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Preface

This little book was not planned as a textbook of elementary number
theory. Nevertheless it may be regarded as a sort of introduction to number
theory, since it does not presuppose any previous knowledge in this field.
Using a background of analysis and algebra, the reader is led to the funda-
mental theorems of number theory: The uniqueness of prime number
factorization and the reciprocity law of quadratic residues. In both cases
the text does not pursue the direct and shortest path. It seemed to me more
attractive to look around in the world of numbers and then to unfold the
underlying structure. Thus the uniqueness of prime number factorization
comes at the end of a discussion of common fractions, as they appear in the
arrangements of the Farey sequences, and the quadratic reciprocity law is
attached to investigations in cyclotomy, which start with the Gaussian
construction of the regular heptadecagon. Cyclotomy is treated in some
detail, because of its own significance and also as framework for the elegant
theorems on Gaussian sums. Then there are some discussions of asymptotio
laws, as a foretaste of analytic number theory. The presentation climaxee
with Dirichlet’s theorem about primes in an arithmetic progreasion and V.
Brun'’s theorem on twin primes.

The book derives its character from its origin: It is the result of a series
of lectures given at Haverford College in 1959-1960 under the auspices of
the William Pyle Philips Fund. The book does not render these lectures
quite faithfully. Besides having rearranged some topice to make them
better fit together, I have omitted two lectures on the elements of the theory
of partitions, which did not seem to agree too well with the general tenor of
the others, and finally I have added the last chapter, which I had planned
for my Haverford lectures, but because of lack of time could not deliver
there. I did lecture on this last chapter, though at another place, namely,
Dartmouth College, in October, 1960.

I wish to thank my old friend Cletus Oakley for encouraging me to collect
the lectures for this book. My thanks go also to Louis Solomon for writing
out notes of my lectures and to James O. Brooks for his help with the
manuacript. :

HANS RADEMACNER
Philadelphia, Pa. :
February, 1964
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Introduction

Let a and ¢ be positive integers, or ‘“natural numbers” as we call them.
We say that a divides ¢ and write a | ¢ if there exists a natural number b such
that ¢ = ab. Every natural number a is divisible by 1 and a, divisors which
sometimes are singled out as ‘‘improper” divisors. Thus, 6 has the proper
divisors 2 and 3 and the improper ones 1 and 6. If the number n > 1 has no
divisors other than the improper ones we say that n is a prime number.
Otherwise n is composite. Evidently every composite number can be factored
into primes. The sequence of primes begins with 2, 3, 5, 7, 11, 13, 17,19, - -+
and has a rather irregular appearance. Many number theoretical problems are
ooncerned with this sequence. First, a8 we move along the sequence of
natural numbers, the prime numbers become more and more scarce. This is
quite plausible because a large number has a greater chance than a small one
of being composite, as it surpasses more numbers which might be eligible for
ita divisors. It is even conceivable that all sufficiently large numbers might

be composite. This, however, is not so. Euclid (around 300 B.0.) has proved
the

THEOREM: Oulside any given finste set of prime numbers there is another
one.

In other words: there is no largest prime number. Here is Euclid’s proof:

Let us write down any finite set of prime numbers, e.g., those from 2 to
a certain p, say 2,3, 5, - - -, p. We form the product of these primes and then
oonsider the integer '

N=(2:3:6--p)+ 1.
We write this number as a product of primes N =g, - -g,, where s =1
would account for the possibility, that N might iteelf already be a prime
number. Nownog,,j = 1, - - *, s is equal to any of the primes 2, 3,5, - - -, p,
sinoe none of these divides N, whereas all the ¢, do divide N. Thus there
exists a prime distinct from those in the set 2, 3, 5, - -, p, as the theorem
states.

We can get a bit more out of the same argument. Let us look at odd
primes (i.e., those different from 2). When divided by 4 they leave the odd
remainders 1 or 3. We write theae cases as p = 1 (mod ¢) or p = 3 (mod 4).1
For example: g :

6,13,17,29, .- - = 1 (mod 4)
3,7,11,19,23,--- = 3 (mod 4).
1 Read ‘“‘modulo 4,” that is “by the measure 4."”
' 1



2 INTRODUCTION

Now we have just seen that both classes together contain infinitely many
primes, but this does not preclude the possibility that one of these classes
might contain only finitely many. We can use Euclid’s argument to show that
there exist infinitely many primes = 3 (mod 4). For let us take any set of
such primes 3, 7, 11, - - - , p. Consider this time M = (4:3-7:11--:p) — 1.
Then we see that M = 3 (mod 4). We write now M =g, -g;~""q, a8 & =
product of primes. At least one of these primes g, is = 3 (mod 4), since the
product of two numbers of the form 4k + 1 is again of this form:

(4m + 1)4n + 1) =4(4mn +~m + n) + 1.

But no ¢, is among the set 3, 7, 11, - -+, p, and so there exists another
prime = 3 (mod 4). \

It is also true that the class of primes = 1 (mod 4) contains infinitely
many elements. But we postpone the proof since it is more involved.

Ezercise: Prove, by the same argument, that there exist infinitely many
primes = 5 (mod 6).

The general problem of this type was solved by Lejeune Dirichlet about
125 years ago by quite different methods. Let us look for primes in an
arithmetic progression, a, a + m, a + 2m, - -+, or, in brief, p = a (mod m).
Here a and m are given natural numbers. Clearly we can find such primes
(besides possibly a itself) only if a and m have no common divisor except 1.
We let (a, m) denote the greatest common divisor of the two numbers a ahd

.If (@, m) = 1 we say that a and m are relatively prime or coprime. Following
firichlet we ghall show later that any arithmetic progression with (a, m) = 1
contains infinitely many primes (Theorem 57). '

Properties of prime numbers will be the main topic of these lectures. Now,
the theory of prime numbers leads to problems which have withstood the
efforts of the greatest mathematicians through the centuries. However, there
are problems wholly or partly accessible by fairly simple means. I mention
a few which will ocoupy us. :

(1) If p is a prime then

(p — 1) = ~1(modp)or(p —1)! + 1 =0 (mod p):

- 204+ 1 =3 =0 (mod 3),
4! 4 1 = 256 = 0 (mod 5), and
6 +1=1721=0(mod7)

are some examples. The theorem was first published by Waring, but goes

under the name of Wilsiir's theorem. It will appear in our discussion as &

simple oorollary.

1 Bee Chapter 5, Theorem 19.
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2) Let p be a prime and let a be a positive integer relatively prime
to p. Then a*! = 1. (mod p). This result was proved hx Pierre de Fermat

(1601-1665), a high judge in Toulouse and one of the greatest number
theorists in mathematiocal history.
\)3)'11' 2 = 1 (mod 4) then p is the sum of two square numbers,

5=1% 4 2¢
* 13 =2% 4 3%
17 = 13 4 43
29 = 2% 4 5%,

and essentially in only one way. Of course, even the longest list of such.
examples is no proof of the theorem, since the proof must deduce this property
out of the general nature of such primes and thus be valid for all (infinitely
many) primes. We owe this theorem also to Fermat. Primes p = 3 (mod 4)
may not be so decomposed. This is easy to prove. res of eve

numbers are = 0 (mod 4) and squares of odd numbers are = od 4).

mmmmwmm
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47but never = s
» the number of primes < z. Carl Friedrich Gauss
(1777-1855) conjectured at the age of 15, by inspecting a table of primes, that

» 3 x : : . x
n(x) is approximately l—o?:;: in t'he sense that the ratio w(x): l—og o converges

to 1 if z increases indefinitely. This conjecture was made in 1792, but the
theorem was first proved in 1896 independently by Jacques Hadamard and
Charles de la Vallée Poussin. We shall prove a much weakened form of this
theorem which goes back to Chebyshev.

(6) The prime numbers of the form p = 2" +1, eg, 21 +1=3,
28 4 1=25, 20 4+1=17, 28 + 1 = 257, -~ -7 called Fermat primes, phy

a fundamental role in the copstruction of regular plygens, after Gauss.
Fermat conjectured that all numbers of the form 2% 4 1 are priges. How-

ever, this is not so: Euler has shown that 233 4- 1 18 composite and containg
the prime factor 64TTt is not known whether there are infinitely many
Fermat primes.

(6) The sequence of primes appears to be very irregular, with gaps
between consecutive primes varying in size. The gap can be arbitrarily large:
indeed all of the (N — 1) consecutive numbers v

Nl +2,Nl+3 N +4, N+ N
are composite, so that the differepce between the smallest prime above this
set and the greatest prime below this set is at least N. -~
Leaving aside the pair 2, 3, the difference between two oomoontlvo primes
must at least be 2, e.g.,

3,5; 67, 11,13; 17,19; 2981
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4 INTRODUCTION

Such primes are called ‘‘twin primes.” It is not known whether there are
infinitely many pairs of twin primes, although there are some indications
that this is so. The Norwegian mathematician V. Brun modified this problem
to make it more accessible. He considered not primes alone but numbers
containing only a small number of prime factors. Then, as A. Selberg has
shown, among the numbers having at most three prime divisors ex.ist

infinitely many pairs of difference 2.
One can generalize this problem in many ways. For example one notices

the prime quadruplets
11, 13, 17, 19

101, 103, 107, 109
191, 193, 197, 199
821, 823, 827, 829,

each quadruplet lying within a decade. The largest such quadruplet
registered in D. N. Lehmer’s Table of Primes is

9933611, 9933613, 9933617, 9933619.

The last lectures of this book will discuss twin primes. We shall, however,
treat quite the opposite problem: we shall show that there are, in a certain

sense, not too many twin primes.

I

e TS

AT ity X T

Factorization and Farey Fractions

Decomposition of a number; tactorization into prime factors. At first
glance it seems obvious that the decomposition of a natural number into
prime factors i8 unique up to the order of the factors. We break down a
number into factors, each of which, unless it is a prime number, we decompose
again until we have reached prime factors throughout. This must take place
at some point since the factors become smaller and smaller. For example

60=4-16=2:-2-3-5
or
60=6-10=2-3:2-5.

This example shows two different procedures for breaking down the number
60, but both end with the same prime divisors. If not spoiled by too much
knowledge you would take this as obvious. But Euclid developed a long and
complicated proof for the uniqueness of prime factorization. Why? Why is
unique prime factorization not a trivial statement? To answer this let us
oonsider the numbers n = 1 (mod 8):

/‘\

1,4,7,10, 13,16, 19, 22, 25, - - -, 100, - - -
The product of two such numbers is again of the same form, for .
@Bk+1@BI+1)=338k+k+1)+1.

Let us call & number in our set “primitive” if it cannot be written as a product
of other numbers in the set, which being smaller must precede it in the set.
Thus the numbers 4, 7, 10, 13 are primitive, whereas 16 is composite, being
4 - 4. It is olear that every number which is not primitive itself can be de-
composed into a product of primitive numbers. But here is & surprise:

100 = 10-10 and 100 = 4 - 25

are two different decompositions into  primitive factors. Therefore, the
possibility of decomposing & number into factors cannot logically entail the
uniqueness of the final decomposition.
Here is another example. We consider the set of numbers of the form
@ + bV —5, where a and b are integers. Thmntuendndyolouduldu‘
addition and subtraction, and under multiplication as well:
8



6 FACTORIZATION AND FAREY FRACTIONS

(@ + bV —56)(c + dV —5) = (ac — 5bd) + (ad + be)V —b5 .
Such closure is necessary, of course, if we are to reasonably call a number
a 4 bV —b5 an “integer.” Again, numbers in this realm are either “‘primitive,”
i.e., are not products of others, or are products of primitive numbers. Then

3,7 1+2V—5,1—2V_5, 4+V—5, 4 —V—5, are all primitive
(as can be tested by trial), and the number 21 has 3 distinct factor_izatiom:

21 =3-7=(1+2V5)(1 —2V—b6) = (4 + V—=5)4 — V75).

Common fractions. We are postponing the proof of the uniqueness of
prime factorization for the moment and shall obtain-it as a result of a study
of common fractions. We shall then also give a direct proof of it.

A common fraction is denoted by the symbol s where 2 and y are integers

and where the denominator y > 0. We assume the rules of calculation with
integers as given and reduce all statements about fractions to statements
about integers. For the moment we are interested only in the ordering of the
fractions. First we define egquality.

o

DEFINITION: ~ 18 equivalent to ad = be.

O'IG
&

The relation of equality is an “equivalence relation” and as such has the
required properties:

Reflexivity: g = gsince ab = ba.
e o
Symmetry: If 3= 3 then =3 Indeed ad = bec implies ¢b = da.
Transitivity : If% gand 5 = ;, then (-; =; because ad = be, ¢f = de,
and thus adf = bef = bde. Therefore af = be since d # 0.
Secondly we define ineguality.

DrrmerTION: %<-§iaequivakm to ad < be.

It is easily seen that this relation, as it should be, is

Irreflexive: It is not true that§< ;.

SN
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Asymmetric: If% < %, then it is not true that‘-:‘<;-:.

Transitive: Ifb< dd<f t.hen <f

These properties follow immediately from the definition of inequality and
from the fact that the denominators are always taken as positive.

Wealsostipulatethat%<§meamtheumeu5>g.WetbenhAve

among common fractions the iricholomy: For two fractions ‘—; , 5 one and only
one of the statements -

< >

[ 1R~}
&l o
>l Q
al o
>R
Qulo

is true.

Indeed, among integers we have either ad < bc or ad = be or ad > be.

These definitions, in particular the transitivity of equality and inequality,
permit an ordering of the common fractions acoording to <.

Now we usually take it for granted that, among the infinitely many
fractions which are equal, for example

there is exactly one which is reduced, i.e., in which numerator and de-
nominator have no common divisor except 1. This is, however, by no meana
trivial. If we think of our example of the numbers = 1 (mod 3), we have all
the properties of ordering which we just discuseed present there also. How-

ever, we have
4 10

10 2

which in that domain are two reduced fractions, since there the numbers 4,
10, 25 are primitive numbers.

If, therefore, we start a theory of common fractions ab ovo, we first hsve
to admit the possibility that two reduced fractions that are nof sdentical might
nevertheless be equal.

Farey’s scheme of common fractions. In order to gain insight into the
properties of common fractions, we investigate some observations which the
mineralogist Farey made and published without proof in 1816. Canchy
immediately furnished the proofs.

Farey wrote down the ordered sequence of all nonnegative reduced
fractions between 0 and 1 whose denominators are limited by a number N,



8 FACTORIZATION AND FAREY FRACTIONS -

called the order of the Farey sequence. The Farey sequences of orders 1, 2,
3, 4, 5, respectively, are

We find in each of these five sequences fractions ordered only by the relation
<. Since, in general, we have not yet proved that two equal reduced fractions
are idendical, we have to envisage the possibility of equalities in our series of
order N and would then agree to order such fractions according to the sizes
of their numerators. As we see, this possibility does not occur in the orders
1 to 5. As a matter of fact we shall show that it will never appear. In other

h 1
words, two consecutive fractions 7 in a Farey sequence of order N will
always obey the relation "

Rl

—< = 1.1

k < m (L.1)
or, according to definition, Am < kI. More precisely, Farey found the following
about the difference of these numbers.

!
THEOREM 1: For two consecutive fractions é, — of the Farey sequence of
order N we have k'm
e hm =kl —1,
or in another formulation
h 1

£

Proof: We prove this theorem by induction. It is true, as inspection
shows, for N = 1, 2, 3, 4, 5. Assume now that it is true for order N. Then

= —1. (1.2)

let % be & reduced fraction not in the Farey sequence of order N, i.e., for

which b > N. This ; will have its place somewhere in the interval [0, 1}

r—
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A
between some two consecutive fractions - i a.nd - of the Farey sequence of
order N:

=-= (1.3)

ud >
oK

l
m’
A l

We assume hypothesis (1.2) concerning i’ . The “=="' signs cannot be

discarded a priori. We can only say, in view of (1.1), that not both of them
can be valid. Now we set

a h
A= =ak—bA=0
bz (1.4)
a
B = =-——am+b120
m b

where A, 4 are nonnegative integers, by the definition of equality and in-
equality of fractions. We can solve these equations for 4 and b and obtain
through elementary rules

A ——h.
p_ i
el e v Rl
-m (1.5)
]
_ATm B _
b=T % a P+ dm,
—m 1

where we have used (1.2) for the determination of the denominator. AU proper
reduced fractions ;—: in (1.3) can be expressed through (1.5) by means of suitable

nonnegative integers 4, 4 as our argument shows.
Conversely, for all 4, 4 = 0, 4 + u > 0, we have

_ma 1
b pk+Am — m
since Mk + Am) < k(uh + ) and (uh + Apm < (uk + Am) bocause of
1.2
( %Iow).-—Oorp Oadmtudthmugh(li)and(lpﬁ).mmw
possible. If 1 = 0, we would have
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which can be a reduced fraction only for 4 = 1. We would then have
a = ’l, b=k
which contradicts the fact 4 > N. Similarly x4 # 0. All the proper fractions

g in (1.3) therefore appear in the form

a uh+ A
=T > .
ey ALE LR

Now, the smallest value that the denominator b can attain is N + 1,
which would occur if g belonged to the Farey sequence of order N + 1, but

not of order N. Then 4, 4 must be as small as possible, i.e., 4 =1, u =1, 80
that we have
a=h+1 b=k4+m=N+1.

This new fraction g = : ::‘ satisfies Farey’s theorem with respect to ite
neighbors: Indeed we have

h a h h+1 h 1 .

kb |k k+m| |k om|
and

a 1 h+1 1 h 1 .

b m B k4+m m Tk om| ’

where we have used (1.2).
Thus we have shown that Farey’s theorem also holds for order N + 1,
and therefore, through mathematical induction, for all N.
Let us call ht! the “mediant” between -’f and i . Then we have proved
k+m k m
the following theorem at the same time.

THEOREM 2: The fractions which belong to the Farey sequence of order
N + 1 but not of order N are mediants of the Farey sequence of order N.

01
Starting therefore from the Farey sequence 1'1 the following sequences

can be built up simply by inserting successively the mediants with the
appropriate denominators. Since a mediant of the Farey sequence of order N
must belong as a fraction to some Farey sequence of higher order, we have
the following interesting theorem.

TuEoREM 3: TAe denominators of two adjacent fractions of a Farey
sequence of order N add up to at least N + 1.

FAREY’S SCHEME OF COMMON FRACTIONS 11

We emphasize again that our discussion of the Farey sequences, in which,
as we have seen, no equsality sign can ocour, has shown that two reduced

fractions which are not identical cannot be equal (in the meaning of “the

r—definttion of equality between fractions).t

The further theory of common fractions involving addition, subm?tion,
multiplication, and division is not of particular interest from our p9mt of
view, and we take it for granted as explained in elementary arithmetic.

1 It is essily seen that this fact has “‘Euclid’s lemma’ (see Chapter 2) as sgdirect
oonsequence. '



Euclid’s Lemma,

Uniqueness of Prime Factorization

A linear Diophantine equation and Euclid’s lemma. We now draw some
important consequences from our theory of Farey sequences. First we

discuss a linear Diophantine equation that is basic for many arguments in
number theory.

THEOREM 4: Let a and b be coprime: (a,b) = 1. Then the Diophantine
equation

az + by = 1 2.1)
18 solvable.

Remark: A Diophantine equation (called after Diophantus of Alexandria,
third century) is an equation that has to be satisfied by integers.

Proof: Assume without loss of generality 0 < a < b. Then, since
(a, b) =1, ‘l-:is a proper reduced fraction and consequently (-;appea.rs in some

Farey sequence (e.g., that of order b). Let us now take an adjacent fraction

h a
AN
Then by Farey’s theorem, we have
k a
= —1
kb
and thus
ak —bh = 1.

Therefore x = k, y = —h is a solution of (2.1).

~

COROLLARY: Suppose (a, b) = 1. Then we can also solve the Diophantine
equation , v
ax+by=c. (2.2)

For let az, + by, = 1. Then a(zge) + b(yyc) = ¢, and 7 = 7,0, y = yc is
a solution of (2.2).

12
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Euclid’s lemma. The foregoing theorem now leads immediately to an
important result which was proved by Euclid in a different manner.

TugoREM 5: (Euclid’s lemma). If a and b are coprime and a | be then o |e.
"

Proof: Choose integers & kmd-§'#0 that az + by = 1, which is possible
according to Theorem 4. Then we have acz + bcy =c. I.iow gince be is s
multiple of a, it can be expressed as bc = ad. Inserting this into the foregoing
equation we have a(cz + dy) = ¢, which implies a | ¢. This theorem enables
us to make Theorem 4 more specific.

THEOREM 4a: Let (a, b) = 1. Then all solutions of (2.1) are conlained in
the formula

¢ ‘ z=uxy— b, y =1+ ot, (2.3)
where 2y, Y, 18 any special solution of (2.1) and i-is any integer.

Proof: Indeed (2.1) is fulfilled if we insert (2.3) in it, smoe we assume
az, + by, = 1. Now, conversely, if z,, ¥, and z, y are two solutions of (2.1),
then by subtraction it follows that

a(x — 7o) = —bly — %) - (2.4)
But (s, b) = 1 implies by Euclid’s lemma that a | (y — o). Accordingly if
we put
Y— %= at,
then (2.4) shows that
z—xy= —bi.
Thus (2.3) also appears as a necessary condition for solutions z, y.

The uniqueness of prime factorisation. A special case of Theorem b is
the following.

TugorEM 5a: If p $8 a prime and p divides byby - ~by, then p divides at
least one of the factors b,. :

Proof: If p|b,, the statement of the theorem is true. If p t b, then
(p, b,) = 1, since for common divisors only 1 and p, the divisors o‘f P, have to
be tested, and p } b,.t Then by Euclid’s lemma p | bybs «+=b,_,. This argument
can be repeated with the conclusion that p divides either b,ord, ,or---or
by or b,, a8 had to be shown.

Note that in our example for nonuniqueness of ftctoriution', the multi-
plicative system of natural numbers = 1 (mod 3), this theorem is false. For

we have
4:256=100==10-10,
t This means *‘p does not divide ,.” ’
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and 4 divides 100 but does not divide 10, although 4 plays the role of a
primitive number in this system.

With this preparation we are now ready to prove the following basic
theorem, which is often referred to as the Fundamental Theorem of Number
Theory.

TueorEM 6: TAe factorization of a natural number into prime factors is,
up to the order of the factors, unique.

Proof: Suppose that N = p,p, -~ -p, is a factorization of the natural
number N into primes. Clearly there exists such a factorization. If N =
@19 * * * ¢, i8 8 seoond factorization, then p, | N and hence p, | ¢,¢; - - ¢;. Thus
P, divides some ¢,. By rearranging the ¢'s we may assume p, | ¢;. Since ¢, is
prime we have p, = ¢,. Thex‘x canceling p, and ¢; we have

PPy " Pr=09s"""q;-

It is clear that we may continue in this way canceling p’s and ¢’s, and we see
that the set of p’s is, except for rearrangements in the order of the factors,
exactly the same as the set of ¢’s. This proves the uniqueness of factorization
of N into primes.

Recently some mathematicians [Hasse, the physicist F. A. Lindemann
(later Lord Cherwell), Zermelo] have given proofs through mathematical
induction avoiding Euclid’s lemma. The argument of these proofs runs as
follows: Suppose there exists an integer N which has two distinct factoriza-
tions into primes. Let us choose the smallest such integer N and suppose that

< N=ppy'  'Pr=q8:"""q
are twc{ of its factorizations. Then all the p’s are distinct from all the ¢'s, for
otherwise we could cancel a p and a ¢ and have a smaller integer with two
distinot factorizations. We may suppose
PLESRKS S P
h=@h="""3q.
Then let us consider p, and ¢,. Since p, # ¢, we may assume p, < ¢, without
any restrictions. Consider now
P=pty''q.
Clearly p, | Pand p, | N so that p, | (N — P). Now N — P is positive since
N — P = (¢ — P1)999; * * * ¢;- Let us write ¢, — p, as a product of primes,
yq —py=1r-°r, Then
N_ P=rl.o-r'q.-coql.

We have seen from the beginning that p, is none of the ¢,. Since , } (g; — p,),
it follows that p, } r, for all i. Thus all the ¢’s and r’s are distinct from p,. On
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the other hand, we have seen that N — P is divisible by p, and, therefore,
N — P = p;t, - -1, where the ¢'s are primes. Thus we have two distinct
factorizations of N — P in one of which p, appears and in the other not.
This contradicts the minimum property of N.

The uniqueness of prime factorization, or actually Euclid’s lemma, which
is equivalent to it, was important in Greek mathematics since it could be used
for the discussion of irrational numbers, a topic of great interest in Greek
mathematics and philosophy. Euclid proved the following theorem (probably
using an idea of Thestetus, a pupil of Plato).

TaxoreM 7: If p is a prime then V/p is irvational.

]

Pyroof: The theorem says that p = (g)‘ = % is impoesible in natural
numbers m, n. Suppose it were possible. Then we would have the equation
pn? = m?. But a square number has always an ever number of prime factors.
The preceding equation is therefore impoesible, since on the left-hand side
we have a number with an odd number of prime factors, and on the right hand
the same number with an even number of prime factors, contrary to the

uniqueness of prime factorization.

Greatest common divisor and lsast common multiple. This is the moment
to amplify some concepts which we have casually defined in the Introduction

and so far used merely as abbreviations.
If @ and b are natural numbers, let d be the greatest common divisor
(G.C.D.) of a and b, that is, the largest natural number d which is a divisor

. b
of both a and b. We write d = (a, b). Then(% ,2) = l.Indeed,if(g.g) = é,,

then d - 8 divides both a and b, and 4 must be 1 because of the maximality
b

of d. In view of Theorem 4 there exist intogerszandywithsz-i—;yal

and thus ax + by = d. !

TaEOREM 8: The G.C.D. of a and b is a linear combination of a and b with
integer coefficients.

COBOLLARY: Any common divisor of a and b divides the G.C.D. (a, b) of
a and b. Indeed if 8| a, 8| b then 8 | (ax + by), or 8 | d.

Given two natural numbers a, b there exist natural numbers which ave
multiples of both & and b. For example, ab is such ® number. By the leas
common mulliple (L.C.M.) of g and b we mean the least natural number which
is & multiple of both a and b. We denote the L.C.M. of a and b by {a, b}.
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THEOREM 9: If a and b are natural numbers then ab = {a, b}(a, b).

ab
Proof: let p= @b Then u is a multiple of both a and b, since

u= mfl—b) b is a multiple of b and u = )

another common multiple of @ and b, then there exist integers z, y such that
v___v(a,b)__v(ax+by)__vx+vy
s a  ab b

a

a is also a multiple of a. If » is

Hence ~ is an integer. Thus x is indeed the L.C.M. of a and b, and as a by-
u

product we derive the fact that the L.C.M. of ¢ and & divides any common
multiple of a and b.

Many theorems of a similar nature about the G.C.D. and the L.C.M. can
be proved. We mention some of them in the following exercises.

Ezxercises.

1. Let a, b, ¢, -+, k be natural numbers. Let = (@, b,e,"+-,k) be
their greatest common divisor, that is, the largest natural number which
divides all of @, b, ¢, - - -, k. Prove that there exist integers z, ¢, z, * * » , w with
d=azx+ by +cz+ -+ kw.

2. Prove that ¢ - (a, b) = (ca, cb).

3. Prove that (a, (b, ¢)) = (a, b, ¢).

4. Prove that )

(a1, g, "~ -, a,)(by, by, -+, b,) = (@), -+, ady,)
where the parenthesis on the right side contains all Im products a,b,, h =
Lo, Lj=1,,m.

5. Let n natural numbers a,, ag, - - -, a, be given. Put
@y, a9, -+, @,) = d{”)’
(8,85, 025, * * -, B, 48,) = d¥,

and in general

(818" " "Gy, Gy8g " "By 1By, 0 By 1B pyp " By) = Y,
where this parenthesis contains all products of k distinct a’s as factors. We
have by this definition

Then show that

a0, = d.

