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INTRODUCTION

Professor Hans Rademacher was invited by the Mathe-
matical Association of America to deliver the Earle Raymond
Hedrick lectures at the 1963 summer meeting in Boulder,
Colorado. Professor Rademacher chose the topic Dedekind
Sums, and prepared a set of notes from which to deliver the
lectures. However, a temporary illness prevented him from
giving the lectures, and he prevailed upon his colleague and
former student, Emil Grosswald, to make the presentation
from the notes.

Professor Rademacher never edited for publication the
notes he had prepared for the Hedrick lectures. However,
after his death in 1969, the manuscript was found among
his papers, with a signed request that Emil Grosswald edit
and publish these lecture notes. Professor Grosswald
responded affirmatively, and completed the editing of these
somewhat fragmentary notes, which consisted of 45 hand-
written pages and a sketch of a bibliography. In view of
the extensive additions of proofs, historical remarks, and
subsequent developments of the subject, made by Emil
Grosswald, the Subcommittee on Carus Monographs of the
Committee on Publications concluded that joint authorship
of the finished monograph was appropriate. The Association
is indebted to Professor Grosswald for his dedication in
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PREFACE

The Mathematical Association of America nominated
Professor Hans Rademacher as Hedrick Lecturer for the
summer meeting of 1963. As topics for these lectures,
Professor Rademacher selected the ‘‘Dedekind Sums”, a
subject to which he had returned many times throughout his
long and distinguished career and to which he had con-
tributed immensely.

He prepared a set of notes (called in what follows the
““Notes™’), but a passing indisposition prevented him from
delivering the lectures.

He recovered soon afterwards, was once more active in
mathematics and wrote at least seven papers (among which
there is also one on Dedekind sums) after 1963, but, for
unknown reasons, failed to edit for publication his “Notes”’
of the Hedrick Lectures.

In September of 1967, Professor Rademacher was stricken
by a cruel illness, from which he never recovered. After his
death on February 7, 1969, the manuscript was found
among his papers; on the first page had been added the
following words, in Professor Rademacher’s handwriting:
“If I should be unable to publish these lectures, [ wish to
ask Emil Grosswald to edit and publish them. (signed)
Hans Rademacher (dated) 8-th September, 1963.”

Having had the privilege to be first Professor Rademacher’s
student, then, for many years, his colleague at the University
of Pennsylvania and—1 dare hope at least—his friend,

iX



X PREFACE

there could be no question on my part about the acceptance
of this assignment. This turned out to be more difficult than
anticipated. The ‘‘Notes’’ consist of 45 handwritten pages
and a sketch (2 pages) of a bibliography. The text is written
in that specific, personal style, which defies imitation and
makes anyone who had ever attended his lectures believe
that, while reading, he actually hears the familiar voice of
that great teacher.

Most proofs are suppressed —which is the reasonable
thing for a Hedrick Lecture; instead, where a proof should
appear, there is usually a reference to some paper containing
it. The corresponding proof may have been used (either as
actually published, or, more likely, as modified and stream-
lined by Professor Rademacher) in editing the *‘Notes’’ for
publication. These references are often rather cryptic, such
as [Rdm], or [Iseki], or even just [ ], [ ]. He knew,
but we must guess which of the 3, 4, or more different
proofs of Rademacher he had in mind, or what paper of
which Iseki is meant (there are three active mathematicians
of this name and two of them work on topics germane to
the present one), or which of the several existing proofs
by different mathematicians was to be used at a given place.

What was I supposed to do? It was impossible to take
liberties with the text without risking to destroy what I
consider one of its most valuable assets, its own characteristic
style. On the other hand, it seemed indispensable to “‘flesh
out” the ‘“Notes’’ meant for oral presentation, by incorpor-
ating into them at least some proofs, some indications of
the history of the subject matter and the impact it has had
on subsequent developments.

After long hesitations and consultations with a referee and
with Professor R. G. Bartle, Editor of the Carus Mono-
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graphs, I decided on a compromise. I left the text of the
““Notes’’ virtually unchanged, except for minor modifications
required for clarity or for reasons of grammar*. Concerning
the proofs that were missing and seemed desirable, in most
cases 1 expanded existing, sketchy indications into proofs,
if that could be done without overly long interruptions of
the original text. In the other cases, I wrote up the proofs
to the best of my ability, by making use to the largest
possible extent of Professor Rademacher’s own published
papers. These proofs are collected into an Appendix and
may be skipped at a first reading without impairing the clarity
or continuity of the main text. I also wrote up a few pages
on the history of the Dedekind sums and inserted these as
a sixth Chapter.

It is in the nature of such a brief survey that not all valu-
able contributions to the theory of Dedekind sums could
be mentioned. I have tried to select a representative sample,
but wish to apologize to all those mathematicians who have
contributed to this field and whose work is not mentioned
here. I also wish to thank all those mathematicians who
wrote to me and helped to make this historic survey as
complete as possible.

Among the letters received there is one that requires

* In fact, I hesitated to do even that, because certain ways of ex-
pressing himself orally, while occasionally somewhat peculiar, were
part of Professor Rademacher’s charm and of his personal style of
speaking. However, a careful study of his papers and books showed
that in his published work he respected scrupulously the rules and
customs of good style in written English. This convinced me that
he himself would have made those minor modifications of his first
draft, if he had edited the “Notes” for publication and, therefore,

I proceeded accordingly.
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special mention, namely that of Professor L. Carlitz. Pro-
fessor Carlitz suggests that the generalizations of the Dede-
kind sums discussed in Chapter 5 should be renamed and
be called henceforth Dedekind-Rademacher sums.

I consider this suggestion justified. I personally shall
accept Professor Carlitz’s suggestion and shall call these
sums Dedekind-Rademacher sums in any paper 1 may write
in the future. I also urge our colleagues to do the same. In
the present book, however, these sums will still be called
Dedekind sums. This is done not so much because the
compound name is rather cumbersome, as because, in spite
of all additions and modifications, the present book should
still be considered as Professor Rademacher’s own work,
and this so very modest man would not have wished to call
these sums by his own name.

In its present form, the book consists of five chapters
based on the ““Notes’’ of Professor Rademacher, a historic
review and four notes assembled into an appendix. The
historic remarks and the appendix are my own addition,
but I must accept the respénsibility for the whole book.
However, it is my fervent hope that in spite of the many
changes and additions, a sufficiently large portion of the
main text has remained close to the original draft, so that
the specific, unmistakable flavor, characteristic of all of
Professor Rademacher’s writings will not have been entirely
lost. Whether this is the case or not, only the readers will
be able to tell.

It is my pleasant duty to mention much help and assis-
tance received. Without the cooperation of Professors I.
Niven and R. G. Bartle of the Mathematical Association of
America, the work on this book could not even have started.
I also acknowledge with gratitude the help of Dr. Jean-
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Louis Nicolas, who helped streamline some proofs and
that of Mrs. G. Ballard and Mrs. M. Braid, who typed the
manuscript with infinite patience and great care.

Finally, last but not least, my thanks go to Mrs. Irma
Rademacher, who made available the manuscript and was
helpful in every respect.

May this collective labor of love bring joy to many
readers, as would have been the wish of that great mathe-
matician and teacher, who was Professor Hans Rademacher.

EMIL GROSSWALD
Temple University
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2 INTRODUCTION Ch. 1

which at the points of discontinuity takes the mean value
between the limits from the right and from the left.

It is of course possible to define many sorts of sums or
other expressions. In order to be fruitful, however, such
definitions should not be made up arbitrarily, but should
appear in a larger context. One may think, for example,
of the Gaussian sums

k 2nih 22

Ghky= Ze"
A=1

about which there exists a whole literature inaugurated by
Gauss himself. They appear naturally in the theory of
quadratic residues, in cyclotomy, and in the theory of theta-
functions, to name a few. Not only does such a full context
ensure the mathematical usefulness and significance of the
subject, but it also implies a rich structure of the subject
itself.
" The same can be said of the Dedekind sums. They are
named after the mathematician Richard Dedekind (1831~
1916) to whom our science owes so many great achievements,
in particular the well-known theory of the Dedekind cut
and the theory of ideals.

The Dedekind sums appear in Dedekind’s study of the
function

nit

3) n(z) = e? [[1 (1 - ¥y,

where Imt > 0, as is needed for the convergence of the
infinite product. This function is basic for the whole theory
of -elliptic functions and theta-functions. Using Jacobi’s

i

-
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theory of elliptic functions, Dedekind showed (see [14]; also
Chapter 4) that
1 1 (h 1 Kk

4 S(k,h)+S(h,k)— —Z+ﬁ(7(+717€+—ﬁ)
Formula (4) is the famous reciprocity formula for Dedekind
sums. Although derived in this context as a property of the
function n(z), it is simply an arithmetical formula and
should thus be considered from the purely arithmetical point
of view. This we shall do in the sequel; in fact, we shall
only be concerned with the arithmetical nature of the Dede-
kind sums.

There exists quite a number of direct proofs of (4) in the
literature. Chapter 2 is devoted to some of them, and the
later chapters to arithmetical applications of the Dedekind
sums.



CHAPTER 2

SOME PROOFS OF THE RECIPROCITY
FORMULA

TueoreM 1. (Reciprocity Theorem). Let h and k be two
coprime integers. Then

1 1 (h 1 k
(4) s(h,k)+s(k,h)=_Z+E(E+m‘+%).

A. First Proof. Let us begin with a proof which is a
variant of one given by Ulrich Dieter [16]. We need first the

LEMMA 1. z ((/1 -;x)) = ((x)).

A mod k

Proof: We consider the difference

Dix) = I ((l}ix))—((x)).

Amod k

This function is obviously periodic in x with period 1.
We may thus restrict our discussion to the range 0<x<l.
If we choose, in particular, the residue system A=0,1,-,

k —1, we have

Sec. A FIRST PROOF

Similarly, for 0 <x <1,
k=l x 1 1
b= % (55 3) - (x-2)
k_1+x—5—x+l =0
2 2 2
This shows that D(x) = 0 for all values of x, and completes
the proof of the Lemma.

LEMMA 2.

1 1 k

Proof: Formula (5) is the direct result of the definition:

RN ()]

k—1 2 k—1
_ p_o_1l 5 e L
- 2(‘ 5) A

n=1 k =1 n=
_ _1_(k—1)k(2k—1)_1 k(k—1)+ k—1
T k2 6 k 4
N 4 6k 12°
as claimed.

We proceed now to the proof of the Reciprocity Theorem.
We start with

S = s(h,k) + s(k,h)

= ((4) (&) <= (@) ()

u=0
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In the first sum, let x = hufk, so that(x + A)/h = pfk + A/h,
and proceed similarly in the second sum. Applying Lemma 1
in each sum we then obtain

= 2 (0) % (6 8)- 260 26)
=5 5 () L) - 6))

Due to definition (2), the summands with y = 0 and v=0
have to be considered separately. We have

© s= 2 % ((t+7) fi+5-)
S 2 ()G9 z (@) ¢-9)

where we suppressed the term with u = v = 0 (which equals
zero anyway) in the original sum. Now, by Lemma 1 with

C E () en ()0

and we can now recombine the sums in (6) into

s= 2 E((ED) (eim)

We consider now the sum

o 1o B E {1 - ()

i
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Lt s B 2 k-1h-t
=u=0 v=20 (—I'c+-}—1 )_zuEOVZO(k-,—E—l)((k h))
k—1 h—-1 2
+ ((’—;+}—:)) = S, -25,+8,,

say, where we recognize immediately that
(8) §=25,.
Moreover, S, is an elementary sum, namely

hkl h-1

k 1
Sl— E/t +h2 Ev +hk+2}§2yv%v

v,

2h k—1 2k h—1
T #'—‘Ou - T v=0

which, after some straightforward computation, yields

hk h k 1
) S1=?+6_k+6—5+’2—.
Next we observe that h and k are coprime; hence, when u
runs through a full residue system modulo k and v through
a full residue system modulo h, then the numbers
p = hu + kv run through a full residue system modulo hk.
It follows, taking into account Lemma 2, that

—_

2 1 1 hk
S, = % ((ﬁ)) =s(Lhk) = — + 4 —— + X
P medne \\BK (1, ki ITEhE T 12

We remember now that

[z] + % for z not an integer,

z=(@) = {[z] for integral z.
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In the double sum for Tin (8), ufk + v/h is an integer only
foruy=v=0. Keeping this exception in mind, we obtain,

k=1 h—1 2
_ T L
T = ,,Eo z {[k+h] 2} s

where the correction term # comes from the exceptional
summand g = v = 0. It now follows that

_ k-1 h—1 ) y 2 L y 1 3
T= X 2 ‘[Eﬁ‘ﬁ] - {E4'E] +'Z} +'Z

u=0v=0
k=1 h—1
_ wov (ALY - . 3
R [k*h]([k*h] 1)+ gk g

Here we observe that within the range of values of p and v,
we have 0 < p/k + v/h < 2, so that [u/k +v/h} =0 or 1;
consequently, the double sum vanishes and

10) T = }hk +%.
Putting together (7), (8), (9) and (10), we obtain

1 1 1 (h 1 k

and the Reciprocity Theorem is proved.

B. Second Proof. The sum s(h,k) may be transformed
as follows:

2, () - = (@)
amodk \\K k s=1 \\K k
(-9 () - E )
s\ k2 k a1 k \\k ’
Here the last equality holds, because (h,k) =1 and, by
Lemma 1 with x =0,

™

™

s
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E () - 2 () -

Thus the Reciprocity Theorem may be written as

1 %! (h/,t h[.t] 1 1" kv Tkv] 1
e 2ME [; i)*ﬁv?(r[h’]“z')

=T 37 12\k " kh  h)

In the first member appear some elementary sums, namely

1 k-1 2 h .U, h k—1 ) 1 k-1
EMEI (”’ E—i)—-k_iuglu —_2_Eu=21#
h (k=Dk@k=1 _ 1 (k=Dk
=& 6 %2
om(k=D@k=1)_ 3kk=1 _ k-1 ~
= T2k S = 1ok 2hGk=D - 3k},

and the corresponding ones with h and k interchanged. If
we replace these sums by their values and make some
trivial simplifications, the Reciprocity Theorem to be proved
becomes (see [40])

(11) 12T “ET#] 12k Ty [EhY]
p=1 N v=1
= (h=1)(k—1)(8hk—h—k—1).

