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Preface 

This little book wee not planned ee a textbook of elementary number 
theory. Nevertheleaa it may be regarded ae a mrt of infroduotion to number 
theory, eince it does not preeuppoee any previoue knowledge in this field. 
Using a background of analysb and algebra, the d e r  ie led to the fundr- 
mental theorems of number theory: The uniqueneee of prime number 
faotorization and the mipmi ty  law of quadratic miduma. In both 
the text does not pursue the direot and ahorteat path. It wemad to me more 
attractive to look around in the world of numbers and then to unfold the 
underlying struoture. Thus the uniquenaee of prime number feotaht ion 
oomes at the end of a discussion of oommon fmtiom, eo they appear in the 
arrangemenfe of the Farey sequences, and the quadratic reoipmity law is 
attached to investigations in cyclotomy, which atert with the t3auMion 
comtruotion of the regular heptadecagon. Cyclotomy is fwgfed in mme 
detail, because of ita own significance end a h  aa framewark for the elegant 
theorems on Gaussian sums. Then there are aome husaions of asymptotio 
laws, as a foretaste of analytic number theory. The preeentation olimaxee 
with Dirichlet'e theorem about primes in an arithmetic prog~aeeiou and V. 
Brun'e theorem on twin primes. 

The book derives ite charaoter from ite origin: It is the reeult of a se* 
of lecturee given a t  Havdord College in 196%1880 undm the auepioee of 
the William Pyle Philip Fund. The book doe0 not render them ]soturea 
quite faithfully. Besidw having mammged mme topica to make them 
better fit together, I have omitted two leaturee on the elamentip of the theory 
of partitions, whioh did not eeam to agree too weU with the generd tanor of 
the othem, and finally I b v e  added the lssf ohapter, whioh I had plrnnad 
for my Haverford leoturerr, but bwmm of lack of time o d d  not delivee 
there. I did lmtuw on fhie last ohapter, though a t  IILOfhae plum, d y ,  
Darfmouth Cokge, in Outober, 1980. 
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Introduction 

Let a and c be positive integers, or ''natural numbers" ee we d them. 
We say that a dividu c and write a I c if there exists e l v t d  number b onah 
thet c = @. Every natural number a is divisible by 1 end a, divisore whioh 
sometimes are singled out as "improper" divieors. Thue, 6 hae the proper 
divisors 2 and 3 and the improper ones 1 and 6. If the number n > 1 hse po 
divieors other than the improper ones we say that n ie a prime nuder.  
Otherwiee n is w m p i t e .  Evidently every oompoeite number om be fadored 
into primes. The sequence of primes begine with 2,3,6,7, 11, 13, 17, 19, 
and has a rather irregular appearance. Msny number theoretiwl problema ore 
ooncerned with this sequenoe. Firat, ee we move dong the eequenoe of 
natural numbers, the prime numbera beoome more end more ecuuoe. Thia ia 
quite plausible beoause a lrrsge number has a greater ohanoe than e smell one 
of being oomposite, ee it su~paeees more numbera whioh might be elighle for 
its divisors. It is even oonoeivable that a11 sufl6ioiently large numbers might 
be oomposife. Thia, however, ia not so. Euolid (amund 300 B.o.) haa proved 
the 

THEOBEM: Outricle ang given pnite set of prime numbera &re u aIcoucr 
me. 

In other words: there is no largest prime number. Here is Euclid's proof: 
Let us write down any finite set of prime numbers, e.g., thoee fiom 2 to 

e certain p, say 2,3,6, * . , p. We form the product of them primes md then 
ooneider the integer I 

N =  ( 2 * 3 * 6 * * * p )  + 1. 

We write this number as e produot of primee N =q l* - -q , ,  where a = 1 
would aooount for the poesibilityt t b t  N might iteelf elready be a prime 
number. Now no qj, j = 1, , r ie equal to any of fbe prim- 2,3,5, - , p, 
sin08 none of them divides N, where- ell the qj do divide N. Thue there 
exiets e prime dietinot from thoee in tbe set 2,3,5, . , p, CI fhe tbboram 
rfates. 

We oen get a bit more out of the eeme argument. Let ur look ~t odd 
primes (i.e,, thoee different fmm 2). When divided by 4 they have the odd 
remainders 1 or 3. We write thnnn ouee cre p = 1 (mod 4) or p = 3 (mod 4).t 
lror example: 

6,13, l '? ,29,***= 1 (mod4 
8,7, 11, 19,23, * *  = 3 (1~44). 

t Rend "modulo 4," that is "by tbe meuurs 4." 
1 



Now we have just men that both classes together contain infinitely many 
primes, but this daee not preclude the possibility that one of these cleesee 
might contain only finitely many. We can use Euclid's argument to show that 
there exist infinitely many primes = 3 (mod 4). For let us take my  eet of 
euchprimes3,7,11,*~~,p.Considerthietime M = (403.7.  11 * * - p )  - 1. 
Then we eee tbat 41 = 3 (mod 4). We write now M = ql . go q1 aa a 
product of primee. At leeet one of these primes q, is = 3 (mod 4), einoe the 
product of two numbera of the form 4k + 1 is again of this form: 

But no qj is among the mt 3, 7, 11, . , p, and so there existe another 
prime = 3 (mod 4). \ 

It ie aha0 true that the claw of primee E 1 (mod 4) contains infinitely 
many elements. But we poetpone the proof since it is more invo1ved.t 

Ezerciec: Prove, by the amme argument, that there exist infinitely many 
primes = 6 (mod 6). 

The general problem of this type was solved by Lejeune Dirichlet about 
125 years ago by quite different methods. Let us look for primes in an 
arithmetic progression, a, a + m, a + 2m, . . , or, in brief, r, = a (mod m). 
Here a and m are given natural numbers. Clearly we can find such primes 
(besides possibly a itself) only if a and m have no common'divieor except 1. 
We let (a, m) denote the greateet common divisor of the two numbers a ahd 

a . If (a, m) = 1 we say that a and m arqelatively prime or coprime. Following 
irichlet we ehAll show leter that any arithmetic progression 7~1-th (a, m) = 1 

doontaina infinitely many prima (Theorem 57). 
Propertiee of prime numbers will be the main topic of these lecturee. Now, 

the theory of prime numbera leads to problems which have withstood the 
efforts of the greatest mathematicians through the centuries. However, there 
are problem wholly or partly ecceseible by fairly simple means. I mention 
a few which will m u p y  us. 

(1) If p is a p ~ m e  then 

(p - l)! = -1 (modp) or (p - l)! + 1 r 0 (modp): 

i 2! + 1 = 3 =O(mod3), 

4! + 1 = 26 r 0 (mod 5), and 

61 + 1 = 721 = O(mod7) 

are some examples. The theorem was first published by Waring, but goes . 

under the neme of theorem. It will appear in our dieowion ee a 
h p l e  00rol.bry. 

4 2 )   st p be a prime and let a be a poeitive integer reiatively prime 
to p. Then a*' 2 1. (mod p). Thh meult waei proved &Pierre de Fern& 
(1801-1666;), e high judge in Toulouae .ad one of ths great& number 
theorieta in mathematioal hiatory. 9 If p -- 1 (mod 4) then p is the sum of two q u u e  numbem, 

6 = 1' + 2' 

and eseentjally in only one way. Of courae~, even the longest 1Lt of ruoh. 
examplee is no proof of the theorem, since the proof must deduoe thb property 
out of the general nature of such primes end thue be vslid for dl (infinitely 
many) primes. We owe this theorem dm to Fermrt. Primes p ZE 3 (mod 4) 
may not be so decompoeed. This ie easy to prove. 

(1777-1856) conjectured at the age of 16, by inspecting a t&e of primer, that 
Z 2 

n(x) is approximately - in the sense that the ratio n(z): - converge0 
logz , log z 

to 1 if s increases indefinitely. This conjecture was made in 1792, but the 
theorem was first proved in 1896 independently by Jeoquee Hadamerd and 
Charles de la Vallde Powsin. We shall prove a much weakened form of thia 
theorem which goes back to Chebyehev. 

(6) The prime numbers of the form p = 2+ + 1, e.g., 2' + 1 =, 3, 
2' + 1 = 6, 24 + 1 = 17, 28 + 1 = 267, *-mat primer, pky 
a fundamental role ~ ~ g s t ~ c t ~  of v r  ~ m m .  
Fermat conjectured that all numben of the -*. How- 
ever, thia i not so: Euler hes shown that 2s' +&I oompdte md oont.iol 
the prime factor le not known whether them u e  infinitely m y  
Fermat primee. 

(6) The nequence of primes app- to be very irregular, ria pp 
between consecutive primes varying in eiee. The gap oan be ubifnrily kp: 
indeed all of the (N - 1) conseautive numbem \ 

are composite, tm that the differepe between the amahst prime abom thm 
set and the gmabet prime below this eet io at  l eu t  N. 

Leaving aaide the pair 2,S, the difhmnoe batmen two -five prim# 
muet a t  leeet be 2, e.g., 

# 



4 INTRODUCTION 

Such primes are called "twin primes." It is not known whether there are 
infinitely many pairs of twin primes, although there are some indications 
that this is so. The Norwegian mathematician V. Brun modified this problem 
to make it more accessible. He considered not primes alone but numbers 
containing only a small number of prime factors. Then, as A. Selberg h.e 
shown, among the numbers having at most three prime diviaore exiet . 
infinitely many pairs of difference 2. 

One can generalize this problem in many ways. For example one notices 
the prime quadruplets 

11, 13, 17, 19 

each quadruplet lying within a decade. The largest such quadruplet 
registered in D. N. Lehmer's Table of Primes is 

The last lectures of this book will discuss twin primes. We shall, however, 
treat quite the opposite problem: we shall show that there are, in a oertain 
sense, not too many twin primes. 

* 

1 

Factorization and Farey Fractions 
e - 

a 

Deoornpodtion of s number; faatahtion into pahne faatma At b t  
glance it seems obvious that the decomposition of a aetural number into 
prime factore is unique up to the order of the fecfora. We break down e 
number into fectors, each of which, unless it is a prime number, we decompose 
again until we have reached prime fadors throughout. Thie must take plaoe 
a t  some point since the factors become smaller and smaller. For example 

This example shows two different procedures for breaking down the number 
60, but both end with the same prime divisors. If not spoiled by too much 
knowledge you would take thia as obvious. But Euclid developed a long and 
complicated proof for the uniquenese of p z h e  factorization. Why? Why ia 
unique prime factorization not a trivial statement? To enewer thie let w 
ooneider the n u m b  

The product of two such numbers is again of the eeme form, for , 

Let us d s number in our set "primitive" if it  cannot be written as e product 
of other numbera in the set, w h S g  smaller muat preoede it in the at. 
Thue the numbers 4, 7, 10,13 are primitive, whereae 16 &a oomporite, being 
4 4. It ia 01- that every number which is not primitive itoelf ma ba ds 
oompoeed into a product of primitive numbers. But here ir a a+: 

are two different deoompositione info primitive hotam. !bdm, tbe 
poesibility of deoompoaing a number info htar r  nrnMt b g i d y  oatail tb 
uniquenew of the h d  deoompkition. 

Here ie another example. We oonaider the mt d numbea of Cbe BDIln 
o + b C i i ,  where o . n i b  ue intepm. w let L e r i d r w  M u d m  
addition and eubtreotion, end under mPltiplio.tbn u 4: 



It - -  

6 IrACrOBIZATION AND FABEY FRACTIONS 

( a  + b d z ) ( c  + d d z )  = (UG - bbd) + (ad + h)dG. 
Such cloeure is neceeeery, of course, if we are to reasonably call a number 
a + b a  an "integer." Again, numbers in this realm are either "primitive," 
i.e., ue not produo& of others, or are pmducte of primitive numbers. men  
3. 7, 1 + 2 6 ,  1 - 2 4 3 ,  4 + d z ,  4 - 4 3 ,  are all primitive 
(as can be teefed by trial), and the number 21 has 3 distinct factorjmtiona: 

Oommoa We are postponing the proof of the uniquenem of 
prime fedorization for the moment and shall obtain*it as a result of r etudy 
of common h t i o n a .  We shall then a h  give a direct proof of it. 

x 
A wmmon h t i o n  is denoted by the symbol - where x and y are i n t ege~  

Y 
end where the denominator y > 0. We assume the rules of c a ld t i on  with 
integers as given and reduce all etatemente about fractions to etatemenfe 
about integers. For the moment we are interested only in the ordering of the 
hctions. First we define equality. 

a c 
DEBWITION : b = d  is equivalent to ad = bc. 

The relation of equality is an "equivalence relation" and as such hae the 
required propertiee : 

a a  
Reflexivity: - = - since ab = ba. 

b b 

I c  c  a  
Symmetry: If - = - then - = - Indeed ad = bc implies cb = &. 

b d  d b '  

a c c e a e 
Transitivity : If - = - end then - = - because ad = bc, 4 = de, 

b r S = j '  b f 

and thus d j  = &j = Wc. Therefore af = be since d  # 0. 

lpeoondly we d e b  i m q d i t y .  

It io &g eeen h t  this relation, ee it .should be, is 

a a 
hflexive: I t  k d tsve that - < - 

b b '  

a c  C' Q 
Aeymmetric: I f -  < - then it is mod true that- < 

b d '  d 8 '  
a c  c e  a e 

Trandtive: If - < -and- <-, then- <- 
b d  a t  b t ' 

These properties follow immedietely from the definition of ineqdty ud 
from the fact that the denominafore ore d w r p  taken a8 pdtive. 

a c  c a 
We .Iso stipulate that -<-mema the w ~ w ~ > ~ .  Wetbsn)uve 

b  d 
a c 

among oommon bctiona the t k h i o m y :  For two t k t i o ~  a ,  3 OXMI d only 
one of the efatemenfe , - 

ie true. 
Indeed, among integem we have either ad < & or ad = bc or ad > &, 
These definitiom, in psrtilwlar the tmmitivity of equality and inaqurility, 

permit en ordcriw of the oommon baotione rooording to 5. 
Now we usually take it for granted that, mmmg fhe iafinifely muiy 

fiaotiona which are equal, for exmmple 

there is exactly one whioh is r e d u d ,  i.e., in whioh numerator and de- 
nominator have no oommon divieor exoept 1. Thie b, however, by no memu 
trivial. If we think of ow example of the numbers = I (mod 3), we have all 
the propertbe of ordering whioh we jut d i a o d  present there dm. HOW- 
ever, we have I 

4 10 -=- 
10 26 

whioh in that domain are two reduoed fkotiona, h o e  there the numb- 4, 
10,26 are primitive numbere. 

If, therefore, we start a theory of oommon firotiona ab om, we k t  have 
to edmit the poeoibility thef two reduoed firofiou that are md i d e d d  m@U 
mr* be sqwd. 



8 FACTOBIZATION AND FAREY FBACTIONS 

called the order of the Farey sequence. The Farey eequences of orders 1, 2, 
3, 4, 5, respectively, are 

0 1 

i 'i 

We find in each of these five sequences hctione ordered only by the reletion 
<. Since, in general, we have not yet proved that two equal reduoed fF80tiona 
are ideJW, we have to envietrge the poeeibility of equalities in our rrerier of 
order N and would then agree to order such fractions according to the sizes 
of their numeratom. As we see, this possibility does not occur in tho ordem 
1 to 5. As a matter of fact we s k y  show that it will never a w r .  In other 

h -  1 
words, two consecutive fractions - - in a Farey sequence of order N will 
always obey the relation k '.rn 

or, according to definition, hm < El .  More precisely, Farey found the following 
about the difference of these numbers. 

h 1 
THEOREM 1 : For two consecutive fractions - , - of the Farey sequence of 

order N w haw k rn 

-- hrn=k l -1 ,  
or in a d k r  fonnylatwa 

Proof: We prove this theorem by induction. It i s  true, ss inspection 
ehowe, for N = 1, 2, 3, 4, 5. Aaaume now that it ie true for order N. Then 

a 
let 5 be a reducal fraction not in the Farey sequence of order N, i.e., for 

which b > N. Thia will h v e  its place somewhere in the interval [0, 11 
b 

I h Z 
1 %  between mme two oonee~utive hotions - and - of the Fuey requenoe of 
1 order N: E m 

h a 1  - s - g - .  
k b m  

dboarded a *. We oen only my, in view of (l.l), that not both of them 
oen be valid. Now we eet 

A = I :  ~ l = d - b h Z O  

2 a 
( 1.4) 

/ p = I m  b / = - . m + Y 2 0  

I where 1, p sre nonnegative integers, by the definition of equality and in- 
! equality of fraotions. We can mlve them equation8 for a .nd b md obbin 

I through elementary rules 
I 

I -  I I 

where we have used (1.2) for the determination of the d e n o h t o r .  AU pqm 

1 a 
d u c c d  f rac tbu  b - in (1.3) can be expreued through (1.6) by meuu of mit.bb 

nonnegative integers A, p a8 our lvgument &owe. 
Conversely, for all A, p 2 0, A + p > 0, we have 

pouible. If A = 0, we would have 
a r j r  
r=S 



which can be a red& m i o n  only for p = 1. We would then have 

a = h ,  b = k  

which contmdiota the feot b > N. Similarly p # 0. All the proper fiactione 
a - in (1.3) therefore appear in the form 
b 

Now, the smdlcet value that the denominator b can attain ie N + 1, 
a 

whch would occur if - belonged to the Famy sequence of order N + 1, but 
b 

not of order N. Then 1, p must be as small as possible, i.e., 1 = 1, p = 1, eo 
that we have 

a = h + l  b = k + m = N + l .  

a 1 + 2  ~ h h  new -on - = - satisfies Farey'a theorem with respect to ila 
b E + m  

neighbors : Indeed we hevo 

and 

where we have ueed (1.2). 
Thue .we have ahown that Farey's theorem also holds for order N + 1, 

and therefore, through mrthemstiwl induction, for all N. 
h + 1  h 1 Let us cell - the "mediant" between - and - . Then we have proved 
k + m  k m 

the following theorem at  the seme time. 

THEOBEM 2: The fredbns whkh belong to the Farey 8equeni% of wder 
N + 1 but not of order N orc medknte of the Farey eeqzrence of order N .  

0 1 
Starting therefore from the Farey sequence - - , the following eequenoer 

1 ' 1  
o m  be built up simply by inserting successively the medianta with the 
appropriate denominatam. Since a mediant of the Farey sequence of order N 
must belong M a fraction to eome Farey sequence of higher order, we hsve 
the folio* intereoting theorem. 

T~~EOBBM 3: Tht &nominator8 of two acljacent jrcrdione of a Party 
~ o f o r d c r N a d d u p t o d l e m t N + l .  

PABEY'S BOHE~Y~ OP OOYYOW R B A ~ O N B  11 

We emphasize again that our diaowhn of the Fuey aequenoea, in whioh, 
.s we have seen, no eqrulity Dign o m  mur,  ahown that two redud  ---- 
fraotions whioh are not identical cannot be~ e g d  (in the -ff-iif'-&- 

ot e q u r r l r ~ ~ n - ~ -  
The further theory of oommon fraotioae involving addition, iubtrration, 

multipli~(~tion, and d i v h n  is not of partidar iotelat from our point of 
view, and ye  take it for granted M explained in elementary uithmetiic. 

t It im d y  lsen th.t this fmt hua "Euolid'r 1emmr" (mo Ch.pbr 1) m dho& 
ooMrqUBn08. 



Euclid's Lemma, 
Uniqueness of Prime Factorization 

A linear Diophotiw equation and &did's lemma. We now draw some 
important coneequencee from our theory of Farey sequences. First we 
discuss a linear Diophantine equation that is basic for many arguments in 
number theory. 

THEOBEY 4: Let a and b be w p h e :  (a, b) = 1. Then the Diophanti& 
equdicm 

a X + b y = l  (2.1) 
ie eolvable. 

Remark: A Diophantine equation (c~lled after Diophantus of Alexandria, 
third century) is an equation that has to be satisfied by integers. 

Proof: Assume without loss of generality. 0 < a < b. Then, since ' 

a a 
(a, b) = 1, - is a proper reduced fraction and consequently - appears in some 

b b 
F m y  sequence (e.g., that of order b). Let us now take an adjacent fraction 

Then by Farey's theorem, we have 

and thus 

Therefore x = k, y = -h is a solut.ion of (2.1). 
\ 

COBOLJAUY: S u p p a  (a, b) = 1. Then we can &o solve the Diorphantine 
cqudion \ 

a X + b y = c .  (2.2) 
For let clz0 + bg,, = 1. Then a (w)  + b(yoc) = c, and x = x&, y = y& is 

a solution of (2.2). 
12 

THE UNIQUE- OF PZUYlD FlrUTOPIGITION 13 

EuoU9r lemmr. The foregoing theorem now leede immediately to an 
important result whioh wu proved by Euolid in a different manner. 

THEOREM 6: (Euolid'a lemme). If a and b an-- a d  a 1 bc t h . 4  1 c. - . .----- 

Proof: Choose integem'z%n&fii806hat crz + by = 1, which is podb 
racordmg to Theorem 4. Then we h.ve licz + bcy = c. Now since b L a 
mdtiple'of a, it can be expressed u b = d. Inserting thia into the f~~tapphq 
equation we have a(- + dy) = c, whioh impha a I c. Tbi. theorem ennbbr 
US to make Theorem 4 more speci6o. 

where xo, yo is any p i a l  dution of (2.1) and t4u any integer. 

Proof: Indeed (2.1) is fulfiued if we ineert (2.3) in it, *nos we uume 
~ o + b y , =  1. Now, conver&ly, if so, yo and s, y are two mlutione of (%.I), 
then by eubtraction it follows that 

a(x - xO) = - b(y - yo) . (2.4) 

But (a, b) = 1 implies by Euclid's lermna that a 1 (y - ye). AcoordinpCly if 
we put 

y - y o = d ,  
then (2.4) shows that 

x -x*=-&.  

Thus (2.3) also appears as a neceessry condition for solutions x, y. 
. . 

 he ~ Q W -  of pims trotQurboe A speoiaJ me of Theorem 6 ia 

the following. 

'J!HEOBEM 6e: If p is a p 'me  and p di* 44 bk, then p dividu at 
leoet one of the factms b,. 

Prmf: If p 1 b,, the statement of the theorem is true. If p 4 b,, them 
(p, b,) = 1, since for common divieors only 1 and p, the diviron of p, have to 
be tested, snd p 4 b,.t Then by Euclid'e lemma p 1 hb, b*,. Thi. aqmmt 
our be repeated with the conclusion that p dividea either bB a bkl a or 
b, or b,, as had to be ahown. 

Note that in our example for nonuniquenesa of factorization, the multi- 
pliotive syltsm of n r t d  numben I 1 (mod 3), tbi. &emem L fbb. For 
we hsve 

4 * 2 6 = 1 0 0 = 1 0 * 1 0 ,  
t Tbie meens " p  doer not dividb 4." 
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and 4 dividee 100 but does not divide 10, although 4 plays the role of a 
primitive number in thb aptem. 

With thia prepmation we are now ready to prove the following baaio 
theorem, whioh ie o h n  reEBrred to aa the Fundamental Theorem of Number 
Theory. 

THE~BEY 6: TAe fadofija;lion of a natural number into f-8 w, 
up to th order of the fcr;cbra, unique. 

Proof: Suppoee that N = p,pg p, is a factorization of the natural 
number N into primea. Clearly there exiats such a factorization. If N = 
q1qa qr ia a wood hobricetion, then pl I N and hence fi 1 qlqa p,. Thus 
p, divida some q,. By rsuMgioe the q's we may assume fi I ql. Sinm qz is 
prime we have fi  = ql. The: canceling pl and ql we have 

It is olear that we may oontinue in thie way canceling p's and q's, and we eee 
that the set of p's ie, exoept for rearrangements in the order of the faotore, 
exactly the aame as the eet of q's. This proves the uniqueness of htorization 
of N into primes. 