. dy d, d
Gl—dvcz—“i;»es—“i;s ’e"_d,,_l
are integers. (We have written for the sake of brevity simply d, for d{™.)
Show moreover that the quotients

ey €y e

"

’ b ] ]
€ € €n-1

are also integers.

Congruences

Congruence as equivalence relation. Let us examine more carefully the
concept of congruence, which we have used informally in some of our preced-
ing remarks. Let a, b, m be integers. Usually m is taken to be positive. We
say a is congruent to b modulo m and write @ = b (mod m) if m | (a — B).
The congruence relation = is an equivalence relation on t{he set of integers.
That is, it is reflexsve:

a = a (mod m),
symmeiric:
if @ = b (mod m) then b = a (mod m),
and transitive:
if a = b (mod m) and b = ¢ (mod m), then @ = ¢ (mod m).

This is clear. For ¢ = a (mod m) merely says m ] (@ — a). If a = b (mod m),
then m | (@ — b), so that m | (b — a) and b = a (mod m). Finally, ifa=>
(mod m) and b = ¢ (mod m), thenm | (@ — b)andm | (b — c)som | (@ — b) +
(6 —¢c), m| (a — ¢), and a = ¢ (mod m). Thus i i
relation, and the set of integers is partitioned into disjoint classes. Any two
integers in the same class are congruent to one another, and no two integers
in distinct classes are congruent to one another. How many congruenog
classes are there? We can answer this easily by exhibiting a specimen from
each class. Clearly the integers 0, 1,---, m — 1 lie in different classes.
And given any integer, we may add or subtract a suitable multiple of m and
arrive at one of 0, 1, -+, m — 1. Thus there are just m congruence classes
modulo m, and the integers 0, 1, -+, m — 1 form a set of representatives,
one from each of the classes. ]

Congruences, like equalities, are equivalences. They behave like equalities
with respect to addition and multiplication. If ¢ = b (mod m) and ¢ = d-

mod m), then we have
a+c=b+d(modm), a—c=bb—d(modm) (8.1)
exd ac = bd (mod m) . _ (3.2)
To prove the additive rule we note merely that if m | (¢ — b) and m | (0 — J.)
then m|((@—8)+ (c—d)) or m|((@+c)— (b+d)). For the multi-
plicative rule we observe ac = bc (mod m) because m | (6 — ble and that -
17
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bc = bd because m | b(c — d). Then ac = bd follows through the transitivity
of the congruence relation.

Properties (3.1) and (3.2) can be expressed more concisely in terms of the
congruence classes. They show that whichever element @ we may choose from
the class 4 and whichever b from class B, the sum will always lie in one class
C which we may symbolically designate as C = 4 + B. Analogous remarks
applyto4 — Band 4 - B.

Among the classes is the class Z which contains the elements z = 0
(mod m). In the language of group theory we can say that the congruence
classes form an additive Abelian group with the class Z as “zero element.”
The inverse of class A is the class A’ which contains the negatives of all
members of 4. '

What is true about addition, subtraction, and multiplication is, in general,
not true about division. We cannot unrestrictedly divide congruences. For
we have 2 = 12 (mod 10) but 1 % 6 (mod 10). On the other hand, 2 = 24
(mod 11) and 1'= 12 (mod 11), 50 that in this case we can safely divide by 2.
In fact, if ab = ac (mod m) and (a, m) = 1, then b = ¢ (mod m). For if
m | (ab — ac) then m |a(b — c) and it follows from Euclid’s lemma that
m| (b —e¢).

The congruence claases of elements prime to m form an Abelian group
with respect to multiplication. The unit class U is evidently that one which
contains the number 1. The éxistence of an inverse is also assured, since to
any given number a prime to m there exists a number a* such that

aa* =1 (mod m) .
Indeed we need only refer to the Diophantine equation
aa* + my =1

which is solvable for a* and y since (@, m) = 1 is assumed (Theorem 4).
Moreover, if we take & prime number p as modulus, then the congruence
classes form a finite field (of order p). Indeed the classes form an additive
group, and all classes with the exception of the zero class Z contain only
elements prime to the modulus, and therefore form a multiplicative group.

Euler’s tunction. The number of congruence classes modulo m is, as we
have seen, m itself. The number of classes with elements prime to m is deaig-
nated as @(m). The function ¢ is also called Euler’s function. It is clear that
for a prime number p we have ¢(p) = p — 1. In addition, for m = p* we see
immediately that ¢(p®) = (p — 1)p*}, since of the numbers 1, 2,-- -, p*
representing the p* different congruence classes modulo p*, only those are not
prime to p* which are divisible by p, in number p*-1. Thus g(p®) = p* — p*1.
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The explicit number @(m) for general m will be found if we prove

TrEOREM 10: For (m, n) = 1 we have p(mn) = @(m) - p(n).

This can be proved in several ways. Since we have the Farey theory of
common fractions at our disposal, we may use it for this purpose. We ol.ue.rve
first that the number of reduced proper fractions of denominator m is just
@(m), since there are ¢(m) numerators 1 < h < m prime to m. Instead of
insisting on proper fractions, we may just as well count the number of reduced
fractions A/m with

h
as—<a+1
m

iven a. Now let m = m,mg with (m,, my) = 1. We can deoompqoe
f;: ::(Jl’uid proper fraction A/m ﬁ‘a& unique way into a sum of the partisl
fractions with denominators m, and m; as follows. Since (m;, my) = 1, we

. ith .
may find integers u, v wit! b s 4 23
The solution «u, v is of course not unique, but we have observed (Theorem 4s)
that the general solution is obtained from a special one (i, vo) by

U = Uy — bmy, v = vy + tmy
with an arbitary integer ¢. It is clear that there is one and only one solution
u, v with such a ¢ that
O<u<m.
(u = 0 is excluded because it would lead in (3.3) to m, I.h, which is againat
the assumption (h, m;mg) = 1, h/m being a reduced fraction.)
We then have from (3.3)

(3.4)

Both fractions are reduced, since a common divisor of, let us say, v and m,
would divide m,m, and according to/(a.:’._) also A, oont.n:a.ry to (A, m;m,) = l..
Although v/m, is certainly reduced, it is not necessarily a proper fraction;
from

v A u

mom om
we can only infer
- _rta-2 - (3.5)
b m  my LY

Now, conversely, let two proper reduced fractions u/m,, v/my be given. ) (3

) this w/niy dfs not already satisfy (3.5), we replace it by

W

\

LAYy

A% g " y_rom_ v,

¥

T
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which must then fit in (3.5). Then computing /m from (3.4), there possibly
replacing v/my by v'/my, we obtain (k/m) = (h/m;m,) as a proper reduced
fraction.

In this way we obtain a one-to-one correspondence of proper reduced
fractions h/m;m; with pairs of proper reduced fractions u/m,, v/m, (called
partial fractions). That is, the number of admissible numerators % is the same
as the number of pairs u, v' of numerators of the partial fractions. This
statement can be expressed as ¢(m;m,) = @(m,) - @(my), proving our theorem.

It now follows by iteration that, for any finite set of pairwise coprime
numbers m,, mg, ¢+, m, we have

Pmymy - - - m)) = @m,) - @(mg) + + - p(m,).

If we break down a given number » into powers of primes as factors, we can
employ our knowledge of (p”) and obtain for n = p,“1p,% - - - p,%

“-p)e(i-5) - me(- )
—_ 1] — — ff] ——) ... Gl] — —
p(n) = p, ( 7 Py p’ o s

PPl e

=nH(l-—-l-),

pin V2

which is Euler’s formula.

Let us write down all fractions I/n of fixed denominator n, 0 < In < 1,
whether reduced or not:

1 23 —1
‘ _,_,_,_“’” ;11- (3'7)
n n n n n

They are n in number. Some, as 1/n and (n — 1)/n, are in reduced form. In
the others we cancel the common divisors of numerator and denominator.
The resulting reduced denominators are then divisors d of n; for each divisor
d of n all reduced proper fractions of denominator d will appear in the list.
They are ¢(d) in number, as we know. Thus counting the fractions in (3.7)
according to their reduced denominators, we have the following important
theorem.

TaxorxM 11: The Euler function @(n) has the property
n =3 ¢(d) (3.8)
din
where the summation is extended over all divisors d of n.

If the numbers
(R) r]) f', e » "’

£ R
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with » = @(m), are representatives of the classes prime to m, and if (3, m) = 1,
then the numbers
(R') arl’ ar‘, *t Yy, ar'
form another such system, only in a different armngeme.nta Any symmetric
funotion of (R) will remain in its congruence class if (R) is replaced by (R').
In particular, therefore,

ary-arg: +cc car, =1, 13+ °1, (mod m)
or S

(@ — 1) ryrge-r, =0 (mod m).

Since (r,rg - - -,,m) = 1, we have ¢’ — 1 = 0 (mod m) by Euclid’s lemma
and have thus proved the following theorem.

TaEOREM 12: If (a, m) = 1 then
a*"™ = 1 (mod m).
This theorem was derived by Euler as a generalization of the special case
m = p, & prime number, p } o

a®1 =1 (mod p),
which was given by Fermat.

Higher oongruences. The solvability of the linear congruence
az = ¢ (mod m)
with (a, m) = 1 is implied by (2.2). -
" Let us consider congruences in much the same way that one considers
equations in algebra. We look for solutions for congruences ,

aﬁn+a13ﬂ—l+o--+a'='_=0(m(ﬂp)

where p is prime. Since z*! =1 (med p) if (,p) = 1, it follows that
2 = z (mod p) for all z. Using this fact we may get rid of all powers z?,
Z#H, g1 ... by replacing them by lower powers of z. Hence we may
su from the beginning that in all our congruences we have » < p.

pm a congruence need not have a solution. For example, 2% = 3 (mod 7)
has no solution since 03 =0, 13=1, 28 =4, 3'= 2, 4’5?, 5’5.4. and
6 =1 (mod 7). However, just as in the theory of algebraic equations, s
oongruence of degree s and prime number modulus p cen have at most
» solutions. .

TaxorEM 13: The number of solutions of the congruence
f(z) = agz® + az*t + - +a, = 0(modp), Gup) =1, (39
18 at most n.
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Proof: The statement is correct if (3.9) has no solution. Suppose it has
a solution z,. Then

ag," + 6,4,"! + -~ + a, = 0 (mod p) .
We subtract this from (3.9) and obtain

(" — 2,") + ay(a™! — ") + »+ -+ @, (x — 7,) = 0 (mod p),
(3.10)

which any z satisfying (3.9) must also satisfy. The congruence (3.10), however,
can be rewritten as

(x—x) (@ + b2+ ---+b, ;) =0(modp), (3.11)

where the b’s are certain expressions obtained from z, and the a's. Since p
divides the product in (3.11), it must divide one of the factors. Any 2
satisfying (3.9) must therefore satisfy either

z — z; = 0 (mod p)
or
ag™! + b3 4 c-- 4+ b, | =0 (modp).

The first alteryative yields again.z;. The second may or may not yield a
solution. That second congruence is of degree (n — 1), the highest coefficient
is again a,, and, since the ¢heory is true for the first degree congruence

agz + f, = 0 (mod p) ,

it follows by induction that the theorem is true for any degree n.

Ezxercise: Prove Wilson’s theorem: For any prime number p we have
(p—1'=—1 (modp).

Hint: The congruences
F—1)E—2)"(z—p+1)=0 (modp)
and
z*1=0 (modp)
have the same solutions. Apply Theorem 13 on their difference.

Chinese Remainder Theorem. We shall sometimes need the so-called
“Chinese Remainder Theorem,” which for the sake of brevity we enunciate
only for 3 moduli. Its generalization to any number of moduli is obvious.

TaEoREM 14: If the moduls my, mq, my are pairwise coprime
(mvmg)':(mpms): (mi’ma)‘——l:
and if
(@, my) = (b, mg) = (c,mg) =1,

CHINESE REMAINDER THEOREM 3

then the system of simullaneous congruences

ax = A (mod m,;)
bz = B (mod my) (3.12)
cx = C (mod my)

has a solution modulo mymgmy, for any 4, B, C.
We leave the details of the proof to the reader. We observe only that, if
the three systems
au = 1 (mod m,) av = 0 (mod m,) aw = 0 (mod m,)
bu=0(modm, bv=1(modmy  bw s 0 (mod m,)
cu=0(modmg) cv=0(modm,), cw=1(modm,)
are solved, then z = 4Au + Bv + Cw is obviously a solution of (3.12).



Decimal Fractions

We return again to the study of fractions. Common fractions, in the
assemblage of Farey sequences, led us to linear congruences, Euclid’s
lemma, and thus the uniqueness of prime factorization.

This time we investigate the representation of common fractions as
decimals. These are for themselves worthy of arithmetical studies, and
moreover they will lead to a new approach to the Fermat-Euler theorem.

It is a familiar fact that any decimal that is either terminating or periodic
is the decimal expansion of a rational number. We shall be concerned with
the converse problem. Given a rational number, we shall see that its decimal
expansion is either terminating or periodic and that the decimal digits have
interesting arithmetic properties. Let us look at some examples:

* 2 1
02=—=-
10 5
25 1
0025 = — = —.
1000 40

These are finite decimals. But examine § = 0.333 - -

0.333---
3) 1.000- -
9
10
9

10

9
1

or

= 0.142857 - - -

-3 -
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0.142857
7y 1.000000
7
30
28
"20
. 1

N

1% g

l—ll

both obtained by long division.

We say that these decimals are periodic: § has a period of length 1, and }
has a period of length 6. In theory, in order to write down § , we must write
an infinity of 3’s, but we get around this by drawing a line over the period,
thus:

0.3333--- =03

1 —

= 0.142857 142857 142857 - - - — 0.142857. '

ol

This shows that 3 and 142857, respectively, are to be written out indefinitely
after the decimal point. But now Jet us look at §

0.1666 - - -
6) 1
10
40
40
40

This is written as 0.16. The periodic decimals that start their period at the
decimal point, such as } and  , are called pure pericdic decimals. The decimal
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 does not start its period at the decimal point, and thus it is not pure. This
cage is of little interest. We shall consider the two other cases.

I. FiniTE DECIMALS: In general, if 4/2*5° is a proper reduced fraction
(4 integral), it has a finite decimal expansion because it can always be
changed to a fraction with a denominator that is a power of 10. For if, say,
« = f, then

A _A-5°'”_A-5°‘-"_O
2a5f T 9e.g5x T 100

a places

If # > a, we multiply by 2°~*), and there are g places. For example,

147 735 0.735

200 1000
Conversely, if a fraction has a finite decimal expansion, multiplication by a
suitable power of 10 gives an integer. In reduced form, therefore, its de-
nominator contains only 2 and 5 as prime factors.

II. Purk PERIODIO DECIMALS: We shall show that, if 4/m is a proper
reduced fraction with (10, m) = 1, then A/m has a pure periodic decimal
expansion. To investigate this, we first ask the question, “How do you find
the successive digits in the decimals?”’ When we divide 4 by m we have

0.919395 " - -
m) A4 0<d=r<m
104
—mg, 0<¢ <10
Tg O<rp<m
10r,
—mgy 0=¢ <10

rg O<ry<m

In general,
Ty = 107, — g;m

where 0 < ¢, < 10and 0 < 7; < m.

All the remainders r, are prime to m. We can seeth is by induction. For
r, = A is prime to m. 8ince r,,, = 10r, — ¢g,m, we have r,,, = 10r, (mod m).
Since (r,, m) = 1 and (10, m) = 1, it follows that (10r,, m) = 1, and hence
that (r,,,, m) = 1.

Since there are infinitely many r’s and all the r’s lie between 1 and
m — 1, there must be two equal 7's. Let the firat #’s that are equal be 7, and
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We must show j = 1. If j > 1, then r, ; is defined. Then

Tirre
r, = 10r,_, (mod m)
and
o = 107y, , (mod m)
8o that

10r, , = 10r,,, , (mod m) .

But (m, 10) = 1, and thus
4y =14y (mod m) .

Now r,_, and r,,, , lie between 1 and m — 1 inclusive and therefore are too
small to differ by a multiple of m, unless they are equal. Thus r, ; = ry,; 4,
and this contradicts the fact that r,, r,,, was the first equal pair. The first
case of r, = r,,, occurs when j = 1, and the sequence of r’s is purely periodio
with period 1. It follows that the sequence of ¢’s (that is, the sequence of
decimal digits) is also purely periodic with period l.

We let A(m) denote the length of thé period of the decimal expansion of
1/m. Later we shall see that all proper reduced fractions 4/m have the same
period length A(m). We first show that A(m) < @(m). This is true because
there are only g(m) residue classes prime to m, and at least two of r,,
74, ***, Ty(m)+1 MUst be equal. Let us look at some numerical evidence. It
can happen that A(m) = g(m), for

AN =g(1) =8
and A17) = p(17) = 16

as direct computation will show. We have mentioned } above, and we find
1
17

But § = 0.3, so that A(3) = 1, while @(3) = 2, so that A(3) < ¢(3). In
addition, we have & = 0.047619 so that 1(21) = 6 while

@(21) = 21’9 (1 -%)
.—_21(1 —3-1’)(1 —;) =12.

We shall see later that if m has two or more different prime divisors then
A(m) S § p(m). Thus for the maximum period g(m) to be attained, it is
necessary that m be s power of a prime p. But this is not sufficient as we have
seen for p = 3. In fact it is not even known whetheg there are infinitely many-
primes p for which the maximum period (p) = p — 1 is astained. We shall
have more to say about this later. :

I A4 n
"
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then
)

t 4 ———
e 0.9393 "y

T B ———————
p 0.0:019s° * * D1

This is so because, if we had started with 4 = r, instead of 4 = r;, we
would have followed the same procedure and would have obtained the same
¢’s and r’s in periodic order, the period starting, however, at a different place.
For example, we have already had (written now in abbreviated form)

0.142857
7) 10
30
20
60
40
50
1
Corresponding to this we have
1/7 = 0.142857
3/7 = 0.428571
2/7 = 0.285714
6/7 = 0.857142
4/7 = 0.571428
5/7 = 0.714285.
Now let us look at &
0.02439
41) 1.0
100
180
160
370

1

The five residues r are 1, 10, 18, 16, 37.
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THEOREM 15: The residue classes (mod 41) contasning 1, 10, 18, 16, and
37 form a multiplicative group.

Proof: 1=1-10° (mod 41)
10 =1 10! (mod 41)
18 = 1 ~10% (mod 41)
16 = 1 --10® (mod 41)
37 =1 -10% (mod 41)

1 =1-10° (mod 41).

Thus all these r’s are congruent to powers of 10 (mod 41). If

¢ = 10* (mod 41)
and
s = 10° (mod 41)
then
rs = 10*+! (mod 41), which is also a power of 10.

If r = 10* (mod 41), k = 1, 2, 3, 4, 5, then 8 = 105* (mod 41) is the inverse,
since ,
rs = 10% - 105% = 104+ = 10 = 1 (mod 41) .

This proves that the residue classes of 1, 10, 18, 16, 37 form a subgroup of
the group of residue classes prime to 41.

There is no magic about the number 41. In general, if the r’s which oocur
in the decimal expansion of 1/m are ry, ry,* ~~, r;, then, since r, = 1 and
7,,1 = 107, (mod m), it follows under the assumption (10, m) = 1 that

r; =101 (modm), j = 1,2,3, ~~~.

Since all the r,, j = 1, 2, - ~~, 4, are incongruent modulo m, it follows that
all the powers 10%, j = 1, 2, ~~~, 4, are incongruent modulo m. Further,
f141 = 7, = 1, 80 that 10* = 1 (mod m) and 10 is the least power of 10 which
is congruent to 1 (mod m). In particular there exists a power of 10 which is
congruent to 1 (mod m). The residue classes containing r,, rg, +++, r, are just
the regidue classes containing 10°, 101, ~~+, 10*1. In view of the congruence
10* =1 (mod m), the residue classes containing 109, 103, +~+, 10** form,
just as in the case m = 41, a subgroup of the group of residue classes prime
to m. Since the group of residue classes modulo m which are prime to m has

- order @(m), it follows from the elements of group theory that the order of

the subgroup consisting of the classes containing r,, ry, ~*+r, divides g(m).
Thus we have the following important theorem.
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THEOREM 16: A(m) divides p(m).

We shall, however, prove this theorem without assuming anything about
groups and get some additional information about decimal expansions. For
concreteness let us consider the case m = 41. One can give a proof for the
general case along the same lines. Since 1, 10, 18, 16, 37 are the r’s associated
with the fraction 1/41, we see that 2, 20, 36, 32, 74 would be the r's associated
with 2/41 except for the fact that 74 > 41 is too large. But our scheme for
generating the ¢’s and r’s shows that we are to reduce 74 modulo 41, and thus
we obtain 2, 20, 36, 32, 33 as the sequence of r’s for 2/41. Note that 2, 20, 36,
32, 33 represent just those residue classes modulo 41 which containelements =
2 - 10* (mod 41) for some k. Similarly, 3, 30, 13, 7, 29 are the r's for 3/41.
Continuing in this way we see that any proper reduced fraction 4/41 gives
rise to just five r’s and hence that the period length of all fractions 4/41 is
the same as that of 1/41. We also see that the ¢(41) numbers less than 41 and
prime to 41 are divided in this way into a certain number of disjoint sets of
A(41) integers each. If there are k sets, then k - A(41) = @(41), and hence
A(41) divides ¢(41). This proves our assertion.

We have seen above that 104™ = 1 (mod m), so that m | (104™ — 1),
If ¢(m) = kA(m), then 10°™ — 1 = 10*4™ — ], If we use the identity
?—1=(x— 1)@ +2*2 4 .-+ 1) with z=104™ we gee that
m | (10%™ = 1) or that 10°™ = 1 (mod m). Thus we have proved a special
case of the theorem of Fermat-Euler (Theorem 11):

If (m, 10) = 1 then

10%™ = 1 (mod m) .

In particular, if m is a prime p and p # 2, 5 we have
101 = 1 (mod p) .

Actually the significance of 10 in the statements of these theorems is only
that we have used decimal expansions, which are expansions to the base 10.
If we agree to work to the base g, then we again obtain the full Theorem 12
with a different proof.

FERMAT-EULER THEOREM: If (¢, m) = 1 then ¢*™ = 1 (mod m) .

Approximation of Real Numbers
by Rational Numbers,
Application to Sums of Two Squares;
Prime Numbers
in Certain Arithmetic Progressions

Dirichlet’s pigeon-hole pringiple. So far we have dealt only with rational
numbers. We are now going to establish some inequalities relating irrational
numbers to rational numbers. We shall obtain some theorems which will be
useful in giving other proofs of previously established results and in giving
more insight into the nature of rational numbers.

Let y be an irrational number. We wish to find out how closely we can
approximate y by a rational number A/k with denominator k. For any k the
irrational y will lie between A/k and (b + 1)/k for some A. Then either

A 1

h+1 1
o< gr-r<g .
where, because of the irrationality of y, equality signs are certainly excluded.

For certain £, however, much better approzimations are possible.

We use the “pigeon-hole principle” of Dirichlet which states that, if N
objects are placed in N — 1 pigeon-holes, then at least one hole will contain
two or more objects. If, as usual, [x] denotes the greatest integer not -
exoeeding z, we take as objects the N real numbers

O<ny—[mpl<l #=123,--,N ,
. . 1 1 2) . (N -1 l)
As pigeon-holes we take the intervals (0, l_V)' (I—V %) A gl
There are also N of these. We now have the following possibilities before us:
1. There is one “object” in every interval. Then there is in particular
an integer m < N such that

1
0<my—Imyl<g-

31
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Dividing by m we obtain
fmy] 1 1
0 —_———< S —
<7 m < Nm —

2. The first interval (0, 1/N) does not contain an ‘“‘object.” All N objects
will then find their place in the remaining N — 1 intervals, and thus one
interval will contain two different objects. Therefore, with

O<m<ngN,
we have

1
lny — [ny]) — (my — [my))] < %

or
1
Itn — mly — (] — bmy])] < 3 -
Here we have found two positive integers k = n — m < N and

h=[ny] —[myl < N

which fulfill
1
ky — —.
ey —hl < %
It again follows that
3 1 < I
AR Al

Thus, in either case, y is approximated to within 1/k? by a fraction A/k.
More precisely, we found a fraction A/k with denominator k < N so that

h 1

~'l<k—ﬁ~ (6.1)

k

We can also obtain this result by the use of Farey* fractions, with even a
slight improvement. In the Farey sequence of order N, we know that we can
find two consecutive terms, a/b and ¢/d, such that

a ¢
E<y<3.
. .o a+c .
We consider the mediant Fynr g Then y lies on one or the other side of
a+c'
b+d’
a a—+c¢
5<}’<m (6.2)
or
ate <8 (5.3)

|
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Since the mediant is not present in the Farey sequence of order N, we have
b+ d = N + 1. Thus either

a a+c a 1 1
— wam TS 5.4
0<Y—3<b3d bt t01d N+ (6.4)
or
c ¢ a+c 1 1
¢, <t _ < : 5.5
SR Y B A Rl o Rl e Ty g yv (65)

which again implies (5.1), with even the improvement (N + 1) instead of N.
Altogether, we have proved the following theorem.

TaxoreM 17: For an irrational y and a positive integer N there always
exists a fraction hik, with denomsnator k < N such that

b 1
Mo 5.6
|" kI<(N+l)k (66)

Remark: Our reasoning remains valid if y is not irrational but is
replaced by & reduced fraction }/m with denominator m > N so that I/m is
not found in the Farey sequence of order N. Then, however, it may happen

that _l_—a+c’ and this possibility will not allow us to state a striot

m b+d
inequality in (5.6). We therefore obtain another theorem.

TueorEM 17a: If Ifm is a reduced fraction of dexominator m > N, then
there always exists a fraction hjk with denominator k < N such that
I A < 1
m k|T (N+ Dk
Equality takes place here form = N 4 1.

(5.7)

Sums of two squares. Before we pursue the question of Apptoxun&aon
further, let us look at some applications of this theorem.

TuzorEM 18: If n and A are positive integers such that w | (4% + 1),
n = 2, then there exist indegers s and & such that n = &* + 8.

Proof: Let us take N = [V'#] < » in Theorem 17a. It is evident that
our hypothesis implies (», 4) = 1. Therefore, acoording to Theorem 17a,
there exists e fraction r/s in lowest terms such that .

4 r 1
c - . N.
e T 2 T
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This yields

|48 — rn| < r
N+1- [x/—]+1

If we put t = As — rn, we have

# + o8 = (ds — rn)? + 8 = }(4% + 1) — 248rn + r'nt
and thus

B4 s =0 (modn).
On the other hand,

B+ 8 < (Vap + ((Va))? < 2n.
Thus ¢* + &% is & positive multiple of n but less than 2x. This leayes only the
possibility
n=4{ 4 s,

Remark: Note that (s,¢) = 1:

(8,¢) = (8, A8 — rn) = (8, rn) = (s, n)
and {
n=4a 4 1® = s%4% + 1) — 24srn 4 r2nd

or

1=¢

A% 41
: — 2dsr + r?n .

We recall that (4% + 1)/n is an integer, and see that any common divisor
of s and n must divide 1. Thus
(8,8) =(s,n)=1.

ComoLrarY: If n|(4% + B%), n 2 2, and (4, B) = 1, then there exist
inlegers s, t withn = % + 3.

We have the algebraic identity

(4* + B*)(C* + D*) = (AC + BD)* + (AD — BCP.

But, since (4, B) =1, we know that we can pick C and D such that
AD — BC = 1. Thus we have

(4% + BY(C* + D?) = (AC + BD)® + 1.
If n| (4% + B3), therefore, then n | (1% + 1), where AC + BD = T.
Then, however » is of the form ¢ + s? by the theorem we have just proved.

.Prim.mlmbu'l of the form 4n + 1. Recall that we have proved the
existence of an infinite number of primes = 3 (mod 4). Now we are able to
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prove the existence of an infinite number of primes p = 1 (mod 4). We use
an extension of Euclid’s argument and Theorem 18.

THEOREM 19: There exists an infinste number of primes p = 1 (mod 4).

