 

" 
!,*ma.p of this triangulation into X}. Again face maps are defined by 

l'-eltriction. Mapping spaces of 6.set and pOlyhedral lattices and n~ads 

._r~ defined in the straightforward manner. 

The sct of path components of a 6- set X is the aet X(60
) divided 

by the relation a ~ b iff there is a map <p: I -> X (I is here regarded 

:1.5 a polyhedron, distinct from 6') with <p(O) = a and !,O(l) = b. Similarly 

the path components ":'I' (X, Y) of a 6·set pair (X, Y) is the set of path 
o 

components of X not intersecting those of Y. Now if * (. Y we can 

cleii.."lC the loop space nn{X. y. *) = MIn, () In, *; X, Y, *) of a pair. and the 

l'ela.tive homotopy Bets 1T (X Y, *) :;: 'Tl' ui\x. Y ... ~) ). 
n 

A simplicial object (May [Ie]) is a ll·object by forgetting the 
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6ege,n.~:racy operators. All the :-.omotepy theory of simplicial sets is valid 

13;$0 for 6-sets which satisfy an extension condition. If "~iS L\c#}k6.
n

, 

ee.L a 6-set X: f::, .... (sets) satisfies the e:>..-tension condition, or is said 

• ';< .~ h n X xl' n b;:, C'<e .,.an 1 11 eac 6-map "-..... e ~ends ever t:. • 
- J 

for any n.2: j . 

Fe,x exa..-nple the Whitehead theorem that a map is a homotopy equivalence 

ill it induces isomorphisms of all homotopy groups is valid for Kan 6- sets. 

U:::uortunately many of the !::,-sets we will want to define do not at 

t:i::-s.t satisfy the extension condition. To remedy this we will routinely 

~ 

L=,,:;..l:;:.ce in our constructions an application of the fu.."lctor Ex (Kan [ i' ] L 

;;::-:::.i;:h essentially adds simplices until the extension condition is satisfied. 

n ~l • 
':::x' X;:; 6 (*. XL Ex X;:; Ex' (Ex (X»), and Ex X is the direct 

~. . . ' n ntl.- co 
... lrr ..... t of the natural mciuslOnB .. , c Ex X c: Ex X,- . .. • Ex pre-

serves homotopy and many other things, and since a review of the defini­

ti,cns reveal that a i!-map "r: - EXffiX extends to a map 6
n 

-0 Ex
mt1 

X 
J 

Ex <= X satisfies the ex "tension condition. 

One important consequence of the Kan condition is that it implies 

a stronger extension condition: if K::;J L are 6-sets, ILl is a retract 

of !K 1 (1. e. there is a continuous map of geometric realizations 

iK I ~ \L I which is the identity on IL I ). and L - X is a ~-map 

then it extends to a 6-map K - X. This is the key lemma in proving the 

'Whitehead theorem. Our 6-sets will satisfy a "slow countable extension 

condition,1I namely that if K is as above and countable, then any 6-map 

L _ X is homotopic to one which extends to all of K. \'-then X satisfies 
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~, cc:::Otlon the inclus ion X c Ex CI:>(X) i..n.duces isomorphisms of bomo~ 

~ .-roops. " Thus the homotop y type of Ex cDpq is uniquely specified 

~ X. and fo r purposes of investigating homotopy groups we can u s e 

f!:z::u c! X. 

t. 4: _ A.rJ. example 

We now take up an example which embodies many of the major 

rc::==:s cilater constructions . Let {; be a category of compact manifolds 

ec:=!ained in the set S of 1. 1 and hence a small category}, or more 

~-ally a small cobordism category in the sense of Strong [11] . Define 

::e. t-ut C{ fo r k ( Z. by t: (l!.n) is the set o f :::;. (n+Z)-ads of 

C=t=sion n + k . and face maps are induc ed by taking faces a ~ of the 

Here a deviation from the theory of n - ads must be introduced. 

Scte that although the intersect.ion of all the faces of 6
n 

is empty. we 

Of< 
have not assumed this for (n+Z) - ads . Since for example in 11k we want 

closed manifolds as vertices of the Simplices, this assumption mus t be 

~d. In general when forming a l! - set with simplices n-ads of some 

sort. w e require that the faces of the object which form its vertices as a 

. implex are a ll di s joint. 

Now set O~ ::: Ex
cD (r..: ) . 

I. -'.1 . Propo sition 

1) O~ is a f) - monoid with ope ration induced by .!.l , with identity 

the empty manifold . It is homotopy associative and commuta -

t ive , and has a homotopy inverse. 
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~J There is a natural map of L-rnonoids 

which is a homotopy equivalence. 

;;' 
3} Tne homotopy groups 1t j (~~ • *) are the (unoriented} bordism 

groups 1+kL:-... }. 

A few comments before an indication of the proof. ~~ has 

fJt:.<,:,,:t:ber r:::onoid structure induced by 'tl". which induces the standard 

iG'::'G.:/~-=: ::-=~g structure in the homotopy groups. This is omitted since 

~_ -w-'"::::: .::ct investigate products in our other construction~. Part 2.) 

~",?;:l-e$ t:.at 'J~ is an infinite loop space, and in fact since an n-ad of 

e:':a..s::::;ye cimension is empty, :->:-1 is a classifying space for n~ ~ k.::;: O. 

J.::;;~:f 3) indicates the usefulness of the construction. Most sequences 

; g::-;;:;;ps arising in topology can be realized as homotopy groups of some 

tt:;;;;rilly defined 6-set. and exact sequences usually arise as the homo-

?:< sequence of fibrations of these sets. The spaces, however. contain 

ucb more information (k-invariants) than the groups, and a formulation 

i..-~g spaces often gives stronger results than the corresponding groups. 

tis will be our approach to surgery . 

.:..::--L .!l... induces an operation on :: ~ (tJ.
n
). all n. with rJ as 

:::!ity element by definition, and which cornm.utes with boundary operators 

ce the faces of an n-ad are subsets. 
~ ~ 

From the definition of Ex • Ok 

a':"l-i has the sa.'"Tle structure. The homotopy inverse is, as usual v.d.th 

:rie.r~ted bordism, the identity map. The homotopy statements are 

~:n-ed for a while. 
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Next n~ will be shown to satisfy the slow countable extension condi-

n ... .b n 
Suppose 1\ j -> C k is a t,-map then each in (0 t " j) is a mani-

fold (n+l)-ad. If they were disjoint except for the necessarily conunon 

:_~.-C'ej; then we could take any set with I points in the complement in $; of 

t;;;e i=..age and give it the structure of M X [0,1), where M is obtained by 

1_2ci:::g the faces together over the cor:unon subfaces. Now Mx[O.l} union 

~ oZ-iginal set has an obvious compact manifold (n+Z}-ad structure, which 

n " 
i;&- c~x desired extension tJ. --> Qk Thus extension probl~ms arise 

3,,-:>::<0 non-disjointness problems. 

In fact the above argwnent shows that if K is a 6-set with strictly 

5,!!"'=otel' points than $. K:::;, L v.tith jK I a retract of IK 1. and a !i-map 

1.. --> !l~ which is nonsingular (i. e. has all image manifolds mutually 

,iisjoint except for common faces). then the map extt.:nds to all-map K--> 

The restriction on the size of K insures that im(L) does not fill 

$. and there is always room to choose a set (or a set for each point 

'Of. K) with I points disjoint from it all to use in defining an extension. 

To apply this. we must make a to-map f:L -> r. ~ nonsingular. 

7a...":e an injection of Bets i:L -> $.. and define g: L -> f:.~ inductively 

c-z ti:-e skeleta of L by: if (J is an n- simplex of L, g{cr) = e(int(f(J»)' 

if I:::}} U (U.g(o)}, with the canonically induced manifold structure. Since 
J . 

;. :L! a:l i.r::jection. g is nonsingular. It is 2.1100 hornotopic to f by a 

:re=~2.=k we will state as a lem.ma. since it will be used again. 
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!" 4-.2:. Ler:"'-"°T',a: Suppose f, g : L --> ?t~ are t,-maps with f{er n) iso~ 
n 

=,;;-;-2::::c to gb) as t; (n+2)-ads for each sim?lex r:; (L. If L has 

.>-~7-~C"tly fE"wer points than $. f and g are homotopic. 

F--rcG~: Using the re~triction on the size of L make f nondegenerate and 

e:;,;sj<;·bt from the images of both f and g in $. The resulting map f is 

b.:,n:-£to?~C to both f and g since we can choose sets disjoint from every-

;~~ ;:;,.-.:t:.."l. the structure of int(f{cr) X I} for all a ( L, then glue the images 

.;;:;-£ -~ -\>=-} on one end, f{o) or g(o) on the other using the isomorphism 

'~::?C-t2:-esis, and inductively defined lower faces along the edges to get a 

:~~,c_: Lx 6.'-> 3~. 0 

The slow countable extension now follows, since a countable set is 

:c:-,,""~ch smaller than S. In fact this shows the slow extension condition is 

_-u.:tisHed with respect to 6-sets with fewer points than $ . 

These considerations also suggest how to prove the homotopy state-

:::-..oents in part 1) of the proposition. The conu"nutivity statement, for 

"'-r: 1'" 11../' 
-ex.a.mple, would follow from homotopy of two maps r" k X r- ~ --> ~/~ 

.~ A~ 

~~c.se irrlagea on each simplex are isomorphic. ~'k x I.(~ is far too big, 

zc-",ever, being closer to the order of 2. <b To avoid this we do it all over 

.again with a set ! Which is bigger than n~. and an injection $ -> ! 

~h,~ch commutes with the product maps (/; and 1::. From this we define a 

.,; 
z:.ew t,-se:t .Q.k' much bigger than the old one, with a canonical inclusion 

. . -
n~ -> £:. Lenuna 1.4.2. now applies to the composition of the two 

. ~. 
:c:a?s with the inclusion, giving a homotopy in g k . A countable 6-set 
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,:,:,~ :L~Y;s be deformed from ~~ into ~;..~. so the inclusion induces 

~$.-x=~'c>=t=a:.ism of homotopy groups. and passes to a homotopy equivalence 

~ 

,'C;:-;:,:e:: ;a.::?lication of Ex . Application of a homotopy inverse gives the 

:±e<t:'i;-1"e-c. b'cmotopies in nZ'k' completing the proof of statement I} of 

The following strengthened version of Lerruna 1. 3. 2 is also obtained: 

AJ;; 
~'C, r:::".e.aps L -> n k with isomorphic images of each simplex are homotopic 

" '$$'.:::::z?-S L-> Ok. 

The map in 2} is an optical illusion; take a Bim.plex of n~ and 

1::;-;::;k at it differently and it becomes one of () ( t1:~_r *). An n-simplex of 

is a]:. (ntk)-ad of dimension n+k. which is an (n+4)-ad with 

" n 
M::. ~ 2M = O. which in turn is the image of a 6-map 'f;: /:, xI---:::> 

n+ 

f;~ ~ 1 ..... 1th the product triangulation on !J.n X I and cp(/:o.n X (01 ;:: 
<.-

X [1} ::. ~. This gives an inclusion f{k~ .(~(n~_l' *) which passes 

~ 

,~, "±-e 6esired map on application of Ex. 

Note. however, that the reverse of this procedure shows that any 

-.:::.a:;, Ln n (Q ~-l' *) defined on the produ.::::t triangulation of t:"n X 1 lies in 

~ L--::-,age of n! Thus an application of disjointness and gluing on finite 

~-;.:;,:r:;:;~iLexes produces an inverse to the map on homotopy groups, BO the £inal 

:=-",z-p n~ --> Q ( n;_l' *) is a hOInotopy equivalence as asserted in 2). 