Recently eome mathematicians [Hasse, the physicist F. A. Lindemann 
(later Lord Cherwell), Zermelo] have given proofs through mathematid 
induction avoiding Euclid's lemma. The argument of these proofs runs aa 
follows: Suppoee there exiata an integer N which has two distinct faotorizs- 
tions into primee. 1;et us choose the smallest such integer N and suppose that 

are two of ite factorizetiom. Then all the p's are distinct fiom all the q's, for 
otherwise we oould aenoel a p and a q and have a smaller integer with two 
dietinct facto~tione. We may suppose 

Then let us oonaider fi end q,. Since pl # q1 we may aaeume pl < ql without 
m y  retatrictione. Coneider now 

Cle~arlyfiI P . n d p l I ~ m t h a t p ~ ( ( N - P ) . N o w N -  Pispositivedno. 
N - P 2=1 (ql - p&gs q,. Let us write ql - pl as a produot of primer, 
my q1 - f i  = rl r,. Then 

We have leen from the beginning that pl ia none of the qi. Sincepl % (ql - A), 
it followo that fit r, for all i. Thus all the q's and r's are distinct h m  a. On 

the other b n d ,  we have wen that N - P ir divisible by p, a d ,  therefore, 
N - P = pl& t, where the t's us primes. Thus we have two dietinat 
feotaricefiona of N - P in one of whiah p, appears end in the 0 t h  not. 
This oontradiofe the minimum property of N. 

The uniqueness of prime factorbation, or actually Euclid'a lemma, whioh 
i equivalent to it, w u  important in Greek mathemati08 since it owld be uad 
for the dimyeion of irrational numbers, a topic of great inter& in afia 
mathematicw and philoenphy. Euclid proved the following theorem (pbddy 
using an idea of T b t e t u s ,  a pupil of Pleto). 

Proof: The theorem eeya that p = (:r = $ im irnposeibb in netuml 

numbera m, n. Suppose it were poeeible. Then we would have the equation 
p a  = d. But a squam number has alwaya an nmr number of prime faofon. 
Tbe preoeding equation is therefore impodble, since on the left-hand .ide 
we have a nurnber with an odd number of prime faotors, end on the right band 
the same number with an euen number of prime faotors, oontnry to the 
uniqueneee of prime factorization. 

Gkmtsrt oommon diviror and lsrut mPltipb, Thia ie the moment 
to .mplifg. some concept. whioh we have d y  de6ned in the Intmductioo 
and eo far used merely as abbreviatione. 

If a and b are natural numbers, let d be the gndGeC common divieor 
(G.C.D.) of a and b, that is, the largest natural number d which is o divieor 

a b a b 
of both a and b. We write d = (a, b). !hen ( 2'; ) = l . ~ . d e e d , i f ( ~ , ~ = d . .  

then d $ divides both a and b, end b must be 1 h w e  of the mrrirrr4lity 
a b 

of d. In view of Theorem 4 there e p t  integers z and y with - t + - y = 1 
and thue ax + by = d .  

d d 

TEEOBEY 8 : The G.C.D. of a and b w a Zinca~. cambination of a a d  b d h  
integer a&ielr(s. 

COBOLLILSY: Any common divieor of a and b d* Uc (J.C.D. (a, b) oj 
andb.~ndesdifdla,dIbhn$I(ax+Oy),ad(+ @ 

/ 

Given two naturel numbem a, ('there exbt netanl numba. w b h  H 
multiplee of both a and b. For example, d N tau& number. By the U 
ummon multiple (L.C.M .) of o and b we mean the levt lvtunl number whbh 
ia a multiple of both a urd b. We denote the LC.& of a ud b by {a, b). 
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THEOBEM 9: If a and b are natural numbera then ab = {a, b)(a, 6). 

ab 
Proof: Let p = - . Then p is a multiple of both a and b, since 

a (a, b) b 
'=a b is a multiple of b and p  = - a is also a multiple of a. If v is 

(a, b) 
another common multiple of a and by then there exist integers x, y such that 

v 
Hence - is an integer. Thus p is indeed the L.C.M. of a and b, and as a by- 

lu 
product we derive the fact that the L.C.M. of a and b divides any common 
multiple of a and b. 

Many theorems of a similar nature about the G.C.D. and the L.C.M. can 
be proved. We mention some of them in the following exercises. 

Emrcisea. 
1. Let a, b, c, . , k be natural numbers. Let 6 = (a, b, c, . , k) be 

their greatest common divisor, that is, the largest natural number which 
divides all of a, b, c, . , k. Prove that there exist integers x, y, z, , w with 
6 = a x  + by +cz + . a e  + kw. 

2. Prove that c . (a, b) = (cay cb). 
3. Prove that (a, (b, c)) = (a, b, c). 
4. Prove that 

(a1, a,, * - ,a,)(b,, b,, - , b,) = (albl, , a,b,) 
where the parenthesis on the right side contains all lm products a,,b,, h = 
l ; . . , I ,  j = l , * * * , m .  

5. Let n natural numbers a,, a,, . . , a, be given. Put 

(a,, a,, . . , a,) = dp ) ,  

and in general (%aa, a l a 3 9  , an-,a,) = dp), 

where this parenthesis contains all products of k distinct a's as factors. We 
have by this definition 

alas . . a, = dp). 
Then show that 

d* ' d  e l t $ , e2=- , eg=- - . ?  dn 
dl 

, ,en=- 
da 4-1 

am integers. (We have written for the sake of brevity simply d,, for dr).) 
Show moreover that the quotients 

et e, en - - ... - 
9 9  9 

81 % en-1 
am dm integers. 

Congruences 
0 

Con&raenoe a8 equivsleace relation. Let us examine more carefully the 
mncept of congruelaee, which we have used informally in some of our p r d -  
ing remarks. Let a, b, m be integera. Usually m is taken to be positive. We 
say a is amgpnt  to b mudub m and write a -- b (mod m) if m I (a - b). 
The congruence relation = is an equivalence rekJion on the oet of intagerr. 
That b, it ie re@mw: \ 

a=a(modm) ,  
symmetric: 

if a zz b (mod m) then b = a (mod m), 
and tradiue: 

if a = b (mod m) and b = c (mod m), then a -= c (mod m). 

This is clear. For a r a (mod m) merely says m 1 (a - a). If a -- b (mod r), 
t h e n m l ( a - b ) , s o t h a t m I ( b - a ) a n d b r a ( m o d m ) .  M y , i f a = b  
(mod m) and b = c (mod m), thenm I (a - b)andm I (b - c)wm I (a - b) + 
(b -c), m 1 (a - c), and a =c(modm). Thus 
relation, and the set of integera is partitioned into diejoint claseea. Any two 
integers in the same oiase are congruent to one another, and no two integerr 
in dietinct olasses are oongruent to 'one another. How many oongruenop 
oleeeee am there 1 We can answer this d y  by exhibiting a apecimen from 
each ohas. Clearly the integera 0, 1, , m - 1 lie in different olursr. 
And given any integer, we may add or aubtnct a auiteble multiple of m md 
arriveatoneof0, 1 , * * * , m -  1. Thuatheream juefmcongruenoeolurar 
modulo m, and the integera 0, 1, , m - 1 form a set of repremnfrtiwa, . 
one from each of the claeeea. 

Congruenoea, like equalities, are equivslenm. They behave like equJitia 
with r e a p t  to addition and multiplicetion. If a n b (mod3  ud e r + 
mod m), then we have 

~oprnvetheddit iverulewenotem~l~ tb . t i fmI (6- b).IdmI(r-1)  
then m ( ((a - b)  + (c - d)) or r* 1 ((a + c) - (b + d)). Per tb d- 
pliostive rub we o b e e e  ac r be (modn) beonwe r I (e -- bb .Id tW 

17 
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bc -- M because m 1 b(c - d). Then ac 3 M follows through the transitivity 
of the congruence relation. 

Properties (3.1) and (3.2) can be expressed more concisely in terms of the 
congruence classes. They show that whichever element a we may choose from 
the class A and whichever b from class B, the sum will always lie in one class 
C which we may eymbolically designate as C = A + B. Analogous remarks 
apply to A - B and A B. 

Among the classes is the class Z which contains the elements z zs 0 
(mod m). In the language of group theory we can say that the congruence 
classes form an additivp-Abelian group with the class Z as "zero element." 
The inverse of class A is the class A' which contains the negatives of all 
members of A. 

What is true about addition, subtraction, and multiplication is, in general, 
not true about division. We cannot unrestrictedly divide congruences. For 
we have 2 = 12 (mod 10) but 1 $ 6 (mod 10). On the other hand, 2 = 24 
(mod 11) and 1 ' s  12 (mod l l ) ,  so that in this case we can safely divide by 2. 
In fact, if bb = ac (mod m) and (a, m) =; 1, then b = c (mod m). For if 

- a) then m ( a(b - c) and it follows from Euclid's lemma that : 1 if- c). 
The congruence classes of elements prime to m form an Abelian group 

with respect to multiplication. The unit class U is evidently that one whioh 
contains the number 1. The Gxistence of an inverse is also assured, since to 
any given number a prime to m there exists a number a* such that 

ua* = 1 (mod rn) . 
Indeed we need only refer to the Diophantine equation 

whioh is solvable for a* and y since (a, m) = 1 is assumed (Theorem 4). 
Moreover, if we take a prime number p as modulus, then the congruenoe 

clseees form a ,/in& jWd (of order p). Indeed the classes form an additive 
p u p ,  and all c k s '  with the exception of the zero class 2 contain only 
elementa pri11.10 to the modulus, and therefore form a multiplicative group. 

h k ' r  f m c t h  The number of congruence classes modulo m is, aa we 
have seen, m itself. The number of c h s  with elements prime to nr ia dm& 
ru t4  aa ~ ( m ) .  The function (p is a h  called Euler's function. It ia clear that 
for a prime number p we have q(p)  = p - 1. In addition, for m = pa we me 
immediately thet q(pa) = (p - l)pGl, since of the numbers 1, 2, , 
mpreeenting the pa different congruence oleeeea modulo pa, only thoae am not 
prime to pa which are divisible by p, in number pGl. Thus q(fl) = pa - p. 

The explicit number ~ ( m )  for general m will be found if we prove 

THEOREM 10: For (m, n) = 1 we have (p(mn) = (p(m) (p(n). 

This can be proved in several ways. Since we have the Fuey theory of 
oommon fnotiona at  our disposal, we may use it for this pupae. We o k r v e  
fint that the number of reduced proper h t i o n a  of denominator rn is jolt 
q(n), since there are q(m) numrators 1 5 h B m prime to m. Inatead of 
in*sting on proper frictions, we may just as well oount the number of r e d u d  
hotions h/m with 

for any given a. Now let nb = mlma with (%, %) = 1. We o m  deaompoee 
the reduced proper fraction h/m in a unique way into a t3wn of the partid 
hotions with denominators ml and .nr, ae follows. Shoe (%, 9) = 1, we 
may find integers u, v with 

h=mpu+%v. (3.3) 

The solution u, v is of course not unique, but we b v e  observed (Theorem h) 
that the general solution is obtained b m  a special one (u,,, vo) by 

with an arbitary integer t. It is clear that there is one and only one solution 
u, u with such a t that 

O < u < m , .  

(U = 0 is excluded bemuse it would lead in (3.3) to % 1 h, which is agaht 
the aeaumption (h, -9) = 1, h/m being a reduced fiwtion.) 

We then have from (3.3) 
h h u v u 
-=-=- + - , o < - < l .  (3.4) ' 
" ' % " ' a " %  "'l 

Both tiactions are reduced, sinoe a oommon diVi.0. of, let lu my, u and n, 
would divide m,m, and woording to (3.3) alao 3 oontnry to (A, wspt,) = 1. 
Although u/m, ia oert.inly reduoed,'it h not neoeeearily a popetr btbq~; _ 
from 

v h u  -=--- 
ma?'"'% 

we oan only infer 
U 0 U -- < - < I - - .  
"'l "'a "'l 

t N h ,  wqversely, let two proper d u d  frsctione u/%, 01% be given. If 



which must then fit in (3.6). Then computing h/m from (3.4), there possibly 
replacing v/m, by we obtain (him) = (h/mlm2) as a proper reduced 
fraction. 

In this way we obtain a one-to-one correspondence of proper reduced 
fractions h/%% with pairs of proper reduced fnrotions u/%, v/ma ( d e d  
partid fractirme). That ie, the number of admissible numerators h ie the aame 
as the number of pairs u, v' of numerators of the partial fractions. This 
statement can be. expreeeed as 9(mlmJ = 9(m1) ~ ( m , ) ,  proving our theorem. 

It now follows by iteration that, for any finite set of pairwise ooprime 
numbers q, %, , m, we have 

If we break down a given number n into powers of primes as factors, we oen 
employ our knowledge of tp(pa) and obtain for n = pla1pBa8 phak 

which ia Euler's formula. 
Let us write down all fractions l/n of fixed denominator n, 0 < lln $ 1. 

whether reduced or not: 

1 1 2 3  n - 1  n - -  - ... - -  
n ' n ' n '  9 .  n n (3.7) 

They are n in number. Some, as l / n  and (n  - 1 )In, are in reduced form. In 
the others we oanoel the common divisors of numerator and denominator. 
The resulting reduced denominators are then divisors d of n ;  for each divisor 
d of n all reduoed proper h t i o n s  of denominator d will appear in the lief. 
They are ~ ( d )  in number, as we know. Thus counting the hotions in (3.7) 
~oord iag  to their reduoed denominatone, we have the following important 
theorem. 

THXOBXM 11 : The Euler fundion y(n) haa the property 

with r = y(m), are representatives of the okaes prime to m, and if (a, n) = 1, 
then the numbere 

form another such system, only in a different arrangement, Any symmetric 
function of (R) will remain in its congruence claw if (R) is repkoed by (K). 
In particular, therefore, 

arl ara a r , = r l * r a *  * * *  r, (mad m) 
or * - 

(av - 1 )  rlra r, = 0 (mod m) . 
Since (rlra r,, m) = 1 ,  we have a' - 1 c 0 (mod m) by E u M .  lemma 
m d  have thus proved the following theorem. 

THEOREM 12: If (a, m) = 1 the% 

This theorem was derived by Euler as a generalization of the specid oaoe 
m = p, a prime number, p # a  

a*'= 1 (mod p), 
which was given by Fermat. 

Higher 00-. The solvability of the lineer congruenoe 
ax 3 ~ ( m o d m )  

with (a,  m) = 1 is implied by (2.2). 
Let us consider aongruenoes in much the same way that one oonaidem 

equations in algebra. We look for solutions for congruenoes I 

where p is prime. Since x-1 r 1 (modp) if ( z ,  p) = 1, it followa that 
2. IE 2 (mod p) for dl z .  Ueing tPi. fa& we may get rid of dl powen I., 
%*I, x*n, , by replaoing them by lower powen of 2. Hen- we may 
~uppoee fmm the beginning that in all our mngruenm we hawe r < p. 

Buoh 8 oongcuenoe need not have 8 solution. For example, z' = 3 (mod 7 )  
hu no solution since @ 1 0 ,  la  -- 1, P = 4,  3 % ~  2, 48 = I ,  tP 14, 4 
@ = 1 (mod 7). However, jwt st in the theory of dgebnio qutiw 8 

congruenae of degree n and prime number modulw p ou, b v e  .I rm) 
n dutione. 



Proof: The statement is correct if (3.9) has no solution. Suppoee it haa 
s eolution z,. Then 

a&" + ~ 1 z ~ " l +  + an =-- 0 (modp) . 
We subtract thia from (3.9) and obtain 

.q,(xn - xln) + al(xn-1 - zln-1) + * + a,& - s,) = 0 (mod p) , 
(3.10) 

which any x satisfying (3.9) muet also satisfy. The congruence (3. lo), however, 
cen be rewritten es 

( ~ - z ~ ) ~ ( ~ g ~ ~ - ~ + b ~ x ~ ~ + ~ * ~ + b , ~ ) = O ( m o d p ) ,  (3.11) 

where the b'e are oertein expreeeione obtained from s, and the a'r. Sinoe p 
divides the product in (3.11), it muet divide one of the factars. Any z 
mtiefying (3.9) mwt therefore eatisfy either 

z - x, =O(modp) 
or 

a+'C1 + b , ~ " - ~  + + bn-, = 0 (mod p) . 
The h t  alte ative yields again z,. The second may or may not yield 8 

solution. That se 3 nd congruence is of degree (n - l), the highest ooefficient 
is again %, and, eince the fheory ie true for the first degree congruence 

it follows by induction that the theorem is true for any degree n. 

Exercise: Prove Wileon'o theorem: For any prime number p we h v e  
(p - 1 1 (modp). 

Hint: The oongruenoes 

(Z - 1)(z - 2) (z - p + 1) = 0 (modp) 
and 

2-1 E 0 (mod P) 

have the same mlutione. Apply Theorem 13 on their difference. 

hm&dar T&orem. We ehall sometimes need the e o - d e d  
''Chinese Remnindsr Theorem," which for the sake of brevity we enunoiste 
only for 3 moduli. Ib generrrlizcrtion to any number of moduli is obviow. 

-A 

THEOBEY 14: If the d u l i  m,, m,, ma are pairwke coprime 
-r 

(MME8E BrarlmDBB THLOBICY 28 

h n  the sy*m of e i m u h w u  cungrumm 

(iz=AlmodmJ 

bz = B (mod w) 
cq=C(modm,) 

h t ~  a ddiorc modulo mp,n+,, for any A, B, C. 
0 

We leave the deteile of the proof to the reader. We obaerve only that, if 
the three systems 

au = 1 (mod m,) av m 0 (mod %) w rii 0 (mod %) 

bu=O(modmJ bu=I(modmJ b u t = O ( ~ d - )  
cu=O(modmJ cvrO(modmJ, w r l ( m o d w  

are mlved, then z = Au + Bv + Cw h obviody 8 dution of (8.12). 



Decimal Fractions 

We return again to the study of fractions. Common fractione, in the 
assemblage of Farey aequences, led us to linear congruences, Euclid'e 
lemma, and thus the uniqueness of prime factorization. 

This time we investigate the representation of common fractions as 
decimals. These are for themselves worthy of arithmetical studies, and 
moreover they will 1 4  to a new approach to the Fermat-Euler theorem. 

It is a familiar feat that any decimal that is either terminating or periodio 
is the decimal expansion of a rational number. We shall be conoerned with 
the convense problem. Given a rational number, we shall see that ita deoimal 
expansion is either terminating or periodic and that the decimal digits have 
interesting arithmetic properties. Let us look at some examples : 

These are finite decimals. But examine 4 = 0.333 . 

both obtained by long division. 
We say that these decimals are periodic: 4 has a period of length 1, and 3 

has a period of length 6. In theory, in order to write down 4 , we must write 
an infinity of 3'13, but we get around this by drawing a line over the period, 
thus : 

Thie shows that 3 and 142867, respectively, are to be written out indefinitely 
&r the decimal point. But now let us look a t  ) 

Thim ie written as 0.16. The periodic deaimele that sfut tbeir penod at fbe 
d e a i d  point, euoh ao + 4 + , am &pvns periGdio deabah. Tbe d d d  



.f does not start its period at the decimal point, and thus it is not pure. Thin 
case is of little interest. We shall consider the two other cases. 

I. FINITE DECIMALS: In general, if A/P@ is a proper reduoed fraction 
(A integral), it has a finite decimal expansion because it can always be 
changed to a fraction with a denominator that is a power of 10. For if, say, 
a 1 /I, then 

A A .  5 ~ - s  A .  5 ~ - s  
--- 9- 24.5" 

- = o  . . . . .  
loa - 

a places 

If /I > a, we multiply by 2(8-a), and there are /I places. For example, 

Conversely, if a fraction has a finite decimal expansion, multiplioation by a 
suitable power of 10 gives an integer. In reduced form, therefore, its de- 
nominator contains only 2 and 5 as prime factors. 

11. P m r ~  PEBIODIO DEOIMALS: We shall show that, if Alm ia a proper 
reduoed hct ion with (10, m) = 1, then Alm has a pure periodio decimal 
expansion. To investiga$ this, we firat ask the question, "How do you find 
the successive digits in the decimals?" When we divide A by m we have 

whe reOdq j< lOandO<r j<m.  
All the remaindem r, ue prime to m. We can seeth is by induotion. For 

rl = A ia prime to m. 8inw r,, = 1&, - qjm, we have r,+, = lCk, (mod m). 
8inoe (r,, nr) = 1 and (10, m) = 1, it follows that (I&,, m) = 1, and heme 
that (r,,, m) = 1. 

Sin08 there are infinitely many r's and all the r's lie between 1 d 
rr - 1, there mwt be two equal r's. Let the first r's that are equd be rj  uxl 

r,,. We must show j = 1. If j > 1, then r is dehed. Then 

r, = 10rel (mod m) 
and 

r*, = W+,l (mod m) 
ao that 10r ,, r lOr,.+,, (mod m) . 
But (m, 10) = 1, and thus 

rj-1 = r*,-, (mod m) 

Now rhl and rj+,-, lie between 1 and m - 1 inclusive and therefore are too 
small to differ by a multiple of m, unless they rue e q d .  Thus Y + - ~  = rHC1, 
and this contradiots the faot that r,, r,+, wee the k t  equal pair. The first 
cua of r, = Y,+~ ocmurs when j = 1, and the sequenoe of r's i. purely p d d i o  
with period I .  It follows that the sequence of q's (that is, the aquenm of 
deoimal digife) ia also purely periodio with period I. 

We let A(m) denote the length of khe period of the d e c W  erpnneion of 
l/m. Later we shall see that all proper reduoed hotions A/m have the ume 
period length A(m). We first show that A(m) S p(m). This is true bemum 
there ue only p(m) residue olesees prime to m, and a t  l eu t  two of rl, 
r,, , r,,(,,+, must be equal. Iat u6 look at  some numewiod eridenm. It 
uan happen that A(m) = p(m), for 

A(7) = 947) = 6 
and rZ(17) = ~ ( 1 7 )  = 16 

aa diteot oomputation will show. We have mentioned ) above, and we lhd 

But ) = 0.3, m that A(3) = 1, while p(3) = 2, ao that 43) < ~ ( 8 ) .  Ih 
addifion, we have = 0 . m  00 thsf 421) = 6 while 



then 

This is so because, if we had started with A = rj  instead of A = rl, we 
would have followed the same procedure and would have obtained the same 
q's and r's in periodic order, the period starting, however, at a different plaoe. 
For example, we have olredy had (written now in abbreviated form) 

Corresponding to this we have 

117 = 0.- 

317 = 0 . m  

217 = 0.285714 

617 = 0.867142 

417 = 0.671428 

617 = 0.714286. 
Now let us look at 

0 . m  
41) 1.0 

100 
180 
160 
370 

1 

The five reeidues r are 1, 10, 18, 16, 37. 

THEOBIEM 16: The midue (d 41) d n i a g  1, 10, 18, 16, and 
37 form a rnuli~ical iw group. 

Proof: 1 3 1 106 (mod 41) 

10 EZ 1 1@ (mod4l) 

18 = 1 1@ (mod 41) 

16 = 1 1@ (mod4l) 

37 = 1 l(r (mod 41) 

1 = 1 1V (m* 41). 

Thue dl these r's are congruent to powaro of 10 (mod 41). If 

r = 10L (mod 41) 
and 

e = 10' (mod 41) 
then 

re = lok+' (mod 41), which is aleo a power of 10. 

If r = 1ok (mod 41), k = 1,2,3,4,6, then a = 10b-) (mod 41) b the invem, 
since 

re= 10) - lWk= 1@= 1 (m0d41). 

This proves that the residue classes of 1, 10, 18, 16, 37 form a s u b p u p  of 
the group of residue c k s  prime to 41. 

There is no magic about the number 41. In general, if the r's which oaour 
in the decimal expansion of llm am r,, r,, * , r,, then, since rl = 1 p d  
rj+l 31 lorj (mod m), it followa under the uumption (LO, m) = 1 thU 

rj = 101-I (mod m), j = 1,2,3, . 
Since all the rj, j = 1,2, - , A ;  are incongruent modulo m, it follows that 
all the powers 10j, j = 1, 2, , A, are inwqpent  modulo nr. Further; 
rA+l = rl = 1, so that 101 = 1 (mod m) and 10' is the leu t  power of 10 whbh 
is oongruent to 1 (mod m). In prvticular t h  czisb a power of 10 u 
amgmmt to 1 (mod m). The residue clseeee containing r,, r,, , r, are jwt 
the residue classes containing lo0, 1@, , 1@. In view of the ooagruem 
10" = 1 (mod m), the residue claeees containing 100, 1@, , lw form, 
j u t  .a in the wae m = 41, a s u b p u p  of the gmup o f redue  OLraphae 
to m. Shoe the group of residue olPssee modulo nr vhioh am priaae fo m b n  
order (p(m), it follows &om the elementa of group theary Wt the order of 
the subgroup ooneieting of the cleeees oonfeinine rl, r,, rA divider q(m). 
Thue we have the following importnnt theorem. 



