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Preface to the second edition

The subject of BP-theory has grown dramatically since the appearance of the
first edition 17 years ago. One major development was the proof by Devinatz, Hop-
kins and Smith (see Devinatz, Hopkins and Smith [1] and Hopkins and Smith [2])
of nearly all the conjectures made in Ravenel [8]. An account of this work can be
found in our book Ravenel [13]. The only conjecture of Ravenel [8] that remains
is Telescope Conjecture. An account of our unsuccessful attempt to disprove it is
given in Mahowald, Ravenel, and Shick [1].

Another big development is the emergence of elliptic cohomology and the theory
of topological modular forms. There is still no comprehensive introduction to this
topic. Some good papers to start with are Ando, Hopkins and Strickland [1],
Hopkins and Mahowald [1], Landweber, Ravenel and Stong [8], and Rezk [?], which
is an account of the still unpublished Hopkins-Miller theorem.

The seventh and final chapter of the book has been completely rewritten and is
nearly twice as long as the original. We did this with an eye to carrying out future
research in this area.

I am grateful to the many would be readers who urged me to republish this
book and to the AMS for its assistance in getting the original manuscript retypeset.
Peter Landweber was kind enough to provide me with a copious list of misprints
he found in the first edition. Nori Minami and Igor Kriz helped in correcting some
errors in § 4.3. Mike Hill and his fellow MIT students provided me with a timely
list of typos in the online version of this edition. Hirofumi Nakai was very helpful
in motivationg me to make the revisions of Chapter 7.



Preface to the first edition

My initial inclination was to call this book The Music of the Spheres, but I was
dissuaded from doing so by my diligent publisher, who is ever mindful of the sensi-
bilities of librarians. The purpose of this book is threefold: (i) to make BP-theory
and the Adams—Novikov spectral sequence more accessible to nonexperts, (ii) to
provide a convenient reference for workers in the field, and (iii) to demonstrate the
computational potential of the indicated machinery for determining stable homo-
topy groups of spheres. The reader is presumed to have a working knowledge of
algebraic topology and to be familiar with the basic concepts of homotopy theory.
With this assumption the book is almost entirely self-contained, the major excep-
tions (e.g., Sections 5.4, 5.4, Al.4, and Al.5) being cases in which the proofs are
long, technical, and adequately presented elsewhere.

The subject matter is a difficult one and this book will not change that fact.
We hope that it will make it possible to learn the subject other than by the only
practical method heretofore available, i.e., by numerous exhausting conversations
with one of a handful of experts. Much of the material here has been previously
published in journal articles too numerous to keep track of. However, a lot of
the foundations of the subject, e.g., Chapter 2 and Appendix 1, have not been
previously worked out in sufficient generality and the author found it surprisingly
difficult to do so.

The reader (especially if she is a graduate student) should be warned that many
portions of this volume contain more than he is likely to want or need to know. In
view of (ii), results are given (e.g., in Sections 4.3, 6.3, and Al.4) in greater strengh
than needed at present. We hope the newcomer to the field will not be discouraged
by abundance of material.

The homotopy groups of spheres is a highly computational topic. The serious
reader is strongly encouraged to reproduce and extend as many of the computations
presented here as possible. There is no substitute for the insight gained by carrying
out such calculations oneself.

Despite the large amount of information and techniques currently available,
stable homotopy is still very mysterious. Each new computational breakthrough
heightens our appreciation of the difficulty of the problem. The subject has a highly
experimental character. One computes as many homotopy groups as possible with
existing machinery, and the resulting data form the basis for new conjectures and
new theorems, which may lead to better methods of computation. In contrast with
physics, in this case the experimentalists who gather data and the theoreticians
who interpret them are the same individuals.

The core of this volume is Chapters 2—6 while Chapter 1 is a casual nontechnical
introduction to this material. Chapter 7 is a more technical description of actual
computations of the Adams—Novikov spectral sequence for the stable homotopy
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groups of spheres through a large range of dimensions. Although it is likely to be
read closely by only a few specialists, it is in some sense the justification for the
rest of the book, the computational payoff. The results obtained there, along with
some similar calculations of Tangora, are tabulated in Appendix 3.

Appendices 1 and 2 are utilitarian in nature and describe technical tools used
throughout the book. Appendix 1 develops the theory of Hopf algebroids (of which
Hopf algebras are a special case) and useful homological tools such as relative
injective resolutions, spectral sequences, Massey products, and algebraic Steenrod
operations. It is not entertaining reading; we urge the reader to refer to it only
when necessary.

Appendix 2 is a more enjoyable self-contained account of all that is needed
from the theory of formal group laws. This material supports a bridge between
stable homotopy theory and algebraic number theory. Certain results (e.g., the
cohomology of some groups arising in number theory) are carried across this bridge
in Chapter 6. The house they inhabit in homotopy theory, the chromatic spectral
sequence, is built in Chapter 5.

The logical interdependence of the seven chapters and three appendixes is dis-
played in the accompanying diagram.

It is a pleasure to acknowledge help received from many sources in preparing
this book. The author received invaluable editorial advice from Frank Adams, Peter
May, David Pengelley, and Haynes Miller. Steven Mitchell, Austin Pearlman, and
Bruce McQuistan made helpful comments on various stages of the manuscript,
which owes its very existence to the patient work of innumerable typists at the
University of Washington.

Finally, we acknowledge financial help from six sources: the National Science
Foundation, the Alfred P. Sloan Foundation, the University of Washington, the
Science Research Council of the United Kingdom, the Sonderforschungsbereich of
Bonn, West Germany, and the Troisieme Cycle of Bern, Switzerland.




Commonly Used Notations

Z Integers

Z, p-agic integers

Z, Integers localized at p

Z/(p) Integers mod p

Q Rationals

Q, p-adic numbers

P(z) Polynomial algebra on generators x
E(z) Exterior algebra on generators x

O Cotensor product (Section Al.1)

Given suitable objects A, B, and C' and a map f: A — B, the evident map
A®C — B®C(C is denoted by f® C.
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CHAPTER 1

An Introduction to the Homotopy Groups
of Spheres

This chapter is intended to be an expository introduction to the rest of the book.
We will informally describe the spectral sequences of Adams and Novikov, which
are the subject of the remaining chapters. Our aim here is to give a conceptual
picture, suppressing as many technical details as possible.

In Section 1 we list some theorems which are classical in the sense that they
do not require any of the machinery described in this book. These include the
Hurewicz theorem 1.1.2, the Freudenthal suspension theorem 1.1.4, the Serre finite-
ness theorem 1.1.8, the Nishida nilpotence theorem 1.1.9, and the Cohen—Moore—
Neisendorfer exponent theorem 1.1.10. They all pertain directly to the homotopy
groups of spheres and are not treated elsewhere here. The homotopy groups of
the stable orthogonal group SO are given by the Bott periodicity theorem 1.1.11.
In 1.1.12 we define the J-homomorphism from 7;(SO(n)) to mp4:(S™). Its image
is given in 1.1.13, and in 1.1.14 we give its cokernel in low dimensions. Most of the
former is proved in Section 5.3.

In Section 2 we describe Serre’s method of computing homotopy groups using
cohomological techniques. In particular, we show how to find the first element of
order p in 7,(S%) 1.2.4. Then we explain how these methods were streamlined by
Adams to give his celebrated spectral sequence 1.2.10. The next four theorems
describe the Hopf invariant one problem. A table showing the Adams spectral
sequence at the prime 2 through dimension 45 is given in 1.2.15. In Chapter 2
we give a more detailed account of how the spectral sequence is set up, including
a convergence theorem. In Chapter 3 we make many calculations with it at the
prime 2.

In 1.2.16 we summarize Adams’s method for purposes of comparing it with
that of Novikov. The basic idea is to use complex cobordism (1.2.17) in place
of ordinary mod (p) cohomology. FIic. 1.2.19 is a table of the Adams—Novikov
spectral sequence for comparison with Fig. 1.2.15.

In the next two sections we describe the algebra surrounding the Es-term of
the Adams—Novikov spectral sequence. To this end formal group laws are defined
in 1.3.1 and a complete account of the relevant theory is given in Appendix 2. Their
connection with complex cobordism is the subject of Quillen’s theorem (1.3.4) and
is described more fully in Section 4.1. The Adams-Novikov Es-term is described in
terms of formal group law theory (1.3.5) and as an Ext group over a certain Hopf
algebra (1.3.6).

The rest of Section 3 is concerned with the Greek letter construction, a method
of producing infinite periodic families of elements in the Es-term and (in favorable
cases) in the stable homotopy groups of spheres. The basic definitions are given in
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1.3.17 and 1.3.19 and the main algebraic fact required is the Morava—Landweber
theorem (1.3.16). Applications to homotopy are given in 1.3.11, 1.3.15, and 1.3.18.
The section ends with a discussion of the proofs and possible extensions of these
results. This material is discussed more fully in Chapter 5.

In Section 4 we describe the deeper algebraic properties of the Es-term. We
start by introducing BP and defining a Hopf algebroid. The former is a minimal
wedge summand of MU localized at a prime. A Hopf algebroid is a generalized
Hopf algebra needed to describe the Adams—Novikov Es>-term more conveniently in
terms of BP (1.4.2). The algebraic and homological properties of such objects are
the subject of Appendix 1.

Next we give the Lazard classification theorem for formal group laws (1.4.3)
over an algebraically closed field of characteristic p, which is proved in Section A2.2.
Then we come to Morava’s point of view. Theorem 1.3.5 describes the Adams—
Novikov FEs-term as the cohomology of a certain group G with coefficients in a
certain polynomial ring L. Spec(L) (in the sense of abstract algebraic geometry)
is an infinite dimensional affine space on which G acts. The points in Spec(L)
can be thought of as formal group laws and the G-orbits as isomorphism classes,
as described in 1.4.3. This orbit structure is described in 1.4.4. For each orbit
there is a stabilizer or isotropy subgroup of G called S,,. Its cohomology is related
to that of G (1.4.5), and its structure is known. The theory of Morava stabilizer
algebras is the algebraic machinery needed to exploit this fact and is the subject of
Chapter 6. Our next topic, the chromatic spectral sequence (1.4.8, the subject of
Chapter 5), connects the theory above to the Adams—Novikov Fs-term. The Greek
letter construction fits into this apparatus very neatly.

Section 5 is about unstable homotopy groups of spheres and is not needed for
the rest of the book. Its introduction is self-explanatory.

1. Classical Theorems Old and New

Homotopy groups. The Hurewicz and Freudenthal theorems. Stable stems.
The Hopf map. Serre’s finiteness theorem. Nishida’s nilpotence theorem. Cohen,
Moore and Neisendorfer’s exponent theorem. Bott periodicity. The J-homomorphism.

We begin by recalling some definitions. The nth homotopy group of a connected
space X, m,(X), is the set of homotopy classes of maps from the n-sphere S™ to X.
This set has a natural group structure which is abelian for n > 2.

We now state three classical theorems about homotopy groups of spheres.
Proofs can be found, for example, in Spanier [1].

1.1.1. THEOREM. m1(S?) = Z and 7,,(S') = 0 for m > 1. O
1.1.2. HUREWICZ’S THEOREM. 7,(S™) = Z and 7, (S™) = 0 for m < n.
A generator of m,(S™) is the class of the identity map. O

For the next theorem we need to define the suspension homomorphism
0 T (S™) = Tma1 (S7HL).

1.1.3. DEFINITION. The kth suspension XFX of a space X is the quotient of
I* x X obtained by collapsing OI* x X onto OIF, OI* being the boundary of I*,
the k-dimensional cube. Note that X'¥/ X = XX and XFf: kX — SRY is the
quotient of 1 x f: I* x X — I¥ x Y. In particular, given f: S™ — S™ we have
Nf: Mt — St which induces a homomorphism T, (S™) — Tne1 (ST, O
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1.1.4. FREUDENTHAL SUSPENSION THEOREM. The suspension homomorphism
0 Tk (S™) = Tpake1(S™T9) defined above is an isomorphism for k <n —1 and
a surjection for k=n — 1. O

1.1.5. COROLLARY. The group 7,1+, (S™) depends only on k ifn>k+1. O

1.1.6. DEFINITION. The stable k-stem or kth stable homotopy group of spheres
7y 08 Tk (S™) for n >k + 1. The groups m,41(S™) are called stable if n >k + 1
and unstable if n < k4 1. When discussing stable groups we will not make any
notational distinction between a map and its suspensions. (I

The subsequent chapters of this book will be concerned with machinery for
computing the stable homotopy groups of spheres. Most of the time we will not
be concerned with unstable groups. The groups w,f are known at least for k < 45.
See the tables in Appendix 3, along with Theorem 1.1.13. Here is a table of 7T}§ for
k < 15:

E]0] 1 2 3 [4]5] 6 7 8
m [ Z2]2/(2)[2/(2) [Z/(24) [0]0]Z/(2) | Z/(240) | (Z/(2))?

k[ 9 [10] 11 [12] 13 14 15
m | (Z/2)° [ Z/6 | Z/(504) | 0 | Z/(3) [ (Z/(2))° | Z/(480) © Z/(2)

This should convince the reader that the groups do not fall into any obvious pattern.
Later in the book, however, we will present evidence of some deep patterns not
apparent in such a small amount of data. The nature of these patterns will be
discussed later in this chapter.

When homotopy groups were first defined by Hurewicz in 1935 it was hoped
that m,4%(S™) = 0 for k > 0, since this was already known to be the case for n =1
(1.1.1). The first counterexample is worth examining in some detail.

1.1.7. EXAMPLE. 73(S?) = Z generated by the class of the Hopf map n: % — §2
defined as follows. Regard S? (as Riemann did) as the complex numbers C with a
point at infinity. S® is by definition the set of unit vectors in R* = C2. Hence a
point in S? is specified by two complex coordinates (21, z2). Define n by

n(z1, 22) = {Zl/Z2 iz 70

9 if 29 =0.

It is easy to verify that n is continuous. The inverse image under 7 of any point
in S? is a circle, specifically the set of unit vectors in a complex line through the
origin in C2, the set of all such lines being parameterized by S2. Closer examination
will show that any two of these circles in S are linked. One can use quaternions
and Cayley numbers in similar ways to obtain maps v: S7 — S$% and o: 1% — S8,
respectively. Both of these represent generators of infinite cyclic summands. These
three maps (7, v, and o) were all discovered by Hopf [1] and are therefore known
as the Hopf maps.

We will now state some other general theorems of more recent vintage.

1.1.8. FINITENESS THEOREM (Serre [3]). mp4+x(S™) is finite for k > 0 except
when n = 2m, k= 2m — 1, and 74 _1(S*™) = Z & F,,,, where F,, is finite. O



4 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

The next theorem concerns the ring structure of 72 = @, -, 7y which is in-

duced by composition as follows. Let a € 77 and 8 € 7er be represented by

f: 8"t — S and g: 8"t — St respectively, where n is large. Then
af € wfﬂ is defined to be the class represented by f-¢: S*Tt/ — S, It can be

shown that Ba = (—1)Yaf3, so 72 is an anticommutative graded ring.

1.1.9. NILPOTENCE THEOREM (Nishida [1]). Each element o € 73 for k > 0
is milpotent, i.e., ot = 0 for some finite t. O

For the next result recall that 1.1.8 says ma; 414, (S%"1) is a finite abelian group
for all j > 0.

1.1.10. EXPONENT THEOREM (Cohen, Moore, and Neisendorfer [1]). Forp > 5
the p-component of ma;y14;(S* ) has exponent p', i.e., each element in it has
order < p'. ([

This result is also true for p = 3 (Neisendorfer [1]) as well, but is known to be
false for p = 2. For example, the 2-component of 3-stem is cyclic of order 4 (see Fig.
3.3.18) on S? and of order 8 on S® (see Fig. 3.3.10). It is also known (Gray [1]) to
be the best possible, i.e., Toi114; (5’2”1) is known to contain elements of order p’
for certain j.

We now describe an interesting subgroup of 72, the image of the Hopf-White-
head J-homomorphism, to be defined below. Let SO(n) be the space of nxn special
orthogonal matrices over R with the standard topology. SO(n) is a subspace of
SO(n + 1) and we denote |J,,-,SO(n) by SO, known as the stable orthogonal
group. It can be shown that m;(SO) = 7;(SO(n)) if n > i+ 1. The following result
of Bott is one of the most remarkable in all of topology.

1.1.11. BorT PERIODICITY THEOREM (Bott [1]; see also Milnor [1]).

Z ifi=-1 mod4
mi(SO)=<Z/(2) ifi=0o0r1 mod38 O
0 otherwise.

We will now define a homomorphism J: m;(SO(n)) — m,4:(S™). Let o €
7;(SO(n)) be the class of f: S* — SO(n). Let D" be the n-dimensional disc, i.e.,
the unit ball in R™. A matrix in SO(n) defines a linear homeomorphism of D" to
itself. We define f: S*x D™ — D" by f(z,y) = f(z)(y), where z € S, y € D™, and
f(z) € SO(n). Next observe that S™ is the quotient of D™ obtained by collapsing
its boundary S™! to a single point, so there is a map p: D™ — S”, which sends
the boundary to the base point. Also observe that S"t?, being homeomorphic to
the boundary of D! x D™ is the union of S* x D™ and D™ x S"~! along their
common boundary S¢ x S"~!. We define f: Snti — 8™ to be the extension of
pf: St x D" — 8™ to St which sends the rest of $"t to the base point in S™.

1.1.12. DEFINITION. The Hopf-Whitehead J-homomorphism J: m;(SO(n)) —
Tnai(S™) sends the class of f: S* — SO(n) to the class of f: S™** — 8™ as
described above. O

We leave it to the skeptical reader to verify that the above construction actually
gives us a homomorphism.

Note that both m;(SO(n)) and m,4;(S™) are stable, i.e., independent of n, if
n > i+ 1. Hence we have J: m(SO) — m. We will now describe its image.
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1.1.13. THEOREM (Adams [1] and Quillen [1]). J: 7 (SO) — 7} is a monomor-
phism fork =0 or1 mod 8 and J(ma,—1(S0)) is a cyclic group whose 2-component
is Z(2)/(8k) and whose p-component for p > 3 is Zy /(pk) if (p — 1) | 2k and 0 if
(p—1) {2k, where Z(y,) denotes the integers localized at p. In dimensions 1, 3, and
7, im J is generated by the Hopf maps (1.1.7) n, v, and o, respectively. If we denote
by x the generator in dimension 4k — 1, then nxap and n’xay are the generators
of im J in dimensions 8k and 8k + 1, respectively. ([l

The image of J is also known to a direct summand; a proof can be found for
example at the end of Chapter 19 of Switzer [1]. The order of J(m4r—1(S0)) was
determined by Adams up to a factor of two, and he showed that the remaining
ambiguity could be resolved by proving the celebrated Adams conjecture, which
Quillen and others did. Denote this number by ay. Its first few values are tabulated
here.

k|1 2 3 4 5 6 7 8 9 10
ar | 24 | 240 | 504 | 480 | 264 | 65,520 | 24 | 16,320 | 28,728 | 13,200

The number aj, has interesting number theoretic properties. It is the denominator
of By/4k, where By, is the kth Bernoulli number, and it is the greatest common
divisor of numbers n*(") (n?* —1) for n € Z and t(n) sufficiently large. See Adams [1]
and Milnor and Stasheff [5] for details.

Having determined im J, one would like to know something systematic about
coker J, i.e., something more than its structure through a finite range of dimensions.
For the reader’s amusement we record some of that structure now.

1.1.14. THEOREM. In dimensions < 15, the 2-component of coker J has the
following generators, each with order 2:
n2€7r2s, 1/2€7Tg, ﬂEWg?, nﬂzu3€7rg, u€w§9,
nweE T, ol€my, KEmy and 7K€ Tis.
(There are relations n® = 4v and n?p = 4x3). For p > 3 the p-component of coker J

has the following generators in dimensions < 3pq— 6 (where ¢ = 2p — 2), each with
order p:

S S
fr e Tpg—2> arf € T(p+1)g—3

where ay = T(,_1)/2 € Wf,l is the first generator of the p-component of im J,

2 S 2 S S
B € Mopg—as Q1ff € T(2p+1)g—5> e € T(2p+1)g—2>
S 3 S
12 € Topi0)g—3,  and i € T3¢ B

The proof and the definitions of new elements listed above will be given later
in the book, e.g., in Section 4.4.

2. Methods of Computing 7. (S™)

Eilenberg—Mac Lane spaces and Serre’s method. The Adams spectral sequence.
Hopf invariant one theorems. The Adams—Novikov spectral sequence. Tables in low
dimensions for p = 3.

In this section we will informally discuss three methods of computing homotopy
groups of spheres, the spectral sequences of Serre, Adams, and Novikov. A fourth
method, the EHP sequence, will be discussed in Section 5. We will not give any
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proofs and in some cases we will sacrifice precision for conceptual clarity, e.g., in
our identification of the Fs-term of the Adams—Novikov spectral sequence.

The Serre spectral sequence (circa 1951) (Serre [2]) is included here mainly
for historical interest. It was the first systematic method of computing homotopy
groups and was a major computational breakthrough. It has been used as late as
the 1970s by various authors (Toda [1], Oka [1, 2, 3]), but computations made
with it were greatly clarified by the introduction of the Adams spectral sequence
in 1958 in Adams [3]. In the Adams spectral sequence the basic mechanism of the
Serre spectral sequence information is organized by homological algebra.

For the 2-component of 7, (S™) the Adams spectral sequence is indispensable to
this day, but the odd primary calculations were streamlined by the introduction of
the Adams—Novikov spectral sequence (Adams—Novikov spectral sequence) in 1967
by Novikov [1]. It is the main subject in this book. Its Es-term contains more
information than that of the Adams spectral sequence; i.e., it is a more accurate
approximation of stable homotopy and there are fewer differentials in the spectral
sequence. Moreover, it has a very rich algebraic structure, as we shall see, largely
due to the theorem of Quillen [2], which establishes a deep (and still not satisfac-
torily explained) connection between complex cobordism (the cohomology theory
used to define the Adams—Novikov spectral sequence; see below) and the theory of
formal group laws. Every major advance in the subject since 1969, especially the
work of Jack Morava, has exploited this connection.

We will now describe these three methods in more detail. The starting point
for Serre’s method is the following classical result.

1.2.1. THEOREM. Let X be a simply connected space with H;(X) =0 fori <n
for some positive integer n > 2. Then

(a) (Hurewicz [1]). m(X) = H,(X).

(b) (Eilenberg and Mac Lane [2]). There is a space K(mw,n), characterized up
to homotopy equivalence by

K (1)) = {w ifi=n

0 ifi#n.
If X is above and m = 7, (X) then there is a map f: X — K(m,n) such that H,(f)
and m,(f) are isomorphisms. O
1.2.2. COROLLARY. Let F be the fiber of the map f above. Then
i(F) = i (X) forz:Zn—i—l 0
0 for 1 < n.

In other words, F' has the same homotopy groups as X in dimensions above
n, so computing 7, (F) is as good as computing m.(X). Moreover, H,(K(m,n)) is
known, so H,(F') can be computed with the Serre spectral sequence applied to the
fibration FF — X — K(m,n).

Once this has been done the entire process can be repeated: let n’ > n be the
dimension of the first nontrivial homology group of F' and let H,.(F) = n’. Then
Tn (F) = mp/ (X)) = 7’ is the next nontrivial homotopy group of X. Theorem 1.2.1
applied to F' gives a map f': F — K(n',n') with fiber F’, and 1.2.2 says

i(F') = mi(X) fori>n'
! 0 fori <n'.
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Then one computes H,(F") using the Serre spectral sequence and repeats the pro-
cess.