Now sums of square brackets suggest the counting of lattice
points. In the classical proof of the quadratic reciprocity
law one counts such lattice points in the plane. The sums
that occur in (11) may be obtained by counting lattice
points in three dimensional space. For that, consider the
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orthogonal parallelepiped ABCDEFGH with edges h, k and
hk , respectively (see Fig. 2). Let it be divided into three
pyramids with common apex A. In the interior of the
parallelepiped there are (h—1)(k— 1)(hk —1) lattice points.
In the cleaving plane ACG there are no lattice points, since
(h,k) = 1. But the planes AFG and AGH do contain lattice
points; these can be counted, by projecting them down
onto the plane ABCD. Their number is (h—1)(k—-1).
Indeed, any lattice point P in the plane AFG, say, must
have integral coordinates p and v, ie., it must project
onto a lattice point of the triangle ACB. Since FB/AB=h
it also follows that the ordinate of P is p = hu, an integer.
Consequently, to each lattice point in ACB corresponds
one (and quite obviously only one) lattice point above
it in the plane AFG. Similarly to each lattice point in
ACD corresponds one and only one lattice point in the

te

i
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plane AGH. No duplication of counting occurs, because
there are no lattice points in ACG, and the result follows.

Now consider the two pyramids A(BFGC) and A(DCGH).
We count their lattice points in planes parallel to their
bases. In A(BFGC) the rectangle in the plane at distance p
from A has base hu/k and height ph and contains, for
integral pu, [hu/k]ph lattice points; hence, A(BFGC) has
h X% p[hp/k] lattice points, including those in the
cleaving plane AFG. Similarly, there are k A2 v[kv/h]

. lattice points in the pyramid A(DCGH). In the pyramid

A(EFGH) we count the lattice points once more in layers
parallel to its base EFGH and obtain

5 28

again counting those in the cleaving planes. If we add these
three sums and observe that we have counted (h—1)(k—1)
lattice points twice (see the reasoning on page 10), we obtain

k—1 hu h—1 kv hk—1
cs a2 7]
1u=1u k * vEIV h * p=zl h h
—th—-D(k-1D= (h—1)(k—=1)(hk—1)
or

k=1 hu h—-1 kv hk—1 p p
(12) h Z l—] +kZv [—] + = [_] [_]
u=1ﬂ k v=1 h p=1 h k
= (h—1)(k—1hk.
It turns out that the sum st pih]Leolk] is of a simple

nature, namely

(13) h:il [—H [%] - %i(h—l)(k—l)(4hk+h +k+1)

=1
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holds. If we replace (13) in (12) a short computation yields
(11), and the proof is complete.

It still remains to justify (13), which we now proceed
to do. Let (h,k) = 1 and denote the fractional part of
x by {x} = x —[x]. Writing for simplicity 2 in place of
-l one obtains

o-x [ [f]-= (- ) (- )
- wzet - (g -p sl <2 )

Here T p? = 3(hk—1)hk(2hk—1). Next, if p = rh +s,

h—1 k-1 h—-1 k-1 1 b1 k—-1
zp{ﬁ} ~'E Th+9i=ZsZr+; T T8
h s=0 r=0 s=0 r=0 h s=0 r=0
= thk(h—1)(k—1) + 3 k(h—1)(2h—-1),

so that
U= %(hk—l)(2hk-—1)—-%h(h—l)(k—l)
(14)

3 (h—1)(2h—1)— tk(k—=1)(h—=1) = Hk—=1D)(2k—1)+V,

B o\ [p T g S O AR
V—E{z} {z}—h‘s%s,%{ =

where

Since (h, k) = 1 it follows that if s is kept fixed and r runs
through a complete set of residues modk, also rh+s
runs through a complete set of residues modulo k. We
thus obtain

kel (rh + s i k-1
E{“—’}= z oy -t

r=0 v=0

X<

Ty

S
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for every s, and

. k-1 hils _ (h—l)(k—l)‘

2h 2, 4

If we now replace V in (14) by this value, we find
= ll—z(h—l)(k——l)(4hk +h+k+1),
and (13) is proved.

C. Third Proof. The previous proof* breaks up the
symbol ((x)) and so destroys an important periodicity. The
following proofs will avoid this.

The arithmetical function ((u/k)) has period k and can thus
be expressed by a finite Fourier series. Let { be a primi-
tive kth root of unity. Then

oo ()

will hold, with certain Fourier coefficients a,. From (15)
it follows that

z ((%))C - S 4, I OV =ka,.

pmod k mmod k pmod k

In particular, forn =0, by Lemma 1,

aswmy 2 () - o

* The same remark holds also for another proof due to Mordell
(see [36]), which also uses lattice points.
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For n # 0 (mod k) we obtain

1 k-1 U 1 1 k—1 1
16b) a, =+ X (—-——) = il s
(16b) L2 e 3)¢ B IR g

Now (1—-x)(1 +x + - +
differentiation

x*71) = 1 — x*, which yields, by

—(L+x+-+x""HD+A-0)0 +2x+ - +(k=1)x*72)
= —kx*71,

If we multiply this equation by x and then replace x by
{ ™", the first bracket vanishes and we have

k—1
(=07 T = k.

This permits us to replace the sum in (16b) and, for n £ 0
(mod k), we obtain

(160 w= ¢ li=m+3)
-
Therefore, from (15), (16a) and (16¢), we have now

() -2 (el

From this we deduce that

s(h, k)
1 k—1 Cm 1 k—1 Cn 1
il Z (—U + _) Z (_______ _) (hm +n)u
w2 = t2) 2 \iTr ta) B¢ ‘
The sum over u vanishes, unless n = —hm (mod k), when it

has the value k, so that

Sec. C THIRD PROOF 15

-1 E () ()

This expression can now be used in several ways to obtain
the reciprocity formula.

(17) s(h,k)

C,. Firstly, a purely algebraic treatment is possible (see
[6], [43], and [47]). In (17), {™ runs through all kth roots
of unity with the exception of 1. Let us write ¢ for the typ-
ical kth root of unity. Then (17) can be rewritten as

s(th,k) = E (——+ 1) ( é_é ] 1)

where the prime ' indicates the omission of ¢ = 1. By some
simple manipulations, (see Note 1), this equation can be
simplified to read

, 1 k—1
¥ @-DE-n T %
If # runs_through all hth roots of unity except 1, we have
in the same way

(18a) s(h, k) = —%

1 + h—1
(n*—=Dn-1) 4h
If we replace now in the Reciprocity Theorem s(h,k) and

s(k,h) by their values (18a) and (18b), respectively, the
identity to be proved reads

(18b) s(k,h) = —-711- b
n

1 <, 1 k—1
(19) ¥ @ DEn T

iy 1 L h-1

h 'y m-Dh-1) 4k

__1+ih+l+k
T T 47 12\k " hk T h)”
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The identity (19) may be considered as a relation between
the k-th and the h-th roots of unity. This identity can be
proved by elementary methods. The proof which follows [6]
is based on the following two auxiliary identities:

_]; , _—_—é——— l ’ ___11_____
@) ¢ ¥ @opE=h T h L wF-Da-D
_ 3+ k—hl)— (R + K+ 1)
= 12hk ’
and

Lo 1 Lo 111 1y_
@) p ¥aogty t nk—1‘§(h+k) I

If we subtract (21) from (20), we obtain

1o, 1 1 {
i 2 @EonE-n Th ¥ F-Du-D

1 (h+3 1 k+3
12 ’

(22)

3
=7 o\ TwTTH
which is equivalent to (19). The proof of the Reciprocity
Theorem has been reduced to that of (20) and (21), which

we now proceed to indicate.

The first sum in (21) is

, 1 _ , 1
Ya-1~ ¥ oFoi

and is real, as can be seen by replacing £ by & = &7 = 71,
With ¢ = ¢**/* the sum becomes

.

e

.
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k-1 1 e-—mm/k

k-1
= X
m=1 2isin(nm/k)
1 k2! cos(mm/k) — isin(nmjk)
20 iy sin (mm/k)

m=1 e2nim/k — 1

am k-1 k-1
=5 L cotom—TH— =TTy
because the sum is real. Consequently, the first member
of (21) is

k-1 h-1 1 /1 1
'T"Tf“"1+§(ﬁ+i)’

and this proves (21).

To prove (20), observe that (h,k) = 1 implies that the
polynomials p(x) = (x*—1)/(x—1)and g(x) = (x"~Dj(x—=1)
are relatively prime; hence, there exist polynomials f(x)
and g(x) of degrees at most k—2 and h—2, respectively,
such that

(23) g(x)f(x) + p(x)g(x) = 1.

For x = & = &% and m # 0 (modk), q&fE =1, or
f(&) = (E=D](¢*—1); and similarly g(n) = (p—D(n*~1).
As x = 1, (23) tends to

(24) hf(1) + kg(l) = 1.
By Lagrange’s interpolation formula we now obtain

xk'—l f(l) ’ 6 6—1
f(x) = & {x—1+§x—€€"—l}’

with a similar formula for g(x). Substituting these in (23)
and using also (24) we obtain
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1y, ¢ ¢-1 , n =1
k?x 667-—1+h§x—n11"—1

. x—1 _ 1
(x*—D(x*-1)  hk(x—1)
We now set x = 1 4+t and expand both sides in powers

of t. Equating the coefficients of ¢ we obtain (20). This
finishes the proof of the Reciprocity Theorem,

C;. Returning to formula (17) for another approach, we
write it as

LA L4+ gm 14 (m

(25) sthk) = g T T T

Here { is again any primitive kth root of unity. If we specify
now { = ¢®*/¥ then (25) becomes
1

Kl m nhm
(26) s(h,k) = v Zz‘, - — cot <

The Reciprocity Theorem (4) can now be derived in a manner

analogous to that in the first proof (see [16], [32]) by
means of

LeMMA 3. If x is not an integer, then

k
27) Y cot™ X, o

kcotxm.
m=1 k

Proof. We start from the decomposition into partial
fractions

x~

Cl

z =¥

'-M»

.

-

.
.

s
-

.
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with { a kth root of unity, as before. It follows that
k i k Cl 2% zk +1
= = =k .
=21 '—t=1 (1+22"C') k+2k—1 ¢ —1

If we set z = 2™ and replace ! by —m, we obtain (27)
with x = ak.
We start now from (26) and have

S = s(h,k) + s(k, h)

L Tm thm 1 "3 nn  nkn
- — cot — cot —
—4k ,..21 — 7tz ,,21 7 ot -

Now we use (27) in order to obtain
k-1

1 mm 1 . n _ﬂ)
S=?4-km§1ccn—l_€_ ﬁnZCotﬂ:(h+ k

Il

&h S h ko k —h
e, m 7_@) ¢ (r_n__*_g)
= Z—k,,El ,Ex (cot—k~+cot a cotm Tt
k-1

m m — t ™ot (1+)
+mm=1°°t7°°t“(k “) 4hk,.21°° R TR
LIS F (oo™ s cor™)cotn (2 )
= I { g) (cot—k—+cot 7)cot1t(k + A

k—1 m 2 h—l( Ttn)2>
— cot— .
+ .z (°°t k) + X |ty
We recall that cot(a + B)(cota + cotf) =

so that the first sum becomes
k—1 h—1

ik — —(h—D(k-1).
Z_',UZI cot A " cot” h (h—1)( )

cotacotf—1,



20 PROOFS OF RECIPROCITY FORMULA Ch. 2

Using (26), we identify the last two sums as 4k s(1,k) and
4h s(1, h), respectively, so that

1 k=1 h—1 h—
S = T T cot T ot ™ _ (A= D(k—1)
4hkm 1n=1co k h 4hk

1 1
+ ;S(Lk) + Es(l,h).

The double sum vanishes, because Z5 7" cot(nm/k) = 0. Also,
according to Lemma 2
1k 1 h
1,k -4+ — 4 = = _ 1
s(1,k) = 4+ +6k and s(1,h) = Z+—2 e
so that
1 1 (h 1 k
S i —_— —_— —— —
it 1, (k+hk+ h)'
This is again the Reciprocity Theorem.
Vi
iY 1+iy
0 Al .
AN A" ;
-iY 1-iY
Fic. 3
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C,. Another way from (26) to the Reciprocity Theorem
is by contour integration of the function

F(2) = cotnzcotmhzcotnkz

around a certain contour €. This contour (see Fig. 3) is ob-
tained from the rectangle with vertices 1+iY, iY, —iY,1—iY,
Y > 0, by making two small, semicircular, parallel indenta-
tions, which keep z=0 inside,and z=1 outside the contour.
Here Y is a large, but otherwise arbitrary positive number.
F(z) has a triple pole at z =0 and poles at z = Ak
(A=1,2,-,k=1) and z = p/h (u = 1,2,-,h— 1). These
are simple poles, because (h,k) = 1. Also, F(z) is holo-
morphic on €, so that, by Cauchy’s theorem,

1
E;E_i LF(Z)dZ = S,

where S denotes the sum of the residues of F(z) inside ¥ .
Clearly, F(z) = F(z +1); hence, the integrals along the
vertical sides (inclusive of the indentations of %) cancel, being
taken in opposite directions. For y - + o, cotn(x+1iy)
— Fi; hence if Y > 0, [¢F(z)dz > —2i. In fact, the
integral is independent of Y, so that, for every Y >0,

1 1
S = 5‘&7 LF(z)dz = - -,

k4

We now pass to the computation of the residues. It is
immediate that at z = A/h the residue is (1/zh) cot(mA/h)
cot(nkA/h), and at z = p/k it is (1/zk) cot(rcu/k) cot(zuh/k).
Next, using the expansion cotz = 1/z — z/3 — .-+, it follows
that in a neighborhood of z =0,




22 PROOFS OF RECIPROCITY FORMULA Ch. 2
1 7!222 2h2 2
F - —_ —_— e — n z
@) = Shs (1 ) (1 3 )
27,2
« (1 _ i’k zz_'__)
3 b

so that the residue of F(z) at z = 01is (—1/3n)(h/k + 1/hk
+ k/h). Consequently,

1 (h 1 k 1 82t y 1
S = —— |-+ = i el TL: nik
In (k hk+h) +— }.El cot 5 cot =~

or, on account of (26),

S=-‘} __1 h 1 k
o R +s(h,k)+s(k,h)}.