Finally, we evaluate the homotopy groups. By the slow extension 

cv::~6:t:';:',::: ",-e can use fl"k' and by making nonsingu1ar and gluing we can 

::-ep:rces,e:r.t t;,cmotopy elcInents by {j-maps on_> This is an 
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;;t::-~::'{;~'K 'w-:ili all faces empty; hence a closed manifold of dimension n+k. 

;)it 'it~":;~C'?i between two such similarly becomes a compact manifold 

''1WC';/~ t:~ h":-c, original ones as boundary. This is the definition of the bordisffi 

as asserted in statement 3). The proof ot 1.4.1 is 

This example has been treated in some detail since similar con8id~ 

',!r:::~~).::'=-".!- ~::-e often skipped over in the literature. This kind of construction 

:;;$,' ';;~=;:::-?-l to our approach, however. as it seemed desirable to include a 

t:w.'~~,:::!:. Propositions similar to 1. 4.1 will be stated without proof in 
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2. Poincare complexes 

!.:: this section the versions of (singular) homology and cohomology 

',j;c, :2!<!'_ zcS"e-:: a,!'"e defined, and extensions of standard Poincare duality lerr..rnaa 

"L~,- 'i:;L:a.::i:.,'t-.O:: in the context. The format of Browder [ i. ] is follo'Q.>ed fairly 

s,'~??Ose (X, Y) is a connected and locally I-connected topological 

3;"'"",~' ~ W!trlX~~:;:: {-l,l} is ahomom.orphisrn. w defines an 

-I 
;: ~ w(g.) n.g. 

1 1 1 

l.,et ('X .Y) denote the universal cover of X and the corresponding 

!!":"''''''~-:; c,r Y. then the singular chain complex C*(X. Y) has a natural 

;;'"::.;g:.:::t. ".:;: Z (;0, X }-complex structure induced by the covering transforrna-

~:-,~ Ii B is a right "'-module. define 

* -H (X,Y; B) = H(hom" (c.(SI', Y); B» 

t " -H.(X,Y;B)=H(C.(A, Y )0"B). 

signifies the use of the left module structure :\. b = b A. on 

z i:.;: :c:"n:i:ng the tensor prcduct. a notation introduced by ¥\~a1l. 

To obtain a coherent theory, it is often necessary to use covers 

o!--,,-,-,c...~:'=' "",-;:-".":-:-,,,,~Z:.: Suppose w factors 'IT, X -> G -> iZ 2 > that B is a 

t'Y"y::':: :-' = Z (G) module, and that (X, Y) is the cover of eX, Y) corre~ 
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:1gc':::di::g.- to G} then there are natural isomorphisms of right r-modules: 

C*{X, Y ). which is clear from 

',:£iA! :::e.:.'"7',L""lition of 0/\ and properties of covering spaces. The top isomor-

:;:):;;;;,$;;:::::' now follows from associativity of the tensor product, while the 

;W'!;,;;;,,·::t.:;.:;::; fellows from adjointness of horn. and 0. C; 

From this we see, for example, that if (X, Y) is a pair. ~ X --'> G 

-;:, Z2 a horr""morphism, and B a right Z(G) module, then the exact 

!x:.';;;:::;;.,,:2.C"6i and cohomology sequences for the pair (X, Y ) give exact 

t t t t 
.-->H (Y;B)-->H (X;B)->H (X,Y;B)-> H I(Y;B)-> 

n n n n-

n n _..n n-1 
.-->H (X,Y;B)--:>H (X,B)--:>H (Y;B)--:>H (X Y;B)--> 

;",:;- B: Ci ;B). the homomorphism I\ Y --> Z Z is the composition 

The next definition generalizes and combines most of the good 

£"""'-,=e. of previous ones (Wall [25], [21], Browder [2], Spivak [tell. 

~,t {X, x) be a connected and locally I-connected topological pail' "'''''ith 

,~, ::::,=:,.::,;:,?y t;tpe of a finite CW pail', with a homomorphism nlx -> G 

and a right Z (G)-module B . 

(X, Y) is a {"co:mpactfr} B-Poincar6 pair of dimension 



if there is a fu...."1damental class 

t [X, Y] (H (X, Y;71.) such that the cap product 
n 

t t, 
[X, Y] n , H (X;B) ----'> H (X,"\. ;B) 

n-L 

[X, Y] n ':HI{X, Y;B) --> Ht ,(X;B) 
n-~ 
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~~ isomorphisms, all t. Further. (X, Y) is G-simple if it i5 a Z{G}-

?cd . .ncare pair. and the cap product on the cellular chains of the covers 

i<)!.s !inite complexes} induced by cap product with ~ (" [X. y] 

c .. ;0 c 
born{C .(X), Z G) ~ Cn_.{X, Y) 

born(Cc .(X', Y), a G) ~ C~_*{X) 

:L~:'! simple equivalences of finitely generated free based :E,(G) complexes. 

Standard argwncnts show that if TIl X -> G 1-> G 2--,> Z 2 and (X, Y) 

'M it. G
1 

(simple) Poincare pair, then it is a G
2 

(simple) Poincare pair. 

The advantage of this coherent introduction of the fundaIncntal group 

-},iit. ~~c..t the exact sequence arguments of the simply-connected case apply 

w~~~t'::: :':t'".J.e change. An example is the structure of the boundary. 

l:._ L ~~. Le:!Tl.!"'na: If 1t
1

X -> G -> 7Z 2 is a homomorphism, B a right 

£:. _'..;; ::-~odule. and (X, Y) a (G_simple) B-Poincare pair of dimension n 

6/~;:;:;-_ {"'f., <;:} is a (G-sirllple) B-Poincare pair of dimension nwl, with 

:'--:---:>:i"- T".t;-e duality statement follows from application of the 5-1em.ma to a 
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:r-..ap of exact sequences, which by ,Theorem 1.1. 5 of [ 2.. ] is comm.utative 

>l? to sign; 

_> Hq(X, Y;B) -> Hq(X;B) . -> E
q 

(Y ;B)--:> 

1 n[x, Y] 1 n[x, Y] 1 na[x, Y] 

t t ~ t 
--> T (X;B) -~ H (X, Y.;B) -> H l(Y;B)--> 

-q -q -~ 

Tne simplicity statements follow from the sum theorem for .Whitehead 

torsion applied to the sequence of-chain complexes' 

A Poincare n-ad is essentially an n-ad with the homological strue-

~:re of a manifold n-ad, as defined in 1.2. However, we will need to be 

able to use different reference groups for the different faces. For con-

;;enience in the next chapter. this is done using the fundamental group of 

·~,~ther n-ad. ThuB suppose K is an n-ad, with an orientation homomor-

,z, 1. 4. Definition: An n-ad X with a map f:X --"> K is a (simple) 

::'::-Pcincare n-ad if, for n=l (X,I1) is a (simple) 'l1'lK Poincare pair and 

fe-:- n> 1 (X, U .o.X) is a (simple) 1TIK Poincare pair with orientation 
J J 

,t.1.~s V, and each a.X is a (simple) a.K Poincare (n-l}-ad with 
J J 

-:'.e$:~c:tto!1!ndamentalclasses V. suchthat oV ;;:L:<-l)jV .• 
J J 

In case 0 jK ;;: K all j, then such an X is called a 1"1 K ;;: G(simple) 

Now we can state the alterating duality theorem for triads. 
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2.1.5. Proposition: If (X;oOX,olX) is a triad dominated by a finite CW 

;::i""o., wI X --> G --> :tZ 2' and B a right Zl. G module, then the following 

ce equivalent. 

n {X;oOX. '0, X} is a (G_sUnple) B_Poincar~ triad with respect to 

W!R~(X,oOXU 0lX;1C) 

2} (oOX, '0 (0,1 }X) is a (G-simple) B_Poincare pair with respect to '0 V • 

a.rd the homomorphisms 

v " : Hq(X, 0lX;B) -> Ht (X,oOX;B) n-q 

v 0: Hq(X,oOX;B) --> Ht (X,olX;B) n-q 

ue isom~rphisms for all q (are induced by a s lrnple equivalence of 'Z G 

--chain complexes). 

~: The 5-1emma applied to 

--" "q(X, 0lX;B) 

• 
Jvo 

-> R' (X,oOX;B) 
n-q 

_> Hq(X, oo~v 01 X;B) -> H
q

-
1 

(oOX, 0[0, 1 {;B)-> 

ivn i "Ovn 

• t Y __ > Ht (X;B) > H l(oOX;B)--> 
n-q n-q-

"!V~::_~ch z.ccording to Browder [ 2. ] coro.rnute up to sign. 
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There is also the 'isum theorem. 11 with statement essentially iden-

tical to Theorem 1. 3. 2 of [ '2.]. Suppose (Xl' Y I) U (Xz ' Y z) : (X, Y), 

(XI,Y
I

) n(XZ'Y Z): (A,B). "IX-,G->21:Z' B aright 21:G module, 

t and V (H
n 

(X, y,;!;:). 

2.1.6. Proposi.tion. Any two of the following imply the third. 

1) (X, Y) is a (G-sirnple) B-Poi.ncare pair with respect to V. 

2) (A, C) is a (G-simple) B-Poincare pair with respect to 6
0

X. 

3} (Xi' Y
i 

U A) are {G-simple} B-Pomcare pairs with respect to j"V for 

Proof: Again the 5-1er....ma applied to the sign commutative diagram 

(Coefficient B) 

The simplicity statement i8 from the aurn theorem for Whitehead·torsion 

~:/?lied to the corresponding short exact se-qucnce of chain complexes. 

The situation of 2.1.6 is variously called a splitting of (X, Y), or a 

PI, if;. },.{cre generally a splitting of a pair (X, Y) is a (G-simple) homo-

~::,,;;:y e-~1;_ivalence '\vith another pair which decomposes as above. A wider 
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class of embeddings is similarly defined. 

2.1.7. Definition. If (X, Y) is a (G-sirn.ple) B-Poincare pair with respect 

to vlX --> G ->:Z 2' and (M, N) a topological pair. then a (O-simple) 

embedding of (M, N) in (X, Y) is a splitting (X, Y) :::...,. (Xl' Y I)" (XZ' Y 2) 

and a homotopy equivalence (G-simple) (M. N) ~ (Xl' y 1)' 

This can be used to show manifolds satisfy simple duality. 

2.1. 8. Definition. An elementary handlebody (differentiable, PL, topo-

logical. or Poincare) is a triad (X;oOX,olX) with cOX a compact manifold 

k n-k 
or Poincare space of dimension n. a codimension 0 embedding S X D c 

int(oOX). and an isomorphism 

Fi~ture: 

5 2 X Dn
-
k 

'--.- ~. ==----.. 

):,'".;;,%, n the manifold case it is a classical argument that this construction 

3"'::'!!':";:":S a ::::o.a..'"'luold triad. Using Proposition 2.1.5, we see that the situation 
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2.1.9. Lemma: H cOX is a (simple) Poincare space, then an elementary 

handlebody (X;oOX, 01 X) lB. a (simple) Poincare triad. 

[ 1 [ k+1 n-k1 and the cap product (oOX X I + D X D ) n is an isomorphism. The 

alternating duality lemma 2.1.5 now applies to give the result. D 

The group, and w particular the orientation homomorphism with 

respect to which it is simple is the same as cOX if k f. O. but in the 

1 ~handle case k = 0 the group may have to be enlarged if one component of 

S,O X DU 
is attached by an orientation-reversing isomorphism. 

A handlcbody is a triad (X;oOX,oIX) with a finite filtration 

, k _k k k-I k_1 k k_1 
,:,:C;oOX,oIX ) ) such that for each k PC- A- ; illX· n (A-- A- ) 

!1xkn (0~ 0-1» is an elcITlcntary handlebody. Inducting using 2.1. 9, 
~ . 