We shall, however, prove this theorem without assuming anything about 
groups and get some additional information about decimal expamione. For 
concretenees let ue ooneider the case m = 41. One can give a proof for the 
general case along the same lines. Since 1,10,18, 16,37 are the r's associated 
with the h t i o n  1/41, we see that 2,20,36,32,74 would be the r's seeocieted 
with 2/41 except for the h t  that 74 > 41 is too large. But our roheme for 
generating the q'e and r'e bows that we am to reduce 74 modulo 41, and fhue 
we obtain 2,20,36,32,33 as the sequence of r's for 2/41. Note that 2,20,38, 
32,33 represent j u t  t h m  residue classes modulo 4 1 which containelementa 3 

2 10L (mod 41) for some k. Similarly, 3, 30, 13, 7, 29 are the r's for 3/41. 
Continuing in this way we see that any proper reduced fraction A141 give8 
rise to juet five r's and hence that the period length of all fractione A141 ie 
the same aa that of 1/41. We also see that the ~ ( 4 1 )  numbers lees than 41 and 
prime to 41 are divided in thia way into a certain number of diejoint sets of 
d(41) integem each. If there are k sets, then k A(41) = q(41), and hen- 
d(41) dividee ~(41) .  This proves our assertion. 

We have seen above that = 1 (mod m), so that m I ( I @ ( ~ )  - 1). 
If q(m) = kd(m), then loq(") - 1 = 1W(") - 1. If we use the identity 
a? - 1 = ( x  - I)(*-' + 9 - 2  + . + 1) with x = 101("), we see that 
m I (lop(') 6 1) or that lWtm) -- 1 (mod m). Thus we have proved a special 
case of the theorem of Fermat-Euler (Theorem 11) : 

If (m, 10) = 1 then 
lov(") = 1 (mod m) . 

In pastioular, if m is a prime p and p # 2,b we have 

10P-I = 1 (mod p) . 
Actually the significance of 10 in the statements of these theorems is only 
that we have used decimal expansions, which are expansions to the base 10. 
If we agree to work to the base q, then we again obtain the full Theorem 12 
with a different proof. 

FEEMAT-EULEIL TEEOREM: If (q, m) = 1 then qHm) = 1 (mod m) . 

Approximation of Real Numbers 
by Rational Numbers, 

Application to Sum of Two Squ~ree; 

Prime Numbers 
in Certain Arithmetic Progrewions 

Diriablet9n pigembhde pdndpk So Eer we hove d 4 t  only with mionrl 
numbers. We are now going to establish some inequelifiee relating imtiod 
numbere to rational numbera. We ehell obfein some theorem whioh will be 
useful in giving other proofs of previously established ramlt. and in giving 
more insight into the nature of rational numbers. 

Let y be an irrational number. We whh to find out how closely we aur 
approximate y by a rational number h/k with denaminrfar k. Far any L the 
irrational y will lie between h/k and (h + l)/k far lome h. Them either 

h 1 
o < y - p 3 ,  

where, because of the irrationality of y, equality aigru me osrt*nly exchded. 
For certain k, however, much better approrimetiom are poerible. 
We use the "pigeon-hole principle" of Dirichlet whioh etates that, if N 

objects are p M  in N - 1 pig&-hoh., then a t  lsut one hde will oonth 
two or more objeots. If, as u s d ,  [XI denotes the pater f  integer not 
exoeeding z, we teke ee objects the N red numbere 

O<ny- [ny ]< l  n = 1 , 2 , 3 , * - * , N .  

1 2  N - 1  
h pigeon-holes we take the i n t e ~ ~ &  (0, i), (E, z), 9 (T r 1). 

There are also N of these. We now-hrve the following porsibilifibs befocs ru: 
1. There is one "object" in every interval. Then them L in putiaolv 

en integer m d N such that 



Dividing by m we obtain 

2. The h t  interval (0, 1/N) does not contain an "object." All N objects 
will then find their place in the remaining N - 1 intervals, and thus one 
interval will con@in two different objecte. Therefore, with 

O < m < n N ,  
we have 

Here we have found two positive integers k = n - m < N and 

h = [nyl -[my] < N 
which fulfill 

It again follows that 

Thus, in either case, y is approximated to within l/ka by a &action h/k. 
More precisely, we found a fraction hlk with denominator k 5 N so that 

We can a h  obtain this result by the use of Farepfractiona, with even a 
slight improvement. In the Farey sequence of order N, we know that we can 
find two consecutive t e r m s ,  a/b and c/d, such that 

We consider the mediant a+C . Then y lies on one or tbe other side of 
b + d  

Since the mediant is not present in the Farey sequence of order N, we have 
b + d 2 N + 1. Thue either 

which again implies (6.1), with even the improvement (N + 1) instead of N. 
Altogether, we have proved the following theorem. 

Remark: Our masoning remains valid if y is not irrational but is 
replaced by a reduoed fraotion l/m with denominator m > N eo that Z/m t 
not found in the Farey sequence of order N. Then, however, it may happen 

that--=- ' a + ' and this possibility will not allow ua to state a striot 
m b + d '  

inequality in (6.6). We therefore obtain another theorem. 

Equality takes place here for m = N + 1. 

&Imr of two I Q ~  Before we pursue the question of approxb&h 
further, let ue look at some eppli~tione of thie theorem. 

Pwqf: Let ua t r ~ e  N = [t/;] < n in Th-m 17.. It ie  evident thl 
our hypofbesie implies (u, A) a 1. Therefre, acmdhg b Thbarar 178, 
fheore exiota &tion r/r in lomat t c m ~  moh t&t 



Thia yields 

If we put t = Ar - n, we have 

t2 + 8' = (A8 - m)' + sg = $(Aa + 1) - 2 A m  + 1.4,' 
and thus 

tg + e' = 0 (mod n) . 
On the other hand, 

fl + < (6)' + ([&I)' 5 2%. 

Thus ta + sl ia a poeitive multiple of n but less than 2n. This lee- only the 
possibility 

n = P + e ' .  

(8, t) = (8, A8 - n) = (8, m) = (8, n) 
and 

I n  =a'+ t a=  $(A'+ 1) - 2 A m  + 
or 

We recall that (A' + l)/n is an integer, and see that any oommon divisor 
of 8 and n must divide 1. Thus 

COROLLABY: If n I (Aa + a), n 2 2, and (A, B) = 1, t h  thew exiut 
inkpraa,twi#hn=s'+ta.  

We have the algebraic identity 

(A8 + S)(@ + P) = (AC + BD)' + (AD - B w  . 
But, since (A, B) = 1, we know that we can pick C and D ouoh thet 
AD-BC=l .Thwwehave  

(Aa + $)(o + P )  = (AC + BD)' + 1. 

If n ( (A' + P), thefore,  then n I (F + l), where A 0  + BD = T. 
Then, however n ia of the form P + e' by the theorem we have jflet proved. 

Prim, nambar d tbe form 4n + 1. Recall that we have proved the 
exietenoe of an infinite number of primes ZG 3 (mod 4). Now we are able to 

prove the exiatenoe of an infinite number of prim- p sz 1 (mod 4). We pl6 

an erfearion of Eualid'o argument nnd Theorem 18. - 

Talioa~v 19: There exid8 an i@nib nuder of p h ~  p e 1 (d 4). 

Proof: Suppose there are only a finite number, and let tbem be 5, 13, 
1 7 , * * * ,  p. Form the number N = ( 2 . 6 0  13. - p p  + 1. Thb N ir aaa- 
p e n t  to 1 (mod 41, but it cannot be prime because all the prima I 1 (mod 4) 
are less than it. In addition, it hm no even EPOforo, bwauae it in odd. Thru 
any factor of N must be of the form a' + Y, bemuee it dividee 6 number of 
the form Aa + 1. It is = 1 (mod 4), therefore, h w a e  every quue io 
oongruent to 1 or 0 (mod4), and, since a' + Y is odd, a' + Y SS 1 (mod 4). 
Consequently, any prime divisor of N hi eleo a prime 3 1 (mod 4). 8uoh 8 

prime diviaor cannot equal any one of the let 6, 13, 17, , p, time tbas 
obviously do not divide N, and so this oontradicts the (~88umptian that there 
are only a finite number of primes = 1 (mod 4). 

Some themem. We may uee the method of Theorem 18 to 
prove a &nib theorem about numban of the form C + 916. 

Proof: Our hypotheeie impliee (A, n) = 1. Let ue pick on N < n, but 
leave it t e m p o d y  unspeoifled. From (6.7) we have the exiatenoe of ooprime 
intagere r, r euoh that 

Continuing ae before, 

Now following our old proof, we know W 



integer N for which n2/N2 + 3N2 is small. Let us set F(z) = (na/lz') + 32' 
and use differential calculus to find the real number x > 0 which makes F(x) 
a minimum. We have 

Note that F'(x) = 0 when 2n2 = B d ,  or when z = d; 3-4. Thus, choosing 

N = [fi is probably good enough for our purposes. 
We have then 

Since 3 < 2 6  < 4, and since n I (t2 + 3s2), we have 

If t2 + 3e' = n, we are finished. If t2 + 3s2 = 3n, then 3 1 t: say 3T = t. 
Then n = sa + 3 P ,  which proves our theorom in thie case. Finally, 
t2 + 38a = 2n is impossible. For, since n is odd, 2n = 2 (mod 4). But 

s2, t2 = 0 or 1 (mod 4), and no combination of (y] + (i] (mod 4) is congruent 

to 2 (mod 4). Our theorem is proved. 

We can now state a corollary as we did before. 

COBOWY: Z j  2 % n, 3 % n, (A, B) = 1, and n ( (AS + 3B9, then 
n = P + 39. 

For, as before, 

(Aa + 3P)(CB + 308) = (AC + 3BD)' + 3(AD - BC)" , 
and, as before, we can set AD - BC = 1. Then n ( (P + 3), and hence 
n = t8 + 381, by our theorem. 

Now we can prove the existence of an infinite number of primes p E 1 
(mod 3). 

THEOBEM 21: There exisls an injEnite number of primea p E 1(mod 3). 

Proof: The proof is like the proof of Theorem 19. Hem we coneider 

( 2 * 7 * 1 3 *  1 9 * . . p ) e + 3 .  
This is divisible by neither 2 nor 3 ; hence any prime divisor q hae the form 
q = t 8 + W =  1 (mod3).Butq#7, 13, 19 , . . * , p .  

T ~ E o ~  22: If n ) (A8 + 2), A odd, then there dz*( Mhud numbera 
x , y d t h a t n = 9 + 2 y ' .  

We leave the proof as an exmise for the reader. 
The situation is, however, quite different in the following theorem. 

T a ~ o l u ~  23: If n 1 (A8 + 6) with (A, 6) = 1, then either thu c q u a J h  
n = z S + 6 y l o r & c p l c l ( i m , 2 n = z ' + w i r d d , b u ( d M .  

Pruof: We ehdl ooneider the olause "but not both" later (p. 72). 
Otherwise we pmceed aa before. We ohooee N = [d 6-11 and &Id a friction 
rls euoh that 

We then have 

We put t = As - rn and have 

[Jinoe n divide8 As + 6, 
P+@=O(modn) .  

On the other hand, 
t a + 5 . ' < n f i + 6 n 6 - * = 2 d i n .  

Now shoe 4 < 2 h  < 6, and ta + W ia a multiple of n, we oen b v e  only 
the cureee 

P + 680 = n or 2% or 3% or 4% . 
I 

The h t  two oseee are noted in the thearem. The fourth oaoe implies 

Therefore t and 8 ue both even, esy t = q, 8 = w, and t$uo 



and, einw the aigm of s and t are arbitrary, we can aseume 

We now put 

where z and y are both integer8 in view of (5.10). If we now in& (6.11) end 
(5.12) in (6.9), we obhin 

wa + w = 3 { ( b  + yIa + 5yB) , 
and because of (5.8) 

212 = (22 + y)a + 5ya = X: + 5y2, 

which reduce8 oaee 3 to case 2 and finishes the proof. 

That the alternative in Theorem 23 is not due to a fault of our method 
and cannot be avoided ia shown by the pair of examples : 

but 2n, = 42 ie not expressible as xa + 5y2; 
(b)  18 1 126, na = 18 i. not expressible as d + 5y2 but 2 5  = 36 = 48 + 
6 2a.t 

t In the bmkground of Theorem 23 liee, of come, the fect thet the diecriminesrt 
-20 hu 2 cluwr (aa r matter of fect 2 genera) of binary quadratio form. The identity 

topther with the alternative of the theorem ehow that the form x1 + by1 and W + 
+ 3y' belong to difiarent claaats. 

Better Rational Approximation of Irrational Numbcor, 
Ford Circleti and Hurwitz'e Theorem 

Them elementary argument. may be used b lhor the edstanoe of iq$dd# 
manv  tio om h/k euch thsf 

I A 1 

However, using Famy sequences we o m  prom a muah utronger theorem. 

Pmof: Suppare that in the Fuey mqmnoe of arder N re have 

We wish b ehow fbat either 

Aamme the oontrery, 
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Now we know from the theory of Farey sequences that 

so that 

But this ie only possible for b = d. In addition, this impliee b = d = 1, 
since ad - bc = -1. Therefore, for a Farey sequence of order N > 1, (6.2) 
must be felee and (6.1) true, which proves the theorem. 

Thus we are led to the question whether infinitely many hotions h/k 
exist with efill better approximation 

with c'> 2, and what the greatest value of c may be. 
This question wee answered completely by A. Hurwitz. 

THEOBEY 26: For any positive c 5 dg, the ineqdity  (6.3) haa in$nUd/ 
many aolutione. There ezists, however, an irrational y for which (6.3) lras d y  
JFniWy muny adutWne in ma c > dg. 

l + d i  The second half of this theorem is easily settled. We fake y = - 
and 0 < a < 1 and a& for hotions hlk such that 2 

If we write 

the preceding inequality means 101 < a < 1. We have 

and after squaring and rearranging 
/38 

The integer on the lefthand aide annot  be 0 for in*n h, k not both cao, 
so we hove 

This restricts the denominators k, and (6.4) then also permite only finitely 
many h to each of the finitely many k. Therefore, (6.3) hee indeed d y  
finitely many solutions h/k for 

.- 

The Ford &h. We postpone for a while the proof of the b t  half of 
Theorem 26 in order to prepare a new fool. This ie a geometric figure intro- 
duced by L. R. Ford, coneieting of certain ciroles which have something to 
do with the Farey sequenoes. It ie ueeful to think of thew ''Ford oiralee" aa 
lying in the complex z-plane of z = x + iy .  

Let C(h/k) be the circle with center a t  h/k + i /2Y and d i m  1/2Y. Thus 
C(h/k) is the circle 

which lies in the upper half-plane and is tangent to the z-axis a t  x = (hlk). 
These circles have an important property. 

THEOBEM 26: Two &&tinct Ford cirdce ncver imtcr8CCt. They are tangint 
i f a n d d y  iftheirfractione are adjcrccnt onea iniunne Fareyqumce.  

Prooj: The centers of two dietinot oircles C(hJk), C(l/m) ue h/k + i / W ,  
l/m + i/2m2 with hna - Y # 0. See Fig. 1. The squue of the distance between 
their oentere ia therefore 

The square of the sum of their radii is 
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the circles do not intersect. The oirclee are tangent if and only if equality 
holds, that is, if and only if hm - kl = f 1. In this case, acaording to 
Theorem 1, h/k and l/m are adjacent b t i o n s  of some Farey aequenae (e.g., 
that of order N = k + m - 1). 

Note that, if C(h/k) and C(l/m) are tangent and if their point of tangency 
is w = u + iv, then u divides the segment (h/k, l/m) in the ratio 1/P: l/ms = 
ma: P. Themfore, 

(h/k)ka + (l/m)ma - hk + lm 
U = -- 

m4 + kg ma + P ( 6 4  

is s rational number, and similarly v is also rational. The pointa of tangency 
of Ford ohlee have rational coordinates. 

Figure 1 

Oirorrlu trhglm. Now the configuration of all Ford ohlee ahowa air- 
oular trkngles whioh are formed by arcs of mutually tangent o b o k  (ree 
Fige. 2 and 3). Let the circles be C(H/K), C(h/k), C(hJk,) with 0 < K < 
k < kl. The h t i o n s  H/K and h/k appear as adjaoent in the Fuey mquenae 
of order k. The freotion hJ4 ie not in this Farey eequenae. However, rinse 

is djownt  to H/K as well as to h/k (beoause of the d.trgenoy of their 

Ford oirolee), it muat be the mediant - = - + ', in a pamy leqmnae of 
hlgher order I 

1 K + k  

h = H + h ,  k l = K + k .  ( 6 4  

We now return fo the proof of Theorem 25. 
Ist y be imtiod.  The vertical line z = y cannot rewh any point of 

tanpnoy of the Ford cirales. It must paw, therefore, through the inbpiot of 
iafinitely many of the ohular triangles. 

Let one euoh thngle be formed by arcs of the ciralee C(h/b), C(H/K), a d  
C(&&). Sinae~ the aonfisuration of Famy circles is eymmefsio obout the line 
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x = 4, we may replace y by 1 - y if necessary and then aseume without lose 
of generalify 

and also, of course, 

Let A be the point of tangency of C(h/k) and C(H/K) ;  B of C(h/k) and 
C(hJk,); and C of C(hJkl) and C(H/K) .  Let a, b, c ,  be the x-ooordinahe of 
A, B, C. Then, in view of (6.6), we have 

Thus 

C - a =  
H K ( p  - k12) + h1kl(P + K2)  - hk(k12 + Kt)  

(k2 + K2)(k12 + K2)  

because of Theorem 1 and the ordering (6.8). Finally with (6.6) we obtain 

kK + k2 - K2 
c - a =  

(k2 + K2)(k12 + K2) ' 
Let us put 

k a = -  p. 
Then we have 

s 2 + s - - 1  
c - a =  

K 2 ( 3  + l)((g + 112 + 1 )  ' 
and, since 

# + 8 - 1 > 1 + 1 - 1 = 1 ,  
we conclude 

c - a > O .  
Similarly we obtain 

However, b - a  a n  be poeitive or negative. Indeed an Baalogouo oomputsfian 

we see that the aign of b - a  is the eome ae the sign of 

We now oomider separately the oasee b > a  and b < a  (b = a ia impc#ei& 
*nee the polpornid in (0.0) onmot vanish for rational dues of 8.) 

We intend to ehow that in this case 

Indeed. becauee in this caee a  and c  are the extreme abeciseee of the oinmbr 
triangle whioh is hit by x = y ,  we have 

Now 

Binoe the first b f o r  and a  fortimi the m n d  Eootor am poeitive under our 
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so that we havein this oam: 

This time we intend 4x1 show 

1 

Under our oonditiona 
l:-yl<7ri$ 

b < a < c  
and therefore 

b < y < c .  
We derive firat that 

This is fairly clear geometrically since C is higher on the circle C(hJkl) than 
B, C(H/K)  having a radius larger than that of C(h/k). Explicitly we have 

end so indeed 

- - 
and h u s e  of (6.11) 

Here, agein, however, 
4 8  + 1) 1 <- 

2 + (8 + 1)s 6 a 

Indeed, the oppoeite 
a(a + 1 )  1 >- 

2 + ( 8 + l ) S  4 

whioh is wrong since Case I1 preeuppose~ a - f - ( ~ 1 2 )  < 0. 
Heme in both owes we have found e freotion I/m m that 

Here i/m waa determined by the triangle ABC travemd by the line z = y. 
8inoe this line cuts across infinitely many such triangles, there are infinitely 
many fraotione i /m satiaf@g (6.12), whioh proves Hurwita's theorem. I 



Primitive Congruence Roots; 
The Regular Heptadecagon 

P&&~v@ angnume roois. We have seen in Theorem 13 that a con- 
gruence of degree n modulo a prime number p cannot have more than n 
solutions modulo p. 

This maximal number can be attained ae the example x9-I - 1 E 0 (mod p) 
shows, whioh has the eolutions x = 1, 2, . . , (p  - 1). I t  follows that if 
d I p - 1 then @ r 1 (mod p) has d solutions. For let p - 1 = md. We then 
have the identity 

But the congruence d - 1 - 0 (mod p) has a t  most d solutions, and the 
congruence x(m-l)d + x(m-2)d + . . + 1 = 0 (mod p) has a t  mwt (m - 1)d 
solutions. If 9 - 1 = 0 (mod p) had less than d solutions, then xP-1 - 1 = 
0 (mod p)  would have less than d + (m - l)d = p - 1 solutions, which is 
not the case. Thus d - 1 = 0 (mod p) does indeed have d solutions. 

If d I d, then x" - 1 divides i - 1 algebraically. Thus any solution of 
2' - 1 r 0 (modp) is alw s solution of Z - 1 -- 0 (modp). We aay that a 
solution x,, of x - 1 r 0 (mod p) bt?@8 to the exponent d if it  ie a solution 
of # - 1 I 0 f mod p), but is not a solution of zd - 1 -- 0 (mod p) for any 
d < d. We sey then elso that xo is a primitive aolutitm of d - 1 = 0 (mod p). 
If a solution belongs to the exponent d; then necessarily d I (p  - 1). For if 
e = (d, p - l),  then e = md + r(p - 1) for suitable integera m and r (see 
Theorem a), and then zo = (zP)"(xo-I)' = 1 1 = 1 (mod p). Since e d, it  
follows from the minimality of d that e = d and hence d.1 (p - 1). Thus we 
may separate all the solutions of xP-I - 1 = 0 info classes of eolutions, esoh 
clam containing thoee solutions which belong to the exponent d.  We need 
only consider divisora d of p - 1. We let y(d) denote the number of solutione 
which belong to the exponent d, that is. the number of primitive sdutione 
of zd - 1 = 0 (modp). 

Proof: The statement is true for d = 1, 2. For ~ ( 1 )  = 1, and the 
congruence x - 1 = 0 (mod p) haa the unique solution x r 1. Glso ~ ( 2 )  =. 1, 
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and the congruence Z - 1 = (x - l)(x + 1) = 0 (mod p) haa the unique 
primitive solution x -- p - 1. Let us pmve our theorem by induction. 
Suppose y(d) = q(8) for all d < d. Sinoe every solution of zl - 1 = 0 (mod p) 
L a primitive solution of a? - 1 = 0 (mod p) for eome divieor d of 1, we Ln 

Sinoe, by infiction, we have y(d) = q(d) for dl divisora d of d exoept perhepa 
d iteeIf, -we may write 

d = I: q ( 4  + p(d) - y(d). 
did ? / 

On the other hand we have from Theorem 11 

Thus 

and this ie the eeeertion of our theorem. 
Ae a corollary to our theorem we see that primitive solutions of zd - 1 = 

0 (mod p) do indeed exist for all divieora d of p - 1. In particular, there does 
exist a primitive solution to the congruenoe 2'1 - 1 -- 0 (mod p)  and in 
feot our theorem insures that there exist ~ ( p  - 1) primitive eolutions. A 
primitive solution of x" - 1 I 0 (mod p) is called a pimitiue ma( madulo p. 

These notions have some bearing on the length of the perioda of decimelr. 
We found i(m) to be the smallest exponent d > 0 so that 1Y = 1 (mod m). 
(See the paragraph preceding Theorem 16.) In particular, for the modulua 
m = p we have i(p) = ~ ( p )  = p - 1 if 10 is a primitive mot modulo p. 
For example, 10 ie a primitive mot mdulo 17 since lo1@ I 1 (mod 17), but 
no lower power of 10 is congruent to 1 modulo 17. Thus l(l7) = 16 u we ' 
have found on page 27. Similarly 10 is a primitive mot modulo 7, i.e., 
1(7) = a. But 10 is not e primitive mot modulo 41, shoe we M 1(41) = 
6 < 40. 