Proof: Suppose there are only a finite number, and let them be 5, 13,
17, -+, . Form the number N = (2: 513+ --.- p)* 4 1. This N is con-
gruent to 1 (mod 4), but it cannot be prime because all the primes = 1 (mod 4)
are less than it. In addition, it has no even factors, because it is odd. Thus
any factor of N must be of the form a? + 5%, because it divides 8 number of
the form A3 + 1. It is = 1 (mod 4), therefore, because every square is
congruent to 1 or 0 (mod 4), and, since a® + b%is odd, a® + b* = 1 (mod 4).
Consequently, any prime divisor of N is also & prime = 1 (mod 4). Such »
prime divisor cannot equal any one of the set 5, 13, 17, -~~, p, since these
obviously do not divide N, and so this contradicts the assumption that there
are only a finite number of primes = 1 (mod 4).

Some similar theorems. We may use the method of Theorem 18 to
prove a similar theorem about numbers of the form #* + 3¢ ~

TarorEM 20: If n| (A% + 3) where » is odd and (3, ») = 1, then there
exist sniegers s and ¢ with n = 1 4 343,

Proof: Our hypothesis implies (4, ) = 1. Let us pick an N <n, but
leave it temporarily unspecified. From (5.7) we have the existence of coprime
integers r, s such that

A r 1 )
F S mre <=
Continuing as before,
Izls—r»ISN_l_l
t=As—m,
8 4 38 = (s — rn)d + 358 = 548 + 3) — 24ern + ri?,
4 36 =0 (mod »).
Now following our old proof, we know that
¢=+3:'5(N+1),+3:'<N,+3N'

If we are to prove this theorem by methods similar to those used to prove
Theorem 18, we must make * + 83s* small. This amounts to choosing an
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integer N for which n2/N? 4 3N?2 is small. Let us set F(z) = (n®[2®) + 323
and use differential calculus to find the real number z > 0 which makes F(x)
a minimum. We have

—9p2

Fl(z) = + 6x.

Note that F’'(z) = 0 when 2n2 = 624, or when z = V/n 3. Thus, choosing

N = [v/n 3-%] is probably good enough for our purposes.

We have then
2

n
((Vn 34 + 12
n?
n 34

Since 3 < 2V3 < 4, and since n I (% + 3s%), we have
2 4 352 =n,2n,0r 3n.
If % + 342 = n, we are finished. If 2 4 352 = 3n, then 3 | t: say 37 = ¢.

4 34 <

+ 3[Vn 318

< +3tn =2V3n.

Then n = &2 4 372, which proves our theorem in this case. Finally,

24 32 =2%n is impossible. For, since n is odd, 2n = 2 (mod 4). But
0

s, 12 = O or 1 (mod 4), and no combination of {(l)j + {3

: (mod 4) is congruent
to 2 (mod 4). Our theorem is proved.

We can now state a corollary as we did before.

CoroLLarY: If 2}, 3fn, (4,B)=1, and n| (A% + 3B8), then
n=13+383.

For, as before,

(4% + 3B%)(C? + 3D? = (AC + 3BD)® + 3(AD — BC)8,
and, as before, we can set AD — BC = 1. Then n | (T® + 3), and hence
n = {8 4 343, by our theorem.
Now we can prove the existence of an infinite number of primes p = 1
(mod 3).

TuEeorEM 21: There exists an infinite number of primes p = 1(mod 3).

Proof: The proof is like the proof of Theorem 19. Here we consider
(2:7-13-19---p)2 + 3.

This is divisible by neither 2 nor 3; hence any prime divisor ¢ has the form
g=1+32=1(mod3). But ¢ #7,13,19,-- -, p.
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TueorEM 22: If n|(4® + 2), A odd, then there exist natural numbers

z, y such that n = 2% + 2y3.
We leave the proof as an exercise for the reader. .
The situation is, however, quite different in the following theorem.

TugorEM 23: If n| (A3 + 5) with (4,5) = 1, then either the equation
n = 2% + by® or the equation 2n = 23 - 5y’ is solvable, but not boih.

Proof: We shall consider the clause “but not bo ” later (p. '{2).
Otherwise we proceed a8 before. We choose N = [a - 5-¢] and find a fraction

r/s such that
1

4 r
S._______
SWFe

i ,0<s8s<N.
n 8

We then have
|ds — m| < 2 < a5t
N+1
We put ¢ = As — ra and have
13 4 6ed = (ds — rn)t 4 Bad = (A3 + 5)s® — 24arn + rint.

Since n divides 43 + 5,
2 4 66 = 0 (mod n) .
On the other hand, B
#4508 <nVb+bnbot=2Vbn.
Now since 4 < 2V < 5, and #2 + 543 is a multiple of », we can have only
the cases
#4688 =nor2nordnorin.

The first two cases are noted in the theorem. The fourth case implies

#4568 =1+ o5 =0(mod4).
Therefore ¢ and s are both even, say ¢ = 24, 8 = 2s,, and thus
44, + 208)* = 4n,
t3+6st=mn.
The theorem is also proved in this case. There remains the case
134 5ot = 3n. (5.8)
Now the following is an identity inzsndy:
2 — 29 + 5z + 1) = 3{(2z + ¥)* + &%) (8.9)

as direct computation shows. Equation (5.8) entails
O=0+58=0—¢=(+ o)t — 9 (mod3),
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and, since the signs of s and ¢ are arbitrary, we can assume

t = 8 (mod 3) (6.10)
We now put
t=2z2—2
(6.11)
s=z+y
or
t+ 28 8 —1
T=—ag— ¥=-—3 (6.12)

where z and y are both ¢ntegers in view of (5.10). If we now insert (5.11) and
(6.12) in (5.9), we obtain

2(* + 56%) = 3{(2z + y)* + 54°},
and because of (5.8)
2n = (2z + y)® + 6% = 2, 4 592,

which reduces case 3 to case 2 and finishes the proof.

That the alternative in Theorem 23 is not due to a fault of our method -

and camnot be avoided is shown by the pair of examples:
(a) A=11 A2+ 5=126
21|126 =n,=21=12+4+5-22
but 2n, = 42 is not expressible as 22 4 5y2;
(b) 18| 126, n, = 18 is not expressible as z% 4 5y but 2n, = 36 = 4% +
5-28¢

t In the background of Theorem 23 lies, of course, the fact that the discriminant
—20 has 2 classes (as a matter of fact 2 genera) of binary quadratic forms. The identity

3(22* + 22y + %) = (22 + y)* + Oy*

together with the alternative of the theorem show that the forms 2* + 8y* and 22 +
22y + 3y* belong to different classes.

Better Rational Approximation of Irrational Numbers;
* Ford Circles and Hurwitz’s Theorem

Goodness of approximation. Let us return to our approximation theory.
If y is irrational and N is a given positive integer, we have shown the existence
of a rational approximation Afk, k < N, such that
A < 1
YTE SN+

In partioular, we then have
) § 1
Y=i<m

These elementary arguments may be used to show the existence of snfinstely

many fractions A/k such that
) 3 1
YR B

However, using Farey sequences we can prove a much stronger theorem.

THEOREM 24: If y is irrational, there exist infinitely many fractions Afk
such thas -
-il<a
—_—lc—.

k| 28

Proof: Suppose that in the Farey sequence of order N' we have

a< <f
p<?=3
We wish to show that either
a 1 ¢ 1
—_—— g — -— T 6.1
Y= 3<m . V<3¢ (6.1)
Assume the contrary,
a 1 c 1
_—— -— — 6.2
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Then
c a 1 1 b2+ a2
— e e D e e e =
iTbcwm e e
Now we know from the theory of Farey sequences that
¢c a 1

8o that
2b’-+-d’_i_(b—d)2
T 2% bd 26%2
But this is only possible for b = d. In addition, this implies 6 =d = 1,
since ad — bc = —1. Therefore, for a Farey sequence of order N > 1, (6.2)
must be false and (6.1) true, which proves the theorem.
Thus we are led to the question whether infinitely many fractions h/k
exist with still better approximation
h 1
p-il<a

k

with ¢8> 2, and what the greatest value of ¢ may be.
This question was answered completely by A. Hurwitz.

(6.3)

TurorEM 25: For any positive c < V5, the inequality (6.3) has infinitely
many solutions. There exists, however, an irrational y for which (6.3) has only
finitely many solutions in case ¢ > V5.

The second half of this theorem is easily settled. We take y = 1+ V6
and 0 < « < 1 and ask for fractions k/k such that 2

B 14V 5 | < o 6.4

k 2 Vi @4

If we write
B 1+vs 8

Eo2 Ve
the preceding inequality means |6] < a < 1. We have
k_Vok 0

h—-=—

+ —
2 2 Vbk
and after squaring and rearranging

B —hk — k=0 &
— hk — k® < +5T’
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The integer on the left-hand side cannot be 0 for integers A, k not both zero,
8o we have

6 ol
or
a’
. k’<5———_(l—-¢)'

This restricts the denominators k, and (6.4) then also permits only finitely
many h to each of the finitely many k. Therefore, (6.3) has indeed only
finitely many solutions A/k for

c==\/75>\/3.

The Ford circles. We postpone for a while the proof of the first half of
Theorem 25 in order to prepare a new tool. This is a geometric figure intro-
duced by L. R. Ford, consisting of certain circles which have something to
do with the Farey sequences. It is useful to think of these “Ford circles” as
lying in the complex z-plane of 2 = z + .

Let C(h/k) be the circle with center at h/k + /2k* and radius 1/2k*. Thus
C(k/k) is the circle

1
2k3

(s

k288
which lies in the upper half-plane and is tangent to the z-axis at x = (b/k).
These circles have an important property.

THEOREM 26: Two distinct Ford circles never sniersect. They are tangent
if and only if their fractions are adjacent ones in some Farey sequence.

Proof: 'The centers of two digtinct circles C(h/k), C(I/m) are Mk + i/24*,

l/m + $/2m? with hm — kl # 0. See Fig. 1. The square of the distance between
their centers is therefore '

d’—-(h l)’+( 1 1 )’
T \k m/ O \22 2md
The square of the sum of their radii is
I,
T\2 T 2my)

h 1V 1 (hm — k)3 — 1
e Yo

Since

=0,
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the circles do not intersect. The circles are tangent if and only if equality
holds, that is, if and only if Am — k! = 4- 1. In this case, according to
Theorem 1, h/k and l/m are adjacent fractions of some Farey sequence (e.g.,
that of order N =k + m — 1).

Note that, if C(h/k) and C(l/m) are tangent and if their point of tangency
is w = u + iv, then u divides the segment (h/k, //m) in the ratio 1/k%:1/m? =
m3: k3. Therefore,

_ (B[E)KE + (Ym)m®  hk 4 Im

o m? + k3 T omd A3
is a rational number, and similarly v is also rational. The pomta of tangency
of Ford circles have rational coordinates.

(6.5)

o(x)

>
3~

()

Nl

*b—‘
o

)

3

L]

>
S~

Figure 1

Circular triangles. Now the configuration of all Ford circles shows cir-
oular triangles which are formed by arcs of mutually tangent circles (see
Figs. 2 and 3). Let the circles be C(H/K), C(h/k), C(h,/k,) with 0 < K <
k < k,. The fractions H/K and h/k appear as adjacent in the Farey sequence
of order k. The fraction A, /k, is not in this Farey sequence. However, since
M, /k, is adjacent to H/K as well as to h/k (because of the tengency of their

Ford circles), it must be the mediant :’ z +h 7 in a Farey sequence of
higher order' 1 +
M=H+h k=K+£k (6.6)

We now return to the proof of Theorem 25.

Let y be irrational. The vertical line z = y cannot reach any point of
tangency of the Ford circles. It must pass, therefore, through the interior of
infinitely many of the circular triangles.

Let one such triangle be formed by arcs of the circles C(Afk), C(H/K), and
C(Ay/k,). 8inoe the configuration of Farey circles is symmetric about the line

»
k

>l

CIRCULAR TRIANGLES 43
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z = {, we may replace y by 1 — y if necessary and then assume without loss
of generality

h

% <y < X (6.7)
and also, of course,

{u < hy H

2 k—l < Ve (6.8)

Let 4 be the point of tangency of C(k/k) and C(H/K); B of C(h/k) and
C(k,/%,); and C of C(h,[k,) and C(H|/K). Let a, b, ¢, be the z-coordinates of
A, B, C. Then, in view of (6.5), we have

a'=hk+HK _ et bk bk + HK
B4+ K2’ B+k2’ k24K

Thus
HE(B — k) + hik, (8 + K?) — hk(k,® 4 K%)
(# + K(k? + K9)
— kK(Hk — hK) + kk(h,k — hk,) — Kk,(Hk, — hK)
& + KO)(k? + K?)
kK + bk — Kk,
- (k® + K!)(klz + K?)

C—a=

because of Theorem 1 and the ordering (6.8). Finally with (6.6) we obtain

= kK + k® — K2

(k* + K3 (k2 + K?)
Let us put

8 = k >1 ‘

=z .
Then we have
2
¢ —a— ¢ +s—1 ,
_ B@+ )+ 17 +1)

and, since

B4+s—-1>141—-1=1,
we conclude

c—a>0.
Similarly we obtain
6 b kk, + Kk 4 Kk, _ K? + 3Kk + k®
(B + k?)(k® + K2) (B2 4 k2K + k)
8243541

TKe+ T )EF eI 0.
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However, b — a can be positive or negative. Indeed an analogous computation
yields
b—a— B—kK—-K 8—s—1
TWLEYE+E) E(E+ D+ e+ DY

a’—a—1=(a—;—-}—/—g)(a—%+£)» (6.9)

2 2

Here

and, since

V5

1
-4 —=>0,
>2+2>

8—1-{-@
2 2
we see that the sign of b — a is the same as the sign of
1+vV5
2

We now consider separately the cases b > a and b < a (b = a is impossible
since the polynomial in (6.9) cannot vanish for rational values of s.)

Case I: b>aora>1+2‘/5.

We intend to show that in this case
H l < 1
YTRIT Ve
Indeed, because in this case a and ¢ are the extreme abscissas of the circular
triangle which is hit by z = y, we have .

a< <c<H
4 K
and .
0 H <H a-—-H hk + HK
<E V¥ TE P+
Kl + K%Y K¥*+1)
Now

(3—1+‘/5)(a+1_‘/5)>o,
2 . 2
since the first factor and a fortiors the second factor are positive under our

assumption. Thus
A —VBe+1>0
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or

| &8 +1>15s,
8 1
a+1 VB
80 that we have in this case:
0< H < !
xS Ver'
a8 announced.
. —
Casell: b<aorl<s< +2\/5.
This time we intend to show
by ' 1
— — < .
P Vbk?
Under our conditions
b<a<e
and therefore
b<y<ec. (6.10)
We derive first that
hy hy
——b —— .
, >c ks (6.11)

This is fairly clear geometrically since C is higher on the circle C(h,/k,) than
B, C(H[K) having a radius larger than that of C(h/k). Explicitly we have

._ff_l_b=_h_1_hk+h1"1= k
k, kL B+k k#*+E? .
b hk+HK b K

— —— T c———

kb kK by k(KP4 kD)

and so indeed
E K (k— K)k?®—kK)
B+ kY BE+EY k(B + kK + &)
B — K3

= >0.
ky(k? + k?)(K? + kyP)
Thus because of (6.10) we have
hl hl hl
S—e<2—y< 2 —
E Th 'TH
and because of (6.11)
k 1 s(s+1)

h_ | M, _1
lh 4<h P LE TR HAt T
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Here, again, however,
s(s + 1) 1

AterIp VB

Indeed, the opposite
8(s + 1) > 1

A+e+1p VB
would entail s(s + 1)V5 > 268 + 25 + 1
or -
MVE—2)+s(VE—2) —1>0
or
1
- =s+s—(V5+2)
0<et+s Ve 2
1 2+\/E)( 3_2+\/E)
=G+§+—3"'+2 )
)4
=(’+§+T ‘s )
which is wrong since Case II presupposes 8 — § — (\/3/2) <0.
Hence in both cases we have found a fraction }/m so that
l 1
L i (6.12)
|y m Vom!

Here I/m was determined by the triangle A BC traversed by the liqe z=y.
Sinoce this line cuts across infinitely many such triangles, there are infinitely
many fractions !/m satisfying (6.12), which proves Hurwitz’s theorem.



Primitive Congruence Roots;

The Regular Heptadecagon

Primitive congruence roots. We have seen in Theorem 13 that a con-
gruence of degree n modulo a prime number p cannot have more than n
solutions modulo p.

This maximal number can be attained as the example -1 —1 =0 (mod p)
shows, which has the solutions z =1, 2,---, (p — 1). It follows that if
d|p — 1then 2* = 1 (mod p) has d solutions. For let p — 1 = md. We then
have the identity

2Pl — 1 = (2% —1)(z!m1d o gim=2d 4 L.y 1).

But the congruence 2 — 1 = 0 (mod p) has at most d solutions, and the
congruence z(™-1)4  g(m-2d 4 ... 1 ] =0 (mod p) has at most (m — 1)d
solutions. If 2# — 1 = 0 (mod p) had less than d solutions, then z?! — | =
0 (mod p) would have less than d + (m — 1)d = p — 1 solutions, which is
not the case. Thus 2? — 1 = 0 (mod p) does indeed have d solutions.

If 8 | d, then 2’ — 1 divides 2* — 1 algebraically. Thus any solution of
2’ — 1 = 0 (mod p) is also a solution of 2 — 1 = 0 (mod p). We say that a
solution z, of ! — 1 = 0 (mod p) belongs to the exponent d if it is a solution
of 22 — 1 = 0 (mod p), but is not a solution of 2’ — 1 = 0 (mod p) for any
4 < d. We say then also that z, is a primitive solution of 24 — 1 = 0 (mod P).
If a solution belongs to the exponent d; then necessarily d | (r —1). For if
e = (d,p — 1), then e = md + r(p — 1) for suitable integers m and r (see
Theorem 8), and then z* = (2%)™(z*!)’ = 1+1 = 1 (mod p). Since ¢ < d, it
follows from the minimality of d that ¢ = d and hence d+| (p — 1). Thus we
may separate all the solutions of z%~1 — 1 = 0 into classes of solutions, each
class containing those solutions which belong to the exponent d. We need
only consider divisors d of p — 1. We let y(d) denote the number of solutions
which belong to the exponent d, that is. the number of primitive solutions
of 24 — 1 = 0 (mod p).

THEOREM 27: y(d) = @(d).
Proof: The statement is true for d =1, 2. For ¢(1) =1, and the

congruence z — 1 = 0 (mod p) has the unique solution z = 1. Also ¢(2) == 1,
48
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and the congruence z* — 1 = (z — 1)(z + 1) = 0 (mod p) has the unique
primitive solution z =p — 1. Let us prove our theorem by induction.
Suppose y(d) = ¢(8) forall 8 < d. Since every solution ofz¢ — 1 = 0 (mod p)
is a primitive solution of 2 — 1 = 0 (mod p) for some divisor é of d, we have

d =3 y(d).
J|d

Since, by induction, we have y(8) = ¢(8) for all divisors 6 of d except perhaps

d itself, we may write
d=§ﬂ&+wﬁ—ﬂﬁ

On the other hand we have from Theorem 11
d =73 ().
il

Thus
w(d) —_ (p(d) =0,

and this is the assertion of our theorem.

As a corollary to our theorem we see that primitive solutions of z* — 1 =
0 (mod p) do indeed exist for all divisors d of p — 1. In particular, there does
exist a primitive solution to the congruence z*! — 1 = 0 (mod p) and in
fact our theorem insures that there exist (p — 1) primitive solutions. A
primitive solution of z#~! — 1 = 0 (mod p) is called a primitive root modulo p.

These notions have some bearing on the length of the periods of decimals.
We found A(m) to be the smallest exponent d > 0 so that 104 = 1 (mod m).
(See the paragraph preceding Theorem 16.) In particular, for the modulus
m = p we have A(p) = ¢(p) = p — 1 if 10 is a primitive root modulo p.
For example, 10 is a primitive root madulo 17 since 10" = 1 (mod 17), but
no lower power of 10 is congruent to 1 modulo 17. Thus 4(17) = 18 as we '
have found on page 27. Similarly 10 is a primitive root modulo 7, i.e.,
A(7) = 6. But 10 is not a primitive root modulo 41, since we had A(41) =
5 < 40.

In view of the Euler theorem

a*™ = 1 (mod m) for (a, m) =1,
it is reasonable to .ask whether there exist primstive roots modulo m for
composite m, that is, solutions of the congruence
27" _ 1 = 0 (mod m)

which are not also solutions of 2% —-1 = 0 (mod m) with d < g(m). Here
several cases have to be treated separately.

TamoREM 28: If p is an odd prime, there exist primitive roots mod p* for
any o.
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Proof: Let r be a primitive root modulo p. Then r*-! = 1 (mod p) and so
r*1=14 pt

where ¢ is an integer. For any integer = we have
_(r—1 —1 —1
(r + pa)t = ( , )rH + (’ X )erx + (” 5 )rH(pz)'

bt (27 ) o
=1+ p(t — r*% + pa)
where a is an integer. Now let z be a solution z, of the congruence
t —r* 3 =1 (mod p).
Since (r, p) = 1, we know that such a solution exists. Then
(r + pzo)*t = 1 + pt,, (bop)=1.

We assert that r + pz, is a primitive root modulo p* To see this we must
compute (r + pz,)®*-1) for any positive integer 8. We have first

(' + pxo)ﬂ'—l) pr— (l + pto)l'

— r p

=1t (D)ot + () o+ -+ (2) o

=14 p¥%,
where (t), p) = 1 since ¢, = ¢, (mod p). Similarly we have

(r + p2g)*" >0 = (1 + p¥))> = 1 + p,
where (4, p) = 1. Continuing in this way, we arrive at the general formula
(r+p2)®*D =1 + pPUy,  (t,p) =1.
Let d be the least positive integer with
(r + p%)° = 1 (mod p°). (7.1)

We must shov.v d = p*Yp — 1) = p(p%). From the preceding congruence
we havc? a _fortum (r + pxy)® = 1 (mod p) and hence ¥ = 1 (mod p). Thus,
since r i8 a primitive root mod p, we have (p — 1) | d. But on the other hand

we have d | p>~}(p — 1) because of (7.1), and it follows that d = (» — 1)p*
where 8 < a — 1. Thus we have

(r + %) > = 1 (mod p%).
On the other hand, our previous computations show

(r+ on)’ﬂ"_n =1+9p° H‘p (t ) = 1,
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from which it follows that « < f#+ 1. Thus 8+ 1 < a 5 f + 1, so that

@ =f+ land thend = p’(p — 1) = p**p — 1). This completes the proof.

Note that if r is & primitive root modulo p* then we do indeed have
##-1 = 1 + pt where ¢ is prime to p, and our construction shows that r is &
primitive root mod p* foralla =1,2,3,---.

Let us give an example. 7 is a primitive root modulo 5, but since 7¢ =
1 + 2400 = 1 (mod 25), 7 is not a primitive root modulo 25. Qur construction
tells us we must solve the congruence

2‘%'_0._7%51@«15)

or
480 — 343z = 1 (mod 5)

—3z = 1 (mod 5)

8o that z, = 3 is a solution. Then r + pz, = 7 4 16 = 22 is & primitive
root modulo 25 and in fact modulo all powers 5%. ‘

Our theorem may be given a group theoretic interpretation: It says that
the group of p(p*) residue classes modulo p* prime to p® is cyclic. Any residue
olass containing a primitive root modulo p® is a generator of the group.

The theorem is false for p = 2:

2 has a primitive root: ¢(2) =1, 1! =1

4 has a primitive root: g(4) = 2, 3! = 3, 3* = 1 (mod 4). But 8 has no
primitive root since ¢(8) = 4, while

13=1, 3%=1, 62=1, 7T =1 (mod8).

If d is the smallest exponent such that a® = 1 (mod m), (a, m) = 1, then
we say that a belongs to the exponent d modulo m.

Problem: Show that the highest exponent to which an odd number can
belong modulo 27, y = 3, is not @(2?) = 271, but is }p(2*) = 2"~%. Show that
the number 5 belongs to the exponent 2*—* modulo 2".

If m is divisible by two distinct priies, and m 7 2p* where p is an odd
prime, then there is no primitive root modulo m. For suppose m = m,m,
where (m,, my) = 1 and neither of m,, m, is 1 or 2. Suppose (r, m) = 1. We
have #*(™) = 1 (mod m,) and 7™ = 1 (mod m,). Now @(z) is even unless
z =1 or z = 2. Thus

Pimium)2 = ] (mod m,) and (=™ < ] (mod my) .

' It follows that

pr(mie(malis = 1 (mod mymy)
and, sinoe p(mymy) = g(my)p(my), this means
r*(=)8 = 1 (mod m) .
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Thus any number r prime to m belongs to an exponent at. most g(m)/2
modulo m. Therefore there can be no primitive roots modulo m. A further
consequence of what we have proved is the fact that A(m), the length of the
decimal period of 1/m, is at most @(m)/2 in this case.

Problem: Let p be an odd prime. Show that there exist primitive roots
modulo 2p®.

The regular polygon of 17 sides (the regular heptadecagon or in brief,
17-gon).

We are going to apply the theory of primitive congruence roots to the
problem of cyclotomy: the division of the circumference of the circle in equal
parts, as it was first done by Gauss. The most spectacular case is that of the
regular 17-gon, which we shall discuss in detail. The resulting formulae imply
the surprising fact that the regular 17-gon can be constructed by means of
ruler and compass. In the next chapter we shall investigate some more
general problems of cyclotomy.

Let us now consider our regular 17-gon. We consider it as a figure in the
complex plane, its vertices being complex numbers, and we assume that it is
inscribed in the unit circle about the origin with one of its vertices at the
point of the complex number 1. Let z = 2 + iy be any other vertex of the
polygon. Since |2] = 1 we can write 2; = cos 8, + ¢8inf;j =1,2,:--, 16.
The vertices of the regular 17-gon divide the circumference into equal parts,
so that we have 0, = j0,, where 6, = (27/17). The 17th vertex is again 1:

1 = cos 170, + ¢sin 176, = (cos 6, + i sin 6,)'7 = 2,17

Thus 2, is a root of the equation 217 — 1 = 0. Since 217 — 1 = (z — 1)(z¢ +
218 4 .-+ + z + 1) and z, # 1, it follows that z, is a root of the “cyclotomic
equation”

204284 o424 1=0. (7.2)

Our problem, therefore, is to find an explicit formula for a solution of this
equation, or at least an explicit formula for its real part z = cos 6 or for its
imaginary part y = sin 6.

Since 17 is a prime, there exist primitive roots modulo 17. For example,
10 is a primitive root modulo 17. We set up the following table modulo 17:

n|0123456789101112131415

10"|110151446951672 3 13 11 8 12
(1.3)
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As we have seen, each residue which is prime to 17 occurs once on the bottom
row, since 10 is a primitive root. Let us order the exponents of (7.2) according
to the order of (7.3). We can rewrite (7.2) as

Z4210 4218 M 8= ], (7.4)

We see that the exponents are successive powers of 10 modulo 17. Now we
shall follow the method of Gauss and break (7.4) into two sums which he
called ‘‘periods’: namely,

m=z+ 2+ A28 20220828
1),=zl°+z“+z‘+z5+z"+z‘+zu+z“.

Here we have taken in 7, and in 7, every second summand of (7.4): in 7,
those which are listed in (7.3) below an even n (including 0), and in 7, those
below an odd n. We have immediately

M+ n=—1.