As long as one can compute the homology of the fiber at each stage, one can
compute the next homotopy group of X. In Serre [3] a theory was developed
which allows one to ignore torsion of order prime to a fixed prime p throughout the
calculation if one is only interested in the p-component of 7. (X). For example, if
X = S3, one uses 1.2.1 to get a map to K(Z,3). Then H.(F) is described by:

1.2.3. LEMMA. If F is the fibre of the map f: S® — K(Z,3) given by 1.2.1,
then
Z/(m) ifi=2mand m>1
0 otherwise.

lﬂm:{ O

1.2.4. COROLLARY. The first p-torsion in 7.(S%) is Z/(p) in ma,p(S?) for any
prime p. O

PRrOOF OF 1.2.3. (It is so easy we cannot resist giving it.) We have a fibration
OK(Z,3) = K(Z,2) - F — S*

and H*(K(Z,2)) = H*(CP*>) = Z[z], where z € H?*(CP>) and CP* is an
infinite-dimensional complex projective space. We will look at the Serre spectral
sequence for H*(F) and use the universal coefficient theorem to translate this to
the desired description of H.(F). Let u be the generator of H3(S3). Then in the
Serre spectral sequence we must have ds(x) = du; otherwise F' would not be 3-
connected, contradicting 1.1.2. Since ds is a derivation we have dz(z") = +nuz™*.
It is easily seen that there can be no more differentials and we get

mwy{

which leads to the desired result. O

Z/(m) ifi=2m+1,m>1
0 otherwise

If we start with X = S™ the Serre spectral sequence calculations will be much
easier for myyn (S™) for k < n — 1. Then all of the computations are in the stable
range, i.e., in dimensions less than twice the connectivity of the spaces involved.

This means that for a fibration F - X 5 K , the Serre spectral sequence gives a
long exact sequence

(1.2.5) oo Hy(F) 5 Hy(X) L5 Hj(K) S Hy(F) — -
where d corresponds to Serre spectral sequence differentials. Even if we know
H.(X), H.(K), and f., we still have to deal with the short exact sequence

(1.2.6) 0 — coker f, — H,(F) — ker f. — 0.

It may lead to some ambiguity in H,(F'), which must be resolved by some other
means. For example, when computing 7, (S™) for large n one encounters this prob-
lem in the 3-component of m,110(S™) and the 2-component of 7, 14(S™). This
difficulty is also present in the Adams spectral sequence, where one has the pos-
sibility of a nontrivial differential in these dimensions. These differentials were
first calculated by Adams [12], Liulevicius [2], and Shimada and Yamanoshita [3]
by methods involving secondary cohomology operations and later by Adams and
Atiyah [13] by methods involving K-theory
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The Adams spectral sequence of Adams [3] begins with a variation of Serre’s
method. One works only in the stable range and only on the p-component. Instead
of mapping X to K (m,n) asin 1.2.1, one maps to K = [, K(H(X;Z/(p)),j) by
a certain map g which induces a surjection in mod (p) cohomology. Let X7 be the
fiber of g. Define spaces X; and K; inductively by K; = [[,., K(H?(Xi;Z/(p)), )
and X4 is the fiber of g: X; — K; (this map is defined in Section 2.1, where the
Adams spectral sequence is discussed in more detail). Since H*(g;) is onto, the
analog of 1.2.5 is an short exact sequence in the stable range

where all cohomology groups are understood to have coefficients Z/(p). Moreover,
H*(K;) is a free module over the mod (p) Steenrod algebra A, so if we splice
together the short exact sequences of 1.2.7 we get a free A-resolution of H*(X)

(1.2.8) 0— H*(X) « H*(K) «— H*(S'K;) « H*(X?Ky) « - -

Each of the fibration X;;1 — X; — K; gives a long exact sequence of homotopy
groups. Together these long exact sequences form an exact couple and the asso-
ciated spectral sequence is the Adams spectral sequence for the p-component of
m«(X). If X has finite type, the diagram

(1.2.9) K—Y'K - Y ?K) — -

(which gives 1.2.8 in cohomology) gives a cochain complex of homotopy groups
whose cohomology is Ext4(H*(X);Z/(p)). Hence one gets

1.2.10. THEOREM (Adams [3]). There is a spectral sequence converging to the
p-component of T, (S™) for k <n—1 with

Ey' = Ext}"(Z/(p), Z/(p)) =: H>'(A)

and d,.: E$t — E3trHr=1 Here the groups ES! for t — s = k form the associated
graded group to a filtration of the p-component of w4+ (S™). O

Computing this Es-term is hard work, but it is much easier than making similar
computations with Serre spectral sequence. The most widely used method today is
the spectral sequence of May [1, 2] (see Section 3.2). This is a trigraded spectral
sequence converging to H**(A), whose Es-term is the cohomology of a filtered form
of the Steenrod algebra. This method was used by Tangora [1] to compute ES’t
for p =2 and t — s < 70. Most of his table is reproduced here in Fig. A3.la—c.
Computations for odd primes can be found in Nakamura [2].

As noted above, the Adams Fs-term is the cohomology of the Steenrod algebra.
Hence E21* = H'(A) is the indecomposables in A. For p = 2 one knows that A
is generated by Sq2° for i > 0; the corresponding elements in E21* are denoted by
h; € E21’21. For p > 2 the generators are the Bockstein 8 and PP’ for i > 0 and the

corresponding elements are ag € Ey' and h; € E;’qpl, where ¢ = 2p — 2.
For p = 2 these elements figure in the famous Hopf invariant one problem.

1.2.11. THEOREM (Adams [12]). The following statements are equivalent.

(a) S2' =1 is parallelizable, i.e., it has 2°—1 globally linearly independent tangent
vector fields.

(b) There is a division algebra (not necessarily associative) over R of dimen-
sion 2°.
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(c) There is a map $22'~! — §2' of Hopf invariant one (see 1.5.2).
(d) There is a 2-cell complex X = 52 Ue2™ [the cofiber of the map in (c)] in
which the generator of HQHI(X) is the square of the generator of H* (X).

(e) The element h; € E21’21 is a permanent cycle in the Adams spectral sequence.

O

Condition (b) is clearly true for ¢ = 0, 1, 2 and 3, the division algebras being
the reals R, the complexes C, the quaternions H and the Cayley numbers, which
are nonassotiative. The problem for i > 4 is solved by

1.2.12. THEOREM (Adams [12]). The conditions of 1.2.11 are false for i > 4
and in the Adams spectral sequence one has do(h;) = hohf_l #£0 fori>4. [l

For i = 4 the above gives the first nontrivial differential in the Adams spectral
sequence. Its target has dimension 14 and is related to the difficulty in Serre’s
method referred to above.

The analogous results for p > 2 are

1.2.13. THEOREM (Liulevicius [2] and Shimada and Yamanoshita [3]). The
following are equivalent.

(a) There is a map 2 =1 G2 i Hopf invariant one (see 1.5.3 for the
definition of the Hopf invariant and the space §2m).

(b) There is a p-cell complex X = S%' Uel? Uet® U---Ue2™ [the cofiber
of the map in (a)] whose mod (p) cohomology is a truncated polynomial algebra on
one generator.

(c) The element h; € Ezl’qpl is a permanent cycle in the Adams spectral se-
quence. (I

The element hq is the first element in the Adams spectral sequence above
dimension zero so it is a permanent cycle. The corresponding map in (a) suspends
to the element of m2,(S?) given by 1.2.4. For i > 1 we have

1.2.14. THEOREM (Liulevicius [2] and Shimada and Yamanoshita [3]). The
conditions of 1.2.13 are false for i > 1 and da(h;) = agbi—1, where b;_1 is a

generator of B2 (see Section 5.2). O

For i = 1 the above gives the first nontrivial differential in the Adams spectral
sequence for p > 2. For p = 3 its target is in dimension 10 and was referred to
above in our discussion of Serre’s method.

F1G. 1.2.15 shows the Adams spectral sequence for p = 3 through dimension
45. We present it here mainly for comparison with a similar figure (1.2.19) for the
Adams—Novikov spectral sequence. ES’t is a Z/(p) vector space in which each basis
element is indicated by a small circle. Fortunately in this range there are just two
bigradings [(5,28) and (8,43)] in which there is more than one basis element. The
vertical coordinate is s, the cohomological degree, and the horizontal coordinate
is t — s, the topological dimension. These extra elements appear in the chart to
the right of where they should be, and the lines meeting them should be vertical.
A d, is indicated by a line which goes up by r and to the left by 1. The vertical
lines represent multiplication by ag € E21’1 and the vertical arrow in dimension
zero indicates that all powers of ag are nonzero. This multiplication corresponds to
multiplication by p in the corresponding homotopy group. Thus from the figure one
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can read off T = Z7 T11 = T45 = Z/(g), o3 = Z/(g) S5 Z/(3), and T35 — Z/(27)
Lines that go up 1 and to the right by 3 indicate multiplication by ho € E21’47
while those that go to the right by 7 indicate the Massey product (hg, ho, —) (see
A1.4.1). The elements ag and h; for i = 0, 1, 2 were defined above and the elements
by € Eg’u, ky € E22’28, and b € E§’36 are up to the sign the Massey products
(ho, ho, ho), {(ho,h1,h1), and (h1,h1,h1), respectively. The unlabeled elements in
E;’5i_1 for i > 2 (and hg € E21’4) are related to each other by the Massey product
(ho,ag, —). This accounts for all of the generators except those in ES’ ’26, E27 45 and
E28 50 which are too complicated to describe here.

We suggest that the reader take a colored pencil and mark all of the elements
which survive to F, i.e., those which are not the source or target of a differential.
There are in this range 31 differentials which eliminate about two-thirds of the
elements shown.

Now we consider the spectral sequence of Adams and Novikov, which is the
main object of interest in this book. Before describing its construction we review
the main ideas behind the Adams spectral sequence. They are the following.

1.2.16. PROCEDURE. (i) Use mod (p)-cohomology as a tool to study the p-
component of 7,(X). (ii) Map X to an appropriate Eilenberg-Mac Lane space K,
whose homotopy groups are known. (iii) Use knowledge of H*(K), i.e., of the
Steenrod algebra, to get at the fiber of the map in (ii). (iv) Iterate the above and
codify all information in a spectral sequence as in 1.2.10. (I

An analogous set of ideas lies behind the Adams—Novikov spectral sequence,
with mod p cohomology being replaced by complex cobordism theory. To elaborate,
we first remark that “cohomology” in 1.2.16(i) can be replaced by “homology” and
1.2.10 can be reformulated accordingly; the details of this reformulation need not
be discussed here. Recall that singular homology is based on the singular chain
complex, which is generated by maps of simplices into the space X. Cycles in
the chain complex are linear combinations of such maps that fit together in an
appropriate way. Hence H,(X) can be thought of as the group of equivalence
classes of maps of certain kinds of simplicial complexes, sometimes called “geometric
cycles,” into X.

Our point of departure is to replace these geometric cycles by closed complex
manifolds. Here we mean “complex” in a very weak sense; the manifold M must
be smooth and come equipped with a complex linear structure on its stable normal
bundle, i.e., the normal bundle of some embedding of M into a Euclidean space
of even codimension. The manifold M need not be analytic or have a complex
structure on its tangent bundle, and it may be odd-dimensional.

The appropriate equivalence relation among maps of such manifolds into X is
the following.

1.2.17. DEFINITION. Maps fi: M — X (i =1, 2) of n-dimensional complex (in
the above sense) manifolds into X are bordant if there is a map g: W — X where W
is a complex mainfold with boundary OW = M; U My such that g|M; = f;. (To
be correct we should require the restriction to Ms to respect the complex structure
on My opposite to the given one, but we can ignore such details here.) (|

One can then define a graded group MU, (X), the complex bordism of X, anal-
ogous to H,(X). It satisfies all of the Eilenberg—Steenrod axioms except the dimen-
sion axiom, i.e., MU, (pt), is not concentrated in dimension zero. It is by definition
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FIGURE 1.2.15. The Adams spectral sequence for p = 3,
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the set of equivalence classes of closed complex manifolds under the relation of
1.2.17 with X = pt, i.e., without any condition on the maps. This set is a ring
under disjoint union and Cartesian product and is called the complex bordism ring.
as are the analogous rings for several other types of manifolds; see Stong [1].

1.2.18. THEOREM (Thom [1], Milnor [4], Novikov [2]). The complex bordism
ring, MU, (pt), is Z[x1,x2,...] where dim z; = 24. O

Now recall 1.2.16. We have described an analog of (i), i.e., a functor MU, (—)
replacing H,(—). Now we need to modify (ii) accordingly, e.g., to define analogs
of the Eilenberg-Mac Lane spaces. These spaces (or rather the corresponding
spectrum MU) are described in Section 4.1. Here we merely remark that Thom’s
contribution to 1.2.18 was to equate MU;(pt) with the homotopy groups of certain
spaces and that these spaces are the ones we need.

To carry out the analog of 1.2.16(iii) we need to know the complex bordism of
these spaces, which is also described (stably) in Section 4.1. The resulting spec-
tral sequence is formally introduced in Section 4.4, using constructions given in
Section 2.2. We will not state the analog of 1.2.10 here as it would be too much
trouble to develop the necessary notation. However we will give a figure analogous
to 1.2.15.

The notation of Fi1G. 1.2.19 is similar to that of F1G. 1.2.15 with some minor
differences. The Es-term here is not a Z/(3)-vector space. Elements of order > 3
occur in Ey (an infinite cyclic group indicated by a square), and in Ey'*" and
E;’AS, in which a generator of order 3**! is indicated by a small circle with &
parentheses to the right. The names ay, 3¢, and ,/; will be explained in the next
section. The names ag; refer to elements of order 3 in, rather than generators of,
Ey'?. In E3* the product a;s is divisible by 3.

One sees from these two figures that the Adams—Novikov spectral sequence
has far fewer differentials than the Adams spectral sequence. The first nontrivial
Adams—Novikov differential originates in dimension 34 and leads to the relation
182 in m,(S%). It was first established by Toda [2, 3].

3. The Adams—Novikov Es-term, Formal Group Laws,
and the Greek Letter Construction

Formal group laws and Qillen’s theorem. The Adams—Novikov Es-term as
group cohomology. Alphas, beta and gamma. The Morava-Landweber theorem
and higher Greek letters. Generalized Greek letter elements.

In this section we will describe the Es-term of the Adams—Novikov spectral
sequence introduced at the end of the previous section. We begin by defining formal
group laws (1.3.1) and describing their connection with complex cobordism (1.3.4).
Then we characterize the Fs-term in terms of them (1.3.5 and 1.3.6). Next we
describe the Greek letter construction, an algebraic method for producing periodic
families of elements in the Fs-term. We conclude by commenting on the problem
of representing these elements in 7, (5).

Suppose T is a one-dimensional commutative analytic Lie group and we have
a local coordinate system in which the identity element is the origin. Then the
group operation 7" x T' — T can be described locally as a real-valued analytic
function of two variables. Let F(z,y) € R][[z,y]] be the power series expan-
sion of this function about the origin. Since 0 is the identity element we have
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F(z,0) = F(0,2) = x. Commutativity and associativity give F(z,y) = F(y,x)
and F(F(z,y),2) = F(x, F(y, z)), respectively.

1.3.1. DEFINITION. A formal group law over a commutative ring with unit R
is a power series F(xz,y) € R[[z,y]] satisfying the three conditions above. O

Several remarks are in order. First, the power series in the Lie group will have
a positive radius of convergence, but there is no convergence condition in the defini-
tion above. Second, there is no need to require the existence of an inverse because
it exists automatically. It is a power series i(z) € R][z]] satisfying F'(z,i(z)) = 0;
it is an easy exercise to solve this equation for i(z) given F. Third, a rigorous
self-contained treatment of the theory of formal group laws is given in Appendix 2.

Note that F(z,0) = F(0,7) = x implies that F = z +y mod (x,y)? and
that = + y is therefore the simplest example of an formal group law; it is called
the additive formal group law and is denoted by F,. Another easy example is the
multiplicative formal group law, F,, = x 4+ y+ ray for r € R. These two are known
to be the only formal group laws which are polynomials. Other examples are given
in A2.1.4.

To see what formal group laws have to do with complex cobordism and the
Adams—Novikov spectral sequence, consider MU*(CP*°), the complex cobordism
of infinite-dimensional complex projective space. Here MU™*(—) is the cohomol-
ogy theory dual to the homology theory MU.(—) (complex bordism) described in
Section 2. Like ordinary cohomology it has a cup product and we have

1.3.2. THEOREM. There is an element x € MU?(CP>) such that
MU (CP>) = MU (pt)][«]]

and
MU*(CP*® x CP*) = MU*(pt)[[xr® 1,1 ® z]].
O

Here MU*(pt) is the complex cobordism of a point; it differs from MU, (pt) (de-
scribed in 1.2.18) only in that its generators are negatively graded. The generator x
is closely related to the usual generator of H2(CP*), which we also denote by z.
The alert reader may have expected MU*(CP>) to be a polynomial rather than a
power series ring since H*(CP®°) is traditionally described as Z[z]. However, the
latter is really Z[[x]] since the cohomology of an infinite complex maps onto the in-
verse limit of the cohomologies of its finite skeleta. [MU*(CP™), like H*(CP"™), is a
truncated polynomial ring.] Since one usually considers only homogeneous elements
in H*(CP®), the distinction between Z[x] and Z[[z]] is meaningless. However, one
can have homogeneous infinite sums in MU*(CP) since the coefficient ring is
negatively graded.

Now CP is the classifying space for complex line bundles and there is a map
p: CP>*® x CP*® — CP corresponding to the tensor product; in fact, CP*° is
known to be a topological abelian group. By 1.3.2 the induced map p* in complex
cobordism is determined by its behavior on the generator x € MU?(CP*) and one
easily proves, using elementary facts about line bundles,

1.3.3. PROPOSITION. For the tensor product map p: CP>* x CP* — CP*,
p () = Fy(z®1,1®x) € MU*(pt)[[x ® 1,1 ® z]] is an formal group law over
MU*(pt). O
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A similar statement is true of ordinary cohomology and the formal group law
one gets is the additive one; this is a restatement of the fact that the first Chern
class of a tensor product of complex line bundles is the sum of the first Chern
classes of the factors. One can play the same game with complex K-theory and get
a multiplicative formal group law.

CP® is a good test space for both complex cobordism and K-theory. One
can analyze the algebra of operations in both theories by studying their behavior
in CP* (see Adams [5]) in the same way that Milnor [2] analyzed the mod (2)
Steenrod algebra by studying its action on H*(RP>;Z/(2)). (See also Steenrod
and Epstein [1].)

The formal group law of 1.3.3 is not as simple as the ones for ordinary co-
homology or K-theory; it is complicated enough to have the following universal

property.

1.3.4. THEOREM (Quillen [2]). For any formal group law F over any commuta-
tive ring with unit R there is a unique ring homomorphism 6: MU*(pt) — R such
that F(x,y) = 0Fy(z,y). O

We remark that the existence of such a universal formal group law is a triviality.
Simply write F(z,y) = Y a; 2"y’ and let L = Z[a;;]/I, where I is the ideal
generated by the relations among the a;; imposed by the definition 1.3.1 of an
formal group law. Then there is an obvious formal group law over L having the
universal property. Determining the explicit structure of L is much harder and was
first done by Lazard [1]. Quillen’s proof of 1.3.4 consisted of showing that Lazard’s
universal formal group law is isomorphic to the one given by 1.3.3.

Once Quillen’s Theorem 1.3.4 is proved, the manifolds used to define complex
bordism theory become irrelevant, however pleasant they may be. All of the ap-
plications we will consider follow from purely algebraic properties of formal group
laws. This leads one to suspect that the spectrum MU can be constructed some-
how using formal group law theory and without using complex manifolds or vector
bundles. Perhaps the corresponding infinite loop space is the classifying space for
some category defined in terms of formal group laws. Infinite loop space theorists,
where are you?

We are now just one step away from a description of the Adams—Novikov spec-
tral sequence Fa-term. Let G = {f(x) € Z[[z]] | f(z) = # mod (z)?}. Here G
is a group under composition and acts on the Lazard/complex cobordism ring
L = MU.(pt) as follows. For ¢ € G define an formal group law F; over L
by Fy(z,y) = g 'Fuy(g(z),9(y)). By 1.3.4 F, is induced by a homomorphism
04: L — L. Since g is invertible under composition, 4 is an automorphism and we
have a G-action on L.

Note that g(z) defines an isomorphism between F' and F,. In general, isomor-
phisms between formal group laws are induced by power series g(x) with leading
term a unit multiple (not necessarily one) of . An isomorphism induced by a ¢ in
G is said to be strict.

1.3.5. THEOREM. The Es-term of the Adams—Novikov spectral sequence con-
verging to w2 is isomorphic to H**(G; L). (I

There is a difficulty with this statement: since G does not preserve the grading
on L, there is no obvious bigrading on H*(G; L). We need to reformulate in terms
of L as a comodule over a certain Hopf algebra B defined as follows.



16 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

Let g € G be written as g(z) = > 5 biz" ™" with by = 1. Each b; for i > 0 can
be thought of as a Z-valued function on G and they generate a graded algebra of
such functions

B = Z[bl,bg, .. ] with dlmbl = 2i.

(Do not confuse this ring with L, to which it happens to be isomorphic.) The
group structure on G corresponds to a coproduct A: B — B ® B on B given by
A(b) = 30,50 b @bi, where b = 37,5 b; and by = 1 as before. To see this suppose

g(z) = ¢M (g (2)) with ¢¥)(z) = Zbgk)x”l Then we have

Z bzt = Z bz(-l) (Z b§2)xj+1)i+l

from which the formula for A follows. This coproduct makes B into a graded
connected Hopf algebra over which L is a graded comodule. We can restate 1.3.5 as

1.3.6. THEOREM. The Es-term of the Adams—Novikov spectral sequence con-
verging to m.(S) is given by Ey' = Ext}'(Z, L). O

The definition of this Ext is given in A1.2.3; all of the relevant homological
algebra is discussed in Appendix 1.

Do not be alarmed if the explicit action of G (or coaction of B) on L is not
obvious to you. It is hard to get at directly and computing its cohomology is a very
devious business.

Next we will describe the Greek letter construction, which is a method for
producing lots (but by no means all) of elements in the Es-term, including the oy’s
and G;’s seen in 1.2.19. We will use the language suggested by 1.3.5; the interested
reader can translate our statements into that of 1.3.6. Our philosophy here is that
group cohomology in positive degrees is too hard to comprehend, but H°(G; M)
(the G-module M will vary in the discussion), the submodule of M fixed by G, is
relatively straightforward. Hence our starting point is

1.3.7. THEOREM. HY(G; L) = Z concentrated in dimension 0. O

This corresponds to the 0-stem in stable homotopy. Not a very promising
beginning you say? It does give us a toehold on the problem. It tells us that the
only principal ideals in L which are G-invariant are those generated by integers and
suggests the following. Fix a prime number p and consider the short exact sequence
of G-modules

(1.3.8) 0L L—L/(p)— 0.
We have a connecting homomorphism
So: HY(G;L/(p)) — HY(G; L).

1.3.9. THEOREM. H(G;L/(p)) = Z/(p)[v1], where v1 € L has dimension q¢ =
2(p—1). O

1.3.10. DEFINITION. Fort > 0 let a; = do(vt) € Ey®". O

It is clear from the long exact sequence in cohomology associated with 1.3.8
that ay # 0 for all ¢ > 0, so we have a collection of nontrivial elements in the
Adams—Novikov Fs-term. We will comment below on the problems of constructing
corresponding elements in 7, (S); for now we will simply state the result.
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1.3.11. THEOREM. (a) (Toda [4, IV]) For p > 2 each oy is represented by
an element of order p in mg—1(S) which is in the image of the J-homomophism
(1.1.12).

(b) For p =2 ay is so represented provided t 3 mod (4). If t =2 mod (4)
then the element has order 4; otherwise it has order 2. It is in im J if t is even. O

Theorem 1.3.9 tells us that
(1.3.12) 0 — 29L/(p) = L/(p) — L/(p,v1) — 0
is an short exact sequence of G-modules and there is a connecting homomorphism
61: H'(G; L/ (p,v1)) — H™H(G; L/ (p)).
The analogs of 1.3.9 and 1.3.10 are

1.3.13. THEOREM. H°(G;L/(p,v1)) = Z/(p)[ve] where va € L has dimension
2(p? —1). O

1.3.14. DEFINITION. Fort >0 let 8; = 0p61(v}) € E§*t<P+1>q*Q. O

More work is required to show that these elements are nontrivial for p > 2, and
(1 = 0 for p = 2. The situation in homotopy is

1.3.15. THEOREM (Smith [1]). For p > 5 B is represented by a nontrivial
element of order p in T(pi1ytq—q—2(S°). O

You are probably wondering if we can continue in this way and construct v,
d¢, etc. The following results allow us to do so.