If we replace here S by its value —1/x we obtain again the
Reciprocity Theorem.

D. Fourth Proof. A most peculiar proof, with which we
f:onclude this chapter, is based on a lemma about Stieltjes
integrals, One can prove (see [45] or Note 2) the following

' LemMA 4. Let f(x), g(x), and q(x) be real valued func-
tions of bounded variation in a £ x £ b, no two of which
have any discontinuities in common. Then

b
(28) f Fd(g(x)a(x)

= J;f(X)g(X)dq(x) + f f(*)q(x)dg(x).

§

i

-
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REMARK. For f(x) = 1, this yields simply the formula of
integration by parts

b b b
@ aaw | = [ a@dae + [ aeodgeo.

Also the following lemma is known (see [28], pp. 170-171):
LEMMA 5. For (h,k) =1,

(30) Jq((hx)) ((kx)) dx = 1/12hk.
0

We shall assume for a moment the validity of Lemma 5
and consider first the following application of (28):

Gy I,

1—e
f (D)) (kX))

1-¢
f (((x))d((kx))
1—¢
" f (kX))

with small & > 0. The points 0 and 1 had to be omitted
from the interval of integration, because there the three
functions have a discontinuity in common.

In order to compute the right-hand side of (31) we have
to take into account the discontinuities of the expressions
under the integral signs. We observe that each jump is
equal to —1 and obtain

e o () (2)
o [ mamn- 5. (2) ()

An application of (30) then yields
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(32) lim 1, = éh h ~ s(h, k) — s(k, k).

On the other hand, one can transform I, by means of
(29) (with g(x) = ((x)) and g(x) = ((hx))((kx))) and then
one obtains, using also Lemma 5, that
1-¢
lim I, =lim (x -

e~0

g0

— Iim 1_z((hx))((kx))dx
e=0 Je
1\ 3 .
- (5) B (_%) - J; ((hx))((kex))dx =%_Elh_k'

This, together with (32), establishes again the Reciprocity
Theorem.

We still have to justify the use of (30).

Proof of Lemma 5. Let (h,k) = 1; then

1 h—1 (n+1)/h
I = f ((hx))((kx))dx = X ((hx))((kx))dx .
1] n=0 n/h

With x = y/h + n/h, this becomes

- 3E [oen(() o
2 [ o ()

-1 (( ))hﬁ ((2+5))r-

3 = :*I

W

s

-

e

e

|
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By Lemma 1 the sum equals ((ky)), so that

1
1= J Oy

Repeating the procedure on k, we obtain

1 1 1
[ ncemay = ¢ [ conmay

1 ! 1 2d 1
=k f (y T3 YTk
and I = 1/12hk as claimed.

REMARK. If (h,k) =c>1, set h =ca, k = cb, with
(a,b) = 1. Then

1
- f (hx)(ex))dx = f ((acx))((bex))dx
0 0

B
-1 f ((ay)) (by))dy,

and, using the periodicity modulo 1 of the integrand, we
obtain

CZ

I= f((ay))«by))dy .

hlv—t



CHAPTER 3

ARITHMETIC PROPERTIES
OF THE DEDEKIND SUMS

A. Elementary Properties. The reciprocity law of the
Dedekind sums always contains two (and in some generali-
zations three and even more) Dedekind sums. We focus
our attention now on a single Dedekind sum, its properties
and its connections with other mathematical topics.

Since ((—x)) = —((x)) it is clear that

(33a) s(—h,k) = —s(h,k)
and
(33b) sCh, —k) = s(h, k).

If we define h’ by hh' = 1(modk), then
(33¢) s(h', k) = s(h, k).
Indeed,

o0 = 2 (EE) = 20) (5)
= 2 (D) - oo

Next, we may state the following:
26

o

- Eoms e e .
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THEOREM 2. The denominator of s(h,k) is a divisor of
2k(3,k).

Proof of Theorem 2.
o= (-3 - 213

1 k-1

2 et —
Ttz 2L

with 4 an integer, so that

(34) s(h, k) = h—*—(k_l)%ik—l) + ;k— Ml 4— L

If k is even, 4| 2k; if k is odd, k—1 is even, and the last
fraction has, after reduction, at most the denominator 2.
In either case the denominator of the (reduced) last fraction
divides 2k, and the same holds for the second fraction.
If 3 ¥k, then (3,k) = 1 and 2k(3,k) = 2k. In this case
3, (k—1)(2k—1), so that the factor 3 cancels in the first
fraction, and the denominator is reduced to a factor of 2k
(which might be 2k itself). If 3| k, then 2k(3,k) = 6k, and
in either case the denominator of the (reduced) first fraction
divides 2k(3,k). The proof of the theorem is complete.

Clearly, s(0,1) = s(1,1) = 0, and zero is the only integer
value which s(h, k) can attain (see [49]). Indeed it follows
from (4) that

(35) 12hks(h,k) + 12hks(k,h) = —3hk + h* + k?+1.

We also know by Theorem 2 that if § = (3,k), then the
denominator of s(h, k) divides 20k, so that (35) yields
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(36) 12hk s(h, k) = h? + 1(mod 6k).

(a) Assume that h? + 1 =0 (mod k); then the congruence
hh' = 1 (mod k) has the solution A’ = —h, and (see (33a)
and (33¢)) one obtains s(h, k) = s(h’, k)=s(—h, k) = —s(h, k),
so that

s(h,k) = 0.

(b) Conversely, assume that 12s(h, k) is an integer. Then, if
we recall that, by Theorem 2, 6k s(k, h) is always an integer,
(35) shows that h? + 1 = 0 (mod k). This proves that one
has actuvally the following stronger result: s(h,k) is an
integer (namely zero) if and only if k|(h*+1); if
k y (h* + 1), then not even 12 s(h, k) can be an integer.

The range of values of s(h, k) is not fully known. Salié
[59] proved that s(h, k) always satisfies one of the following
five congruences:

6ks(h,k) = 0, + 1, + 3 (mod9).

If we write for a moment s(4/k) instead of s(h,k), the
Dedekind sum becomes a function of a rational argument
and has rational range. It can be shown (sec [49]) that
s(h/k) is unbounded above and below in the neighborhood
of every h/k. Whether the points (h/k,s(h,k)) lie every-
where dense in the plane is not yet known, nor does it seem
to be known whether the range of s(h,k) is dense on the
real axis.

B. Farey Fractions. The set of all reduced rational
fractions h/k, arranged in ascending order and with
1< k=Nand 0 < h/k £1, is called the Farey sequence
of order N. We observe that the condition (hk)y=1,
excludes the value h = 0, except for k = 1.

e e
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Let ¢(k) denote the Euler function, i.e., the number of
positive integers not exceeding k and prime to k, or in
symbols

k) = Z 1.

n=<k
(mk)=1

It is clear that for given k, the number of irreducible frac-
tions h/k with 1 £ h £ k is ¢(k), so that the total number
of non-zero fractions in the Farey sequence of order N is

O(N) = k<ZN o(k).

It is well known (see, e.g. [23], p. 23) that if h;/k; < hy/k,
are two consecutive fractions of a Farey sequence, then

hy h,

= —1.
ki ks

This implies that

hik, = —1 (modk,),

hoky = 1 (modk,),
and also that
- C o m L
37 A A A

According to (33a) and (33c), we have thus

s(hy, ky) = —s(ky,ky)
s(hy, ky) = s(ky, ky).

The reciprocity formula (4) then yields (see [49]):

11 (ky | ky 1
(38) (shy,ky) —s(hyky) = — 5+ 35 (E; + 7:1) * Tk k,.
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Summing (38) over all fractions of the sequence of order N
and taking into account s(0,1) = s(i,1) = 0 and (37), we
obtain

1 1 k k 1
s(1,1) —s5(0,1) =0 = — —®O(N) + —= L4 2 —

M+ 5 2 p ) T
the sum X being extended over all pairs of consecutive
Farey fractions h,/k;, hy/k,.

Now h/k belongs to a Farey sequence if and only if also
h'lk, defined by h'/k =1 — h/k, belongs to the same
sequence, and then h/k and h'[k are symmetric with respect
to the point 1. It follows that

k k k
3 (_1 + _2) 23k
k, k4 z k,’
and we obtain the curious formula [38]

k 3 1

ki+ka SN kZ

If we remember also the asymptotic formula (see, e.g. [23, p.
268])

3
O(N) = ;E;NZ + O(NlogN),

it follows, furthermore, that

1
lim — y 2= 2
Now N kv K 2n?

C. Connection with the Jacobi Symbol. We recall the
definition of the Legendre symbol (a/p): If p is a prime
number and a an arbitrary integer, then

I

O

Wi

i

S

T

T

=

s

g

':Z %
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(a/p) = —1,0,+1

accordingly as the congruence x? = a (modp) has no
solution, exactly one solution (this case happens if and only
if p ‘ a, with the unique solution x = 0 (mod p)), or two
distinct solutions modulo p. For k = p; -+ p, (the primes
P1,P2s-» P, need not be distinct) an odd integer and
(h,k) = 1, the Jacobi symbol (h/k) is defined by

(%) - 1 G)

where (h/p;) is the Legendre symbol.
The definition of the Dedekind sum, written explicitly, is

s(h k) = kZl (- 3) ((ﬁk&))

- LiE-[¥-2)

u=1

because, by Lemma 1, X Zi((hu/k)) = 0. After some ele-
mentary computations we obtain

(39) 12ks(h,k)
k—1 h#
=2n(k-DQ2k—-1)—12 Z u [—k—] — 3k(k~—1).
p=1
Expressions like (39), usually divided by 2 or by 4, occur
(in the theory of modular functions) as exponents of —1;

therefore it is of interest to find the value of this expression
modulo 8. We recall that k is odd, so that k? = 1 (mod8),

and
12ks(h, k) = 2h(2k* -3k + 1) — 3k? + 3k — 4T
= (1—k)(6h—3) — 4T (mod ).
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Here T = X“Z%u[hp/k], and it remains to find T mod 2.
For that, the even values of p are irrelevant; hence,

@) T= % @-1 [(Zv——l)h] _ e [(2v—1)h'|

v=1 k v=1 k
k-1 h (k—1)/2

= I [—‘H - [—2%}'—] (mod?2) .
p=1 u=1

If {x} = x — [x] denotes the fractional part of x, then

= 5] -x (- 5)
_ hkk=D _*F
k 2

“4D _(h=D(k=1)

v

v=1 —E 2

The next to the last equality follows from the fact that if
(h,k) = 1 and pu runs through a complete set of residues
mod k, then so does also uh. In order to estimate the last
sum that occurs in (40) we need the following:

LemMa 6. If m = Z52[2ph/k] and (h]k) denotes the
Jacobi symbol, then (h/k) = (—=1)", so that m = 3((h/k)—1)
(mod 2).

This Lemma is known (see [44], p. 397) but its proof
is not easily accessible. For that reason we shall sketch
it here.

Gauss’ Lemma states (see e.g., [22], p. 71) that if k is
an odd prime and (k,h) =1, then the Legendre symbol
(h/k) satisfies (h/k) = (—1)", where m is the number of
least positive remainders exceeding k/2 in the sequence
ph (modk), p=1,2,-,(k—1)/2 (equivalently, m is the
number of absolutely least residues of ph(mod k), that are
negative). The generalization to arbitrary odd, positive k

%\%
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with (k,h) = 1 offers no particular difficulties and may be
found, e.g., in Bachmann’s book [3], p- 144-148. According
to Bachmann, this generalization is due to E. Schering [60].
To obtain the present result (and here we follow a footnote
in [44, page 397]), observe that if ph = Ak +r,, with
kj2<r, <k, then 2uh = (24 + Dk + (21, - k), where
0<2r,—k<k. Consequently, 2uh/k = 24 + 1+ 0, where
0<8 =(2r,—k)k<1and [2uh/k] = 24+ 1 is odd. Also
the converse holds, because if [2uh/k] is odd, this implies
that 0 < = (2r,—k)/k <1, so that k2 < r, < k.The sum

®=12 rouh
2 [
u=1
taken modulo 2 counts the number of odd [2uh/k], ie.,

the number of p for which k/2 <r, < k holds, and that is
precisely m. Consequently,

(k—1)/2
m= z [E%h—] (mod 2),
n=1

as claimed.
If we now combine (40) with Lemma 6, we obtain
T = }((h=1)(k—1) + (hk) — 1) (mod?2). It follows that

12ks(h, k) = (1—k)(6h—3) — 2Ah—10(k—-1) — 2(’%) +2
= (1-k)(8h—35) + 2—2(%) = 5k—3-2 (,ﬁc)
= k+1+4k—-1)—2 (%) (mod$8),

so that
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(42)  12ks(h k) =k+1-— 2(-’;—) (mod$8),

a formula due to Dedekind (see [15, § 6]).