In view of the E u k  theorem 

aptm) E 1 (mod m) for (a, m) = 1, 

it  ,is reaeon+ble to .a& whether them exist primiriue mob d w b  m k 
oompaeite m, that is, aolutione of the ooneprup,me 

whioh are not slso eolutione of zl - 1 = 0 (mod m) with d < Mm). W 
m v e d  01881 heve to be treeted aepsrr,tely. 
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Proof: Let r be a primitive root modulo p. Then rp-I -- 1 (mod p) and lo 

'"-I= 1 + p t  

where t is an integer. For any integer x we have 

where a is an integer. Now let x be a solution xo of the congruenoe 

t - rP-a% EZ 1 (mod p). 

Since (r, p) = 1, we know that such a solution exists. Then 

(r + r)~g)"-l = 1 + pto, 00, 2)) = 1 . 
We assert that r + pz, is a primitive root modulo pa. To see this we muat 
compute (r + for any positive integer 8. We have firat 

(r + px0)o(P-l) = (1 + pto)P 

= 1 + (f) PtO + (;) (Pt0l2 + . . + (;) (pt0P 

= 1 + P% 

where (t,, p) = 1 since t, = to (mod p). Similarly we have 

(r + p~o)""l) = (1 + p2t1)' = 1 + ~ 3 2  

where (I,, p) = 1. Continuing in thia way, we arrive a t  the general formula 

(r + px0)fi("-l) = 1 + #+It a, (ta, PI = 1 
Let d be the least positive integer with 

(r + pxO)d = 1 (mod pa). (7.1) 
We must show d = pL1(p - 1) = q(pa). From the preceding oongruenoe 
we have a forCiori (r + pqJd = 1 (mod p) and hence *. = 1 (mod p). Thus, 
since r is 8 primitive root mod p, we have (p  - 1) ( d. But on the other hand 
we have d I pel(p - 1) because of (7. I), and it follows that d = (p - l)p@ 
where /I a - 1. Thus we have 

(r + pxo)fi(*l) = 1 (mod pa). 

On the other hand, our previous computations show 

from whioh it follows that a S /I + 1. Thus @ + 1 I: a 5 /I + 1, m tb t  
a = /I + 1 and then d = $(p - 1) = pel@ - 1). Thia o o m p b b  the pmof. 

Noh that if r is a primitive root modulo 9 then we do indeed have 
r*l= 1 + pt where t is prime to p, and our oolutruotion ahom tb.t r m a 
primitive root mod pa for ell a = 1,2,3,  . 

Let us give an example. 7 is a primitive mot modulo 6, but linoe 7. = 
1 + 2400 E 1 (mod 26), 7 is not a primitive root modulo 26. Our oodmofiolr 
tells us we mubt solve the oongruenw 

2400 -- 7 4  = 1 (mod 5) 
6 

or 
480 - 3432 = 1 (mod 6) 

-32 = 1 (mod 6) 

so that x,, = 3 is a solution. Then r + pxo = 7 + 16 = 22 io 8 primitive 
root modulo 26 and in faat modulo all powere ba. 

Our theorem may be given a p u p  theoretio in'terprebtion : It eaye that 
the group of q(pa) residue oleeeee modulo pa prime to pa ig oyob. Any reejdue 
o h  oontaining a primitive root modulo pa is a generafar of the group. 

The theorem is falea for p = 2: 
2 has 8 primitive root : q(2) = 1, 1' = 1 
4 has a primitive root: ~ ( 4 )  = 2, 3' = 3, 3a = 1 (mod 4). But 8 h no 

primitive root shoe q(8) = 4, while 

If d is the smallest exponent such that ad = 1 (mod m), (a, m) = 1, then 
we say that a belungs to the exponent d moddo m. 

Probkm: Show that the highest exponent to whioh an odd number oan 
belong modulo 2*, y $ 3, is not (p(2Y) = 2''-1, but is k ( W )  = 2/-r. Bhow that 
the number 6 belonga to the exponent 2''-a modulo 2". 

If m is divisible by two dietinot priinee, and m # 2pa w h m  p is en odd 
prime, then there is no primitive root modulo m. For suppoee m = m,m, 
where (%, ma,) = 1 and neither of %, ma, is 1 or 2. Suppom (r, m) = 1. We 
ham P(=l) i;n 1 (mod %) and r+"m*) s 1 (mod m,). Now ~ ( z )  b evsn d e w  
z = l o r x = 2 . T h u a  
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Thus any number r prime to m belongs to an exponent at. moat (p(m)/2 
modulo rn. Therefore there can be no primitive roots modulo m. A fuFther 
consequence of what we have proved is the fact that I(m), the length of the 
decimal period of llm, ie a t  most (p(m)/2 in this case. 

ProbZcm: L e t p  bean odd prime. Show that thereexist primitiveroota 
modulo 2pa. 

The regular of 17 (the regular heptadecagon or in brief, 
17-gon). 

We are going to apply the theory of primitive congruence roots to the 
problem of cyclotomy : the division of the circumference of the circle in equal 
parta, as i t  was h t  done by Gauss. The most spectacular case is that of the 
regular 17-gon, which we shall discuss in detail. The resulting formulae imply 
the surprising fact that the regular 17-gon can be constructed by means of 
ruler and compass. In the next chapter we shall investigate some more 
general problems of cyclotomy. 

Let us now coneider our regular 17-gon. We consider it as a figure in the 
complex plane, its vertices being complex numbers, and we assume that it is 
inscribed in the unit circle about the origin with one of its vertices a t  the 
point of the complex number 1. Let z = x + iy  be any other vertex of the 
polygon. Since Izl = 1 we can write z, = cos Bj + i sin 8, j = 1,2,  , 16. 
The vertices of the regular 17-gon divide the circumference into equal parts, 
so that we have 8, = j8,, where 8, = (2tr117). The 17th vertex is again 1 : 

1 = cos 178, + i sin 178, = (cos 8, + i sin 8,)17 = ~ 2 ~ .  

Thus z, is a root of the equation z17 - 1 = 0. Since z17 - 1 = (z - l)(zl@ + 
z16 + + z + 1) end z1 # 1, it follows that z1 is a root of the "cyclotomic 
equation" 

z '@+z16+.-+Z+ 1 = 0 .  (7.2) 

Our problem, therefore, is to find an explicit formula for a solution of this 
equation, or a t  least an explicit formula for its real part x = cos 0 or for ife 
imaginary part y = sin 8. 

Since 17 is a prime, there exist primitive roots modulo 17. For example, 
10 ia a primitive root modulo 17. We set up the following table modulo 17: 

As we have seen, each residue which is prime to 17 o c c m  once on the bottom 
row, since 10 is a primitive root. Let us order the exponents of (7.2) w o c d h g  
to the order of (7.3). We oan rewrite (7.2) as 

We see that the exponents are successive powers of 10 modulo 17. Now we 
&all follow the method of C a w  and break (7.4) into two auma whioh he 
called "periods" : namely, 

Here we have taken in q-, and in qa every second summand of (7.4): in q-, 
those whioh are listed in (7.3) below an even n (including O), and in q, thoee 
below an odd n. We have immediately 

We would like to find the product q-lq-n, which contains 64 terms. Thie is 
not as bad as it looka if we multiply in a special way. h t  us try multiplying 
each element in 7, with the element in q-, that ie directly below it, and 
summing. The successive products are zzlO = 211, z l W  = zm = zu, &? = zle, 
and so on. We finally get the sum, after we reduce exponents modulo 17: 

But this is just q-,! Why ia this so? The reason is that, as we have said, the 
successive exponents of z in (7.4) differ by a factor of 10 modulo 17. It 
follows that the successive exponents which occur in q-I and qa differ by a 
h t o r  of 100 modulo 17. Say za and zb are members of ql and qr, respectively, 
and their product is za+b in either q-, or q,. Now the next f e r n  of q, and q, 
are zlom and zlm, respectively, and their product is just the next member 
of the period in which za+b belongs, namely zlOO@+'). In thie way, we alwaya 
will get in the product all the membere of q-, or of q-, if we get one of them. 
Which of the q-'s we get depends only on one element, say the firet. Similerly, 
if we were to multiply each member of q, by the member of q, below and 
one step to the right of it, then ell of the producta would be in the rome 
period of q. Thue, since z z14 = z* is in q,, i t  f o b w ~  that the m n  
remaining produofe z u  P = z', ,9 $0 = z appear in h, 'ULd the Bum 
of all eight products is q-,. Now we can do the aame tw .gin, b h g  ewh 
member of q, with the member of q-, that ie two, three, four, and eo on etepr 
to the right below it; we will alwaya get a period q ae~ a awn of eight produota. 
The p d  we get will be just the period oantaining fbs k t  pradraat. ThPr 
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we have very little computation to do and we find that qlqr io the sum of the 
termf4: 

zll + ... = q2 
zu + ... = 5'1 
z7 + . . . = 72 
ze + * . *  = rl2 
9 + * * *  = '71 
z' + * * *  - - 71 
213 + ... = 7s 
zl* + . . . = W  

Thus qlqa = 4ql + 4qn = -4. Since we know the sum and product of q1 
and qa, we may form the quadratic equation which has q1 and qa for ife roots. 
The equation is yg + y - 4 = 0. We can solve this by the quadratio formula, 
and the m f e  are eeen to be 

qptlr=t(-lf r n ) = t ( - l f  fi). (7.6) 

We see that 17 appears under the radical. In general, if we start with a 
p-gon, we can show that q1 and q, are quadratic irrationalitiee and that f p 
appeare under the radica1.t Now let us take new periods, q;, qn', q,,', and 
q;, forming ql', q,l, from ql, and q i ,  r/i,  from qz, in the same way that we 
formed ql, q2 from 7.  That means taking into each new eum only every 
eecond summand of the old sum : 

z + 24 + 216 + Z* = qlt 
2'6 + zB + 22 + z8 = q; 
%lo + P + 27 + zll = qs' (7.6) 

zl' + 26 + 29 + 212 = qql . 
We see immediately that 

rll' + %' = rll 
v,,' + TI; = qa . 

Now let us form ql' qa'. The same trick that we used before works now, end 
we find ql'q; is the sum of the terms 

zl@ + ... = 7; 
z'0 + . . . = %' 
9 + - * *  = rl; 
zB + . . . = q; . 

The sum ia : 
qa'q; = qa' + q; + q i +  q; = q1+ qa = -1 

Thue qa' and q,' satisfy the equation 

d - q l w - 1 = 0 .  

t W e  &ow I.tsr that q, - q, is e QeuesiPn Bum; me (9.3). (10.1). 

From the quadratio formula we find 

a'. II; = tbl * din3 (7.7) 

Similarly, we oan write down 

q;, C( = f(% f -1 (7.8) 

Now we claim that the choice of the dietribution of eigna in (7.6) urd (7.7) 
determi~tee the distribution of signs far (7.8). To show thie, we will erprtod, 

Here, again, the same triok works, and we have q a ' d  the sum of 
,u+ ... =%' 
z7 + ... = ?la' 
9 + * * *  = ?l,' 
,la + . . . = q; , 

so fhet 
qa'q; = 2q; + q; +q;; 

qa'q,' is the sum of 
,14+ ... = v; + - * *  "%' 
2+ + * * -  = ?la' 
%la+ ... = qa' . 

Thw we heve obtained 
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This is a very important result, and from it we have 

Now the left-hand side certainly depends upon which of 'li( or q; gets the 
plus sign and which the minus sign in (7.8). But the right-hand side depends 
only on the arbitrary choice of the signs among ql, Q, q i ,  qt), and thus we 
see that the distribution of signs in qS1, qdl is dependent upon the distribution 
among the other four. 

Now, let us go on with this breaking up into periods. We oan break up 
qll into periods aa follows : 

Z + 216 = ql" 

Now we have immediately that 

Thus qlN and qsN are roots of the equation 

u2 - qllu + qol = 0 
and we see that 

Thus z and z16 satisfy the equation 

We now assemble all the information we have gained about the q's. In (7.6) 
we make e choice of the signs and set 

If we again chbose the upper sign in (7.7) for q i ,  we have 

and have hemwith deoided 
q; - q; > 0 .  

Then (7.9) ehowe 
q; -q ;>o.  
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Hence in (7.8) the choice of the sign ie determined for qp' : 

Carrying out these computations we get 

end, henae, 

q; = f{-1 + dfi + .\/2(17 - 1/17)} 
q; = i { -1-  dE + 4 2 ( 1 7  + 4 5 ) )  . 

Them values are needed for qlR, q/ where the ohoice of signe is qph 
quite free. We eet 

q; = tctll' + dda - 497.7 
and obtain 

q; = i{f(-1 + fi + 4 2 ( 1 7  - fi)) 
+ JA(-1 + fi + d2(17  - f i ~ ) ~  + 1 + qfi - 6 ( 1 7  + m)} . - 
= $ { - 1 + f i + q 2 ( 1 7 - f i ) + f i } ,  - 

where 

But we have 

(1 + f i ) 4 2 ( 1 7  - dfi] = h d f i ( 1 / f i  - i ) ( i  + d f i ) ~  

= 4 2 6  16(1 + fi) 
0 

= 442(17 + 417) ) .  
This yielde 

R = 4 17 + 1 2 f i  - 442(17 - a) - 8d2(17 + fi) , 

a quantity whioh is r d .  We muld obtain r and rY &an (7.10) but 'are 
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The surprising featuw of the expression for qlW is that, in addition to the 
operatione of addition, subtraction, and multiplication, it contains only one 
further operation, the extraction of square roots starting from rational 
integers. The unit length being given as the radiue of the ciroumcircle of the 
17-gon, the expression for ql" can therefore be constructed by meane of ruler 
and compass as elementary theorems of geometry show. It is possible there- 
fore to construct the regular 17-gon by means of ruler and oompaee alone. 
This is Gauds discovery published in his Disquisitione Arithmeticae (1801), 
article 365. With justifiable pride, Gauss there points out that in Euclid's 
time the division of the circle in 3 and 5 equal parts was known end therefore 
the constructibility of the regular polygons of 2', 3 2p, 5 2", 16 2' sidesst 
but that for 2000 yeate nothing had been added to this knowledge. , 

It is fairly clear that Gauss's construction depends on the fact that 
16 = 17 - 1 is a power of 2. For it is just this fact that allows us to balve 
the periods again and again, end so to reduce the solution of the cyolotomio 
equation of degree 16 to the solution of a sequence of qudmtic equations. 
If p is a prime of the form 2k + 1, then Gauss's method may be used in this 
manner to construct the regular p-gon with ruler and compaee. If k contains 
an odd factor u, then 2k + 1 cannot be prime. For if k = d, then with 
2' = A we have 

v 

2L' + 1 = 2"' + 1 = A" + 1 = ( A  + l)(A"-1 - A"-2 + . + 1) , 

and 2,  + 1 is not a prime. Thus k must be a power of 2, say k = 2", and we 
muat look for primes of the form 2sn + 1. Let us nee some examples : 

All these numbers are primes, called Fermat primes, and the oorresponding 
' 

regular polygons may be constructed with ruler and compass. Fermat 
studied the numbers 2'" + 1 in a different connection and conjeotured that 
they were all primes. But Euler ehowed that 2m + 1 is divisible by 641. 

If we try to apply Gauss's method to the solution of the oyolotomio 
equation for p = 7, 

~ + z ~ + " * + z + 1 = 0 ,  

we may construot thxw periods of two terms or two periods of fhwe farme, 
and we sw led fo a oubic equation which cannot be solved by mtiond 
operations and the extamtion of square mote. But, using Cerd+no'o d u t b  
of the cubic equation, we see that solutions of this equation may be erpeesred 
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in terms of square mta a d  cube rook. It ia a r e m h b l e  feot that sll 
oyolotomio equations 

z p - ' + z ) ' % + * * * + z + l  = o ,  pprime, 

can be solved by rational operations and successive extraotion of rook. 
This ie not at all the case for the general equation of the nth degree. In the 
sixteenth century Cardano mnstruclted an explicit edution for the genaral 
oubic, and Ferrari an explicit solution for the general biquadratic equation, 
both solutions in terms of rational operations and suo<teeeive extraofion of 
mote. But Abel showed, early in the ninefeenth oentury, that the gemral 
equation of degree n, where n r: 6, is not solvable in t e rn  of rdiorrlr 
(mW. 

Ern&: Solve the cyolotomio equation # + # + + z + 1 = 0. 



Solution of Cyclotomic Equations 

Primitive roob of unity. A solution of the algebraic equation 

is called an nth r d  of unay or a root of unity of order n. The number 1 is a 
root of unity of any order, a trivial root we may say. Of imporfence will be 
those mots of (8.1) which are not also roots of xk - 1 = 0 with k < n. We 
call such a mot (the.existence of which we shall have to show) a pimitiue 
rod of unity. Let 1 be any root of (8.1). Then it will be the primitive root of 
some equation 

xk--1=0, O < k S n ,  (8.2) 

where k is chosen as the smallest positive integer for which tk = 1. NOW put 

d = (k, n) . 
We can then find a and b so that 

d = k u + n b .  
Since, moreover, 

d = k(a + tn) + n(b - tk) , 

we can assume a > 0 without lose of generality. Then, for any positive c 

We can take c so large that b + c > 0. 
Then from (8.1) and (8.2) we obtain 

so that 

Therefore, eince E waa minimal, k = d, and k is a divisor of n. Any root of 
(8.1) is therefore a primitive mot of unity of some order d, where d I n. 

Let C,, j = 1,2, * * * ,  v, now be all theprimitiverooteofxr - 1 = 0. We 
define the cyelotonrk polyninnial Fa(%) of order n ae 

We see that Fn(x) is a monic polynomial (i.e., one of hlgheet ooeffioient 1). 
If no primitive roofs of order n should exist, we might set PJx) = 1 but we 
shall see presently that this will not occur. We now have evidently 

xn - 1 = n F~(x) . 
dln 

(8.3) 

For instance : Fl(x) = x - 1, 

$ - 1 = Fl(x) Fa(x) ; 
thus 

Fe(x) = x + 1 . 

THEOREM 29: The cycldomic polynomiul FJx) of order a ia  a monk 
polynomial of degree ~ ( n )  with integer coeflcients. 

Proof: We employ induction. The theorem is true for n = 1,2. h u m e  
it to be true for all Fk(x), k < n. Now 

say. But here, because of d < n, Qn(z) is a product of monic polynomials 
with integer coefficiente, hence it is also monic with integer coefficiente. 
Then 

Long division produces only integer coefficients here, because the divisor 
haa highest coefficient 1. Now as to the degree of Fa(%), if we eesume the 
degree ~ ( d )  for Fd(x), d < n, we have from (8.4), if v is the degree of FJz) : 

Thus v = g(n), in view of (3.8), Theorem 11. (This proof is oompletkly 
analogous to that of Theorem 27.) 

? 

Long division, used as a tooi in this proof, provides through (8.4) a . 
construction for c01188cutive Fn(x). Beaides the Fl and Fa already mentioned 
we find the following examples: 

In dl them examplee only the ooefl[ioienta 1, -1, 0 appau. Tbi. im not so in dl 
P,(z). Erdb (Bull. Amer. Math. 80c. (1B46). pp. 179-184) baa proved that tbom @.id 
oyolotomio polynomi.ls which have some arbitrarily lup rrnrlRntnt.. 
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A remark at the end of Chapter 7 can now be stated precisely as 

THEOBEV~ 30: The cycldomic equation can be solved by mdicale. 

We break the proof down into several steps. Suppose fvet that n = % n, 
is composite with (n,, n2) = 1. If t is a primitive root of unity of order n, 
and t, is a primitive root of unity of order n2, then we aswrt that is a 
primitive root of unity of order nlnt. For let us assume that ([1t2)k = 1. Then 
also 

1 = (&)knn = p a  . t i n s  = p a  . 
We can eolve the oonpence n2a E 1 (mod n,) for a and have then 

But h is a primitive root of unity of order n,, and therefore q I k. In the m e  
way we see that n, ( k, and, since (n,, n2) = 1, also n1n2 I L. But this meuu 
indeed that && is a primitive root of unity of order nln2. 

Thus if n = p p p f i  p? is the decomposition of n into primes, we lee 

that, in order to show that F,(x) = 0 may be eolved by ooneeoutive.ex. 
traction of roots, it suffices to show that all cyclotomic equations Fg(x) = 0 
may be solved by radicals. The case p = 2 and its powers can be dealt with 
directly. We have on the one hand 

On the other hand by (8.3) 

and thus 

But #-I+ 1 = 0 is already an equation of the binomial form. We have 

- l + i  
-1, - 1  = ,  l4= ;t- 

6 
as primitive mob of unity of orders 2,4, and 8, respectively, and oen oontinue 
thh lief by succeaeive extraction of square roots. In virtue of tbe formule 

we can even e x p m  a primitive root of order 2P in the form 4 + iB,, where 
Rl and B, Q real and contain only repeated square mo(. of poclitim 
r a d i h ,  for - 2 lAl. 

So let p be odd. The important case ia F,(x) = 0. We make rmwk 
about n = # at  the end of this chapter. 

The Lagrange mmo1vent. Sinoe 
29 - 1 = F1(x) F,(x) = (X - ~)F,(x) , 

we have for any prime p 
. FJx) = xF1  + zP-, + + x + 1 . 

Iat t; be a primitive mot of unity of order p. Then F,(t) = 0 or 
g + p + * * * + g r = - 1  

where here and subquently we write 

We now take a primitive oongruence mot g  modulo p. Then gr s 1 (modp) 
and no lower power of g osn be oongment to 1 modulo p. The r  = p - 1 
numbere 

$ , d , - , g * l  

ue oangruent modulo p to some permutation of the numbare 1, 2, , r ,  
and since an exponent of t oounta only modulo p, we may repbe tb 
preceding equation by 

p'+p+g@+-*+r ' '=  - 1 .  (8.5) 

In addition to the sum on the left side of thia equation, we infroduoe, following 
bgrange, some other linear combinations of the powere of I .  Let p Man 
rth mot of unity. (Note that p  is a mot of unity of lower order than C.) The 
mot p  does not have to be primitive. We oomidsr now the .urn 

(p,  g) = t + p P  + p r  + + p'-14?-l, (8.6) 

d e d  a Lagrange reeoluent. In thb nobtion we may write (8.6) dmply u ' 
(I, g) = -1 . (8.7) 

Ifwe knew all (p ,  C) for all p, u weknow (1, t), then we rodd&oLDor 
{ expmmd in tern& of p. Indeed we lpm 

In order to evaluate the individual sums on the nght a, we take 8' 

pimitiue mot of unity of order r .  Then dl the p'a fmm the at 
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We obtain therefore from (8.8) 

Our problem will be solved if we can obtain the Lagrange resolventa 
(p, 4) by rational operations and repeated extraction of roots. We need the 
the following lemma. 

To prove this we only have to realize that we can write 5 = pr4@', and 
thus, by a cyclic shift 

which yields the asamtion of the lemma. Repeated application of the lemma 
a h  shows 

(p, I;) = ph(p, PA) . (8.9) 
In order to fmd an equation for (p, 1;), we need the product of two Lagrange 
reedvents : 

(pk, 0 = I; + + Pakf + . . . + p(-i)~pr-l 

We carry out the multiplication in the manner in which we multiplied two 
"periods" occurring in the theory of the 17-gon. We start by multiplying 
terms in the same column and add their products (which wiQ yield here 
(pk+', 58)); then after shifting the lower row cyclically, we again multiply . 

terms above each other, and so on. It is better to express this prooess more 
formally. We have 

(pk, I )  =$'p"5@ , 
I A =O 

r-1 r-1 

(P', () = 2 = 2 PW+h)~'*tA' 
j -0 j -0 

for any h, in view of (8.9). Thus 
r-lr-1 

Now as j runs from 0 to r - 1, gj takes on the vmluea 1,2, * *  , p - 1 
modulo p in some order, and thus 1 + gj takes on the vduw 

in some order. Here 
1 + gj = 0 (modp) 

mure for j = r/2, because 
0 gr - 1 - l)W1' + 1) (mod P) 9 

and, therefore, 
grIa + 1 = 0 (modp) , 

since g is a primitive congruence root modulo p. For j # (r/2), themfom, 
1 + gj runs through 2, 3, , p - 1. Now let 1 = i(j) be that exp0n-Y 
for which 

r 
#(BE 1 +gj(modp)  j= 1 , 2 , * * * , r ;  j#;. / / 

Incidentally, we see that l(j) runs in some order through the eet 1, 2, , 
r - 1. If we now return to (8.10), we find that we have obtained 

Although we have defmed (p, I;) in (8.6) only for a p'mitiue root (, i t  is clear 
h m  the context that (pk+', ([O) here stands for 

0 for pk++' # 1 

= [r for pk+L = '1 . 
If we replace p by pk+' and i by l ( j )  in (8.9), we obtain 

With thia and (8.12), equation (8.11) beoomes . 

where 

t If gr = m (mod p), then p ie oelled tbo "index" of n. In our'-, u) 
irtheindsxofl+g'. 
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(8inm pr = 1, we uan have only pr1a = f 1, and thus also p(pls)z = f 1 .) We 
write for abbreviation 

where A, (p) ie a polynomial in p of degree < r ,  which ie obtained from 
r-1 

through the application of pr = 1. It follows that y&) hae integer 
ooefficiente. 