1.3.16. THEOREM (Morava [3], Landweber [4]). (a) There are elements v, € L
of dimension 2(p" — 1) such that I, = (p,v1,v2,...,0n—1) C L is a G-invariant
prime ideal for all n > 0.

(b) 0 — 22" -V /1, ™ L/I, — L/I,+1 — 0 is an short exact sequence of
modules with connecting homorphism

§: H(G;L/I,41) — HTY (G, L/1,).
(c) H(G; L/ 1) = Z/(p)[vn]-

(d) The only G-invariant prime ideals in L are the I, for 0 < n < oo for all
primes p. ([l

Part (d) above shows how rigid the G-action on L is; there are frightfully many
prime ideals in L, but only the I,, for various primes are G-invariant. Using (b)
and (c) we can make

1.3.17. DEFINITION. Fort,n > 0 let aE”) = 6001 ...0n-1(0}) € E". O

Here o™ stands for the nth letter of the Greek alphabet, the length of which
is more than adequate given our current state of knowledge. The only other known
result comparable to 1.3.11 or 1.3.15 is

1.3.18. THEOREM. (a) (Miller, Ravenel, and Wilson [1]) The element

2
Yt € Eg’tQ(p D= o ontrivial for allt >0 andp > 2.

(b) (Toda [1]) For p > 7 each 7y is represented by a nontrivial element of
order p in 71'1511(172-i-p-i-l)—tz(p-i-2)—3(SO)' U
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It is known that not all ; exist in homotopy for p = 5 (see 7.6.1). Part (b)
above was proved several years before part (a). In the intervening time there was a
controversy over the nontriviality of 1 which was unresolved for over a year, ending
in 1974 (see Thomas and Zahler [1]). This unusual state of affairs attracted the
attention of the editors of Science [1] and the New York Times [1], who erroneously
cited it as evidence of the decline of mathematics.

We conclude our discussion of the Greek letter construction by commenting
briefly on generalized Greek letter elements. Examples are 33,3 and 3/ (and
the elements in E21* of order > 3) in 1.2.19. The elements come via connecting
homomorphisms from H°(G;L/J), where J is a G-invariant regular (instead of

prime) ideal. Recall that a regular ideal (x, 1, ...,2,—1) C L is one in which each
x; is not a zero divisor modulo (zo, ..., z;—1). Hence G-invariant prime ideals are
regular as are ideals of the form (p,vi',...,v,"7'). Many but not all G-invariant

regular ideals have this form.

1.3.19. DEFINITION. [,/ (for appropriate s and t) is the image of v5 €
H(G; L/(p,vY)) and agyy 1 the image of v € HO(G; L/(ph)). O

Hence pay /e = a1, a1 = s, and 3/, = B¢ by definition.

Now we will comment on the problem of representing these elements in the
Es-term by elements in stable homotopy, e.g., on the proofs of 1.3.11, 1.3.15, and
1.3.18(b). The first thing we must do is show that the elements produced are
actually nontrivial in the Es-term. This has been done only for o’s, 8’s, and v’s.
For p = 2, 31 and 7, are zero but for ¢ > 1 3; and ~; are nontrivial; these results
are part of the recent computation of E22 " at p = 2 by Shimomura [1], which also
tells us which generalized 3’s are defined and are nontrivial. The corresponding
calculation at odd primes was done in Miller, Ravenel, and Wilson [1], as was that
of E,™ for all primes.

The general strategy for representing Greek letter elements geometrically is
to realize the relevant short exact sequences [e.g., 1.3.8, 1.3.12, and 1.3.16(b)] by
cofiber sequences of finite spectra. For any connective spectrum X there is an
Adams—Novikov spectral sequence converging to m.(X). Its Ea-term [denoted by
F5(X)] can be described as in 1.3.5 with L = MU, (S°) replaced by MU, (X ), which
is a G-module. For 1.3.8 we have a cofiber sequence

S0 2,59 - v(0),

where V' (0) is the mod (p) Moore spectrum. It is known (2.3.4) that the long exact
sequence of homotopy groups is compatible with the long exact sequence of Fo-
terms. Hence the elements v! of 1.3.9 live in E3?*(V(0)) and for 1.3.11(a) [which
says aq is represented by an element of order p in mg—1(S°) for p > 2 and ¢ > 0]
it would suffice to show that these elements are permanent cycles in the Adams—
Novikov spectral sequence for m.(V(0)) with p > 0. For ¢t = 1 (even if p = 2) one
can show this by brute force; one computes F2(V (0)) through dimension ¢ and sees
that there is no possible target for a differential coming from v; € Eg 1, Hence v;
is realized by a map

S — V(0)

If we can extend it to X2V (0), we can iterate and represent all powers of v1. We can
try to do this either directly, using obstruction theory, or by showing that V(0) is a
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ring spectrum spectrum. In the latter case our extension o would be the composite
SYIAV(0) — V(0) AV(0) — V(0),

where the first map is the original map smashed with the identity on V(0) and the
second is the multiplication on V(0). The second method is generally (in similar
situation of this sort) easier because it involves obstruction theory in a lower range
of dimensions.

In the problem at hand both methods work for p > 2 but both fail for p = 2. In
that case V(0) is not a ring spectrum and our element in 75(V(0)) has order 4, so it
does not extend to 32V (0). Further calculations show that v and v$ both support
nontrivial differentials (see 5.3.13) but v{ is a permanent cycle represented by map
S8 — V(0), which does extend to X8V (0). Hence iterates of this map produce the
homotopy elements listed in 1.3.11(b) once certain calculation have been made in
dimensions < 8.

For p > 2 the map a: £V (0) — V(0) gives us a cofibre sequence

$V(0) 2 V(0) — V(1),

realizing the short exact sequence 1.3.12. Hence to arrive at 1.3.15 (which describes

the #’s in homotopy) we need to show that vy € ES®T9(V(1)) is a permanent

cycle represented by a map which extends to 3: £tV (1) — V(1). We can do
this for p > 5 but not for p = 3. Some partial results for #’s at p = 3 and p = 2 are
described in Section 5.5.

The cofiber of the map ( (corresponding to vg) for p > 5 is called V(2) by
Toda [1]. In order to construct the 4’s [1.3.18(b)] one needs a map

v 2Dy (2) -V (2)

corresponding to vs. Toda [1] produces such a map for p > 7 but it is known not
to exist for p =5 (see 7.6.1).

Toda [1] first considered the problem of constructing the spectra V(n) above,
and hence of the representation of Greek letter elements in 7, (5), although that
terminology (and 1.3.16) was not available at the time. While the results obtained
there have not been surprassed, the methods used leave something to be desired.
Each positive result is proved by brute force; the relevant obstruction groups are
shown to be trivial. This approach can be pushed no further; the obstruction to
realizing vy lies in a nontrivial group for all primes (5.6.13). Homotopy theorists
have yet to learn how to compute obstructions in such situations.

The negative results of Toda [1] are proved by ingenious but ad hoc methods.
The nonexistence of V(1) for p = 2 follows easily from the structure of the Steenrod
algebra; if it existed its cohomology would contradict the Adem relation S¢?Sq? =
Sq*Sq?Sqt. For the nonexistence of V(2) at p = 3 Toda uses a delicate argument
involving the nonassociativity of the mod (3) Moore spectrum, which we will not
reproduce here. We will give another proof (5.5.1) which uses the multiplicative
structure of the Adams—Novikov Fs-term to show that the nonrealizability of 84 €
Eg’ﬁo, and hence of V/(2), is a formal consequence of that of 33/5 € E§’36. This was
shown by Toda [2, 3] using an extended power construction, which will also not
be reproduced here. Indeed, all of the differentials in the Adams—Novikov spectral
sequence for p = 3 in the range we consider are formal consequences of that one in
dimension 34. A variant of the second method used for V(2) at p = 3 works for
V(3) (the cofiber of ) at p = 5.
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4. More Formal Group Law Theory, Morava’s Point of View, and the
Chromatic Spectral Sequence

The Brown—Peterson spectrum. Classification of formal group laws. Morava’s
group action, its orbits and stabilizers. The chromatic resolution and the chromatic
spectral sequence. Bockstein spectral sequences. Use of cyclic subgroups to detect
Arf invariant elements. Morava’s vanishing theorem. Greek letter elements in the
chromatic spectral sequence.

We begin this section by introducing B P-theory, which is essentially a p-local
form of MU-theory. With it many of the explicit calculations behind our results
become a lot easier. Most of the current literature on the subject is written in
terms of BP rather than MU. On the other hand, BP is not essential for the
overall picture of the Fs-term we will give later, so it could be regarded as a
technicality to be passed over by the casual reader. Next we will describe the
classification of formal group laws over an algebraically closed field of characteristic
p. This is needed for Morava’s point of view, which is a useful way of understanding
the action of G on L (1.3.5). The insights that come out of this approach are
made computationally precise in the chromatic spectral sequence , which is the
pivotal idea in this book. Technically the chromatic spectral sequence is a trigraded
spectral sequence converging to the Adams—Novikov Es-term; heuristically it is like
a spectrum in the astronomical sense in that it resolves the FEs-term into various
components each having a different type of periodicity. In particular, it incorporates
the Greek letter elements of the previous section into a broader scheme which
embraces the entire Fs-term.

BP-theory began with Brown and Peterson [1] (after whom it is named), who
showed that after localization at any prime p, the MU spectrum splits into an
infinite wedge suspension of identical smaller spectra subsequently called BP. One
has

(1.4.1) T (BP) = Zy)[v1,v2, .. .],

where Z,) denotes the integers localized at p and the v,’s are the same as the
generators appearing in the Morava—Landweber theorem 1.3.16. Since dimwv, =
2(p™ — 1), this coefficient ring, which we will denote by BP;, is much smaller than
L = m,(MU), which has a polynomial generator in every even dimension.

Next Quillen [2] observed that there is a good formal group law theoretic reason
for this splitting. A theorem of Cartier [1] (A2.1.18) says that every formal group
law over a Z,)-algebra is canonically isomorphic to one in a particularly convenient
form called a p-typical formal group law (see A2.1.17 and A2.1.22 for the definition,
the details of which need not concern us now). This canonical isomorphism is
reflected topologically in the above splitting of the localization of MU. This fact
is more evidence in support of our belief that MU can somehow be constructed in
purely formal group law theoretic terms.

There is a p-typical analog of Quillen’s theorem 1.3.4; i.e., BP*(CP®°) gives us
a p-typical formal group law with a similar universal property. Also, there is a BP
analog of the Adams—Novikov spectral sequence, which is simply the latter tensored
with Z,); i.e., its Ep-term is the p-component of H*(G; L) and it converges to the
p-component of 7, (S) However, we encounter problems in trying to write an analog
of our metaphor 1.3.5 because there is no p-typical analog of the group G.
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In other words there is no suitable group of power series over Z,) which will
send any p-typical formal group law into another. Given a p-typical formal group
law F over Z, there is a set of power series g € Z,)[[2]] such that g~ F(g(z), g(y))
is also p-typical, but this set depends on F. Hence Hom(BP;, K) the set of p-typical
formal group laws over a Z,)-algebra K, is acted on not by a group analogous to G,
but by a groupoid.

Recall that a groupoid is a small category in which every morphism is an
equivalence, i.e., it is invertible. A groupoid with a single object is a group. In
our case the objects are p-typical formal group laws over K and the morphisms are
isomorphisms induced by power series g(z) with leading term z.

Now a Hopf algebra, such as B in 1.3.6, is a cogroup object in the category
of commutative rings R, which is to say that Hom(B, R) = G is a group-valued
functor. In fact Gg is the group (under composition) of power series f(z) over R
with leading term z. For a p-typical analog of 1.3.6 we need to replace b by co-
groupoid object in the category of commutative Z,)-algebras K. Such an object is
called a Hopf algebroid (A1.1.1) and consists of a pair (A4,I") of commutative rings
with appropriate structure maps so that Hom(A, K) and Hom(T', K) are the sets of
objects and morphisms, respectively, of a groupoid. The groupoid we have in mind,
of course, is that of p-typical formal group laws and isomorphisms as above. Hence
BP, is the appropriate choice for A; the choice for T' turns out to be BP,(BP), the
BP-homology of the spectrum BP. Hence the p-typical analog of 1.3.6 is

1.4.2. THEOREM. The p-component of the Eo-term of the Adams—Novikov spec-
tral sequence converging to m.(S) is

Extpp, (sp)(BPs, BP.). U

Again this Ext is defined in A1.2.3 and the relevant homological algebra is
discussed in Appendix 1.

We will now describe the classification of formal group laws over an algebraically
closed field of characteristic p. First we define power series [m]r(x) associated with
an formal group law F and natural numbers m. We have [0]r(z) =0, [1]r(z) = z,
and [m]p(z) = F(x,[m—1]p(z)). An easy lemma (A2.1.6) says that if F' is defined
over a field of characteristic p, then [p]r(z) is in fact a power series over " with
leading term ax?", a # 0, for some n > 0, provided F is not isomorphic to the
additive formal group law, in which case [p]p(z) = 0. This integer n is called the
height of F', and the height of the additive formal group law is defined to be oc.
Then we have

1.4.3. CLASSIFICATION THEOREM (Lazard [2]).

(a) Two formal group laws defined over the algebraic closure of F,, are isomor-
phic iff they have the same height.

(b) If F is nonadditive, its height is the smallest n such that 6(v,) # 0, where
0: L — K is the homomorphism of 1.3.4 and v, € L is as in 1.3.16, where Kis
finite field. O

Now we come to Morava’s point of view. Let K = Fp, the algebraic closure of
the field with p elements, and let Gx C K[[z]] be the group (under composition) of
power series with leading term x. We have seen that G acts on Hom(L, K), the
set formal group laws defined over K. Since L is a polynomial ring, we can think of
Hom(L, K) as an infinite-dimensional vector space V over K; a set of polynomial
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generators of L gives a topological basis of V. For a vector v € V, let F, be the
corresponding formal group law.

Two vectors in V are in the same orbit iff the corresponding formal group laws
are strictly isomorphic (strict isomorphism was defined just prior to 1.3.5), and
the stabilizer group of v € V (i.e., the subgroup of Gk leaving V fixed) is the
strict automorphism group of F,. This group S,, (where n is the height) can be
described explicitly (A2.2.17); it is a profinite group of units in a certain p-adic
division algebra, but the details need not concern us here. Theorem 1.4.3 enables
us to describe the orbits explicitly.

1.4.4. THEOREM. There is one Gi-orbit of V' for each height as in 1.4.3. The
height n orbit V,, is the subset defined by v; =0 for i <n and v, # 0. O

Now observe that V is the set of closed points in Spec(L,, ® K'), and V;, is the set
of closed points in Spec(L,, ® K ), where L,, = v, 'L/I,,. Here V,, is a homogeneous
G i-space and a standard change-of-rings argument gives

1.4.5. CHANGE-OF-RINGS THEOREM. H*(Gg; L, ® K) = H*(Sy; K). O

We will see in Chapter 6 that a form of this isomorphism holds over F,, as well as
over K. In it the right-hand term is the cohomology of a certain Hopf algebra [called
the nth Morava stabilizer algebra ¥(n)] defined over F,, which, when tensored with
F,~, becomes isomorphic to the dual of Fpn[Sy,], the Fyn-group algebra of .S,,.

Now we are ready to describe the central construction of this book, the chro-
matic spectral sequence, which enables us to use the results above to get more
explicit information about the Adams—Novikov Fs-term. We start with a long
exact sequence of G-modules, called the chromatic resolution

(1.4.6) 0 L®Zy — M — M — ...
defined as follows. M° = L® Q, and N is the cokernel in the short exact sequence

0—>L®Z(p)—>MO—>N1—>O.
M™ and N™ are defined inductively for n > 0 by short exact sequences
(1.4.7) 0— N"— M"™— N""t 0,
where M™ = v,;!N™. Hence we have

N'=L®Q/Zy =limL/(p") = L/(p™)
and
Nl = lim L/(p*,vit, ..., 000) = L/ (™, 077, .. 0p0).

The fact that these are short exact sequences of G-modules is nontrivial. The long
exact sequence 1.4.6 is obtained by splicing together the short exact sequences 1.4.7.
In Chapter 5, where the chromatic spectral sequence is described in detail, M™ and
N™ denote the corresponding objects defined in terms of BP,. In what follows here

Extp(Z, M) will be abbreviated by Ext(M) for a B-module (e.g., G-module) M.
Standard homological algebra (A1.3.2) gives

1.4.8. PROPOSITION. There is a spectral sequence converging to Ext(L ® Z,))
with E7"* = Ext*(M™), d,: E™* — ErTs=r+1and dy @ Ext(M™) — Ext(M"+1)
being induced by the maps M™ — M"™! in 1.4.6. [E%® is a subquotient of
Ext"ts (L (09 Z(p))] [l
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This is the chromatic spectral sequence. We can use 1.4.5 to get at its £ term
as follows. Define G-modules M for 0 < i < n by M7y = M", and M is the
kernel in the short exact sequence

(1.4.9) 0— M — M, 2“5 M| — 0,

where vg = p. This gives M = L,, = v,;'L/I,, so the F,-analog of 1.4.5 describes
Ext(M?) in terms of the cohomology of the stabilizer group S,,. Equation 1.4.9 gives
a long exact sequence of Ext groups of a Bockstein spectral sequence computing
Ext(M! ) in terms of Ext(M). Hence in principle we can get from H*(S,)
to Ext(M™), although the Bockstein spectral sequences are difficult to handle in
practice.

Certain general facts about H*(.S,,) are worth mentioning here. If (p—1) divides
n then this cohomology is periodic (6.2.10); i.e., there is an element ¢ € H*(S,,; F))
such that H*(S,;F)) is a finitely generated free module over F,[c|. In this case S,
has a cyclic subgroup of order p to whose cohomology c¢ restricts nontrivially. This
cohomology can be used to detect elements in the Adams—Novikov Es-term of high
cohomological degree, e.g., to prove

1.4.10. THEOREM. For p > 2, all monomials in the B,y (1.3.19) are nontriv-
tal. (]

If n is not divisible by p — 1 then S, has cohomological dimension n?; i.e.,
H(S,) = 0if i >n? and H*(S,) has a certain type of Poincaré duality (6.2.10).
It is essentially the cohomology of a certain n-stage nilpotent Lie algebra (6.3.5),
at least for n < p — 1. The cohomological dimension implies

1.4.11. MORAVA VANISHING THEOREM. If (p — 1) t n, then in the chromatic
spectral sequence (1.4.8) E7"® =0 for s > n?. O

It is also known (6.3.6) that every sufficiently small open subgroup of S,, has
the same cohomology as a free abelian group of rank n2. This fact can be used to
get information about the Adams—Novikov spectral sequence Fs-term for certain
Thom spectra (6.5.6).

Now we will explain how the Greek letter elements of 1.3.17 and 1.3.19 appear in
the chromatic spectral sequence. If J is a G-invariant regular ideal with n generators
[e.g., the invariant prime ideal I,, = (p,v1,...,vn—1)], then L/J is a submodule of
N™ and M", so Ext’(L/J) c Ext®(N") c Ext’(M™) = E}°. Recall that the
Greek letter elements are images of elements in Ext®(J) under the appropriate
composition of connecting homomorphisms. This composition corresponds to the
edge homomorphism Ej 0, E™0 in the chromatic spectral sequence. [Note that
every element in the chromatic Ej Ois a permanent cycle; i.e., it supports no
nontrivial differential although it may be the target of one. Elements in EI”O
coming from Ext(L/.J) lift to Ext(N™) are therefore in kerd; and live in E5*°]
The module N™ is the union of the L/J over all possible invariant regular ideals J
with n generators, so Ext’(N™) contains all possible nth Greek letter elements.

To be more specific about the particular elements discussed in Section 3 we must
introduce chromatic notation for elements in N™ and M". Such elements will be

written as fractions § with z € L and y = povh .. v with all exponent positive,
which stands for the image of y in L/J C N™ where J = (p',v}',...,v,"7'). Hence

x/y is annihilated by J and depends only on the mod J reduction of x. The usual
rules of addition, subtraction, and cancellation of fractions apply here.
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1.4.12. PROPOSITION. Up to sign the elements aﬁ"’ (1.3.17), e and By
(1.3.19) are represented in the chromatic spectral sequence by vt /pvi---v,_1 €
Eg’o, vi/pt € EQLO, and v /pv} € E;’O, respectively. (I

The signs here are a little tricky and come from the double complex used
to prove 1.4.8 (see 5.1.18). The result suggests elements of a more complicated
nature; e.g., /4, stands for vg/pilvzf, with the convention that if ¢; = 1 it is
omitted from the notation. The first such element with i1 > 1is 2/, 2. We also
remark that some of these elements require correcting terms in their numerators;
e.g., (v} + 8viv2)/2* (but not v{/2%) is in Ext’(N') and represents a4, which
corresponds to the generator o € . (S?).

We will describe E7"" for n < 1 at p > 2. For all primes Elo’O = Q (concentrated
in dimension 0) and E"® = 0 for s > 0. For p > 2, ;" = 0 for s > 1 and
BN =Q/ Z,) concentrated in dimension 0, and B} is trivial in dimensions not
divisible by ¢ = 2(p—1) = dimv; and is generated by all elements of the form v} /pt
for t € Z. Hence if p is the largest power of p dividing ¢, then E;*° ~ Z/(p*!) in
dimension ¢t, and in dimension 0, Ell’o = Q/Z,.

The differential d; : Elo’O — E;’O is the usual map Q — Q/Z,). Its kernel Z,)
is Ext”(L ® Zy)). On By = Q/Zy) the kernel of dy is trivial, so By = Ey> =0
and Ext*(L ® Zy)) = EZ°. On E}"°; the kernel of d; consists of all elements in
nonnegative dimensions. Since the Q/Z,) in dimension 0 is hit by dy, E21 0 consists
of the positive dimensional elements in £;” and this group is Ext!(L ® Z)). In
7.(S°) it is represented by the p-component of im J.

Now the chromatic E1-term is periodic in the following sense. By defintion,

M" =limv, ' L/J,
where the direct limit is over all invariant regular ideals J with n generators. For
each J, Ext’(v; ' L/.J) contains some power of v,, say v¥. Then Ext(v;, *L/J) is a
module over Z, [vE, v~F], i.e., multiplication by v¥ is an isomorphism, so we say
that this Ext is v,,-periodic. Hence E]"* = Ext(M™) is a direct limit of such groups.
We may say that an element in the Adams-Novikov spectral sequence Ea-term is
vp-periodic if it represents an element in E7:* of the chromatic spectral sequence.

Hence the chromatic spectral sequence F..-term is the trigraded group as-
sociated with the filtration of Ext(L ® Z,)) by v,-periodicity. This filtration is
decreasing and has an infinite number of stages in each cohomological degree. One
sees this from the diagram

Ext®(N%) «— Ext* '(N!) ... — Ext’(N?)

where N® = L®Z,); the filtration of Ext(N?) is by images of the groups Ext(N™).
This local finiteness allows us to define an increasing filtration on Ext(N?) by
F;Ext®(N°) = imExt’(N*~%) for 0 < i < s, and Fy Ext(N) is the subgroup of
Greek letter elements in the most general possible sense.