Itis now easy to obtain the Quadratic Reciprocity Theorem
for the Jacobi symbol as a corollary of the Reciprocity
Theorem (4) for Dedekind sums. Indeed, one obtains from
(42)

12hk(s(h, k) + s(k, h))

= 2k + h + k—zih(%) + k(-;)} (mod8).

On account of (4) this becomes, for odd h and k,

(43)  Shk+h+k-3=2 {h(%) + k(fz—)} (mod$8).
Let us assume now that k = 4m + 1; then (43) becomes
after some simplification (2m—1)(h + 1)= h(h/k) + (k/h)
(mod 4), or, since 2(h + 1) = 0 (mod 4),

h(l + (;)) + (1 + (f;—)) = 0 (mod4).

If h=1 (mod4), then (k/h) + (h/k) = +2 (mod4); if
~h = —1(mod 4), then (h/k) = (k/h) (mod 4). But (k/k) and
(k/h) can take only the values + 1, so that in all these cases
(h/k) = (k/h). Exchanging h with k it follows that if either

=1 (mod4) or k =1 (mod4), then (h/k) = (k/h). On
the other hand, if A = k = 3 (mod 4), then (43) becomes

(%) + (%) = 0 (mod 4),

so that (h/k) = —(k/h). This finishes the proof of

G

S

L

=

e
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TueoreM 3. (Quadratic Reciprocity Theorem for the
Jacobi Symbol). For odd, coprime integers h and k,

) ) - ¥

D. Zolotareff’s Theorem. Consider the row
(44) h,2h,3h,--,(k—1)h,

and replace each entry by its smallest positive residue
modulo k. The sequence becomes

(45) Fislas s Fg—1>

and since (h,k) =1, (45) is simply a permutation of
1,2,3,--,k—-1.

We want to study the inversions in (45), i.e., the number
of times a larger entry precedes a smaller one; indeed
following E. Zolotareff, this number of inversions is related
to the Legendre-Jacobi symbol. Let us denote that number
of inversions in (45) by I(h,k). Following C. Meyer [32]
we shall be able to express I(h,k) with the help of the
Dedekind sum s(h, k).

If we define I,(h, k) as the number of elements in ry,7,,
-+, 1,1 which exceed r,, then clearly

k-1
(46) I(h,k) = X I(hK)
p=1
with I (h,k) = 0. Now
ha hy
r, = hi —~ [?]k, r, = hp— [?]k,

so that r, >r, means hi — [hi/k]k > hyu — [hu/k]k, ie.,
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[hp/k] — [hijk] > h(u—A)k > [h(u—A)/K]. Similarly, if

r, <r,, then

50 22 2

Hence, if r; > r,, then

] [&] -] -

and, if r; <r,, then

- [ ) 1

Now [a + B] —[a] —[B] can only be 1 or O (see [22,
p. 85]), so that r, > r, implies

] - 2] - 2] -
| k | k| |k -
and r, < r, implies
'ﬁt_t] M) =R _
| k | k| |k -

It follows that

2 (1] [2]- e
a=1 \| k k k
counts exactly the number of terms in {r,r,,---,r,_,} that

exceed r,; i.e., the sum is equal to I,(h,k) by the very
definition of I,(h,k). By virtue of (46) we obtain

o= 2 E ([F]-[7]-[42)

G

S

e

=
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For purposes of simplification we add the vanishing terms
corresponding to A = p and obtain

I(h,k) = s ;él([hfﬂ] _ [%] _ [h(u;l)])

p=1
k-1 h T k—1 I hl k-1 u-—-1 hp
B E R
u=1#[k_ u=1 2=1 k u=1 p=0 k
k<l Thyl hA] *TL [hu
- M s s [— L H
u=1#[k- 1525 psk-1 k u=1 k
k-1 hu' k—1 hj. k-1 h[,l.
_ MY 278 (k-2 [—]+ 3 [—-]
ZelF|-2zeenlE] 2|7
and thus

4n  I(h,k) =3:::.‘.11 u [Ek‘-l] - (2k-1) :i;l [—l%—] .

We already found (see (41)) that for (h,k) =1

5[] - o=

and also that the first sum in (47) can be expressed with
the help of s(h,k) by (39).
Making the corresponding substitutions, we obtain

(48) I(h,k) = — 3ks(h, k) + 3 (k—=1)(k—2),

which is a formula of independent interest.
Now let k be odd. Then, on account of (42), (48) shows
that

h
I(h,k) = — k—--:—l + % ('IZ) + ‘li(k——l)(k—Z)(modZ)

or
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h

{(E) - 1} + }I(kz—n — k+1 (mod?2) hI(h, k) + kI(k,h) = —3hk(s(h, k) + sk, b))

+ 3(h(k—1)(k=2) + k(h—1)(h -2))

{(2)—1} (mod2). - —3hk{ T (I‘l““ ; +k)}

W ARTAVAR TN

[ I

I(h, k)

[y

NS

Thus we obtain Zolotareff’s Theorem:
THEOREM 4. (Sec [64] and [S8]): For odd k and (h, K) = 1, + 4(hk* o bk = 6hk + 2h +2K)

(49) (=)o = (i) = I(hk? + h*k —3hk — h* — k% +2h
. + 2k=1), |
In the particular cases h = —1 and h = 2, the number or
I(h,k) of inversions is immediately computed from the (50)  hI(h,k) + kI(k,h) = Hh=D(k=D(h +k=1).
corresponding sequences (45). For h = —1 we have : |
k—1.k—2,.1, so that ! aformula of Salié ([32], p. 163).
§ This, of course, together with (49) once more implies
I(=1,k) = 1 +2 + -+ (k=2) _(k=2)(k—1) . . immediately the quadratic reciprocity law of the Jacobi
2 . symbol

For h = 2, (45) becomes 2,4,---,k—1,1,3,5,---,k—2, and

k=1 (k-1 K —
1(2,k>——+(——1)+(__1_2)+...+1

k—1

-

2 —
= k g 1. E. Lattice Points. We have seen that the discussion of
The al . i the Dedekind sums is closely connected with the enumera-
¢ already mentioned particular cases h = —1 and h = 2 tion of lattice points in certain triangles, pyramids, and

parallelepipeds.
The number of lattice points in a tetrahedron has been

related to Dedekind sums by L. J. Mordell [37]. He proved
the following result:

of Zolotareff’s Theorem (49) yield the well-known ‘‘supple-
mentary’’ theorems of quadratic reciprocity:

-1
("E—) = (—1)("_1)/2, and (—i) = (..1)(“2—1)/8'
THEOREM 5. Let a, b, and c¢ be pairwise coprime, positive

Finally, if also h i iti :
(48) and (4) is positive and odd, we obtain from . integers and let Ny(a,b,c) be the number of lattice points
in the tetrahedron




40 PROPERTIES OF DEDEKIND SUMS Ch. 3

(51 0§x<a,0§y<b,0§z<c,0<§+%+7¢<1;
4

then

Ni(a,b,c) = —(s(bc,a) + s(ca, b) + s(ab,c)) + L abc

1 1 1 (b¢ ca ab
+ —(bc + ca + ab) + = — =+ 242
glbe ¥ ea a)+4(“+b+c)+12(a+b+c)

1
+ 12abc 2.

Mordell’s investigation starts with the elegant formula
(here and in much of what follows we write simply N,
for Ni(a,b,c))

(52) 2N; = X ([E y z_) X, 2
) s= 2 STt 1 a+b+c 2},
where the prime ' indicates the omission of the term
x =y =z =0, in accordance with the conditions (51) of the
theorem. Indeed, the points with 0 < (x/a)+(y/B)+(z/c)< 1
contribute each a summand 2, whereas those with

1<E+X+E<3
a b ¢

contribute 0. It may be observed here that

RIx

y _
+b+ = 1lor2

o lN

is impossible, since these equalities would imply

bex + cay + abz = 0 (mod abc),

.
é

and thus, simultaneously
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x = 0(moda), y=0(modb),z= 0(modc),

which is excluded by the conditions of summation.
To get to the Dedekind sums, we set (x/a) + (»/b) +(z/c)
= E and write (52) as

N, = 2 (p-@n-3f (e -3

X1z

= Y {E-(EN-2*-H = T {E-((EN-2}

XYz Xz
-H XD
X,z
= Y (E-2?%-2 Z(E-2(E)+ Y ((E))* — 3(abc-1).

Xpz Xz Xz

We have omitted the prime at the second and third sum,
because for x = y = z = 0 also E = 0, so that (E)=0
and the corresponding terms vanish. We denote the last
three sums by 4, B, and C, respectively, so that (52) now
reads -

(53) 2N, = A— 2B+ C —}(abc—1).

We observe that if we want to suppress the prime of the sum-
mation sign X’ in 4, this amounts to the addition of the
term with x = y = z = 0, i.e., to the addition of 4to A

so that we have
2
A+4 = 2 (§+X+E—2).
a b ¢

Xsysz

The computation of the sum is elementary but lengthy (see
Note 3) and yields

A=%(abc+bc+ca+ab+a+b+c

+

1
3

(bc
=+
a

ca

b

ab
+.__
c

)-3).
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Further,

B= T (E-2((E)= I E((E)—2Z ((E]-

Xy X.p.z
Here the last sum vanishes by Lemma 1, because
E = (bcx + cay + abz)[abc = t/abc,say,and truns through

a full residue set modulo abc. when x, y, and z run through
full residue sets modulo a4, b, and ¢, respectively. Therefore,

B= T 2@+ T B+

Xoyz

Z
s 2@y

x1yZ

Here

2353 () -5 5 ()

By Lemma 1, the sum equals ((bc-x/a)), so that

2 X@n- T ((bc;x)) = s(be.a).

Xsy:Z £x<a a

The second equality follows directly from (1) (see Chapter
2, B). Handling the other two sums in the same way we
obtain B = s(bc,a) + s(ca,b) + s(ab,c). Finally,

c= Z(®)

2, ()
Xy z B t mod abc (abc)

1, 1 abe
4  6abc 12’

s(1,abc) = —

by Lemma 2. Substituting these values of A, B, and C,
in (53) we have

R e

R R

R S e

%

%
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2N, = (abc+bc+ca+ab+a+b+c

+l(9£+c_a_+a_b_) —4
3 \a b c)

— 2{s(bc,a) + s(ca, b) + s(ab,c)}

1, 1 +abc L,
37 6abc 12 4 4

(3 1 el

=%abc+%(bc+ca+ab)+é(a+b+c)

1 (bc ca  ab 1
+5(_a_+—b-+—c-)—4+ 6abc

— 2{s(bc,a) + s(ca,b) + s(ab,c)}. '

The proof of Mordell’s Theorem 5 is now complete.
It also is known (see [46] or Note 4) that, for a, b, and ¢
pairwise coprime,

(S(bc"’);l%c;) + (S(ca, b) ~ %) + (s(ab, c)'la_zbé)

1 abc 1

(mod 2).

3~ 12 ' T2abe
Using this, we obtain
Ni(a,b,c)=4(a + (b + D(c+ 1)(mod?2).

It is easily seen that the corresponding formulae for lower
dimensions

N,(a,b) = 3(a+ (b + 1)(mod2),
Na)y=(a+ 1)(mod 2)

are true. We are thus led to make the following
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CONJECTURE. N (a,b,c,d)=L(a + D(b + D(c+ 1)(d+1)
(mod 2).

Similar statements in higher dimensions may also be
conjectured. That the present conjecture has some plausibility
is shown by the fact that it holds at least for d = 1. Indeed,

N4(aa b,c, 1) = N3(a,b,c),

sincein0 L w<lonlyw=0 is possible.
Next,

Niy(a,b,0)=3a + Db+ Dc+1)
= 1(a + 1)(b + D(c + (1 + 1)(mod2),

and this is precisely the content of the conjecture for d = 1.
One can test also with some computation that the conjecture
holds, e.g., for N4(2,3,5,7), N(2,5,9,13), N.(3,4,5,7),-,
but a complete proof does not seem to exist.

— YT T

S

A R

CHAPTER 4

DEDEKIND SUMS
AND MODULAR TRANSFORMATIONS

A. The n-Function and the Function ®(M). The function
n(7) defined in Chapter 1 (see (3)) and now generally known
as the Dedekind n-function, appears already in the work
of Jacobi and Weierstrass on elliptic functions in the form

(54) A(r) = Cn(*.

Here C is an unimportant numerical constant. Actually, if
one uses_the proper normalization (see, e.g. [31], p. 108),
then C = 1. This function has to do with the pattern of
periods of the elliptic functions represented by the point
lattice

Q = {m0; + mw,}.

Here w, and w, are two generators of the point lattice
and m,,m, run independently through all integers. If
w},w; is any other pair of generators of the same point
lattice Q, then

(55) o) = aw; + bw,,

Wy = cwy + dw,,
45
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where a, b, ¢, d are integers and

(56)

a b
A

¢ d
A substitution (55) with property (56) is called a modular
substitution. Instead of this homogeneous transformation

we shall often use the inhomogeneous modular transfor-
mation, with

so that instead of (55) we have t" = (at + b)/(ct + d). If
we look at the lattice Q first as Q@ = {®w;,w,} and then as
Q = {w}, w5} it becomes clear that there should exist a
relation between A(7) and A(z’) and thus between #(t) and
n(z’), where obviously a certain 24th root of unity will
have to be observed. In order to achieve this, Dedekind
[14] does not consider (1), but

logp(t) = + Z log(l —x"), x = e,

Here, since #(t) # 0 in the upper t-half-plane, we can fix
the meaning of the logarithm as

logn(® ="~ £ X 1x

m=1r

wl*—‘

1

Under the modular transformation 7’ =1+ b we have
simply

(57a) logn(z + b) = logn(z) + Fl%b

S

4

N
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For ¢ > 0, Dedekind proves now the important formula

logr](m + b)
(57b) ct+d

= logn(t) + 3 log (ff_"’_d) + mi al-;cd — mis(d, c),

where the principal branch is taken for the logarithm.
Besides Dedekind’s own proof there are several others in
existence (see, e.g., [61] or [25]). We now observe that

a b} 0 —1) b —-a)

(c d (1 0 ”(d —c/
and apply formula (57b) withc¢ > 0,d > 0. Witht' = -1/t
and 1’ = (at’ + b)/(ct’ + d) we obtain successively that

1
logn(z") = logn(z) + 3 log ;t-

d
logn(t") = logn(’) + = log (“——d) +mi “l;’c ~ nis(d, ¢)

¢/t + d .a+d
(—-—-———-—. ) + zi 3¢
— wis(d, ¢)

d
= logn(t) + —%log(c —dt) + i ta_ nis(d, c).