1.-. ha...."1dlebody is a simple Poincare space. The lenuna is actually necessary 

5::.:.:: t.'-l.e definition, in order to know the upper bou,,"1dary of each elementary 

-~...Jebody in the filtration is a 1l'iX-simple Poincare space and thus can be 

'Yi:..'! base 6f an elementary handle body . 

The theorem that every manifold (dimension.?: 'G in the topological 

;:il-e} r..as a handlebody structure yields the following corollary. 

2 __ ;;, ::: Corollary: A compact manifold pair {M,o M} is a vIM-simple 

,~':,-:~c::2.re space, where the orientation homomorFhism 'Ii 1M --> .;:z 2 is the 

'EL:':,:,',:;: S<:ieiel-Whitney class of M. 

2 
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2.2. Surgery maps 

The use of the term "surgery map!! here is entirely standard, 

:c.a...'"!'lely a degree one normal map from a manifold to a Poincare space. 

The only difference is that the n-ad case is treated, and a reference n-ad is 

fixed and Poincare n-ad is understood to mean with respect to this n-ad. 

Mostly for reference, then, the definitions are given and the main results 

to be used are stated. Standard references here are Browder [2., Chap_ 1]. 

UldWali [~7, Chaps. 1,2]. 

Let t' denote one of the categories of manifolds, diff, PI, or top. 

and let K be a topological n-ad with an orientation homomorphism v1K->ZZ" 

2.2.1. Definition: A map of n-ads M --> X --"> K, with M and X 

K-simple) Poincar~ spaces is degree 1 if (o f)*{[o M]) = [0 xl for every 
CI." CI. 

"C [0, ... ,n-Zj . 

The main property of a degree one map is that the 

1:;z,_r::.omorphism defined by duality and the map in cohomology is a right 

i:::...-erse for the map in homology. It is thus a split surjection in homology. 

S":-'-;;arly it is a split injection in cohomology (with a canonical cokernel). 

:;, M -> X -> K is a degree one map define 

t t t t 
K (M;B)=ker(H (M;B)->H (X;B»=H +l(X,Jvi;B) 

n n n n 

K"(M;B) = coker(if(X;B) -> if(M;B» = Hn+I(X,M;B) . 

,:L:.!:'_:,z.t;:-~-e groups K\(M, Z;B) are also defined with respect to 'any union of 

IJ o.M 
j<CI. J 

and the K-groups satisfy Poincare duality in the 



* sense that K (M. U o.M;B) 
" J 

is carried isomorphic ally to Kt *(M. Uo.M;B) 
m: Q: J 

by the duality isorrwrphism of M . 

These groups have many other properties. and in fact a detailed 

investigation of these properties leads to an algebraic characterization of 

surgery [2.', Chaps. 5-8]. The approach taken here is completely geometric, 

and except for one theorem (the periodicity theorem) is independent of this 

algebra. 

2.2.2. Definition: A normal map of a ]: n-ad to a Poincare n-ad over K 

is an n-ad map M -> X together with a reduction of the stable normal 

fibration of X to B);. such that the diagram 

M 
"M 

> B~ 
1 

;f ~ 

/ 

1 , 
/ 

J / 
/ 

X > BG commutes. 
"x 

Note that if M -> X is a normal map. then the orientation homomorphism 

d M is induced from that of X. and hence from K. 

::.,2.3. Definition: A (J;,) surgery map over K is a degree 1 normal 

:::-...a? from a .c n·ad to a Poincare n~ad over K. 

_ .. ,;;. 4-. Theorem: {the surgery lemma} Suppose f: {M;oOM.o1M}-> 

c
l 

X) -> (K;oOK. 01 K) is a surgery map of a J:;. triad to a (simple) 

'2":,-:::.<:a=e triad over K with 00f a (simple) homotopy equivalence and 
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a) 1£ 'If 1 ~ 1 X -> 'If 1 X is an isomorphism, then there is a surgery map 

N -> X X I -> K X 1 with 

1) ~ON--->X X (oj isomorphic to M->X 

Z) ~IN ---> "OX X I isomorphic to "OM X I -> "OX X I 

3) "ZN->Xx{11 a (simple) homotopy equivalence. 

b) I! tl'lolK->'lflK is an isomorphism, then there is a surgery map 

N -> Y -> K X I with 

1) ~ON->"OY->Kx (01 i6omorphicto M--:>X--->K 

2.) 0lN->00Y->00K xl isomorphic to 00MXI->00XXI->0oKXI 

3) 0ZN -> 00 Y --'> K X {l} a (simple) homotopy equivalence. 

The second part of this assertion follows from part a) by showing 

under the conditions of b) a cobordism can be found to a map satisfying a). 

This involves low. dimensional surgery on Poincare spaces, which actually 

?raves a bit more which we will need. Rather than complicate the state~ 

:::::ent further, we will refer to the proof ( [27, Chaps. 4 and 9]) when 

This theorem and the s-cobordism theorem are essentially the only 

f-::!>':',metric facta about ;.: -manifolds we will ne~d. 



3. Surgery spaces 

3.1. Definition and basic properties 

In this section the spaces n.. (K) for K a topological nwad are 
In 

defined, and the basic properties explored. These include naturality, the 

infinite loop space structure, fibration sequences of an n-ad. dependence 

on the fundamental group lattice. and the relation between JL h and JLB 

Let K be an n-ad with an orientation homomorphism 1:'l K-> ;ZZ' 

3.1.1. Definition. Ifm(Z, Lh (K») is defined to be the 6-set with 
In 

k-simplices (K-simple) compact topological Burgery maps of {n+k+3}-ads 

of dimension m+k 

k 
f : M--> X -> Sk+l (6 * K) 

with ak+1f a (K-simple) homotopy equivalence. The first k faces of f 

1t·erve as its boundaries as a k-siInplex, so we also require aCO •••• ,k}X= ¢. 

We note that as in the example in 1.4. we should require all sets to 

::::<!: llubsets of. '$. apply Ex eo. etc. The considerations worked out in 

;5,"I!tail in 1.4. however, show that it is sufficient to make a blanket state-

~,::::t at the beginning that this ie to be done uniformly. and not mention 

As with the example 1.4. I, we have 

Proposition 

L;;::,,{K} is an Abelian h-space with operation disjOint union, and 

~'6,t:.::tity the empty surgery map. 
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The natural homotopy equivalence JL.. (K) -> n CIT.. l(K). *} gives 
m zn-

IL.. {K} the structure of an infinite loop space. 
m 

The h ..... n: .. otopy grQupo )1.(JL, (K» are the Vrall l5urgc:::-y obl!\tructiOD 
J m 

groups [27, Chap. 9 for L S ] L .(K). D 
m+J 

In 3.1.1 IL. means either JL. S or ~. When it is true of a functor 

(here of 5 or h) independently of the value of the argwn.ent~ the argument 

is often left Qut. 

This construction is plainly a covariant functor en the category of 

n.ads with orientation homomorphism. The induced rnorphisms are given 

'limply by composition with the reference map of each simplex. B ~ 

A homotopy fibration (of fl.-sets) is a pair of maps A~/C with 
.\ 

11. homotopy of ba to the point map. such that the resulting map of A into 

tbe fiber of b is a homotopy equivalence. The homotopy ba __ *' is usually 

:::r--iOre or less canonically defined by the problem, and v.111 seldom be rrlen-

t,;,,-:':::'ed explicitly. In this case being a homotopy fibration is equivalent~ by 

'iF':ztehead IS theorem~ to the homotopy groups fitting into a long exact 

"'·''!-':.,::.:ence. A homotopy fibration sequence is a sequence of maps, each 

,*:;u;:",:-essive pair of which is a homotopy fibration. 

The next property of lL is the fibration sequence of an n-ad. If K 

;:]\ ~ .::.-ad. 0 < j < n-Z. then the cofibration sequence 0 .K~ o.K J...> K 
- - J J 

~;' i.::duces !'!"!.aps of lL... A natural map 0.: lL. (K) -> lL l(o.K} is 
J m m- J 

':;;;'0\:0';'.:;,;::;;,""': by taking the boundary of each simplex lying over o.K (the {k+j+l)st 
J 
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3.1.2. Proposition. The sequence 

i* j* aj 
••• --:> JL, (O.K) ~ JL, (o.K) ~ JL, (K) ~ JL, l(o.K) --:> ••• 

m J m J m 01- J 

is a bomotopy fibration sequence. 

Proof: This proposition is essentially [::7, 9.6] which says that the corre· 

sponding sequen ce of groups is exact. The proof is an easy geometric 

argument which also gives the necessary homotopies to zero. 0 

3.1.3. Proposition. If K
1
-> K

Z 
is a morphism of n-ads with orienta-

tien boznomorphism inducing isom.orphism of fundamental group lattice 

topy equivalence. 

Proof: The fibration sequence 3.1. 2 reduces the proposition to the I-ad 

zase. for suppes; inductively that it holds for n-l ads, then in the diagram 

':'~ tcp and bottom rows are fib rations • and the first two vertical maps 

:'i'C.'i::::x.,;topyequivalences. The 5_1erruna now applies to show the last vertical 

:;;::;;""',2 i$ a homotopy equivalence. Now let M be the mapping cylinder 

';;;;, ';;:-Z-,~j eo! the map K
1
-> K

Z 
of I-ads; then the fibration sequence 

···wwr 

--> JL (K
Z

) -:> JI... (M} shows the problem to be equivalent to the 
m '" 

1L (M). 
m 

2.2.4 b) is exactly the statement that ti.:IT., (M);::; 0 
J m 
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for j + M::: 6. This is one of the ?laces where we regret our imprecise 

3tatement of 2.2.4, sL'lce WallIs theory using a more sensitive version 

this, however. we can complete the proposition using obstruction theory. 

We can assume K
Z 

is a K(v1K1, I}. 

f Let M --'> X -> K
Z 

be a 4_dimensional surgery map representing 

an element of 'IT 4lL.
O

(K
Z

) (1. e. a 4_simplex with empty boundaries). Accord­

ing to WallJ2..5]. X is homotopy equivalent to a complex dominated by a 

Z_complex attached to the upper boundary of a bandlebody with 0 and 1 

handles on 0 M. Surgery on the inverse images of the handles gives a 

homotopy of f to a map which is an isomorphism over a neighborhood of 

th!"se handles. Removing a regular neighborhood of these handles gives a 

--=:obordism of f to a map with image dominated by a two-dimensional com-

plex. The obstructions to pulling the reference map X -> KZ back to Kl 

lie in Hj(X,Tr}KZ,K
1
). Since 1I'

1
K

1
---,> 'U"lKZ is an isomorphism and 

'T z.K
Z
= 0 ~ the coefficient groups are zero for j ~ 2.. Thue the problem 

,,,,,.~,t:h image dominated by a 2~complex can be pulled back, giving an inverse 

Since representatives of 1'1"0' Tr
I

, and ifZ have images already dom-

:;;:;;;.;<:';.,ed by a 2._complex, they are all isomorphic. Ii f:.M -> X --> K 

?'.!;s:,,:;ese.nts an element of 1T3~{K2) with oX 1- ~ then H
3

{X} = 0 and it 

_::,~" z->e pclled back. If 0 X = rJ. then again by [2.5] X is equivalent to a 

,-;:;--::-=_;<12X dominated by a 2_complex with a 3-cell attached. f can be made 

'l:.;:; -,:E---::,-::-:-_oryhisrn over this cell, which can then be removed to give a problen. 
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...nth nonempty boundary. This constructs an inverse for the map on 1i 3' 

To pass from the case K 2 := K{1r 1 K1,l) to general case apply 1Ln to 

"1-"> K Z---;> K("1Kz, 1). 0 

h • 
Next v.re consider the relation between the functors L and L. 