5. Unstable Homotopy Groups and the EHP Spectral Sequence

The EHP sequences. The EHP spectral sequence. The stable zone. The
inductive method. The stable EHP spectral sequence. The Adams vector field
theorem. James periodicity. The J-spectrum. The spectral sequence for J,(RP)
and J,(BX,). Relation to the Segal conjecture. The Mahowald root invariant.
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In this section we will describe the EHP sequence, which is an inductive method
for computing m,4x(S™) beginning with our knowledge of m,.(S1) (1.1.7). We will
explain how the Adams vector field theorem, the Kervaire invariant problem, and
the Segal conjecture are related to the unstable homotopy groups of spheres. We will
not present proofs here or elsewhere in the book, nor will we pursue the topic further
except in Section 3.3. We are including this survey here because no comparable
exposition exists in the literature and we believe these results should be understood
by more than a handful of experts. In particular, this section could serve as an
introduction to Mahowald [4]. For computations at the prime 3, see Toda [8],
which extends the known range for unstable 3-primary homotopy groups from 55
to 80.

The EHP sequences are the long exact sequences of homotopy groups associated
with certain fibration constructed by James [1] and Toda [6]. There is a different
set of fibrations for each prime p. All spaces and groups are assumed localized at
the prime in question. We start with p = 2. There we have a fibration

(1.5.1) S — Qs - et

which gives the long exact sequence

(1.5.2)
s T (S™) B T (S I e (57 D w1 (87 — -

Here E stands for Einhdngung (suspension), H for Hopf invariant, and P for White-
head product. If n is odd the fibration is valid for all primes and it splits at odd
primes, so for p > 2 we have

Tom+k(S%™) = Tomik—1(S*™ 1) © Mo (S*™ 7).

This means that even-dimensional spheres at odd primes are uninteresting. Instead
one considers the fibration

(1.5.3) §2m _, Qg2mtl _, g2mtl

where the second map is surjective in H.( ;Z(,)), and 52m is the (2mp—1)-skeleton
of Q52 +1 which is a CW-complex with p — 1 cells of the form S?™ Ue*™ U---U
e2(P=1m The corresponding long exact sequence is

(15.4) - — m(S2™) TN Tipq (G2 A, i1 (S2PMHL Ei mi1(S2™) = -
There is also a fibration

(1.5.5) R Y 0 S Y 0 X it

which gives

(1.5.6) - —m 1 (S? ) & (82 L sy B (82 1) — -

1.5.4 and 1.5.6 are the EHP sequences for odd primes. Note that for p = 2,
§2m — §2m and both sequences coincide with (1.5.2).

For each prime these long exact sequences fit together into an exact couple
(2.1.6) and we can study the associated spectral sequence, namely

1.5.7. PROPOSITION.
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(a) For p = 2 there is a spectral sequence converging to 7> (stable homotopy)
with
BEY" =men(S*Y and  d,: BPM — EFTLROT
EF is the subquotient im my, 41 (S™)/im mp -1 (S™71) of 7. There is a similar
spectral sequence converging to m.(S7) with Ef" as above for n < j and Ef" =0
forn>j.
(b) For p > 2 there are similar spectral sequences with

k,2m+1 2 1 k.2m __ 2pm—1
El = Tk+2m+1 (S pmt ) and El = Tk+2m (S pm )

The analogous spectral sequence with Efn =0 for n > j converges to m.(S7) if j
is odd and to m.(S7) if j is even. O

This is the EHP spectral sequence. We will explain below how it can be used

to compute 7,4 (S™) [or M1k (S™) if n is even and p is odd] by double induction
on n and k. First we make some easy general observations.

1.5.8. PROPOSITION.

a) For all primes EM = Tk (SY), which is Z or k=0 and 0 for k > 0.
1 (p)

(b) Forp=2, E¥" =0 fork <n—1.

(c) Forp=2, EF" = T pir Jor k <3n—3.

d) Forp > 2, E¥*™ T =0 for k < gm and E¥*™ =0 for k < gqm — 1, where

1 1
q=2(p—1).

e) For p > 2, EFmtl — S or k < glpm + m+ 1) — 2, and

1 k—gqm

B2 = Mo p1_qm Jor k < q(pm +m) —3. O

Part (b) follows from the connectivity of the (2n — 1)-sphere and similarly for
(d); these give us a vanishing line for the spectral sequence. (c) and (e) follow from
the fact that mom,—14%(S?™~ 1) = 77 for k < gm — 2, which is in turn a consequence
of 1.5.7. We will refer to the region where n —1 < k and Ef" is a stable stem as
the stable zone.

Now we will describe the inductive aspect of the EHP spectral sequence. As-
sume for the moment that we know how to compute differentials and solve the group
extension problems. Also assume inductively that we have computed E}” for all
(i,7) with i < k and all (k,j) for j > n. For p = 2 we have EF"™ = m, (52 1).
This group is in the (k —n + 1)-stem. If n = 1, this group is m14x(S*), which is
known, so assume n > 1. If n = 2 this group is 71, (S?%), which is 0 for k =0, Z
for k =1, and for k£ > 1 is the middle term in the short exact sequence

0— E§_1’2 — My2(S®) — kerd; C E§_1’3 — 0.

Note that E§ ~12 s the cokernel of the d; coming from Ef  and is therefore known
by induction. Finally, if n > 2, EF'™ = m,,1(52"!) can be read off from the
already computed portion of the EHP spectral sequence as follows. As in 1.5.7 one
obtains a spectral sequence for 7, (S%" 1) by truncating the EHP spectral sequence,
i.e., by setting all Ef’m =0 for m > 2n — 1. The group m,4+%(S?"1) lies in a stem
which is already known, so we have Ef """ Similar remarks apply to odd primes.
We will illustrate the method in detail for p = 2 by describing what happens for
0 <k <7inFIG. 1.5.9. By 1.5.8(c) we have EF"™' = 75 = Z. Let 2, denote the
standard generator of this group. We will see below (1.5.13) that d;(zr) = 2x5_1



Sl

S3

55

57

SQ

Sll

513

515

Z Z/(2) Z/(2) Z/(8) 0 0 Z/(2) Z/(16)
0 1 2 3 4 5 6 7
1 Zo
111
2 T1 1 11 21 211 2111 v,
111
21
3 1) 1 11 x 3 31 311
111
21 \
4 .’IJ3\ ].\ ].].\ 3 \
\ 111
2 21
5 T4 1 11 3
6 T5 «_ 1 11
2
7 T6 1
8 T7

F1GURE 1.5.9. The EPSS for p =2 and k£ < 7.

HONANOHAS TVHLOAdS dHH @HI ANV SdNOYD AJOLOWOH ATIVISNAN ‘G



28 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

for even positive k and d; () = 0 otherwise. Hence Ey? = EL2 = 75 = Z/(2), so
Ef’k =Z/(2) for all kK > 2. We denote the generator of each of these groups by 1
to indicate that, if the generator is a permanent cycle, it corresponds to an element
whose Hopf invariant suspends to the element corresponding to z;. Now the first
such generator, that of Ef’2, is not hit by a differential, so we have Ef’k_l =
Tok—1(S?F73) = Z/(2) for all k > 3. We denote these generators by 11, to indicate
that their Hopf invariants each desuspend to elements with Hopf invariant z;.

In general we can specify an element o € 7,4,(S™) by a sequence of integers
adding up to k as follows. Desuspend o as far as possible, say to S™T! integer
is then m (necessarily < k) and the desuspended d has a Hopf invariant 5 €
a1k (S?™TL). To get the second integer we desuspend 3, and so forth. After a
finite number of steps we get an element with Hopf invariant in the zero stem and
stop the process. Of course there is some indeterminacy in desuspending but we
can ignore it for now. We call this sequence of integers the serial number of a. In
F1c. 1.5.9 we indicate each element of Ef" = T4k (5?7 1) by its serial number.
In almost all cases if pa # 0, its serial number differs from that of « itself.

To get back to F1G. 1.5.9, we now have to determine the groups Ef’kft =
Tok—2(S%F75) for k > 4, which means examining the 3-stem in detail. The groups

Ef’ 2 and E13 3 are not touched by differentials, so there is an short exact sequence
0— E¥? — 16(S°%) — E>® = 0.

The two end terms are Z/(2) and the group extension can be shown to be nontrivial,
so Ef? = 16(S%) = Z/(4). Using the serial number notation, we denote the
generator by 21 and the element of order 2 by 111. Similarly one sees 75(S5%) =
Z/(2), 7(S*) = Z ® Z/(4) and there is an short exact sequence

0 — m6(S%) — 715(S°) — E3* — 0.

Here the subgroup and cokernel are Z/(4) and Z/(2), respectively, and the group
extension is again nontrivial, so 75(S%) = EX*~% = Z/(8) for k > 5. The generator
of this group is the suspension of the Hopf map v: S7 — S* and is denoted by 3.

To determine Ef’k*3 = Top_3(S?*=7) for k > 5 we need to look at the 4-stem,
i.e., at the column E**. The differentials affecting those groups are indicated on
the chart. Hence we have Ey? = 0 so m7(S%) = E>? = Z/(2); the dy hitting E}®
means that the corresponding element dies (i.e., becomes null homotopic) when
suspended to m9(S®); since it first appears on S% we say it is born there. Similarly,
the generator of EfA corresponds to an element that is born on S* and dies on S°
and hence shows up in EY® = 7(S%). We leave it to the reader to determine the
remaining groups shown in the chart, assuming the differentials are as shown.

We now turn to the problem of computing differentials and group extensions
in the EHP spectral sequence. For the moment we will concentrate on the prime 2.
The fibration 1.5.1 can be looped n times to give

Qnsn N Qn-l—lsfn-i-l N Qn+1 S2n+1 .

In Snaith [1] a map is constructed from Q2"S™ to QRP™ ! which is compatible with
the suspension map Q"S™ — Q"1§" 1. (Here QX denotes lim Q*%*X.) Hence
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we get a commutative diagram

(1510) Qnen —— ntlgntl — = n+1g2n+l

| | |

QRP”71 - o QRP" - o an

where both rows are fibre sequences and the right-hand vertical map is the standard
inclusion. The long exact sequence in homotopy for the bottom row leads to an
exact couple and a spectral sequence as in 1.5.7. We call it the stable EHP spectral
sequence.

There is an odd primary analog of 1.5.10 in which RP™ is replaced by an
appropriate skeleton of BY,, the classifying space for the symmetric group on p
letters. Recall that its mod (p) homology is given by

Z/(p) ifi=0or —1 mod (q)

(1.5.11) Hi(BXy; 2/(p)) = {() otherwise.

1.5.12. PROPOSITION. (a) For p = 2 there is a spectral sequence converging
to w2 (RP>) (stable homotopy of RP>) with Ef" = T 4y Jor n > 2 and
dy: EF™ — EFLn=r Here EX™ is the subquotient im wf (RP™~ 1)/ im 7y (RP"2)
of m (RP>). There is a similar spectral sequence converging to w5 (RPI~1) with
Ef" as above for n < j and Efn =0 forn>j.

(b) For p > 2 there is a similar spectral sequence converging to w2 (BYX,) with
Ef’2m+1 = 7 and Ef’2m = Tkt1—mq- 1here is a similar spectral sequence with
EF"™ =0 for n > j converging to wf(BEl(fz)j*l) if j is even and to m, (BE,(,q)(jfl))
if j is odd.

(c) There are homomorphisms to these from the corresponding EHP spectral
sequences of 1.5.7 induced by suspension on the Fy level, e.g., at p = 2 by the
suspension map Tgin(S*L) — Wlf—n-rl' Hence the Ei-terms are isomorphic in
the stable zone.

We remark that this stable EHP spectral sequence is nothing but a reindexed
form of the Atiyah—Hirzebruch spectral sequence (see Adams [4], Section 7) for
73(BY,). In the latter one has Ey* = H(BY,;n;) and this group is easily seen

to be E§+t"f(s) in the EHP spectral sequence where

£(5) s/(p—1)+1 ifs=0 mod (2p—2)
S) =

(s+1)/(p—1) ifs=-1 mod (2p—2).

Since everything in 1.5.12 is stable one can use stable homotopy theoretic meth-
ods, such as the Adams spectral sequence and K-theory, to compute differentials
and group extensions. This is a major theme in Mahowald [1]. Differentials origi-
nating EF*+1 for p = 2 correspond to attaching maps in the cellular structure of
R P, and similarly for p > 2. For example, we have

1.5.13. PROPOSITION. In the stable EHP spectral sequence (1.5.12), the differ-
ential dy : Ef" — Ef_l’"_l is multiplication by p if k is even and trivial if k is
odd. (I

Another useful feature of this spectral sequence is James periodicity: for each r
there is a finite i and an isomorphism EF" ~ EFtaP 7 +2P" which commutes with
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differentials (note that ¢ = 2 when p = 2). This fact is a consequence of the vector
field theorem and will be explained more fully below (1.5.18).

For p = 2, the diagram 1.5.10 can be enlarged as follows. An element in the
orthogonal group O(n) gives a homeomorphism S"~1 — $"~1. Suspension gives
a basepoint-preserving map S™ — S™ and therefore an element in Q™S™. Hence
we have a map J: O(n) — Q"S™ (compare 1.1.12). We also have the reflection
map r: RP"! — O(n) sending a line through the origin in R™ to the orthogonal
matrix corresponding to reflection through the orthogonal hyperplane. Combining
these we get

RP"

Sn

On+1) ——= gn

|

Qnsn - S Qn+1 Sn+1 - s Qn+182n+1

|

QRP" ! — QRP" —— = QS™

(1.5.14) RP1

O(n)

Here the top row is a cofiber sequence while the others are fiber sequences. The
right-hand vertical maps are all suspensions, as is the composite RP" — QRP".
The second row leads to a spectral sequence (which we call the orthogonal spectral
sequence) converging to m.(O) which maps to the EHP spectral sequence. The map
on Ef" = m(S™71) is an isomorphism for k < 2n—3 by the Freudenthal suspension
theorem 1.1.10. The middle right square of this diagram only commmutes after a
single looping. This blemish does not affect calculations of homotopy groups.

Hence we have three spectral sequences corresponding to the three lower rows
of 1.5.14 and converging to 7.(O), the 2-component of 72, and 7 (RP>). In
all three we have generators xj € Ef #+1 — 7 and we need to determine the first
nontrivial differential (if any exists) on it for & odd. We will see that this differential
always lands in the zone where all three spectral sequences are isomorphic. In the
orthogonal spectral sequence zj, survives to FE, iff the projection O(k + 1)/O(k +
1 —7r) — S* admits a cross section. It is well known (and easy to prove) that such
a cross section exists iff S¥ admits  — 1 linearly independent tangent vector fields.
The question of how many such vector fields exist is the vector field problem, which
was solved by Adams [16] (see 1.5.16). We can give equivalent formulations of the
problem in terms of the other two spectral sequences.

1.5.15. THEOREM (James [2, 3]). The following three statements are equivalent:

(a) S*=1 admits v — 1 linearly independent tangent vector fields.

(b) Let v be the generator of map_1(S?*~1) = Z. Then P(1) € ma_3(Sk71)
(see 1.5.2) desuspend to Top_r_o(SF7T).

(c) The stable map RP*~'/RP*" — Sk=1 admits a cross section. O
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The largest possible r» above depends on the largest powers of 2 dividing k£ + 1.
Let k = 29(2s5 + 1),

2j ifj=1or2 mod (4)
d(j)=42j+1 ifj=0 mod (4)
27+2 ifj=3 mod (4)

and p(k) = 6()).

1.5.16. THEOREM (Adams [16]).

(a) With notation as above, S*~1 admits p(k) — 1 linearly independent tangent
vector fields and no more.

(b) Let &g =2 € w5 and for j > 0 let &; denote the generator of im J in wf(j)fl
(see 1.5.15 (c¢)). Then in the 2-primary EHP spectral sequence (1.5.7) dg(j)(xr—1)
is the (nontrivial) image of &; in Ez(_]?k_] (]

We remark that the p(k) — 1 vector fields on S* were constructed long ago by
Hurwitz and Radon (see Eckmann [1]). Adams [16] showed that no more exist by
using real K-theory to solve the problem as formulated in 1.5.15(c).

Now we turn to the odd primary analog of this problem, i.e., finding differentials
on the generators xqr—1 of Ei’kil’% = Z. We know of no odd primary analog of
the enlarged diagram 1.5.14, so we have no analogs of 1.5.15(a) or 1.5.16(a), but
we still call this the odd primary vector field problem. The solution is

1.5.17. THEOREM (Kambe, Matsunaga and Toda [1]). Let &; generate im J C
moiy (L1.12), let xqp_1 generate E?12% iy the EHP spectral sequence (1.5.7)
for an odd prime p (here ¢ = 2p — 2), and let k = p’s with s not divisible by p.

Th/fn x,]]ck_¥ lives to Eajyo and dojro(Tgp—1) s the (nontrivial) image of &j+1 in
Egj—2,2 —2]—2' O

Now we will explain the James periodicity referred to above. For p = 2 let
RP} = RP"/RP™ ! for m < n. There is an i depending only on n —m such that
RP:;%;? ~ ZTHRP],‘I, a fact first proved by James [3]. To prove this, let A be
the canonical real line bundle over RP™"~™. Then RP, is the Thom space for mA.

The reduced bundle A — 1 is an element of finite order 2¢ + 1 in KO*(RP™ ™), so

(21 £ m)X = mA+27*! and the respective Thom spaces RP:;gi and ©2'RP"
are equivalent. The relevant computations in KO*(RP™ ™) are also central to the
proof of the vector field theorem 1.5.16. Similar statements can be made about the
odd primary case. Here one replaces A by the CP~! bundle obtained by letting 3,
act via permutation matrices on CP and splitting off the diagonal subspace on
which X, acts trivially.

For p = 2 one can modify the stable EHP spectral sequence to get a spectral
sequence converging to m.(RP?) by setting Ef’j =0forj<m-—1andj>n-—1.
Clearly the d,.: EF" — EF=1n=" in the stable EHP spectral sequence is the same
as that in the spectral sequence for . (RP”~! |) and similar statements can be
made for p > 2, giving us

1.5.18. JAMES PERIODICITY THEOREM. In the stable EHP spectral sequence

(1.5.12) there is an isomorphism EF™ — Ef*qpi7"+2pi commuting with d,, where
i=[r/2]. O
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Note that 1.5.17 is simpler than its 2-primary analog 1.5.16(b). The same is
true of the next question we shall consider, that of the general behavior of elements
in im J in the EHP spectral sequence. It is ironic that most of the published work
in this area, e.g., Mahowald [2, 4], is concerned exclusively with the prime 2, where
the problem appears to be more difficult.

Theorem 1.5.17 describes the behavior of the elements z4;—; in the odd primary
EHP spectral sequence and indicates the need to consider the behavior of im J.
The elements &; and their multiples occur in the stable EHP spectral sequence
in the groups E¥* "2 and E*~ 12" for all k > m. To get at this question
we use the spectrum J, which is the fibre of a certain map bu — X2bu, where
bu is the spectrum representing connective complex K-theory, i.e., the spectrum
obtained by delooping the space Z x BU. There is a stable map S° — J which
maps im.J C 72 isomorphically onto m.(J). The stable EHP spectral sequence,
which converges to 72(BY,), maps to a similar spectral sequence converging to
J«(BXp) = m(J A BX,). This latter spectral sequence is completely understood
and gives information about the former and about the EHP spectral sequence itself.

1.5.19. THEOREM.
(a) For each odd prime p there is a connective spectrum J and a map S° — J
sending the p-component of im J (1.1.12) isomorphically onto m.(J), i.e.,

Z,) if i =0
mi(J) =S Z/(pPT) ifi=qk—1,k>0, k=sp’ withpfs
0 otherwise.

(b) There is a spectral sequence converging to J.(BX,) with
E?Qerl = Th—mq(J) and Efzm = Tt 1-mq(J);

the map S° — J induces a map to this spectral sequence from the stable EHP
spectral sequence of 1.5.12.

(¢) The dy in this spectral sequence is determined by 1.5.13. The resulting
Es-term has the following nontrivial groups and no other:

Egkflzk =7Z/(p) generated by zqz—1 for k >0,
EIF)=22k _ 7/ (p)  generated by a; for k,j > 0,

and

Eg(k+j)71’2k+l =7Z/(p) generated by «; for k,j > 0,

where aj is an element of order p in mgj—1(J).
(d) The higher differentials are determined by 1.5.17 and the fact that all group
extensions in sight are nontrivial, i.e., with k and j as in 1.5.17,

- qk—2,2(k—j—1)
dojt2(Tqr—1) = Qjp1 € Eypjio

and dgjt3 is nontrivial on ng;gl’zmﬂ forj+2<m<k.

(e) The resulting Eoo-term has the following nontrivial groups and no others:
E3=22m for k> m > k —j and E&¥=12mFL for 1 < m < j+ 1. The group
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extensions are all nontrivial and we have for i > 0

Z/(p?) fori=qsp’ —2 withpts
0 otherwise.

We will sketch the proof of this theorem. We have the fibration J — bu — 22bu
for which the long exact sequence of homotopy groups is known; actually bu (when
localized at the odd prime p) splits into p — 1 summands each equivalent to an even
suspension of BP(1), where m.(BP(1)) = Z,)[v1] with dimv; = ¢. It is convenient
to replace the above fibration by J — BP(1) — X4BP(1). We also have a transfer
map BY, — S?p), which is the map which Kahn and Priddy [2] show induces a
surjection of homotopy groups in positive dimensions (see also Adams [15]); the
same holds for J-homology groups. Let R be the cofiber of this map. One can show
that S?p) — R induces a monomorphism in BP(1)-homology (or equivalently in bu-
homology) and that BP{1) A R ~ \/j>0 quHZ(p), i.e., a wedge of suspensions of
integral Eilenberg—Mac Lane spectra localized at p. Smashing these two fibrations
together gives us a diagram

(1.5.20) JAR BP(1) AR SBP(1) AR
l BP(1) ! SIBP(1)

| T !

J A BY, —= BP(1) A BY, —= X4BP(1) A BY,

in which each row and column is a cofiber sequence. The known behavior of 7. (f)
determines that of m,(f A R) and enables one to compute 7. (J A BL,) = J.(BL,).
The answer, described in 1.5.19(c), essentially forces the spectral sequence of 1.5.19
to behave in the way it does. The Fs-term [1.5.19(c)] is a filtered form of . (BP{1)A
BY,) ® m. (X971 BP(1) A BY,).

Corresponding statements about the EHP spectral sequence are not yet known
but can most likely be proven by using methods of Mahowald [4]. We surmise they
can be derived from the following.

1.5.21. CONJECTURE.

(a) The composite m, (2" T152" ) — 1 (QBXL") — J(BXI") is onto unless
k= qsp’ —2 (with j >0, sp > p and pts) and n = sp’ —i for 1 <i < j.

(b) The groups EI*=1:2m+1 of 1.5.19(e) pull back to the Ex-term of the EHP
spectral sequence and correspond to the element v/, (1.3.19) of order p™ inim J €
7rqsk71. Hence oy, is born in S2m+1 and has Hopf invariant ag_., except for ai,
which is born on S§2 with Hopf invariant one. (This was not suspected when the
notation was invented!) g

We will give an example of an exception to 1.5.21(a) for p = 3. One has age
ag € E§9’5, which should support a d3 hitting ag € Eg’g"z, but EP%? = 7140(S%)
and ag is only born on S7, so the proposed d3 cannot exist (this problem does not
occur in the stable EHP spectral sequence). In fact, ajog # 0 € w1 (S7) = B3
and this element is hit by a dz supported by the ag € E§9’5.



34 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

The other groups in 1.5.19(e), Jpqi—2(BX,), are harder to analyze. FEPI~24
pulls back to the EHP spectral sequence and corresponds to 1 € wfq_2 (1.3.14),
the first stable element in coker J (1.1.12), so (31 is born on S and has Hopf
invariant a;. Presumably the corresponding generators of EPi4=2:2Pi=2 for j > 1
each supports a nontrivial d4 hitting a 3, in the appropriate group. The behavior of

the remaining elements of this sort is probably determined by that of the generators
of Egjq_Q’wPJ_QJ for j > 2, which we now denote by 8;. These appear to be closely

related to the Arf invariant elements 6; = (pi-1/,-1 (1.4.10) in E2P'% of the
Adams—Novikov spectral sequence. The latter are known not to survive (6.4.1), so
presumably the éj do not survive either. In particular we know d2p2,6(9~2) =7 in
the appropriate group. There are similar elements at p = 1 as we shall see below.
In that case the 6; are presumed but certainly not known (for j > 5) to exist in
7r25j+172. Hence any program to prove their existence at p = 2 is doomed to fail if
it would also lead to a proof for p > 2.