= logn(t) + = log +§l

12¢

On the other hand, using ' = (br—a)f(dT—c), we obtain

- b-
logn(?") = logn(t)+ log (d c)+ 'Tﬁ'ms( —c,d).

If we now equate the two expressions of logn(z"), we obtain
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ri(s(d,c) — s(—c,d))

m’('a+d b— ¢ 1 (c — dT .
= N )+‘—zlog( i

12\ ¢ d dt — ¢
or
1 (d ¢ ad— bc) 1 )
S(d,C) —"S(—C,d) = T—Z‘ ('E + z + T + Eﬂ-l lOg(— i).
Here s(—¢,d) = —s(c,d) by (33a)and ad —bc = 1. Also
(with our convention on logarithms) log(—i) = —nif2.

With these remarks the last equality becomes

1 1 d 1 c
s(d,c) + s(¢,d) = 3 + i) (z + cd + 2)
and this is precisely the reciprocity formula (4) for Dedekind
sums. :

Dedekind used the sums s(d, ) to describe the transforma-
tions of logn(t) under the substitutions t’ =(at + b)/(ct+d).
The integer ¢ may be zero, positive, or negative. The case
¢ =0 is covered by formula (57a), and ¢ >0 by (57b),
but so far we have not considered the case ¢ <0. In order
to be able to treat all three cases together we introduce the
symbol

0 forc =0,
signc = c

— forc#0.

fel '

The formula (57b) can be rewritten (still for ¢ # 0), as

at + b . ct+d
58) 1 = 2 —_
(58) ogr)(ct n d) log n(t) + 1 (sign ) log(i(signc) )
+mi X d_ nisigne s(d, |c)).

12¢
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Indeed, if ¢>0, then sign c=1,|c|=¢, and (58) reduces to
(57b).If ¢ < 0, then(ar + B)(et +d) = (—at—b)/(—ct—d)
with —¢ > 0, so that

at + by _ —at—-b)
"c1:+d) =MZTx-d

and (57b) is applicable. We now obtain, by using also (57v)
and (33a), that :

at + b’ —atr— b\ _ 1 -c‘c—d)
"( ct + d) - n(—cr - d) = n(®)+ §1°g( i

—a—d ,
+ mi—Ta; ris(—d, —¢)
1 ct+d .a+d ,
=n(‘c)+-iloggi—g;-z+m—l—2-c—+ms(d,lc]),

i.e., (58), because signc = —1 and (signc)? = 1. Let us
now introduce a matrix function ®(M), defined on the set

of modulat matrices M = (‘cl Z) with a, b, ¢, and d
rational integers and ad —be = 1. We define

b/d forc =0
(59) ®(M) =
— 12(signc)s(d, |c]) for ¢ # 0.

a+d
c

One observes that

(60) logn(‘" * ”) = logn(®

cT + d‘
1,. . (ct+d) mi o (4 b)
+5(signo’log 7 ) + 2% 4
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reduces to (57a) if ¢ = 0-and to (57b) if ¢ # 0, provided
that the second term in (60) is understood to vanish if
signc = 0.

The functional value ®(M) is always an integer. Indeed,
if ¢ =0, then ad — bc = 1 reduces to ad = 1, so that
a=d= %1, and, by (59), ®(M) = b/d = + b, an in-
teger. If c-# 0, then, again according to (59), ® (M) is.an
integer provided that

a+d~12|c|sd,|c])

is divisible by ¢. This is, indeed, the case and follows from
the Reciprocity Theorem. We write the latter as

12h2k s(h, k) + 12h%k s(k, h) = —3h%k + h® + hk? + h

and take congruences modulo k. Recalling that by Theorem 2
2h%s(k, h) is always an integer, we see that
12h%ks(h, k) = h® + h(mod k).

Let h’ be defined, by hh' = =1 (modk); then h®+h
= h*(h — h’)(mod k), and, using also the fact that (b, k) = 1,
we obtain ' -

(61) 12k s(h, k) = h — k' (mod k).
Since ad — be = 1, it follows that ad = 1 (modc), so that,

if k =|c| and h = a, one obtains h’ = —~d. Substituting
these in (61) leads to ‘

12|c|s(a,|c])=a+d (mod|c|),

or by (33¢) to 12 | ¢|s(d,| c|) = a + d (mod |c|) as claimed.
Itis of group theoretical interest to study now the behavior
of ®(M) under composition of the modular substitutions.

§)

e

i

ey

=

S

s

I
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b
We set as before M = (: d)’ and also

1

M (a bl) d M” ,all bll)
! = 11 = .
] ".C’ d, a (C” d"

If M" = M'M, ie., if
a” b a’ b’) (a b)
e R N

then this matrix multiplication corresponds to the com-
position of the substitutions

, atT+b andr'—a1+b
vEryad’ ct+d’

The repeated appliéatioh of (60) now leads to the result
(62)  B(M”) = B(M’') + B(M) ~ Isign(ce’c").
Indeed, by (60)

T+ d
isigne

logn(z") = logn(z) + f(sxgnc)zlog ( ) + g (M)

and

N2 ct'+d'\  mi '
logn(t") = logn(z') + 4(signc’)*log (E-l-g_n_c'—) + E(D(M )s

and adding these equations, we obtain

d
logn(x") = logn(x) + 5 {(sxgnC)zlog( ks )

‘' +d’
+ (signc’)?log (151gn )}

isigne
+ %{Q(M)HD(M’)}.
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Also, if we apply (60) directly to t* = ‘-17,—1-——"1’7,, we obtain
"t +d
. . ¥3 d}l ﬂi
1 ” = 1 i "2 cT+ kidd W
ogn(t") og n(t) + i(signc”)’log Tsigne + lzdi(M ).

From a comparison of these two values of log (") it follows
that

(62a) O(M") = (M) + B(M’') + R,
where
_ 6 . 2 fer+d) . N2 c't+d’
R = por {(mgnc) log (—z?fg_nc—) + (signc’)*log (isignc')
_ X . 2 c”t”+d”
(signc”)*log (isign c”)}'

Ifc=c¢c"=0,thenc”" =c¢'a+cd =0, R =0, and (62a)
reduces to (62). If ¢ = 0 and ¢’ # 0, then ¢” = ¢’a,

R = ilo ‘c’t'+d’ .
ni g "t +d gna

and replacing ¢” and d” = ¢’b + d'd by their values, we
obtain
6 signa
R = — =
i log d 0,

because ¢ = 0 forces ad = 1, so that a =d = + 1 and
(signa)/d = 1. The cases ¢’ =0, ¢# 0 and cc’ # 0,
¢” = 0 are handled in the same way. Finally, if cc’'c” # 0
then

R = é—lo {(C‘C +d)(c't' +d') signc¢”
ni 't +d” i(sign ¢) (sign c*)
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If we replace here ¢”, d” and <’ by their values, this simplifies
to

R = —3sign(ec’c”),

_3. g siEn(cec)

n i
and the proof of (62) is complete. We have proved (62)
with the help of (60) by using the properties of the analytic
function log#n(z). But the definition (59) of ® is a purely
arithmetic one involving the Dedekind sums. The task,
therefore, appears to prove (62) directly from the known
properties of the Dedekind sums. This, indeed, has been
done (see [40] and [32]), but we cannot reproduce here the
lengthy proof.

B. An Application of @ (M). The function @ is useful in the
study of the group structure of the modular group and its
subgroups. As an example, let us consider the set I'" of those
modular substitutions M for which ®(M) = 0 (mod 3). It
is clear from (62) that if ®(M) = ®(M’) = 0 (mod 3), then
also ®(M”) = 0 (mod 3). Also, if I = ((1) (1’) is the identity
matrix, ®(I) = 0 (mod 3) and I belongs to I'’. Finally, one
verifies, using (62), that ®(M) = 0 (mod 3) implies that
®(M™*) = 0 (mod 3) also holds. This shows that I'" is a
subgroup of index 3 of the full group of modular matrices.
I"’ can be characterized as consisting of all substitutions, the
matrices of which satisfy any one of the four congruences

a b
( d) = L (mod 3), where

C
10 0 -1 1 1 -1 1
RN T TR Y}
01 1 0 1 -1 1 1/
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Here we remember that we don’t distinguish between
a b —-a -b
N
c d —c —d

0 )= o) emen

meansa—a = b—b =c—c¢ =d—d = 0(mod n).
The proof of the last statement reduces to the (very easy
but lengthy) enumeration of all possible matrices (mod 3)
and the elimination of those with ®(M) s£ 0 (mod 3).

and that

C. The Class Invariant ¥(M). Two substitutions M,
M, of the modular group T are called similar, if there
exists an LeT" such that '

: -

M, = L''M,L.

Similarity is an equivalence relation which divides the group
T into classes. Direct computation shows that the trace
a +d is an invariant of the similarity classes. We obtain
another invariant if we set l

g a b\ ’ '
(63) W(M) =¥ (c d) = O(M) — 3 sign(c(a + d)),

where ®(M) is defined by (59). Since ®(M) is an integer,
the function W(M) is clearly also an integer, and we¢ have

Y(M) = Y(-M),

W(M™Y) = —¥(M).

R

A

=
§
B
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Since 11 -1
S = ( ) and T = : )
0 1 1 0

generate the full group I' (see, é.g., [31], p. 51 and 53),
the invariance of ¥ will be proved if we show only that

(64) Y(STMS) = ¥(M)
and
(65) YT IMT) = Y(M).

a b
Now, with M = ( d) we have
c

(66a) S 'MS =(a —c a-etb- d)
R c c+d
and
_ d —c .
(66b) T'MT = ( )
’ -b a

Equation (64) can now be inférred immediately from (66a),
on account of the definitions (59) and (63).
For the proof of (65), we notice that

-1 0 1 -1 e d‘
T = ( ) and T 'M = ( )
-1 0 —-a -b
Next, by (63) and (66b),
Y(T-MT) = d}(T"MT) = 3sign(—b(a + d)).
Now, according to the composition rule (62),
O(T 'MT) = ®(T"'M) + ®(T) - 3signab
= &(T™ ") + ®(M) + ®(T) — 3signac — 3signab,
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so that
W(T-'MT) = ®(M) — 3signac — 3 signab
+ 3 sign (b(a + d)),
where we have taken into account the fact that &(T)

= @®T-1') = 0. By virtue of (63), our formula (65) is,
therefore, equivalent to

(67) sign(c(a + d)) + sign(b(a + d)) = signac + signab.

This equation is obviously correct for d = 0. Suppose,
therefore, that d > 0. Then (67) still holds for a = 0.
For a £ 0, it follows that ad £ 0 and, hence, that bc < 0
and thus b and c are of opposite sign, and the equation
holds again, as both sides vanish. The proof for d <0 is
entirely similar. We have thus derived the invariance prop-
erty of the matrix function ¥ from the composition rule
of the function ®.

The invariant W(M) can also be expressed in such a way
that it shows somewhat more about the structure of the
modular group.

Put U = ST; then Tand U are generators of the modular
group I'. This follows from the fact that § = T~1U,
and that, as we already recalled, S and T generate T, It
also is easy to verify that

(68) T’=U%=1,

where we use the inhomogeneous notation, i.e., identify
the matrices M and —M . Then any modular substitution
can be written uniquely in shortest form as

M = USTUST - TUS*1

with g;= %1, j = 1,2,--, v, while &, &,4; =0or + 1. If

i
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we remove a factor of M from the left of previous represen-
tation, and tag it on at the right end, or remove it from the,
right end, and tag it on at the left, then we say that we per-
formed a ‘‘cyclic permutation’’ of the factors of M. If
for example, the factor U is removed from the left and
added on at the right, the result is U~*MU. If the opera-
tion proceeds in the opposite direction, we obtain UMU 1.
In case the permuted factor is T, the corresponding results
are T 'MT and TMT ~!,respectively. These cyclic permu-
tations of the factors of M, being similarity transfor-
mations, will produce elements in the same class. Generally,
proceeding step by step with cyclic permutations, we obtain
reductions, until we arrive at a substitution in the same
class and belonging to one of the following types:

(1) The elliptic T, U, U™';
or ‘
() M =TUTU®.--TU™, ¢ =+1.

It is clear that none of the matrices in (1) can be reduced
further. It also is clear, on account of (68), that in (2) T
can appear only to the first power and U only at powers
g=+1.Indeed, T? =I,U% =1 and U? = U-'. It may
not be entirely obvious that we can always reduce M
by similarity to a shortest form starting with T and
ending with U**. If M starts with a power of U and ends
with T, a cyclic permutation brings it to the form (2) of
same length. If M starts and ends with T, so that

(69) M =TU*T--TU* T,

say, a cyclic permutation leads, by (68), to UsT-.- TUY,
which has fewer factors than (69) and, by a further cyclic
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permutation, to TU®T--- TU® , which is stillshorter. Here
g =g, +s, = —1,0, or +1(m0d3)

Ifegd =0 (mod 3), then M is similar to
TU"T - TU*-'T

of the same type as (69) and the process of shortening can
be repeated. This procedure continues until either ¢’ = + 1
{mod 3), so that one obtains a form of type (2), or else,
until M is reduced to a single factor, which'is necessarily
" one of those listed under (1). For the matrices of type (1),
one lrnmedlately venﬁes using (63) that

1 -1 o
W(T) = 0, ¥(U) = ¥ (1 o) = —2, and W(U-") =2.