We would like to find the product #,7,, which contains 64 terms. This is
not as bad as it looks if we multiply in a special way. Let us try multiplying
each element in 7, with the element in %, that is directly below it, and
summing. The successive products are 2210 = 211, 21514 = 2% = 213, 24,8 — 219,
and so on. We finally get the sum, after we reduce exponents modulo 17:

zll+zlﬂ+zlo+zl4+z6+zs+z7+za_

But this is just 7,! Why is this so? The reason is that, as we have said, the
successive exponents of z in (7.4) differ by a factor of 10 modulo 17. It
follows that the successive exponents which occur in 7, and 7, differ by a

_ factor of 100 modulo 17. Say 2° and z® are members of 7, and 7,, respectively,

and their product is 2+ in either %, or 7,. Now the next terms of %, and »,
are z19% and z19% respectively, and their product is just the next member
of the period in which z%*® belongs, namely 21%(¢+%, In this way, we always
will get in the product all the members of 7, or of 7, if we get one of them.
Which of the 5’s we get depends only on one element, say the first. Similarly,
if we were to multiply each member of 7, by the member of 7, below and
one step to the right of it, then all of the products would be in the same
period of 5. Thus, since z -2z =21 is in #,, it follows that the seven
remaining products 21828 = 24, - -, 28 - 219 = 2 appear in 7,, and the sum
of all eight products is 7,. Now we can do the same thing again, taking each
member of %, with the member of %, that is two, three, four, and so on steps
to the right below it; we will always get a period 7 a8 a sum of eight products.
The period we get will be just the period containing the first product. Thus
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we have very little computation to do and we find that #,7, is the sum of the
terms:

1 4 =1,
zu+ “o =1
21 + =,
24+ e =
z8+ coe =),
24 + =
zlﬂ+ eee =17
218+ “e =

Thus »yn, = 49, + 45, = —4. Since we know the sum and product of %,
and 7,, we may form the quadratic equation which has 7, and #», for its roots.
The equation is y3 4+ y — 4 = 0. We can solve this by the quadratic formula,
and the roots are seen to be '

o s = H—1 £ V1 + 16) = }(—1 + V17). (7.5)

We see that 17 appears under the radical. In general, if we start with a
p-gon, we can show that 7, and 7, are quadratic irrationalities and that 4+
appears under the radical.t Now let us take new periods, %,’, 75/, %', and
., forming 7,’, 7, from %,, and #,’, %,’, from 7, in the same way that we
formed #,, 7, from 7. That means taking into each new sum only every
second summand of the old sum:

2 + 244218428 =g
MRt S =gy (7.6)
210 4 28 - 27 4 2l =g’ ’
M S s =y,
‘We see immediately that

’71: + 772: =M

Ny + N =1
Now let us form #,’ - 7,". The same trick that we used before works now, and
we find 7,7, is the sum of the terms

2 + =n'
21 + =15
2 + =17
2 + =1 .

The sum is:
mm'=m'+n +n +n'=m+m=-1.
Thus %," and %,’ satisfy the equation
‘ w—nw—1=0.
1 We show later that 5, — 7, is a Gaussian sum; see (9.3), (10.1).
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From the quadratic formula we find

7Ny =Hm Vv n+4). (1.7)

Similarly, we can write down

Ny 0 =4y =Vt +4). (1.8)

Now we claim that the choice of the distribution of signs in (7.5) and (7.7)
determirtes the distribution of signs for (7.8). To show this, we will expand,

' — na)ns’ — 1) = m'ne’ — m'nd — ma'ms’ + ma'nd’ -
Here, again, the same trick works, and we have 7,'n,’ the sum of

2+

2+

2 +
8o that

=17y
=y
= 7y’
=1,

g =20 + 0y +04;

7,0, is the sum of

(' — n8)ns' — md) =

M+ =1y
2+ =1
# + =mn
M+ =n',
- m'nd =20y + ns' + ng'; 7a'my’ is the sum of

2 + =1
# + =’
2 + =1,
2 + = 1y’

n'n’ = 2y’ + my' + 0/; and finally, 735, is the sum of
zn + = "
2 + =
z + =n'
210 + =1y ’

Nand =20 +n' + '

Thus we have obtained

' g+l —2m — ' — o — 2y — o — o+ 2+ +

Or, canceling and contracting, we have

(m' — na)ns' — 1) = =20 — 3y’ + 2my' + 2 = =2 — ) -



56 PRIMITIVE CONGRUENCE ROOTS

This is a very important result, and from it we have

' ’ —2( _ )
ny — = — T,
M — %

Now the left-hand side certainly depends upon which of y4’ or 7,/ gets the
plus sign and which the minus sign in (7.8). But the right-hand side depends
only on the arbitrary choice of the signs among 7,, 7,, 7', 74, and thus we
see that the distribution of signs in 7,’, 5,’ is dependent upon the distribution
among the other four.

Now, let us go on with this breaking up into periods. We can break up
7, into periods as follows:

(7.9)

z 4218 =y,
A4 218 =g,
Now we have immediately that
m +n =n
M =2+ M+ Pt =y)

Thus #," and 7," are roots of the equation

u? —m'u+ 1 =0
mm =4 £ V't — 4n,).

z+ 28 =7,

2216 =1,

and we see that

Finally, we have

Thus z and 218 satisfy the equation
2—m"24+1=0. (7.10)

We now assemble all the information we have gained about the 7’s. In (7.5)
we make a choice of the signs and set

m=H-1+V17), 5=§-1-V1),
which implies
m—1g>0.
If we again those the upper sign in (7.7) for %,’, we have

n' =Hm+ Vot +4)
and have herewith decided
m —7y >0.
Then (7.8) shows
' —n' >0.
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Hence in (7.8) the choice of the sign is determined for 7,’:

1 =4y + Vs +4).

Carrying out these computations we get

m? = H=1+ VI7)t = }(18 — 2V17)

n = H—1 — VIT) = (18 + 2V17)
and, henece,

m' = H—1+ V1T + V2017 — V17)}

7 = H{—1— V1T + V(7 4+ VIT)}.

These values are needed for 7,", ;" where the choice of signs is again
quite free. We set
m' = Yo' + Vo't — )

and obtain

m' = Hi(=1 + V17 + V207 — V7)) -
+ JA(=1 +VIT + V2071 - VI + 1+ VIT — V207 + V1T))
= {—1+ V1T + Vo1 — VI1) + VE},

where

R =(—1+ V17 + V2(17 — VIT))} + 16 + 16V/17 — 16V2(17 + V1)

— 417+ 12VT + 2(—1 + VIT)V2(17 — V17) — 16V2(17 + V17).

But we have

(1 + VINV2(7 — VI7) = V2V1I(VIT — 1)1 + V1IT}

= V2V17-16(1 + V17)
=4V2(17 + V17).

This yields
R=4-17 +12V17 — 4V2(17 — VT7) — 8V2017 + V17),

and thus

= -1+ V17 + V217 —v17)
+ 217 4 3T — V2017 — V1) — 2V27 + V7)),

& quantity which is real. We could obtain z and 2% from (7.10) but are
satiafied with -
N =2+z2%=z+z1=200m0,
00‘0=*ﬂ1'r
for the central angle of the regular 17-gon.
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The surprising feature of the expression for 7,” is that, in addition to the
operations of addition, subtraction, and multiplication, it contains only one
further operation, the extraction of square roots starting from rational
integers. The unit length being given as the radius of the circumecircle of the
17-gon, the expression for 7,” can therefore be constructed by means of ruler
and compass as elementary theorems of geometry show. It is possible there-
fore to construct the regular 17-gon by means of ruler and compass alone.
This is Gauss’s discovery published in his Disquisitions Arithmeticae (1801),
article 365. With justifiable pride, Gauss there points out that in Euclid’s
time the division of the circle in 3 and 5 equal parts was known and therefore
the constructibility of the regular polygons of 2%, 3 - 2%, 5 - 2#, 15 - 2 gides,}
but that for 2000 years nothing had been added to this knowledge.

It is fairly clear that Gauss’s construction depends on the fact that
16 = 17 — 1 is a power of 2. For it is just this fact that allows us to halve
the periods again and again, and so to reduce the solution of the cyclotomic
equation of degree 18 to the solution of a sequence of quadratic equations.
If p is a prime of the form 2* + 1, then Gauss’s method may be used in this
manner to construct the regular p-gon with ruler and compass. If ¥ contains
an odd factor u, then 2* +4- 1 cannot be prime. For if ¥ = ul, then with
2! = A we have

2 41 =294 1 =A%+ 1= (44 I)(4* 1 — 4“2 4 ... 1),

and 2* 4 1 is not a prime. Thus k& must be a power of 2, say k = 2", and we
must look for primes of the form 22" 4 1. Let us see some examples:

3=2141

5=22 41

17 =20 41

257 = 28 4 1
65537 = 216 4 1 .

All these numbers are primes, called Fermat primes, and the corresponding
regular polygons may be constructed with ruler and compass. Fermat
studied the numbers 28" 4 1 in a different connection and conjectured that
they were all primes. But Euler showed that 232 4 1 is divisible by 641.

If we try to apply Gauss’s method to the solution of the cyclotomio
equation for p = 7,

A+d4-+z+1=0,

we may construct three periods of two terms or two periods of three terms,
and we are led to a cubic equation which cannot be solved by rational
operations and the extraction of square roots. But, using Cardano’s solution
of the cubic equation, we see that solutions of this equation may be expressed

t The latter because & = 4 — & .
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in terms of square roots and cube roots. It is a remarkable fact that all
oyolotomic equations

A4 +241=0, pprime,

can be solved by rational operations and successive extraction of roots.
This is not at all the case for the general equation of the nth degree. In the
sixteenth century Cardano constructed an explicit solution for the general
ocubic, and Ferrari an explicit solution for the general biquadratic equation,
both solutions in terms of rational operations and successive extraction of
roots. But Abel showed, early in the nineteenth century, that the general
equation of degree n, where n = 5, is not solvable in terms of radicals
(roots).

Exercise: Solve the cyclotomic equation 28 + 2* + +++ + 24+ 1=0.



Solution of Cyclotomic Equations

Primitive roots of unity. A solution of the algebraic equation
Tzt —1=0 (8.1)

is called an nth root of unity or a root of unity of order n. The number 1is a
root of unity of any order, a trivial root we may say. Of importance will be
those roots of (8.1) which are not also roots of z* — 1 = 0 with k < n. We
call such a root (the existence of which we shall have to show) a primitive
root of unity. Let { be any root of (8.1). Then it will be the primstive root of
some equation )

*F—1=0, O0<k=n, (8.2)
where k is chosen as the smallest positive integer for which {* = 1. Now put
d=(kn).

We can then find a and b so that
d=ka -+ nb.

Since, moreover,
d = k(a + tn) + n(b — tk),
we can assume a > 0 without loss of generality. Then, for any positive ¢
d+nc=ka_+n(b+c).

We can take ¢ so large that b + ¢ > 0.
Then from (8.1) and (8.2) we obtain

fe =1, U |

80 that
ck¢+n(b+c) = {d+nc — Cd =1.

Therefore, since k was minimal, k¥ = d, and k is a divisor of n. Any root of
(8.1) is therefore a primitive root of unity of some order d, where d | n.

Let {;,j =1, 2, -, v, now be all the primitive roots of 2* — 1 = 0. We
define the cyclotomic polynomial F,(x) of order n as

Fo(z) = IjI(x =4

60
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We see that F,(z) is a monic polynomial (i.e., one of highest coefficient 1).
If no primitive roots of order » should exist, we might set F,(x) = 1 but we
shall see presently that this will not occur. We now have evidently
z" — 1 =]] Fa=) . (8.3)
din
For instance: Fi(z) =z — 1,
a3 — 1 = Fy(x) - Fy() ;

thus
Folz) =2+41.

TaHEOREM 29: The cyclotomic polynomsal F,(x) of order n 8 a monic
polynomial of degree p(n) with integer coefficients.

Proof: We employ induction. The theorem is true for n = 1, 2. Assume
it to be true for all Fi(z), k¥ < n. Now

z* — 1 = F,(z) [] Fay(@) = F,(z) G (), (8.4)
din
a<n

say. But here, because of d < n, GQ,(z) is a product of monic polynomials
with integer coefficients, hence it is also monic with integer coeflicienta.
Then
" —1
F, () = ——.

= @ |
Long division produces only integer coefficients here, because the divisor
has highest coefficient 1. Now as to the degree of F,(z), if we assume the
degree @(d) for F,(z), d < n, we have from (8.4), if v is the degree of F(z):

n=v+g¢(d)='v—w(n)+§¢(d).

a<n

Thus » = @(n), in view of (3.8), Theorem 11. (This proof is completely
analogous to that of Theorem 27.)
!

Long division, used as a tool in this proof, provides through (8.4) a
construction for consecutive F,(z). Besides the F, and F, already mentioned
we find the following examples:

Fyz) =23 +z 41 Fy(z) = 24 + 1

Fx)=22+1 Fyz)=2+ 2+ 1

Fyx) =2t +2¥+224+2+4+1 Fy)=2A—23+22—z+41

Fyzx) =23 —z +1 Py =20+ 22+ +z+1
Fr) =2+ +---+x+1 Fy@)=a—22+1.1

t In all these examples only the coefficients 1, —1, 0 appear. This is not so in all

F,(2). Erdde (Bull. Amer. Math. Soc. §8 (1848), pp. 179-184) has proved that there exist
oyclotomio polynomials which have some arbitrarily large coefficients.
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A remark at the end of Chapter 7 can now be stated precisely as
TeEoREM 30: The cyclolomic equation can be solved by radicals.

We break the proof down into several steps. Suppose first that n = ny g
is composite with (n,, ny) = 1. If {; is a primitive root of unity of order n,
and {, is a primitive root of unity of order ,, then we assert that Lilgisa
flx;i;nitive root of unity of order n,ny. For let us assume that ({,{s)* = 1. Then

D= (§ilp)%m = fm - fme = (3m
We can solve the congruence n,a = 1 (mod n,) for @ and have then
l = {f”la = c{ .

But {, is a primitive root of unity of order n,, and therefore n ] k. In the same
way we see that n, | k, and, since (n;, n,) = 1, also nn, | k. But this means
indeed that {,{, is & primitive root of unity of order n;n,.

Thusif n = p/ipfs - - - p - is the decomposition of 7 into primes, we see
that, in order to show that F,(x) = 0 may be solved by consecutive -ex-
traction of roots, it suffices to show that all cyclotomic equations Fop(x) =0
may be solved by radicals. The case p = 2 and its powers can be dealt with
directly. We have on the one hand

2 — 1= 1?1,
On the other hand by (8.3)

[ b1
¥ —1=T] F.a) = T] Fpu(@) = Fip(a) - T] Fpal2)
‘Wp a=0 a=0
= Fy(z) - (¥ — 1)

and thus
Fop(z) =¥ 4 1.

But 2%-1 + 1 = 0 is already an equation of the binomial form. We have

-1, V1 = 4, \/2.::::.1.1'.:'
V2

as.pri.mitive roots of unity of orders 2, 4, and 8, respectively, and can continue
this list by successive extraction of square roots. In virtue of the formula

VE—B;=JA+V;’+B2+5J~A+VA.+E
D 2 . ’

We can even express & primitive root of order 27 in the form R, + $R,, where
R, and R, 4re real and contain only repeated square rogis of positive
radicands, for vV 4% 4+ Bt 2 |4].
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So let p be odd. The important case is F,(z) = 0. We make ® remark
about # = p” at the end of this chapter.

The Lagrange resolvent. Since
z? — 1 = Fy(x)- F (z) = (x — 1)F, (2),
we have for any prime p
. F,(z)=:c"1+x"’+°--+z+l.

Let { be a primitive root of unity of order p. Then F ({) = 0 or
(+0+--+{=-1

where here and subsequently we write
p—1l=r.

We now take a primitive congruence root g modulo p. Then g* = 1 (mod p)
and no lower power of g can be congruent to 1 modulo p. The r = p — 1

numbers
9°»91,"'-9'—‘

are oongruent modulo p to some permutation of the numbers 1, 2,000, 1,
and since an exponent of { counts only modulo p, we may replace the
preceding equation by

U+ T =1 (8.5)
In addition to the sum on the left side of this equation, we introduce, following
Lagrange, some other linear combinations of the powers of {. Let p ‘b an
rth root of unity. (Note that p is & root of unity of lower order than [.) The
root p does not have to be primitive. We oonsider now the sum

PO=C+pl0+ 0"+ +p 7, (8.6)
called a Lagrange resolvent. In this notstion we may write (8.5) simply as
LY)=-1. (8.7)

If we knew all (p, {) for all p, a8 we know (1, {), then we would also know
{ expressed in terms of p. Indeed we have ‘
Z(p,C)=2t+2pC'+Zp’("+---+§p~1;"". (8.8)

14 14 [ [

In order to evaluate the individual sums on the right side, we take gy, &
primitive root of unity of order r. Then all the p’s form the set

POO'PQ.I""’PO'-I ,
and thus .
rifr|k
k_ 1 . rk __
TP =2 pt = g gk
P — 1
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We obtain therefore from (8.8)
1
l = ;E (Pa l) .
P

Our prol?lem will be solved if we can obtain the Lagrange resolvents
(p; ) by rational operations and repeated extraction of roots. We need the
the following lemma.

Lemma: (p, {) = p(p, {9).

To prove this we only have to realize that we can write { = p'¢”, and
thus, by a cyclic shift

(B ) =ple + " + - + T 4
=P+ pl" + - 4 pY,
which yields the assertion of the lemma. Repeated application of the lemma
also shows
(P, O) = pMp, 1) (8.9)

In order to find an equation for (p, {), we need the product of two Lagrange
resolvents:

(P D) = L+ pH07 + p™07 4 - - - o plr-p™

(PO =L+ p0+ P27 oo 4 i,
‘We carry out the multiplication in the manner in which we multiplied two
perlot.is” occurring in the theory of the 17-gon. We start by multiplying
terms in the same column and add their products (which will yield here
(p**', [%)); then after shifting the lower row cyclically, we again multiply

terms above each other, and so on. It is better to express this
y . 0@
formally. We have g provess mor

r—1
(P50 = 3 p7,
‘ A=0

r—1 -1
(p', C) = z Pli;yi ='2 pl(l+’”{”uﬂ'
}'=0 j=0

for any A, in view of (8.9). Thus

P~ 0 (4 0 ='f rf:lp""l'“ pluh ettt
A=0j=0

-1 -
= 'Z pllrzlpwm;v‘uw’)
i=0 A=0

r—1
=j§°p”(p"+‘. o). (8.10)
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Now as j runs from 0 to r — 1,¢’ takes on the values 1,2,--°,p — 1
modulo p in some order, and thus 1 4 g’ takes on the values
2,3,-++,p—1,0modulo p

in some order. Here
1 4 ¢’ = 0 (mod p)

ocours for j = r[2, because
T 0=g—1=(@"-1)@g"+1)(mdp),

and, therefore,
g + 1 =0 (mod p),

since ¢ is & primitive congruence root modulo p. For j # (r/2), therefore,
1 + g’ runs through 2, 3,---, p — 1. Now let 4 = A(j) be that exponent}
for which

Lr
FP=14+¢g'(modp) j=12,:-,7r; _7;‘:-2-. S

Incidentally, we see that A(j) runs in some order through theset1, 2, -,
r — 1. If we now return to (8.10), we find that we have obtained

r—1 O y .
(5 O (6 0 =j20 pM - (ptHS, Iy 4 plirm(phet 1) (8.11)
J#r/2

Although we have defined (p, {) in (8.6) only for a primitive root [, it is clear
from the context that (p*+!, {°) here stands for

(PH'" 1)=1+ Pk+l + Pa(k+l) 40+ P(r-l)(b+t)
0 for p*+t #£ 1 (8.12)
s for Pt =1.
If we replace p by p**! and A by A(j) in (8.9), we obtain
P = P(k+l)‘U)(Pt+l, ;a“”)
'

or
(Pk+l’ c,l(.i)) —_ P—(t+l)l(j)(Pb+t' 0.

With this and (8.12), equation (8.11) becomes

r—1
(% (P ) = (4, ) 3 pt++id | R (8.13)
sl
where
0 for p*+t £ 1
= P (8.14)

rpt*i for g = 1.

t If g = m (mod p), then u is called the “‘index” of m. In our case, therefore, A(j)
is the index of 1 4 g.
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(Since p* = 1, we can have only p"3 = 1, and thus also P = 1) We
write for abbreviation

%0 (0h 0 = (", Dyaa(p) + R, (8.15)
where y, , (p) is a polynomial in p of degree < 7, which is obtained from
'f pH—EHHIG) (8.16)
Jrte

through the application of p* = 1. It follows that ¥:.1(p) has integer
coefficients.

In the case l = —k we can easily find the polynomial ¥i,—a(p) from (8.16).
We have here, for a later application,

r—1 r—1
v‘.—E(P) = p—k, = 2 P—” — p—krll
j=0 j=0
F#r[2
_P—krll fol' Pk ;é 1
B r—1lforpt=1.

Therefore from (8.15), (8.14), and (8.7) after some simplification, we have

pp'TI* for p* £ 1

k ~* ) = 8.17
(0" Dl ) {”mk:l. (8.17)

(The statement for p* = 1, namely (1, {)(1, {) = 1, is, of course, already
implied by (8.7).) Formula (8.17) implies that (p*, {) 5~ 0 for all &.

We can now use (8.15) for the computation of (p, ). Let d be the smallest
natural number such that p? = 1. Certainly d | r, and we can assume d > 1

since (1, {) = —1 is known. We write (8.15) for ¥ = 1 and sucoessively for
l=12---,d -1

(P» C)(P: C) = (P’r C)V’l,l(p)
(P, D(@% {) = (p%, Dyralp)

.

(P: C)(Pd_’l () = (Pd_l: C)Wl,d‘l(P)
(Pv C)(F‘-l: {) = (1, OV’I,&—I(P) + rP"' = —v’l.d—l(p) + rP"’ .

Multiply these equations with each other and cancel a nonvanishing factor
P40 (p% )+ (p*, {) on both sides. We then obtain a formula of the
sort

(P O =¥ (p)

where ¥ ,(p) is & polynomial in p with integer coefficients. Thus any Lagrange
resolvent (p, {) can be obtained by root extraction from some polynomial
in p.

THE OYOLOTOMIC EQUATION FOB A PRIME POWER AS INDEX o7

i i i is of lower

The (p, {) then in turn furnish {, as we have seen. Since p is of
order than {, we can assume by induction that the p’s can be obtained in
the same way, and we have then proved our theorem up to one gap, namely
the discussion of » = p% & > 1. This, however, we reduce easily to the case

%= p.

The cyclotomic equation for a prime power as index. We have, after

8.3), ° R
¥ 1= F = Pz
z¥ —1 H 4(%) ‘l:{ (%)
k-1
= H F ,0(3) - F ,.(z)
i=0
=@ — 1)Fpa@), (8.18)
80 that
y*—1
F’(Z)—ly—l= ’(y)’

where

y=2a"
is used as an abbreviation. The solution of

F, () = 0
is therefore achieved in two steps.
) Foly) =0,
can be solved by radicals, as we have proved; and
2) P =y
can also be solved by radicals:

z = ’P"'/- ,

which involves k — 1 successive extractions of pth roots.
These observations now make the induction complete for all roots of
unity of order less than p* and thus finish the proof of Theorem 30.
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Spme applications of the Lagrange resolvents. The formulas of the
previous chapter contain a wealth of arithmetical information. Take a rime
nufnberp =1 (mod 4) so that r = p — 1 = 0 (mod 4). The numberép:hl
:{:t. are 4th roots of unity and therefore also 7th roots of unity. We ther;
write the following Lagrange resolvents according to (8.6) and (é.7), where

{ is a primitive root of unity of order P
LO={+0+0+ 4" =1
L)={-0+ 0~ -
GO=C+alr -~ i
(=6 D=0—slr =" 4 g
Now (8.15) in conjunction with (8.14) shows that
(& 06, D) = (=1, Dy 4(6)
(—in Z)(—‘) l) = (_l’ C)'pl,l(—'l) ’
and from (8.17) we infer, since r/2 is even in our case,
| (-LO-L=p.
Multiplication of the three last equations yields, after cancellation of (—1, {)3
(5 D=5, 0 = p1a()p 1 (—i)p -
Then (8.17) withk = 1, p = i, p"'® = (—1)"4 shows that
(4 (=3, {) = (—1)"p,

so that, in view of the previous formula,

or P = 136y 5 (—i)p

P = 9110y (—) -

Now y, , is & polynomial with integer coefficients, and therefore we may

write v, () = @ + bi, wh i ,
g ::] 3 + bi, where a and b are integers. Then, however, Y1a(—1) =

P = (a+ bi)(a — bi) = a® + 2.
Thus we have proved the famous theorem of Fermat.
(1]
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THEOREM 31: 1fpiaaprimeoongruenttolmod1do4,thenpiatkmm
of 2 squares.

We shall be able shortly to give another proof of this theorem, based on
Theorem 18.

Exercise: The procedure in Chapter 8 makes it poesible to compute ¥, ;

for each special odd p. Determine y, , for p = 13 and verify through it that

13 = 2% 4 32
We can prove a theorem similar to the last one for primes p = 1 modulo 3.

TurorREM 32: If p is a prime congruent to 1 modulo 3, then p = a? 4 3b*
where a and O are integers.

To show this, let { be a primitive pth root of unity, and p be a primitive
cube root of unity; that is, a root of the polynomial Fy(z) = 2* + 2z + 1.
Then we have from (8.15), fork =1 =1

(P, )+ (p, §) = (p* Dyr.4(p) @.1)
(sz g) * (Par g) = (P" g) * ‘Px,;(P’) = (P: {)'Pl.l(p’) .
On the other hand, p? = p~1, and (8.17) shows that
P D (D=0 (LD =ps""=p, (9.2)

r_p—1 is divisible by 3 under our assumption. Multiplying equations

since — =
2
(9.1) with each other and canceling a factor (p, {) (% {), which, as (9.2)
shows, does not vanish, we obtain ,by' means of (9.2) :
P = v12(P) * ¥1.2(P") -

But y, 4(p), & polynomial with integer coefficients, can always be written as
A + Bp, since higher powers of p can be eliminated through pA=—p—1L
Hence y, ,(p?) = 4 + Bp*and

p= (4 + Bp)(4 + Bp?) = A*— AB + B*.

To obtain the theorem in the form stated we note that 4 and B cannot both
be even. If 4 is even and B odd, then the last formula can be rewritten as

et o]

while if 4 and B are both odd, then
A+ B)' (A — B)‘
= 3 ,
P ( 2 ) T\

in both cases showing integer squares.
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Gaussian sums. Let p be any odd prime. In the theory of the regular
17-gon we took every second term of a sum of primitive roots of unity
arranged by means of powers of a congruence root g:

L=+ +0+- 40 = 1.
This was broken into the two sums
=04+
=0+ 4+ 40,

where as before r = p — 1, an even number. In the notation of the Lagrange
resolvents, we have then

m+ =117
m—mn=(-L1{.
Now 7, only shows exponents which are squares:

1=g%g%gh- -, g2,

The summands in 7, show exponents which are not squares and not congruent
to squares modulo p. Indeed 7, has all the summands which are congruent
to a square modulo p (except 0). If we have a square 3, p ,{' $, then there
exists u so that

(9.3)

g% =13 (mod p) .
We can then find an exponent v so that
t=g¢" (modp),
. g* =g¢* (mod p) .
But this congruence implies, since g is a primitive congruence root modulo P
% =2v(modr),

which shows that 4 is even since r is even.

The numbers that are congruent to a square modulo p are called quadratic
residues modulo p, i.e., the numbers

‘ 1, 0’: 0‘, cee,gl (mod p) ;

9.9%¢% -, 9" (mod p),
are called quadratic nonresidues modulo p. The number of quadratic residues

is equal to the number of quadratic nonresidues, and that number is ! =
p—1 2
2

the others, i.e.,
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i i idues as exponents have a plus
In (—1, {) the powers with quadratic residu ’
sign t.lfose with quadratic nonresidues a minus sign. If we therefore introduce

the Legendre symbol (m[p) with the following definition
+1 if m quadratic residue modulo p

m) ~ (9.4)
(; T |-1ifm quadratic nonresidue modulo p
with p * m, we can then simply write
=5 (2. (9.5)
(—l» C) .z_l(p)z

i ; hich we shall
This special Lagrange resolvent is called a Gaussian sum, whic!
write siml;le; a8 G({). It is convenient to sup.p!ement the definition of the
Legendre symbol (9.4) by the additional definition

("_') —0forp|m. (0.6)

?