We now consider the 2-primary analog of 1.5.19 and 1.5.21. The situation is
more complicated for four reasons.

(1) im J (1.5.15) is more complicated at p = 2 than at odd primes.

(2) The homotopy of J (which is the fiber of a certain map bo — %*bsp, where
bo and bsp are the spectra representing connective real and symplectic K-theory,
respectively) contains more than just im J.

(3) Certain additional exceptions have to be made in the analog 1.5.21.

(4) The groups corresponding to the Jpq—2(BX,) are more complicated and
lead us to the elements n; € 75, of Mahowald [6] in addition to the hypothetical
6‘]‘ S 7T§j+1_2.

Our first job then is to describe 7, (J) and how it differs from im J as described
in 1.1.12. We have 7;(bo) = m;47(0O) and m;(bsp) = m;+3(0) for i > 0 and 7,(O) is
described in 1.1.11, i.e.,

Z ifi=3 mod (4)
m(0)=42Z/(2) ifi=0o0r1 mod (8)
0 otherwise.

The map bo — S4bsp used to define J is trivial on the torsion in 7, (bo), so these
groups pull back to m,(J). Hence mg;+1(J) and 7g;42(J) for ¢ > 1 contain summands
of order 2 not coming from im J.

1.5.22. PROPOSITION. At p =2

Z2) ifi=0
Z/(2) ifi=1or2
() = Z/(8) ifi=3 mod (8) andi >0
’ Z/(2) ifi=0or2 mod8andi>38
Z/2)®Z/(2) ifi=1 mod (8) andi>9
Z/(27F1) ifi=8m—1,m>1and 8m = 27/(2s + 1).

Here, im J C m.(J) consists of cyclic summands in w;(J) fori >0 and i =7, 0, 1
or 3 mod (8). O
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Now we need to name certain elements in 7, (J). Asin 1.5.16 let &; denote the
generator of im J in dimension ¢(j) — 1, where

2j—1 ifj=1lor2 mod (4)
o) —1=142j if j=0 mod (4)
2j+1 ifj=3 mod (4).

We also define elements «; in 7. (J) of order 2 as follows. a1 = n € m(J) and
k41 € mept1(J) is a certain element not in imJ for k > 1. aupt2 = Noagt,
Qapr3 = N2Qupr1 = 4dupyo, and ayy € mer_1(J) is an element of order 2 in that
cyclic group.

1.5.23. THEOREM (Mahowald [4]). (a) There is a spectral sequence converging
to J.(RP>®) with EX"™ = m,_n1(J); the map S° — J induces a homomorphism
to this spectral sequence from the stable EHP spectral sequence of 1.5.12. (We will
denote the generator of Ef’kJrl by xk and the generator of Ef’k+1+m for m >0 by
the name of the corresponding element in 7., (J).)

(b) The dy in this spectral sequence is determined by 1.5.13. The following is
a complete list of nontrivial ds’s and d3’s.

Fork>1andt >0, dy sends

4k+1,4k+2

Tapy1 € B, to  ay
Oat+34i € E§k+8+i+8t’4k+2 to ayp4q fori=0,1
Q1 € E;Lk+2+8t,4k+2 to o
Qqiyq € E§k+1+8t+7’4k+1 to  Quiys
and
Qi € E§k+i+8t,4k+l to aupisyn fori=1,2.

Fork>1andt>1, d3 sends

4k+1+8t,4k+3
Oé4t€E2 st akt to 41

and

_ Ak+8t+1,4k+1 _
Q441 € E2 to  Qui42.

See F1G. 1.5.24.
(c) The resulting E4-term is a Z/(2)-vector space on the following generators
fork>1,t>0.

12, - 4,2 8t+i+1,2 ,
v € Ey? acEYY au € BTN fori=1, 2

durys € BT for i =3, 4,5 aur € EYTP aupa € BN
dgrys € BSTTIO% mg oy e EPFVL Gy, € EIFTBIT2AR

Gapyg € ERTEHOAR, (o EWHBITSAETL ) pIkSHT AL
Qupyn € EIRTEIHBART. o o plktLARE2 5o pikt8EI0 4kt

Ak+8t+3,4k+3 _ 4k+8t410,4k+3
Qg1 € E4 ;  and Q444 € E4 .
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FIGURE 1.5.24. A portion of the Fs-term of the spectral sequence of Theorem 1.5.23 converging to J,(RP>) and

showing the da’s and ds’s listed in Theorem 1.5.23, part (c).
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(d) The higher differentials are determined by 1.5.15 and the fact that most
group extensions in sight are nontrivial. The resulting Eo -term has the following
additive generators and no others for t > 0.

xr1 € E;f; Oiyty4 € E§£+9’3; Oigtyq € E§£+i+1’2 for i = 1, 2;
Q411 € E§é+3’3; xr3 € Eg(’;l; Q414 € E§é+11"5;
Qupri € ESITT2 for i =3,4; a7 € E;"JS;
Oyt 4 € E§é+15"9; Oip14 € E§£+7"87i fori=1,2,3;
Qity2i—j—2 € BT for j > 3;
Qg € E§£+4’4t+2; and @&; € Eziﬂ(t"’l)_z* for 7 > 2.
(e) Fori>0

Z/(2) ifi=0 mod (4)
Ji(RP®) =mi(J)® < Z/(27) ifi=2/T25—2 for s odd O

0 otherwise.

Note that the portion of the F-term corresponding to the summand 7. (J) in
1.5.23(e) [i.e., all but the last two families of elements listed in 1.5.23(d)] is near
the line n = 0, while that corresponding to the second summand is near the line
n=k.

The proof of 1.5.23 is similar to that of 1.5.19 although the details are messier.
One has fibrations J — bo — X*bsp and RP> — 5(02) — R. We have R A bo ~
\/j>0 E4jHZ(2) and we can get a description of R A bsp from the fibration ¥*bo —
bsp — HZy. The Ej-term in 1.5.22 is a filtered form of m.(X%bsp A RP™) &
7+ (boARP™); elements with Hopf invariants of the form @; are in the first summand
while the other generators make up the second summand. By studying the analog
of 1.5.20 we can compute J,(RP>) and again the answer [1.5.23(e)] forces the
spectral sequence to behave the way it does.

Now we come to the analog of 1.5.21.

1.5.25. THEOREM (Mahowald [4]). (a) The composite
ﬂ_k(Q2n+ks2n+l) _ wk(QRP2") N Jk(RP2n)

is onto unless k = 0 mod (4) and k < 2n, or k = 6 mod (8). It is also onto if
k=2 forj >3 orifk=2"—2 mod (27t1) and k > 2n +8 +2j. When k < 2n
is a multiple of 4 and not a power of 2 at least 8, then the cokernel is Z/(2); when
k < 2n is 2 less than a multiple of 8 but not 2 less than a power of 2, then the
cokernel is J(RP?*) = J(RP>).

(b) All elements in the Eo-term corresponding to elements in m.(J) pull back
to the EHP spectral sequence except some of the aupy; € ESIFH52 for i = 3,4 and
t > 0. Hence H(o) = H(ag) = H(az) = 1, H(yy1) = oy, and if 2°a0 = oy for
x €imJ then H(z) = ay—;. O

Theorem 1.5.23 leads one to believe that H(au4sy;) = Qarti—1 for i =4, 5 and
t > 0, and that these elements are born on S2, but this cannot be true in all cases.
If &y were born on S?, its Hopf invariant would be in 710(S®), but this group does
not contain as, which is born on S*. In fact we find H(ay) = ao, H(@s) = a2, and
H(ag) is an unstable element.
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1.5.26. REMARK. Theorem 1.5.25(b) shows that the portion of im.J gener-
ated by ay¢+2 and dayeys, i.e., the cyclic summands of order > 8 in dimensions
4k — 1, are born on low-dimensional spheres, e.g., du;42 is born on S°. However,
simple calculations with 1.5.14 show that the generator of m4;_1(O) pulls back to
Tak—1(O(2k + 1)) and no further. Hence aui2 € mqr48(S°) is not actually in the
image of the unstable J-homomorphism until it is suspended to S4*+3.

Now we consider the second summand of J,(RP>) of 1.5.23(e). The elements
ay € EAR4=2 for | > 1 have no odd primary analog and we treat them first. The
main result of Mahowald [6] says there are elements 7; € mo; (S?) for j > 3 with
Hopf invariant v = ao. This takes care of the case k = 2772 above.

1.5.27. THEOREM. In the EHP spectral sequence the element v = g € Efk’4k_2
for k > 2 behaves as follows (there is no such element for k = 1).

(a) If k = 2772, j > 3 then the element is a permanent cycle corresponding to
7;; this is proved by Mahowald [6].

(b) If k =2s+1 then dy(v) = V2. O

1.5.28. CONJECTURE. If k = (2s+ 1)2772 with s > 0 then do;_5(v) =n;. O

The remaining elements in 1.5.23(e) appear to be related to the famous Kervaire
invariant problem (Mahowald [7], Browder [1]).

1.5.29. CONJECTURE. In the EHP spectral sequence the elements

a € E§j+1(t+1)72,* fO’I’j >2,t>0
behave as follows:
(a) If there is a framed (271! — 2)-manifold with Kervaire invariant one then

a; € E22]+1_2’* is a nontrivial permanent cycle corresponding to an element 6; €
moi+1_2(S?) (These elements are known (Barratt, Jones, and Mahowald [2]) to exist
for 3 >0.)
j+1 -
(b) If (a) is true then the element &, € E22] @sHD)=2% gotisfies dr(aj) = 0
where r = 2771 — 1 — dim(@;). O

The converse of 1.5.29(a) is proved by Mahowald [4] 7.11.

Now we will describe the connection of the EHP spectral sequence with the
Segal conjecture. For simplicity we will limit our remarks to the 2-primary case,
although everything we say has an odd primary analog. As remarked above, the
stable EHP spectral sequence (1.5.12) can be modified so as to converge to the
stable homotopy of a stunted projective space. Let RP; = RP*°/RP;_; for j > 0;
i.e., RP7 is the infinite-dimensional stunted projective space whose first cell is in
dimension j. It is easily seen to be the Thom spectrum of the j-fold Whitney sum
of the canonical line bundle over RP*. This bundle can be defined stably for
j <0, so we get Thom spectra RP; having one cell in each dimension > j for any
integer j.

1.5.30. PROPOSITION. For each j € Z there is a spectral sequence converging
to m.(RP;) with

Ek,n _ 7Tk7n+1(80) an -1 Z]
! 0 ifn—1<j
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and d,.: E¥" — EF-Ln="_ For j = 1 this is the stable EHP spectral sequence of
1.5.12. If j < 1 this spectral sequence maps to the stable EHP spectral sequence,
the map being an isomorphism on Ef’” forn > 2. O

The Segal conjecture for Z/(2), first proved by Lin [1], has the following con-
sequence.

1.5.31. THEOREM. For each j < 0 there is a map S~' — RP; such that the
map S™! — RP_,, = liilRPj is a homotopy equivalent after 2-adic completion
of the source (the target is already 2-adically complete since RP; is for j odd).
Consequently the inverse limit over j of the spectral sequences of 1.5.30 converges to
the 2-component of w.(S~1). We will call this limit spectral sequence the superstable
EHP spectral sequence. O

Nothing like this is stated in Lin [1] even though it is an easy consequence of
his results. A proof and some generalizations are given in Ravenel [4]. Notice that
H.(RP_) # lim H, (RP;); this is a spectacular example of the failure of homology
to commute with inverse limits. Theorem 1.5.31 was first conjectured by Mahowald
and was discussed by Adams [14].

Now consider the spectrum R Py. It is the Thom spectrum of the trivial bundle
and is therefore S° V RP;. Hence for each j < 0 there is a map RP; — S° which is
nontrivial in mod (2) homology. The cofiber of this map for j = —1 can be shown
to be R, the cofiber of the map RP; — S° of Kahn and Priddy [2]. The Kahn-
Priddy theorem says this map is surjective in homotopy in positive dimensions.
Using these facts we get

1.5.32. THEOREM. In the spectral sequence of 1.5.30 for j <0,

(a) no element in E%* supports a nontrivial differential;

(b) no element in EM* is the target of a nontrivial differential;

(c) every element of Elo’lC = mr11(S°) that is divisible by 2 is the target of a
nontrivial di and every element of Eg’k for k > —1 is the target of some d, for
r>2; and

(d) every element in Ey" = 73,(S°) not of order 2 supports a nontrivial dy and
every element of E21k supports a nontrivial d, for some r > 2. O

PROOF. Parts (a) and (b) follow from the existence of maps S—! — RP; — S°,
(c) follows from the Kahn—Priddy theorem, and (d) follows from the fact that the
map limRP; — SY is trivial. O

Now the spectral sequence converges to 7. (S™1), yet 1.5.32(c) indicates that the
map S~! — RP_., induces a trivial map of E-terms, except for E_1?, where it
is the projection of Z onto Z/(2). [Here we are using a suitably indexed, collapsing
AHSS for 7,(S~1).] This raises the following question: what element in E¥ =" (for
some n > 0) corresponds to a given element x € 7, (S71)? The determination of n is
equivalent to finding the smallest n such that the composite S* = S~! — RP_,_;
is nontrivial. The Kahn—Priddy theorem tells us this composite is trivial for n = 0
if k>0 or k= —1 and z is divisible by 2; and the Segal conjecture (via 1.5.31)
says the map is nontrivial for some n > 0. Now consider the cofiber sequence
S 1 5 RP_,_1 — RP_,. The map from S* to RP_,, is trivial by assumption
so we get a map from S*¥ to S~'~", defined modulo some indeterminacy. Hence
r € Tre1(SP) gives us a coset M(z) C mrr14+4(SY) which does not contain zero.
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We call M(z) the Mahowald invariant of x, and note that n, as well as the coset,
depends on x. The invariant can be computed in some cases and appears to be
very interesting. For example, we have

1.5.33. THEOREM. Let 1 be a generator of wo(S°). Then for each j > 0, M (271)
contains o, a preimage in . (S°) of the aj € m.(J) of 1.5.23. O

A similar result holds for odd primes. In 1.5.31 we replace the RP; by Thom
spectra of certain bundles over BY,, and M (p’1) > a; for oy, as in 1.5.19. We also
have

1.5.34. CONJECTURE. M (0;) contains 811 for 6; as in 1.5.29. O

1.5.35. CONJECTURE. Whenever the Greek letter elements (1.3.17) a;n) and
a;nﬂ) exist in homotopy, a;nﬂ) € M(agn)). O

One can mimic the definition of the Mahowald invariant in terms of the Adams
spectral sequence or Adams—Novikov Fs-terms and in the latter case prove an
analog of these conjectures. At p = 2 one can show (in homotopy) that M(ay) 3 as,
M(as) > as, and M(a3) > a3 = 03. This suggests using the iterated Mahowald
invariant to define (up to indeterminacy) Greek letter elements in homotopy, and

that 6; is a special case (namely agjﬂ)) of this definition.



CHAPTER 2

Setting up the Adams Spectral Sequence

In this chapter we introduce the spectral sequence that will be our main object
of study. We do not intend to give a definitive account of the underlying theory, but
merely to make the rest of the book intelligible. Nearly all of this material is due
to Adams. The classical Adams spectral sequence [i.e., the one based on ordinary
mod (p) cohomology| was first introduced in Adams [3] and a most enjoyable expo-
sition of it can be found in Adams [7]. In Section 1 we give a fairly self-contained
account of it, referring to Adams [4] only for standard facts about Moore spectra
and inverse limits. We include a detailed discussion of how one extracts differentials
from an exact couple and a proof of convergence.

In Section 2 we describe the Adams spectral sequence based on a generalized
homology theory E, satisfying certain assumptions (2.2.5). We rely heavily on
Adams [4], referring to it for the more difficult proofs. The E,-Adams resolutions
(2.2.1) and spectral sequences (2.2.4) are defined, the Es-term is identified, and the
convergence question is settled (2.2.3). We do not give the spectral sequence in its
full generality; we are only concerned with computing 7, (Y"), not [X, Y] for spectra
X and Y. Most of the relevant algebraic theory, i.e., the study of Hopf algebroids,
is developed in Appendix 1.

In Section 3 we study the pairing of Adams spectral sequences induced by a
map a: X' A X" — X and the connecting homomorphism associated with a cofi-
bration realizing a short exact sequence in E-homology. Our smash product result
implies that for a ring spectrum the Adams spectral sequence is one of differential
algebras. To our knowledge these are the first published proofs of these results in
such generality.

Throughout this chapter and the rest of the book we assume a working knowl-
edge of spectra and the stable homotopy category as described, for example, in the
first few sections of Adams [4].

1. The Classical Adams Spectral Sequence

In this section we will set up the Adams spectral sequence based on ordinary
mod (p) cohomology for the homotopy groups of a spectrum X. Unless otherwise
stated all homology and cohomology groups will have coefficients in Z/(p) for a
prime number p, and X will be a connective spectrum such that H*(X) (but not
necessarily X itself) has finite type.

Recall that H*(X) is a module over the mod (p) Steenrod algebra A, to be
described explicitly in the next chapter. Our object is to prove

2.1.1. THEOREM (Adams [3]). Let X be a spectrum as above. There is a spectral
sequence

EX*(X) with d,: B3 — pgtottr=t

41
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such that

(a) E3' = Exty'(H"(X),Z/(p)).

(b) if X is of finite type, EX* is the bigraded group associated with a certain
filtration of m.(X) ® Zy,, where Z,, denotes the ring of p-adic integers. ([

Let E = HZ/(p), the mod (p) Eilenberg-Mac Lane spectrum. We recall some
of its elementary properties.

2.1.2. PROPOSITION.

(a) Ho(X) =7m.(ENX).

(b) H*(X) = [X, E].

(c) H*(E) = A.

(d) If K is a locally finite wedge of suspensions of E, i.e., a generalized mod (p)
Eilenberg-Mac Lane spectrum, then 7.(K) is a graded Z/(p)-vector space
with one generator for each wedge summand of K. More precisely, m.(K) =
Hom 4 (H*(K), Z/(p)).

(e) A map from X to K is equivalent to a locally finite collection of elements
in H*(X) in the appropriate dimensions. Conversely, any locally finite collection
of elements in H*(X) determines a map to such a K.

(£) If a locally finite collection of elements in H*(X) generate it as an A-module,
then the corresponding map f: X — K induces a surjection in cohomology.

(g) ENX is a wedge of suspensions of E with one wedge summand for each
Z/(p) generator of H*(X). H*(EAX)=A® H*(X) and the map f: X - EAX
(obtained by smashing X with the map S° — E) induces the A-module structure
map AQ H*(X) — H*(X) in cohomology. In particular H*(F) is a surjection. O

The idea behind the Adams spectral sequence is to use maps such as those of
(f) or (g) and our knowledge of 7. (K) or m.(EAX) to get information about 7, (X).
We enlist the aid of homological algebra to make the necessary calculations.

More specifically, we have

2.1.3. DEFINITION. A mod (p) Adams resolution (Xs,gs) for X is a diagram

90 g1 g2

X = Xo X1 Xo X3
lfu lfl lf2
Ky K K,

where each K, is a wedge of suspensions of E, H*(fs) is onto and Xsy1 is the

fiber of fs. O

Proposition 2.1.2(f) and (g) enable us to construct such resolutions for any X,
e.g., by setting Ky = F A X,. Since H*(fs) is onto we have short exact sequences

0 — H*(X,) — H*(K,) — H*(SX,11) — 0.
We can splice these together to obtain a long exact sequence
(2.1.4) 0 H*(X) — H*(Kg) « H*(ZK,) «+ H*(X?K3) « -+ .
Since the maps are A-module homomorphisms and each H*(Kj) is free over A,
2.1.4 is a free A-resolution of H*(X).

Unfortunately, the relation of m,(K) to m(X) is not as simple as that between
the corresponding cohomology groups. Life would be very simple if we knew 7. (fs)
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was onto, but in general it is not. We have instead long exact sequences

Tx(gs) o (fs)
(2.1.5) m()%ﬂ) o (X) S (K

Ds .-
arising from the fibrations
Xs+1 !]_c) Xs f_8> Ks'
If we regard 7.(X;) and 7, (K,) for all s as bigraded abelian groups D; and Ej,
respectively [i.e., D" = m,_,(X,) and EY* = m,_,(K,)] then 2.1.5 becomes

(2.1.6) D,

where
il = Wtfs(gs): DiJrl’tJrl - Df)ta
J1= Wt—‘s(fs): Di,t - E?ta

and
ki =04 s: EYY — DFTU

The exactness of 2.1.5 translates to ker iy = im kq, ker j; = im 4y, and ker k& = im j;.
A diagram such as 2.1.6 is known as an ezxact couple. It is standard homological
algebra that an exact couple leads one to a spectral sequence; accounts of this
theory can be found in Cartan and Eilenberg [1, Section XV.7], Mac Lane [1,
Section XI.5], and Hilton and Stammbach [1, Chapter 8] as well as Massey [2].

Brieﬂy, dl = jlk‘ll Ef’t — Eig—i_l’t has (d1)2 = jlkljlkl = 0 so (El,dl) is a
complex and we define Ey = H(E7,d;). We get another exact couple, called the
derived couple,

(2.1.7) Dy —2 oD,
N/
Es

where Dg’t = z'lDi"t7 1o is induced by 41, j2(i1d) = j1d for d € Dy, and ka(e) = k1 (e)
for e € kerd, C E;. Since 2.1.7 is also an exact couple (this is provable by a diagram
chase), we can take its derived couple, and iterating the procedure gives a sequence

of exact couples
D, % D,
E,

where D1 = i, Dy, d, = jrk, and E, 1 = H(E,,d,). The sequences of complexes
{(E\,d,)} constitutes a spectral sequence. A close examination of the indices will
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reveal that d,.: B3t — EsTH7=1 Tt follows that for s < r, the image of d,. in E3*
is trivial so Efil is a subgroup of E2! hence we can define

EY = () B

r>Ss

This group will be identified (2.1.12) in certain cases with a subquotient of ;5 (X),
namely, im my_4(X;)/imm—s(Xs41). The subgroups im 7, (X) = F*m(X) form a
decreasing filtration of 7,(X) and E., is the associated bigraded group.

2.1.8. DEFINITION. The mod (p) Adams spectral sequence for X is the spectral
sequence associated to the exact couple 2.1.6. O

We will verify that d,.: B3t — ESTH=1 by chasing diagram 2.1.9, where we
write 7. (X,) and 7, (K,) instead of Dy and E;, with u =t — s.
(2.1.9)

Tu(fs+2) Os+2,u Tu—1(fs+3)
— > ) —

- '/Tu(Xs+2) ’/Tu(Ks-&-Q) - Wu—l(Xs—&-S‘ '/Tu—l(Ks—H%) -

Tu(gs+1) Tu—1(gs+2)

Tu(fs+1) Os+1,u Tu—1(fs+2)

- '/Tu(Xs+1) — ’/Tu(Ks-&-l) —— Wu—l(Xs—&-Q) '/Tu—l(Ks—i-Q) -

7Tu(95) 7Tu71(95+1)
o (fs) Os,u Tu—1(fs+1)
— ’/Tu(Xs) —— ’/Tu(Ks) - 7Tu—1(X5+1) E—— '/Tu—l(Ks—i-l) -

The long exact sequences 2.1.5 are embedded in this diagram; each consists of a
vertical step 7. (g.) followed by horizontal steps m.(f.) and 0., and so on. We have
BV = mu(K,) and d¥' = (my_1(fs41))(0s.u). We have ES' = kerd}'/imd; ™",
Suppose an element in E;t is represented by x € m,(K). We will now explain
how ds[z] (where [z] is the class represented by ) is defined. z is a d; cycle, i.e.,
diz = 0, so exactness in 2.1.4 implies that 95,2 = (Ty+1(gs+1))(y) for some y €
Tu—1(Xsy2). Then (my_1(fss2))(y) is a dy cycle which represents dy[z] € B3>
If dyfz] = O then [z] represents an element in E5' which we also denote by [z].
To define ds[z] it can be shown that y can be chosen so that y = (m,_1(gs+2)) (V')
for some y' € m,_1(Xs43) and that (m,—1(fs+3))(y’) is a di cycle representing
a dy cycle which represents an element in E*t3!+2 which we define to be ds[z].
These assertions may be verified by drawing another diagram which is related to
the derived couple 2.1.7 in the same way that 2.1.9 is related to the original exact
couple 2.1.6. The higher differentials are defined in a similar fashion. In practice,
even the calculation of ds is a delicate business.