In the w w  1 = - k we can easily find the polynomial A, -&(p) f b m  (8.16). 
We have here, for a later application, 

-p-krla for pk # 1 
= 

- 1 for pk = 1 . 
Therefore from (8.15), (8.14), and (8.7) after some simplification, we have 

pp(r12)k for pk # 1 
(pk, ~)(P-"C 0 = (8.17) 

1 for pk = 1 . 
(The statement for pk = 1, namely (1, [)(l, 5) = 1, is, of course, already 
implied by (8.7).) Formula (8.17) implies that (pk, 5) # 0 for a 1  k. 

We can now use (8.15) for the computation of (p, 5). Let d be the smalleet 
natural number such that pd = 1. Certainly d I r, and we can assume d > 1 
since (1, 0 = - 1 is known. We write (8.15) for k = 1 and mocessively for 
1 = l , 2 , * * * , d -  1 

Multiply these equations with each other end cancel a nonvcmiehing factor 
(pa, () ($, () (pC1, C) on both sides. We then obtain a Eormula of the 
BOff 

(P, [)d = Yd((p) 

whereY&) is a polynomial in p with integer coefficiente. Thua any Lagrange 
remlvent (p, c) orn be obtained by root extraction from some polynomial 
ill p. 

The (p, () then in turn furniah (, u we h.re men. Sin- p h of lower 
order than (, we oan aaaume by induotion that the p'a ctan be obtnined in 
the name way, and we have then proved our theomm up to one gap, namely 
the diaourion of n = pa, a > 1. T b ,  horever, re d u o s  a d y  to tL. ou 
n = p .  

80 that 

is used ae an abbreviation. The eolution of 

Fp,(4 ,= 0 

is therefore achieved in two step. 

aan be eolved by radicals, as we have proved; and 

(2) .#-I = 

whioh involvee k - 1 euooeeeive extawtiom of pfh rook 
Them obeervatione now make the induotion oompleta tDr dl roofr of 

unity oforderbuth.npkmdthv.&ri.hths~ofTbsorsrn110. 



Gauseian Sums as Special Lagrange Resolvents 

Borne a p p l h b u  of the Lagmange resolvenb. The formulae of the 
previous ohapter contain a wealth of arithmetical information. Take a prime 
number p 1 1 (mod 4) so that r = p - 1 E 0 (mod 4). The numbers f l, 
ki are 4th roots of unity and therefore also rth roots of unity. We then 
write the following Lagrange resolvents according to (8.6) and (8.7), where 
I, is a primitive root of unity of order p: 

(1.6) = I, + I,' + pa + - * .  + pr-' = -1 
(-1, I,) = 6- f'+ I,'"-. .. - pr-' 

(i, 0 = 5 + i c g  - pa - . . - ir-' 
[ + . . . + q v T - l  (-i, 4) = [ - iI ,o - ga 

Now (8.15) in conjunction with (8.14) shows that 

(4 [Mi, 0 = (-1, OyJl,I(~) 
(4 I,N-i, I,) = (-1, C)yl*J(-i) , 

and from (8.17) we infer, since r/2 is even in our case, 

(-1, &-1, 0 = p 
Multiplication of the three last equations yields, after cancellation of (- 

( i s  tIS(-i9 oa = yl,l(i)yl*l(-i)p 
Then (8.17) with k = 1, p = i, p" = (-1)" shows that 

(i* I,)(-i, 0 = (-1Y1%, 
so that, in view of the previous formul, 

ps = ~1,1(~)~1,1(- i )~ 

or 

P = ~ l , l ( ~ ) ~ l , l ( - - ~ )  . 
Now ylel is a polynomial with integer coefficients, and therefore we may I 

write ylBl(i) = a + bi, where a and b are integers. Then, however, nel(-i) = 
a - bi and 

p = (a + bi)(a - bi) = as + bs . 
Thus we have proved the famous theorem of Fermat. 
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We shall be able shortly to give another proof of this t b m m ,  bued on 
Theorem 18. 

Emrcke: The procedure in Chapter 8 makes it poesible to oompute 
for each special odd p. Determine n,, for p = 13 and verify through it thU 
13 = 2' + 3'. 

We can prove a theorem similar to the last one for primes p = 1 modub 3. 

THEOREM 32: I f p M a p t . i m e ~ ~ c t b 1 d r b 3 , t b p = a ~ + S  
where a and 3 are integers. 

To show this, let I, be a primitive pth mot of unity, and p be a primitive 
oube root of unity; that is, a root of the polynomial F&z) = 2 + t + 1. 
Then we have from (8.15), for k = I = 1 

r - 1 
since - = '- is divisible by 3 under our assumption. Multiplying equatiow 

2 2 
(9.1) with each other and canceling a faator (p, 0 ( 9 ,  t), which, aa (9.2) 
shows, does not vanish, we obtain .by means of (9.2) 

P = n.l(p) ull,ApS) . 
I 

But fiS1(p), a polynomial with integer coefficients, a n  alwayu be writfen u 
A + Bp, since higher powers of p a n  be eliminated through 9 = - p  - 1. 
Hence fi,l(pa) = A + Bps and 

p = (A + Bp)(A + Bps) = A' - A B + P . 
To obtain the theorem in the form stated we note that A and B oannot both 
be even. If A is even and B odd, then the lest formula osn be rewritten .r 

while if A and B are both odd, thep 

in both caws showing integer squaree. 
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hu&n mum. Let p be any odd prime. In the theory of the regular 
17-gon we took every second term of a sum of primitive mote of unity 
arranged by means of powers of a congruence root g: 

This was broken into the two sums 

where as before r = p - 1, an even number. In the notation of the Lagrange 
resolvenfe, we have then 

??I + ??2 = (1, 0 
71 - ?'a = (-1, t )  (9.3) 

Now q1 only ahows exponents which are squares: 

The summands in t)t show exponents which are not squares and not oongruent 
to squares modulo p. Indeed q, has all the summands which are congruent 
to a square modulo p (except 0). If we have a square t2, p % I, then there 
exists u so that 

gU 3 ta (mod p) . 
We can then find an exponent v eo that 

t = gv (modp) , 
gU = gaV (mod p) . 

But thia congruence implies, since g is a primitive congruence mot modulo p 

which shows that u is even since r is even. 
The numbem that am congruent to a square modulo p are called qwdmtk 

rceidw moddo p, i.e., the numbers 

1 l ,PJ o", , 9.-a (modp) ; 
the othem, i.e., 

#,?,$, * *  ,g"l (modp), 

are d e d  pvodmiic l c o ~ d v a s  mudulo p. The number of qudntic residues 

r ie equal to the number of quadratio nonresiduee, and that number ia - 
P - 1  2 

In (- 1, [) the powen, with qudRtio residues as exponent. have a plm 
a n ,  thow with quadratio nonresidues a minus sign. If we themfore introdurn 
the Lsgandre rynbd (mlp) with the following definition 

+ 1 if rn quadratio reaidue modulo p (3 = ( - 1 if rn quadratio nonresidue modulo p 
(9 .4  

Thia special Legrsnge lp8801vent is caUd a Uu'ubBion rum, whioh we .h.u 
write simply .s O({). It is convenient to mppbment tbs debition of the 
Legendra symbol (9.4) by the d d i t i o d  definition 

We oan then write 

The Gwssbn sum can .Lo be written without tbs uae of the Lem 
symbol. Consider the aquama modulo p 

0, l', 2', , ( p  - 1)'. 

Any number a which ooours in th ia m y ,  th t  i., m y  q h t i o  d u e ,  
appears twioe, eince if 

zP=a(modp) ,  

hn & ( p  - 4% = pa - 2pz + d I a (modp). Tharefore, we have 
I 

r - 1  

a d  in view of (9.3), t 
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we can read off from 
gu . g v  = p + v  

the facts 
R x R = R  
R x N = N  
N x N = R ,  

where R  stands for quadratic residue, and N for quadratic nonresidue. The 
Legendre symbol permits the condensed expression : 

From our definition it is clear that the upper number in the symbol repmaenta 
only its congruence clam, so that of course 

(:) = (:) for a, = mz (modp) . 
We express the multiplicative property (9.9) of tho Legendre symbol by 
saying that it is a "chslmcter of the rwidue group modulo p."f Since there are 
as many quadratic residues as nonresidues, viz.  (p - 1)/2, we also note the 
property 

Now if a is a quadratic residue, then the congruence 

y2 = a (mod p) 

is solvable. If we raise both sides to the power (p - 1)/2, we obtain 

in view of Fermat's theorem. Formula (9.12) gives a necessary oondition for 
a quadratic residue a modulo p. This criterion, found by Eder, ia .Lo 
sufficient, eince the congruence 

which ia satisfied by the (p  - 1)/2 quadratic residues, cannot have further 
solutions (Theorem 13). Now we have 

f The multiplicetive property of the Legendre symbol eettlea e q d o n  left opsa 
in the p m f  .of rem 23. The two equations mentioned in the theorem imply 
n a zla (mod 6). d 2n = za8 (mod 5). respectively. The solvability of bdh there oon- 
gruenm cw be expressed by (n/6) = (2n/6) = 1, which ie impoeeible einoe (216) - 1. 

Therefore those numbers b which do not satisfy (9.13). i.0.. tb q&tio 
nonresidues, must fulfill 

b ( ~ - l ) l a  zz - 1 (mod p) . 
We now compare these ststemenb with the definition of the Legendre 
eymbol. 

THEOREM 33: The Legendre eymbol satkjka the colrgruu#ce 

(:) - m(-l)la (mod p) . 

The statement (9.14) is evidently a h  fulfilled for the oupplemenhry 
definition (9.6) of (mllp) in the case p 1 m. 

From (9.14) follow immediately again the statements (9.9) sad (9.10). In 
the w e  m = p - 1 = -1, Theorem 33 gives riee to s 00ralleFy. 

or explicitly: 
- 1 id a quudratic residue of the prime numbers p P 1 (mod 4)  a d  a Qucdrotic 
mresidue of the prime numbers p = 3 (mod 4). 

Therefore, if p = 1 (mod 4), the congruence 
A 

Aa + 1 r 0 (modp) 

is solvable. But the fact p I (A' + 1) has the consequence p = a' + Y in 
view of Theorem 18. Thus we have arrived at  a new proof of Femm$'s 
Theorem 31. 

The Corollary shows that those primes for whioh -1 ia a quadratio 
residue lie in an arithmetic progression. We may ask: For which prime0 is a 
given number a quadratic residue ?. The surprising answer ia tbt those prim- 
always lie in certain arithmetic progressions. Thin fa& b a comuequenoe of , 

Uauee's famous law of quadretic reciprocity. 

THEOBIW 34: If p and q are (differed) odd prima, then 

Thus (plq) = (qlp), unless bofh'p and q us congruent to 3 m d u b  4, in 
whioh oaae 



It ia clear that ifp is fixed, then (qlp) hat3 the same value for ell q' s q (mod p). 
Thia ia implied by the definition of the Legendre symbol. But Theorem 34 
impliea that, if the prime number q is fixed, then (q/p) haa the ume value for 
dl p' = p (mod 49). For then . 

C) = (;) , 

since p' p (mod 4q) implies p' = p (mod q), and 

since P' -- p (mod 4q) implies p' = p (mod 4), 

We reserve the pmof of Theorem 34 for the next chepter. 

The Law of Quadratic Reciprocity 
a 

Tha 0.od.n mum u pabdh b&imn, The tbsorsm mentioned in the 
title of thia aheptar is Theorem 34 of the previoum ahapter, whioh we dull 
now prove by means of the theory of GeurLn a m ,  drawing on our .nt& 
of oyo10tomy. 

Let p and q be different odd primes, and let ( be a primitive pth root of 
unity. We have from (9.7) a(() = (-1, t), and from (8.17) for p = -1 

by Theorem 33. All we heve to show now for the pmof of !Cheorem 34 L that 

We now generalize the deenition (9.7) by writmg for any integer t , 

This ectually is new only for t = 0 (mod p), since It for the other v d m  of l 
i8 a primitive pth mot of unity together with t i b l f .  For 1 s 0 (mod p) we ' 

have, however, by (9.11), 

With th ia definition we have now 

t Note that the we of (B.8) for a . of a((') rda Lm a Wlrrr 
&hitiom of Q(p) .  
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which is true for t = 0 (modp) and ia proved for other t as follows. For 
t + 0 (mod p) we choose t' such that 

tt' -= 1 (mod p) . 
Then we put 

tm = m' (mod p) ; 
thus 1 

m r m't' . 
We have from (10.4), since m' runs with m through a full residue system 
modulo p, 

n' mod p 

where we have observed that (t'lp) = (tip) because of (tt'lp) = ( I k )  = 1. 
This proves (10.6). 

Definition (10.4) as well as equation (10.6) shows that G(ct) is a periodic 
function in t of period p. 

Finite Fourier Isrir. Such periodic arithmetic functions can now be 
expanded in a finite Fourier 8erie8, in con~plete analogy to Fourier series in 
analysis. Indeed the following theorem, which is of interest beyond our 
present purpose, is valid. 

THEOBEV 35: LCt F(t) be a fundion defined jor dl integer8 t with the 
period m, and kt t) be a primitive lnth root of unity. 

with 

Proof: Formula (10.7) represents for t = 0, 1, . , m - 1 a system of 
m linear equations for the m unknowns a(u). Assume now for a moment that 
it can be so1ved.t Then the a(u) obtained must fulfill certain conditions. To 

t Th.t it can be alved in of coune ssen immediately, since it. determinmt is 
nonvaniehing Vmdermonde determinant. However, we do not need thie rayrk.  

see this we multiply both sides of (10.7) by q-.' and sum over t: 

1 m-1 
= 2 a(u) 2 q(r*)i  = m a(.) . 
u-0 1-0 

This shows that a(u), if it exists as a solution, is unique and oaa have no 0 t h  
form than (10.8). But this a(u) indeed satisfies (10.7) as can be seen by direot 

1 m-1 m - 1  
= - 2 F(8) 2 q*+r) = F(t) , 

mr-o u-o 

which proves the theorem. 

We may call the a(u) the "Fourier mefficients" of the finite Fourier arL. 
(10.7). 

NOTE: Bemuse of the periodioity of F(t) end a(u) with the period n, tbe 
wries in (10.7) and (10.8) need not be extended over the putiouh mnidue 
syatem O,1,2, , n, - 1, but may just as well be taken over any wmpbte 
residue system modulo m, a r e m h  which we ahdl preeently put to rus. 

Exercide: The function F(t) = p, where ( is a pth mot of unity @nd g 
a primitive congruence root modulo p, is periodic of period r = p - 1. 
Express the Lagrange resolvents in terms of Fourier ooefficients of F(t). 

Pmof of Ule ~uadratio reOiproaiQ w. We now apply Theorem 36 
to the Gauaian auma. Since a((:) is pbriodio modulo p, so L for my, 

pollitive integer k. The modulus m of the. theorem is to be repbad by p, 
and the mot of unity rj by the p h  mot of unity We then have 

with 

1 

3) r modv ml.%.---J% 
mod v 
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thus 

But aJu) a h  has another determination which we express in the following 
lemma. 

LEMMA: For add 6 the Fourier coe&ienlaq(u) d e j d  in (10.10) have the 
prW"t# 

where (10.6) is again applied, this time with 5-1 instead of 4. Comparing the 
last formula with its own special case u = 1, we obtain (10.12). 

We now insert (10.12) in (10.9), with the result (only for k odd) 

For t = 1 we know Q([) # 0 (see (10.1)) and therefore have 

Q({)k--l = ak(l) . 
In view of (10.3) we now have to study the case k = q for an odd prime 
q # p. We need Q(t)e1 only modulo q. Since it turns out that ae(q) is euier 
to treat than a,(l), we again apply (10.12) and obtain 

O(t)@-1 = (;) 2 (%ma; ma) , 
" j  

where the mj are restricted to m, + m8 + + m, ie q (mod p). Thi. mm 
haa to be evaluated only modulo q. Among the admitted v d u a  of the 
summation variables, let us k t  oonaider the poeeibility 

This would require ml + m8 + + nr, E qm, = q (modp) and themfk 
by Theorem 13 mj I 1 (mod p), yielding only the one summud 

(34. (10.14) 

All other solutions of m1 + ma + + ma = q (mod p) mmut oontain mme 
incongruent elements. Then a cyclic permutation of q, m,, , me will give 
a new solution. Indeed, a cyclic permutation of 

for a certain 8, 1 S 8 < q, the subwripts of the 111's being taken moddo q. 
If this set were the same as the previous one, we would hove 

m, = m*,, (mod p) 
Therefore, by letting j = 8, 28, , (q - l)r, s u o d v e l y ,  

where the subscripts form a complete reaidue system modulo q. Thia p o d  
bility we have however already treated separately. Therefore, t h m  mlutione 
of m, + ma + + ma -- q (mod p) in which some inoongruent elementr 
appear produce q times the same summand 

# 

and thus form a sum = 0 (mod q). Coneequently, modulo q only the single 
summand (10.14) counts, and we have &om (10.13) 

which finally settles (10.3). From (10.2) we then have 

~ u t  this oongruenoa must actu& be an equality, d o e  ~b .ids am 
and thw mwt either be equal or differ by 2, w h w u  tbs aonpmm &om 
th t  they oould differ only by a multiple of the odd prime norbr q. Ia bLr 
a d ,  we have proved (9.16), the mciproaity theorem. 



A mp&me&ry theorem. So far we have mentioned only odd primes. 
Now the prime 2 cannot appear in the "denominator" of a Legendre symbol, 
but it makes sense to aak for the value (21~). I t  is plausible that here .Im 
the prime numbers p for which 2 is a quadratic residue will lie in a oertrin 
arithmetic progression. By means of Euler's criterion, we Iht prepre a 
small liet of (21~): 

P -...- (4) " ( f )  = (A)  = (A) = (19) - - -1. 

It seems that (2/p) = + 1 for p -- 1 (mod 8) and (2/p) = - 1 for p Z, I 3  
(mod 8). Indeed we shall prove this conjecture in the following concise form. 

The poof will run very much like the proof for Theorem 34, although, 
of course, there is no question of reciprocity. We b t  define an arithmetio 
function 

%(n) = (10.16) 
n even 

This function is a character of the congruence p u p  modulo 8: 
(1) ~ ( n , )  = x(nJ for nl -- n, (mod 8), from definition (10.16). 
(2) x(n) x(m) = x(nm). 

Ti is certainly true if m . n is even. But if m, n are both odd, we have 

na - 1 ma - 1 (mn)2 - 1 - (n2 - l)(ma - +-- - -  8 8 8 8 = o (mod 2) 

which implies (2) in this case. Moreover, we have 

We now define a s r t  of Gaussian sum. Let 5 be a primitive 8th root of unity. 
We then set 

R 

u can be seen fkom the values of the primitive 8th root of unity given on 
page 62. Thus 

H(5)' = 8 . (10.17) 

in view of Fermat's theorem and Euler's criterion for quadratio residues. We 
define now, generalizii (10.16), 

8 

H(tt )  = I: %(a) ttn . 
n-1 

Here H(a t ) ,  and therefore a h  (H((t))k, is a periodic function of period 8. It 
possesses a finite Fourier expansion 

R 

with 

In analogy with the lemma on page 78 we have here the following lemma. 

First, for u odd we determine u', so that 

uu' r 1 (mod 8) . 
Putting then u' n, = n,', we conclude 

Secondly, for u even, the requirement 

n , + n , + * * * + n , r u ( m o d 8 )  

demands, shoe k is odd, that a t  Leut one of the y be 
whioh d m  

~ ( s p ,  ) = 0. This proves the bmmr for u even. 
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The lue of the lemma in (10.19) producss 

8 

I u-1 
and, sin08 &r (10.17) H ( 0  # 0, 

H(l)&l = bk(l) . 
In particulr, for l = q we obtain 

W" = b,(l) = x(q)b.(q) , 
the latter h m  (10.20). The sum 

b,(d = 2 
rl mod 8 

x(n,n* 
n1+%+...+n,=q (mod 8) 

which is Theorem 36, in view of the definition (10.15). 
The reciprooity theorem and the "supplementary theorem" about (2/p) 

can be used to oompute the Legendre symbol for large primea. 

The Product Formula for the G a w i m  Sums 

Tb poobbm of tb lbr d 8 auwlLn Tbe formula (10.1) of tbe 
previom ahapter givea only the a q u ~  of the Gharkn nun a() 4 +Idr 
merely 

G(O = &it*l)/Mp . 
Now, m the formula atmds, the ambiguity of the aign L uruvoi&b beacvs 
we have 

But dgebraicdly, for t + 0 (mod p), the root. of unity d C am idbtin- 
piahable, both being primitive roots. However, if we u w  a trouas*JJ 
oharaoterization of (, namely 

g = Ed", ~4p 

then the definition (9.7) aa well aa the definition (9.8) give ~~ oompbr 
numbers for a([) with no dternative in the sip. The problem of dstsr- 
mining the sign of the Gaussian sums for transoendentdy a p W  primitive 
rcmb has become famous since the time of Gauls, who devoted a beautiful 
paper to it ("Summrtio quarumdam serierum singulerium"). Since then a 
number of other quite different methbdo have b n  invented to d d  with tip 
eign of the Gausaian sums. 

Whereas our previous dloulsion of 0.- nrrm nu .U bawd on tbs 
definition (9.7), we turn now, following Q.uw to the debition (9.8). The 
main mault will be a remarkable W u o t  expamion of the GhIlr;ur mum. 
We ahall a t  the same time genenlise the 01unaien aluol h n  a prime number . 
order to any odd order of the primitive mot ( whioh appecn in the de8nitioll. 
This generalization will dm lead to a gsnmebtion ofthe lagodm rlrr,bd. 
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A rLght algebraic manipulation gives a relation between certain pairs of 
these nrtioml functions : 

(Here we observe that the numerator of the rational expression depends only 
on n, while the denominator is symmetrical in m and n - m, and thus the 
equality follows.) 
This relation reminds us of the equality of binomial coefficients: 

(, 1 ,). In order lo complete the analogy, we defme 
(:) = 

= 1, for n = 0, 1, 2, . . . 

sothatnow[:] = [ n - m  ]foral ln=0,  1 , 2 , * . * a n d m = O ,  1 , * * - ,  n. 

We also note that, in consequence of the original definition (11.1). 
r i . .- LC] = 0 for all m > n. (If we wish, we might also let 

m < 0.) 
If n and n are positive we have the recursion formula 

Since 

- 

this recursion formula shows inductively that the are indeed p ly -  [:] nomials, which we all the Gbw18ion polynomiak. If we factor out 1 - z in 

all the terms occuring in the numerator and denominator of 

Setting x = 1 we see that the value of the polynomial &I ia the b i i m i d  

For x = 1 our recursion form& for beoomar a fAmili8r f o r d  for tbs 

binomial &fficients. Note a h  that we have a wmnd reourreno0 rekiibn: 

Exerciee: Prove the identity 

htt ing x = 1 gives the binomial expsnsion for (1 + y).. 

A mum of Qradrn polynomio)r. Now let w follow Oaor and form the 

We use our aeaond recurrence relation and have 
1 = 1, 

Summing these equations we find - - - 

But from definition (11.1) 

(1 - .*4E 
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and hence 

= ( 1  - xm-l)f(x, m - 2 ) .  