Denote the fiber of the natural map by A 1(K) _>!L
s 

(K) -> n!' (K). m+ In m 

The homotopy of the fiber was determined by Rothenberg by geometric 

&rguments, and a (mostly) algebraic version is given by Shane son in [171. 

We give enough geometry to reduce the proof to facts about Wt.itehead 

torsion. Not wanting to become involved with stable algebra, we would just 

:ocfer to [n ) for the proof except that some of the constructions are inter-

:esting for other reasons. 

Given an element in :rr....
h 

(K). it fails to come from an element in 
m 

L
S 

(K) to the extent that the range Poincare space fails to be K-simple, 
m 

1.:<d the hoInOtopy equivalence boundary of the map fails to be K-simple. 

We:- can concentrate tbe obstruction in either place. 1£ f: M --:> X --> K 

-L$ a. 8iInplex of n...h 
(K) J with the face carried by homotopy equivalence 

m 

,zle::::cted by 0hi, we can use a collar of ohM in M to replace X with 

:;±-n: rr-..apping cylinder of ohM -> X. The map 0hI is replaced by the 

;-i,:5·e.::±ity J so the obstruction to this problem coming from JL6 is just the 

:tc:--:-s~-,on of the duality map of (X,ohX), Conversely if K is an n-ad, and 

;c-~--:: > 6, the idcntir.)· map lL
n 

(K) --> JI.,h (K) is homotopic to a map for 
- m m 

-'W~:2:. t},;e Poincare complex in each image i8 a smooth manifold. Since 

:::::-'-£:,,~"e ,satisfy simple duality, the entire obstructi.on lies in the torsion of 
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0hf. The construction of the homotopy is by induction over the skeleta of 

Lhm(K}, and over the faces of each simplex. 

Suppose X is a Poincare space over K with part of its boundary 

!mooth, then it is equivalent to one with a smooth neighborhood of the 

l-skeleton with ret:ipect to the smooth face, (X,osX). Do smooth surgery 

to reduce the fundamental group of this neighborhood to that of X. covered 

by topological surgery in the domain, and take a thickening of a 2-skeleton 

'Of the result reI 0 aX. By the dimension restriction, "IiI of the upper 

boundary of this thickening is the SaIne as that of X. so by the surgery 

lemma Z. 2. 4 a surgery problem M -> X can be deformed to one which 

is a homotopy equivalence on the complement of the thickening. Incorper-

zt-~g this into the face which is a homotopy equivalence, we have a cobord-

L:!m of a l5urg~ry map reI faces where it is already smooth. to one v.-ith 

l:::::.ooth target. 

Now using the second construction in which the obstruction is the 

~,':$ion of a map. the toraion must satisfy a duality formula T:: (_l)n,. *. 

::;Sf!_:":,!: *: Wh{1f
1

K) --'> Wh{v1K) is induced by the standard involution of Wh 

~ the antiinvolution - on 1L (1t
1
K). An h-cobordism may be glued on the 

_, . n+l * 
':ax::;::;:::cr::c-py face to change the torSIOn by 7' + (_1) 1". any 'T. 80 noting 

ili';;:.z:~ ~-th the =ZZ module structure induced by * on "lh{Tf1K), 

Z,1"7h("lK» = {r<Wh("'lK)\T = (_l)nT hT + (_l)nT*) the following 

,);:;:-;,':;:c:"iticn is very reasonable. 
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Ac:tuclly A=(K) i. homotopy equivalent to r;F homzZ(:Zz(C.(K(ZZ,I», 

Wh(1f
1
K». if m is large enough. Since we won!t have occasion to need 

eVen 3.1. 4~ we 'WOn't go into this. 

Some remarks on the constructions above: Firet. the first character-

ization of the obstruction together with the final answer gives some informa-

tiOD on the torsions which may appear in the duality map of a Poincare space, 

and how it can vary under certain restricted types of cobordisms. Second. 

these two constructions give several characterizations of the surgery spaces. 

The second construction shows that we could have used just surgery maps 

of smooth manifolds to smooth manifolds. The first construction, together 

with topologicaJ. transversality (which requires a dimension condition at the 

present time) shows we CQuid have defined lL, as the cobordism space of 

Poincare spaces (over K) with one face a topological manifold. and an 

extension of the normal bundle of this face to a reduction of the whole normal 

bundle to B . Here it is essential that the objects be Poincare spaces. 
top 

K-sim.ple for It..
8

{K}. The definition 3.1.1 was chosen because it contains 

both of these~ and seems close to the widest most general and natural form 

of the space. 

3. Z. Some special maps 

Here we uSe geometry to construct two maps of L spaces which in 

some cases gives· strong information about their structure. The first, the 

pullback. is essentially a mystery since the only calculations have been 

done using the algebraic characterization. The second. the assembly map. 

I 
I 
I 
I 
I 

I 
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IS slightly better understood. A geometric calculation in aome interesting 

s.pecial caseS is made in 3.3, it turns up in the structure sequence in 4.1, 

and is discussed a little more in 4.2 in connection with the fibration problem. 

Suppose 11': E -> B is a block fibration over a CW n-ad B, with 

fiber a compact manifold k-ad Mm. If N --> X -> B is a surgery map 

over B, then we can form the pullback fib rations 

* * 1f N --"> 'If X --'> E 

1 1, 1 
N > X-->B 

Since the fiber is a compact manifold, this is a surgery map over E. with 

dimension raised by m. * ('\r N is clearly a manifold. * That'll" X is a 

Poincare space and the map degree 1 is an easy spectral sequence argu-

ment. ) 

3,< 2.1. Definition. The map P : L.(B} --> lL.+ (E) induced by taking 
'If J J m 

:t;::Jlbacks is called the pullback map. 

Two special cases of the pullback are worthy of note: finite covers 

~ products. U tr: B --'> B is a finite cover. then the pullback P 1t is 

:w.;;.,=,oetimes called the transfer. Wall has shown algebraically that the 

,?,w"back defined by the universal cover over K(~ ,1}~ P odd. is surjective p 

,i;:;:; 1:c'1:'n.otopy lL, (JIZ ) -:;::. n... to). On the other ha.."1d if the fibration is a 
p 

',;:,~-:,,::,',:;~d E::: B X M. the pullback is just the product map [2.7. Chap. 9] 

xM B __ > 1[.... ( X M). The other theorem concerning the pullback is 
)+m 



3.2.2. Proposition: (periodicity) 1£ B is ann-ad, j-nz:4, then the 

product P xarP2 : lL./B} -""'"'""> ]L,j+4{B) is a homotopy equivalence. 0 

Again the only known proof is by the algebraic characterization of 

Wall [27, Chaps. 5-B]. This is the only result \~'e will make extensive use 

of that does not yet have a geometric proof. It seems to be a very important 

problem to get a better geometric understanding of this map. 

Now assume, dually, that F -> E ..!!.> M is a fit-ration with a 

(polyhedral) manifold k-ad as base. and fiber a space with orientation 

homomorphism which factors through the image of 1tlF in 1r
1
E. We 

construct a fibration L.b) -> M with fiber :i .. !F}. First, the action of 
J J 

OM on F induces an action on lL..{F), and the tensor product of this 
J 

action with the universal OM bundle over M gives the correct fibration. 

We need a more geometric description, however. Define lL.(1r):;: 
J 

-1 t . ( -1 t ). h U ~ lL... t(-,r (0'». and for a slmplcx a (-1I.... ~ r:- 0) C JL.-.{1r Wlt t 
• M Jt Jt. J 

cr ( t 
the least such, define the projection of a in M to be o. lL...(rr) --;:::. M 

J 

is a block fibration over this triangulation of M with fiber lIu.{F). 
J 

So far M could have been a A-set, but now consider the b-set of 

sections of this bundle, TM(1L)7T)}. If S:M-> 

over each simplex at (M we get a l3urgery map 

lL.{r.) is a section. then 
J 

-1 t 
N -> X -> 11" (o) of 

dimension j + 1-. Take the disjoint union of these surgery maps (over 

comm.on faces) to obtai~"l a map of spaces N --> X -> E. If M is a com-

pact manifold. then by a classical gluing theorem N is also. Similarly 

the Poincare Bum theorem (in a generalization of its application to 2.1.10) 
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show that X is a Poincare space (simple for 1r. ... ) over E, with respect 

to come orientation homorr~orphism w: "11' 1 E -> z: 2 extending the homomor­

phism on the image of -IF. A spectral sequence, or the sum. theorem for 

.urgery maps, D.hows that N---> X i8 a surgery map of dimension m+j. 

Similarly we can assemble the image of a. P-simplex tl X M --> lL..(v) to 
J 

get a surgery map of dimension j+mtp over E X fl. 

Sections in different components of r
M

(lL}1I'» may assemble to 

give surgery maps with different orientation homomorphisms. Therefore 

given w: T.IE --:> Z 2 e:>.:tending the homomorphism on the image of 1f 1 F , 

denote by TM(lL.(n» the components which assemble to give that heme-
l '" 

morphism. 

3.2:.3. Definition: The map A : rM(ll..(T.n -> ll.. (El obtained by 
n,w J W J+rn 

assembling the images of the sections is called the assembly map. 

An important special case is again when tr is a product F xM-> M. 

In this case lL...(n) is also a product lL...(F} X M -> M. and the space of 
l J 

sections is just the space of maps MM,lLj(F». Since L/F) depends only 

on tr 1 F J V need only be a product on 1T 1 to decompose as n:.-/F) X M. 

The bundle JL...(r:} has a canonical section (the base point of each 
l 

fiber). and by r(M, 00M) lLjTo' we mean sections which agree with this one 

on 00M. 

P"If and An are clearly natural with respect to morphisms in the 

category on which they are defined (bundles with fiber or base a fixed 

manifold), and with respect to boundary maps in either the base or fiber. 
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Further. they are natural with respect to each other in the [ollowing sense. 

Suppose lr:E -> M
m 

is a fibration with manifold base, and ~:Y->M 

is a map of manifolds which is a block fibration with manifold fiber ~ on 

-1 
; (M - 00M) -> M - 00M. Take the pullback 

* 
X 5 " > Y 

I ,,*~ 1 s 
'¥ 
E " M > 

• Now w ( is a bundle map covering ;:. which induces a bundle map 

* b:][.,.(i; v) -> L.('II') covering ~. The diagram 
J J 

• ArT' 
r(y,ooY) ][.'}~ ,,) > ll.j+n+m(BOX) 

1 
I 

r(;"o~)b 1 Prr*s 
A 

rIM " M)ll.·(rr) 
rr 

lL (~E) 
• a l JTUl. C 

com.rnutes. 

This is a little clearer if E :: F X M. The diagram becomes 

~(Y'''oY; ll.{) 1 M.!;.1) 

~(M. 00M; ll.{) 

---> ll.. (F X BoY) 
J+n+rn 

----» ll.. (F X"OX) 
lim 

b the cases we will be able to calculate lL. spaces in terms of the assembly 

nap, this constitutes a calculation of the pullback. 
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3.3. TransversaJih and snlittmg 

II K contains a homotopy disc bundle. we can define a notion of 

transversality of a surgery map to this bundle. Transversality is very 

useful in constructir.g: maps on lL space8~ and a sufficient condition for 

transversality due to Cappell results in several computations for L spaces. 

Since v..-e are mostly interested in trivial line bundles. the definition 

can be considerably simplified by use of topological disc bundles. Let 

K :: K} J..L. S S D~ where S~ and Do; the topological sphere and disc bundles 

over an n-ad KO. Suppose f: M -> X -> K is a topological surgery map 

of n-ads with a c!istinguished face ?Jhf which is a homotopy equivalence. 