Before identifying %! we need to define the homotopy inverse limit of spectra.

2.1.10. DEFINITION. Given a sequence of spectra and maps

Xodtx, L2ox, Loxy
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lim X, us the fiber of the map

g: HXi —>HXZ-

whose ith component is the difference between the projection p;: [[X; — X; and
the composite

HXj Pi+1 i fi+1 X,. 0

For the existence of products in the stable category see 3.13 of Adams [4].
This lim is not a categorical inverse limit (Mac Lane [1, Section II1.4] because a
compatible collection of maps to the X;, does not give a unique map to @XZ For
this reason some authors (e.g., Bousfield and Kan [1]) denote it instead by holim.
The same can be said of the direct limit, which can be defined as the cofiber of the
appropriate self-map of the coproduct of the spectra in question. However this lin
has most of the properties one would like, such as the following.

2.1.11. LEMMA. Given spectra X; ; fori,5 > 0 and maps f: X; ; — X;-1,; and
g: Xi; — X, j—1 such that fg is homotopic to gf,
R e
7 J J 7

PrROOF. We have for each i a cofibre sequence

liLan- — H Xi,j — H XZ,]
J J J
Next we need to know that products preserve cofiber sequences. For this fact, recall
that the product of spectra []Y;, is defined via Brown’s representability theorem
(Adams [4], Theorem 3.12) as the spectrum representing the functor [][—,Y;].
Hence the statement follows from the fact that a product (although not the inverse
limit) of exact sequences is again exact.
Hence we get the following homotopy commutative diagram in which both rows
and columns are cofiber sequences.
b X, 1%, ] X,,
i 7 i J %

[MimX;  [II1Xe, LTI Xy
7 j i g i g

J

Everything in sight is determined by the two self-maps of [[,][; X;; and the
homotopy that makes them commute. Since the product is categorical we have
IL 11, Xi; = I1; 11, Xi,;. 1t follows that [, lilnj X ;= @j [I; Xi,; because they
are each the fiber of the same map.

Similarly
[[tim X5 = lim [ [ X5
Jj ot L]
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so one gets an equivalent diagram with @j @Z X ; in the upper left corner. [

Now we will show that for suitable X, E5! is a certain subquotient of m,, (X).

2.1.12. LEMMA. Let X be a spectrum with an Adams resolution (Xs,gs) such
that lim Xy = pt. Then E3' is the subquotient imm,(Xs)/im 7y (Xs41) of mu(X)
and (im . (X;) = 0.

PROOF. For the triviality of the intersection we have limm,(X;) = 0 since
liLHXs = pt. Let G5 = 7.(X;) and

at — G, ifs>t
S limGy < G, ift > s.

We have injections G% — GL~! and surjections G — G%_;, so lim G = (1, G} and
lim G = G;. We are trying to show lim G} = 0. lim, G maps onto lim G%_,, so
—s ¢ —t —t —t

lim lim G% maps onto lim G§. But lim lim G% = lim lim G! =1lim G; = 0.
—s <t —t —s <t —t<—s —t

For the identification of E%¢, let 0 # [z] € E%t.

First we show 0s,(x) = 0. Since d.[zr] = 0, Js(z) can be lifted to
Tu—1(Xstrt1) for each r. It follows that 0. (z) € imlianu,l(XerT) = 0, so
Osu(x) = 0.

Hence we have x = m,(fs)(y) for y € m,(Xs). It suffices to show that y has
a nontrivial image in m,(X). If not, let r be the largest integer such that y has
a nontrivial image z € my(Xs_r41). Then z = 95—y (w) for w € m,(Ks_,) and
d,[w] = [z], contradicting the nontriviality of [x]. O

Now we prove 2.1.1(a), the identification of the Ea-term.
By 2.1.2(d), E* = Hom 4 (H'~*(K,),Z/(p)). Hence applying Hom 4(—,Z/(p))
to 2.1.4 gives a complex

3 J
EYY S BT S B

The cohomology of this complex is by definition the indicated Ext group. It is
straightforward to identify the coboundary ¢ with the dy in the spectral sequence
and 2.1.1(a) follows.

2.1.13. COROLLARY. If f: X — Y induces an isomorphism in mod (p) ho-
mology then it induces an isomorphism (from Ez onward) in the mod (p) Adams
spectral sequence. O

2.1.14. DEFINITION. Let G be an abelian group and X a spectrum. Then XG =
X A SG, where SG is the Moore spectrum associated with G (Adams [4, p.200].
Let X = X7Z, (the p-aidc completion of X ), where Z,, is the p-adic integers, and
X™m=XZ/(p™). |

2.1.15. LEMMA. (a) The map X — X induces an isomorphism of mod (p)
Adams spectAml sequences.

(b) T (X) = m(X) ® Zy.

(c) X =lm X™, if x has finite type.

Proor. For (a) it suffices by 2.1.11 to show that the map induces an isomor-

phism in mod (p) homology. For this see Adams [4], proposition 6.7, which also
shows (b).
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Part (c) does not follow immediately from the fact that SZ, = lim SZ/(p™)
because inverse limits do not in general commute with smash products. Indeed our
assertion would be false for X = SQ, but we are assuming that X has finite type.

By 2.1.10 there is a cofibration

Sz, — [[52/™) — [[52/™).
so it suffices to show that
xn][sz/em) ~[[X2/(™).
This is a special case (with X = F and R = Z) of Theorem 15.2 of Adams [4]. O

2.1.16. LEMMA. If X is a connective spectrum with each 7;(X) a finite p-group,
then for any mod (p) Adams resolution (Xs,gs) of X, lim X = pt.

Proor. Construct a diagram
X=X, X« X,
(not an Adams resolution) by letting X, be the fiber in
Xl — X, = K,

where the right-hand map corresponds [2.1.2(e)] to a basis for the bottom cohomol-
ogy group of X,. Then the finiteness of 7;(X) implies that for each 4, m;(X.) =0
for large s. Moreover, m,(X{ 1) — 7. (X}) is monomorphic so lim X = pt.

Now if (X, ¢s) is an Adams resolution, the triviality of g5 in cohomology enables
us to construct compatible maps Xy — X. It follows that the map lim m, (X,) —
7 (X) is trivial. Each X also satisfies the hypotheses of the lemma, so we conclude
that lim 7, (X;) has trivial image in each 7.(X) and is therefore trivial. Since

7;(Xs) is finite for all ¢ and s, lim? 7 (Xs) = 0 so lim X = pt. O
P P

We are now ready to prove 2.1.1(b), i.e., to identify the E-term. By 2.1.15(a)
it suffices to replace X by X. Note that since SZ,\NSZ/(p™) =8SZ/(p™), X" =
X™. Tt follows that given a mod (p) Adams resolution (X,,g,) for X, smashing
with SZ, and SZ/(p™) gives resolutions (Xs,§s) and (X™, g™) for X and X™,
respectively. Moreover, X™ satisfies 2.1.16 so @S X = pt. Applying 2.1.15(c) to

each X, we get )?s = linm X, so

lim Xy = lim lim X"
— —

S S m
=limlim X* by 2.1.11
P ——
= pt.
Hence the result follows from 2.1.12. O

2.1.17. REMARK. The E,, term only gives us a series of subquotients of
7+ (X) ® Zp, not the group itself. After computing F., one may have to use other
methods to solve the extension problem and recover the group.

We close this section with some examples.
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2.1.18. EXAMPLE. Let X = HZ, the integral Eilenberg—Mac Lane spectrum.
The fundamental cohomology class gives a map f: X — FE with H*(f) surjective.
The fiber of f is also X, the inclusion map g: X — X having degree p. Hence
we get an Adams resolution (2.1.3) with Xy = X and K, = E for all s, the map
X = X; — Xg = X, having degree p°. We have then

et _ Z/(p) ift=s
! 0 if ¢ # s.
There is no room for nontrivial differentials so the spectral sequence collapses,
ie, Ex = E1. We have E3* = Z/(p) = immo(Xs)/immo(Xs4+1). In this case
X = HZ,, the Eilenberg-Mac Lane spectrum for Z,.

2.1.19. EXAMPLE. Let X = HZ/(p') with i > 1. It is known that H*(X) =
H*(Y)®XH*(Y) as A-modules, where Y = HZ. This splitting arises from the two
right-hand maps in the cofiber sequence

Y—-Y > X —>1YY,

where the left-hand map has degree p'. Since the Ey-term of the Adams spectral
sequence depends only on H*(X) as an A-module, the former will enjoy a similar
splitting. In the previous example we effectively showed that

Z/(p) ift=s

Ext}"(H*(Y),Z/(p)) = {0 if t # s.

It follows that in the spectral sequence for X we have

sit Z/(p) ift—s=0orl
Ey" = )
0 otherwise

In order to give the correct answer we must have E3! =0ift —s =1 and E5! =0
if £ = s for all but ¢ values of s. Multiplicative properties of the spectral sequence
to be discussed in Section 3 imply that the only way we can arrive at a suitable E,
term is to have d;: Ef’s'H — Ef'H’SH nontrivial for all s > 0. A similar conclusion
can be drawn by chasing the relevant diagrams.

2.1.20. EXAMPLE. Let X be the fiber in X — §° — HZ, where the right-hand
map is the fundamental integral cohomology class on S°. Smashing the above
fibration with X we get

XAX 2 x I xAHZ

It is known that the integral homology of X has exponent p, so X A HZ is a wedge
of E and H*(fy) is surjective. Similar statements hold after smashing with X any
number of times, so we get an Adams resolution (2.1.3) with K; = X; A HZ and
X, = X+ the (s + 1)-fold smash product of X with itself, i.e., one of the form

X<~ XN X=—XANXAX =" "

| |

XNHZ XNXNHZ.

Since X is (2p — 4)-connected X, is ((s +1)(2p — 3) — 1)-connected, so lim X, is
contractible.
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2. The Adams Spectral Sequence Based on a Generalized Homology
Theory

In this section we will define a spectral sequence similar to that of 2.1.1 (the
classical Adams spectral sequence) in which the mod (p) Eilenberg—Mac Lane spec-
trum is replaced by some more general spectrum E. The main example we have in
mind is of course £ = BP, the Brown—Peterson spectrum, to be defined in 4.1.12.
The basic reference for this material is Adams [4] (especially Section 15, which
includes the requisite preliminaries on the stable homotopy category.

Our spectral sequence should have the two essential properties of the classi-
cal one: it converges to m.(X) localized or completed at p and its Es-term is a
functor of E*(X) (the generalized cohomology of X) as a module over the algebra
of cohomology operations E*(F); i.e., the Fa-term should be computable in some
homological way, as in 2.1.1. Experience has shown that with regard to the second
property we should dualize and consider instead E,(X) (the generalized homology
of X) as a comodule over E,(FE) (sometimes referred to as the coalgebra of coop-
erations). In the classical case, i.e., when £ = HZ/(p), E.(E) is the dual Steenrod
algebra A,.

Theorem 2.1.1(a) can be reformulated as Eo = Exta, (Z/(p), H.(X)) using
the definition of Ext in the category of comodules given in A1.2.3. In the case
E = BP substantial technical problems can be avoided by using homology instead
of cohomology. Further discussion of this point can be found in Adams [6, pp.
51-55].

Let us assume for the moment that we have known enough about F and E,(FE)
to say that F.(X) is a comodule over E,(E) and we have a suitable definition of
Extp, (g) (B« (SY), B« (X)), which we abbreviate as Ext(E,(X)). Then we might
proceed as follows.

2.2.1. DEFINITION. An E,-Adams resolution for X is a diagram

g0 g1

X:XO Xl X2
fol fll le
Ko K, Ky

such that for all s > 0 the following conditions hold.
(a) Xst1 is the fiber of fs.
(b) EAX is a retract of EAK, i.e., there is a map hs: EAKy — EANX, such
that hs(E A f5) is an identity map of EAXs. particular E.(fs) is a monomorphism.
(¢) Ky is a retract of E N K.
(d)
mu(Ks) ift=0
0 if t > 0.

Ext""(E.(K,)) = { O
As we will see below, conditions (b) and (c) are necessary to insure that the

spectral sequence is natural, while (d) is needed to give the desired Es-term. As

before it is convenient to consider a spectrum with the following properties.

2.2.2. DEFINITION. An E-completion X of X is a spectrum such that
(a) There is a map X — X inducing an isomorphism in E.-homology.
(b) X has an E.-Adams resolution { X} with lim X = pt. O
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This is not necessarily the same as the X of 2.1.14, which will be denoted in
this section by X, (2.2.12). Of course, the existence of such a spectrum (2.2.13) is
not obvious and we will not give a proof here. Assuming it, we can state the main
result of this section.

2.2.3. THEOREM (Adams [4]). An E.-Adams resolution for X (2.2.1) leads to
a natural spectral sequence EX*(X) with d,.: E3t — ESTHT=1 gych that

(a) Ey' = Ext(E.(X)).

(b) EZX* is the bigraded group associated with a certain filtration of m.(X), in

other words, the spectral sequence converges tothelatter. (This filtration will be
described in 2.2.14.)

~

2.2.4. DEFINITION. The spectral sequence of 2.2.3 is the Adams spectral se-
quence for X based on E-homology. O

2.2.5. AssuMPTION. We now list the assumptions on E which will enable us to
define Ext and X.
(a) E is a commutative associative ring spectrum.
(b) E is connective, i.e., m.(E) =0 for r < 0.

(¢) The map p.: mo(E) @ mo(E) — mo(E) induced by the multiplication p: E A
FE — F is an isomorphism.

(d) E is flat, i.e., E«(E) is flat as a left module over m,(F).

(e) Let 6: Z — 7o(E) be the unique ring homomorphism, and let R C Q be
the largest subring to which 6 extends. Then H,(FE; R) is finitely generated over R
for all r.

2.2.6. PROPOSITION. HZ/(p) and BP satisfy 2.2.5(a)—(e) O

The flatness condition 2.2.5(d) is only necessary for identifying E5* as an Ext.
Without it one still has a spectral sequence with the specified convergence prop-
erties. Some well-known spectra which satisfy the remaining conditions are HZ,
bo, bu, and MSU. In these cases E A E is not a wedge of suspensions of E as it
is when E = HZ/(p), BP, or MU. HZ N HZ is known to be a certain wedge of
suspensions of HZ/(p) and HZ, bo A bo is described by Milgram [1], bu A bu by
Adams [4], Section 17, and M SU A M SU by Pengelley [1].

We now turn to the definition of Ext. It follows from our assumptions 2.2.5
that E.(E) is a ring which is flat as a left 7,.(E) module. Moreover, E.(FE) is a
7 (F) bimodule, the right and left module structures being induced by the maps

E=S"AE—-EAE and E=EAS°—EAE,

respectively. In the case E = HZ/(p) these two module structures are identical,
but not when E = BP. Following Adams [4], Section 12, let p: E A E be the
multiplication on E and consider the map

IApAL

(ENEYN(ENX) —— EANEANX.
2.2.7. LEMMA. The above map induces an isomorphism
Ei(E) ®x.(p) B«(X) = m(EAENX).

PrOOF. The result is trivial for X = S™. It follows for X finite by induction
on the number of cells using the 5-lemma, and for arbitrary X by passing to direct
limits. ([
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Now the map
EAX=EANSAX S EANEAX

induces
V: By(X) = m(ENENX) = E(F) @, (p) Ex(X).
In particular, if X = FE we get
A: Ei(E) — E.(E) @ gy E«(E).

Thus FE.(F) is a coalgebra over 7,(F) as well as an algebra, and F,(X) is a co-
module over E,(F). One would like to say that E,(F), like the dual Steenrod
algebra, is a commutative Hopf algebra, but that would be incorrect since one
uses the bimodule structure in the tensor product E.(E) ®@,, (g Ex«(E) (ie., the
product is with respect to the right module structure on the first factor and the
left module structure on the second). In addition to the coproduct A and algebra
structure, it has a right and left unit ngr,n.: 7.(E) — E.(E) corresponding to the
two module structures, a counit €: E,(E) — m.(F) induced by u: EAE — E, and
a conjugation c¢: F.(F) — FE.(F) induced by interchange the factors in E A E.

2.2.8. PROPOSITION. With the above structure maps (7. (E), E.(E)) is a Hopf
algebroid (Al.1.1), and E-homology is a functor to the category of left E.(F)-
comodules (A1.1.2), which is abelian (A1.1.3). O

The problem of computing the relevant Ext groups is discussed in Appendix 1,
where an explicit complex (the cobar complex A1.2.11) for doing so is given. This
complex can be realized geometrically by the canonical F,-Adams resolution defined
below.

2.2.9. LEMMA. Let Ky = E N Xg, and let X411 be the fiber of fo: Xg — K.
Then the resulting diagram (2.2.1) is an E.-Adams resolution for X.

PROOF. Since F is a ring spectrum it is a retract of EAE, so EA X5, is a retract
of EANKy, = ENFEAX, and 2.2.1(b) is satisfied. EA X is an E-module spectrum
so 2.2.1(c) is satisfied. For 2.2.1(d) we have E.(K,) = E.(E) @, (g) E«(Xs) by
2.2.7 and Ext(E,(K;)) has the desired properties by A1.2.1 and Al.2.4. O

2.2.10. DEFINITION. The canonical E,-Adams resolution for X is the one given
by 2.2.9.

Note that if F is not a ring spectrum then the above f; need not induce a
monomorphism in E-homology, in which case the above would not be an Adams
resolution.

Note also that the canonical resolution for X can be obtained by smashing X
with the canonical resolution for S°.

2.2.11. PROPOSITION. The Ei-term of the Adams spectral sequence associated
with the resolution of 2.2.9 is the cobar complex C*(E.(X)) (Al1.2.11). O

Next we describe an E-completion X (2.2.2). First we need some more termi-
nology.

2.2.12. DEFINITION. X,y = XZ(,), where Z,) denotes the integers localized
at p, and X, = XZ, (see 2.1.14).
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2.2.13. THEOREM. If X is connective and E satisfies 2.2.5(a)—(e) then an E-
completion (2.2.2) of X is given by

XQ if ro(E) = Q
Xy ifmo(E) =12
X if mo(E) =2Z O
X, if mo(E) =Z/(p) and m,(X)
is finitely generated for all n.

<)
I

These are not the only possible values of m(F), but the others will not concern
us. A proof is given by Adams [4], Theorem 14.6 and Section 15. We will sketch
a proof using the additional hypothesis that w1 (F) = 0, which is true in all of the
cases we will consider in this book.

For simplicity assume that mo(X) is the first nonzero homotopy group. Then
in the cases where mo(F) is a subring of Q we have m()? ANE®) =0 for i < s, so
by setting X, = X A E() we get @1)?8 = pt.

The remaining case, mo(E) = Z/(p) can be handled by an argument similar to
that of the classical case. We show XZ/(p™) is its own E-completion by modifying
the proof of 2.1.16 appropriately. Then X,, can be shown to be E-complete just as
in the proof of 2.1.1(b) (following 2.1.16).

Now we are ready to prove 2.2.3(a). As in Section 1 the diagram 2.2.1 leads to
an exact couple which gives the desired spectral sequence. To identify the Fo-term,
observe that 2.2.1(a) implies that each fibration in the resolution gives a short (as
opposed to long) exact sequence in E-homology. These splice together to give a
long exact sequence replacing 2.1.3,

0— E*(X) — E*(KO) — E*(ZKl) — e

Condition 2.2.1(c) implies that the Fa-term of the spectral sequence is the coho-
mology of the complex

Ext"(E,(Ko)) — Ext®(E.(2K})) — -~ .

By A1.2.4 this is Ext(E,(X)).

For 2.2.3(b) we know that the map X — X induces a spectral sequence isomor-
phism since it induces an E-homology isomorphism. We also know that lin X s = pt,
so we can identify EZ¥ as in 2.1.12.

We still need to show that the spectral sequence is natural and independent
(from Es onward) of the choice of resolution. The former implies the latter as
the identity map on X induces a map between any two resolutions and standard
homological arguments show that such a map induces an isomorphism in Fy and
hence in E, for r > 2. The canonical resolution is clearly natural so it suffices to
show that any other resolution admits maps to and from the canonical one.

We do this in stages as follows. Let {f;: Xy — K} be an arbitrary resolution
and let RY be the canonical one. Let R" = {f: X" — K"} be defined by X" = X,
and K = K,, for s <n and K = ENX}; for s > n. Then R* is the arbitrary
resolution and we construct maps R® «» R* by constructing maps R" « R"T1,
for which it suffices to construct maps between K, and E A X, compatible with the
map from X,. By 2.2.1(b) and (c), Ks and E A X, are both retracts of E A Kj, so
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we have a commutative diagram

X —K;

N

ENX,——=FENK,—— FENX;

)

K,

in which the horizontal and vertical composite maps are identities. It follows that
the diagonal maps are the ones we want.

The Adams spectral sequence of 2.2.3 is useful for computing 7.(X), i.e.,
[S°, X]. With additional assumptions on E one can generalize to a spectral se-
quence for computing [W, X]. This is done in Adams [4] for the case when E.(W)
is projective over m,(E). We omit this material as we have no need for it.

Now we describe the filtration of 2.2.3(b), which will be referred to as the

E.-Adams filtration on T, ()?)

2.2.14. FILTRATION THEOREM. The filtration on w*()?) of 2.2.3(b) is as fol-
lows. A map f: S™ — X has filtration > s if f can be factored into s maps each of
which becomes trivial after smashing the target with E.

~

PROOF. We have seen above that F*m,(X) = imm,.(Xs). We will use the
canonical resolution (2.2.10). Let E be the fiber of the unit map S° — E. Then
Xy = EG) A X, where E®) is the s-fold smash product of E. Xiy1 = Xi = X,NE
is a fiber sequence so each such composition is trivial and a map S™ — X which
lifts to X clearly satisfies the stated condition. It remains to show the converse,
i.e., that if a map f: S™ — X factors as

Sn"}/sg—s>}/s—l El1_’*>)/0:)(a
where each composite Y; i, Y;_1 — Y;_1 A E is trivial, then it lifts to X,. We
argue by induction on i. Suppose Y;_; — X lifts to X;_1 (a trivial statement for
i = 1). Since Y; maps trivially to Y;_1 A E, it does so to X;_1 A E and therefore
lifts to X;. ([l

3. The Smash Product Pairing and the Generalized Connecting
Homomorphism

In this section we derive two properties of the Adams spectral sequence which
will prove usefull in the sequel. The first concerns the structure induced by a map

(2.3.1) a: X'ANX" — X,

e.g., the multiplication on a ring spectrum. The second concerns a generalized
connecting homomorphism arising from a cofiber sequence

(2.3.2) whx%yhsw

when E,(h) = 0. Both of these results are folk theorems long known to experts in
the field but to our knowledge never before published in full generality. The first
property in the classical case was proved in Adams [3], while a weaker form of the
second property was proved by Johnson, Miller, Wilson, and Zahler [1].
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Throughout this section the assumptions 2.2.5 on E will apply. However, the
flatness condition [2.2.5(d)] is only necessary for statements explicitly involving Ext,
i.e., 2.3.3(e) and 2.3.4(a). For each spectrum X let EX*(X) be the Adams spectral
sequence for X based on E-homology (2.2.3). Our first result is

2.3.3. THEOREM. Let 2 < r < oco. Then the map a above induces a natural
pairing
B (X)) ® B (X") — B (X)
such that
(a) forad’ € E5V (X', " € EX -V (X"),
d.(d',a") = d,(a')a" + (=)' =% d'd,(a");

(b) the pairing on E,11, is induced by that on E,;
(c) the pairing on Es, corresponds to ay: m(X') @ m (X") — 7 (X);
(d) if X' =X" =X and E.(a): E.(X) ® E.(X) — E«(X) is commutative or

associative, then so is the pairing [modulo the usual sign conventions, i.e., a'a” =
(_1)(t’—s’)(t”—s”)a//a/];

(e) for r = 2 the pairing is the external cup product (A1.2.13)

Ext(E. (X)) ® Ext(E.(X")) = Ext(E. (X)) @ (p) Bu(X"))
composed with the map in Ext induced by the composition of canonical maps
Eu(X") @) Bo(X") = Ef(X' A X") 25 EL(X).