Now f ( x ,  0)  = 1 ,  so that we find recursively 

Since f (x ,  1 )  = 1 - Li] = 0, it follows that f (x ,  2n - 1 )  = 0. T b   so 
2n - 2n - 1 evident from the symmetry 

- d p m  b Q.llrLn Now we apply these notiolu to the 
- - -  

Oaua*.n sums. Let k be odd and let a be a primitive kth mot of unitgt, By 
definition ( 1  1 . 1 )  we have 

Since 

we find that fo r j  = 1,2, , k - 1 

Now k is odd and therefore a-g is also a primitive kth mot of unity. If we 
therefore r e p h  a by a-3, we obtain 

.- 

But ak = 1 ,  uJd thw 
3 -0 

Now if j runs from 0 to k - 1 ,  then j + (k + 1)/2 rune through dl retidue 
oleeeee modulo k. Since the exponenfe of a oount only modulo k, we obtain 

where 
a(.) = 2 aj8 (1 1.4) 

jmodk  

i a Qauqkn a m  for the modulus k, in generalization of (9.8) for a prime 
modulus. The application of ( 1 1.2) to ( 1  1 3) yields 

so that we have the remarkable produot formula 

Hewe only the odd exponents appear. But we have 

whioh shows only even exponenfe. 
Formulae ( 1  1.6) and ( 1  1.6) together yield 

But k is odd; therefore -2j rune 9 t h  j though the noncen, reddue oLuar 
modulo k, eo that k-1 

= ( - l)(k-l)13ak(~l)/3 ( 1  - 
1-1 

Now sin- aj here represents dl mfe of 9 - 1 with the exoeptjoa of 1, wo 

whioh givee for r = 1 
k-1 



in agreement with our previous (10.1) where k was a prime p. 

The J w b i  mbot. If k = p is a prime and (h, p) = 1, we have seen in 
(10.6) that 

Thus for any odd k it is natural to consider the quotient 

Here, as always, a is a primitive kth root, and we consider only the case 
(1, k) = 1. It is a remarkable fact that Qh(a) is independent of a and will 
depend on, besides h, only the order k of the primitive root of unity a. 

To prove this we make use of the product formula (11.6) for @(a) and 
O(ah), which is permissible since ah is also a primitive kth root of unity: We 
have 

(k - 1)/2 rl[ (a2hj - a-2hi) 

j= 1 
Q A ( ~  = (r  - 1y2 (11.9) 

(a2f - .-2i) 
j=1 

We shall see that the factors in the numerator and denominator are equal in 
pairs, except for a f sign which depends only on h and k and not on a. To 
see this we put 

k - 1  hj = r (mod k), j = 1,2, . * .  - 
' 2 '  

(11.10) 

with the specification 
k - - k 
2 < r < - .  

2 (11.11) 

The integer r is uniquely defured by j and clearly r # 0, since (h, k) = 1. We 
then have 

a l A j  , a-Shj = a2r - a-2r - - (a2' - a-28) sign r , (11.12) 
where 8 = Irl. Now r takes (k - 1)/2 different values; but we shall now show 
that 8 aho takes as many different values. Indeed if 8' = 8 ,  which means 
IrtI = Ira(, then we would have r' = &rW. Hence 

hj' = f hja (mod k) 

h(j' f j") = 0 (mod k) , 

end consequently 
j t j - j R 3 O ( m o d k ) ,  

which is, however, impossible since all j are different m d  

Formulae (11.9) and (11.12) together then yield 
0 

and this is independent of a, since each r is found uniquely though (11.10) 
and (1 1.1 1) where only h and k appear. In order to emphasize tbi. independ- 
ence of a, we introduce a new symbol and write 

This symbol, defined only for any odd number k and any positive or negative 
integer h prime to k, is called the Jmobi + E .  Definition (11.8) shows that 
the Legendre symbol is a special case of it. Equation (11.13) shows that 
(ilk) takes only the values f 1. 

The J m b i  symbol as a charscter of the multiplicative group modub k. 
The definition (1 1.8) shows that 

(t) = (:) if h = ht (mod k) . 

If hl and li, are both prime to k, we may use the fact that Qh(a) is independent 
of a to conclude that ., 

O(aAlha) O(aAl) = -  
O(ahr) Q(a) 

beoeuse ahl is elso a primitive kth root of unity. Hem08 

which we can write 

This ahowe that the Jacobi symbol is e ohPractsr of the multipliomtive group 
of residues modulo k. The Jacobi symbol enjoys a reojpmoity property jmt 
w the Legendre symbol does, as we shall show kter. 
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We can use (11.13) to get an explicit expression for (hlk). In view of 
(11.10) we can write 

hj = 'mk + r 
and therefore 

2hj 2r 
- = 2 m + -  
k k 

with a oertain integer m. Since, according to (1 1.1 l), 

and t h a t  

we conclude r;] is even for r > o 

and from (11.13) we infer then the following theorem. 

THEomm 37 : Thu Jacobi symbol for coprime h, k, k being odd, ia given 4 

Let us compute some values of (hlk). Defmition (1 1.14) together with 
( 1 1.8) ehowe immediately 

ee can a h  be seen fiom (11.17). 
h o e ,  furthermore, 

t The rymbol [t] ia exphined on p. 31. 

we immediately have from (1 1.17) , .- 

For h = 2 we observe 
k 

= O f o r O < j < -  4 '  

so that 

2 
and therefore 

This expression can be put into a more elegant form if we obeerve that hem 
k matters obviously only modulo 8. We therefore prepere a lief for the maem 
E = 1, 3, 5, 7 modulo 8 and obtain 

l 1 k = l  

-1 k = 3  
(modulo 8) 

-1 k = 5  

l f o r k s  f l (mod8)  
-1 for E = f 3  (mod8). 

I 

But we have already found an expression for this arithmetic function whem 
k = p is a prime. We thus have 

The formulae (1 1.17) and (1 1.18) will furnish e proof of the miprooity law 
for the Jaoobi symbol by meens of the oonoept of Lttioe poinb, rhioh we 
ehell give in the next chapter. 

Right now we give a proof of the reciprocity law by meuu of the propat- 
ties of Gaussian sums. For this we need the following Aemrmi &out Glaumim 
sums of different order. 

Lmnu: LGtkand1beodd,(k,t)= l.Ldabuaprimitiuck4hrootofuni& 
* a d ~ a ~ r n i l i w U 1 r 0 0 t o f u n 9 y . T I d l ( g L a ~ ~ ~ ~ h W o f 0 f n ~ d  



Proof: That a#I is a primitive klth root of unity has already been 
observed in the beginning of the prbof of Theorem 30 of Chapter 8. We put 
now 

j = l t + k u .  
I t  is easily seen, since (k, 1) = 1, that if t runs through a complete residue 
system modulo k and u through a cdmplete residue system modulo I, then j 
runs through a complete residue system modulo kl. We need now only the 
definition of the Gaussian sums: 

But along with t, U also runs through a full residue system modulo k, and 
analogously since #IP = aka = 1, for ku. Thus we obtain, 

@(a/?) = 2 a' 2 pu' , 
tmod k u mod 1 

which is (11.19). 

me dgn of tb O r t u l .  nuns. Gauss used the product formula (11.6) 
for the determdation of the sign of G(a), which the formula (1 1.7) necessarily 
leaves open. As we have seen, the problem of the sign of a Gaussian sum 
becomes meaningful only if we specify the kth root of unity by transcendental 
(nonalgebraic) means. For this purpose let us put 

a = e2nih/k , (h, k) = 1 . 
For the eake of brevity we now write 

Then, in particular for h = 1, formula (1 1.6) becomes 

since 
,it - e-iz 

sin2 = 
2i ' 

The product sign here rum over real quantities. The absolute value of Q(1, k) 
is already determined u fi by (1 1.7). Thus 

I 4,j 
a(1, k) = h(-i)(k-l)/s sign sin - 

j=1  k 

THE BEOIP&OOITY LAW m B  TBE JAaOBI SYMBOL 

Now we have here 
4lrj 

0 < T < 2 v .  

In thia range the sine function has only one change of sign. We have 
- - 

0 

end 

therefore 

This power of - 1 has just been discuseed in the determination of (2/k) d 
we therefore obtain 

which finally yields the following theorem. 

THEOS~V 38: The exp2ici.t value of the Ua'L(BBian bum for a = egdlk w 

Sin08 (h/k) is explicitly known &om Theorem 37 and sin- 

the value of Q(h, k) is a h  known. 

The mdpmdtiy law for the J m b i  rymboL It ia now r, simple matter to 
establish the reciprocity property of the Jaoobi symbol. 

Let h and k be two odd natural numbere, (h, E )  = 1. We then ohoooe o 
and b so that 

h a + k b = l .  
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which are both primitive roots of order k, h respectively. With these mot. of 
unity, equation (11.19) of the lemma becomes 

in the new notation (1 1.20), and therefore 

Now we have by (11.8) and (11.14) 

. . .  
8 0  that 

and similerly 

We have thus found 

Here we simply insert (1 1.21) and obtain 

Now, 

where u i. an odd number rs h + 1 and k + 1 are even. If we put this into the 
pv ioue  result we obtain 

( h o e  2u even implies iau = -1) and thus the reciprwity theorem. 

Thie is the full generalization of Theorem 34. 
The Jeoobi eymbol is even useful in the oomputation of the Logedm 

symbol, shoe there is no need in the intsrvening atepa always to find out 
whether the newly appearing odd numbera .re prime or not. 

In the Ezornpk a t  the end of Chapter 10 we would not have to 6nd tb 
d8oompoaition 18% = 31 60 but oould p 4  aa follmva : 

&me psopSartiar d the Jwbi  symbol. The J m b i  rymbol formo 
a oharaoter, i.e., its "numeratorJ' is multipliostive ur (11.16) explioitly 
statee. It tuna out that its modulus or "denominator" shame thin pmprty. 
Indeed, let h, k, 1 be odd natural numbero with (h, k) = (h, I )  = 1. Then we 
have, by meem of (1 1.22) and (1 l.l6), 

where we have obeerved (-1). = for an integer a. Now 

k - 1  + l - 1  - k l + l  = -(k-l)(Z-1), 
and 

&(h - l)(k - l)(l - 1) 

There remnine the caw h = 2. -. 
* 

We hwe, nooodng to (11.18), 
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But 
p -  1 + + - 1 - P18 + 1 = -(k2 - 1)(P - 1) r 0 (mod64) 

since k and 1 are odd and thus 

We now take (11.23) and (11.24) together. 

THEOBEM 40. If k, 1 are odd natural numbers and (m, M) = 1 then th 
J d  synrbd &wjha 

Revnark: Because of (11.15) .the "numerator" does not have to be 
positive. 

This theore? now permits us to reduce the Jacobi symbol to a product 
of Legendre symbols. Let k = pf12 . p, be the prime number decomposition 
of k; then the repeated application of (1 1.25) yields \ 

(As a matter of fact, this is the usual way to define the Jacobi symbol.) 
This decomposition shows that (mlk) = + l  is only necessary, but not 

sufficient, for the solvability of 

x2 :P m (mod k) . 
If, for inatan-, m = plr,% with pl # A, then the congruence implies 

2' E vn (mod p,), 9 = m (mod p2) 
or 

and this, by the Chinese remainder theorem, is then also sufficient for m fo 
be a quadratic residue modulo k. However, (mlk) = 1 will also take p h  
if (mlp,) = (m/pa) = -1 , in which case zl= m (mod k) will not have a 
solution. 

It is also clear from the decomposition (11.25) that (mlk) = 1 for any m 
prime to k if k is a perfect square. The symbol (mlk) is in this caae the 
"principal charecter" modulo k. But this takes place only if k is a perfect 
equaw. We leave thia etatement to the reader as an exerciee. 

Eocrci.c: Pmve that for k odd and not a perfect square there exiat. 
always e number b ruoh that (blk) = - 1. 

\ 
Lattice Points 

Introdaotion and a kuma. We call lar#ice point8 in n-dimenniod ape00 
those points of which all n mordinates are integers. We ahdl reetrict our- 
selves to lattice points in the plane. The pmblem will be: Given an ma, 
how many lattice points are in it? Thb question will in general have a 
number-theoretical aspect because idqera are involved u the ooordinatee 
of the lattioe points. 

Problems of the enumeration of lattice points eriee quite naturally in the 
discussion of some arithmetical functions. Many of these hnctione are ao 
irregular that it is advisable to consider averages of their d u e s ,  in order to 
obtain smoother functions in which individual peculiarities of the summands 
are suppressed. We shall deal with three such functions and their aversgem, 
which can be interpreted as numbers of lattice points in certain domaina. 

(1) The function r(n), the number of eolutiona in integers of the equation 
2' + 9 = n. Here we study the smoother function 

which is related to the number of lattice points in a circle. 
(2) The function a(%), the number of divisors of an integer n. We heva 

a(n) = 2 infinitely often, namely for n a prime. On the other hand o(r) d n  
evidently increase beyond any bound for aompoeite numbern. Here we am 
interested in 

T($ = r ; S N  2 a(%)# 

which can be interpreted as the number of lattice points under a owtab 
equileteral hyperbola. 

(3) Euler's function pr(n), the numbew of numben Aeaa tb.o n d pinv 
to n. The summatory function 

can here be related to the numba;of tho88 lattice point. in a e q u ~  whooe 
coordinates are ooprime . 

Leetly we shall use the device of lattice pointa to oompbte another pod 
of the recipmcity law of the J d  ~ymbol, begun in Chap* 11. 

07 



viesble to begin with a lemma on which we will have to depend 
later. 

~ N U :  If g(t) w a m o w h ~ y  decre.aeing fundim, g(t) > 0 for dl 
t>O,&n 

Here n nuu through integers only; X can be any real number, X 2 1 ; 
and Ci a oonefmt depending only on the function g(t). 

Pmf: Since g(t) i. decreaeing in the interval [n, n + 11, we have 

This shows that the aeries 
m 

n-1 
converges. In partioulor, we have 

If we put 

we have 

It follow8 that 

t Ths rktemeot f(X) = O(g(X)) msane that there exieta a oertriin ooa&mt K maoh 
that 

I f(X)l < Kg(X) for dl X. 

For N = [XI this beoomes 

Jx 

0 < g( [X]  + 1) 5 v ( X ) .  
Thia proves the lemma. 

The conetsnt y here is d e d  the Euler-Yuoheroni oomturt. It. vdue L 
approximately 0.6772167 . It is defined .ocodhg to (12.2) u 

We have to observe here only 

Lattice pointm in a okdr. We have &&red r(n)  .nd B(N)  above .Id b d  

where x and y run only through infepm. This farmula h w a  t h t  B(N)  b 
the number of bttioe point. in the intsmr or on tbe boundwy d 6 a h b  d 
n d i u s ~ ~ . ~ m m t h i a ~ i n t o f r i e r r e ~ l v n r p m o a d t o o ~ ~ . p ~  
approximation to R ( N ) .  

To each httioe point in and on the ajmb we att.oh a q u u e  w&h unit 
aides, in such a way, let or my, that the kttioe paint fmu tbs "IOPILII).' 
oomer of the aquare. Then the M of them quama together t qrul tO 
R ( N ) .  Thia is, however, not quite equal to t& M. of tbo eirub. &aw 
q w m s  protrude beyond the cimb and tbare L, on tbs &r M, ou 



100 LATTICE POINTS 

unfilled area in the circle. However, all the chosen squares are contained in 
a circle of radius dz + I&, since the diagonal of each square has the length 
62. Thus, comparing areas, we obtain 

Similarly the circle of radius 16 - di is entirely covered by those squeres 
so that 

R ( N )  > n(dg - v'i)2.  
We have therefore 

4 N  - 2d .G  + 2 )  < R ( N )  S n ( N  + 2dE + 21, 
or, briefly, the following theorem. 

R ( N )  = nN + ~ ( d i ) .  (12.4) 
We may consider the analogue of R ( N )  in k dimensions. Let R,(N)  be the 

number of lattice ppints inside a k-dimensional sphere of radius d g .  In this 
notation we have R ( N )  = R2(N).  An argument similar to the one we have 
given shows 

R3(N) = $nN' + O ( N ) .  

Exerciee: Prove this statement about R,(N) in detail and find a similar 
statement concerning R,(N).  

Our result about R ( N )  was known to Gauss about 1800, and it was not 
improved until 1906 when the Polish mathematician W. Sierpinski proved 
the surprieing result 

R ( N )  = nN + O ( N f ) .  
But this is not all : In 1923 van der Corput proved that the exponent ) is not 
the best possible, but can be replaced by a certain number 8 < f. In par- 
ticular, his pupil I. W. Nielandt computed a suitable number 8, obtaining 

where fQ < ff = 4. How far this exponent 0 can be lowered is not known 
at present. But through the work of G. H. Hardy and E. Landau we know 
that the formula 

R ( N )  = nN + o ( N ~ )  
is certainly f d e .  

The mmmaky function of tbe number of divisors. The number u(n) 
of divisors of a natural number n can be expressed as 

THE SUMMATOBY FUNOTION OF THE NUMBER OF DMsOPB 
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where x runs through all divisors of n. We define the summatory function 

This ahow that T ( N )  is the number of lattice point. (z, y) in the &at 
quadrant which lie under or on the hyperbola +y = N. (- point. on the 
axes would give xy = 0 and are thus excluded.) 

We count the lattice points on each vertical line z = integer, on or below 
the hyperbola. Since the lattice points are spaced one unit apart, we have 
[Nlx]  lattice points on the ordinate of length NIX and altogether 

the above becomes 
N 1  N 

= N  log N + O ( N )  

in virtue of Corollary 1. Dirichlet showed by a simple device that this 
asymptotic formula can be improved considerably. b e  Fig. 4. 

I 

Since the hyperbola is symmetric about the line z = y, the number of 
lattice points in the area OBAECJ is equal to the number of lmttioe points in 
the area OCADF. Of course there are only a Gnite number of bttiw point. 
below the hyperbola, since we exclude the lattice points of the axa .  Thun the 
number of lattice points under the hyperbola is twioe the number in one of . 
the aforementioned areas, minus those in OCAB, which we have oountsd 
twioe. We can therefore replace (12.6) by 
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Figure 4 

Now since for any real number z, 

[z] = Z - 0, 0 5 0 < 1 ,  
we obtain 

with the 0 in different meanings but always 0 I 0 < 1. Thia leada to 

and in consequence of Corollary 1, to the next theorem. 

T(N) = N log N + (2y - 1)N + ~(fi). 
Thia is an improvement over (12.6), since the error term O(N) there i. now 

decornpoeed into a precise term (2y - l )N and an error term 0 ( e )  of 
lower order. 

The formula (12.7) like (12.4) has been the subject of intemive inveati- 
@on in t h  century. First the Ruuian mathematician Vomnoi ehowed in 

1903 that the error tenn 0(%6) can be replaced by O(N4 log N). Again 
van der Corput could show that the error term is of the order 0(p) with a 
oertain 0 < 4. The lowest permiaaible vdue of 8 is unknown hem Jso. 

In the two examples which we have d i s o d  so lu, R(z) uul T(r) ,  the 
mummuds r(n) and o(n) take on ernall value8 infinitely oRen u a n  d y  
be leen: e.g., r(n) = 0 for n = 3 (mod 4) and a(%) = 2 for n a prime number. 
Both fu?otiona a h  attain ubitnrily i.rge valuee. For a(n) this i. ohu: 
We need only take n 8s 8 number with k different primem, and then have 
o(n) = 2). For r(n), it can be derived from our disousaione of numbers rLMh 
are divisora of the eum of two coprime equsree. In the next example we treat 
the arithmetical hnction ~ ( n ) ,  which increams with increeeing n, but rather 
irregularly, so that again it is advimble to bv€&ig8te it. ellmmrtory funotion. 

A digmhn: the Moebmr fmoth. .Presently we ehll need an uitb- 
metical function, the Moebius function p(n), defined for natural numbern n, 
whioh will be moat useful for the aolution of oerta,in eyetame of linear equpt io~~.  

D~INITION: The fundion p(n), n 2 1, 

p(1) = 1 
Cp(d )  = 0 for n > 1. 
4~ 

This is evidently a recursive definition. Indeed, (11) ahowe 

p(1) + p(2) = 0, eo that p(2) = -p(1) = -1; 

p(1) + p(3) = 0, 80 that p(3) = -p(l) = -1; 

p(1) + p(2) + p(4) = o,= that p(4) = 0; I 

end eo on. 

Tawm 43: The fundion p(n), &$heti by (I) and (11). br t k  j a n g  
p r o p e a :  

Pmof: Since the only dipi.on of p are 1 a d  p i U ,  we have dl) + 
I(@) = 0 and sop@) = -1. Then for L 2 2 we have 



and because of the foregoing 

This shows (b) by setting k successively equal to 2, 3, . 
As far as (c) is concerned, i t  is trivially true for nl = 1 or n, = 1. Now 

let (q, na) = 1, and without loss of generality nl > 1, n, > 1. Let us assume 
(o) for all 4, la with ( 4 , y  = 1 and Ill, < nln,. If d I nlna, then it  follow^ 
h m  (nl, na) = 1 that there exist unique dl, d, such that d = dld8, dl I %, 
and d, ( %. Thus 

0 = 2 PW = 2 P(dl4J. 
d b p ,  ::I:: 

Here we can apply the induction assumption for dld2 < nln, and have 

Extendmg the sum now over all divisors of n1n2 we obtain 

which proves (c). The statements (d) and (e) are now simple consequences of 
(a), (b), and (0). 

We now use the Moebius function p(n) for a general "inversion" formula. 

THEOREM 44: Ld f(t) and F(t)  be fundiona of the real variable t 2 1. 
If t h e  functione have the relution 

then they eatiafy the "inverse" relation 

Convereely, (12.9) follouw from (12.10). 

Proof: We have from (12.9) 

THE SUMMATOBY FUNCTION @(t) OF THE EULEa FUNCTION fp(n) 1 m  

Here we sum over all lattice pointa (m, n), m 1 1, n 2 1, which lie under or 
on the hyperbola mn = t. We now rearrange the sum in such a way that we 
seeemble terms with mn = r, 1 r 4 t. Then the last sum becomes 

according to (I) and (11) of the definition of ~ ( m ) .  This derives (12.10) from 
(12.9). Th'b converse is proved by a similar argument. 

Exerciae 1: Pmve the following inveraion formula, which is different 
from that of Theorem 44. 

Theorem 45: Lei g(n), G(n) be arithmetical f u n d h a ,  ie., &jd ja aU 
lrcJural numbers n. If they satisfy the relation 

G(n) = I g ( d ) ,  n = 1,2,3, * a * ,  

din 
then they fu@ll &o 

Remark: If we write down (12.11) for the values n = 1, 2, , N, we 
get a system of N linear equations for g(l), g(2), . . , g ( N )  Then (12.12) can 
be looked upon as the solution for g(m) in terms of Q(n). 

Exercise 2: Use Theorem 45 to deduce Euler's formula (3.6) for ~ ( n )  
from the property (3.8) 

n = d b  2 (p(d). 

Ibe 8uxnmatorJr fclnotion @(t)  of the Euler ftmdbn fp(n). We d e h e ,  
for real t 1 1, 

@(t) = 2 (pin) = 2 2 1 
l d n d l  lSr5l l d r d n  

(=.a)-1 

The sum can be interpreted as the number of lattice points with ooprime 
integer coordinates m, n in the right triangle 0 < y 5 x S t. Of tbea kttioe 
pointa only 1,l lies on the line s = y. 

Let Y(t) be the number of lattice pointa with coprime coordinates in the 
square 

O < x S t  

O < y S t .  
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h e  Fig. 6. Then, h u m  of symmetry with respect to the line z = g, 
we heve 

Y ( t )  = 2 q t )  - 1 ,  (12.13) 
where the subtraction of 1 arises Gom the fact that in @(t)  sa well as in Y(t) 
the point 1,l is counted once. The functionY(t) is somewhat suier to disoun 
than a(:), to which we ehall return in the end. 