We can then write v (9,7{,
@) =(-1d =_§o(1—,) = '

The Gaussian sum can also be written without the use of the Legendre
symbol. Consider the squares modulo »
0,13,28, -+ (p—1).
Any number a which occurs in this array, that is, any quadratic residue,

twice, since if
appears o8 = a (mod p),

t'11‘311&180(1"—:l7)’=:p’—2pa:+:¢t’sa(lnodp). Therefore, we have

-1l
m=1

and in view of (9.3), !
Sl LD+ (-1 O = (LD,
m=0
80 that we have also : i
) = or" . (0.8)

The Legendre symbol. Because*
even + even = even
odd+odd=evon
odd 4 even = odd
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we can read off from

gu.gv=gu+v
the facts

Rx R=R

Rx N=N

NxN=R,

where R stands for quadratic residue, and N for quadratic nonresidue. The
Legendre symbol permits the condensed expression:

(%') ' (17“:) - (mf) ' (9.9)

From our definition it is clear that the upper number in the symbol represents
only its congruence class, so that of course

(%‘) = (%2) for m, = m, (mod p) . (9.10)

We express the multiplicative property (9.9) of the Legendre symbol by
saying that it is a “‘character of the residue group modulo p.”’t Since there are
a8 many quadratic residues as nonresidues, viz. (p — 1)/2, we also note the

property
P
> (—) =0. (9.11)

m=0 \P
Now if a is a quadratic residue, then the congruence

¥® = a (mod p)
is solvable. If we raise both sides to the power (p — 1)/2, we obtain

al» D2 = y9-1 = | (mod p) (9.12)

in view of Fermat’s theorem. Formula (9.12) gives a necessary condition for
& quadratic residue @ modulo p. This criterion, found by Euler, is also
sufficient, since the congruence

z(P-i2 = ] (mod ?), (913)

which is satisfied by the (p — 1)/2 quadratic residues, cannot have further
solutions (Theorem 13). Now we have

0 =21 1= (2072 — 1)(z(» /2 | 1) (mod p).

t The multiplicative property of the Legendre symbol settles a question left open
in the proof of rem 23. The two equations mentioned in the theorem imply
n = z,* (mod §), §nd 2n = 2,* (mod 5), respectively. The solvability of both these con-
gruences can be expressed by (n/5) = (2/5) = 1, which is impossible sinoce (2/5) = —1.
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Therefore those numbers b which do not satisfy (9.13), i.e., the quadratic

nonresidues, must fulfill
bi#-1/8 = —1 (mod p) .

We now compare these statements with the definition of the Legendre
symbol.

TugorREM 33: The Legendre symbol satisfies the congruence

p
The statement (9.14) is evidently also fulfilled for the supplementary

definition (9.6) of (m/p) in the case p | m.
From (9.14) follow immediately again the statements (9.9) and (9.10). In

the case m = p — 1 = —1, Theorem 33 gives rise to a corollary.

COROLLARY:
1

(:__) = (_1)(’—1)/! , (9.15)
p

or explicitly: .
—1 i a quadratic residue of the prime numbers p = 1 (mod 4) and a quadratic
nonresidue of the prime numbers p = 3 (mod 4).

Therefore, if p = 1 (mod 4), the congruence
A? + 1 = 0 (mod p)

is solvable. But the fact p ] (A% + 1) has the consequence p = a? + b* 1'n
view of Theorem 18. Thus we have arrived at a new proof of Fermat's

The’;ﬁm()ilrolhry shows that those primes for which —1 u s q.uadrl?tio
residue lie in an arithmetic progression. We may aak: Fo_r which primes is &
given number a quadratic residue ¢ The surprising answer is that those pnme;
always lie in certain arithmetic progrest'!ions. This fact is a consequence of
Gauss's famous law of quadratic reciprocity.

TaEOREM 34: If p and g are (different) odd primes, then

(?_’) . (Z) = (—1)>-via" (-8 (0.16)
q P '

Thus (p/g) = (g/p), unless both'p and g are congruent to 3 modulo 4, in

T e
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'Irt hl; clea.r @t if pis fixed, then (¢/p) has the same value for all ¢ = q (mod p)
. lils unpht?d by th‘e definition of the Legendre symbol. But Theommz:;4
imp| iea that, if the prime number g is fixed, then (¢/p) has the same value f
all " = p (mod 4¢). For then ’ e
5=
q g/’

since p’ = p (mod 4¢g) implies p’ = p (mod ¢), and

P—1 p—1
T=—2—-(m0d2),

since p’ = p (mod 4¢) implies p’ = 2 (mod 4),
(_])(D'—l)ll ‘e-1)/3 (—1)(»-1/3° (@-1)s

We reserve the proof of Theorem 34 for the next chapter.

10 =

The Law of Quadratic Reciprocity

The Gaussian sums as periodic functions. The theorem mentioned in the
title of this chapter is Theorem 34 of the previous chapter, which we shall
now prove by means of the theory of Gaussian sums, drawing on our studies

of oyclotomy.
Let p and ¢ be different odd primes, and let { be a primitive pth root of
unity. We have from (9.7) G() = (—1, {), and from (8.17) for p = —1

G(P = (—1)»-Viap . (10.1)
It follows that

G(C)"l = (G({)‘)“"”I' _ (_1)(»—1)/! . (c—-l)llp(c—l)lt

= (—1)>-1i- (e-1)s (-q}-)) (mod q) (10.2)

by Theorem 33. All we have to show now for the proof of Theorem 34 is that

(?I.’) = G()** (mod g) . (10.3)
We now generalize the definition (9.7) by writing for any integer ¢ |
?=1(m
oy =2 (—) . (10.4)
m=0\pP

This actually is new only for ¢ = 0 (mod p), since {* for the other values of §
is a primitive pth root of unity together with { itself. For ¢ = 0 (mod p) we °
have, however, by (9.11),
=1l /m
) =2 (—) =0.1 (10.5)

n=0\pP

With this definition we have now
c [t
o = (3)ew. (109
t Note that the use of (9.8) for & definition of G({*) would have given a different

definition of G({*).
(3
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which is true for ¢ = 0 (mod P) and is proved for other ¢ as follows. For
t # 0 (mod p) we choose ¢’ such that

#' =1 (mod p) .
Then we put

tm = m' (mod p) ;
thus |

m=m't.

We have from (10.4), since m’ runs with m th

rough a full residue system
modulo p,

“=3,05) = ()25

o = (;T)G(c) ,

where we have observed that (t'/p)
This proves (10.6).

Definition (10.4) as well as equation (10.6) shows that G({) is a periodic
function in ¢ of period p.

or

= (¢/p) because of (#'[p) = (1/p) = 1.

Finite Fourier series. Such periodic arithmetic functions can now be
expanded in a finite Fourier series, in complete analogy to Fourier series in
analysis. Indeed the following theorem, which is of inter

est beyond our
Present purpose, is valid.

THEOREM 35: Let F(t) be a Sunction defined for all tntegers t with the
Period m, and let 7 be a primitive mth root of unity.

Then
m—1
F@t) = 3 a(u)yy+ (10.7)
u=0
with
] m-1
a(u) == 3 F(tytv. (10.8)
m (o

Proof: Formula (10.7) represents for ¢ — 0,1,:--,m — 1 a system of
m linear equations for the m unknowns a(u). Assume now for a moment that
it can be solved.t Then the a(u) obtained must fulfill certain conditions. To

t That it can be solved is of course seen immediately, since its determinant is ®
nonvanishing Vandermonde determinant. However, we do not need this remark.
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gee this we multiply both sides of (10.7) by »~** and sum over §:
m—1 m—1 (m—l ut) ot
—o a(u)v) 7
320 F(‘)’, 320 IZO

m—1 m-1
_ (v—0¢ — gy ~a(v) .
_'zoa(u) ;Z:o ]

it exi ion, is unique and can have no other
i that a(u), if it exists as a solutx.on, is uniq ’
zﬁs:;:;zs( 10.8). But this () indeed satisfies (10.7) as can be seen by direot

substitution:

m-—1 1 m_! ME_IF( ) —lu) ut
2 a(um = ;2:0 ( P A

=0
- -1
=1 'ZIF(B)“E - = F(b),
m s=0 =0
which proves the theorem. . .
. " .
We may call the a(u) the “Fourier coefficients’ of the finite Fourier series
(10.7).

. . . the
Note: Because of the periodicity of F(¢) ::(;1 a(u) mh t.he‘penod :ﬂ the
ies i 10.8) need not be exten over partioular

:;:l::n;r:)(llo; ) .&.n.d' fn - )l, but may just as well be taken over any ocomplete

residue system modulo m, a remark which we shall presently put to use.

. itv and

Exercise: 'The function F(t) = r, wh.ere 4 is a pt;hf m:, :; \:‘m_—tiypa— 17,
a primitive congruence root modulo p, is permfhc o ﬁ}i)e TN
Exl;ress the Lagrange resolvents in terms of Fourier coefficien

Proo i iproci We now apply Theorem 35
uadratic reciprocity theorem. ] |

to the (}taouist: :ums. Since G({*) is periodic modulc? P, sobem G(LH* fotl') ;nz

itive integer k. The modulus m of the. thc?orem is to l1;0;plmedve
2.1:; the root of unity 5 by the pth root of unity {. We then 109
e ay(u)* .
G(l" 3 m% o
with

1 o\k F—vu
at('u) = ; ”EMPG(C )kc

(e 2 e s

=, mod p

v mod p s, mod p

1

P _
l (mlm". .o 'm.) C'"‘*"+ oer 4 iy —¥)
P emody "l-u"‘&;""l b
1

P

mymg * * * My (Mg + Mg+ oMy — W) H (10-10)
2 (——;——_)v;«l}

o~
M asdy
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a,(u) = mmy - m
* PN (—r-'-') : (10.11)

Myt Myt e+ mu(mod p)

But a,(u) also has anoth inati .
Jomme. other determination which we express in the following

LemMa:  For odd k the Fourier

propersy coefficients a,(u) defined in (10.10) have the

a(u) = (E)a (1)
pl (10.12)

Proof: For odd k we have from (10.6) that

QL) = (ﬁ)g .
? ()

Hence

a,(u) = _l G)* vy, .,
=2 b) ;)( “ by (l08)

vmodyp
1
=7 O™ by (10.4)
1 u
R G kf_ -
S owr(5)e,
where (10.6) is again applied, this time with {-

last formula with its own special case ¥ =
We now insert (10.12) in (10.9), with th

! instead of {. Comparing the
1, we obtain (10.12).

e result (only for k odd)
G Hk —_ u u
W =a) 3 (2= sy,

For ¢t = 1 we know G({) # 0 (see (10.1)) and therefore have

G(O)*1 =ayl).

In view of (10.3) we now have to study the case k —

f .
g 7 . We need G({)*! only modulo ¢. Since it turns qu or a0 odd prime

to treat than a,(1), we again apply (10.12) and obtain b int o) s cadir
60 = at) = (£) oy
then from (10.11) ?
o =(Y) s (w)
P/ m;mod p P ’ (10.13)
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where the m, are restricted to m, + my + * -+ + m, = q (mod p). This sum
has to be evaluated only modulo g. Among the admitted values of the
summation variables, let us first consider the possibility

m, = mg = - -+ = mg (mod p) .

This would require m, + mg 4« ** + M, = gm, = ¢ (mod p) and therefore
by Theorem 13 m, = 1 (mod p), yielding only the one summand

(L) =1. (10.14)
P

All other solutions of m; + mg + *+* +m, =¢q (mod p) must contain some
incongruent elements. Then a cyclic permutation of my, my, * - -, m, will give
a new solution. Indeed, a cyclic permutation of

ml] m.’ LI ’ m.
can be expressed as

Myig Mypss*° " Moys
for a certain 8, 1 < 8 < g, the subscripts of the m’s being taken modulo g.
If this set were the same as the previous one, we would have

m; = My, (mOd P) .
Therefore, by letting j = 8,28, *, (¢ — 1)8, successively,
m.E%‘E... Em.l(mOdp)l

where the subscripts form a complete residue system modulo ¢. This possi-
bility we have however already treated separately. Therefore, those solutions
of m, + myg + +++ + m, = g (mod p) in which some incongruent elements
appear produce ¢ times the same summand

()

and thus form a sum = 0 (mod ¢). Consequently, modulo ¢ only the single
summand (10.14) counts, and we have from (10.13)

Q- = (z—“,) (mod g),
which finally settles (10.3). From (10.2) we then have
(2)(_1)(:—1)/! DS = (!) (mod q) .
q p/.
But this congruence must actuull'y be ‘an equality, since both sides are +1,
and thus must either be equal or differ by 2, whereas the congruence shows

that they could differ only by a multiple of the odd prime number ¢. In other
wards, we have proved (9.16), the reciprocity theorem. -
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A supplementary theorem. So far we have mentioned only odd primes.
Now the prime 2 cannot appear in the “denominator” of a Legendre symbol,
but it makes sense to ask for the value (2/p). It is plausible that here also
the prime numbers p for which 2 is a quadratic residue will lie in a certain
arithmetic progression. By means of Euler’s criterion, we first prepare a
small list of (2/p):

=& =(R)=(&)="-=+1
=B =& =(&) =)= = -1,

It seems that (2/p) = +1 for p = +1 (mod 8) and (2/p) = —1 forp = +3
(mod 8). Indeed we shall prove this conjecture in the following concise form.

THEOREM 36:

(.2_) — (_l)w’—ms .
y 2

The proof will run very much like the proof for Theorem 34, although,
of course, there is no question of reciprocity. We first define an arithmetio
function
(_1)(»'-1)ls n odd

) (10.15)
0 7 even

2(n) = [

This function is a character of the congruence group modulo 8:
(1) x(n,) = x(ny) for n; = n, (mod 8), from definition (10.15).
(2) x(n) < x(m) = x(nm).

Tuis is certainly true if m - » is even. But if m, n are both odd, we have
n—1 md—1 (mn)?—1 (e —=1)m?—1)

which implies (2) in this case. Moreover, we have
8
(3) 3 x(n) =0.
n=1

We now define a sort of Gaussian sum. Let { be a primitive 8th root of unity.

We then set
8

H() = le(n)l" (10.16)

n=
={-P-0+=20+20
=200+ {) = +2v2,
a8 can be seen from the values of the primitive 8th root of unity given on

page 62. Thus
H{r=8. (10.17)
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For an odd prime number g we therefore 9btsin )
- = 20-1. 201 = -) mod g) (10.18)
H({)«—l — (H(C)’)“ 18 — g(o—u/l = ¢ e (q ( q
in view of Fermat’s theorem and Euler’s criterion for quadratic residues. We
define now, generalizing (10.16),

3
H(H = zlch'" .

Here H({'), and therefore also (H(LY)*, is a periodic function of period 8. It
possesses a finite Fourier expansion

HYE = 3 byl (10.19)
u=1

with .
by(u) = }‘Z‘H(C‘)"C““ .

In analogy with the lemma on page 78 we have here the following lemma.

. For k odd
s S by(u) = x(u)be(1) . (10.20)
Indeed: . .
byw) =4 2, ( 2 z(n)c“) [

=1\n=1
8

=} %( i x(m )™ le(m)l”‘*) -
t=1\ny=1 =

8
— * z x(".'lnt e ”k) z g("x+"|+'-'+ﬂk—|l)'
By : f=1
niod 8
= > zngng - my) .
"y +ngt n,‘fn;:d-s w(mod 8)
First, for 4 odd we determine u’, so that
uu’ =1 (mod 8) .

Putting then 4’ -n; = n/, we conclude
by(u) = g(u)* '%od . xmy'ng’ oo my) = Z(“»u(l) .
#y 4 +'my’ m1(mod 8)
Secondly, for u even, the requiren'xent
'nl+n,+---+n.§u(mod8)

demands, since k is odd, that at least one of the , be even, which makes
Z(mny - -) = 0. This proves the lemma for » even.
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The use of the lemma in (10.19) produces
8
H)* = by(1) 3 )l = b (D)H(LY)
. u=1
and, since ld;er (10.17) H({) o,

H* = b,(1).
In particular, for k = ¢ we obtain

H({)*1 = b,(1) = 3(g)b,(q)
the latter from ( 10.20). The sum

b(g) = 2 N
Anyng <o q )
. »,+n.+:~'1rn::’:¢ (mod 8) ’ ’
is now treated exaot] i
o trated exs er;y 83 a,(q) following formula ( 10.13).
o b(q) = x(1) =1 (mod 2,

| H()* = y(q) (mod ¢) .
This together with (10.18) shows

x(g) = (5) (mod g) ,

X9 = G) ,

whl;‘_llnl ;s Tl?eorex.n 36, in view of the definition (10.15),
. reciprocity theorem and the “supplementa. ”
o b o ry theorem

compute the Legendre symbol for large primes,

and therefore

about (2/p)

ExanpLx:
H#Y = H#8d) = (5%8) = (r7¥o9) (1834%)
= (%) (1) = —(15502) . — (14203)
= @) =(A) (&) (&) = — &) (=1 = @ =+1

11

The Product Formula for the Gaussian Sums

The problem of the sign of & Gaussian sum. The formula (10.1) of the
previous chapter gives only the square of the Gaussian sum G({) and yields
merely

G = L0/
Now, as the formula stands, the ambiguity of the sign is unavoidable because
we have

L = (}{) @) = £6(0) -

But algebraically, for ¢ 3 0 (mod p), the roots of unity { and {* are indistin-
guishable, both being primitive roots. However, if we use & iranscendenial
characterization of {, namely '
{= etmibp, P*bi

then the definition (9.7) as well as the definition (9.8) give specific complex
numbers for G({) with no alternative in the + signs. The problem of deter-
mining the sign of the Gaussian sums for transcendentally specified primitive
roots has become famous since the time of Gauss, who devoted a beautiful
paper to it (“Summatio quarumdam serierum singularium”). Since then a
number of other quite different methods have been invented to deal with the
sign of the Gaussian sums.

Whereas our previous discussion of Gaussian sums was all based on the
definition (9.7), we turn now, following Gauss, to the definition (9.8). The
main result will be a remarkable product expansion of the Geussian sums.
We shall at the same time generalize the Gaussian sums from a prime number
order to any odd order of the primitive root { which appears in the definition.
This generalization will also lead to s generalization of the Legendre symbol.

The Gaussian polynomials. Following Gauss we introduce the rational
functions of an indeterminate z » .
[u]_(1-—z*)(1—-z-—1)~-(1-'-z-—~+¢)
ml  (Q—z(l—ah:-- (1 —2")
Here n and m are positive integers. It will turn out that theee expressions

are actually polynomials in z, as we shall prove presently.
. ]

(1L})
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A slight algebraic manipulation gives a relation between certain pairs of
these rational functions:

[n]_(1—z-)(l—zﬂ—l)---(l—z"—mﬂ) (1 — 2™ .o (]l —g)
ml T (I—a)(l—a% - (1—27) (M=) (I = z%m)

=L1J.

(Here we observe that the numerator of the rational expression depends only
on n, while the denominator is symmetrical in m and n — m, and thus the
equality follows.)

This relation reminds us of the equality of binomial coefficients: ( n)

(n f m) . In order to complete the analogy, we define

[g] =1l,forn=0,1,2-.-

sothatnow[n] =[ » ]foralln:O, 1,2,---and m =0, l,.--, n.
m n—m

We also note that, in consequence of the original definition (11.1),
[::J =0 for all m > n. (If we wish, we might also let [:;] =0 for all

m < 0.)
If m and n are positive we have the recursion formula

[7:] - : :::-[:._—11]
- (=200
IR
B0 e

this recursion formula shows inductively that the [m
nomials, which we call the Gaussian polynomials. If we factor out 1 — z in

Since
J#0,1,

all the terms occuring in the numerator and denominator of [:J , we find

ME

ml =

(l+z+---+:¢:"“1)(l+a:+---+x"'2)---(l+x+---+z"—"')
1 (l+x) oo (l+z+...xﬂ—l)
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ial | |i binomial
Setting z = 1 we see that the value of the polynomial [m] is the

n(n—l)"'("—m+l)=(”).

1:2:+'m m,

coefficient

% | becomes a familiar formula for the

i ula for
For z = 1 our recursion form [m] r
that we have a second reourrence relation:

binomial coefficients. Note also

[ﬂ=b”d=bf;iﬁ+f*F§ﬂ

m —

Exercise: Prove the identity

~1y)
e

Setting z = 1 gives the binomial expansion for (1 + ¥)*-

f Gaussian polynomials. Now let us follow Gauss and form the
A sum O

sum I [,;.] + {fg] et (—1)”[:] .

We use our second recurrence relation and have

1=1,
g
-0
- Fe )
ing thoso oquations we fnd '
iju—jIAhwﬂfﬁq+u—fﬂr;1~~.

But from definition (11.1) o — 2
i m—1 =(1—:~_1)["_l]
Ut P
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and hence

= (] — sm-1f1_ |Mm—2 m — 2
Jl@,m) = (1 — a™1){1 [ ) ]_;.[ > ]_...}
= (1 —2™Y)f(z,m — 2).
Now f(z, 0) = 1, 8o that we find recursively
Jz,2)=1—2

Jiz,4) = (1 —2)(1 — 23)
. (11.2)

J@2n) = (1 —2)(1 —ad)--- (1 — 22Y)
. 1
Since f(z,1) =1 — [l] = 0, it follows that f(z, 2n — 1) = 0. This is also

evident from the symmetry [2n lc— l] = [2 2n —1 ]
m—1—k}°

Gau::iax; w.m‘ t t kl.bem;)d d lumld l N°;V we apply these notions to the
. and let imiti .
definition (11.1) we have ® be & primitive kth root of unity, By

I —a*1 (1 — ak-1)(] — o*-?)

f(a,k—l):l_
l—a (1 —a)(1 — a?)
(1 — ak‘l)(l _ ak—ﬂ) “e (1 — a)
* (l—a)(l—a’)-'-(l— -1y °
Since a™1)
l_ab—’ _a’_ak aj___l
Toe ~ T = T

we find that forj = 1,2, ~~~ k — 1
Jlok—1)=1+4al4 o182 4... + a~l-3—e—-1)

k-1
=Y aitiDia
j=0

Now £ is odd and therefore «2 is also a primiti i
primitive kth root of .
therefore replace « by a3, we obtain of unity. It we

k-1
Jla b —1) =T aft+0)
=0

But «* =1, unh thus
aflitl) = gls+nAl-(kr1fal
henoe
k-1
Sk — 1) = o-lte+0/al* 3 alskrnial
j=0
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Now if j runs from 0 to k — 1, then j + (k + 1)/2 runs through all reaidue
classes modulo k. Since the exponents of a count only modulo k, we obtain
flad k — 1) = a-le+0ialg(q) (11.3)
where '
Ga)= 3 o ' (11.4)
jmod k

is & Gausgian sum for the modulus k, in generalization of (9.8) for a prime
modulus. The application of (11.2) to (11.3) yields
Gla) = oD (] — (1 — a¥) -+« (1 — a¥&-D)
= -1l (g — gY)(a — a7 ) - - (a3 — a~iEV),

so that we have the remarkable product formula

G(a) = (& — at)(a® — a3) -« (a*? — ¥ W), (11.5)
Here only the odd exponents appear. But we have
ab-l — “—(l-:) = — (al — a-l)
abt — g = (a‘ — a")
@ — = — (ab) — a1y,

so that we obtain
G(a) - (_1)(b—1lll(al — -a)(ac — a") cee (ab-l — a"“"”) , (u_a)

which shows only even exponents.
Formulae (11.5) and (11.6) together yield
k-1
o) = (_1)(1:—1)13H (! — ad)
j=1

k-1
= (_l)(b—1)13¢1+s+...+w—1) "rI (1 — a %),
-1

But k is odd; therefore —2;j runs with j through the nonzero residue classes
modulo k, so that

G(a)? = (_1)(k-l)ll¢k(k—l)llh_l(1 — af).
=1
Now sinoe o here represents all roots of z* — 1 with the exception of 1, we
see that
Lt 2 —1
ITe—a)= ——=1+4+2z+:+ 3>,
j=1 z—1

which gives for z = 1
k-1

H(l —al)=k.
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Thus we have finally
G(a)? = (—1)*-Di2g (11.9)

in agreement with our previous (10.1) where k was a prime p.

The Jacobi symbol. If k = p is a prime and (%, p) = 1, we have seen in
(10.6) that
(h) _ QY
) Ga)’

Thus for any odd k it is natural to consider the quotient

G(a*)
G(a) *

Here, as always, « is a primitive kth root, and we consider only the case
(h, k) = 1. Tt is a remarkable fact that @,(a) is independent of « and will
depend on, besides 4, only the order k of the primitive root of unity a.

To prove this we make use of the product formula (11.8) for Q(a) and
G(a*), which is permissible since «* is also a primitive kth root of unity. We
have

Qn(“) =

(11.8)

(k=1)/2
IT (a® —a2)
Qi(ax) = (kj_zll),g . (11.9)
IT (a® — «~2%)

j=1

We shall see that the factors in the numerator and denominator are equal in

pairs, except for a 4- sign which depends only on % and & and not on «. To
see this we put

hj=r(modk), j=12---,_— (11.10)

with the specification
k

k
—3<T<j3: (11.11)

The integer r is uniquely defined by j and clearly r 0, since (h, k) = 1. We
then have

ot — M = g2 g (20— ). signr, (11.12)
where 8 = |r|. Now r takes (k — 1)/2 different values; but we shall now show

that s also takes as many different values. Indeed if s' = s”, which means
|| = |r*|, then we would have r' = +". Hence

hj’ = +hj" (mod k)
or

h(j' +J") = 0 (mod k),
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d consequentl
and conseq y j':tj'EO(mOdk)’

which is, however, impossible since all j are different and
1|l Isk—1.

Formulae (11.9) and (11.12) together then yield

Qnla) =“i'llmsign r, (11.13)
i=1

is is i i is found uniquely through (11.10)
and this is independent of «, since each r is ) oug )
and (11.11) where only 4 and k appear. In order to emphasize this independ

ence of «, we introduce a new symbol and write

h
(E) = Qu(a) - (11.14)
This symbol, defined only for any odd number k and any positive or negative

integer h prime to k, is called the Jacobs symbol. DeﬁxTition (11.8) shows tﬂt
the Legendre symbol is a special case of it. Equation (11.13) shows that

(h/k) takes only the values +1.

The Jacobi symbol as a character of the multiplicative group modulo k.
The definition (11.8) shows that

(-’f) = (E) ifh=h' (mod k). (11.15)
k k
If h, and h, are both prime to k, we may use the fact that Q,(«) is independent

lude that
of « to conclude U -~ ) G

Go™) Qa)

because aM is also a primitive kth root of unity. Hence

Garh)  G(aM)G(a™)
G(x) T G(x)G(a)

) - ()

This shows that the Jacobi symbol is a character of tln.a mul.tiplioative group
of residues modulo k. The Jacobi symbol enjoys a reciprocity property just
as the Legendre symbol does, as we shall show later.

which we can write
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We can use (11.13) to get an explicit expression for (h/k). In view of
(11.10) we can write

hj =mk +r
and therefore
2hj 2r
— =2m
k t7 k
with a certain integer m. Since, according to (11.11),
1< 2r <1
k H
and thust
[2'] =0 f
T orr > 0
[2 ] — 1
=" orr <0,
we conclude
l 2]1_7 . }
T is even for r > 0
2hj
[TJ] isodd forr < 0.
Therefore,

Blgn y = (_.l)[ﬁh’/k] ,

and from (11.13) we infer then the following theorem.

THROREM 37: The Jacobs symbol for coprime h, &, k being odd, is given by

“—53)/2
[2Aj/k)
(3) ey (11.17)

Let us compute some values of (h/k). Definition (11.14) together with
(11.8) shows immediately
1
E-"

as can also be seen from (11.17).
Since, furthermore,

—25 . k—1
[T ——1f01‘]-—1,2,“’,-—2—,

t The symbol [z] is explained on p. 31.