In particular, by setting X' = S° and X" = X we find that the spectral sequence

for X is a module (in the appropriate sense) over that for the sphere S°. (]

The second result is

2.3.4. THEOREM. Let E.(h) =0 in 2.3.2. Then for 2 < r < co there are maps
8y ES*(Y) — ESTL*(W) such that
(a) 02 is the connecting homomorphism associated with the short exact sequence

0— E.(W)— E.(X)— E.(Y)—0,

(b) 6,d, = d,-6, and 6,41 induced by 9,

(¢) o 18 a filtered form of the map m.(h).

The connecting homomorphism in Ext can be described as the Yoneda product

(Hilton and Stammbach [1, p. 155] with the element ofExt}E*(E)(E* (Y), E.(W))
corresponding to the short exact sequence

0— E.(W)— E.(X)— E,(Y)—0.
Similarly, given a sequence of maps
Xo 1% wx, Lov2x, . Synx,
with E.(f;) = 0 one gets maps
e BE(Xo) — EST™(X,,)

commuting with differentials where 0o can be identified as the Yoneda product with
the appropriate element in

Extl g, ) (E«(Xo), B (Xn)). O
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If one generalizes the spectral sequence to source spectra other than the sphere
one is led to a pairing induced by composition of maps. This has been studied
by Moss [1], where it is assumed that one has Adams resolutions satisfying much
stronger conditions than 2.2.1. In the spectral sequence for the sphere it can be
shown that the composition and smash product pairings coincide, but we will not
need this fact.

To prove 2.3.3 we will use the canonical resolutions (2.2.9) for X', X" and
X. Recall that these can be obtained by smashing the respective spectra with the
canonical resolution for S°. Let K s4r be the cofiber in

(2.3.5) ECH) S FB® S Ko,
where FE is the fiber of S° — E.

These spectra have the following properties.

2.3.6. LEMMA.
(a) There are canonical fibrations

Ks+i,s+i+j - s,5+1+7 - Ks,s+i'
(b) By (X) = mu(X A Kg 541)-
Let Z5*(X), B5*(X) C B} (X) be the images of m (X A Ky 1) and mo (X A
ST K y1.s), respectively. Then ES*(X) = Z2*(X)/B5*(X) and d, is induced
by the map
XA Ks,s+r — XA 2K5+r,s+2r'

(¢) a induces map X.NX] — X1 (where these are the spectra in the canonical
resolutions) compatible with the maps ¢,, gy, and gs4+ of 2.2.1.
(d) The map

Ky o1 NKi g1 — Kot st41,
given by the equivalence
Kppi1=ENE™
and the multiplication on E, lifts to maps
K sir NKpgrr — Kopt sityr

for r > 1 such that the following diagram commutes
K siri1 NKp o1 —— Koyt srtirt1
K sir NKpprr ——— Koyt sri1r

where the vertical maps come from (a).
(e) The following diagram commutes

Ks,err A Kt,t+r —— (2K5+r,s+2r A Kt,t—H’) V (Ks,s—i-r A EI(t—i-r,it+27“)
Koyt sptpr ———————> X Ko tirstttor

where the vertical maps are those of (d) and the horizontal maps come from (a), the
maps to and from the wedge being the sums of the maps to and from the summands.
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PROOF. Part (a) is elementary. For (b) we refer the reader to Cartan and
Eilenberg [1], Section XV.7, where a spectral sequence is derived from a set of
abelian groups H(p, ¢) satisfying certain axioms. Their H(p,q) in this case is our
7+ (Kp,q), and (a) guarantees that these groups have the appropriate properties. For
(c) we use the fact that X! = X' AE®), X/ = X" AE® | and X, = X AEGHY,

For (d) we can assume the maps E¢t1) — E() are all inclusions with Ko otr =
E®) /E(+7). Hence we have

Kooir AKiyyr = EG ANEWD )(ECH) AEO UE® AEE)
and this maps naturally to
F(s+t)/E(s+t+r) _ Ks+t,s+t+r-

For (e) if E¢+?) — EG+7) — F(®) are inclusions then so is Kyp e, —
Ks,s+2'r' so we have Ks,s+r = Ks,s+2r/Ks+'r',s+27' and Kt,t+7‘ = Kt,t+2r/Kt+'r',t+2r~
With this in mind we get a commutative diagram

Ks,s-‘rr A\ Kt+r,t+2r U Ks+r,s+2r A Kt,t-i—r — Dstttrs+t+2r

K o127 N Ky gqor Koyt sqtyor

Ky opr N Ky pqr Kot sttr

Z(Ks,s+r A\ Kt+r,t+27‘ U Ks+r,s+2r N Kt,t-i—r) —— ZI(s—&-t—i—r,s—l—t-«—Qr

where the horizontal maps come from (d) and the upper vertical maps are inclusions.
The lower left-hand map factors through the wedge giving the desired diagram. [

We are now ready to prove 2.3.3. In light of 2.3.6(b), the pairing is induced by
the maps of 2.3.6(d). Part 2.3.3(a) then follows from 2.3.6(e) as the differential on
E*(X)®E*(X") is induced by the top map of 2.3.6(e). Part 2.3.3(b) follows from
the commutative diagram in 2.3.6(d). Part 2.3.3(c) follows from the compatibility
of the maps in 2.3.6(c) and (d).

Assuming 2.3.3(e), (d) is proved as follows. The pairing on Ext is functorial, so
if E.(X) has a product which is associative or commutative, so will E5*(X). Now
suppose inductively that the product on E}*(X) has the desired property. Since
the product on E, 1 is induced by that on E, the inductive step follows.

It remains then to prove 2.3.3(e). We have E (X' A K, 441) = D*(E.(X"))
(A1.2.11) and similarly for X", so our pairing is induced by a map

E (X'NKg441) Or, (E) E (X" NKi41) = Eo(X AN Kgit 54041)s

i.e., by a pairing of resolutions. Hence the pairing on Es coincides with the specified
algebraic pairing by the uniqueness of the latter (A1.2.14).
We prove 2.3.4 by reducing it to the following special case.
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2.3.7. LEMMA. Theorem 2.3.4 holds when X is such that Ext®(E.(X)) =0 for
5> 0 and 7,.(X) = Ext’(E.(X)). O

PROOF OF 2.3.4. Let W’ be the fiber of the composite

woix o XxAE.

Since X fh is trivial, h lifts to a map h/: Y — XW’. Now consider the cofiber
sequence

W—-XANE—-IW — IW.

Lemma 2.3.7 applies here and gives maps
5.2 ES*(SW') — ESTH5(SW).
Composing this with the maps induced by h’ gives the desired result. O

PROOF OF 2.3.7. Disregarding the notation used in the above proof, let W' =
LY, X' =Y 'YAE,and Y =Y A E. Then we have a commutative diagram
in which both rows and columns are cofiber sequences

X w w’

]

XVYANE)=<— X <—X'

L]

YANE Y Y’

Each row is the beginning of an Adams resolution (possibly noncanonical for W and
X) which we continue using the canonical resolutions (2.2.9) for W/, X', and Y.
Thus we get a commutative diagram

(2.3.8) W<—W’<—W//\E<—W’/\E(2)<;...

L

X < X' < X//\E< _X’/\E@)e...

L

Y<~—YV ~—— V' AE<~——Y' ANE® — ...

in which each column is a cofiber sequence. The map ¥ — W' induces maps
8y ES*(Y) — ESTH*(W) which clearly satisfy 2.3.4(a) and (b), so we need only to
verify that do is the connecting homomorphism. The resolutions displayed in 2.3.8
make this verification easy because they yield a short exact sequence of Ei-terms
which is additively (though not differentially) split. For s = 0 we have

BN (W) =m(X), E(X)=m(X V(Y AE)),

EY*(Y)=m.(Y NE), E}"*(W)=m.(YAE),

EV*(X)=7m.(YANEAE) and E*(Y)=m(SY AEAE),
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so the relevant diagram for the connecting homomorphism is

X—=XV({YYAE) YAE

S |

YANAE==YAEANE—>YYANEAE

where a and b are splitting maps. The connecting homomorphism is induced by
adb, which is the identity on Y A E, which also induces ds.
For s > 0 we have

ES*(W) = m (2 'Y AEAECTY),

EVN(X) =1 (2 WY AE@ AECTY),
and

EYH(Y) = m(2Y AEAEW),

so the relevant diagram is

E———FANE=——=FEAE

| | |

SENE==ZYXEANEANE—>X?EAE?
and again the connecting homomorphism is induced by the identity on
XY NE N ES. O



CHAPTER 3

The Classical Adams Spectral Sequence

In Section 1 we make some simple calculations with the Adams spectral se-
quence which will be useful later. In particular, we use it to compute 7.(MU)
(3.1.5), which will be needed in the next chapter. The computations are described
in some detail in order to acquaint the reader with the methods involved.

In Sections 2 and 3 we describe the two best methods of computing the Adams
spectral sequence for the sphere, i.e., the May spectral sequence and the lambda
algebra. In both cases a table is given showing the result in low dimensions (3.2.9
and 3.3.10). Far more extensive charts are given in Tangora [1, 4]. The main table
in the former is reproduced in Appendix 3.

In Section 4 we survey some general properties of the Adams spectral sequence.
We give Ey™ for s < 3 (3.4.1 and 3.4.2) and then say what is known about dif-
ferentials on these elements (3.4.3 and 3.4.4). Then we outline the proof of the
Adams vanishing and periodicity theorems (3.4.5 and 3.4.6). For p = 2 they say
that E%! vanishes roughly for 0 < t — s < 2s and has a very regular structure for
t — s < bs. The E-term in this region is given in 3.4.16. An elementary proof of
the nontriviality of most of these elements is given in 3.4.21.

In Section 5 we survey some other past and current research and suggest further
reading.

1. The Steenrod Algebra and Some Easy Calculations

Milnor’s structure theorem for A,. The cobar complex. Multiplication by p in
the Eo-term. The Adams spectral sequence for m.(MU). Computations for MO,
bu and bo.

In this section we begin calculating with the classical mod (p) Adams spectral
sequence of 2.1.1. We start by describing the dual Steenrod algebra A., referring
the reader to Milnor [2] or Steenrod and Epstein [1] for the proof. Throughout
this book, P(z) will denote a polynomial algebra (over a field which will be clear
from the context) on one or more generators z, and F(x) will denote the exterior
algebra on same.

3.1.1. THEOREM (Milnor [2]). A, is a graded commutative, noncocommutative
Hopf algebra.

(a) For p = 2, A, = P(&,&,...) as an algebra where |&,| = 2™ — 1. The
coproduct A: A, — A, ® A, is given by A&, = o<icn ,211_1 ® &, where £ = 1.

(b) Forp > 2, A, = P(&,&,...) ® E(10,71,...) as an algebra, where |£,| =
2(p™ — 1), and || = 2p™ — 1. The coproduct A: A, — A, ® A, is given by
Al =Y gcicn bl ®&, where & =1 and A1, = 7, @ 1+ Y010 &0y @ ;.

59
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(c) For each prime p, there is a unit n: Z/(p) — As, a counit e: A, — Z/(p)
(both of which are isomorphisms in dimension 0), and a conjugation (canonical anti-
automorphism) c: A — Ay which is an algebra map given recursively by c(&) =1,

Y o<i<n Poe(&) =0 forn >0 and 7, + > o<i<n P oe(r) =0 forn>0. A, will

denote kere; i.e., Ay is isomorphic to A, in positive dimensions, and is trivial in
dimension 0. O

A, is a commutative Hopf algebra and hence a Hopf algebroid. The homological
properties of such objects are discussed in Appendix 1.

We will consider the classical Adams spectral sequence formulated in terms
of homology (2.2.3) rather than cohomology (2.1.1). The most obvious way of
computing the Fs-term is to use the cobar complex. The following description of
it is a special case of 2.2.10 and A1.2.11.

3.1.2. PROPOSITION. The Es-term for the classical Adams spectral sequence
for m.(X) is the cohomology of the cobar complex C?y (H.(X)) defined by

(with s tensor factors of A,). Fora; € A, andz € H.(X), the element a;®- - - a;@x
will be denoted by [ai]az|---|as]z. The coboundary operator ds: C3 (H.(X)) —
Cztl(H*(X)) is given by

dsar] -+ JasJe = Lar] -+ JasJe + Y (=1)[aa] - |ai-lafaf |aiga ] - - - |as]e
i=1
+ (=1 ar| - - Jagla’]2”,

where Aa; = aj®aj and (r) = 2’'@2" € A,@H.(X). [A priori this expression lies
in A2**1 @ H,(X). The diligent reader can verify that it actually lies in A2t @
H.(X)] O

This Es-term will be abbreviated by Ext(H,.(X)).

Whenever possible we will omit the subscript A..

The following result will be helpful in solving group extension problems in the
Adams spectral sequence. For p > 2 let ap € Exti{i(Z/(p),Z/(p)) be the class
represented by [r] € C(Z/(p)). The analogous element for p = 2 is represented by
[¢1] and is denoted by ag, h1,0, or ho.

3.1.3. LEMMA.

(a) For s >0, Ext®*(H,(S°)) is generated by aj.

(b) If x € Ext(H.(X)) is a permanent cycle in the Adams spectral sequence
represented by a € . (X), then apx is a permanent cycle represented by pa. [The
pairing Ext(H,(S°)) ® Ext(H.(X)) — Ext(H.(X)) is given by 2.3.3.] O

PROOF. Part (a) follows from inspection of C*(Z/(p)); there are no other el-
ements in the indicated bidegrees. For (b) the naturality of the smash product
pairing (2.3.3) reduces the problem to the case z = 1 € Ext(H.(SY)), where it
follows from the fact that mo(S°) = Z. O

The cobar complex is so large that one wants to avoid using it directly at all
costs. In this section we will consider four spectra (MO, MU, bo, and bu) in which
the change-of-rings isomorphism of A1.1.18 can be used to great advantage. The
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most important of these for our purposes is MU, so we treat it first. The others are
not used in the sequel. Much of this material is covered in chapter 20 of Switzer [1].

The computation of 7, (MU) is due independently to Milnor [4] and Novikov
[2, 3]. For the definition and basic properties of MU, including the following
lemma, we refer the reader to Milnor [4] or Stong [1] or to Section 4.1.

3.1.4. LEMMA.

(a) H.(MU;Z) = Z[b1,bs, ...], where b; € Ho;.

(b) Let H/(p) denote the mod (p) Filenberg-Mac Lane spectrum for a prime p
and let u: MU — H/(p) be the Thom class, i.e., the generator of H*(MU;Z/(p)).
Then H,(u) is an algebra map and its image in H.(H/(p)) = A, is P(£2,£3,...)
forp=2 and P(&,&,...) forp> 2. O

The main result concerning MU is the following.

3.1.5. THEOREM (Milnor [4], Novikov [2, 3]).

(a) W*(MU) = Z[CCl,.IQ, .. ] with x; € 7T21(MU)

(b) Let h: m(MU) — H.(MU;Z) be the Hurewicz map. Then modulo decom-
posables in H.(MU;Z),

O

h(z:) —pb; if i = p* — 1 for some prime p
€Z;) =
—b; otherwise.

We will prove this in essentially the same way that Milnor and Novikov did.
After some preliminaries on the Steenrod algebra we will use the change-of-rings
isomorphisms A1.1.18 and A1.3.13 to compute the Es-term (3.1.10). It will follow
easily that the spectral sequence collapses; i.e., it has no nontrivial differentials.

To compute the Es-term we need to know H,.(MU;Z/(p)) as an A,-comodule
algebra. Since it is concentrated in even dimensions, the following result is useful.

3.1.6. LEMMA. Let M be a left A.-comodule which is concentrated in even
dimensions. Then M is a comodule over P, C A, defined as follows. For p > 2,

P*:P(glag%"') (mdforp:2, P*:P(gfagga)

PRrROOF. For m € M, let ¢»(m) = ¥m' @ m”. Then each m’ € A; must be even-
dimensional and by coassociativity its coproduct expansion must consist entirely of

even-dimensional factors, which means it must lie in P,. O
3.1.7. LEMMA. As a left A.-comodule, H.(MU) = P, ® C, where
C = P(uy,us,...) with dimu; = 2i and i is any positive integer not of the form
k
p¥—1.

ProoF. H,.(MU;Z/(P)) is a P.-comodule algebra by 3.1.4 and 3.1.6. It maps
onto P, by 3.1.4(b), so by A1.1.18 it is P, ® C, where C = Z/(p) Op, H.(MU). An
easy counting argument shows that C' must have the indicated form. ]

3.1.8. LEMMA. Let M be a comodule algebra over A, having the form P, ® N
for some A.-comodule algebra N. Then

Ext .. (Z/(p), M) = Extz(Z/(p), N)

where

E(&,&,...) forp=2

E=A,@p. Z/(p) = {E(To,ﬁ,,..) forp>2.
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In particular,
Exta, (Z/(p), H.(MU)) = Extg(Z/(p), Z/(p)) ® C.

PROOF. The statement about H,.(MU) follows from the general one by 3.1.7.
For the latter we claim that M = A, Og N. We have A, = P, ® E as vector spaces
and hence as E-comodules by A1.1.20, so

A*DEN:P*(X)EDEN:P*@N:Mu
and the result follows from A1.3.13. O

Hence we have reduced the problem of computing the Adams Es-term for MU
to that of computing Extp(Z/(p),Z/(p)). This is quite easy since E is dual to an
exterior algebra of finite type.

3.1.9. LEMMA. Let T" be a commutative, graded connected Hopf algebra of finite
type over a field K which is an exterior algebra on primitive generators xi,xs,. ..,
each having odd degree if K has characteristic other than 2 (e.g., let T' = E). Then

Extr(K, K) = P(y1,Yy2,--- ),
where y; € ExtV1®i! is represented by [x;] in Cr(K) (the cobar complex of A1.2.11).

Proor. Let T'; C T' be the exterior algebra on x;. Then an injective I';-
resolution of K is given by

O—>K—>Fii>Fi—>Fi—>~-~

where d(z;) = 1 and d(1) = 0 applying Homr, (K, ) gives a complex with trivial
boundary operator and shows Extr, (K, K) = P(Y;). Tensoring all the R; together
gives an injective I'-resolution of K and the result follows from the Kunneth theo-
rem. (]

Combining the last three lemmas gives
3.1.10. COROLLARY.
Exta,(Z/(p), H (MU)) = C ® P(ag,a1,...),

where C'is as in 3.1.7 and a; € Ext"?' =1 s represented by [;] for p > 2 and [&]
forp=2in Cy, (H.(MU)). O

Thus we have computed the Es-term of the classical Adams spectral sequence
for m.(MU). Since it is generated by even-dimensional classes, i.e., elements in F3 *
with ¢ — s even, there can be no nontrivial differentials, i.e., Fy = F.

The group extension problems are solved by 3.1.3; i.e., all multiples of af are
represented in 7,(MU) by multiples of p°. It follows that m.(MU) ® Z, is as
claimed for each p; i.e., 3.1.5(a) is true locally. Since m;(MU) is finitely generated
for each 7, we can conclude that it is a free abelian group of the appropriate rank.

To get at the global ring structure note that the mod (p) indecomposable quo-
tient in dimension 2i, Q7. (MU) ® Z/(p) is Z/(p) for each i > 0, so
Qo (MU) = Z. Pick a generator z; in each even dimension and let R =
Z[ry,x2,...]. The map R — m.(MU) gives an isomorphism after tensoring with
Z,) for each prime p, so it is isomorphism globally.

To study the Hurewicz map

h: 7. (MU) — H.(MU;Z),
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recall H,(X;Z) = m.(X A H), where H is the integral Eilenberg-Mac Lane spec-
trum. We will prove 3.1.5(b) by determining the map of Adams spectral sequences
induced by ¢: MU — MU A H. We will assume p > 2, leaving the obvious changes
for p = 2 to the reader. The following result on H,(H) is standard.

3.1.11. LEMMA. The mod (p) homology of the integer Eilenberg—Mac Lane spec-
trum
H.(H)=P.® E(T71,T2,...)
as an A, comodule, where 7; denotes the conjugate T;, i.e., ils image under the
congjugation c. ([

Hence we have
H.(H) = Ay Op(r) Z/(p)
and an argument similar to that of 3.1.8 shows

(3.1.12) Exta, (Z/(p), H«(X N H)) = Extg(r)(Z/(p), Hi(X)).
In the case X = MU the comodule structure is trivial, so by 3.1.11,
Exta,(Z/(p), H.(MU ANH)) = H,(MU) ® P(ao).

To determine the map of Ext groups induced by ¢, we consider three cobar com-
plexes, Cy, (H.(MU)), Cp(C), and Cg(r,)(H.(MU)). The cohomologies of the
first two are both Exta, (Z/(p), H.(MU)), by 3.1.2 and 3.1.8, respectively, while
that of the third is Exta, (Z/(p), H.(MU A H)) by 3.1.12. There are maps from
Ca,(H.(MU)) to each of the other two.

The class A4, € Extkfpnfl(Z/(p),H*(MU)) is represented by [r,] € Cg(C).

The element — ) .[7;] _nl_i € Cy,(H.(MU)) [using the decomposition of H,(MU)
given by 3.1.7] is a cycle which maps to [7,,] and therefore it also represents a,,. Its
image in Cp () (H.(MU)) is [10)&n, so we have i, (an) = ao&n. Since &, € H, (MU)
is a generator it is congruent modulo decomposables to a nonzero scalar multiple
of byn_1, while u; (3.1.9) can be chosen to be congruent to b;. It follows that the
x; € Mo (MU) can be chosen to satisfy 3.1.5(b).

We now turn to the other spectra in our list, MO, bu, and bo. The Adams
spectral sequence was not used originally to compute the homotopy of these spectra,
but we feel these calculations are instructive examples. In each case we will quote
without proof a standard theorem on the spectrum’s homology as an A,-comodule
and proceed from there.

For similar treatments of M SO, MSU, and M Sp see, respectively, Pengel-
ley [2], Pengelley [1], and Kochman [1].

To following result on MO was first proved by Thom [1]. Proofs can also be
found in Liulevicius [1] and Stong [1, p. 95].

3.1.13. THEOREM. For p =2, H,(MO) = A, ® N, where N is a polynomial
algebra with one generator in each degree not of the form 28 — 1. For p > 2,
H.(MO) =0. O

It follows immediately that

(3.1.14) Ext’, (Z/(2), H.(MO)) = {év i - 8

the spectral sequence collapses and 7, (MO) = N.
For bu we have
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3.1.15. THEOREM (Adams [8]).
H.(u)= P ="M

0<i<p—1
where
M:P*®E(7_’277_-37...) fm”p>2
M =P, ®E(,&,...) forp=2
where & for a € A, is the conjugate c(a). O

Using 3.1.8 we get
Exta, (Z/(p), M) = Extp(Z/(p), E(72,73,...))