3.3. L Definition: The surgery map f:M -> X -> K is transversal to 

the bundle ~ if X has a Poincare splitting as X1USt>;<D,;* -> Kl UD~ 
~ 

* where.; is the pullbac.k of .; over the inverse image Xo of KO~ f is 

* transversal to the bundle S ' and on the homotopy face the induced maps 

-1 -1 * 0hf (ohXO) --:> 0hXO and (ohM - 0hi (Ds» -> 0hXl are homotopy 

equivalences. 

Similarly for a sL-nple surgery problem sinl~le transversality is 

defined by requiring the splitting of X and the result.ing homotopy equiv-

alences be simple. 

At the end of 3.1 we saw that the subset of lL.{K) with manifolds 
J 

as target Poincare space is homotopy equivalent to all of lL...{K) for 
J 

j + k > 5 (K a k-ad). Now in these dimensions if M -> N -> K is such 

a surgery map. N can be made transversal to ~, and M can be made 
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transversal to the resulting submanifold of N. This is not transversality 

as a surgery map since the hOITlotopy face may not be split into homotopy 

equivalences. If ohM could be split into homotopy equivalences over the 

8ubmanifold of Dh N. then relative transversality would apply to give a 

transversal surgery map. 

Obtaining transversal surgery maps is thus seen to be equivalent 

to an embedding problem. The standard codimension z: 3 embedding 

theorem [27. Chap. 11] shows the problem to be trivial and uninteresting 

in this case. If dim D~ = 2, then essentially nothing is known. In 

codimension I. however, there is the splitting theorem of Cappell [4]: 

3.3.2. Proposition: Suppose f: M --> N is a simple homotopy 

equivalence of manifold pairs, and N ~ P is a two-sided codimension 

one submanifold with 0 pc (3 N and 'lTlP --::> "TrlN injective. If 

f 1 eM is split into homotopy equivalences over the embedding (3 P c (3 N 

and m > 6. then the splitting may be extended to a homotopy 

splitting of M. 

Notice that we have lost a little here in starting with a simple 

homotopy equivalence and getting only a homotopy splitting. Our reaction 

to this will be to assume the appropriate Whitehead groups are zero. L"l 
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simple applications (see [17]) it can easily be allowed for, but gets too 

complicated for what we ""'ill do here. 

Now suppose as above that K = Kl .1L KOx {O~ I} KOX 1, Kl and KO 

n-ads. and consider Klx I as a trivial DI bundle over KZX ~. 

3.3.3. Lem.r.:1a: If Trl K -> "IT 1 K is injective and j - n ~ 5. then the 

identity of L S .(K) is hom-atopic to a map with the image of each fii.."T..plex 
J 

homotopy transversal to KOx i. leaving fixed those already transversal. 

Proof: Call the subcomplex of transversal maps A. then this is just the 

8tatement that A i:; a deformation retract of IL. s. (K). We show 
J 

1f (lL}s. (KL A) ;: O. all In. The usual assembly process and the com­
In J 

menta above show t..1:l.at a relative homotopy element is equivalent to a 

surgery :rnap M ~ N....K-> K x DIU with N a manifold tra.."1sversal to KOX~ 
rn-l 1 

and 0nM->onN->K xS transversal as a surgery map to KOx Z . 

To apply 3.3.2 to the homotopy faces of this map it is only necessary to 

g-1 1 m 
show that under the circwnstances we can also assum.e 1T}21b (KOXZXD) 

-> 1r12lhN is injective. Given this relative transversality as above yields 

a transversal surgery map showing the relative homotopy element was 

trivial. 

There is a diagram 

_____ » K X DIn 

.r 
m I rn 

D )->KOXZXD 
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By assumption the right map is a 'IT} injection. Surgery can be dr;me to 

make the top map a 'IT 1 injection, for if SI is embedded in 0bN it has 

trivial norrr.al bundle iff (;)(s1)::; O. By definition of lL. ~ '" factors through 

'tI'lK. and so is zero on the kernel of 1t
1

d
h

N -> 7l'
l
K. By the same argu­

ment the bottom map can be made a 'If 1 injection~ and by doing surgery 

1 g-l m 
on "hN by 5 C "h (KOx D ) C "hN tho "esult of the surgery on 

0hg-1(KOX DID} is realized as a transversal inverse image of KOx DID in 

N. This surgery does not disturb 1I'1obN since an SI trivial in KOX Dm 

is also trivial l..'"l 0hN by the first injectivity. The effect on 0hN there-

Z n-Z 
fore is connected sum with S x S . The left map i8 now a Tr I-injection 

as desired. 

All this surgery on 0hN can be covered by surgery of ohM. 

3.3.2 now applies to split the boundary. and completes the proof. D 

The main usefulness of tranaversality is in the following construc-

tion. Let K => t be a k-ad containing an n-dimensional topological disc 

bundle as above, and denote the pullback of the given maps by 

JL,. (KO) 
)-n 

/ PS~ 

Here JL,/K1,Ss) denotes JL,j of the (n+l)-ad (K1,oOK1, ... ,on_ZKl'S;), 

The homotopy pullback is formed by m".king one map a fibration, and taking 
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the pullback fibration over the other. The sct theoretic pullback is the 

subset of the product each factor of which is mapped to the same element 

of the range. Here it is important to note that they have the same homo-

topy type, since CI is already essentially a fibration. Given a map of a 

complex in lL./Kl >S~) and a homotopy of its projection, we can lift the 

homotopy after it has been moved a little to make it disjoint (see 1.4) by 

gluing the images on the boundary of the images of the complex in 

Thinking of R.(K.~} as the act-theoretic pullback. there is a 
J 

natural map c: R.{K, ~) -> lLdK) gotten by gluing an element of 
J J 

L.(K, S;} and P s of an element of JL... (KO) together on the boundary. 
J ~ J-n 

. Each simplex of the image of thi'3 map is transversal to the bundle ~. 

by definition. ConverElcly there is a map d from the transversal subset 

of lL..(K) to P .(K~~) -given by the inverse im.age of KO' and the com-
J J. 

plement of an open tubular neighborhood of this inverse image which is 

mapped by a bundle map to S. d c ::;: 1 ~ and a homotopy 1 ...... c d is 

obtained by an expansion along the fibers of ~ until a transversal sur-

gery map is tra'lsversal to the whole disc bundle D~. 

3.3.4. Theorem: Suppose K::;: K1J.LKOX{O.1} KOxI is ann-ad. 

1TIKO--> 'fOlK is injective. and Wh(1T I K
i
) ::;: Wh{iT1K)::;: 0 • then 

c: R.{K. KOx I} -> lL.(K) is a homotopy equivalence, for j - n::: 5 
J J 

Proof: The argument above shows that c is a homotopy equivalence 

1 
with the subset of JLj(K} transversal to KOX Z. 3.3.3 implies that 
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under the conditions of the theorem this subset is a deformation retract 

of lL.(K). 0 
J 

This form of transversality is necessary for our most elaborate 

applications. It can also be used to give quick proofs of some very useful 

results which can be proved by easier arguments (compare [4]). 

3.3.5. Theorem: Suppose K:: KOU Kl is an n-ad. Wh(n 1 K) :: 

Wh{1I'1Ki)=Wh{1Tl(KOOK1»:O. and 'tt1(K1nKZ>-> 'rrlK is injective. 

then for j - n.2: 5 we have 

I} (excision) lL../KZ.K
1 

n K
Z

} -> lL)K.K1) is a homotopy equivalence. 

Z) (Meyer-Vietorisl lL/K) n KZl -> lL/K) X lL/KZ) --> lL/K) U KZl is 

a homotopy fibration sequence. 

Proof: First we define the maps in the "Meyer-Vietoriall sequence. 

The first nlap is the product of the natural inclusion in one factor and 

(_1) times the inclusion in the other. The second map is the sum of the 

natural indus ions. 

To start both proofs, set K3= Kl n K Z' and replace K by 

then we are in the situation of 3.3.4 with Kl replaced by KIli KZ' and 

Ko replaced by K
3

. Thus we have a homotopy pullback diagram. 
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so the fiber of the 

bottom left map is. by the fibration sequence, the natural inclusion of 

lI../K1) X J[.,j(KZ)' By definition of a homotopy pullback, however, this is 

also the fiber of the top right map. which establishes the Meyer-Vietoris 

sequence. 

On the other hand, the lower right map is clearly the fiber of 

the map Lj_l(K3-K3)-->.n..j_l(K3) inducedhyprojection K3liK3->Ky 

Therefore the upper left map is the fiber of 0 + 0: n.../~. K3) X .IL./KZ' K3) 

-> lL..
j
_

1
(K

3
). Now take th~ natural map of fibration sequences 

* ------------?> L.K 
J 

1 J 
.L ps, K) -----> 

1 
.Lj(~,K3) 

Since the top and bottoIn row are also Hbrations, the 5-1ernma implies 

the center is too. But now comparison of the center with the product 

sequence L/Kj' K3) --> L/Kj' K 3) x JL,/KZ' K) ---,. JL,/KZ' K3) shows 

the center splits, and establishes the excision theorem. 0 

Theorem 3.3.4 is the statement that under certain conditions 

an 1L. space is the pullback of some maps of other 1[., spaces. 11 we 

could build K from simply-connected spaces by operations like the 

above. then we could build up JI.,(K) from IL, (pt) by pullback. Our ne).."'t 

object is to do just that, using the assembly map 3.2.3 to keep track of 
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things, Bince the function spaces turn out to have the sa."Tle formal 

properties. 

We begin with the formal properties of the assembly. Let M be 

a triangulable manifold n-ad, K a k-ad, and h: N -> M a proper 

embedding as a sub-polyhedral n-ad with normal diBc bundle t:D s-> N. 

3.3.6. Lemma: The natural diagram 

is a homotopy pullback. The assembly lI(M.oOM; !L..jK) ->Lj+m(K X o~M) 

factors through R. (K X 0oM. Kx ,;). 
J+m 

Proof: The diagram is a set-theoretic pullback. and 6("0.1) is a fibra-

tion so it is a homotopy pullback also. That the assembly factors through 

P is just the statement that surgery maps assembled from a map 

M -> lL..K are transversal to K xN. which i8 clear from the construc­
J 

ticn of the reference map. 0 

Next we define what we mean by groups built up from zero. If 

K-KJ.!. K I h bV h K h - 1 KOX {O,l) OX I ten y an Kampen's t eo rem 'Trl is t e 

free product of the groupoid 1I'
1

K
1 

(lattice for n-ads n > 1) amalgamated 
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over the homomorphisms a, b: 11"1 KO ==5: if} K
1

, The requirement that 

'!I'} KO -> trl K ~e injective is equivalent to the homomorphisms a, b being 

injective. Thus an injective free product is a free product of a groupoid 

amalgatnated over injections. 

Let WaldO be the class of groupoids with one element in each 

component, and the empty groupoid. Inductively define Wald to be the 
n 

class of groupo ids L which are injective free products of LO 5: L 1 , 

and Wald; U Wald . 
n n 

The name stems from 

the investigation of tl1.i.s class of groupoids by Waldhausen [21] in con-

junction with his work on Whitehead groups. A subgroupoid or a grouPQid 

in Wald is also in 'Vlald, and an extension of one by another is again ?I-

Ylaldhausen groupoid. 

We can finally state the theorem. 

3.3.7. Theorem: Suppose K is a k-ad with Wh(r.
l 

K xG) = 0 for each 

G (Ylald, and M is a ma.."luold n-ad. 

a) If 1il0011 is a lattice ofWaldhausen groups, then the assembly 

6(M, 00M; n...K} -> lL. (K X 00M) is a natural retraction (has 
J P J+m 

a natural right inverse) when j - k.2: 5. 

b) 1£ 150M is a K(;r 1 00t-i.l) of Waldhausen groups. then the assembly 

is a homotopy equivalence, j - k;:: 5. 