\ 4

For the matrices of type (2), the following lemma holds.

LemMa 7. If the modular matrix M is similar to one
of type (2), say,

M ~ TU® .- TU™,
then . ,

M<

(10 .  ¥M)= T

ji=1

In order-to prove (70), we need the auxiliary
Lemma 8 (see [49]). If

e
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(71) : a<0,d<0,b20,c20
hold either for M or for — M

Proof of Lemma 8. First we have

v = (" 0) TU-1 (i _1)
—(1 -1V “lo 1)

WY(TU) = ‘P(TST) = \y(sj =
and

-y - - 1 -1
YUY =¥TT 'sTH =¥ = ‘P(o | 1)"“"

which show that (70) and (71) are both correct for v = 1.
To finish the proof of thelemma by induction, let ¢,,, =1,
M, = MTU**' = MTU, and observe again that

-1 0
TU = ( )
1 -1

A

N T N N (. b B ’ B
Hence, if M = (a ) satisfies (71), then
c d o ,
a by (—1 0) (-—q+b -b)
MTU = (c d) (,1 ~1) " \=c+d -d

a~-b b) (av, b,)
—A(c"—d’ d\ey d/

and a,, by, ¢, and d,, again satisfy (71). The next to. last
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equality is justified because we identify any matrix with
its negative. The case ¢,,; = —1 is handled in the same
way and Lemma 8 is proved. ‘

Proof of Lemma 7. For a proof by induction of (70),
let again M, = MTU®*'. We have to show that

PMTU>*Y) = ¥(M) + &,44 -
For ¢,.; = 1, on the one hand, by (63),
Y(MTU) = ®(MTU) — 3sign((—c + d)(—a + b—d))
= ®(MTU) + 3,
in view of (71). Moreover,
S(MTU) =B(M) + &(TU) - 3sign(c(—c +d))

= ®(M) — 2 + 3signe

by virtue of (59) and (71), so that
Y(MTU) = ®(M) + 1 4+ 3signec.

On the other hand we infer from (63), taking again into
account (71), that W(M) = ®(M) + 3signc, so that we
arrive at the desired result

Y(MTU) = ¥(M) + 1.

The case &,,; = —1 can be handled in the same manner.

The similarity classes of modular substitutions are in one
to one correspondence with the proper equivalence classes
of binary quadratic forms of discriminant A = m?—4,
where m is the trace of the modular matrix. The above
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discussed property of ¥, i.e., the fact that it is a class in-
variant for similarity classes of modular matrices leads then
to ) :

THEOREM 6. For the quadratic forms Ax? + Bxy + Cy?
of discriminant A = B> —4AC = m? — 4, the function

(rh—B -C
2
¥ A m+ B
2

is a class invariant.

If in this theorem one takes particular, small values form,
several theorems about s(h,k) follow, of which we quote
only one as an example.

TueoreM 7. If k>0 and (h—2)* = 3(mod k), then

I;Ck for k =1 (mod3) and for k = -3
(mod9)

s(h,k) = 5k
for k = —1 (mod 3) and for k = 3
6k (mod9).

For a proof see [49].

D. The Dedekind Sums and the Theory of Partitions.
The Dedekind sums also have applications in the theory
of partitions. If p(n) is the number of unrestricted partitions
of n, then we know since Euler that

1

RO NN
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where p(0) = 1. If one:sets x = ¢**"*, then the denominator
on the right side is essentially (i.e., except for a factor
¢**/12) identical with n(t). From (57b) we derive the trans-
formation formula of n(z) by exponentiation. For ¢ >0,

ﬂ(aT + b) = ¢&(a,b,c,d,) et dn(t),

i

» fa+d
&(a,b,c,d) = exp{m(——lz— —s(d,c))},

which is a root of unity. It is clear that in the theory of
transformation of n(z), the Dedekind sum enters only
through its values modulo 2. The study of p(n) using the
theory of n(t) was inaugurated by the famous investiga-
tions of Hardy and Ramanujan and has led through some
further refinements to the following results [52]:

p(n) = -n—l— T A(n)kY? (;in(

V2 k=1

with the abbreviations

_ 2 _/_1
C""A[j A, = [n % and

— 2 zihn/k .
) A,‘(n) = Z,whte 2nihn/ , O = eﬂs(h,k) .
hmod k
{h.k)y=1

yh

n

sinh(Cl.,/k)‘)

The function n(t) is actually a modular form of dimension
—1/2. Modular forms of other real dimensions can be
defined, and in their theory a fuller knowledge of the Dede-
kind sums is essential. -
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E. Class Number Formulae. Another appearance of the
Dedekind sums is worth mentioning, namely in certain
class number formulae of abelian fields over quadratic
ground fields. The theory was outlined by Hecke and was
carried out in detail by C. Meyer [33]. The formulae and
their background are too complex to be quoted and ex-
plained here.




CHAPTER 5

GENERALIZATIONS

We shall close this presentation of Dedekind sums with
the mention of some of their generalizations. There are
several in which the function ((x)), which is essentially the
first Bernoulli polynomial By(y) = y —% of y = x — [x],
is replaced by higher Bernoulli polynomials. They play
roles in special problems of partitions.

In the work of C. Meyer [32], [33], but also already in
some investigations by J. Lehner [29] and J. Livingood
[30], certain Dedekind sums appear in which the summand
u is restricted by congruence conditions. These types of

Dedekind sums are in full generality contained in the
definition

ntim = ((52)) ((##5+5))

where x and y are real numbers. Such a sum is clearly of

period 1 in x and in y. This sum possesses the following
reciprocity formula

s(h,k; x,y) + s(k, by y, x) = — 38(x)8(y) + ((NY)

h

1 1 k
b w00+ Yoty + k0 + 5 %(x)} ,
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where W,(x) = B,(x —[x]). Here B,(x) is the second
Bernoulli polynomial and

1 if x is an integer,

o(x) = {

0 otherwise.

These generalized Dedekind sums have some interesting
properties, which are discussed in [50].

Let us finish by mentioning one more problem, one that
is not yet solved. What are the expressions corresponding
to the Dedekind sums in algebraic fields? There seem to
be two ways to study this question. Firstly, one might ask
what does the function n(t) become in algebraic fields?
Such a question has, of course, no unique answer. But
Hecke ([24], p. 202) has indicated a function belonging to
real quadratic fields, which shares many properties with
logn(z). The transformation formula of that Hecke func-
tion has not been worked out in detail yet and Hecke gave
only the special case which corresponds to ©'= — 1/7. This
should be a rewarding problem.

Another way would be to simulate the function [x] in
algebraic fields. Now [x] implies an order among the num-
bers x, which we may assume to be rational. So one would
have to look around for a natural order of the numbers
of an algebraic field. Such an approach has been made by
G. J. Rieger [56]. As of now, there is no proof available
that the Dedekind sums defined in these ways share with
the ordinary Dedekind sums some of the latter’s important
properties.



CHAPTER 6

SOME REMARKS ON THE HISTORY
OF THE DEDEKIND SUMS

Bernhard Riemann died on July 20, 1866 at the age of
forty. According to his wish, his manuscripts, notes, etc.,
were entrusted to R. Dedekind. It turned out that this was
a rather mixed lot; there were some practically finished
papers, then some drafts of varying degrees of complete-
ness, and some that were just fragmentary sketches.

Among the latter were two notes related to the theory
of elliptic modular function as presented in Jacobi’s Funda-
menta Nova. In Jacobi’s work, the parameter g satisfies
lq] <1, while in these notes, Riemann considers the
limiting case |q| = 1. The first note contains 68 formulae
and is written in Latin. The second one consists of a single
sheet of paper, is written almost illegibly, and contains
eight formulae without any text (except for the three quali-
fiers ‘‘gerade’ (even), ‘‘ungerade’” (odd), and ‘‘absolut
kieinster Rest von x’’ (residue of least absolute value of x),
all in German).

Dedekind felt unable to edit himself all of Riemann’s
unfinished papers and asked and obtained the cooperation,
first of A. Clebsch (in 1872) and, after Clebsch’s untimely
death, that of H. Weber (in 1874). Riemann’s collected
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papers, including his posthumous work, came out in 1876
with H. Weber as general editor; however, the two notes
dealing with Jacobi’s elliptic functions were edited by R.
Dedekind himself, under the title Fragmente iiber Grenz-
félle der elliptischen Modulfunktionen. Following this
paper, Dedekind published a set of comments containing:

(a) Some historical remarks and conjectures (such as
Dedekind’s opinion that at least the first note had been
written already in 1851, i.e., 14 or 15 years before Rie-
mann’s death);

(b) some explanations which may facilitate the reading
of Riemann’s fragments; and

(c) anapplication of Riemann’s method to a problem not
actually occurring in Riemann’s two notes.

This problem, already considered by Jacobi and Hermite,
is the study of the behavior of the function

7](0)) = qllll I‘I (l_qZV)’ q= em’w,w =x+ ly, y>0’
v=1

when © is subjected to linear fractional transformations.
This addendum of Dedekind, entitled Erlduterungen zu den
Fragmenten XXVIII, has become justly famous, and the
function 7(w)is now generally known as Dedekind’s n-func-
tion.

If a,B,7,and & are integers, ad — fy = land " =a +
B, w’ = (y + dw)/ ", then Dedekind proves that

"

N 1 o’ mi
logn(w’) = logn(w) + > log 5 + TZ_S’
where S = S(a,B,7,6) is an integer, uniquely determined
by a, B, v, and &. After a short statement concerning
the relevance of this integer, the balance of Dedekind’s
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paper is devoted to the complete determination of S and
to its representation by a finite sum —essentially (i.e.,
except for a change in notation) the Dedekind sum. In
fact, a comparison with (57b) immediately shows that

B

S 81.8) = "ot = s(B.2).

While S(a,f,7,6) is an integer, s(B,a), in general, is not
integral, but may have as its denominator any divisor of
6a (see Chapter 3(A), Theorem 2 —all indications of chap-
ters and pages refer to the present book).

Dedekind also mentions that Riemann’s eight formulae
of Part II are a consequence of certain results (involving
Dedekind sums) obtained in the “Erlduterungen’’, but the
connection is non-trivial and was never presented in detail
by Dedekind. In fact, the proof of Riemann’s formulae was
given for the first time by Rademacher and Whiteman [44].

As stated in Chapters 1 and 4, the methods used by Dede-
kind are of a transcendental nature and make essential use
of the work of Jacobi and Riemann on elliptical modular
functions. The result, however, is of an elementary nature:
an integer, represented as a finite sum of fractions. It also
seems clear that it has arithmetic significance, and it ap-
peared eminently desirable to study the Dedekind sums by
elementary methods. This was accomplished by H. Rade-
macher in a series of some ten papers, starting in 1931 (see
the bibliography).

The keystone of this theory of Dedekind sums is their
reciprocity law (see (4) in Chapter 1 and Theorem 1 in
Chapter 2). As mentioned in Chapter 1, a first proof of this
theorem (by a transcendental method) is due already to
Dedekind himself.
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At present there exist quite a few essentially distinct
proofs of the reciprocity law, most of them due to Rade-
macher, and some are quite elementary. In Chapter 2 one
finds a representative selection (but by no means all) of
these proofs.

Many other properties of the Dedekind sums, especially
those of an arithmetic nature, were investigated by Rade-
macher, and some of the resuits obtained are found in
Chapters 3 and 4. Among the most important ones not
included there, are some obtained in collaboration with
A. L. Whiteman [44], where one finds, as already mentioned
earlier, the first (and presumably only) published proof of
the formulae stated (without proof) by Riemann in the
second of his ‘‘Fragmente...”” [57].

Rademacher’s work on Dedekind sums found many
important applications and also sparked the interest of
other mathematicians in the study of this topic. A very
brief, roughly chronological, but forcibly incomplete survey
of these contemporary developments follows and con-
cludes this historical sketch.

In 1950 and 1952, T. M. Apostol ([1] and [2]) generalized
the definition of Dedekind sums as follows:

~ Let B,(x) be the nth Bernoulli polynomial and set
B (x) = B,(x — [x]); then, for non-integral x, B,(x) = ((x)),
and for (h,k) = 1 the Dedekind sum may be written as

shk) = ¥ B (%)El(ﬁkh—).

u(mod k)

Here and in what follows, the prime stands for the restriction
u % 0(mod k), and the B,(x) will be called Bernoulli functions.
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For integral p, Apostol defined the closely related sums

k—1 \
-z 4 g (M
(b = T ¢ B,,( k),
and used them to obtain transformation formulae for
functions represented by Lambert series

G(x) = 3 n Pl —x").
n=1

He also studied the relation of these sums to the Hurwitz
zeta function {(s,a).

In addition to these results, T. Apostol obtained in his
dissertation (Berkeley, 1948) several others, that were never
published. Among these are some found also by Rademacher
and published in [49], such as

(i) s(h,k) = 0 if and only if h> +1 = 0 (mod k),
and

(i) 12hks(h,k) = (k—1)(k—h?*—1)if k = 1(mod k).
It is clear that (i) follows from the result of Chapter 3A (see
p. 28; see also [49]) which states that 12s(h,k) cannot be
an integer unless h?> + 1 = 0 (modk), when s(h,k) = 0.
Other interesting results of Apostol, giving explicit values
for s(h,k), such as

(iii) 12 hks(h, k) = (k—2) (k - A" + 1) if k = 2(mod h),
and

(iv) 12hks(h,k) = k? +(h* — 6h + 2)k + h* + 1
if k= -1 (modh)

have apparently never been published.

e

e
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In 1933 L. Rédei [54] gave an elementary proof of the
reciprocity formula (4). In 1950 he obtained [55] a new
proof and showed that this is only one of an infinite
sequence of similar relations.