THE MULTIPLICATIVE GROUP MODULO k 91

we immediately have from (11.17) B

-1
— ) =(— -1/
( A ) ( l)(t /2 |

For h = 2 we observe

k

[-;7 =0for0<j<z,

. 4 k
[k]—lfor <J<2.

[

(g) = (—1)k-1ia-[x/a]
k

This expression can be put into a more elegant form if we observe that here
k matters obviously only modulo 8. We therefore prepare a list for the cases
k=1, 3, 5, 7 modulo 8 and obtain

and therefore

1 k=1

(_2.)= 1 E=3 odulos)
k —1 k=5
1 k=17

or
1for k = 41 (mod 8)
( ) {—1 for ¥ = 43 (mod 8) .
But we have already found an expression for this arithmetic function where
k = p is a prime. We thus have

(%) =:‘_l)w'—xm . (11.18)

The formulae (11.17) and (11.18) will furnish a proof of the reciprocity law
for the Jacobi symbol by means of the conoept of lattice points, which we
shall give in the next chapter.

Right now we give a proof of the reciprocity law by means of the proper-
ties of Gaussian sums. For this we need the following lemma about Gaussian
sums of different order. '

LemMa: Let kandlbe odd, (k, 1) = 1. Let « be a primitive kih root of unily
and f a primitive Utk root of unily. Then af 18 a primitive kith root of unily and

G(af) = G(x)G(P) . (11.19)
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Proof: That aff is a primitive kith root of unity has already been
observed in the beginning of the proof of Theorem 30 of Chapter 8. We put
now

J=Ult+ ku.
It is easily seen, since (k, 1) = 1, that if ¢ runs through a complete residue
system modulo & and u through a complete residue system modulo [, then J
runs through a complete residue system modulo kl. We need now only the
definition of the Gaussian sums:

Gaf)= 3 (ap)"
j mod kl

= Z (aﬂ)(lt+ku)’
tmod k umod! .

= 2 @)™ 3 (apy™
tmod k % mod !

But along with ¢, i also runs through a full residue system modulo &, and
analogously since ﬂ" = ot = 1, for ku. Thus we obtain,

Gap)= 3 o 3 g,
tmodk  umodl! }
which is (11.19).

The sign of the Gaussian sums. Gauss used the product formula (11.6)
for the determiiation of the sign of G(«), which the formula (11 .7) necessarily
leaves open. As we have seen, the problem of the sign of a Gaussian sum
becomes meaningful only if we specify the kth root of unity by transcendental
(nonalgebraic) means. For this purpose let us put

o = eIiMk (h, k) =1.
For the sake of brevity we now write
G(h, k) = G(etmirlk) (11.20)
Then, in particular for k = 1, formula (11.6) becomes

(E-1)2
G(1, k) = (—1)-0i2 TT (ebisle — g—amiilky
i=1

(k—1/)2 i
= (—1)*-Dr(2i)k-uis TT sin@
j=1 k
since
e“ — e—iz

sinz = -
2

The product sign here runs over real quantities. The absolute value of G(1, k)
is already determined as V& by (11.7). Thus
=D 4q

Q(1, k) = VE(—i)*-1is ~sign ] sin <
j=1
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Now we have here

0<f:—"<21r.

In this range the sine function has only one change of sign. We have

] k
sin 27 5 0for0 <j<-
. k 4
and i L
. 4mj k_. _k
sm——k <0f0r4<_7<2.
therefore

(k—1)/2 4mi
sign J] sin —;2 = (—1)ixs-a
j=1
This power of —1 has just been discussed in the determination of (2/k) and
we therefore obtain
G(1, k) = VE(—i)*-Dia(—1)e"-18

Bt ; ( 1)3
(—1)-1i8(_g)t-1)i8 — SR-D/6 L ()18 — G-D/-(3-1)

= §E-DRG+DRI-1  J(G-DE1
which finally yields the following theorem.
TrgorEM 38: The explicit value of the Gaussian sum for a = =¥ is
G(et) = G(1, k) = sl /T (11.2’1)

Since (h/k) is explicitly known from Theorem 37 and since

. A ity (&)
G(h, k) = G(e¥ M) = (;) G(e*™") = k G, k),
the value of G(A, k) is also known.

The reciprocity law for the Jacobi symbol. It is now a simple matter to
establish the reciprocity property of the Jacobi symbol.
Let & and k be two odd natural numbers, (b, k) = 1. We then choose &

and b so that :
ha + kb=1.
Thea ley M _ Jwibing3miald

We now put
P a =t g R,
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which are both primitive roots of order k, A respecti , i
i . ! pectively. With th
unity, equation (11.19) of the lemma becomes y ese roots of

Q(1, hk) = G(a, K)G(b, h)
in the new notation (11.20), and therefore
G(1, hk) = (“)G LE- (2
’ = z ( ’ )'(Z)G(Ith)-

Now we have by (11.8) and (11.14)

- (- )

(%) (g) by (11.16),

80 that
()=
¥ \&
and similarly
() =G |
% = z) . !
We have thus found

h\ (%
G(1, hk)y = {-1{-) -
(1, hk) (k)(h) G(1, k)G(1, 4) .
Here we simply insert (11.21) and obtain

(h) (k) J[(AE—1)/2)*—[(k—1)/2)* s
A ,-' =1 ~D/aP-{(a-1/3)*

(hlc—l)’ (k_lz b — 1\
) - (-
‘ =HE — A — 1) —2(kh — k — b + 1)]
=(k-1)(’l-1).((k+l)(k+l)
2 2 _l)

k—1h-—1)

4 v
where u is an odd numberash -+ 1and ..
Previous result we obtain - 1andk + Lerooven. Ifws put thisinto the

Now

=2

A\ [k
(i) (x) = ¢3(k-1)(A-1)/a)u _ (__l)[(k-l)ll'(h—l)/]]

(sinoe 2 even implies §2* = —1) and thus the reciprocity theorem.

Y

SOME FURTHER PROPERTIRS OF THE JACOBI SYMBOL 08

THEOREM 39: The Jacobi symbol Aas the reciprocily property for two
coprime odd natural numbers A, k

A\ (k
M=) = (=1)»-vire-nis .
@) = iz
This is the full generalization of Theorem 34.
The Jacobi symbol is even useful in the computation of the Legendre
symbol, sinoe there is no need in the intervening steps always to find out

whether the newly appearing odd numbers are prime or not.
In the Example at the end of Chapter 10 we would not have to find the

decomposition 1829 = 31 - 59 but could prooceed as follows:
(12703) _ ( 2 )( 1829) _ (12703)
16361/  \12703/\12703/ ~ \ 1829 -
_ (1729) - (—100) _ (—-l) - +1.
1829 1829 1829
Some further properties of the Jacobi symbol. The Jacobi symbol forms
a character, i.e., its “numerator” is multiplicative as (11.18) explicitly
states. It turns out that its modulus or ‘‘denominator’’ shares this property.

Indeed, let A, k, ! be odd natural numbers with (A, k) = (A, }) = 1. Then we
have, by means of (11.22) and (11.16),

(%) (;'.) = (;) (l;) - (—1)l-DiaE-1+-1

= (I;Tl) o (— 1)/l E-1+1-1)

- (ﬁ) (—1)I-D/alE-1+1-1-k1+1)

kl
where we have observed (—1)® = (—1)~° for an integer a. Now
k—141—-1—M4+1=—(k—-1)—-1),

and
1 — 1)k — 1)1 —1)

is even. Therefore we have obtained in this oase

B6) - G)- wa

Themmmainsthemeh=2. .

We have, according to (11.18),

(g) (iz) = (%)(_l)cr'-x)mw-xm—u‘s'-nm .
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But ’
B—14+8—1 -84 =—(k—1)82— 1) = 0 (mod 64)
since k and [ are odd and thus

(96~ )

We now take (11.23) and (11.24) together.
THEOREM 40. If k, | are odd natural numbers and (m, K) = 1 then the

Jacobi symbol satisfies
()6)- )

Remark: Because of (11.15) .the “numerator” does not have to be
positive.

This theorefn now permits us to reduce the Jacobi symbol to a product
of Legendre symbols. Let k = p,p, - - - p, be the prime number decomposition
of k; then the repeated application of (11.25) yields \

9 ()~ G o

(As a fnatter of fact, this is the usual way to define the Jacobi symbol.)
T}.us decomposition shows that (mfk) = +1 is only necessary, but not
sufficient, for the solvability of
22 = m (mod k) .
I, for. instance, m = p,p, with p, 5 p,, then the congruence implies
2* = m (mod p,), 2% = m (mod p,)

5)-)-

and this, by the Chinese remainder theorem, is then also sufficient for m to
'be & quadratic residue modulo k. However, (m/k) = 1 will also take place
if (m/p,) = (m/py) = —1, in which case 2? = m (mod k) will not have a
solution.

. It is also clear from the decomposition (11.25) that (m[k) =1 for any m
prime _to k if k is & perfect square. The symbol (m/k) is in this case the
“principal character” modulo k. But this takes place only if & is a perfect
square. We leave this statement to the reader as an exercise.

or

Ezercise: Prove that for ¥ odd and not a perfect square there exists
always a number b such that (b/k) = —1.

12

\
Lattice Points

Introduction and a lemma. We call lattice points in n-dimensional space
those points of which all n coordinates are integers. We shall restrict our-
selves to lattice points in the plane. The problem will be: Given an area,
how many lattice points are in it? This question will in general have a
number-theoretical aspect because integers are involved as the coordinates
of the lattice points.

Problems of the enumeration of lattice points arise quite naturally in the
discussion of some arithmetical functions. Many of these functions are so
irregular that it is advisable to consider averages of their values, in order to
obtain smoother functions in which individual peculiarities of the summands
are suppressed. We shall deal with three such functions and their averages,
which can be interpreted as numbers of lattice points in certain domains.

(1) The function r(n), the number of solutions in integers of the equation
23 + y? = n. Here we study the smoother function

R(N) = 3 r(n),
nSN

which is related to the number of lattice points in a circle.

(2) The function g(n), the number of divisors of an integer n. We have
o(n) = 2 infinitely often, namely for n a prime. On the other hand o(») can
evidently increase beyond any bound for composite numbers. Here we are
interested in

T(n) = 3 o(n),
nsSN
which can be interpreted as the number of lattice points under a certain

equilateral hyperbola.
(3) Euler’s function @(n), the number of numbers leas than % and prime

to n. The summatory function

D) = 3 p(»)
sSN
can here be related to the number of those lattice points in & square whose

coordinates are coprime.
Lastly we shall use the device of lattice points to complete another peoof
of the reciprocity law of the Jacobi symbol, begun in Chapter 11. :
97
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It seems Ativmable to begin with a lemma on which we will have to depend
later.

Lemma: If g(t) is a monotonically decreasing function, g(t) > 0 for all
£ >0, then '

X
Y gn)= f g(t) dt + C + O(g(X)). (12.1)
l1snsX 1

Here n runs through integers only; X can be any real number, X 2 1;
and C'is a constant depending only on the function g(t).

Proof: Since g(t) is decreasing in the interval [n, n -+ 1], we have

" +1
gn +1) < f g(t) dt < g(n),
and thus

" +1
0<d,=g(n) —f g)) dt = g(n) — g(n + 1).
n
Therefore we have for any positive integers M < N

N N
-Eud" sﬂ_zu{a(n) —g(n + 1)} = g(M) — g(N + 1) < g(M).

This shows that the series
d

n=]

converges. In particular, we have

ZMd.. < g(M).
If we put

we have

N © N n+1
¢ =u§1 %+ -gﬂd" =”§l{g(n) —.[. o) dt} + Og(N + 1.

It follows that
N N+1
210(") = fl gt)dt + C + O(g(N + 1)).

t The statement f(X) = O(g(X)) means that there exists a certain oonstant K such
that

(X)] < Kg(X) for all X.
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For N = [X] this becomes

2 g(n) =J‘m+lﬂ(‘) dt + C + O(g([X] + 1))
155X 1

=fxg(t) dt + C + O(g(X)),
1

sinoe
(X)+1
- j g(9) & S g(X) and
p ¢
0 < g([X] + 1) = g(X).
This proves the lemma.
COROLLARY 1: .
1_ log X +y+ 0(2). (12.2)
1s8sX R

The constant y here is called the EulerM.scherom oconstant. It value is
approximately 0.5772157 ~~~. It is defined according to (12.2) as

N ]
y=1lm{3Y - —log N}.
Noolg=1 7B

COROLLARY 2:

1
= logl x+0+0(-——)- (12.3)
2s‘wsxnlogn o878 X log X

We have to observe here only

X L
I d = log log X — log log 2.
2 tlogt

Lattice points in a circle. We have defined r(n) and R(N) above and find

= = 1= 1,
B) ngNr(n) uzl a‘+§—a S+PsN

where z and y run only through integers. This formuls shows that ?(N) ;
the number of lattice points in the interior or on the boundary of & cuolo
radius v/N. From this point of view we shall now proceed to obtain an
approximation to R(N). v . .

ppTo each lattice point in and on the circle we whoh s oqu:e with um."-
sides, in such a way, let us say, that the lattioe point forms the l.outh::ll:,
corner of the square. Then the ares of these squares together is oq
R(N). This is, however, not quite equal to tho area of the circle. Some
squares protrude beyond the circle and there is, on the other hand, some
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unfilled area in the circle. However, all the chosen squares are contained in
a circle of radius VN + /2, since the diagonal of each square has the length
V2. Thus, comparing areas, we obtain

R(N) < m(VN + V20,

Similarly the circle of radius VN — v/2 is entirely covered by those squares
8o that
R(N) > n(VN — v2)e.
We have therefore
m(N — 2V2N + 2) < R(N) < (N + 2V2N + 2),
or, briefly, the following theorem.

THEOREM 41:
R(N) = =N + O(VN). (12.4)
We may consider the analogue of R(N) in k dimensions. Let R,(N) be the
number of lattice points inside a k-dimensional sphere of radius V'N. In this
notation we have R(N) = R,(N). An argument similar to the one we have
given shows
By(N) = $aNt + O(N).

Exercise: Prove this statement about Ry(N) in detail and find a similar
statement concerning R,(N).

Our result about R(N) was known to Gauss about 1800, and it was not
improved until 1906 when the Polish mathematician W. Sierpinski proved
the surprising result

: R(N) = oN + O(NY).
But this is not all: In 1923 van der Corput proved that the exponent 4 is not
the best possible, but can be replaced by a certain number § < }. In par-
ticular, his pupil I. W. Nielandt computed a suitable number 6, obtaining

E(N) = =N 4 O(N?"/s2),

where 1 < 41 = }. How far this exponent @ can be lowered is not known
at present. But through the work of G. H. Hardy and E. Landau we know
that the formula

R(N) = nN + O(NY)
is certainly false.

The summatory function of the number of divisors. The number g(n)

of divisors of a natural number  can be expressed as

on)=31=31
zin IYy=n
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where z runs through all divisors of n. We define the summatory function

T(N)= 2 a(n)
1S%sN
and then have =3 3S1= 3 L (12.5)

1SwSN oy=n  1SaysN

. . . t
This shows that 7'(N) is the number of lattice points (2, ¥) in t:h:nﬁ:;e
quadrant which lie under or on the hyperbola zy = N. (The poin

i luded.)
1d give zy = 0 and are thus exc: ded.) . .
“e:}V:oo‘:Jungt thexl!:,ttice points on each vertical line x = integer, on or belo

i i have
the hyperbola. Since the lattice points are spaced one \lxmt :hp:rrt, we
[N [z] lattice points on the ordinate of length N/x and altoge

[ﬂ]=5_9,, 0<6,<1,
x

x

If we put

the above becomes N, g )
TN)=N 3 - — 20,

s omn
=Nz§1;+ (

— Nlog N + O() (12.6)

in virtue of Corollary 1. Dirichlet showed by a simpl? device that tlfm
as totic formula can be improved considerably. See Fig. 4. ber of
uy;lifme the hyperbola is symmetric about the line z =y, th: numints of
lattice points in the area OBAEG is equal to the' numbexl'):f lsft 1:,::, (;:pomt‘
the area OCADF. Of course there are only a 'ﬁmte .numf ‘;1 : e e
below the hyperbola, since we exclude the la.ttu.:e pon'nt.st‘cl)l number. s e
number of lattice points under the hypefbola is t:wxcehi : e otod
the aforementioned areas, minus those in OCA B, whic.

twice. We can therefore replace (12.6) by
TN)=2 3 1—[VNP
SVN
waN
=2 3 S 1-[VANpP

1525V N 1SysNjz

=2 3 [ﬂ]—[&/m’-

1sz2sVN
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B A = (VN,VN)
L] . L] L] L] . . L] (] L] E i (N’ l)
0 c G
Figure 4
Now since for any real number z,
[:]=2—6, 0<
we obtain =0<t
T\N)=2 y
=2 3 _S-2 3 60— (VN-op
1s25V/N iszsVN

with the 6 in different meanings but always 0 < 0 < 1. This leads to
1
TN)=2N Y -4+0WN)—N
225 T OVE) — N 4 0VE) + oq),

and in consequence of Corollary 1, to the next theorem.

THEOREM 42: The summatory function T(N) of a(n) fulfills
T(N) = Nlog N + (2y — )N + O(V'N). (12.7)

This is an improvement over (12.6), since the error term O(N ) there is now

decomposed into a ise te -
ovomposed precise term (2y — 1)N and an error term O(\/I—V) of
The formula (12.7) like (12 4) has been th j i
The ; . : . e subject of intensive investi-
gation in this century. First the Russian mathematician Voronoi showed in

A DIGRESSION: THE MOEBIUS FUNCTION 103

1903 that the error term O(V'N) can be replaced by O(N%log N). Agsin
van der Corput could show that the error term is of the order O(N®) with a
certain 6 < §. The lowest permissible value of § is unknown here also.

In the two examples which we have discussed so far, R(z) and T'(z), the
summands r(n) and ¢(n) take on small values infinitely often as can easily
be seen: e.g., #(») = 0 for n = 3 (mod 4) and o(n) = 2 for » a prime number.
Both functions also attain arbitrarily large values. For a(n) this is olear:
We need only take » as a number with k different primes, and then have
o(n) = 2*. For r(n), it can be derived from our discussions of numbers which
are divisors of the sum of two coprime squares. In the next example we treat
the arithmetical function g(n), which increases with increasing », but rather
irregularly, so that again it is advisable to investigate its summatory function.

A digression: the Moebius function. . Presently we shall need an arith-
metical function, the Moebius function u(n), defined for natural numbers »,
which will be most useful for the solution of certain systems of linear equations.

DeFINTTION: The function u(n), n 2 1, satigfies

@ o owl)=1
(I1) Su@d) =0 for n>1
din

This is evidently a recursive definition. Indeed, (II) shows

s(1) + u(2) = 0, so that u(2) = —u(l) = —1;
p(1) + u(3) = 0, so that u(3) = —p(l) = —1;
#(1) + () + p(4) = 0,80 that u(4) = 0; ,

and so on.

TrEOREM 43: The function u(n), defined by (1) and (I1), Aas the following
() u(p) = —1 f p is prime
(b) u(p*) =0for k> 1
(€) pnyng) = p(ny) * p(ng), of (g, By) =1

(d) p(n) = 0 if 3 | n for some p
(€) p(n) = (=1)" if n = pypy - - * P, 16 a product of r diskinal primes.

(13.8)

Proof: Since the only divisors of p are 1 and p itaelf, we have (1) +
p(p) = 0 and 80 p(p) = —1. Then for k = 2 we have

0 =‘2wy(d) = p(1) + p(p) + p@*) + -+ + p(®"),
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and because of the foregoing

BE) 4+ +up)=0,k=23,4,---,

This shows (b) by setting k successively equal to 2, 3, - -,

As far as (c) is concerned, it is trivially true for 7, = 1 or ng = 1. Now
let (ny, ny) = 1, ar?d without loss of generality n, > 1, ny, > 1. Let us assume
gc), nil'ox(' all l,), Iy ;vx:ll:a (llt,;g) =1 and LI, < nyn,. If d| nyn,, then it follows

ny, Ng) = t there exist unique d,, d =
o que d,, d, such that d = d,d,, d, | ,,

0= -
dlgﬁ#(d) dgl ().

Here we can apply the induction assumption for d,d, < n;ny and have
0=73 3 ud)udy) + H(nyny).
dln|i"x<u' .
103 <M 8,
Extending the sum now over all divisors of n,n, we obtain
0= d,)u(dy) —
2 o2 M) — plm)utng) + p(mm)
> ;‘(dodZ pldy) — p(nyu(ny) + p(nyny)

- dylm, 2ing
= —p(n)u(ng) + u(nyn,),

which proves (c). The statements (d) and (e) are now simpl
(a), (b), and (c). w simple consequences of

We now use the Moebius function u(x) for a general “inversion” formulsa.

TaEOREM 44: Let f(t) and F(t) be Sfunctions of the real :
If these functions have the relation / real variable t 2 1.

¢
F@) = -
) 1;2..:s¢f (n) (12.9)
then they satisfy the “inverse” relation
¢
t) = -
f) ls%s‘u(m)ﬁ' (m) (12.10)

Conversely, (12.9) follows from (12.10).

Proof: We have from (12.9)

Bl 2.0 3 A

1Smst 1Snsym \Mmn

= 3 wor(2)

m,n
1smn st
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Here we sum over all lattice points (m,n),m =z 1,n 2 1, which lie under or
on the hyperbola mn = t. We now rearrange the sum in such a way that we
assemble terms with mn = r, 1 < r < {. Then the last sum becomes

5 sumi() = 3 1() S um =10,

1srst m|r 1srst

according to (I) and (II) of the definition of u(m). This derives (12.10) from
(12.9). The converse is proved by a similar argument.

Ezxercise 1: Prove the following inversion formula, which is different
from that of Theorem 44. '

Theorem 45: Let g(n), G(n) be arithmetical funclions, i.e., defined for all
natural numbers n. If they satisfy the relation

Gm) =D gd), =n=123,-"", (12.11)
din
then they fulfill also
gin) = Zp(d)G(g). : (12.12)
din

Remark: If we write down (12.11) for the values n = 1, 2, ==, N, we
get a system of N linear equations for g(1), (2), - - -, g(N). Then (12.12) can
be looked upon as the solution for g(m) in terms of G(n).

Exercise 2: Use Theorem 45 to deduce Euler’s formula (3.6) for ¢(n)

from the property (3.8)
n =2 @) ‘
din -
The summatory function ®(¢) of the Euler function ¢(n). We define,

forrealt = 1,
() =1Z§‘ pmy= 3%y 3 1

=n 1SSt 1SmSe
(m,n)=1

= > L

1Smanst

(mm)=1

The sum can be interpreted as the number of lattice points with coprime
integer coordinates m, » in the right triangle 0 <y < z = 4. Of these lattice
points only 1,1 lies on the line z = y.
Let W(#) be the number of lattice points with coprime coordinates in the
square
O<zst

O<yst
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See Fig. 5. Then, because of symmetry with respect to the line z = g,
we have

() = 20() — 1, (12.13)

where the subtraction of 1 arises from the fact that in O(¢) a8 well as in W (§)
the point 1,1 is counted once. The function ¥'(t) is somewhat easier to disouss
than ®(t), to which we shall return in the end.

t

6 . .

b1 ° . . ° .
4 . . .

3 o« . . .

2 . . .

1 . o . . o

12 3 4 5 6t

Figure 5

The total number of lattice points in the square

0<x§t, 0<y§t

(PF= 3 1

0<m=t
o<nst

is []3:

Here we can sort the lattice points according to the greatest common divisor
d of their coordinates m, n:
=3 3 L (12.14)
1sdst O<mst
0<nst
(m,n) =d
Now (m, n) = d if and only if (m/d, nfd) = 1. Thus there is & 1-1 corre-
spondence between points m, n with

O<mst, O<nst, (m, n) = d,
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and pairs m’, n’ with
t ’ ‘ ’ ’ p— .
0<m'§7‘, 0<n sa. (m',w)=1
There are, however, V' (¢/d) of the latter. This enables us to rewrite (12.14) as

4
‘ U — sgs:y (2) )

We can now apply Theorem 44 to this formula and obtain

t ]
Y =2 y(d)[a]
1

sdst

2
=3 ,u(d)(g + 0(1))

15dst
49 wof 3 3) +o( 3.)-
="152¢:sc_d_’- + 20 1524:5:4 1$ziSJ

We consider these three terms separately. We have

WO _ 5 ud 3 pd)
1 Ea B S B afin B

ud)
d=[t]+1 d?

To the second term we apply Corollary 1 of this chapter, and the third term
is O(t). Thus we obtain altogether

W) = 3-8 + Ot log t),

@ 1 ®du 1 (l)
1 0 - .
—— <
<d=.[‘z]+1 a2 Jig v [f] 3

(12.15)

h V .
- g= 3 £9 (12.16)

Euler’s product expansion of the [-function. The sum S can be .ev;lusted
explicitly. Let us consider for & > 1 the absolutely convergent series

© 1
((8)=‘2_:l;-

i i Riemann in 1859 and has been
The symbol {(s) was used for this series by : .
(adopt.e{im universally.) Euler, making use of the uniqueness of prime
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factorization, found the equality

1 1
=H(‘+—+p—2.+;;.+“')’

where the product is extended over all prime numbers p. Indeed, because of
absolute convergence of the series (which contains only positive terms
anyway for 8 > 1), we can rearrange the terms in all infinite series appearing
in the left- and right-hand members. Now in each term of the left-hand
member, the prime factorization of » can be performed uniquely, n =
P1"1Pg" ™, 80 that
1 1 1
e . D" o n>’

1
;; =
and thus each term 1/n* is found once and only once among the products
obtained by multiplying out the right-hand member of the formula. This
proves the equality. We realize, moreover, that each infinite series on the
right is a geometric series, which can be summed, thus obtaining
| 1

=3 =TI

Rt iy (1217
This is Euler’s product. (Riemann’s investigations of the {-function are
concerned with complex values of s, which Euler did not consider. The
{-function is the paramount tool of modern research on the distribution of
primes.)

The reciprocal of (12.17) is of interest for our problem. We have

I B[ (R [

We understand this identity if we realize that in the last sum only those n
appear in the denominator which have different prime factors (because of
u4(n)); and u(n) = (—1)", where r is the number of prime factors in n,
according to (12.8).

For s = 2 we obtain
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It is now knownt that
<1 =
m)_.-lﬁ— 6’

a result which was also obtained by Euler. Using these results, we now obtain
from (12.13), (12.15), and (12.16) our final result.

THEOREM 46:

)= Y ¢n) = ;3-,:1 + O(tlog #) . (12.18)
185t

Again the reciprocity of the Jacobi symbol. In Thaox:em 37 the Jacobi
symbol is evaluated explicitly. Here (A, k) =1 and k is an odd natural
number. We first transform (11.17) slightly for the case that A is also an odd
natural number.