Proof: Here p denotes the product orientation homomorphism 

'tt 1 (K x 0aM) -> 'ttl K -> Z z. a) is well knovrn in the simply connected 

case and is easy to see in special cases using b). b) is a generalization 



of Shaneson's calculation [16],[17] (essentially M::; St, K = pt), and of 

Wall's results in [26], which concern groups built up by extensions by Z, 

cOM = r;, and K = pt. The Whitehead group hypothesis can be weakened 

in several ways. for example to vanishing on products with Waldn groups 

if 'fflOOM is a lattice of Wald
n 

groups. These hypotheses can be 

stated in terms of the structure of "rr 1 (K) alone, [1], [21J. and are sat_ 

isfied for example by the 'Valdhausen groupoids themselves. 

In case "160M is a Wald
n 

lattice, the proposition follews by 

induction from the groupoid case (M a 2-ad) using the boundary fibration 

sequenCE: and naturality. 

'Io start the induction on n. we show that the proposition holds 

for n = 0, M a 2-ad. Beginning with b). M is contractible and oM a 

nl n-l 
Let (M,oM) -> {D ,5 } be a homology equivalence, hom.ology sphere. 

then since lL.(K) is a loop space L(D
tn

• 5
m

-
l

; L.K} -b(M, oM; IL...K} is 
J J J 

a homotopy equivalence. The loop relations, which state that the assembly 

m.ap crnlL.K --:> L. K is a homotopy equivalence, shows b) for WaldO 
J J+m 

groupoids. 

t1 m m-I 
Now for a), if oM';' r; we can define a map ,,:(M,oM)~(D,S ) 

which is an isomorphism on I)'-I{int DIn}. Naturality of the assembly 

gives a diagra.""n 

6(M, eM; lL.K) 
J 

I 
" m n-l 

A(D • S ; lLjK) 

A 
m 

lL.+ (K x "OM) 
J m 

i 
-!. 
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The bottom and right maps are homotopy equivalences, and composing 

with a homotopy inverse gives a retraction. 

If oM = fl. then the inclusion DIne M yields a fibration sequence 

. rn m-I In 6M-ll1tD ,/j ; JI.,.) -> 6(M, JI.,.) -> 6(D ,JI.,.) 

I" J J J 

l! 1 
\ I 

> 

and the retraction is given by the bounded case. 

It is well defined up to homotopy. and natural with respect to natural 

maps of L.(K), and boundary when extcnded to lattices. 
J 

Now suppose 3,3,7 holds for lattices of Wald 1 groupoids, and 
n-

consider a connected 2-ad M with 1T1oOM € Waldn" Let 11"100M be the 

free product over injections LO ~ L , L ,L1 (" Wald l' Suppose we 1 0 n-

could find a 2-sided codimension 1 submanifold N X I c M such that 

u 1 N = LO' "'1 (M-N X (0,1» :: L 1 , and the inclusions on the ends of N X I 

induce the homomorphisms LO -$: Ll above. Since 'Tr 1 CION --'> '!T1 60 M 

is injective. ,ne transversality theorem 3.3.4 applies. Take the natural 

(as!'INnbly) map of the mapping space pullback 3.3.6 to the JL, space 

pUllback given by 3.3.4. 

By hypothesis since '!TIN. '!Tl(M-N) a::e Wald
n

_
1 

groupoids J there 

are natural right inverses for the lower three horizontal maps. By natu-

ality they commute, and induce a map of pullbacks. This is easily seen to 

be a retraction, as required by a) for Waid groups. 
n 
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If BON and 6
0

(M-N x (O.l» are K{L
i
,I)'s, then the hypotheses 

for b) is satisfied on the lower m.aps so they and thus the top tnap are 

homotopy equivalences. This gives b} for Wald
n 

groups. 

Thus we have reduced 3.3.7 to a problem of splitting a manifold, 

given a splitting of its fundam.ental group. To proceed requires a l!:':m.ma. 

3.3.8. Lenuna: If KOKI are K('T<l (K
i
), I}'s f.g:K

O 
-> K} are 

in~ections on "I' then K = K} 1L fx[O}Ugx[l] KOX I is a K{-r.1K,1). 

Thus each 'Waldhausen lattice has a K(L,l) which is a finite complex. 

This follows easily from inspection of the universal cover K. By 

the injectivity of f,g, it is composed of copies of KOX I joining disjoint 

copies of Klo A huge Meyer-Vietoris sequence shows it has the homology 

of a point. hence is contractible. :.::J 

Note that 3.3.8 implies 3.3.7 is non-vacuous. Given G ( Wald, 

embed a finite K{G, I) in :m.!. some t. A regular neighborhood M 

satisfies the hypotheses of 3.3.7 b). so lL .• (G):: 6{M, oM;JL.,.(pt) ). 
J+h J 

We must now split manifolds. First the dimension ma.y have to be 
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raised. Let n Z 0 ~ then periodicity and adjointnesB give a corrunutative 

diagram. 

The hypotheses on "100M are preserved by this operation. 

3.3.7 b} can now be corr.pleted. By 3.3.8 let K be a finite cOr.:1plex 

K(1r100M,I) with a splitting corresponding to the presentation of 1T1'50M as 

an injective free product. K:::; Kl U
KOX 

(O,l} KO x[O.l]. If we multiply M 

by D4n with 4n > Z dimK, M xD4n is a regular neighbcrnoo-i of K by 

the s·cobordism theorem. The regular neighborhood over KOxl is a 

collar on a thickening of KO embedded in co dimension 1 in M X D4n. 

This gives the desired splitting of M xn4n
, and the induction hypothesis 

applies to the pieces to show the bottom assembly map in the diagram is a 

homotopy equivalence. Since the periodicity maps are homotopy equiv-

alencee the top map is one also. 

To complete 3.3.7 a), a splitting of M by a transversal inverse 

I 
image of KO Xl which induces isomorphism on fundamental groups must 

be found. If m 2: 6 this can easily be done by modifying the standard 

embedding theorem to correct the cobordism arising in the similar con-
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struction at the bottom of page 37, or directly by very low dimensional 

surgery ambiently on the inverse im.age. For low dimensional M the 

retraction is defined by multiplyit".g by D8 as above, and applying the high 

dimensional case. Naturality of the retraction v.rith respect to natural 

maps of L.{K) (periodicity in this case) i..-nplies that it is well defined and 
J 

has the required naturality properties. 0 

We close with a sinlple calculation. 

3.3.9. Corollary: Suppose G is a 3-dirnensional knot group. and 

G -> LZ is the quotient by the commutation subgroup. Then 

Proof: Let c be a PL loop in 53 with "1 {S3 -c} :::. G, and let M be 

the complement of an open tubular neighborhood of c There is a 

.. 1 Z 1 1 
homology isomorphism (M. oM) -> (5 X D ,5 X S ). By [21). G is a 

Waldhausen group and M is a K(G.l). Since lL..S(pt) is a loop space, 

the following are all homotopy equivalences. 

Periodicity applied to both aides brings the dimensions down to those 

claimed. In Chapter 4 we will see that li..s{pt)'::::::" nG/TOP 

periodicity gives lL,S(G) ~ G/TOP x n G/TOP. D 

so further 



48A 

Corollary 3§3.9 waE conjectured in the 1969 Princeton thesis 

of S. Cappell. A special case 1s treated there, and the cor­

responding statement for 4-dimensional knots is shm·m to be 

false. 
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4. Structures on Poincare spaces 

In this chapter we study the question of when a Poincare space is 

homotopy equivalent to a manifold, and the problem of classifying such 

structures when one exists. This is the problem surgery was evolved to 

answer ([2], [27 • Chap. loL [20]). This theory fits very well into our 

geometric setting (see [13] for the simply connected case), and solves 

Borne problems which cannot be effectively attacked with the group 

formulation. 

4.1. The structure sequence 

SuppO!5e X is an {X-simp~e} Poin..:al'e n-ad of dimension m, and 

COX is a manifold (n-l)-ad in the category t: = diff. PL, or top . 

• and $.= ex, ~OX) with k simplices homo-

topy equivalences (simple for S8) M -> X X 6
k 

of {n+ktZ)-ads with 

M ( ~ and 0k+3M -> cOX X fjk a t. isomorphism. Under the same 

conditions define NMj; (X.oOX) as the t:.-set with k-simplices G ~ 

surgery maps M ~ X x!;:.k of (n+k+2)-ads which is a r:; -isomorphism 

k 
0k+3M -> cOX X 6 . 

Since a homotopy equivalence is a surgery map. there is a natural 

forgetful map S(X,oOX) -> NM(X,oOX}. Moreover since a t isomor­

phism is a homotopy equivalence. there is a natural map NM{X,·oOX}-> 
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is called the ~ructur_e~~guence of (X~oOX). 

Before considering the naturality properties of the structure sequence, 

which are many, we prove the main theorem concerning it. 

4.1.2. Theorem: II X is a Poincare n-ad of dimension m, cOX is 

a manifold (n-l}-ad, and m-n 2=: 4, then the structure sequence of 

(X,oOX) is a homotopy fibration over the identity component of Lm cOX, 

Proof: This ia a geometric version of the structure sequence [27, Chap. 

101. The considerations there construct a map lL"m+l (OOX) -> SeX, (lOX), 

80 the long exact sequence of groups implies as usual that the maps form 

a fibration sequence. This map is constructed using the algebraic char­

acterization of the obstruction groups. To avoid the algebra, which we 

do not find illuminating, we give an alternate proof by constructing this 

map directly. 

U the structure sequence is to be a fibration, then SeX, 00X) -> 

NM(X.oOX} will be a homotopy principal r: lL,m(oOX) = IL..m+l(oOX)-fibra­

tion. We actually construct the action of lL
m

+
1

{oOX) on S(X.oOX) by 

constructing a homotopy of the projection S(X,oOX) X IL..m+l (oOX)-> 

Ilu
m

+
1 

(oOX) to a map in which the image of each simplex is a normal 

cobordism from. its homotopy equivalence factor to another homotopy 

eqUivalence. A map from the product to S(X,oOX) is then given by taking 

the second homotopy equivalence. The construction will also show that 

any two actions constructed in this way are homotopic. 
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4.1.3. Lemma: Suppose MID is a manifold pair m> 5 and f:~+l--:> Y 

a map o£ m.anifold triads such that 

1) cOY :::: oM X I. and 'Oaf is a normal cobordism from 10M over 

3M X [OJ to another homotopy equivalence. 

Z) a. f is a homotopy equivalence. 

3) the projection cOY -> oM extends to a map (Y, cOY) ---> (M. 'OM) 

making ! a surgery map over M. 

Then N ~ Y ~ M is cobordant. as a surgery map over M and reI 'Oaf. 

to a map of triads Nt --> M x I --:> M which is a normal cobo:rdism from 

1M to a homotopy equivalence. 

Proof: First make f a product 'Oaf x lIon a collar cON X I of the 

boundary. f is then 10M x 11 over M x [OJ xlcoOY xl, 60 we can 

glue a copy of IMxl to f over loMxI' After a little homotopy. the 

.lL reference map Y --> M C&"'l be extended over Y oMxI M X I by the 

projection M X I -:> M . 

M oM aM x I 

Call this object Y', then "1 Y' --:> M is surjective since we glued on a 

copy of M. Kill the kernel as usual by surgery on some copies of 

SI c int Y', and cover as in [27. Chap. 9] by surgery on N U M xL 
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so since the rest of OY' is covered by homotopy e~l.livalence. the surgery 

lemma applies to (Y', 1-.':. x to) Jl..oM:OM xl X CO}). The surgery lenuna 

provides a cobordims as a surgery map of f' to a homotopy equivalence. 

keeping the rest of OY' fixed. Altering perspective a Httle, this cobor-

diem is just a cobordisrn of £1 as a surgery map over M to the map 

over the cobordism of the boundary M x {O}..lLOM eM x I x [OJ. This 

last is a normal cobordis:r:l of l}"i to a homotopy equivalence of M which 

is "a
O
! on the boundary, which is the conclusion .:d the lenuna. 0 

Using the lerruna it is simple to complete the proof of 4. I. Z. 