In fact, let (m, n) = 1 and for any integer k set
Fi(x) = (x* — 1)/(x — 1). Then

Fr(X)X (%) + Fo(X)Xm(x) = 1

has polynomial solutions X,,(x) and X,,(x) of maximal
degrees n—1 and m—1, respectively. These solutions can
be obtained explicitly. If one now replaces in the previous
equation x by 1 + ¢, then the vanishing of the coefficients
of t* for k = 1,2,--- leads to a sequence of identities. For
k = 2, in particular, one obtains the reciprocity formula
(4) of the Dedekind sums.

In 1951, L. J. Mordell published the papers [36] and [37].
In [36] he studied sums of the form Xy f(gx + py), taken
over the lattice points of a region K, defined by
0<x<p,0<y<gq,0<gx+ py < pq. He thus obtained
reciprocity relations for these generalized sums. The case
f(u) = u corresponds to the classical Dedekind sums. In
[37] he studied by elementary means the relations between
the lattice points in a tetrahedron and the Dedekind sums.
Some of his results are incorporated in Chapter 3 (E).

L. Carlitz wrote several papers on Dedekind sums and
their generalizations (see the bibliography), the first paper
[5] appearing in 1953. For fixed odd p > 1, (h,k) = 1, and
0 £r < p+1, he considered the sums (already occurring
in Apostol’s work [1])

c(hk)= I Ep+,_,(—‘,:-) B, (h—:—)

u(mod k)
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He studied their properties and their relations to Bernoulli
and Euler numbers, deduced from Apostol’s transformation
formula a reciprocity relation for the sums c(h,k) (i.e., a
relation between these sums and those obtained by inter-
changing h and k), obtained Apostol’s formula as a partic-
ular case of a more general result, and indicated a new
proof (see Chapter 2 (C,)) for the ordinary and generalized
Dedekind sums.

Carlitz also generalized the Dedekind sums in a new way

as follows: Let
[ r r 1
(%) = ((2) +x

and set

sn(hb""hn:k)
rihy 4 R
- 3 (r_) '_n) rihy )
rp---'rn(modk)f k f (k f( k

One observes that for n = 1, s, is essentially a Dedekind
sum. Relations involving either n+ 1, or n+2 terms
follow for the s,; for n = 1, these reduce to the reciprocity
formula (4) and to a 3-term relation of Rademacher [47],
respectively. Also therelation of the s, to the higher Bernoulli
numbers is elucidated. In more recent papers ([11], [12],
[13]), Carlitz generalized the sums s(h,k;x,y) and proved
reciprocity formulae and three-term relations for these
sums.

In 1957, C. Meyer [32] generalized the Dedekind sums
for arguments of arbitrary sign and indicated their reci-
procity relation, by interpreting them as

- k\ —
T B, (-’"—) B, (5)
kmodn n n,

R R

L R e
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He considered similar sums over Bernoulli functions of
higher degree and obtained many interesting formulae.

A generalization of the function ®(M) is shown to be an
invariant of the ring classes of a real quadratic field.

Meyer also introduced the following new generalization
(this has been generalized further by Rademacher; see Chap-
ter 5) of the Dedekind sums

_ L ag+ch\ = (1 g
a0 = 2 By (4 2B (F4 )

and the corresponding generalization of ®(M). Finally, he
used these generalizations in order to obtain the transfor-
mation formulae for Klein’s functions

agh(wh wz) = o'(u, @y, (.Uz),

where o(u,w,,®,) is Weierstrass’ g-function, f,g, and h are
rational integers, and u = (gw, + hw,)/f.

In [32a] Meyer obtained the generalization of Radema-
cher’s cotangent formulas (25), (26) for the generalized
Dedekind sums s,(a, ).

In his monograph [33], Meyer obtained an explicit
Kronecker type limit formula (involving Dedekind sums)
for L-functions of ray classes in real quadratic fields and
used these results for the determination of the class number
of abelian extensions of quadratic fields.

U. Dieter [16], [17], [18], a former student of Rade-
macher, gave a new neat proof of the reciprocity law for
Dedekind sums (see first proof in Chapter 2), and obtained
additional results (some new, some already known) con-
cerning sums of three Dedekind sums 23 _.s(d;,c;), where
(d;,c;) are the second rows of matrices whose product equals

@ D
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Furthermore he extended results of C. Meyer by deter-
mining the behavior of Klein’s function log,,,(@;, ,) under
arbitrary transformations of the modular group. He ob-
tained the reciprocity formula (see Chapter 5) for Meyer’s
generalized Dedekind sums s, ,(a,c) both by analytic and
by arithmetic methods.

Later (see [19], [20], [21]) Dieter discovered a strong
connection between generalized Dedekind sums and PRN
(Pseudo-Random-Numbers). These numbers are generated
by Lehmer’s linear congruential method: let m, a, r, y, be
integers and let y; be defined by

Vier =ay;+r(modm), 0 £ y, <m.

The fractions x; = y;/m are the PRN. Dieter showed that
the probability distribution of pairs of PRN, the frequency
of permutations of three PRN and the serial correlation
between x; and x;, , can be calculated by means of generalized
Dedekind sums. It is interesting to remark that this rather
surprizing connection between the serial correlation and
Dedekind sums was discovered independently and roughly
simultaneously also by B. Jansson ([26], especially Chap-
ter 5) and D. E. Knuth ([27]; see also p. 78).

In 1957 two papers by M. Mikolas ([34] and [35])
appeared with the following generalizations of Dedekind
sums:

Let {u} = u —[u] and for m, n non-negative integers
and (a,¢) = (b,c) =1, set

{(*.0) - TE.(%) 5 (D).
c 120 c, c

and

S‘",;"(x,y) = X exp{Zni({écg}x + :%b}y)}

A(mod ¢)

G

—
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Finally, for nonintegral x and y, set
6‘;’”()5, y) = (ezﬁx _ 1)—1(e21tiy . 1)—1Sz,b(x, _V)-

These functions turn out to generalize the Dedekind sums,
although this is hardly obvious. )

In [34] Mikolas established a large number of beautiful
identities involving these functions, e.g.,

&(ax + by, —cy) — & ~*(ax + by, cx) + €’(ex,¢y) = 0.

One may now use the connection between the zeta func-
tions and the Bernoulli functions, to show that the sums

v = Eion [ (E)

((a,¢) = (b,e) =1,¢c>1, {(s,a) = Hurwitz’ zeta function)
are further generalizations of the Dedekind sums. Mikolés
studied these D2? in detail and determined the functional
equations that they satisfy.

In [35] the function

. o 1 1 eZuim
o(r,0) = ”E'l (n ¥ o + n — (D) 1 — g2=int
is investigated following essentially the method of [48].
The transformation formula for Q(t,w) under modular
transformations of the variables involves the functions
&2°(x,y). The very general results obtained contain most
of the known identities concerning Dedekind sums, in-
cluding the reciprocity laws.

In 1959, K. Wohlfahrt [63] made use of the way in which
Dedekind sums appear in the multipliers of certain modular
forms, in order to construct subgroups of the modular
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group. Incidentally, he proved that no general divisibility
properties may be expected for Dedekind sums, except for
some known congruences modulo 24.

In 1960, G. J. Rieger [56] extended the concept of Dede-
kind sums to algebraic number fields (see Chapter 5, p. 65).
The starting point of Rieger is again the representation

1) sthi) = 3 B (%) (%),
n(mod k) k k

for (h,k) =1 and with B,(x) the Bernoulli function de-
fined on p. 69. If one sets x = h/k with (4,k) = 1 and defines
D(x) = s(h,k), then one may consider D(x) as a Dedekind
sum defined on the rationals*. The purpose of Rieger was
to extend this definition from rational x to arbitrary al-
gebraic x. In order to achieve this, Rieger considered
Eisenstein’s formula for the Bernoulli function B,(x), when
x = ufv is rational:

B' (i) _ L v—zl 2xiruf/v nr
i (o 2 e cot P
He first generalized this formula to the case of x € K, where
K is a finite algebraic extension of the rationals. Next, he
substituted these generalized Bernoulli functions in a for-
mula similar to (1') and obtained in this way the generali-
zation Dg(v) (v an algebraic integer in K) of D(x), from the
rational field to any field K, algebraic over the rationals.
The details of this work are quite technical. For this reason,

’* Actually, one may verify by means of (1), that if m = th, n = tk
wﬂfh (h, k) = 1, then s(m, n) = s(h, k) and D(x) is well defined for
rational x = u/v even without the restriction (v, v) = 1.

e SR
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we shall content ourselves here with only two remarks.
The first should convey something of the flavor of Rieger’s
work, while the second will suggest its relevance.

The role of h and k is now played by the integral ideals
cand bin K. Let pand b stand for the unit ideal of integers
and for the different of K, respectively. The trivial genera-
lization of x = ufv would be the ideal ¢b-1, but even a
modest familiarity with algebraic numbers will suggest to
consider instead the ideal ¢cb™*d”'. Now consider the set
b~ 15~ ! Mo of elements of K. It turns out that for v an
algebraic integer in K the Dedekind sums Dg(v) take on
the same value for all vechb™'d™' No.

The second remark concerning the Dg(v) is that if K
reduces to the rational field, then the Dg(v) are rational and
reduce to the ordinary Dedekind sums. This shows that the
Dg(v) are genuine, nontrivial extensions of the classical
Dedekind sums, from the rational field to arbitrary finite
algebraic extension fields of the rationals.

In 1969 K. Barner [4] defined

5@ = T Bn(2)Bun(£)
p(mod ) Y Y

for natural integers n and m with 0 £ m £ 2n, and where
y, 8, u are rational integers, ¥ > 0, (6,y) =1 and Bn(X)
are the Bernoulli functions defined on p. 69. He used this
generalization of the Dedekind sums in order to give explicit
formulae for the values at integral arguments s, of zeta
and L-functions corresponding to ring classes in real quad-
ratic number fields. It turns out that (if the parity of s is
right in relation to the defining character of the L-function)
these values are of the form rn**./d, where d is the dis-
criminant of the field and r is rational.
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As a fairly recent and possibly somewhat unexpected
contribution to the theory and applications of Dedekind
sums, let us consider again the work of Donald E. Knuth,
already mentioned in connection with related work of
U. Dieter. In 1969, in the second volume of his treatise on
The Art of Computer Programming [27], Knuth used a
slight generalization of the classical Dedekind sums, namely

othko =12 2 ((2)) (%)

in his study of statistical (more specifically, of serial corre-
lation) tests. He reduced the proof of the reciprocity f ormula
for o(h,k,c) to that for o(h,k,0), i.e., essentially for the
classical Dedekind sum, and proved it in this case by a
streamlined version of Carlitz’s proof (see Chapter 2(C,)
and Note 1). He also indicated an efficient method for the
numerical computation of o(h,k,c).

We shall conclude this brief survey with the mention of
work by B. Schoeneberg. In 1967 (see [62]) he considered
(in a notation different from that of Meyer and Dieter) the
transformation formula of logo,(®;,®;), (Gu(@1,@,) is
Klein’s function and is defined on p. 73). He observed that
logo,(w,®,) is an integral of the third kind and used
this remark thoroughly. Generalized Dedekind sums appear
in the transformation formula.

Much work on Dedekind sums, their generalizations and
their applications is still in progress. But the time to report
on it has not yet come.

s
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Added in proof. In 1971 F. Hirzebruch published several
papers in which he arrived at the Dedekind sums by starting
from purely topological considerations. Using his signature
theorem and deep results of Attiyah-Bott-Singer on group
actions on 4-dimensional manifolds, he obtained various
results on Dedekind sums: a three term formula of Rade-
macher (see [47]) from which the reciprocity formula (4)
follows quite trivially, Dedekind’s formula (42),and Mordell’s
Theorem 5. D. Zagier has written a paper on ‘‘Equivariant
Pontrjagin classes and applications to orbit spaces’ (to
appear in Lecture Notes, Springer Verlag) in which these
connections between Topology and Number Theory are
studied for higher dimensional manifolds and the appropriate
generalizations of Dedekind sums. Part of this work was
motivated by a formula of Bott on the rational Pontrjagin
classes of complex projective space divided by an action of
a finite group. A separate account of the number-theoretical
part of Zagier’s work will appear in Mathematische Annalen.
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Note 1 (see page 15). Set
¢ 1 1 1\
4@ = (25 +3) =+ 3)
then (17) reads

s(h, k) = ? $(8),

) -

where the sum X; is extended over all kth roots of unity,
except & = 1. If we multiply out the factors of ¢(&), we
obtain -

o e L 1 1
¢ = apE-nTI-® T I@-D T ¥
so that
Uog o 1 g, 3048 k=1
¥ Z9O=¢ Yai5monT &

81
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The last sum may also be written as

Ll 143E -
k5 @-DE-D

1 , 1 _1 , €h+1_1
=k X @DE-D % ZE-DE-D

The desired assertion,

1 «, 1 k-1
(18a) s(h,k) = % % (C"—l)(é—l)+ i
is now seen to be equivalent to the equality

, §b+1'—1 B
Y @onE-n 0

To prove this, we write the summand successively as

L+g+- 487 4et & 1+&+-- 4871
gh—1 -1 DS 8+ D)

1t 11
TI-Er 1-¢ 0 1-¢& 1-8

with &, = £, In the summation X}, ¢ runs through all
kth roots of unity except 1, and so does ;. Consequently

1 1 )
’ e = 0
T (o
and the proof of (18a) is complete.