Since & + k is now even, we have

h+k
h+k=2--“;—

in integers and thus

B - ) -6 (%)

11.17
Therefore from ( ) (k—l)lz[(lH-k)J']
k .

(-

Now
: - - &-1/2 [ B—1
&2 [(h +k)3:| ¢ n/2 [l‘l ®_D2 _'3 [_J. + .
2:1 [ k - ;Zl k + jzl J j=1 L&k 8
If we compare this result and our previous equation with (11.18), we obtain
*-1/2 }
(f) =(=1 =1 (2] ’ (12.19)
k

valid for coprime odd positive  and k. One sees that the sum in the last
formula does not have the factor 2 in the numerator which the formula
(11.17) shows. We interchange the role of A md kin (12.19) and find through

multiplication
A\ (k "
k/\A

t See, e.g., K. Knopp, Theory and Application of Infinite Seriss, Blackie & Bon,
London, 1851, pages 237, 323, and 376.
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G-12 g A =1)/2 [
M- _2] ki
J'gl [k + tgl [I] )
This sum now can be inte:
' rpreted as the number of lattice points in the
rectangle with the vertices (0, 0), (4/2, 0), (h/2, k/2), (0, kf2). le):leed, let us

where

Ve

Figure 6

:;:ws lt::e mn:l in this x:ectangle isx?umg from 0, 0. See Fig. 8. It has slope
& n. hand are coprime, the point (h, k) is the lattice point on it which
h“:u'elt ! origin. Inside the .rectangle the diagonal does not meet any

oe point. We oount the lattice points inside the rectangle by rows:
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Below the diagonal along ordinates, above the diagonal along abscissas. Then

3
-4
1s¢2<:m [h
is the number of lattice points below the diagonal inside the rectangle, and
A ]
‘ 15120/2 [b"

is the number of lattice points above the disgonal. Thus M is the total
number of lattioe points in the rectangle under discussion. But thie number
is evidently

A—1 k-1
M= — ——
2 2’
so that we obtain
R\ [k .
2HZ) = (—1)o-nm-nie
G-, o
the reciprocity law for the Jacobi symbol (Theorem 39). This is the proof
which we announced on page 91.

It is worthwhile to note that our previous proof depends on the explicit
evaluation (11.21) of the Gaussian sum for the primitive root a = e**V* and
therefore implies & transcendental element in the reasoning. The present
proof is purely algebraic, since it does not specify the primitive kth root a.
(The use of geometry is only an apparent one, ginoe all arguments can be
written by means of the symbol [2].)

Ezercise: Let p be a prime =] (mod4). Prove the formuls of

Buniakovski,
(-1 —_
3 [V p).] 7! .
i=1 12

Hint: Count the lattice points above the parabols y = V/pa in a suitable
rectangle.
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About the Distribution of Prime Numbers

Historical remarks. We know that the sequence of prime numbers has
no end. We have also seen that the primes are rather irregularly distributed
among the natural numbers. Still it is obviously of interest to have some idea
about the occurrence of primes among the natural numbers. How many
primes are there less than or equal to a given number z ? Let us call w(z) this

number of primes not exceeding z. Gauss conjectured by inspecting a table
of primes that

x
1r(.z') ~ ——

The sign ~ is read “is asymptotic to” and the above formula means

7(x)

— > lasxr— 0.
zflog z

Gauss made his conjecture in 1792. The conjecture, known today as the prime
number theorem, was proved for the first time more than a hundred years
later by Hadamard and de la Vallée Poussin.

These two mathematicians continued investigations begun by Riemann
about the zeta function {(s) for the complex variable s. But before this
achievement was attained, the Russian mathematician Chebyshev was able
to compare in some way the functions n(z) and z/log z which appear in

Gauss’s conjecture. Chebyshev proved by elementary methods that two
positive constants ¢ and C exist such that

c

<1T(Z)<0L’ x= 2.
log 2 log z

His work was supplemented by Mertens in the 1880’s. But in this century
the opinion still prevailed among mathematicians that for the proof of the
prime number theorem the theory of Riemann’s function {(s) was indispen-
sable. It was a great surprise in the world of mathematics, therefore, when
in 1950 A. Selberg and P. Erdés succeeded in proving the prime number
theorem by arguments which start from Chebyshev’s research and use only
' “elementary’ methods in the sense that no complex function theory is used.
We shall prove here only Chebyshev’s result and some remarks of Mertens.
112

A DIVERGENT SERIES INVOLVING PRIME NUMBERS 113

A divergent series involving prime numbers. We start with Chebyshev

i factorial function
with the fac o 1e2e e,

With Legendre we ask for the highest power of s given ‘flgn(::n{ r?;:::;;g.z;
There are [n/p] multiples of p not exceeding », whlc}1 1\:0 Eons oo apich
to factors of n! But some multiples of p are also multql)es: (;hu; 0,-' equ;l pich
Gviatle by g ’p f;ctil'ﬂ- Tuh;mivﬁ [f:{xﬁlsngb::h However, one of them
ivisi which wo .

(}h:smah-eadble b}y' It’;e,en counted in gt,he multiples of p itself, so Mt_ :; ::[:7;:;
(n/p] + [n/p?] factors p. In the same manner we ha\lrle to :::m; or & ;
multiples of 73, each furnishing 3 factors p, of which however, - ,,|Mm e
been counted. Progressing in this way we find that p appears

I R

P . B — 0 f
where we may continue this sum formally to mﬁ.mty, since }”lpu], I:) ri,:::
p* > n. This determination of the power of p in n! goes dr:f. i‘orym Bl
number p. Taking all primes together we thus obtain Legen

=TI (13.1)

»
. . imion.
We put this into more convenient forms at the price of losing some preciaio

We have . .
n 2l _n, gr_m, "
5_1<2[z7‘]<p+22p‘ p pp—1)

k=1

and thus from (13.1), ,

Hp((nlﬂ)-l) <nl < HP"" + nl(p(p-1)) |

pan pSn
and taking logarithms |
2 . (132)
- ! (— + ———) logp. (
pzs:.. (1_9 B 1) logp < log »t < .§. p  plp—1)

Since
©  logm
2 __ly_< z ____8.___ Cl

snp(@—1)  m=zmm—1)
(the series being convergent), it follows that
log p }
— 4+ 0y -
logn! <n {‘g‘ » A

'lg = hl h
.
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side we could use Stirling’s formula, but for our purpose the following
argument suffices

°._1+n+n,+'-'+n”+...>””
R VR il o’
and thus
nﬂ
nl>(—)
e
log n! > n(logn — 1),
which leads to
T2 > logn 10, (13.3)
psn P

For an upper estimate of the same sum we use the left-hand inequality in
(13.2):
|
L 282 _ logp <logn! <logn"=nlogn,
pan P PSn
and obtain
! 1
S22 clogntt 3 logp. (13.4)
psn P Npsn

Now we have to estimate the latter sum, for which we use a device due to
Landau. If m < p < 2m then the prime number p divides (2m)! but not ml.
Therefore such a p divides the binomial coefficient

@m)! (2m)
miml  \m)’
and this is true for all primes p with m <p=s2m:

12 ()

and therefore

2m)
= .
-<l:£2mp - (m
Since
‘ m (2m 2m
t+m=21;)>a
we have
IT p<2m=dm<aim (13.5)
»<psim

For p > 2 all primes are odd and the equality sign under the product is
therefore useless for an integer m > 1:

II »<4

,¥<P52a—1
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and thus, admitting possibly one more prime factor,

.4 1
1 »sm I p<m-4™ S P (13.6)
?—"-'-!<,$h-l .—!sil<r$l§~1 .

sinoe m < 4™1 for all integers m > 0. Formulae (13.5) and (13.6) show that
for odd and even integers r > 1 we have

. H P < 4.
r2<pSr
But this remains true if we introduce instead of the integer r any real number
z = 2, since the condition

x
- x
2<ps

puts the same restriction on the integer p as

[—:! <pslz].
This gives us O peinse.
z/A<pSz

Writing here z/2 for z we have, provided (z/4) = 1,

p<4B,
z/d<pSz/2
d we can continue
* p < 4%,
z/8<pSx/é

and s0 on. A finite number of such inequalities wnll include all prime numhal'l.
p = . We multiply these inequalities and obtain
Hp < 4uinistalbt o 40

pas
and thus ,
Slogp <zlog16.
raz
This we apply in (13.4) with the result
Zhgp<logn+loglc.
psn P

If we also obeerve (13.3), we find that we have proved the theorem of Mertens.

THEOREM 47:

8P _ 1ogx +00).
pas P
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Since log 2 — oo with z — oo, the
. , the theorem states tha
all primes must diverge. 8 that the sum taken over

Another sum concerning primes. This theorem will enable us to prove

Chebyshev’s result about #(z). However, before studying w(x) we consider

the function
0(z) =Y logp,
PsSz

which is a little simpler to handle. We have already found

O(x) < xlog16. (13.7) -

Looking for a lower bound, we have clearly
0x)= 3 logp

T/A<psSz
where 4 > 1 is a constant that remains to be chosen. Then
bz> S logp _ —3{2 lgp . logp
z/A<psz P 4 psz P psz/A P ’

Theorem 47 now states that ; .
every r = 1 there exists a positive constant B such that for

log p
_.B< —_ ]
pzs:z 4 Bs< 8.

If we insert this in the previous inequality, we obtain for z = A4,
z z
O(z) = Z‘log z — log i 23}

x
=Z{logA — 2B}.
Here we choose 4 so that log 4 — 2B = 1, and have

z

This, however, is proved only for z = A, but for 2 < z < A there exists a

lower bound of th iti i i i
e of the positive function (6(z)/x). With a suitable positive k we

Ox)= kx for z=>2.
We have thus proved the following theorem.

THEOREM 48: There exist two positive constants k, K such that for z = 2
kz < 6(z) < Kz . (13.8)
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Chebyshev’s theorem. From the preceding theorem we now deduce the
theorem about =(z) by (Abel’s) partial summation, a device which is very
useful in the treatment of series and sums. We start with the identity

a@) =S 1= On) — O(n — 1) .
psr  23nsz log n
The last sum needs some attention. Indeed, if n = p is a prime number, then
6(n) exteeds 6(n — 1) by log n, so that a summand 1 appears. If, however,
n is not a prime number, then 6(n) is equal to 6(n — 1) and the summand
zero appears, as it should. The above equation also involves (1) = 0. The
method of partial summation now calls for a rearrangement of the sum so
that 6(n) is always collected from two consecutive terms, with the result

= ! 0((=])-
() _2§§Sxe(n) (log n log(n+ 1)) log (2] + 1) ,  (13.9)

where the last single summand is a compensation for a subtrahendus in
excess in the sum. Now we have

0([x]) = b(=) .

Moreover
[x] + 1

z 1
= |log = - log ([z] +1) <zl°8”7.

—1
1 1 *®

log ([=] + 1) - log
In view of (13.8) we have then
6([=]) 0(x) ( 1 )
= 0 .
log ([x] +1) logz t logdx
We shall see now that the sum in (13.9) is of lower order of magnitude than

(13.10)

0(x)/log .
We have indeed
255:0(7‘)(10; n  log (,: T ,1))
% W ss-s.gg—) ' (1o:;1 =

according to (13.8). Now .
1 1 1
D e Sl R e R

Vz 1
Ve .
= (log 2)3 + (log Vz)p -%al <avEt (log z)*
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But

n 4z 0( z )
* T tog = ~ \iogat)
so that (13.9), (13.10) furnish

_ O ( z )
"~ ogx * )

In virtue of (13.8), the second summand on the right side divided by the first
summand tends to zero if £ — co. Thus we may write

o)

(@) ~ logz’

and from Theorem 48 we deduce Chebyshev’s theorem:

THROREM 49: There exist two positive constants ¢, C such that Jorz = 2

x x
C— S mx) = C —— .
log x log =
Actually Chebyshev was able to give some fairly good numerical values
for ¢ and C. But because of the later developments in prime number theory
these computations are no longer of great importance,

A turther sum conocerning primes. We conclude this chapter with an
estimate of the sum
1

psz P

’

firstly because we will need it later, and secondly because it will give us an
opportunity to apply again Abel’s method of partial summation. We set

Ga)=3 1"“7”, 61 =0,

raz
H(z) =G(x) —logz.
According to Theorem 47 we have
Hz) = 0(1).

Now we write, following a procedure similar to that in a previous paragraph,
1 Gn) — Gn — 1)

?33P 23nsz log »

s
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which is valid because G(n) — G(n — 1) = (log n)/n wl§on » is & prime, while
G(n) — G(n — 1) = 0 when = is not a prime. We obtain thus

- —1 logn — log (» — 1)
1 H(n) — H(n ) +S '

pSzp 2sns2
For the first sum we see that
N+M H(®) — Hn — 1)

log n 2snss log »

”N” M i 1 1 HN+ M)  HN-1)
- ugﬂﬂ(n)(logn ~ log (n + l)) log(N+ M +1) log N
NiM 1 1 ) H(N + M) |+|H(N—1)
= »Z:N \H ] (log n log (n + 1) log (N + M +1) log N
N (o] 1 ) 1 + 1 }
<B{n§N(logn—log(n+l) +log(N+M+l) log N
1 1
<& {iog_N + log N
28 (13.11)
“lgN’
ThusﬂizH(n) -1_0:11('“ —1 converges. Let K be its sum. Then
z Hin)— Hin —1) & Hn)—Han—1) i H(n) — H(n — 1)
am2 logn - log n neztl logn
l [
K+ o(m) ,

acoording to the estimation (13.11). Thus we have

L ghgn—loge=l p o 1)
’585 =u-2 log * log =

Llog(l — (%) | o O( 1 ) _
= _ngs log» +E+0 log z
Now Taylor’s theorem for the function log (1 — z) shows

1 1 0
—-— =-—-—-——., 0<9 <lp
108(1 ”) W .
and therefore we obtain

1 % 1 L 6

’205 =.§snlogu+.§,n'logu

+E+o().
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But '
& 1
n=zn?logn
converges and hence 80 does
s _On
noenilogn’

Let K, be the sum of this last series. Then

z 0 ©
$ 0 _ g 0,

1
wmz i logn nez+1ndlogn

=’Kl+0( L )’

. z log x
since
- 0. © dt 1 ®dt
5 < — < f #®__! .
s=arindlogn "Jz Blogt “logzJ): £ zlogz
Thus

1 &

pszP n=2nlogn
Finally, according to (12.3),

YK+ K + o(_l__)_
log =

=logloga:+K2+0( 1 )

w=2nlogn zlogz

when K, is a constant. This proves
THEOREM 50:
1
‘ 2—=loglogz+0+0(—l—).
P log =

?3z
In particular, 3’ (1/p) diverges, where the sum is taken over all the primes.

»
.It W(?uld be quite easy to give a direct proof of this remark from Euler’s
identity (12.17). We shall see this and much more in the next chapter.

14

Primes in an Arithmetical Progression

Euler’s proot of the infinity of primes. In 1837 Dirichlet proved his
famous theorem on primes in arithmetic progressions: Every arithmetic
progression kn + a, where a and k are relatively prime integers and » runs
through all positive integers, contains an infinite number of primes. We have
already seen examples of this theorem in the progressions 4» + 1 snd 4% + 3
(Theorem 19 and page 2). The condition that a and k be relatively prime is
clearly necessary, since any common factor of a and k would be & common
factor of all the numbers kn + a.

Dirichlet used an idea of Euler, who proved the existence of an infinite
number of primes in an essentially new way. Consider

1
) = ’gl el
We showed in a previous lecture (Chapter 12) that

1 1 1
w =T +,P+F"+"')=I,Il—(1/p-)'

If s = 1 + & with £ > 0, then the series for {(s) converges, but

s '

{1+ e) =”§1n1—1—+‘—-> w a8 e—0.

If there were only a finite number of primes p,, - * - , p,, then we would have

{1+e- (1 - :llpl)) (1 - :I/P:)) (i"—%/ﬂ) '

which is a contradiction.
For the study of prime numbers modulo &, Dirichlet invented an ex-

pansion, in analogy to Euler’s product,
< Oy, . 1
.21;7 T 51— (a,/p")
where the a, are periodic modulo k and have the multiplicative peopesty
O n = G0, For this construction we need some preparstions. »
131
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Finite Abelian groups and group characters. W,

e have mentioned groups
occasionally without ing serious use of their properties in our deductions.
We now find them essential.

The definition of a group is well known, but we repeat it here.

DErINtTION: A group is a system I of elements A, B,++-, M with
binary operation, which we shall write as multiplication.
1t has the properties:

L Cloaurcl The operation on two elements 4, B of I" produces an
elementof I': 4- B = (.

II. Associativity: The operation is associative:
(4:B)-C=4-(B-0).

II. Unst element: There exists an element,

the unit element I, which
leaves the other factor unaltered in operation:

A-I=I-4=4.

IV. Inverse element: For every element 4 € I' there exists another
element 4’, the inverse of 4, such that

A-A=4-4=1.
If the group operation is commutative for all pairs of elements of I",
A-B=B-4,

the group is called a commutative or Abelian group. A group may be finite or
snfinite, i.e., may have finitely or infinitely many elements. We shall deal

here only with finite groups. The number of elements A of a finite group is
called its order.

A subset I'* C T, which is itself a group, is called a subgroup of I'. Every
group has the trivial subgroup consisting of the unit element alone.

We need a few statements about groups which are easy to prove, and
which we state as lemmas.

Lemma 1: If A 48 a fized element of a group I' and if X runs through all
elements of the group, s0 does AX.

This is & direct consequence of the existence of an inverse element 4’
of 4.
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Lemma 2: The order h* of a subgroup I'* of T divides the order b of T'.

Lemma 3: Ijhiatheorderofl‘,MA‘=IforanyWAofl‘.

i inoe the set of all powers of

This lemma follows from the previous one, since
A forms a subgroup. (These lemmas and the:;r4p)roofs are analogous to the
facts about residues studied in Clmptm:s 3and 4. .

W: n’:w consider the system of reaidue claueo modulo k v;hmh :m n“h-
tively prime to k. These classea are A = p(k) in nu.mber and -or:ﬂ. z p.
Postulates I and II are evidently fulfilled. The wt element in gy
the class which contains 1, i.e., the chu.of oll n}togenbn g: moc -
Postulate IV is fulfilled, since for any @ which is prime to re

! b
 such thw aa’ = 1 (mod k) .
= class A4’ of all numbers
A of all numbers n = a (mod k) and t.he'
:’h c::'“;ﬁmodok) are then a pair of inverse elements in our group. The group
. o:“mb:?::'.&beli&n group is a complex-valued fuT;tﬁon x(4) t:f. :h;
i ic to A. This means
A4 of T, so that y(4) is homomorphic .
j;m: tb, t.lfen 2(4) - 7(B) = 1(C). We assume that x(ALx;i:;ot lenro. IEV;
express it a little more technically: A character of the A gl:‘o “:m
a homomorphic mapping of I into th(? group of nonszero oomph:a g
The values of y can only be certain roots of unity. Indeed
t I we have
e ) - ) = 2@ = z2()

and thus, since y is not zero, Z,(I) = 1. For any element 4 of I’ we have
» = ], and therefore : ,
4 ((A)* = (4" = ) =1,

so that y(A4) can only be an Ath root of nmty One u'ivi;l c;.hls‘ucm always
exists, the principal character 2o(4), which is 1 for any o. the
In’the case which interests us here, in which the group :‘ ; o;m
it i nien wri )
id up modulo k of order g(k), it ia conve.
molulel“e bf:ﬂlx’e numbers of the classes, as arguments of z, %0 that

2(n) = x(4)
if » is an element of the class 4. This has as consequence
2(m) = z(ng)  for my = ny(mod k), (14.1)
dske Z(m) « 2(w) = y(m») . (14.3)

lete the definition ofxu.na.nt.hl'mh.ml fnnohon. setting
:r:)o-:n(‘)pifudounot belong to any class, i.e., if % is nof relatively prime to
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k. Then (14.1) and (14.2) remain true under this extension of the definition
of y(n).
The principal character y,(n) is now defined as

w _{0 (n, k) 1.

The crux of the matter is to show the existence of nonprincipal characters,
if h > 1. We shall not prove this in general for any Abelian group, since that
would involve us too deeply in the theory of Abelian groups, but only for our
case of the group of congruence residue classes.

Let us first consider some examples of characters. For k — 2 there is only
one class, h = 1, and thus only the principal character y,(n) = 1 for % odd,
Zo(n) = O for n even.

For k = 3 there are 2 characters:

I 27 =1(mod3)
1 n=1,2(mod 3)

*oln) {0 n = 0 (mod 3) , xi(m) n (mod 3)
0 n—=( (mod 3).

For k = 4 there are again 2 characters:

1 for n = 1 (mod 4)
1 nodd

xo(n) — { xl(n) ={—1 forn=—1 (mod 4)
0 mneven,
0 for n even .

For k = 5 there are 4 characters given in the following table:

n = , 1 2 3 4 0 (mod 5)
Xo(®) 1 1 1 1 0
x(n) 1 i —3 —1 0
Xxa(n) 1 ~1 —1 1 0

We shall see presently that in all these cases we have given complete lists of
the possible characters.

Theorems about group characters. Let us take the existence of nonprin-
cipal characters for granted for the moment; it will be proved in Theorem 653.

THEOREM 51: If y is not the principal character, then

&
S xn)=0. (14.3)

n=1
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For the principal character y, we obviously have

3 zalm) = pl) . (14.4)
a=1

Proof: Since y is not the principal character, there exists an integer ¢
prime to k with y(a) #* 1. Then

k

i y(m) = 3 xlan),
n=]

n=1
since an runs through all residue classes modulo k if » does. But we have

y(an) = x(a)y(n), and thus
k

k k
2 x(n) = x(@) ,21 xn),  (1—z(a) ”2_:1 1) =0,

n=1

which proves (14.3), since 1 — x(a) # 0.

TugoreM 52: The characters modulo k form a finite Abelian group.

Proof: They form a finite system because they can tak;‘ontlz ,.Z;(::,)::
roots of unity as values. Thus there ca.nnot be more tfhan e :lﬁﬂg (14.15
h = @(k). The product of two characters is a character, su.w:,. 1.t A
and (14.2). That accounts for closure of the system. A.ssc?cm. :,vhlm)-’w  inber
in multiplication. The identity of the group is the principal %o

Xo(n) - x(n) = x(n),

and the inverse of a given character  is its complex conjugate ¥:

¢

1()F(n) = xo(n) .

The proofs of these two theorems remain valid for any finite Abeliail
roup: For the proof of existence of nonprincipal c'hamcters we shall a.lipev; ,
ﬁowever, to the specific nature of the group of residue classes modulo k. We

need for this the following remark.

Remark: If d divides k and if y is known as a .charact,er modulo d, then
we may construct a character x* modulo k by setting
) =zw)  if(n k) =1
x*(n) =0 if(n, k) # 1.
is 8i ' defined satisfies the postulates (14.1) and
It is simple to test that the y* so defin .
(14.2). Vge shall refer to this process as the extension of the character y

modulo d to the modulus k. o
We now come to the existence of nonprincipal characters.
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TueorEM 53: If (a,k)=1 and a exists
, k) = 1 (mod k), Y
character y modulo k such that x(a) # 1. = b then fhere *

Proof: Let E=2%f...p8 be

’ the decompositi f ki .

factors where the p, are L ’ . position of k into prime
5 distinet odd prim i .

a, not all the congruences primes. In view of the hypothesis about

= 1 (mod 2%)
asl(modpf’), j=1,2,°'.)r
can be fulfilled. First suppose that

a # 1 (mod p#)

;vsher; f is odd. Let g be a primitive congruence root modulo 2” (see Theorem
P‘). : e powera. @ a=12--., @(7"), represent all residue classes modulo
which are prime to p. We define y(g) = e2*/##")_ Since then

217) = (x(g)) = =Hiseh |

we have defined a characte: . .
we have cter modulo ”. With & cortain 4 # 0 (mod ¢(p*)),
L
and thus ¢ =amedp’), 0<u<gp),
z2(@) = e27iu/é(p8) #1.

finlc: pt;i(:ivides k, this) character y can be extended to a charaoter x* modulo
. process y(a) = y*(a), si = i
dosived a2l = : (a), since (@, k) = 1. In this case we have the
o ;o;:ond, suppose that a 7 1 (mod 2°). The case « = 1 does not ocour, for
in th case g a'nd k are even, and therefore (a, k) % 1. Henoe (a, k) ’-—- 1
imp| les that a is odd, and this would mean a = 1 (mod 2). For’a= 2
:o # .(m.od 4), we must have a = —1 (mod 4). In our table we have givenu’
npnncq.n.l character y; modulo 4 for which y,(a) = —1. We can again
extend this character to a character y* modulo k.
Bu ::2‘; suplpoee 42%_?. There is no primitive congruence root modulo 2*
W A=1°", represents all .
rinen § = 1 (oo iy Thmp numbers of the form 4n + 1 modulo 2°,

5 = 1 (mod 4)
on the one hand, and since on the other hand the smallest positive u with
6* =1 (mod 2%)

is y =2%2 o > 3, as can be seen by induction on «. Thenumbeu!m—l"

modulo 2* can then be re A residue classes
presented by —5* so that all odd
modulo 2* are represented by +-5', 1 =1,2,-- -, 252, )
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If a = —1 (mod 2°), then a = —1 (mod 4) and we prooeed as in the
previous case with zy(a) = —1, where 7, can now also be extended to &
character modulo k, since 4 | k. Thus we have only to consider the case
o % +1 (mod 2%). Then there exists & v 3£ 0 (mod 2°%) so that

a = +45° (mod 2°%), O<v< 222,
We now define a character y modulo 2 as follows:
' (=D =1, x6) ="
Then
7(@) = 7(£8%) = (U(6)* = & £ 1.
If we again extend this character ¥ modulo 2* to a character y* modulo k,
we have also settled this case and the theorem is proved.

TagoreM 64: If a# 1 (mod k), then 3 x(a) =0, where the sum 1o
exiended over all characiers modulo k. '

Proof: Let x* be a character modulo k with y*(a) # 1; the existence of
such & character has been proved in the foregoing theorem. We remember
that the characters form a finite group: if y runs through all characters, so
does y*y. Therefore,
S x2(a) =3 x*x(a) = x*(@) 21: 1),
x x

and
(1 —2*@) 3 z@)=0.
P’

The result follows, since x*(a) 7% 1.
TagoREM 55: There are p(k) distinct characters modulo k.

Proof: Byreamngingthelumm&ndlofthedoublemmnwegottho
equation

k s
2 { Samy =3 {Zx(n)} . (14.5)
x n=l nwl\ x
The inner sum on the left is
L k) x=12
() = o
uz-lx ”) {0 X F#* %o+

The inner sum on the right side, by Theorem 54, is zero for » 5% 1 (mod k)
and is olearly the number ¢ of characters modulo § for » = 1 (mod k), since
then each summand contributes 1.-
Equation (14.5) therefore reduces to
pk)=c,
which had to be proved.
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This theorem shows that our tables for characters modulo k up to k = 5
are complete, since indeed each table exhibits ¢(k) characters.

A corollary of Theorem 55 is the equation, for (a, k) = 1,
{cp(k) if @ = n (mod k)

gi(amn) =10 (14.8)

otherwise .
Indeed j(a) is the reciprocal of y(a):
7(@) = y(a)™ = y(a*),
where aa* = 1 (mod k). Thus the sum in (14.6) reduces to
.g 2(a*n),

and this is taken care of by Theorems 54 and 55 .

TuroreM 58: For (a, k) = 1 let f be the smallest posilive exponent such
that o’ = 1 (mod k). Then y(a) is an fth root of unity, and all Jth roots of unity
appear equally often as y(a) if y runs over the characters modulo k.

Proof: Since y(a)’ = y(a’) = 1, the first assertion about 2(a) i8 clear. If,
moreover, ¢ = 1 (mod k), we have f =1, y(a) = 1 for all %> and there is
nothing to prove. Therefore, let us take a % 1 (mod k) so that J>1.Let e
be a fixed fth root of unity. We want to find out how often 2(6) = e among
the y, and to show that this frequency does not depend on &. We consider
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iri i Dirichlet’s problem and the
The Dirichlet series. We now return to Lir : ;
construction of a series indicated in the beginning of thxg chapter. These

series are .