First. by a fibration over the identity corc::ponent. we mean that if A is 

the component of Nl.{{X, cOX} whose image lies in the identity component 

a homotopy fibration. If A = iJ. then seX,oOX):: ~, and the theorem 

is trivially satisfied. On the other hand if A f: f/;, then a path from the 

ima.ge of an element to ~ gives a surgery map over (cOX, DOX) , and 

the surgery map gben by the surgery lemma. in this circumstance pro-

videa an element of S{X,cOX). 

Thus Buppose S(X. "OX) f ~ 2Jld sup:pcse inductively that a 

homotopy of the projection S(X, cOX} X Lm.+l (cOX) -!> lIu
m

+1 (bOX) has 

been constructed to a map IT'1<_1 such that the image of any j-simplex 

has the correct forITl for j.:s. k - 1. Consider the image of a k-sirn.plex. 

In the first factor (in S(X,oOX) } use a mapping cylinder cobordi;:;::n. to 

----~---------..:...::....--------..................... -
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replace the homotopy equivalence with the identity map of the domain. We 

are now almost;n the situation of 4. 1. 3. The part of the boundary of the 

image which form its faces as a k-simplex have the correct form by 

hypothesis. Glue a copy of loOX x l::,k x I on a collar neighborhood of its 

boundary as a k-sl:nplex and bold the side 1-::::.. X k X (o} fixed. incor­Vo X 6 

po rating the rest in the face mapped by homotopy equivalence. Now the 

smallest faces of the iInage as an object over BOX (i. e. over 

o X) satisfy the hypotheses of the lemma. Glue 
fl, ... ,j, j+l, ... ,n-2} 

on the resulting cobordisms to maps of the correct form. and add the 

corrected part of the boundary to the part being held fixed. Now the next 

faces satisfy 4.1.3. Applying 4.1.3 ind'..lctively to successively higher 

dimensional faces we get a cobordism of the image to an object which 

itself satisfies 4. L .3, and thence to a normal cobordism of the correct 

form. A choice of such a cobordism for each k-simplex can easily be 

used to construct a homotopy of M
k

_
1 

to ~ satisfying the conditions 

on the k-skeleton. 

There is a canonical homotopy of S(X, cOX) -'> NM(X, 00X) -> 

Lm .sOX to the trivial map. To show the sequence is a homotopy fibra-

tion
7 

it therefore suffices to show the resulting homomorphisms 

An "j(NM{X,aoX), S{X'~oX» --:> ~pLm(OOX), ") are isomorphisms. 

element in the left group is just a surgery map M -> X X D
j 

of 

{n+l)-ads which is an isomorphism on cOX X Dj, and a homotopy 

. -1 
equivale~ce on X x 5J • The homomorphism is injective since a homo-

""', "C""""C"'_'" ~ - .... '-,. __ '''_.~~''''''~ , 
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topy of such an element to a in the right side provides a cobordisrn of 

it to 0, and by the Burgery lerruna a normal coborc.isIn reI the boundary 

to a homotopy equivalence. This last, however. is just a homotopy to 

zero in the left pair. 

To prove surjectivity, since the result is only expected to bold 

for j ~ 1. we take a relative loop space, 

The action above was just a factoring of the projection of S(X.oO);.l X 

][.. l(OOX) through this map. So it is surjective in homotopy. 0 m+ . 

We Inak.e one further refinement in the structure sequence. 

The reductions of tho normal bundle give a IT'~ap r.."}..{(X, cOX} 

--:> ~(X;B," ) whose ilnage under the composition with Be -> BG is 

just the single point {-Vx}' If NM(X,oOX) :I ~. then we can subtract 

one reduction off of all the others, translating the classifying map over 

to the base point, and lift to the fiber NM{X.oOX) ~ L(X.~OX; G/;g) . 

COX is taken to the base point since all reductions agree there by asswnp-

. tion. This map is a homotopy equivalence with homotopy inverse easily 

constructed using transversality. For transversality in the topological 

category we need m - n 2: 6 here [8]. t,".:.t we will always be able to a. ... oid 

this restriction using periodicity. 

homotopy fibration sequence 
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for m - n 2: 4 • 

4. L 4. Proposition: (naturality of the structure s-0quence) If X is an 

(X-simple for S6, .IL. s) Poincare n-ad of dimension m with 00X 

given a manifold structure, S(X,·oOX) I- ¢. and m - n2: 4. then the 

following diagrams commute. 

a) boundary 

is a fibration square. 

b) lLullback ;: £: -> X (block) fibration, compact manifold fibers 

) -'> JL (oOX) 

I p °0 , 

" )~ JL(oOE) 

~ -c) change of category if 10 1-> j.-.:, 2 is a natural inclusion (one of 

DIFF -> PL --> TOP) then there is a fibration square 

---> * 

1 
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d) assembly: suppo-se '!r: E -> B is a hom.otopy fibration with fiber X 

over a manifold Bb. and is a block fibration aOx -> 0aE --> B and 

We omit the proof, which is just a long: verification of the defini-

tions. and give some remarks, 

First. since Lm (60X) does not depend on the category, c) gives 

smoothing and triangulating theory; Sr I (x.aOX)-=-> A(X.aOX; t:1/.cZ)· 
1 ;:2 

To obtain this we have used immerSion theory ([9] in the topological case) 

to do surgery, and transversality (which we regard as the main import 

of [8] in the topological category} to evaluate }.T}...1 r (X.oOX), 

Second, d) gives a geometric formulation of the fiber of the 

assembly map; the classifying space of the fiber of rBS{'lT,cO")---:> 

S(E,oOEUon_1E). This shows that it is interesti..."1g rather than leading at 

once to calculations. Section 4. Z will explore this poL..t a little further. 



If M is clo~ed a:1d simply connected, the structure sequence 

actually splits. Let D be a disc embedded in M, and set 

Mo = M - int D. Thinking of D as a fraT>ed embedding of a point, 

then for m > 5 the codimension 3 embedding theorem [27] implies 

any homotopy equivalence N -> M can be split into homotopy 

equivalences o~ pairs (No,cnJo ) -> (No ,2H'1o ) and (N-No,dNo ) -> 

(D,oD). More generally a homotoPJ equivalence o~ (k+2)-ads 

N --> ll.k x M can be split into homotopy eq'.livalence::: over 

ll.k x M and ll.k x D, extending a splitting given on the bo~~dary. o 

Taking the first factor defines a map of .6-sets 8,(11) -> S" (Mo )' 

which fits into a commutative diagram 

S.c (M) 

! 
->-Lm(*) 

! 

The middle map 1s the restriction, whic h has f'lber om (GJ;) * 

]I. m(*,*} "* since Ill* = 1Tl *. If;: = TO?, or PL, then the 

fiber of the left vertical map is also trivial. ft homotopy 

inverse is constructed by: on the O-skeleton if m = 5, dNo 
1s a homotopy 4-sphere, thus h-cobordant to 84 • The map 

N -->M extends to NoV (h-ccbordlsm dN to S4 ) -->- '~ then 
0 0 0 "'0' 

add the cone Over the boundary of both, a';ld exter:.d linearly. 

For hie:her dimensional skeleta, Bnd m > 5, after a map has 

been defined on the k-!3't<.eleton, the m:!-u:ing part in an element 

of' the k+l skeleton has as boundary a homotopy sphere, hence a 



sphere by the Poincar& conjecture, and again adding the cone over 

this boundary and extending the map linearly define~ a~ element o~ 

the k-skeleton of Sl;(M). 

The fibers of the diagram are therefore 

* -> om(Gk) om( G/;;) 

t t P 
S~(M) --> t.(M,G/J:) -> L m{*) 

l' ! ! 
s" (Mo )-,;;> t.(Mo,G/>:)--> * 

For ~lM = 0 and ~ = PL or TOP, this gives a splitting of the 

structure sequence, and calc<.llates S~{r·1) = ~(!>1o,G/";:), 

L..(*) = r?(G/roP) = 05(G/PL). The exact periodicity of Girop 
? 

under x ~p2 will 
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allow us to improve dimension restrictions in many cases [8]. 

This shows that the map lI.(X,oOX;G/top) -> Lm(oOX} is itself 

an assembly map, being essentially A{X,oOX; lL..
O

(*} ) ~ lL
m

(* xoOX). 

Thus the results of 3.3 concerning the assembly can be applied directly 

to the structure sequence. 

4.1.5. Corollary: Suppose M
m 

is amanifoldn-adwith 1'1"1 00M ( Wald. 

and rn. - n .2: 4, then 

by the right inverse for the assembly given by 3.3.7 a). 

b) if M is a K{oOM, I). then STOp(M, daM) is contractible. 

8 
First replace M by M xD , and use adjointness ill the mapping 

space to obtain a diagram 

The two vertical maps are homotopy equivalences, and the bottom map 

has a natural retraction by 3.3.7 a}. The top sequence is isomorphic to 

the one in 4.1. 5 a) by periodicity (exact on G/TOP) 80 it is also naturally 

split. In case b). the lower map is a homotopy equivalence by 3.3.7 b). 

so the fiber is contractible. [J 
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Note that change of categories now calculates S;: (M,oOM) in 

case b) as ,MM,oOM; TOP/); ). In particular since TOP/PL is a 

K(ZZ.3). SpL(M.oOM):::'" t(M.oOM; K(ZZ3)) for M a Waldhausen 

K(" 1 ~OM. I). 

4. 2. The fibration problem 

Now we present a problem which this formulation of surgery is 

particularly well adapted to solve. Suppose f: MID --:> ~ is a map of 

closed manifolds F -:> E ~> N the homotopy equivalent fibration. 

The question is. if F has the homotopy type of a finite complex. when 

is f homotopic to a fibration of some kind. When tIl = n and F = pt 

this is the homotopy equivalence problem solved in 4.1 by a technique 

essentially introduced in part II of [2.0]. The solution given below, for 

dim F'::: 5. is similar to the techniques of part I of [2.0]. This problem 

has also been considered in the case N:: Sn by A. J. Casson [5]. 

First we elaborate the problem to include the relative version. 

Suppose M is a j-ad, N a k-ad j.:: k. and f:M -> N is a Illl',p of 

k-ads after forgetting the last j-k faces of M. The fiber of f is a 

k-lattice of (k-j+l)-ads. with F = fiber (0 M-> 0 NL ae[O •••. • k-2}. 
'1! " '" 

Say that f has fiber F if all the morphisms in the lattice are homotopy 

equivalences Fa":::"> F fj ..:::..> F (of (k-j+l)-ads). 

Now suppose f:M -> N is a map of Poincare k-ads. with 

M a j-ad. ,n (-> N the equivalent fibration which has fiber a 

(j-k+l)-ad F with the homotopy type of a finite complex (j-k+l)-ad. 
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4.2.1. Lemma: F is a Poincare {j-ktl)~ad of dimension ro-n. 

Further if V c N is a submanifold k-ad with f transversal to V 

£-1(V} -> 'tt -ltV) is a surgery map in a natural way. 