The W number of lattice points in the square 

Here we can sort the Lattice points according to the greatest common divisor 
d of their coordinafes m, n:  

Now (m, n) = d if and only if (m/d, n/d) = 1 .  Thus there is e 1-1 corm- 
spondenoe between pointa m, n with 

There are, however, Y ( t / d )  of the latter. This enables us to rewrite (12.14) u 

We can now apply Theorem 44 to this formula and obtain 

We consider these t h e  terms separately. We have 

To the second term we apply Corollary 1 of this ohapter, and the third term 
ie O(t). Thus we obtain altogether 

Y ( t )  = t' s + O(t log t ) ,  (12.16) 

where 

Eolr'8 pwd& of tb The eum S cm be evdrutsd 
expioitly. Let lu oonsider for 8 > 1 the absolutely mnvergent aria 

(Tbe symbol [(a) was used for this series by Rieml~nn in 1869 and bu been 
dopted univereally.) Eubr, making ow, of the uniqwnsr of prima 
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factorization, found the equality 

where the product is extended over all prime numbers p. Indeed, because of 
absolute convergence of the series (which contains only positive terms 
anyway for a > l),  we can rearrange the terms in all infinite series appearing 
in the left- and right-hand members. Now in each term of the left-hand 
member, the prime factorization of n can be performed uniquely, n = 
pl01pa0a pkab, 80 that 

1 1 1  1 -=-.-...- 
718 p141# pa%# pkak# ' 

and thus each term 1/n8 is found once and only once among the product. 
obtained by multiplying out the right-hand member of the formula. This 
proves the equality. We realize, moreover, that each infinite series on the 
right is a geometric series, which can be summed, thus obtaining 

This is Euler's product. (Riemann's investigations of the Gfunction are 
concerned with complex values of 9, which Euler did not consider. The 
Cfunction is the paramount tool of modern research on the distribution of 
primes. ) 

The reciprocal of (12.17) is of interest for our problem. We have 

We understand this identity if we realize that in the last sum only those n 
appear in the denominator which have different prime factors (because of 
~ ( n ) ) ;  and p(n) = (-l)', where r is the number of prime factors in n, 
according to (12.8). 

For 8 = 2 we obtain 

It is now knownt that 

e result which was also obtained by Euler. Using them reeulfs, we now obtain 
from (12.13), (12.16), and (12.16) our final result. 

Again the reciprooity of the J m b i  rymbol, In Theorem 37 the J m b i  
symbol is evaluated explicitly. Here (h, k) = 1 and k ita an ald n U d  
number. We first transform (11.17) ahghtly for the oaae that h b a h  an odd 
natural number. 

Since h + k is now even, we have 
h + k  

h + k = 2 * -  2 

in integers and thus 

Therefore from (1 1.17) 

Now 

If we compare this result and our previous equation with (11.18), we obtain 

valid for coprime odd positive I,  and k. One gees that the sum in the lut 
formula does not have the factor 2  in the numerator whioh the f o d  
(11.17) shows. We interchange the role of h  and k  in (12.19) md 6nd thmo(lh 
multiplication 

t Bee, e.g., K. Knopp, Thmy a d  Applbbkm oj  I+* Sr iu ,  Blmkie & 806, 
London, 1061, pegee 237,383, end 376. 



where 

This sum now oan be interpreted aa the number of lattice poiot. in the 
rectangle with the v d o e s  (0, 0), (A/2, 0), (h/2, k/2), (0, k/2). Indeed, let ua 

Figure 6 

draw the diagonal in &is rectangle issuing from O,O. See Fig. 6. It haa slope 
k/h. Shoe h 4 L us ooprime, the point (h, k) is the lattice point on it whioh 
i. near&, to the origin. W e  the rectangle the diagonal does not meet m y  
kttioe point. We oount the lattice points inside the rectangle by mm: 

ia tbs number of lettioe point. bebw the diagonal bide the rwtmgb, d 

ia the number of kttioe pointa above the dhgolul. !hu M L the td.l 
number of kttioe point. in tbb motan& ux&r dirouwioa. But thh nuobo 
b evidently 

h - 1  k - 1  M=-.- 2 
2 '  

ro t&t we obtain 

the reoipmity law for the J m b i  symbol (Theorem 39). !lU L the pod 
whioh we announoed on pege 91. 

It is worthwhile to note that our prerioua pmof depends on the explioit 
evaluation (11.21) of the C4aUMi.n sum for the primitive root a = b d k  .Id 
therefore implies a trans08ndent.l element in the masoning. Ths pmant 
pmof is purely algebraio, since it does not spedy the primitive kth mot a. 
('I'he use of geometry is only an appuent one, ainoe all arguments uan be 
written by means of the symbol [z].) 

Ezurh: Let p be a prime -- .I (mod 4). Rove the f m r r l  of 
BaninLovaLi, 

I 

"3"[4 I .  " - 1  
1-1 12 

Hint: Count the lattice pointa cdoa the p.nbok y = 6 in a auitabb 
redangle* 
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About the Distribution of Prime Numbers 

Hiatorid mum&. We know that the sequence of prime numbers baa 
no end. We have also men that the primes are rather irregularly distributed 
among the natural numbers. Still it is obviously of interest to have some idea 
about the occ-nee of primes among the natural numbers. How many 
primes are there leas than or equal to a given number x ? Let us call n(x) this 
number of primes not exceeding x. Gauss conjectured by inspecting a table 
of primes that 

x 
n(x) N - 

log x ' 

The sign - is read "is asymptotic to" and the above formula means 

Gauss made his conjecture in 1792. The conjecture, known today as the prim 
number theorem, was proved for the first time more than a hundred yeare 
later by Hadamad and de la Vall6e Poussin. 

These two mathematicians continued investigations 
about the zeta function LJa) for the complex variable 
achievement was attained, the Russian mathematician ( 
to compare in some way the functions n(x) and x/log 
Gauaa's conjecture. Chebyshev proved by elementary 
poaitive constante c and C exist such that 

begun by Riemann 
a. But before this 

2he byshev was able 
x which appear in 
methods that two 

x x 
c- <n(x) < C- 

log x 2 2 2 .  
log x' 

His work was supplemented by Mertens in the 1880's. But in this century 
the opinion still prevailed among mathematicians that for the proof of the 
prime number theorem the theory of Riemann's function [(a) was indiepen- 
sable. It was a great surprise in the world of mathematics, therefore, when 
in 1950 A. Selberg and P. Erdos succeeded in proving the prime number 
theorem by arguments which start from Chebyshev's research and use only 
"elementary" methale in the sense that no complex function theory is used. 
We shall prove here only Chebyshev's result and some remarks of Mertem. 

with the feotorial function 
n ! = 1 * 2 *  - n .  

With Legendre we ask for the highest power of a given prime p dividing n! 
There are [ n b ]  multiples of p not exowding n, which would contribute 94.l 
to factors of n! But some multiples of p are also multiples of p, 9, , which 
furnish mgre p factors. There are [ n M  numbers h a  thm or equal to n 
divisible by ), which would give 2 fwtora of p m h .  However, one of them 
bsl . I redy been counted in the multiples of p italf, so that we now b e  
[n/p] + [ n / y ]  factors p. In the same m m e r  we have to ooneider the [ n / 9 ]  
multiples of 9, each furnishing 3 factors p, of which however, 2 have .Iredy 
been counted. Progressing in this way we find that p appeam in nl to the 

-a - - 
where we may continue this sum formally to inhity, since [n/pk] = 0 for 
pk > n. This determination of the power of p in n! goes fm any prime 
number p. Taking all primes together we thus obtain Legendre's form* 

We put this into more convenient forms a t  the price of loaing some preohion. 
We have 

and thus from (13.1), 

and taking logarithms 

Since 

. z  logp < 5 log m = C, 
p S n  P(P - 1 )  n-e nb(m - 1 )  

(the series being convergent), it follows that 
1% P 

log n! < n 2 - + c1) . 
Is. P 

We shall use this to get a statement about the right-hand member whioh 
shows the primes explicitly. For the atirmtion of the Eeot0ri.l on the bft 



aide we oodd use Stirkng's form&, but for our purpose the following 
aqpment euffioee : 

and thus 

log n! > n(1og n - 1) , 
whioh 1- to 

For an upper estimate of the same sum we use the left-hand inequality in 
(13.2): 

and obtain 

Now we have to estimate the latter sum, for which we use a device due to 
Landau. If m < p S 2m then the prime number p divides (2m)l but not m!. 
Therefore such a p divides the binomial coefficient 

m! rn! 

snd therefore 

For p > 2 all primes ue odd and the equality sign under the pmduot i. 
therefore useleu for an integer m > 1 : 

&we n S 4-1 for dl integaro n > 0. Form* (13.6) ud (13.6) rbor tLJ 
for odd and evep intqpra r > 1 we have 

n p d T .  
rle < p  Sr 

But this re1118.h true if we introdurn ineferd of the in- r my md nunab 
z 2 2, einoe the oondition 

pub  the ume reskiofion on tha integerp u 

Thin givee us 
TI p<@sr. 

Writing here z/2 for z we have, provided (214) B 1, 

and so on. A fmite number of moh imgualitiem will inolude .11 prime numb.. 
p d z. We multiply these ineqditise and obtain 

I 

end thus 

This we apply in (13.4) with the result 

If we dso obeerve (13.3), we find that .. we h v e  pmved the tbawun of-. 



Since log z -r m with z + a, the theorem stabs that the sum Wren over 
aU primes must diverge. 

dDotha mu mmeming primer. This theorem will enable us to prove 
Chebyshev's result about n(z). However, before studying n(z) we coneider 
the function 

which is a little simpler to handle. We have already found 

B(z) < z log 16 . 
Looking for a lower bound, we have clearly 

where A > 1 is a conatant that remains to be chosen. Then 

Theorem 47 now stabs that there exists a positive constant B such that for 
every z 2 1 

If we ineert this in the previous inequality, we obtain for z 2 A, 

Here we choose A so that log A - 2B 2 1, and have 

z 
e(z) r - . 

A 
This, however, is pmved only for z 2 A, but for 2 S z S A there exist. a 
lower bound of the positive function (B(z)/z). With a suitable positive L we 
have 

B(2) 5 kz for z r 2 .  

We have thus pmved the following theorem. 

T~EOBEY 48: Then czist tm m i v e  conatante k, K a d  that for x 2 2 

h S 0 )  S Kz . (13.8) 

Cheb*ev9s thsonm. From the preceding theorem we now deduce the 
theorem a b u t  n(x) by (Abel's) partial summation, a device which is very 
useful in the treatment of series and sums. We start with the identity 

The last sum needs some attention. Indeed, if n = p is a prime number, then 
B(n) exireeds B(n - 1) by log n, so that a summand 1 appears. If, however, 
n is not a prime number, then B(n) is equal to B(n - 1) and the summand 
zero appears, as it should. The above equation also involves B(1) = 0. The 
method of partial summation now calls for a rearrangement of the sum so 
that B(n) is always collected trom two consecutive terms, with the result 

where the last single summand is a compensation for a subtrahendus in 
excess in the sum. Now we have 

In view of (13.8) we have then 

Wzl) e ( 4  
-- + o(&). log ([XI + 1) - log z 

We shall see now that the sum in (13.9) is of lower order of magnitude than t 

e(z)pog 2. 

We have indeed 

aucording to (13.8). Now 
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But 
4s 

4&+- 
(log zI2 

ao that (13.9)' (13.10) furnish 

a@) = - + 4:) . 
log x (log 42 

In virtue of (13.8), the second summand on the right side divided by the &st 
summand tends to zero if x -, oo. Thus we may write 

a(%) - - 
log x ' 

and from Theorem 48 we deduce Chebyshev's theorem: 

THEOBEIL~ 49: There Yid two m i v e  constants c, C 8w:h tm for z 2 

5 x 
C- 5 n(x) s c - . 

log x log x 

Actually Chebyshev was able to give some fairly good numerical values 
for c and C. But because of the later developments in prime number theory 
these computations are no longer of great importance. 

A 8mn primes. We conclude this chepter with an 
estimate of the sum 

2 1 ,  
p s z  P 

h t l y  because we will need it later, and secondly because it rill give us an 
opportunity to apply again Abel's method of partial summation. We mt 

H(z) = U(z) - log z . 
Acuordmg to Theorem 47 we have 

Now we write, fobwing a procedure similar to that in a previop, puoenph, 

which is valid because G(n) - Q(n - 1) = (log n)/n when n ia a prime, while 
a(%) - a(n - 1) = 0 when n b not 8 prime. We obtain thus 

H(n) - H(n - 1) + Z: 
logn - log(% - 1) 

log n 2Srbz log n 

For the first sum we see that 

N + M  H(d) - H(n - 1) 

N + M  1 1 H(N + M) H(N - 1) 

= I n ~ ~ i n i ( G - l o g ( n +  N + M  1 1)) + l o g ( N + Y +  1 ) -  logN 
H(N + M) 

I 
H(N - ' n - N  'H '~) '  ( G e l o g ( : +  1,)' llog(N + Jf + 1) 

N + M  1 1 1 +') 
< ~ ( . ~ * ( ~ - l o g ( n + l ) )  + l o g ( N + M + l )  b g N  

2B 
=- (13.11) 

log N ' 

H(n) - H(n - mnverges. Let K be it. a m .  Then Thus I: 
r-z log% 

H(n) - H(n - 1) H(n) - H(n - 1) 2 H(n) - H(n - 1) 

2 log n 
=I: 

n  -2 n=z logn n-o+l log" 

1 

wooding to the eetkation (13.11). Thua we have 

1 z logn - log (n - l )  
2 - 2  logs 

9512) r-0 

= -  

Now Taylor's theorem for the f u n o w  log (I - 2) rb.n 

0 s B a < 1 .  

urd fherefore we obtain 

1 1 Z:-+--+Z-- 
95.P n - 9 n b g n  m - ¶ 3 1 0 ( ~  
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But 
1  P- 

n;12 n2 log n 
converges and hence so does 

" en 2 -. 
~ - 2  n2 log n 

Let Kl be the sum of this last series. Then 

" dt 

Thus 

Finally, accordq to (12.3), 

z 1  2- = log log x + K2 + 0 
n-2 n log n 

when Ka is a constant. This proves 

In particular, 2 (I&) diverges, where the sum ia taken over .U the primes. 
9 

It would be qu iGwy to give a direct proof of this remark fmm Euler'~ 
identity (12.17). We .h.ll see thia and much more in the next ohapfer. 

Primes in an Arithmetical Progression 

EuWr psoof of the inflniliy of priprsr. In 1837 Diriohlet proved hir 
hmoua theorem on in arithmetic pro(gresoi0ne: Every arithmetic 
progression kn + a, where a and t are relatively prime integen & r w 
thmugh all positive integers, contains sn infinite number of primes. We 
already seen examples of this theorem in the propmione 4n + 1 .nd 4s + 3 
(Theorem 19 and page 2). The condition thet a and k be relatively prime ia 
clearly necessary, since any common factor of a and k would be a mmmon 
Eactor of all the numbers kn + a. 

Dirichlet used an idea of Euler, who proved the exiatenoe of aa infinite 
number of primes in an eeeentielly new way. Consider 

{(a) = p ' . 
a-1 n' 

We ehowed in a previous lecture (Chapter 12) that 

If a = 1 + E with E > 0, then the wries for {(a) oonvergee, but 

" 1 I 

{(1 + e ) = x  --+a as e+O. 
-1 nlW 

If there were only a finite number of primes pl, , pa,.. then we would b e  

whioh ie a oonfrediction. 
For the atudy of prime numbem modulo k, Diriahbt inventad an u- 

panaion, in analogy to Euler's produof, 



Abelian gmupr .Id group aharactan. We have mentioned group 
occasionally without making serioue use of their properties in our deductiolu. 
We now find them essential. 

The definjtion of a group is well known, but we repeat it here. 

DI~NITION: A group ia  a s y d m  I' of elemente A, B, , M with a 
&nary qlperaiion, whid we ahall write 0s multiplicdion. 

It ha8 the properties: 

t I. C b n v e .  The operation on two elements A, B of I' produo88 an 
element of I': A B = C. 

11. Awxiat idy:  The operation is associative : 

111. Unit d e m d :  There exists an element, the unit element I ,  whioh 
brvea the other kotor unaltered in operation: 

IV. Inverds e&&: For every element A E I' there exiete another 
element A', the invem of A, such that 

If the group operation is commutative for all pairs of elementa of I', 

A * B =  B O A ,  

the group is called a wmmzctdive or Abelion group. A group may be&* or 
in&&, i.e., may have finitely or infinitely many elements. We &all deal 
here only with Gnite p u p .  The number of elements h of a h i t e  group iu 
called ite order. 

A subset I'* C I', which ie itself a group, is called a mdgroup of r. Every 
group has the trivial subgroup consisting of the unit element done. 

We need a few rtatements about groups which are eaay to prove, and 
which we etate as lemmaa. 

I,maul: I f A n a ~ e l n n n t o f a g r o u p r a n d i f X l u s u t h ~ A d  
ahmcRts of the otoyp, m dOGB AX. 

This is 8 dirwt mmquenoe of the existence of an inverae abment A' 
of A. 

Thia lemma follow. fiom the previouo one, *nee the let d all pow- of 
A forms a subgroup. (Thew lemmm md their p d  are urrhpnw to the 
ho t .  about reeiduee studied in Chepfsro 3 and 4.) 

We xiow rnaider the eystem of &due o h m a  moddo k whioh u e  rek- 
lively prime to k. Theft@ oboe86 8re h = p(k) in number d form 8 group. 
Poatulstecl I .ad I1 ue evidently fulfilled. The unit element in Ibi. am m 
the o L r  which oontaine 1, i.e., fihe okr of all i n w m  n 1 (mod b). 
Poetdate IV L fulfilled, einoe for any a whioh is prime to k there e.i.t. an 
a' auoh that 

aa 'a  1 (modk). 

The o h  A of all numben n E a (mod k) and the oLr A' of aU numbers 
n' H a' (mod k) &re then 8 p i r  of invene element. in our p u p .  The p u p  
ir obviously Abeliea. 

A &wm&r of .n A b e b  group h 8 oompbx-valued funofion %(A) of tb. 
element A of r, so that %(A) ia homomorphio to A. Thia memu tht if 
d B  = C, then %(A) x(B) = x(C) We w u m e  that %(A) in not aem. We 
expreee it 8 lit* mom teahnio811y: A oherscter of the A b e h  p u p  r ia 

homomorphio mapping of I' into the p u p  of no- oomplex numbsn. 
The value. of x our only be artein mot. of unity. Imbed fm tL unit 

and thus, since x is not mro, %(I) = 1. For any element A of r we hn 
Ah = I ,  end therefore I 

(%(A))h = %(Ah) = %(I) = 1 . 
that %(A) osn only be an hth root of unity. Oos trivial ohnota d m  

e,h, the principel character %,,(A), whioh ia 1 for my A of I'. 
In the oue which intamate ua here, in whit& the group r is tb o o ~  

midue group modulo k of order (PO), it ita mnvenient to write not tb. 
ohma but tihe numbera of the ohma, u argument. of 2, w, b t  



k. Then (14.1) and (14.2) remain true under this extension of the definition 
of x(n). 

The principal character ~ , ( n )  is now defined as 

1 (n, k) = 1 
xo(n) = 

The crux of the matter is to show the existence of nonprincipl characten, 
if 1 > 1. We shall not prove this in general for any Abelian gmup, since t6.t 
would involve us too deeply in the theory of Abelian p u p s ,  but only for our 
case of the group of congruence residue classes. 

Let us first consider some examples of characters. For k = 2 there is only 
one class, h = 1, and thus only the principal character ~ , ( n )  = 1 for n odd, 
xo(n) = 0 for n even. 
For k = 3 there are 2 characters: 

1 n = 1 (mod3) 1 n = 1,2 (mod3) 
x&) = - 1 n = - 1 (mod 3) 

0 n = 0 (mod3), 
0 n O ( m o d 3 ) .  

For k = 4 there are again 2 charactem: 

1 for n _= 1 (mod 4) 1 nodd 
%o(n) = - 1 for n r - 1 (mod 4) 

(0 for n even . 
For E = 5 there are 4 characters given in the following table: 

We shall see presently that in all these cases we have given complete lists of 
the possible characters. 

Theomxu about group oh.nobn. Let us take the exiatenoe of nonprin- 
cipal characters for granted for the moment; it will be proved in Theorem 63. 

For the principal character xo we obviously have 

Proqf: Since ia not the principal c,haracter, there eJnta an integer o 
prime to k with %(a) # 1. Then 

since an runs through all residue classes modulo k if r dew. But we have 
%(an) = x(a)%(n), and thus 

which proves (14.3), since 1 - %(a) # 0. 

THEOREM 62: The churadera modulo k jonn a@& AWian group. 

Prooj: They form a finite system because they can take only p(k)th 
mots of unity as values. Thus there cannot be more than hh characters, 
h = (p(k). The product of two characters is a character, since i t  fulfill. (14.1) 
and (14.2). That accounts for closure of the system. Associativity is inherent 
in multiplication. The identity of the gmup is the principal character xo: 

and the inverse of a given character % is its complex conjugate f :  

The proofs of these two theorems remain valid for any W t e  Abelian 
group. For the proof of existence of nonprincipal charactera we shall appeal, 
however, to the specific nature of the group of residue chases modulo t.  We 
need for this the following remark. 

Remark: If d divides k and if 2 is known as a character modulo d, then 
we may construct a character %* modulo k by setting 

x*(a)=x(n) i f ( n , k ) = l  

~ * ( n )  = 0 if (n, k) # 1 . 

It is simple to test that the X* t& defined satisfies the postdates (14.1) and 
(14.2). We shall refer to this pmcem re the e d e w h  of the ch.rroter x 
modulo d to the modulus E .  

We now come to the existence of nonprincipal o w t e r n .  



THEOREM 53: If (a, k) = 1 and a $ 1 (mod k), then UML CI*fb a 
churacter~nalvb k&tAot~(a) # 1. 

Prmf: Let k = 2ap$ p+ be the decomposition of b into prime 
faotom where the p, are diatinot odd primes. In view of the hypothsl* about 
a, not all the congruences 

a = 1 (mod 2a) 

a =  1 (modpjP$), j= 1 , 2 , * * - , r  

mn be fulfilled. Fket euppose that 

where p is odd. I@ g be a primitive congruence root modulo # (lee Theorem 
28). The powan #, d = 1,2, , p(p@), represent all residue oluee modulo 
p" whioh are prime to p. We define %(I) = e2rs~@). Since then 

we have dehed a o h c t e r  modulo #. With a certain p + o (mod p(#)), 
we have 

Since p@ divides k, this character % can be extended to a chancttnx* modulo 
k. In tbis prweaa %(a) = %*(a), since (a, k) = 1. In this m e  we have the 
desired o h t e r  modulo k. 

Seoond, sup- that a + 1 (mod 2.). The case a = 1 does not ocoor, for 
in thi. cue a and k w e  even, and therefore (a, k) # 1. Henoe (a, k) = 1 
impliea that a i. odd, and this would mean a -- 1 (mod 2). F'or a = 2, 
a f 1 (mod 4), we muat have a = - 1 (mod 4). In our table we b e  given a 
nonprinoipd 0h.nOter X, modulo 4 for which xl(a) = - 1. We am again 
extend &hi6 0h.nOter a ohuscter X* modulo k. 

Now auppoee a 2 3. There ia no primitive congruenoe mot modulo F. 
But d, d = 1, , Pareprewnta all numbem of the form 4n + 1 modub 3.. 
rinoeb= l(mod4).Thw 

SA r 1 (mod 4) 

on the one hand, and h o e  on the other hand the smallest podthe p with 

Sp = 1 (mod 2") 

i. p = 2", a 2 3, u OM be seen by induction on a. The n u m h  4 s  - 1 * 
modulo 2. on tbsn be reprewnted by -SA, so that all odd r w u e  olu 
moduloPammpmmnbd by f fiA, d = 1 , 2 , - - - ,  24-'. 

If a 1 - 1  (rnod2.), then a I -1 (mod4) and we pmosed aa in  the^ 
previous mse with xl(a) = -1, where g o m  now .Lo be extended to a 
oheraoter modulo k, since 4 1 k. Thus we have only to oolldda the ous 
a + f 1 (mod P). Then there exiata a v + 0 (mod 2&a) so that 

a -- &6v(mod2a), 0 < v < P-'. 
We now define a chuaoter x modulo 2" aa follows : 

%(-1) = 1 , ~ ( 5 )  = . 
Then 

-- 
If we again extend this cheracter I modulo 2. to a ohareoter X* moddo k, 
we have .Iso settled this oeoe and the theorem is pmved. 

THEOBEM 54: If a $ 1  (mod k), then 2 %(a) = 0, when the nu u 
&dd OVW d dhbCkr8 d y b  k. 

x 

does X*X. Therefore, 
I x(a) =x %*%(a) - %*(4 2 , 
X X x 

1 

The result follows, sinoe x*(a) # 1. 