L(G, Z) = z l(l)

n=1 n’
ince L(s, y) is majorized
for 8 > 1. The convergence for s > 1 follows at once, since . .
t::mwise by {(s) =3 1/n*. The Euler product now a.ppea.rs.here mme;lmt.eli
as a consequence of the character property of z and the uniqueness of prim:
factorization:

2, z(n) PV R 1Y B I« S S
-’a(a,x)=ﬂ§f‘-,‘l.=1p](l+',',-_,+ Pl ) =G

(14.8)
For the principal character yo, we have in particular

© 1 1 S 1_1. ,
Loy = 2 *.=H1—?(1‘/‘p_-)—1;[1—(1/p') H( p‘)

n=1 N pik

(n,k)=1 . Lo
L(s, o) = (3) 'H(l - -,) - (14.9)
ik

p !
If we take the logarithms in (14.8), we have o }oq—[f) = PZ’ -
(P
log L(s, ) = — X log {1 — =~
»

pl

3 Lapm L g

pm-1m p™ loa {IFX)®

® 1 ™ g/ T
“—‘ZE;%)-FZ—Z‘I'(;;}' g,zm—t')‘ Im
P . :

the following sum:
8 =3 {ey(a) + e@a?) + - -~ + & 2@},
x

which we write in two ways: m=2Mp

3 S i latively prime to k, (14.6) furnishes the fundamen
2 2 (e (@) =lZle“'2 x(at). If now a is a number relatively p
- y 4

2i=1 formula 1
The inner sum on the right-hand side is 0 for a' % 1 (mod k), that is, for L siaioglie= I —+HW, (14.10)
l=1,~~~,f—1,andis g(k) for | = f. Thus we have S = (k). In the inner p(k) x ’ pmeimod ) P
sum on the left we set where 1 © (™
n = ¢eyla), ‘ H,(8) = — 2 fla) 3 —ZZ—..-»
S . . e (k) x m=2Myp P
which is a certain fth root of unity. Hence the sum becomes
! l_fforq:l %o that ® 121 ® i 1
l-ln 0 forp#1. |Hs)l §u2-2;l ? P_"" <--2 =z A™
This means S =e¢-f, ifegivesthenumberoftimesthatq-lorth&t < i 1 _i __1_ !
2(a) = £. We have, consequently, 2,22 aan™ ampav 1 — (1/w)
o= 20 C 14 s vl <o
7 ' <L <22 e

independent indeed of the particular &.
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for all s > 1. (The constant C happens to be #2/3, which is irrelevant here.)
In order to prove Dirichlet’s theorem, we want to show that

1

—_— 0
p=a{mod k) P’

a8 8§ — 1. Since H(s) remains bounded, this will be accomplished if it is proved
that '
3 7(a)log L(s, y) - oo (14.11)
X

if 8 — 1. This is now the femaining problem. One of the summands, namely
that for y,, does go to infinity as s — 1. In fact, we have

@

po

n=1n'

31 < “"dx<
n=2 n* 1z
or

I;(a)-l<—l—<§(s).
8§ —1
Hence, for s > 1,
1 < (8 —1){(s) < s,
and consequently
—1Ls)—~1 ass—1.

Since (8 — 1) tends to zero, the factor {(s) must tend to infinity. In (14.9)

we see
. 1 1 k)
i (1) =711 -2) - %2,
0-4!]_! »’ llrl_l:'[ p k
and thus we find

(8 — 1)L(s, z) = (8 — 1){(s) H(l - -1-,) 2B e, (14.12)
Pt P k

This shows that y,(a) log L(s, y,) — o0 if 8 — 1. In order to prove, however,
that the whole sum (14.11) goes to infinity, it is then necessary that no
mutual compensation of the terms in that sum might render the limit finite.
It will suffice that no other term of the sum goes to oo. But in order to see

that |log L(s, y)| does not go to oo, it is necessary to show that L(s, y) goes
nesther to o nor éo 0.

The continuity of L(s, y) at s = 1 for X # Xo- The first part of this
task is fairly simple. First, L(s, ) # 0 for s > 1, because (14.8) shows
L(s, x) as an abeolutely convergent product of which no factor vanishes.
We shall now prove that L(s, y), y # Xo» 18 & continuous and differentiable
function for & > 0. For this purpose we again use Abel’s partial summation.
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We introduce the auxiliary sum n
s(m) =3 z(m) .
el
We have
Eim/k] "
= (ﬂ) ’
8(m) = ”2_:1 1(n) +--ﬂ§m+11
and since \
) 22w =0,
Y. J
only the second sum counts. But that sum contains less than k terms. Thus
we infer ls(m)] < k.
Then for s > 1, M < N, we have
X S ) —s(n—1)
x(n) _ a(n
S(M, N) =u-§+l_1—l'_ T a=M+1 n®
L 1 1 ) 8(N) * s(M) '
=.-§+1'(")($ “mry) Twr T @y
8o that . . . ) . L X . .
S, )l = '”...%H(Z' “or Ty T
2k (14.13)
N E

iteri therefore the convergence of the
hv’s convergence criterion ensures
sc:x;'l:s i"o: L(s, x)r%or & > 0, and uniform oo.nvergonoe foralla= 4> 0fora
fixed 4. The formal derivative of L{(s, ) will be '

S x(mlogn | (14.14)
—uzl L ’

i i 14.14) for s
t will show nniform convergenoe of (
;n: :)he'l‘sl:e]::}m‘:l;) is differentiable for s > 0 and has (14.14) as ib'
del.ilvn. h;;artave.'ouhr, L(s, x) is oontinuous for s > 0 and L(1, x) is thus finids. "
L(s, x) should vanish at 8 = 1, we would have

'L(‘, x) - L(l: x) = L(‘! z) — L’(l, z)
s —1 s—1

with s — 1 or Lo, g) = (6 — DL 2) + o) (14.15)
with lim (o) = 0.
-l
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The nonvanishing of L(1, y), X ¥ Xo first step. We now show that

L(1, y) # 0 for every nonprinci .
. principal character. This we do i
We form the product of all L(s, 1) 0 in two steps.

Flo) =TT Lo, ) = T TT ————
g Mg *>1
ge—now apply Theorem 56'to 2(p). If f is the smallest positive integer so that
= 1 (mod k), then y(p) is an fth root of unity, let us say ¢, and all such &

occur with the multiplicity e = (@(k)/f) if
modulo k. That means (p(k)[f) if x runs through all the characters

m(-2) - (- 2.

where & runs over all fth roots of unity.

Now since
[T@—e =2 -1,
(-9)-1-3,
we have
mi-—5) =1
and so P
H(l—@)=(1_i)' 1
x P Pt —Z??Z

If we set b = @(k) = ef, we have thus

F(s) =TT Lio, 1) = T ——— = L(he)- TI(1 _i)
and fors > 1, - vie 1 — (1/p™) plk ™/’
F(s) — 1\ pk)
() I;IL(G, %) > {(hs) H(l - ;;) > (14.16)

plk

’i[‘l;ls ei:ct already precludes the vanishing of more than one of the L(1, y).
naeed, assume that L(1, ;) = L(1, ) = 0. (We always reserve the notation

Xo for the principal character.) Then F(s) would in, beside:
. ta
factors that are continuous at s = 1, “ e " other

Ls, Xo) * Lo(s, 1) L(s, 2a)
= L(s, z0) * (8 — 1)(L'(1, z,) + 3y(8))
“(8 — I)L/(L, x3) + ny(s)) by (14.15).

But since (s — 1)L(s, y,) — (
. ’ @(k)/k) by (14.12), the second fa —
would let this product go to 0 in contradiction to (14.16). ctor 2= 1)

e -
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If now for a complex character x (i.e., a character which assumes complex

values) we would have
L(l,y) =0,
then L(s, y) and L(s, §) would on the one hand be two different functions,
but, since for real s > 1
_ ()  —
Lep=3%" =167,
. » n

we would also have L(l, §) = 0, which we just excluded. Therefore, the
problem is further reduced; it remains to be shown that L(1, z) 7 0 for all

real nonprincipal characters.
Now if there were just one L(L, y) = 0, we would have in F(s), besides

continuous factors, the product
L(‘g’ Zo)L(s: x)
p(k)

= L(s, zo)(& — D(L'(L, 2) + (&) ~ —= L',y fers—1.

This would imply that F(s), for s — 1 would have a finite limit. If we could
show that this is not so, but actually F(s) — oo for s — 1, then the possibility
of a single vanishing L(1, y) would also be ruled out. But this apparently
simple plan leads to complications. We take another road.

The nonvanishing of L(1, y), ¥ # ¥, 9econd step. There are a number
of proofs for the rather famous problem concerning L(1, x) # 0. Only real
x, that is x(n) = 1 for (m, k) =1, have to be considered. Dirichlet
solved the problem by reducing it to another one. He had shown that L(1, x)
for a real character y has a meaning in the theory of quadratic forms
and represents a number which by its definition must be positive. We
proceed here directly, following a proof of Mertens (1897).

Let us put

fn) =3 3(d).
din

It is immediately seen that f(n,ng) = f(n,)f(ng) Whenever (n,, ny) = 1. Since
fh) = x(1) + (@) + -+ + 2(P")
=1+ z(p) + 2(@* + - + 2(p),
and y(p) = +1, it follows that f(p*) = 0, and hence
) z0

for all natural numbers n. If I is even, then the above equation shows f(p')
either equal to / + 1 or to 1, and in any oase = 1. From this and the multi-
plicativity, it follows that \

fomd) = 1.
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Sinoce now
v /) _ o fmd) X1
"21 ? _2_”‘21 _m_ gmgl ;p, ’
it follows that
3 fo
n=1 n*

diverges. Let us investigate this divergence a little more closely. We set

o=3M_%5 1505 1@

a1 ndin rdzz (td)t

- In this last sum we are summing over all lattice points under the hyperbola

t

Figure 7
¢°d =z in a (d, ¢) plane. We break the area under the hyperbala into two
pieces by the ordinate erected at \/z. See Fig. 7. Then we have

x(d)ﬂd 1 vzl = Z(d)

it i ar
-1 1f d-\/z+1d

Now (12.1) of the Lemma in Ch&pter 12 shows that

' G(z) = Z

f—;+0’+0(r*)

l-l

=2Vz + C + 0@, " (14.17)
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so that
_ x(d)( f ; Ix(d)l) ofSL.1 )
¢(=) +0) +0( ,2_: (glt‘ zt/’

where the last term comes from an application of (14.13) to

% xd)
d-ViTiT

x(d)

Continuing, we have

G(z) = 2\/' F +C-0(1) + Ot + O(1),

where we have twice employed (14.17) and the fact that

x(d
z()

remains bounded because of convergence. Thus, with application of (14.13)
again,
d

=341

=2V2L(1,x) +2\/§o ‘—/_-;) + O(1)

=2Vz L(1,7) + O(1) .
We know that G(z) — oo if £ — co0. But this evidently is possible only if

L(,2)#0,
which we had to prove.
Altogether, we have now proved (14.11) for (a, k) = 1. '
Since this implies, as we have seen,

l—rao ifs—1, (14.18)

. »=aimod ) P*
we have proved Dirichlet’s famous theorem.

THEOREM 87: The arithmetic progression a + kn, n =1, 2, 3,- -
contains infinitely many prime numbers if a and k are coprime.

Remarks. Two further remarks may be in place.

I. All that was needed, uwehsveoboenedtbove.mtolhowthsth
(14.16) |F(s)] — o0 a8 s — 1. Now (14.16) shows that F(s) cannot tend to 0
if 8 — 1, and thus it will suffice to show log F(s) — o0 if # — 1. But

log F(s) —g log Lds, 2),
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which in comparison with (14.10), putting @ = 1, means

1
log F(s) = (p(lc)( > =+ Hl(s)) .
p ma(mod k) P
Therefore, if one could prove that

1
—_——
p=1{mod iy P*

)

then (14.18) would follow for any a which is prime to ¥, and thus Dirichlet’s
theorem would follow immediately.
II. Our reasoning contains one difficulty which we have glossed over, the

meaning of the expression log L(s, y), where z and therefore L(s, y) are
complex numbers.

The logarithm of a complex number

2= |z| - € : (14.19)
is defined as

log z = log |2] + ip,

where log || is the usual natural logarithm of a positive number. But the

argument @ in (14.19) is not uniquely determined and leaves additive
multiples of 27 free. Now, for real s,

2 3
Lo =1+50 129

ce1

a8 8§ — o0. As we have seen, L(s, %) varies continuously for 8 = 1, without
becoming zeto. Thus log L(s, y) is meant as that continuous Junction which
goes to log 1 = 0 if s — co. This fixation eliminates doubtful additions of
multiples of 2 to log L(s, ), and with this definition of the logarithm all
previous arguments are valid.

15

The Sieve of Eratosthenes and a Theorem of V.Brun

The sieve of Eratosthenes. A method to detect the prime nun.xbeu in the
sequence of all natural numbers was founc.i by Eratosthenes (third oentur{
B.0.). It utilizes the fact that a proper divisor (?f & number must precede i
but cannot be 1, the unit. Hence 2 is the first prime number. After 2 no even
number can be a prime number, so all even nnmbefs can .be stricken Put
(“sieved” out). The first remaining number is 3; t?nd since it is not a multnpbl:
of a preceding number, it must be a prime. Again, all multiples of 3 can
dismissed and are stricken out.

1234568789011 1213 1415 3617 1619 20 H 22 23 4 26.

is leaves 5 as the next surviving number, which thus must be a prime.

;l;l; Lll multiples of 5 are sieved out, and so on. This procedure is known as
i f Eratosthenes. .
thezl:t:aﬁy this process achieves a good deal more. If & I‘uxmber .n is com-
posite, at least one factor must obviously be = V/n. If in our hst abov;,
extending to 25, a number is composite, it must have 'at least one fwtorleid ,
and thus be a multiple of 2 or-3 or 5. When the::xe multiples have been de Thi;
the remaining numbers up to 26 must all be_gmmes: 7,11, 13', 17,19, 23. !
goes on, in general; the primes be\t;zeen 4v/n and % are obtained by deleting
iples of all primes up to vV n.

thﬁ:‘ :i:;ilt sa.pplica.fiou of tll:e sieve of Eratosthenes to the pr?bhm of ::o
distribution of primes has not bgen sucoessful so far. However, since 1919. the
Norwegian mathematician Viggo Brun and many follo.wers have used :]. r:xe.;e
method to study certain problems connected with primes. We lfave : );
mentioned in the Introduction the occurrence o{ twm.pnmes, i.e., pairs :u
prime numbers which differ by 2. They are rehtxYely infrequent emong all
primes. Whereas we know that the sum of the reciprocals of all primes

1,11, 1. 1 sl
stststitnt =L

is djvergent (see Chapter 13, Theorem 50), we shall prove in this chphl'ti‘
theorem of Viggo Brun.
137
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THEOREM 58: The sum

t+d+ ¥+ A+ A+ S+ A+ A+ H o
of the reciprocals of twin primes is convergent (possibly containing only finitely
many termas).

Remark: The prime 5 belongs to the two twin pairs 3,56 and 5,7. No
other primes can have this property! .

First step of V. Brun’s method. Viggo Brun applied a double sieving to
the sequence of natural numbers, so that all those numbers » were stricken
out for which % or » + 2 are composite. Only those n’s were retained which
are o first member of & pair of twin primes. In fact, as we shall see, this
program cannot be carried out in full rigor; some more numbers will escape
the sieve, but not enough to disturb the convergence of the series in
Theorem 58.

Let T'(z) be the number of the first members n of pairs of twin primes for
which n < z. Moreover, let U(z;p,, ps, -+, p,) be the number of odd
numbers n < z for which n(n + 2) is not divisible by any of the odd primes
PPy, P, If we take as this set all primes p, < Vz -+ 2, then
U(z; p,, * -+, p,) counts only the first members of twin primes. Since some
twin primes may be among the primes p,, p,, - - -, p,, we can state

T@)=sr+U:ip,---.p,). (15.1)
If, however, we take, for the sieving process, only odd primes psSY<
Vz + 2, the previous inequality will remain correct a fortiors, since on the
right-hand side we may also count some odd numbers which are not first
members of twin primes. Let us use the abbreviation

U;py, py,** . 2,) = Ulz; ) ,

if py, Py, - * *, p, are the odd primes p, < y for any y < Vz + 3:

T@) s r+ Uz y) < g + U ). (15.2)

Let us further designate by B(z; p,* p,- - - p,) the number of odd numbers
n = z for which n(n < 2) is divisible by p,p, - - - p,. Then
z+1
Uz;y) = [ 3 ] —;B(x;?.-) + 2 B(z; p; - p,)
i<j

—-KZK'B(z;p‘p,p.) + o+ (=1)VBippy o), (18.3)

where all primes are taken from the set of odd primes <y. The validity of
this formula can be seen by a process of enumeration.t On the left side are
t This formula is actually @ special case of & formula of mathematical logio, sometimes

called Sylvester’s formuls (see, e.g., G. Birkhoff and 8. MacLane, 4 Surwey of Modern
Algebra (New York: Macmillan Co., 1958), PP 347-348). :

* these primes is counted exaotly zero times on the
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counted (by definition) those among the [(z + 1)/2] odd numbers » S z for

which n(n + 2) is not divisible by any of the odd primes 3, ‘5, cee, Py .s,dz

All these are mentioned in the count [(z + 1)/2) onb:eb ngltntl-“‘hmdt 1 ui oi
. . N .

However, all odd integers for which n(n + 2) is ﬁ;:;. y'ide. . o

a(n + 2) be divisible by the f primez.; Por Pp* " "2 Por and only by these. Then

n is counted onoce in [(z + 1)/2], f times in

E‘j B(z; p,),
(‘;) times in
’ sz(Z; p‘pl) ’
(‘;) times in

S Bz:ippm),

<j<k

and so on, and with the observation of the - signs, altogether

1—({)+(-g)—+---+(—1)f(4;)=(1—1)!=0 (15.4)

imes, as had to be shown. . .
tlm;.set us abbreviate a number which is the product of f different prime

factors taken from 3, 5, - - *, p, 88 p'”). Then (15.3) can be abbreviated as

Uz;y) = [%1] +f§l(—l)”§ B(z; p\") (15.5)

where in the last inner sum p') runs over all products of f different prime

factors, each taken from 3,5, -, p,. B '
It is now important, and this was Brun's decisive observation, not to use

the full sum on the right-hand side, but to break it off at & suitably chosen
indexf=m<r.lfwechoosem¢m,wehnve .

Ulz;y) < [5%—1] +!§1(—1)’; B(z; p") . (16.8)

Instead of considering the full sum (156.4) we need the following lemams for
counting.

Lemma 1

=0form2f>0
i(—l)‘({) > 0 for m < f, m even
= <O0form <f,modd .
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We leave the simple proof of this lemma to the reader. (For a proof |

observe that the binomial coefficients are increasing up to 1 = [f/2]; for
m > [f/2] use the symmetry of the binomial coefficients and (15.4).)

The next step is the establishment of a handy expression for B(x; ptn),
This is done in the following lemma, which we formulate, for the sake of
convenience, a little more gencrally than we actually need i.

LemMma 2:  Let p be an odd number and »( p) the number of its different
prime factors. Then the number B(x; p) of odd numbers » < z Jor which
n(n + 2) 8 divisible by p 1s

Bmm=WM§+Q,nmgh (15.7)
p

Proof: Let
p= plau 2«: ~e ..p'ﬂ,, Yy = v(p) .

Since the p, are odd, none of these primes can divide both % and n +2.If
n(n + 2)is divisible by p, then some of the prime powers in p must divide »,
the others n + 2; for instance,

n = 0 (mod P 2
(15.8)

n -+ 2 = 0 (mod p;‘iT N )

These two congruences together are equivalent to one congruence modulo p,
according to the Chinese remainder theorem. In the range 1 < n < z for
odd 7 the congruences will therefore have [x/2p] or [z/2p] + 1 solutions,}
or in any case z/2p + 6 solutions with a certain 6, |§] < 1.

Now for n(n + 2) = 0 (mod p) we can have exactly 2" = 2"(») distribu-
tions of the »(p) prime powers between n and n + 2, which means that we
have 2"} pairs of congruences like (15.8). Consequently we obtain the result
(15.7) with a new meaning of 0.

Remark: Because x/2p for large p is small compared with the upper
limit 1 of |, the formula (15.7) is not useful for large p. It is this fact which
makes it advisable to stop the sum in (15.6) at a certain suitable m < r.

Collecting now our results from (15.1), (15.6), and (15.7) we obtain
of

x m mn
T@) <r+ é,go("”f ;, g +,§o % 9r (15.9)

where for convenience we have introduced the term f = 0 with P9 =1
Evidently v(p!"’) = f. We remember that m is even.

t Theee solutions are equidistant in the range and have the distance 2p.

e e g o T e
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: Hati The last term in (15.9)
Second step ot V. Brun’s method: Estimations. ;
is the easiest to estimate. Since p'”’ runs through all products of f prime

factors, each taken from the set 3,5, - - -, p,, we have

' mﬂ”<%w<mmsMW.
F=0p 2 - fgo(f =0 2r — 1

On the other hand, we have
m 7 2, 18 _.1)" .E.I—-- i (—1)’ ;%.
Jgo(_l) ,?1. P lzo( .z’ PP w1 B p

The first sum is obtained as the result of multiplying out

In the second we put )
8 = §_2_ : (15.10)
T m e '

and observe for a later purpose that s, is the fth elementary symmetric

function of the quantities
(15.11)

We thus have , )
1 Z S (=1ys, + @™, (161
9 . 9 1
Te=r+ 2 J];Il (l P:) + 2!-§+1
Now, between successive elementary symmetric functions of any r pontlnve
quantities, the following inequality holds:

8,78 2 (f+ Doy (15.13)

f= 1, 2’ .o,

i i t 8,,,=8,,4q="""=0. The above
hich remains true for f > r if we pu 1 = Sria .
:xvaequality becomes obvious through mu'ltlphcatu?n on the left-h:nd :('l:; )
where each term of s, appears (f + 1) times, beaides some other (posi

terms. We deduce by iteration:

8,3 1 f_&f
83§2L‘, 33§§‘1‘3§3!,
and, in general, ,
<3
8, 7

Inequality (15.13) shows moreover that

8 = 844y
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provided
f+1zs.
In our case we have
- +2 =2 !
1=— Ll . e — —
375 7 agap. (16.14)

where s, evidently depends on y, which has still to
raere & oviden 88 be chosen. If we take m
m+1=s. (15.15)

then the sum on the right side of (15.12) is an alternati
m o . sum wh
are decreasing in absolute value. Therefore 8 % terms

L m+1
2 (=1 <s,, < i = ( e )."H
J=m+1 (m + l)' m+1

where we have used an estimate of the factorial from Chapter 13.
We know that s, defined in (15.14) is increasing without bounds with y:

8, =2loglogy + 0(1),

after Theorem 50.
If we determine m + 1 so that

e <m+1<9s,
which certainly will satisfy (15.15), we have

r

1 m+1
!_g_n(‘"l)’—la/ s (;) <e*'n <eh,

Furthermore, since for any real z

l—25e7*,
we have
r 2 _ L4 1
H(l - —) <e 2j§1p, =e™h
j=1 Dy ’
so that (15.12) goes over into

T(x) =y + 2 + y'n, (16.16)
where we have made the trivial observation 2r <y.
Third step of V. Brun’s method: Choice of a parameter. We have, for y

large enough, 2loglogy — B < 8, < 3 log I . e
Thus . g log y for a suitable v
(15.18) can be replaced by ! sut positive B.

T(x)sy+e8 + y7loglogy

(log y)*
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For the choioce of ¥y 1z our attention has to be focused on the last two
terms of this inequality. Let us put

y=2, 0<ysi}.
We can see at once that any choice of a constant positive y, however small,
will make the last term grow faster than z, thus nullifying our effarts. We

have

' 1B % yloglogs _
Tx) <zt + e Glog P 27
Now choose
= ! z=3
Y = 30loglog =’ )
This leads to
2
T(z) < 2t + 900 enx(hg log z) + zih
log z

For large z the second summand will be the predominant one here.
Let T*(z) be the number of all twin primes <z (not only the first members

of each pair as counted in T'(z)). Then obviously
T*(x) < 2T(x) .

We have thus obtained Viggo Brun’s theorem.
TrEOREM 59: There exists a positive constant C so that T*(z), the number
of twin primes not exceeding z, satisfies, for z > 3,

3
T*(z) < Oz(lig—b-g-”-) . (15.17)
log z

The sum of the reciprocals of the twin primes. The discussion of 'this
sum is now a simple matter of partial summation. We have

1 1
8(z) = mZ = 3> S (T*(m) — T*(n — 2)).
v prime e’

Partial summation yields
1 1 1
= )= — —— —_—
8(z) 8%%’ (n)(” rs 2)+ &) T3

where & = 2[(z — 1)/2] + 1 is the greatest odd integer not exoeeding .
Thus, in view of (15.17),

)
Sz)=2 3 T*nw) + o(hgloghi z)

S<ns2® n(n 4 2)
nodd

( (log log n)') _

=0 sswss n(log ")_’
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It is well known (and easily proved) that
1
is convergent for & > 0. 4 fortiori the sum
(log log n)?
Ssn<w n(log n)z

is convergent. This proves Viggo Brun’s Theorem 58.

Additional remarks. What we have done in proving (16.17) is to count
not only twin primes but such numbers n, n + 2 below 2z which both have

relatively large prime factors, since we have sieved out all multiples of
y 1arge pi P.
Py Sy= z1/30loglog z.

The sieve method has subsequently been refined so that multiples of }

primes p; < 2° with a certain fized ¢ could all be eliminated. In this way

" x
T*=x) < C _—(log i
could be established.

The problem of the twin primes is in some respects akin to Goldbach’s
problem: Is every even number >4 the sum of 2 primes? Viggo Brun could
indeed apply his idea of the double sieving to this problem and obtained a
result weaker than Goldbach’s conjecture, but of a similar nature: Every
large enough even number is the sum of two numbers, each of which is a
prime or a product of at most 9 primes.

This has been improved further, in particular by A. Selberg, and the
best-known result deals with numbers which are products of at. most 3
primes. _

If we insist, however, that the summands have to be primes, then one can
prove by the sieve method together with the ingenious arguments of Schnirel-
mann about the “density” of certain sequences of integers among all natural
numbers, that every large enough number is the sum of at most 20 primes.

However, since the 1920’s a completely different method, far from
elementary, has been used in problems of this sort. It was invented by Hardy
and Littlewood and utilizes power series and the theory of functions of a
complex variable. The first result of Hardy and Littlewood in this direction
was still based on a certain unproved hypothesis. The Russian mathematician
I. M. Vinogradov later improved the method so that the unproved hypothesis
was eliminated. Vinogradov still has not proved Goldbach’s theorem in full,
but we know through him that every large enough odd number is the sum

of 3 primes.
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It is well known (and easily proved) that

25w on(logn)t e

is convergent for & > 0. A fortiori the sum

(log log n)?

3-ne o n{log n)?

is convergent. This proves Viggo Brun’s Theorem 58.

Additional remarks. What we have done in proving (15.17) is to count
not only twin primes but such numbers n, n + 2 below x which both have
relatively large prime factors, since we have sieved out all multiples of

— _._ 1/30log log z
py=x :

The sieve method has subsequently been refined so that multiples of
primes p; = z° with a certain fized ¢ could all be climinated. In this way

T*(x) « ¢

(log x)?
could be established.

The problem of the twin primes is in some respects akin to Goldbach’s
problem: Is every even number -4 the sum of 2 primes? Viggo Brun could
indeed apply his idea of the double sieving to this problem and obtained a
result weaker than Goldbach’s conjecture, but of a similar nature: Every
large enough even number is the sum of two numbers, cach of which is a
prime or a product of at most 9 primes.

This has been improved further, in particular by A. Selberg, and the
best-known result deals with numbers which arc products of at most 3
primes.

If we insist, however, that the summands have to be primes, then one can
prove by the sieve method together with the ingenious arguments of Schnirel-
mann about the “density” of certain sequences of integers among all natural
numbers, that every large enough number is the sum of at most 20 primes.

However, since the 1920’s a completely different method, far from
elementary, has been used in problems of this sort. It was invented by Hardy
and Littlewood and utilizes power series and the theory of functions of a
complex variable. The first result of Hardy and Littlewood in this direction
was still based on a certain unproved hypothesis. The Russian mathematician
I. M. Vinogradov later improved the method so that the unproved hypothesis
was eliminated. Vinogradov still has not proved Goldbach’s theorem in full,
but we know through him that every large enough odd number is the sum
of 3 primes.
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