Froof: This is another spectral sequence argu:m.cnt, which we will write 

out this time. By induction it is sufficient to let k = Z~ j = 3, so F is 

also a 2-ad. Let 111 F -> 'lT1 E -> %2 induce the antii=...,. ..... lution of 

t -I 
Z("IF), and define v ( H (F. of; 2:), where F =.. (xl. by, 

m-n 

let U be a disc neighborhood of x, then the projection U -> x induces 

a map 1T-
1(U) -> F which is homotopy equivalent to the projection 

F xU -> F. There is a Thorn isomorphism 

t _ t -I _I -1 
H (F. of;Z) ---,. H* (" U." oU u" U noF;Z) * +n. 1 e=18ion 

t t-I 
H*tn(E.oE;:E) > H (E." (N - U) UO E; Z l. 

inclusion *+n 

and v is the pre image of the image of the funcanlentai class in 

Ht (E.oE; Z). We want to show v is a fundalncntal class for F. 
rn 

Next as surne N is a smooth manifold (by taking a thickening and 

taking the induced thickening of N. The conclusions for F will be the 

same). Take a handlebody decomposition of. {N, oN}. Denote the cellular 

chains with respect to this handlebody by C~ (N, oNi. and the cellular 

chains of the dual handlcbody by c~ (N). Intersection gives an isornor­

phis:m I: C~ (N,oN) ~> hom,(Cc (N), !) where r= z (~lN)" Use these - . 
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filtrations of N to construct the homology and cohomology spectral 

8equences of the fibration (E,olE) -> N. These have E' tenns 

Ht (F, of; 1\) "'rCC (N, oN) 
J ' 

Rotate the cohomology sequence so that it is a homology spectral sequen .. ~ 

1 n-i m-rn-j "\.: * with E ij = E
1

' ( p\ ), then the map (nV) ® rI is a map of 

spectral sequences. This map resolves fl[E,oE] in the homology and 

cohomology of E. by construction of v 4 Since these spectral sequences 

are bounded, I is an isomorphism, 
C 

C
j 

(N, oN) are finitely generated 

free, and (Ov) 01"1 abuts to an isomorphism, Moore's comparison 

theorem [ tI] applies to show that an isomorphism is induced on the E
Z 

tenns. In particular the E
Z 

maps are n v: H* (F; 1\ )-=:::-> 
*,0 

t 
Hm_n_*{F. of; 1\). Thus F is an E-Poincare space. It can also be 

seen to be an F -Poincare space since if F-> E is the induced cover 

11' IF acts trivially on F. 

If X is a regular value of f. then for Borne disc U about x , 

-1 
is a disc bundle over! (x). Thus naturality of the Thorn iso-

-1 -1 
morphism shows f (x) -> 'i'I" (x) is degree I. The normal bundle 

of f-l(x} is the norm.a.l bundle of M restricted to f-1(x) minus the 

normal bundle of x in M. Since the classifying map of the normal 

bundle of M factors through M -> E • 
-1 _1 

f (x) --"> l' (x) can be made 

a normal map in a nah:.ral way. 
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'The analysis for a subrnaniiold instead of a point is similar; 

only the notation changes a little. 0 

Now U N is a PL manifold (and IIl-n-k+j ;: 5 if (; = TOP) • 

then we can make f transversal to a triangulation of N, and obtain a 

-1 -1 
surgery map f (a) -> 1t (a) over each simplex of N. If a is a 

p-simplex this map is a p-simplex of lL. h ('IT -lo} so all of these 
ro-n 

maps fit together to give a section of the bundle lLh (rr) -> N. If 
IIl-n 

00M -> aON and 0h_lM -> N are already fibrations, then holding 

h 
them fixed gives a section in r(N.ooN) n.. m_n(.2.01'!"}. By QO~ of a 

bundle 'I'I':E -> B over a k-ad we mean the bc.ndle ok_IE -> B . 

The homotopy class of this section depends only on the homotopy 

class (reI the fixed fibered boundaries) of f. and is zero if f is horno-

topic to a block fibration (with manifold fibers). Thus this sectioD. is 

an obstruction to the solution of our problem. Note that when assembled 

into 1[., (E) this eectioc is trivial, since it becomes the obstruction to 
m 

the structure on E as a surgery map 'to be cobordant to a homotopy 

equivalence. This is essentially the solution of the problem, as a formal 

globalization will show. 

If 11' : E -> B is a fibration with k-ad base and Poincare 

are mar..ifold block Iibrations. then there is a sequence of bundle lTIaps 

over N. S(rr,onu) ->NM{iT,o iT} -> IL.. (0 't:). Here Sand N?-.{ of a 
~ -0 p-"O 

-1 8 -1 q 
bundle are defined as JL, 'IT in 3.2, by S(iT,OOiT) = UaqEBS(1T a ,Ok_1'IT a), 
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etc. 1£ p+k-j?: 4 this sequence is a homotopy fibration over N in the 

sense that the maps of fibers over each simplex of N are a homotopy 

fibration. Thus the induced maps of section spaces is a homotopy fibration. 

The sections of the middle space are, by transversality. 

natural assembly map from this sequence of section spaces to the struc-

ture sequence of E. which 18 the main point of this section. 

4.2.2. Diagram: Suppose N is a PL manifold k-ad. E Poincare 

j-ad, 1T!E --> N a fibration ",-ith finite complex fibers which is a ~ -block 

fibration ~OE -> 00N and ok_IE -> B. If the normal bundle of E 

reduces to B 1;; and p+k-j?: 4 then there is a natural square of fibra-

tions 

The construction of a section in the problem above is just the 

eonstruction of the analogue of the boundary homomorphism in homology. 

and gives a rrlap S r (E, 00E Uok_1E) -> X whose fiber is now seen to be 
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This is a formal solution to the problem. Sections of r~.b {n .£.o"iT} 

a.ssemble to give block fibrations if S~ is used, by the s~cobordism 
.1 .1 

theorem. and give maps with f (a) -> 'IT (0-) a homotopy equivalence 

h 
for S. The latter sort of map is easily seen to be h-cobordant to a 

block fibration, with torsion in a nice subquotient of the Whitehead group_ 

To reduce the con-esponding block fibration to' some finer sort of fibration 

becomes a problem of maps of bundles with fibers different classifying 

spaces. This study of thede classifying spaces is very rudimentary as 

yet and has little to do with the techniques of this thesis. For example. 

the problem of reducing a block fibration to a fibration involves the space 

~ N/ C (N), essentially flpseudoisotopy modulo isotopy. II The best 

result known is Rourke1s theorerrl that if N is I-connected of dirrlension 

~5.then Z N/ .!; N is also I-connected. 
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The solution to the block fibration problem. however, is seen to 

be again a question about the fiber of the assembly map of .lL. spaces. 

Conversely other attacks on the solution of this problem will yield informa­

tion about the assembly map and hence JL spaces. In particular embed­

ding (splitting) theorems apply directly to this in special cases. and it 

seems likely that techniques providing a geometric proof of the periodicity 

theorem. would yield useful informatiun h~!'e also. At the present we 

cannot improve much on what can be deduced formally from what we 

already know about the assembly map in special cases, 80 an independent 

investigation will not be made. 

Some results can be obtained immediately from the naturality of 

the diagram 4. Z. 2. For example. if we change categories, independence 

of 1[., on the category shows the obstr..lctions to fibering rema~n the same. 

This gives a fibration version of Sullivan!s hauptvermutung: 

·4.2.3. Corollary: If f:M --> N is a TOP block fibration over a PL 

manifold with fibers a k-ad F of dimension p, p - k.::: 4, and M and 

N are t (= PL or DIFF) manifolds, then f is homotopic to a C block 

fibration. 

Clearly there is a more complicated :relative form as in 4.2.2. 

More detailed results also follow from reatrictions on the fibration. 

For example if F->E->B is "rr1-split (Tr1F->'trrE->nrB is a 

split short exact sequence} the bundle 1L./201T) becomes a product, and 

the section space a mapping space. In this form we can apply the results 
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of 3.3. Note that although the base of the fibration must be PL to get 

block fibrations, the category ;; is still arbitrary. 

4.2.4. Corollary: Suppose f:M -> N is a VI-split map from a Poincare 

j-ad to a PL h-ad, which is a block fibration ~n 00M -> 00N and 

ak_1M -> N. and has fiber a finite complex (j-ktl)-ad. If m-n-j+k ~ 4, 

then 

1) if 'Tt160N € Wald, then the columns of diagram 4.2.2. are projec­

tions. Thus each 't: ·.manifold structure on M reI 6
0

M UO
k

_
1
M 

is homotopic to a ;; -block fibration in a natural (canonical) way. 

2) if cON is a Waldhausen K{G.l). then any '!: structure on 

M reI aOMUok_1M is homotopic to a unique}: block fibration. 

Proof: 3.3.6 applied to the lov.cT right vertical map in 4.2.2. 

On the other hand if ;rlF (Wald we can apply the results of 3.3 

to the structure sequence which appears in the fibers of the bundle maps 

whose sections form the middle row of 4.2.2 P 

Slightly more generally. say that a TOP manifold p-ad K satisfies 

the Poincare conjecture if SBTOp{K,oOK) is contractible. According to 

3.3.6~ Waldhausen K(G,l)'s satisfy the Poincare conjecture. 

Suppose the homotopy fiber of f:M -> N is a manifold (j-k+l)-ad 

of dimension m-n 2: 4 + j - k which satisfie s the Poincare conjecture. 

s s 
Then the fibration S TOp(K, 00K) -> S TOp(f,oOf) -> N has trivial fibers, 

and the space of sections is contractible. In this situation 4.2.2 becomes 
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ox ------,,* ---------~> x 

1 1 1 

I: 

and we have found another expression for the fiber of an assemL1ly map. 

4.2.5. Corollary; If (K,oaK) is a TOP p-ad of dimension k which 

8atisfi~s the Poincare conjecture and k-p'::: 4, then any ~'O block fibra-

tion:> with fiber (K,oOK) which agree when restricted to 00 and have 

homotopy equivalent total spaces are isomorphic as fibrations. 

s 
These are sections of S TOp{f,~f} -> B which has trivial 

fiber. so they are homotopic. 0 

Lastly we apply all this to sphere fibrations. Let ;:E ---> B be 

a homotopy Sn fibration, n,::: 5 J and M the mapping cylinder, the , 
associated homotopy dizc fibration. If the normal bundle of M .... has a 

~ 

reduction to B
TOP

' then the boundary map and the assen1.bly give a 

diagram of fibration: 
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The fibers en the left are contractible if they are not empty (recall these 

are fib rations over the identity component of the spaces on the right). 

l! .; is equivalent to a TOP (Sn) fibration, then the top map is 

a homotopy equivalence. An investigation of the multiplicative structure 

of :n:.. spaces (involving yet another characterization of IL as a cobor-

dism space) shows that the top map is the inverse of a Thorn isomorphism_ 

- n This would recover Sullivan's theorem that a TOP(S )-bundle has a Thorn 

class in KG/TOP theory. A good deal of his remarkable converse to 

this theorem can also be obtained £rOIn this theory. 
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Abstract 

In this thesis we present a theory of spaces whose homotopy 

groups are the various sets of equivalence classes arising in nons imply 

connected surgery. Long exact sequences appear naturally as tbe long 

exact homotopy sequences of fibrations of spaces. The treatrr..ent is 

also geometric in that algebra is shunned for geometric techniques 

whenever possible. 

After the definition and elementary theory of the spaces is 

developed, two maps, the pullback map and the assembly map. are 

defined (Section 3.2). The rest of the thesis is essentially devoted to an 

investigation of the assembly map. Using it and a new theorem of 

Cappello some calculations of surgery spaces generalizing those of 

Shane son and Wall are given. In 4. 1 the structure sequence fo:, mani-

fold structures on a Poincare space is investigated and found to be a 

special case of the assembly map. Finally in 4.2 the assembly is used 

to give a formal solution to the problem: 1£ a map f: M --> N of closed 

manifolds has fiber the homotopy type of a finite complex, what are the 

obstructions to it being homotopic to a block fibration with manifold fibers. 