Pmof: By rearrang* the emrmad .  of the doubls muno r e  get t& 

The inwr rum on the left ie 

The inner eum on the right oide, by w . 6 4 ,  t .ao fm n +  1 (mod&) 
. o d L k l y t b e n o m b g c o f ~ r n o d r b ~ ~ n r l ( ( r o d & ~ l p ,  
then ercah summand oontributee 1: 

Equation (14.6) t h m f m  raduoae to 
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This theorem shows that our tables for characters modulo t up to k = 6 
are complete, since indeed each table exhibits y(k) characters. 

A corollary of Theorem 55 is the equation, for (a, k) = 1, 

~ ( k )  if a = n (mod k) P i(a)x(ni = ( 
X 

(14.6) 
0 otherwise. 

Indeed f(a) is the reciprocal of ~ ( a )  : 

f(4 = x(a)-' = x(a*) , 
where aiz* = 1 (mod k). Thus the sum in (14.6) reduces to 

Zx(a*n) 9 

X 

and this is taken care of by Theorems 54 and 55 . 

THEOREM 66: For (a, k) = 1 icf f be the emaht  p08itina eapment 4 
that af - 1 (mod k). Then ~ ( a )  i8 an fth root of unity, and (Jl ftb rada of unitg 
a-r eqya2ly often aa ~ ( a )  if x rum over the charactere modulo E.  

Proof: Since x(a)l = x(af) = 1, the first assertion about %(a) is olesr. If, 
moreover, a r 1 (mod k), we have f = 1, ~ ( a )  = 1 for all X ,  and them i. 
nothing to prove. Therefore, let us take a f 1 (mod k) so that f > 1. Let a 
be a fixed fth root of unity. We want to find out how often %(a) = s among 
the X, and to show that this frequency does not depend on a. We oonsidar 
the following sum : 

S =Z {e-lx(a) + &-%(a2) + . + E-fx(af)) , 
x 

which we write in two ways: 

The inner sum on the right-hand side is 0 for a' + 1 (mod 4, that i., for 
I = 1, , f - 1, and isq(b) for I = f. Thus we have S = tp(b). In the inner 
sum on the left we set 

7 = &-'x(a) , 
which is a certain fth root of unity. Hence the sum become8 

1 

This mans  S = e * f, if e gives the number of times that a I 1 or tb.t 
%(a) = e. We have, coneequently, 

944 e= - ,  
f (14.7) 

independent indeed of the particular e. 

The D i h U t  W s i a  We now return to Dirichlet's problem and the 
construction of a series indicated in the beginning of this ohapter. Thew 
series am 

for 8 > 1. The convergence for 8 > 1 follows at  once, since L(8, x) is ma jo r id  
termwise by [(d =z l/n8. The Euler pmduct now appeara here immediately 
as a consehuence of the chsncter property of x and the uniqueness of prime 
fwtorization : 

For the principal character p ,  we have in particular 

If now a in a number relatively prime to k, (14.6) furnishes the f&damentid 
formula 

whew 

eo that 



for all 8 > 1. (The constant C happens to be $13, which is irrelevant here.) 
In order to prove Dirichlet's theorem, we want to show that 

as a -r 1. Since H(8) remains bounded, this will be acc~mplished if it ie proved 
that 

if a + 1. This is now the remaining problem. One of the summands, namely 
that for xo, does go to infinity as 8 -- 1. In fact, we have 

Hence, for 8 > 1, 

Since (8  - 1) tends to zero, the factor ( ( 8 )  muat tend to infinity. In (14.9) 
we see 

and thus we find 

This showr that x0(a) log L(8, zo) + co if 8 + 1. In order to pmre, however, 
that the whole sum (14.11) goes to infinity, it is then n e w  that no 
mutual compensation of the terms in that sum might render tbs limit finite. 
It will suffice that no other term of the sum goes to m. But in order to see 
that (log L(8, x)( does not go to m, it is necessary to show that L(8, z) goe8 
neithrto anurt00. 

We have 

end sinoe 

$ = 0 , 
n-1 

only the second sum counts. But that sum mntrin. b than k brm8. Thus 

Then for 8 > 1, M < N, we have 

Cauohy's convergence critsrion ensures therefore the mnvergenoe of tb 
wries for L(8,x) for 8 > 0, and unijorm mnvergenoe fm dl r 5: d > 0 for a 
k e d  6. The f&d derivative of GI, X) will be b 

ud the same argument will show uniform oonvergenm of (14.14) fix r 2 
b > 0. Therefore L(4 2) ia di&amtSIbls fu r > 0 .Id hu (14.14) M i* - 

Withs-*lor 

with 
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Tb mnv- of 4 1 ,  y), y # yo, flnt step. We now show that 
L(l, X) # 0 for every nonprincipal character. This we do in two itepe. 

We form the product of all L(a, 2): 

We now apply Theorem 56 to y(p). Iff is the smallest positive integer so that 
j= 1 (mod k), then y(p) is an fth root of unity, let us say e, and aU such 8 

occur with the multiplicity e = (p(k)/j) if y runs through all the o h t e n  
modulo k. That means I 

where e runs over all fth roots of unity. 
Now since 

~ ( x - E ) = x ' -  1, 
8 

we have 

and so 

If we set h = p(k) = ef, we have thus 

This fact already precludes the vanishing of more than one of the L(l, x). 
Indeed, assume that L(1, yl) = L(l ,  x,) = 0. (We always reserve the notation 
xo for the principal character.) Then F(8) would contain, beaides other 
factors that are continuous a t  a = 1, 

But since (8 - l)L(8, xo) -, (p(k)/k) by (14.12), the second faota (a - 1) 
would let this product go to 0 in contradiction to (14.16). 

I: 
!I 

THE NONVANISHINO OB L(1, x), 8EaOND BTX' 133 

If now for a complex character x (i.e., a character which aaaumea mmplex 
values) we would have 

L(1,y) = 0 ,  

then L(a, 2) and L(a, j) would on the one hand be two different functions, 
but, since for real a > 1 

we would also have L(1, j) = 0, which we just excluded. Therefore, the 
problem is further reduced; it remains to be shown that L(l, 1 )  # 0 for all 
red nonprincipal characters. 

Now if there were just one L(l ,  y) = 0, we would have in F(8), beaides 
continuous factors, the product 

This would imply that F(8), for a + 1 would have a finite limit. If we could 
show that this is not so, but actually P(a) + 00 for a -+ 1, then the possibility 
of a aingle vanishing L(l ,  X )  would also be ruled out. But thia apparently 
simple plan leads to complications. We take another road. 

X, 
sol 

The nonvanishing of L(l, y), x # lo, m o d  rtep. There are a number 
proofs for the rather famous problem concerning L(l, X) # 0. Only real 
that is ~ ( n )  = f 1 for (n, k) = 1, have to be considered. Dirichlet 

ved the problem by reducing it to another one. He had shown that L(1, X) 
for a real character y has a meaning in the theory of quadratic forma 
and represents a number which by' its definition must be positive. We 
proceed here directly, following a proof of Mertens (1897). 

Let us put 

It ie immediately seen that f(npJ = f (nl)f(%) whenever (111, = 1. 

and ~ ( p )  = & 1, it  followe that f (pa) 2 0, and henoe 

for all n a t d  numbers n. If 1 is h, then the above equatian showof@') 
eitherequalto I +  1 or to  l ,urd,in.ny au. ~1.Promtihh.ndtb .mul t i -  
pb t iv i ty ,  it follows that 1 

f(ma) h 1 . 



divcrgu. Let us investigate this divergence a little more claw@. We aet 

In this kst sum we ue summing over ell lattice pointa under the hyperbola 

Figure 7 

t d = r in a (d, t) pkne. We break the area under the hyparbb into two 
piece8 by the ordimtie erected a t  &. See Fig. 7. Then we hvm 

Nor  (12.1) of the Ismms in Chapter 12 shows that 

eo that 

where the laet term wmee from an epplioation of (14.13) to 

Continuing, we have 

where we have twice employed (14.17) and the Esof that 

mmaine bounded b e ~ u e e  of oonvergenoe. Thus, with appliation of (14.18) 
wain, 

We know that G(x)  + oo if z - oo. But this evidently is poeeible only if 

L ( h 4  # 0 ,  
which we had to prove. 

Altogether, we have now proved (14.11) for (a, k) = 1. a 

Sinue this implitw, ee we have seen, 

we have proved Diriuhlet'e femouta theorem. 

Rmvtr Two further remark may be in plroe. 
I. All that wee needed, ee we ham obened  'above, was to rhon that irr 

(14.10) (P(u)l+ a u 8 - c  1. NO; (14.16) .bow# th& P(4 d WP to 0 
i f 8 4  1, endfhurit willrufioetorhorlq F(44 a> ifr-, 1. But 

be m -2 I )log L(4 XI# 



which in comparison with (14.10), putting a = 1, means 

then (14.18) would follow for any a whioh is prime to k, a d  thus Diriohlet'a 
theorem would follow immediately. 

11. Our reasoning contains one difficulty which we have gbsaed over, the 
meaning of the expression log L(e, x), where x and therefore L(8, X )  am 
complex num bere. 

The logarithm of a complex number 

z = IzI *ei'J' 
is defined as 

(14.19) 

log z = log lzl + ig, , 
where log 121 is the usual natural logarithm of a positive number. But the 
argument g, in (14.19) is not uniquely determined and leaves additive 
multiples of 2n free. Now, for real e, 

as 8 -+ ao. s we have seen, L(8, X) varies continuous?y for 8 h 1, without 
becoming ze 4 o. Thus log L(8, x )  is meant as tluJ cuntinww  unction whioh 
goes to log 1 = 0 if 8 + GO. This fixation eliminates doubtful additions of 
multiples of 2ni to log L(8, z), and with this definition of the logarithm all 
previous argumenfe are valid. 

The Sieve of Eratosthenes and a Theorem of V. BWP 

The BievfI of Eratrvthanaa. A method to deteot the prime numbem in the 
sequence of all natural numbers waa found by Eratosthems (third ontury 
s.0.). It utilizes the fact that a proper divisor of a number murt +e i t  
but cannot be 1, the unit. Hence 2 is the first prime number. After 2 no even 
number can be a prime number, so all even numbers can be stricken out 
("sieved" out). The first remaining number is 3 ; and since it is not a multiple 
of a preceding number, it  must be a prime. Again, all multiples of 3 am be 
dismieeed and are stricken out. 

This leaves 5 as the next surviving number, which thus muet be a prime. 
Now all multiples of 5 are sieved out, end so on. Thia procedure ie known aa 
the sieve of Enttosthenes. 

Actually this prooess achieve8 a good deal more. If a number n L oom- 
posite, a t  least one factor must obviously be 5 <n. If in our list above, 
extending to 26, a number is composite, it  must have a t  l a s t  one Lotor 5 6 ,  
and thus be a multiple of 2 or.3 or 5. When these multiples have been deleted, 
the remaining numbers up to 26 must all be primes: 7,11,13,17,19,29. Thb 
goes on, in general; the primes between 4; and R are obtained by deleting 
the multiples of all primes up to <n. 

A direct application of tbe sieve of Erahthenes to the problem of the 
distzibution of primes has not been successful so far. However, since 1919 the 
Norwegian mathematician Viggb Brun and many followers have u d  a s i t b  
method to study certain problems connected with primes. We have already 
mentioned in the Introduction the o m m n o e  of twin primes, i.e., paha of 
prime numbers whioh differ by 2. They us relatively iafieqwnt among dl 
primes. Whereea we know that the ium of tb. ~~ of dl prhm 

L djvergent (see Chapter 13, Theorem W),  we .bll pors in tLL bpbCw 
theorem of Viggo Brun. 

187 
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Remark: The prime 5 belongs to the two twin pairs 3 6  end 6,7. No 
other primes can have this property! I 

Fir& rlr, of V. Brrrn98 method, Viggo Brun applied a dorbh sictn'ng to 
the eequenae f m t d  numbers, so that a11 those numbers r were sfriolren 
out for which 1 or n + 2 are composite. Only those n's were retained whioh 
are first member of a pair of twin primee. In fact, as we rhll see, thia 
propam ommot be d e d  out in full rigor; some more n u m b  will escape 
the sieve, but not enough to disturb the convergence of the seriw in 
Theorem 68. 

Let T(z) be the number of the h t  members n of pairs of twin primes for 
which n d z. Mareover, let U(z;pl,p8, - ,p,) be the number of odd 
numbers n d z for which n(n + 2) is not divisible by any of the odd primes - 
p,, p,, , p,. If we take as this eet all primes p j  d dx + 2, then 
U(z; p,, , p,) counts only the first members of twin primee. Since some 
twin primes may be among the primea pl, p,, . , p,, we can state 

T(x) S r f U(z; pl, , pr) . (16.1) 
If, however, we take, for the sieving pmceee, only odd primw pj L y < 
<2, the previous inequality will remain correct a fmtiori, .ince on the 
right-hand side we may also count some odd numbers which ue not fh t  
members of twin primes. Let us use the abbreviation 

U(z;p,,pg, * * *  ,P,) = U(x;y), 

Let us further designate by B(z; pi pi . p,) the number of odd numben 
n S z for which n(n + 2) ia divisible by pipj p,. Then 

where all prim88 M taken fmm the set of odd primea i y. The validity of 
thb formula can be wen by 8 prow88 of enumerati0n.t On the left aide am 

t Thia formula ir &urJIy v i a l  o m  of e formule of methemetioal logio, wmetimsr 
o d d  Bylve&dr formula (ae, ag., a. Birkhoff end 8. M e c h e .  A S v r y  Modrrr 
AWm (New Yo&: Mmndh Co., lWS), pp. 347-348). 

oounted (by definition) those amoag the [(I + 1)/2] odd n u m b  n 5 r for 
which n(n + 2) is not divisible by any of the odd primea 3,6, , p, L y. 
All these am mentioned in the count [(r + 1)/2] on tbe righthad .ide. 
However, all odd integen for which n(n + 2) ia divirible by at but om of 
them primes ia counted e d y  um time0 on the right-hand ude. Indeed let 
n(n + 2) be divieible by the f primes pa, p ~ ,  , pa, d only by them. Then 
n ia oounted once in [ ( x  + 1)/2], j times in 

(i) times in 

(is) times in 

end ao on, and with the o b ~ e t i o n  of the f signs, altogether 

times, as had to be shown. 
Let us abbreviate a number which ia the product of / different prime 

factors taken from 3,5, , p, as p(r).  Then (15.3) can be abbreviated aa 

where in the last inner sum p(fi rum over all produd off difll-t pimo 
EMtom, each taken from 3,6, , p,. 

It ia now important, and this w u  Brun's deokive o b a m ~ n ,  not to u n  
the full Burn on the right-hand .ide, but to break it off at a arrit+bly 
~ e x f = m < r . I f w e c h m e m ~ , w e h . r e  

Insfeed of oollnideriog the full sum (16.4) we nesd the tdbwkq Lur 
oounting. 
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We leave the simple proof of this lemma to the reader. (For a proof 
observe that the binomial coefficients are increasing up to A = l f /2 ] ;  for 
m > [f/2] use the symmetry of tho binomial coefficients and (16.4).) 

The next step is the establinhment of a handy expreeshn for B(x; ~( '1) .  
This is done in the following lemma, which we formulate, for the aake of 
convenience, B little more generally than we actually need it. 

LEMMA 2: Lei p be on odd number and v(p)  the n u n h r  of its different 
prime fiador8. Then the number B(x; p)  of odd number8 r 5 x for ~ u h a  
n(n + 2 )  ia divisible by p i a  

Proof: Let 
p pla~p2aa . P?, v = V ( P )  

Since the p, are odd, none of these primes can divide both n and n + 2. If 
n(n + 2) is divisible by p, then some of the prime powers in p must divide n, 
the others n + 2; for instance, 

n = 0 (mod p T l  . . p:l) 
(15.8) 

n + 2 = 0 (mod pi"+'; pVav) . 
These two congruences together are equivalent to one congruence modulo p, 
according to the Chinese remainder theorem. In the range 1 S n S x for 
odd n the congruences will therefore have [x/Zp] or [x/2p] + 1 solutions,t 
or in any caee x/2p + 8 solutions with a certain 0,  1/31 5 1. - .  . - 

Now for n ( n  + 2 )  -- 0 (mod p)  we can have exactly 2' = 2 " ( P )  distribu- 
tions of the v(p)  prime powers betwecn n and n + 2, which means that we 
have 2''P) pair. of congruences like (15.8). Consequently we obtain the result 
(15.7) with a new meaning of 8. 

R e w k :  Because xl2p for large p is small compared with the upper 
limit 1 of 101, the formula (16.7) is not useful for large p. It is this fact which 
makes it advieable to stop the sum in (15.6) a t  a certain suitable m < r.  

Collecting now our results from (15.1)' (15.6), and (15.7) we obtain 

where for convenience we have introduced the term f = 0 with p(0) = 1. 
Evidently v(pcf)) = f. We remember that m is even. 

Thas solutions us equidistant in the range and have the dishme Ip. 

Swond d p  of V. Bm9a method: Bdh&h& The kst term in (16.8) 
is the wies t  to estimate. Since p( j )  run. through all product. off  prime 
kctom, each taken fmm the set 3,5, , p,, we have 

On the pther ha~d, we have 

The first sum is obtained as the result of multiplying out 

In the second we put 
nf 

and obaerve for a later purpme th8t 8, is the fib elementary symmetric 
function of the quantities 

2 2 2 

We thus have 

Now, between successive elementary symmetric functions of my r po*tive I 

quantities, the following inequality holds : 

81 8' 2 (f + l)sf+l, /=  1, 2, ' (16.13) 

whioh remains true for f > r if we put a,+* = a,, = = 0. The above 
inequality becomes obvious thmugh multiplication on the bftihad aide, a 

where each term of appears (f + 1) timw, beeidea some o t b r  (paithe) 
terms. We deduce by iteration : 

and, in gened, 

Inequality (15.13) shows moreover that 
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provided 
f + i r 8 , .  

In our cam we have 

where at evidently depends on y, which has still to be cboan. If we trLe m 
therefore to mtiafy 

then the sum on the right side of (15.12) is an alternatiq awn whole term 
are deoFeseing in absolute value. Therefore 

where we have d an estimate of the factorial fmm Chaptar 13. 
We know that dl dehed in (15.14) is incming without bound. with y: 

I 
81 = 2 log log y + O(1) , 

after Theorem 60. 
If we determine m + 1 eo that 

e % < m + l  ~ 9 8 ~ ~  

which certainly will eetisfy (15.15), we have 

Furthermore, einoe for any real z 

so that (16.12) goee over into 

where we have made the trivial observation 2r < y. I 

T'hirdItr)ofV.Brpl19~method:Choioeof a-. We bre, for g 
large enough, 2 log log y - B < 81 < 3 log log y for a suibbb pmitive B. 
Thue (16.16) oan be repleoed by 

For the choice of y C 6 our attention hee to be f o o d  on tbe lut two 
term0 of thie inequality. Let us put 

y=zy ,  o < y s + .  

We a n  see at once that any choice of a conetent positive y, however amall, 
will make the lsst term grow hater than z, thua nullifying our efforts. We 
have 

Now choose 

log log z 
T(x )  < d + WO eBx(----)t+ zh . 

1% z 

For large x the seoond mmmand will be the predomilrurt one hem. 
Let T* (x) be the number of d twin prime8 S + (not only the &It memben 

of esoh pair ee oounted in T(x)) .  Then obviously 
T * ( z )  $ 2T(x) . 

We have thus obtained Viggo Brun'e theorem. 

THEOBEM 69: There exi& a podivc canstarnt C 80 that P ( z ) ,  the numbsr 
of twin priwbea not d i n g  x, &w@, f ~ l  x > 3, 

log log z 
* (  log z r .  

T h e ~ o f t h e r d ~ o f t h e t r r i n p o h r r r .  The dimmion of'* 
sum L now a simple matter of partial mrmation. We hare 

1 1 
~ ( x )  = 2 - = 2 ; (T*(u) - T*(a - 2))  

p twin prlmeP SSrSs 
9 6s r odd 

Partial eummetion yield8 

r odd 

where = 2[(x - 1)/2] + 1 is the gremfest odd integer not e x o d h #  s. 
Thue. in view of (16.17), 
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It ie well known (and easily proved) that 

is convergent for E > 0. A fortiori the sum 

(log log n)' r 

is convergent. This proves Viggo Brun's Theorem 58. 

Additional remarh. What we have done in proving (16.17) is to munt 
not only twin primes but such numbers n, n + 2 below z which both have 
relatively large prime factors, since we have sieved out all multiples of 
p, $ y = ~ ' ' ~ 1 ~ ' -  2. 

The sieve method has subsequently been refined so that multiples of 
primes p, d a? with a certain fizcd c could all be eliminatd. In this way 

x 
T*(x) < C - 

(1013 42 
could be established. 

The problem of the twin primes is in some respects akin to Goldbach'e 
problem : Is every even number $4 the sum of 2 primes ? Viggo Brun could 
indeed apply his idea of the double sieving to this problem and obtained a 
result weaker than Goldbach's conjecture, but of a similar nature: Every 
large enough even number is the sum of two numbers, esah of which is e 
prime or a product of a t  most 9 primes. 

This has been improved further, in particular by A. Belberg, and the 
best-known result deala with numbers which are produota of at .  most 3 
primes. 

If we insist, however, that the summands have to be primes, then one can 
prove by the sieve method together with the ingenious arguments of Schnirel- 
mann about the "density" of certain sequences of integers among all natural 
numbers, that every large enough number is the sum of a t  most 20 primes. 

However, since the 1920's a completely different method, far from 
elementary, haa been used in problems of this sort. It was invented by Hardy 
and Littlewood and utilizes power series and the theory of functions of a 
complex variable. The first result of Hardy and Littlewood in thie direction 
was still baaed on a certain unproved hypothesis. The Russien mathematioian 
I. M. Vinogradov Lter improved the method so that the unproved hypothesis 
was eliminated. Vinogradov atill has not proved Goldbach's theorem in full, 
but we know through him that every large enough odd number ie the sum 
of 3 primes. 
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It is well known (and easily proved) that 

is clorivcbrgcmt for E > 0. -4 fortiori the sum 

is convergent. This proves Viggo Brun's Thc.ort.ln 58.  

Additional remarks. What we have done in proving (15.17) is to count 
riot o~i ly  twin primes but such numbers IL, n + 2t)elow x which both have 
relativi~ly large prime factors, since we have sieved out all multiples of 

. , 21/30 log log z 

The sieve method has subsequently k e n  refined so that  multiples of 
primes pj r; xc with a certain $xed c could all be eliminated. I n  this way 

x 
7'*(4 C - 

(log x)" 
could be t~sta blishcd. 

The problem of the twin primes is in somc r e s p ~ t s  akin to Goldbach's 
prot)l(.m: Is every even ~ ~ e n i b r ~  - 4  the sum of  2 ~htncbs ! Viggo Brut1 could 
indwd apply his idea of t h ~  doubh. xiwing to this ~mhltvn and obtained a 
n w l t  weaker than Oohllmeh's conjrctun*, l ~ t  01' i t  sir nil;^ natun.: Kvc~y 
Iargcb c*riough evwi 1~u1111)~~r is thc sum of two I I I J I I I ~ M ~ I . ~ ,  (ueh of whicli is u 
pri~nc! or a product of a t  most 9 primes. 

This has been improved further, in particular by A.  Selbeg, and the 
best-known result deals with sumt)ers which n n  prwluctr of a t  most 3 
primes. 

I f  we insist, however, that the summands have to be primes, then one can 
pwvr by the sieve method together with the ingenious arguments of Schnind- 
mann about the "density" of certain sequences of integers among all natural 
numbers, that every large enough number is the sum of a t  most 40 primes. 

However, since the 1920's a completely different method, far from 
elementary, has been used in problems of this sort. I t  was invented by Hardy 
and 1,ittlewood and utilizes power scries and th(1 throry of functions of a 
complex variable. The first result of H a d y  and 1,ittlewood in this direction 
was still based on a certain unproved hypothtbsis. The Russian mathematician 
I. M. Vinogradov later improved the method so that the unproved hypothesis 
was eliminated. Vinogradov still has not proved Goldbaeh's theorem in full, 
but we know through him that every large enough odd number is the sum 
of 3 primes. 
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