Note 2 (see page 22).

LemMa 4. Let f(x), g(x) and g(x) be real valued func-
tions of bounded variation in @ £ x < b, such that no
two of them have any discontinuities in common. Then

NOTE 2 83

b b b
f FIdG()a() = f F()g()dq(x) + f F()a(x)dg().

Proof. Let f(x) and ¢(x) be functions of bounded varia-
tion on [a,b] and have no discontinuities in common; then

[ " 0 $(o)

exists as a Stieltjes integral. The assumptions of the lemma
insure the existence of each of the three integrals in (28).

Let a = xo <x; <+ <X; < <X, =b be a partition
of the interval [a,b], select any points &; so that
x;-y = &; £ x;, and observe that

) {ax)atxp — x,-Da(x;- )
(12 = I f&)80:){aCx) ~ 905-)

+ T J(EDalx,- (80 ~ 95,-0}-

When we refine the partition, the limit approached by the
first member is, by definition, the Stieltjes integral

b
f F()dg()ax)).

Being of bounded variation, f, g, and h may each be
written as the difference of two monotonically increasing
functions, say

f(x) = ®(x) — ¢(x), g(x) = ¥(x) — Y(x), and
q(x) = X(x) = x(x).
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If we substitute these expressions in the second member
of (72), each of the two sums splits into eight similar sums,
corresponding to the eight possible selections of capital and
lower case ¢, ¥, and y in each product. Let us consider
in some detail one of these sums, say

s = B @)U ~ 203}

By the monotonicity of the functions involved one has

,g ¢(x;- DW(x ) {x(xp) — 2(x;- 0}

<5, = j§1 (e () {x(xp) — x(x;-1)}

When the partition is refined, the first and last member
converge both to

b
(73) f )

and so does s, . The other sums are handled in the same way.
It now follows, first, that the second member of (72) ap-
proaches a limit. Next, we see that the limit of each of the
two last sums in (72) is represented by eight Stieltjes integrals
of which (73) is typical. The first four integrals that we
obtain from the first sum in the second member of (72) are

b b
f O()¥(x)dX(x) — f O()¥(x)dx(x)

»

b b
- f QW) + | ).

- Sh

i
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These integrals can be recombined and we obtain

b b
f B (X () — () — f BEOW(A(X(x) — 2(3))

= f D(x)(¥(x) — Yy(NA(X(x) — 2(x)) = f O(x)g(x)dq(x).

Similarly, the other four integrals combine into
— [2$(x)g(x)dg(x). It follows that the limit of the first sum
in the second member of (72) is

b b
f (@) — (xNg(x)dg(x) = f F(Dg(x)dq(x).

The eight integrals, whose sum equals the limit (under
arbitrary refinement of the partition) of the last sum in (72)
are of essentially the same form as the preceding ones,
except that the ¥’s and x’s are interchanged. We handle
them in the same way, the result is

b
f F()a(x)dg(),

and this finishes the proof of Lemma 4.

Note 3 (see page 41).

2
A+d= X (5+¥+5—2)
wyz \@ b ¢
x> y* z? Xy yz zx
AR AR FAL A
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Next

1 (a—Daa-1) _(a—1)2a-1)
T @ 6 - 6a ’

™
M

0sxsa—1 @

so that

x2 (a-1Qa-1)
sz 5= %a bc.
The contributions of Zi.,.; y*/b* and 3,.y.s 22/c? are ob-
tained by circular permutations of a, b, and ¢, and adding
the results one obtains

1 1 (bc ca | ab
abc—i(ab+bc+ca)+g(-;+—b—+—z-).
Similarly,
x_l(a—l)a_a—l x 1
Z,:a—a 2 2 ’,g',,—a__ibc(a oF

—4 X (§+Z + %) = —2{3abc — (bc +ca +ab)},

Xz b

and also 4 X,.,,..1 = dabc.
Finally, T, (xy/ab) = (c/ab)xy, so that

x ¢ a(a—1) b(b-1 1
T2 ( . ) 2 ) = Sea-1b-D),
XYz

and

b bc ca

Xy VsZ

)y (xy vz E{) = —{3abc+a+b+c —2(ab+bc+ca)}.
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By adding these results we obtain

A+4= abc——(ab+bc+ca)+ (%c-+ b + b)
+ i(a + b + ¢) — 6abc + 2(ab + be + ca)
+ 4abc + 2 abc — (ab + bc + ca)

=—abc+ (ab+bc+ca)+ (bC+T+ b)

+ i(a +b+c),
as claimed.
Note 4 (see page 43).
THEOREM A.(see [46]).If(a,b) = (b,¢) = (c,a) = 1,then

(74) (s(bc,a)—%) i (S(“”b) - ;b) (s(ab o 120)

1 abc 1
= -7~ T2 T T2ape 042

This theorem follows easily from the Reciprocity Theorem
(4) for Dedekind sums and the following:

TueoreM B. (see [46)). If (a,b) = (b,¢) =(c,a) = 1, then

ca’ c
‘55) - (S(C’”b) - 12ab)
abe
12

(75) (s(bc,a) - 1%%) + (s(ca,b) -

= 0 (mod 2).
Proof of Theorem A. By (4),

1 1 (¢ 1 ab
s(c,ab) + 5(ab,0) = = 3+ 13 (az* L4 7),



88 APPENDIX

so that, if we replace s(c,ab), (75) becomes precisely (74)
as claimed.
It remains to prove Theorem B.

Proof of Theorem B. The proof of this theorem is rather
lengthy. In order to cut down on case distinctions we set
again 0 = (3,k), so that § = 3 if 3|k, 6 = 1 otherwise.
It follows that 8k = 3k and is divisible by 9 if Bl k; other-
wise, 0k = k.

LeMMA 9. (75) holds if a and b are odd.

We shall assume for a moment Lemma 9 and use it to
prove Theorems A ana B together. The main difficulty
comes from the fact that, while (74) is symmetric in a, b, and
¢,(75)is not. The purpose of the following, somewhat subtle,
reasoning is to overcome that difficulty. The proof will be
completed by an independent proof of Lemma 9. Clearly,
Lemma 9 is just Theorem B with the added assumption
that a and b are odd. Since a, b, and c are coprime in pairs,
at least two of them are odd. Let us assume for a moment
that these are a and b; then Lemma 9 shows that Theorem B
holds, and we just saw that this implies Theorem A. Formula
(74), however, is symmetric in all three letters a, b, and ¢
and holds, therefore, provided that they are coprime in
pairs and any two of them are odd. The last condition,
however, is already implied by the first (i.e., by the pairwise
coprimality), so that (a,b) = (b,c) =(c,a) =1 is suffi-
cient to insure the validity of Theorem A. Replacing in (74)
any of the occurring Dedekind sums with the help of the
reciprocity law, we obtain (75), either as written, or with
the letters a, b, ¢ permutated cyclically. It follows that (75)
and the relations that we obtain from it by permuting a, b
and ¢ also hold, so that although (75) is not symmetric in

e R R

i
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a, b, c, Theorem B holds for all triplets of integers that are
coprime in pairs. It is now clear that by proving Lemma 9,
the proof of both Theorems A and B will be complete.

Proof of Lemma 9. The statement is equivalent to
12abs(be,a) + 12abs(ca,b) — 12abs(c,ab) — b%*c — ca?
+ ¢ + a*b*c = 0 (mod24ab).

We denote the sum of the first three terms by D and observe
that the others are c(a?b? — a® — b? + 1) = c(a> = 1)(b*~1),
so that we have to prove that

(76) D + c(a*—1)(b?—1) = 0 (mod24ab).

We recall that 3ab is odd, so that (3a¢b,8) = 1, and it is
sufficient to show that

an - D= —c(a? - 1)(b? — 1)(mod 3ab)
and
(78) D = —c(a® — 1)(b* — 1)(mod 8)

both hold.

The congruence (78) can be disposed of immediately.
Indeed, (a*—1)(b?2—1) = 0 (mod8), because a and b are
odd, so that (78) reduces to D = 0(mod 8). Also, 12as(bc, a)
and the other two summands of D that contain Dedekind
sums can be replaced modulo 8 by (42), and so we obtain

o) o143

- (ab +1 —2(0%))

aecrs(3)-o5) )

2ab — (a—1)(b—1) + @ (mod8).

(19 D
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Here Q = 2{(c/a)(c/b) — b(bla)(c/a) — a(c/b)(a/b)} =
2{(c/a) — a(a/b)} {(c/b) — b(b/a)} — 2ab(a/b)(b/a). The ex-
pressions in braces on the right hand side are both even,
because a and b and the Jacobi symbols are all odd. Con-
sequently, the first summand on the right hand side vanishes
(mod 8) and (79) becomes

D= 2ab{1,— (g) (g)} —(a=1)(b—1)

= 2abR ~(a~—1)(b—1) (mod8),

say. By the quadratic reciprocity law,

() &) =comm

and R vanishes if either a = 1 (mod 4) or b = 1 (mod 4);
otherwise, if a = b = 3 (mod 4), R = 2. It follows that
always

3{1 — (- 1)@ V7V < La—1)(b-1) (mod2),

and (79) becomes D = 4ab - Ha—1)(b—1) — (a—1)(b—1)
= (ab—1)(a—1)(b—1) = 0 (mod 8), because all three fac-
tors are even. This finishes the proof of (78).

It still remains to prove (77). The essential element of
this proof is contained in

Lemma 10. Let (h,k) = 1; then
(80)  12hks(h,k) = (1-k)(1 + h?) (mod 3k)
and -

(81) 12hk s(k,h) = k*(h*—1) (mod 3k).
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Proof of Lemma 10. We shall make use of the following
congruences:

(82) 12hk s(h,k) = h* + 1 (mod 6k);

(83) 12ks(h,k) = 0 (mod3) if and only if 3.fk;
(84) 12hk s(k,h) = 0 (mod 6k);

(85) 12k s(h, k) = h(k* — 1) (mod 3).

Formula (82) is the same as (36) and has been. proved.
Next, (39) shows that 12k s(h,k) = 2h(k — 1)(2k — 1)
(mod 3) and (83) immediately follows.
We also observe that, on account of Theorem 2, the
denominator of s(k, k) is a divisor of 2h8’ , where 6’ = (3, h).
In particular, 12 hs(k, k) is always an integer, so that

(86) 12 hks(k,h) = 0 (mod k).

If 34k, then 8 = 1, 6k = k and (84) holds, because it re-
duces to (86). If 3 | k, then 6k = 3k, butthen 3y b, 6" =1,
and 2hs(k,h) = m is an integer, by Theorem 2. Con-
sequently,

12 hks(k,h) = 6km
and
6km =0 (mod 3k)

so that (84) again holds.

Finally (85) follows directly from the definition of the
Dedekind sums:
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12ks(h k) = 12 £ u(('l‘-‘)) = 12"5:1”(5‘1‘_ he]_1
p=1 k p=1 k k 2

k=1 hl'l'
=2h(k-1)(2k-1)—-12 X u[—k—] — 3k(k—-1)
p=1

2h(k—1)(2k—1) (mod 3)
= —h(k—1)(—k—=1) = h(k* — 1) (mod 3).

Lemma 10 now follows immediately. Indeed, let 3|k,
so that 34 h and 8 = 3. Then 1 — k? = 1 (mod 3k), and
(80) holds by (82). Also, h? = 1 (mod 3), so that k*(h*~1) = 0
(mod 3k), and (81) holds by (84). If 3./ k, 6 = 1 and both,
(80) and (81) have to be shown to hold separately (mod k)
and (mod 3). (80) holds (mod k) by (82) and (mod 3) by
(83), on account of k? — 1 = 0 (mod 3). (81) holds trivially
(mod k) because both sides actually vanish (mod k); and
it holds (mod 3) by (85), after h and k have been inter-
changed. The Lemma is proved.

We now proceed to prove (77). Once this is accomplished,
(76) follows on account of (78) and this finishes the proof
of Lemma 9, hence that of Theorems A and B.

We have, successively,

A = 12abes(be,a) = (1-a*)(1 + b*c?) (mod 3a) by (80),
B = 12abcs(ca, b) = c¢2a®(b? — 1) (mod 3ac) by (81),

C = 12abcs(c,ab) = (1—a?b?¥)(1 + ¢?) (mod 3ab) by (80).
In particular, all congruences hold mod 3a, so that

A+ B-C =cD = a®h? + b*c® — c%a? — a® — ¢* + a*b*c?

(mod 3a).
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We also observe that
F = 2a%b%c? — a® — 2a%c* + a?b? = a*(b*—1)(2c* + 1)
vanishes modulo 3a.

Indeed, 3 | b>—1 unless 3 |b. In that case, however, 3fc
and 2¢® + 1 = 0 (mod 3). It follows that

¢D = ¢D — F = —c*(a*—1)(b*—1) (mod 3a).

Here both members of the congruence are symmetric in
@ and b, so that one also has ¢D = —c*(@*~1)(b*-1)
(mod 3b). From (a,b) = 1, it now follows that

¢D = —c*(a*—1)(b*—1) (mod 3ab).

If 3% c, a factor ¢ may be cancelled, and (77) is proved.
If, however, 3 | ¢, then one can only infer that

D = —c(a®—1)(b*—1) (modab).

Now, however, 3 f ab, and in order to complete the proof
of (77) it only remains to verify that (77) holds also mod 3.
On account of 3 I ¢, we have to verify only that D =0
(mod 3). This, however, is indeed the case, because the con-
ditions 3 4 a ahd 3 b imply by Theorem 2 that 2as(bc,a),
2bs(ca, b), and 2abs(c,ab) are all integers, so that all three
summands of D are divisible by 3. This finishes the proof
of (77), hence that of Lemma 9 and of Theorems A and B.
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