(again we assume for convenience that p > 2) and by an easy calculation A1.3.13
gives

EXtE(Z/(p)v E(T2= T3y )) = EXtE(‘ro,ﬁ)(Z/(p)v Z/(p)) = P(af)v al)
by 3.1.11, so we have

3.1.16. THEOREM.
p—2
Exta.(Z/(p), He(bu)) = @) T* P(ao, a1)
i=0

where ay € Extb! and a1 € Ext»*7L, O

As in the MU case the spectral sequence collapses because the Fs-term is
concentrated in even dimensions. The extensions can be handled in the same way,
so we recover the fact that

Z if i >0 and i is even
iy (bu) = .
0 otherwise.

The bo spectrum is of interest only at the prime 2 because at odd primes it is
a summand of bu (see Adams [8]). For p = 2 we have

~ 3.1.17. THEOREM (Stong [2]). For p =2, H.(bo) = P(&},62,63,&4,...) where
& = c(&)- O
Let A(1). = A./(€4,€2,&5,&4,...). We leave it as an exercise for the reader to

show that A(1). is dual to the subalgebra A(1) of A generated by Sq¢* and Sq?,
and that

H.(bo) = A, Daqy, Z/(2),
so by A1.3.13,
(3.1.18) Exta. (Z/(2), H.(b0)) = Extan). (2/(2),Z/(2)).

A(1) is not an exterior algebra, so 3.1.9 does not apply. We have to use the
Cartan—Eilenberg spectral sequence A1.3.15. The reader can verify that the follow-
ing is an extension (A1.1.15)

(3.1.19) ® — A(1). — E(&),

where ® = P(&)/(£f). @ is isomorphic as a coalgebra to an exterior algebra on
elements corresponding to & and &%, so by 3.1.9

Exte(Z/(2),Z/(2)) = P(hio, h11)
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and

Extp g, (Z/(2),Z/(2)) = P(ha),

where h; ; is represented by [5_12]] in the appropriate cobar complex. Since P(hgg) has
only one basis element in each degree, the coaction of ® on it is trivial, so by A1.3.15
we have a Cartan-Eilenberg spectral sequence converging to Ext 4(1), (Z/(2),Z/(2))
with

(3.1.20) E5 = P(hio, hi1, hao)
where hq; € E;’O and hgg € Eg’l. We claim
(3.1.21) da(hao) = hiohi.

This follows from the fact that
d(&) =& ® &
in Cqq1y, (Z/(2)). Tt follows that
(3.1.22) E5 = P(u, hio, h11)/(h1oh11)
where u € Eg’Q corresponds to h3,. Next we claim
(3.1.23) ds(u) = h3,.
We have in Cy(1), (Z/(2)),
d©86)=L0H G +6H 0 @8
In this F5 this gives
dah3y = hiohi1hao + haohiohin =0
since Es is commutative. However, the cobar complex is not commutative and when
we add correcting terms to {2 ® &2 in the hope of getting a cycle, we get instead
A& ®&E+6HOEHL+6LRE) =6 REERE,
which implies 3.1.23. It follows that
(3.1.24) Ey = P(h1o, b1, v,w)/(hiohat, hiy, v* + higw, vhi),

where v € Ei’2 and w € EEA correspond to hioh3, and hj,, respectively.

Finally, we claim that F; = E; inspection of F, shows that there cannot be
any higher differentials because there is no E* for r > 4 which is nontrivial and
for which E5+™'="*1 is also nontrivial. There is also no room for any nontrivial
extensions in the multiplicative structure. Thus we have proved

3.1.25. THEOREM. The Es-term for the mod (2) Adams spectral sequence for
7 (bo),
Exta, (Z/(2), Hi(bo)) = Extaq),(Z/(2),Z/(2))
18
P(hig, hi1,v,w)/(hiohi1, by, v + higw, vhiy),

where

hio € Ext™,  hyp € Ext??, v e Ext®", and w e Extb'?. O
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t—s —

This Es-term is displayed in the accompanying figure. A vertical arrow over
an element indicates that hijz is also present and nontrivial for all s > 0.

Now we claim that this Adams spectral sequence also collapses, i.e., Fy =
E. Inspection shows that the only possible nontrivial differential is d,(w™h;1) =
w"hi". However, bo is a ring spectrum so by 2.3.3 the differentials are derivations
and we cannot have d,.(hy1) = h’{arl because it contradicts the relation highy11 = 0.
The extension problem is solved by 3.1.3, giving

3.1.26. THEOREM (Bott [1]).
me(bo) = Z[n, o, B)/(2n,n°, na, @* — 4P)
withn € m, a € My, B € 7y, t.e., fori >0
Z ifi=0 mod 4
mi(bo) =< Z/2 ifi=1or2 mod8 O

0 otherwise.

For future reference we will compute Ext 4(1y(Z/(2), M) for M = A(0). = E(&1)
and M =Y = P(&)/(¢}). Topologically these are the Adams Es-terms for the
mod (2)-Moore spectrum smashed with bo and bu, respectively. We use the Cartan—
Eilenberg spectral sequence as above and our Fs-term is

Exte(Z/(2), Extp,)(Z/(2), M)).
An easy calculation shows that

E2 = P(hll, hgo) for M = A(O)*
and

E2 = P(hgo) for M =Y.

In the latter case the Cartan—Eilenberg spectral sequence collapses. In the former
case the differentials are not derivations since A(0), is not a comodule algebra.
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From 3.1.23 we get ds(h3,) = h3,, so
Ew = Eq = P(w) ® {1, h11, h3y, hao, haoha1, haohiy ).

This Ext is not an algebra but it is a module over Ext 41y, (Z/(2),Z/(2)). We will

show that there is a nontrivial extension in this structure, namely highog = h%l.

We do this by computing in the cobar complex C4(1), (A(0).). There the class hog

is represented by [€2] 4 [£7]€1, s0 hiohao is represented by [€1|€2]+ [€1|€2]&1. The sum

of this and [£7]¢}] (which represents h3 ;) is the coboundary of [£1&2] + [£F + &2)¢1.
From these considerations we get

3.1.27. THEOREM. As a module over Exta(y), (Z/(2),Z/(2)) (3.1.25) we have

(a) Exta(),,(Z/(2), A(0)«) is generated by 1 € Ext™® and hoy € Ext™® with
th 1= 0, h10h20 = h%l . 1, v-1l= 0, Cbnd’l)hgo =0.

(b) Extacny.(Z(2),Y) is generated by {hby: 0 < i < 3} with hiohhy = hi1hby =
vhiy = 0. 0

We will also need an odd primary analog of 3.1.27(a). A(1) = E(7,71) ®
P(&)/(€D) is the dual to the subalgebra of A generated by the Bockstein 3 and the
Steenrod reduced power P!. Instead of generalizing the extension 3.1.19 we use

P(0), — A(0), — BE(1).,

where P(0). = P(&)/(€}) and E(1). = E(19,71). The Cartan-Eilenberg spectral
sequence Fo-term is therefore

Exty0), (Z/(p), Extp ). (Z/(p), A(0))),

where A(0), = E(79). An easy calculation gives
3.1.28. THEOREM. For p > 2
Ext a1, (Z/(p), A(0)«) = E(ho) ® P(a1, bo),

where hy € Extb?, a; € Extl’qfl, and by € Ext®P? are represented by [€1], [€1)70 +
(1], and >0, p (D) [ELIEDT, respectively. O

2. The May Spectral Sequence

May'’s filtration of A.. Nonassociativity of May’s F1-term and a way to avoid
it. Computations at p = 2 in low dimensions. Computations with the subalgebra
A(2) at p = 2.

In this section we discuss a method for computing the classical Adams Fs-term,
Exta,(Z/(p),Z/(p)), which we will refer to simply as Ext. For the reader hoping
to understand the classical Adams spectral sequence we offer two pieces of advice.
First, do as many explicit calculations as possible yourself. Seeing someone else do
it is no substitute for the insight gained by firsthand experience. The computations
sketched below should be reproduced in detail and, if possible, extended by the
reader. Second, the Es-term and the various patterns within it should be examined
and analyzed from as many viewpoints as possible. For this reason we will describe
several methods for computing Ext. For reasons to be given in Section 4.4, we will
limit our attention here to the prime 2.

The most successful method for computing Ext through a range of dimensions
is the spectral sequence of May [1]. Unfortunately, crucial parts of this material
have never been published. The general method for computing Ext over a Hopf
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algebra is described in May [2], and the computation of the differentials in the May
spectral sequence for the Steenrod algebra through dimension 70 is described by
Tangora [1]. A revised account of the May Fs-term is given in May [4].

In our language May’s approach is to filter A, by copowers of the unit coideal
(A1.3.10) and to study the resulting spectral sequence. Its Es-term is the Ext over
the associated graded Hopf algebra E°A,. The structure of this Hopf algebra is as
follows.

3.2.1. THEOREM (May [1]). (a) For p =2,
E°A, =E(&;:i>0,5>0)

with coproduct

A&ig)= > &i-kijrk ® &k,

0<k<i

where & j =1 and & ; € E? A, is the projection of §fj.
(b) Forp> 2,

E°A, =E(r:i>0)®@T(&,:i>0,7>0)
with coproduct given by

A&ij) = Y &Ghjrk @&

0<k<i

and
Alr)=7n®1+ Z ik, @ Ti,

0<k<i
where T( ) denotes the truncated polynomial algebra of height p on the indicated
generators, 7, € B A, is the projection of 7; € As, and & ; € E?A; is the
projection of ff] ) O

May actually filters the Steenrod algebra A rather than its dual, and proves
that the associated bigraded Hopf algebra FyA is primitively generated, which is
dual to the statement that each primitive in EOA; is a generator. A theorem of
Milnor and Moore [3] says that every graded primitively generated Hopf algebra
is isomorphic to the universal enveloping algebra of a restricted Lie algebra. For
p =2 let z;; € EyA be the primitive dual to & ;. These form the basis of a Lie
algebra under commutation, i.e.,

_ _ gt m
[Ti,j Thym| = @i jThoym — ThymTij = OpTim — 07 Thj

where (5;- is the Kronecker 6. A restriction in a graded Lie algebra L is an en-
domorphism £ which increases the grading by a factor of p. In the case at hand
this restriction is trivial. The universal enveloping algebra V(L) of a restricted Lie
algebra L (often referred to as the restricted enveloping algebra) is the associative
algebra generated by the elements of L subject to the relations zy — yz = [z, y] and
aP = ¢(z) for x,y € L.

May [1] constructs an efficient complex (i.e., one which is much smaller than
the cobar complex) for computing Ext over such Hopf algebras. In particular, he
proves
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3.2.2. THEOREM (May [1]). Forp =2, Extyo, (Z/(2),Z/(2)) (the third grad-
ing being the May filtration) is the cohomology of the complex

V***:P(hiﬁjli>0, jZO)

with d(hij) = > cne; Prjhi—kkrj, where hi; € VE2 @ =D corresponds to & €
A3, O

Our h; j is written R} by May [1] and Rj; by Tangora [1], but as h;; (in a
slightly different context) by Adams [3]. Notice that in C*(Z/(2)) one has d[{fj] =
Y ocheil 2716271 ' which corresponds to the formula for d(h; ;) above. The theorem
asserts that F°C*(Z/(2)) is chain homotopy equivalent to the polynomial algebra
on the [&; ;]. We will see below (3.2.7) that C*(Z/(2)) itself does not enjoy the
analogous property and that the May differentials are a measure of its failure to do
s0.

From 3.2.2 May derives a spectral sequence of the following form.

3.2.3. THEOREM (May [1]). There is a spectral sequence converging to
Extyy, (2/(2),2/(2))

. ITT I pE T T . ms,tu s+1,t,ut+l—r
with EY** =V*** and d,: E"" — E? .

PROOF OF 3.2.2 AND 3.2.3. The spectral sequence is a reindexed form of that
of A1.3.9, so 3.2.3 follows from 3.2.2. We will show that the same spectral, sequence
can be obtained more easily by using a different increasing filtration of A.. An
increasing filtration is defined by setting |¢?’| = 2i — 1. Then it follows easily that
this EYA, has the same algebra structure as in 3.2.1 but with each &; ; primitive.
Hence E°A, is dual to an exterior algebra and its Ext is V*** (suitably reindexed)
by 3.1.11. A1.3.9 gives us a spectral sequence associated to this filtration. In
particular, it will have di(h; ;) = > hg jhi—k j+% as in 3.2.2. Since all of the h; ;
have odd filtration degree, all of the nontrivial differentials must have odd index. It
follows that this spectral sequence can be reindexed in such a way that each ds,—1
gets converted to a d, and the resulting spectral sequence is that of 3.2.3. ([l

For p > 2 the spectral sequence obtained by this method is not equivalent
to May’s but is perhaps more convenient as the latter has an FEj-term which is

nonassociative. In the May filtration one has |7;,_1| = |§fj| = 4. If we instead set

|Tic1] = |§fj| = 2i — 1, then the resulting E°A, has the same algebra structure
(up to indexing) as that of 3.2.1(b), but all of the generators are primitive. Hence
it is dual to a product of exterior algebras and truncated polynomial algebras of
height p. To compute its Ext we need, in addition to 3.1.11, the following result.

3.2.4. LEMMA. Let T’ = T'(z) with dimz = 2n and = primitive. Then
Extr(Z/(p),Z/(p)) = E(h) @ P(b),

where
h € Ext' s represented in Cr(Z/(p)) by [z]

1/p\. . . .
beExt? b - P, O
coxtt by Y (V)i

0<i<p p

and
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The proof is a routine calculation and is left to the reader.
To describe the resulting spectral sequence we have

3.2.5. THEOREM. For p > 2 the dual Steenrod algebra (3.1.1) A can be given
an increasing filtration with |1;—1| = |§f]| =2i—1 fori—1, 7 > 0. The associated
bigraded Hopf algebra ECA, is primitively generated with the algebra structure of
3.2.1(b). In the associated spectral sequence (A1.3.9)

ET** :E(hi7j1i>0, jZO)@P(biJ‘:Z‘>O, ]ZO)@P(C&’LZO),
where
hi,j c E;,2(p1—1)pj,2i—1,

2,2(p'—1)p* I p(2i—1
b € B> (p'=1)p 7 ,p(2d )7

and

1,2p*—1,2i+1
aiEEl’p 21+

(hi; and a; correspond respectively to ffj and ;). One has d,.: E>Y% — Es—Ltu-r
and if © € B3 then d,(zy) = d,(z)y + (—1)%zd,(y). di is given by

di(hi ;) =— Z hijhi kg,

0<k<i
dl(ai) = — Z akhi—k,ka
0<k<s
dl (bi,j) =0. O

In May’s spectral sequence for p > 2, indexed as in 3.2.3, the Fj-term has
the same additive structure (up to indexing) as 3.2.5 and di is the same on the
generators, but it is a derivation with respect to a different multiplication, which
is unfortunately nonassociative.

We will illustrate this nonassociativity with a simple example for p = 3.

3.2.6. EXAMPLE. In the spectral sequence of 3.2.5 the class highgg corresponds
to a nontrivial permanent cycle which we call gg. Clearly hi1pgo=0 in E., but
for p = 3 it could be a nonzero multiple of h11b19 in Ext. The filtration of higgo
and h11b1o are 5 and 4, respectively. Using Massey products (A1.4), one can show
that this extension in the multiplicative structure actually occurs in the following
way. Up to nonzero scalar multiplication we have byg = (h10, h10, h10) and go =
(h10, h10, h11) (there is no indeterminacy), so

hiogo = hio(hi0, hio, hi1)
= (h1o, h1o, h10)hi1
= bighi1.

Now in the May filtration, both h19gg and b1ph11 have weight 4, so this relation
must occur in Fy, i.e., we must have

0 # hiogo = h10(h1090) # (R10h10)g90 = 0,

so the multiplication is nonassociative.
To see a case where this nonassociativity affects the behavior of May’s d,
consider the element highoohso. It is a d; cycle in 3.2.5. In E5 the Massey product
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(h10, h11, h12) is defined and represented by +(hioha1 4+ hoohi2) = £d1(hso). Hence
in Ext we have
0 = go(hi0, h11, h12)
= (goh10, h11, h12)
= +(h11b10, h11, h12)
= %b1o(h11, h11, h12).

The last bracket is represented by +hi1ho1, which is a permanent cycle g;. This
implies (A1.4.12) da(hiohaohso) = £b1191. In May’s grading this differential is a d;.
Now we return to the prime 2.

3.2.7. ExAMPLE. The computation leading to 3.1.25, the Adams FEs-term for
bo, can be done with the May spectral sequence. One filters A(1). (see 3.1.18) and
gets the sub-Hopf algebra of EYA, generated by &19, £11, and &22. The complex
analogous to 3.2.2 is P(hig, h11, hoo) with d(hag) = hiohi11. Hence the May Fa-term
is the Cartan—Eilenberg Es-term (3.1.22) suitably reindexed, and the ds of 3.1.23
corresponds to a May ds.

We will illustrate the May spectral sequence for the mod (2) Steenrod algebra
through the range ¢ — s < 13. This range is small enough to be manageable, large
enough to display some nontrivial phenomena, and is convenient because no May
differentials originate at ¢t — s = 14. May [1, 4] was able to describe his Es-term
(including ds) through a very large range, t—s < 164 (for t—s < 80 this description
can be found in Tangora [1]). In our small range the Fa-term is as follows.

3.2.8. LEMMA. In the range t—s < 13 the Es-term for the May spectral sequence
3.2.3) has generators
( 9

1,291
hj = hlﬁj S E2 s

42 2,29 (20—1),2i
b@j = hi,j S E2 s
and

27 = haghor + h11hao € E22’9’4

with relations
hjhj+1 =0,
habag = hox7,
and

hax7 = hobai. O

This list of generators is complete through dimension 37 if one adds z16 and
234, obtained from z7 by adding 1 and 2 to the second component of each index.
However, there are many more relations in this larger range.

The F>-term in this range is illustrated in Fi1G. 3.2.9. Each dot represents an
additive generator. If two dots are joined by a vertical line then the top element is
ho times the lower element; if they are joined by a line of slope % then the right-
hand element is ho times the left-hand element. Vertical and diagonal arrows mean
that the element has linearly independent products with all powers of hy and hq,
respectively.
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FIGURE 3.2.9. The May Es-term for p=2 and t — s < 13

3.2.10. LEMMA. The differentials in 3.2.3 in this range are given by

(a) dr(h;) =0 for all T,

(b) dg(bg_j) = h?thrz + h?Jrl,
(C) dg ($7) = hoh%,

(d) da(bso) = hiba1 + hsbag, and

(e) da(b3p) = hohs.

PROOF. In each case we make the relevant calculation in the cobar complex
Ca.(Z/(2)) of 3.1.2. For (a), [¢%'] is a cycle. For (b) we have

d([e2]€2] + [E716162] + [E26T161]) = [€TIERIER] + [EL1Eal€a]-

For (c) we have

d([(& + &)IE] + [(& + &6 + &€ + &)IET] + (G 1€16) = [aléilér]-
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For (d) we use the relation 22 = h2bgp + bagba1 (which follows from the definition
of the elements in question); the right-hand term must be a cycle in E; and we can
use this fact along with (b) to calculate da(bso).

Part (e) follows from the fact that hjhs = 0 in Ext, for which three different
proofs will be given below. These are by direct calculation in the A-algebra (Sec-
tion 3.3), by application of a Steenrod squaring operation to the relation hohy = 0,
and by the Adams vanishing theorem (3.4.5). O

It follows by inspection that no other differentials can occur in this range. Since
no May differentials originate in dimension 14 we get

3.2.11. THEOREM. Exti{i (Z/(2),Z(2)) fort —s <13 and s < 7 is generated
as a vector space by the elements listed in the accompanying table. (There are no
generators for t — s = 12 and 13, and the only generators in this range with s > 7
are powers of hg.)

In the table ¢y corresponds to hixy, while Px corresponds to b;ox. There are
relations h3 = h3ha, h3 = h3hs, and Ph3 = Phih? = hiPhs. O

Phy
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Inspecting this table one sees that there are no differentials in the Adams
spectral sequence in this range, and all of the group extensions are solved by 3.1.3
and we get

3.2.12. COROLLARY. For n < 13 the 2-component of m,(S°) are given by the
following table.

n 0 1 2 3 |4|5]| 6 7 8 9 10 11 12|13

™ (S°)|Z(2)|2/(2)[2/(2)|Z/(8)[0]0]Z/(2)|Z/(16)[(2/(2))* | (Z/(2))*|Z/(2)[Z/(8) [ 0 [ O

In general the computation of higher May differentials is greatly simplified
by the use of algebraic Steenrod operations (see Section Al.5). For details see
Nakamura [1].

Now we will use the May spectral sequence to compute Ext 4(2), (Z/(2), A(0).),

2n+2*1

where A(n). = P(&,&,...,&n+1)/(& ) is dual to the subalgebra A(n) C A
generated by Sq', Sq?,...,S¢*" . We filter A(2). just as we filter A,. The resulting
May El—term is P(hll,h12,h20,h21,h30) with d1 (hl,i) =0= dl(hgo), dl(hgl) =
hllhlg, and dl (h30) = hgohlg. This giVQS

(3.2.13) Ey = P(ba1,b30) @ ((P(h11, h20) @ E(z7)) @ {hly: i > 0}),

where bgl = h%l, b30 = h§O7 and T7 = hllhgo + hzohgl. The dg’S are trivial except
for

(3.2.14) dy(hdy) = h3,, da(ba) = b3y, and  da(bsg) = hy1bor.

Since A(0). is not a comodule algebra, this is not a spectral sequence of algebras,
but there is a suitable pairing with the May spectral sequence of 3.2.3.

Finding the resulting Es-term requires a little more ingenuity. In the first
place we can factor out P(b%,), i.e., B2 = FE2/(b3,) @ P(b3,) as complexes. We
denote Fa/(b3,) by E2 and give it an increasing filtration as a differential algebra
by letting Fy = P(hll, hQO) ® E(:Z?7) S5 {hzu 7> 0} and letting ba1,b30 € Fy. The
cohomology of the subcomplex Fj is essentially determined by 3.1.27(a), which
gives Ext a1y, (Z/(2), A(0)+). Let B denote this object suitably regraded for the
present purpose. Then we have

(3.2.15) H*(Fy) = B® E(x7) © {hiy: i > 0}.

For k > 0 we have F,/Fj,_y = {bk;, b5 b0} @ Fy with da (b5 *b0) = b5 hyy. Tts
cohomology is essentially determined by 3.1.27(b), which describes
Exta(1).(Z/(2),Y). Let C denote this object suitably regraded, i.e., C'= P(hgo).
Then we have for k > 0

(3.2.16) H*(Fy,/F_1) = C{b5,} @ E(X7) @ {b5,hiy, baobiy hiy: i > 0}.

This filtration leads to a spectral sequence converging to E5 in which the only
nontrivial differential sends

bglbgohh to kbgflbéohigg
fore = 0,1, k > 0 and ¢ > 1. This is illustrated in F1G. 3.2.17(a), where a square
indicates a copy of B and a large circle indicates a copy of C'. Arrows pointing to the
left indicate further multiplication by hi2, and diagonal lines indicate differentials.
Now bo; supports a copy of C' and a differential. This leads to a copy of C in
E3 supported by hogba; shown in 3.2.17(b). There is a nontrivial multiplicative

extension hogh)12b30 = x7bo; which we indicate by a copy of C in place of hi2bsg
in (b). Fig. 3.2.17(b) also shows the relation h11b3; = h3,bs0.

o
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The differentials in E3 are generated by ds(b3,) = hi2b3; and are shown in
3.2.17(c). The resulting Fy = F is shown in 3.2.17(d), where the symbol in place
of b2, indicates a copy of B with the first element missing.

3. The Lambda Algebra

A as an Adams F;-term. The algebaraic EHP spectral sequence. Serial num-
bers. The Curtis algorithm. Computations below dimension 14. James periodicity.
The Adams vanishing line. d; is multiplication by A_;. Illustration for S3.

In this section we describe the lambda algebra of Bousfield et al. [2] at the
prime 2 and the algorithm suggested by it for computing Ext. For more details,
including references, see Tangora [2, 3] and Richter [?] . For most of this material
we are indebted to private conversations with E.B. Curtis. It is closely related to
that of Section 1.5.

The lambda algebra A is an associative differential bigraded algebra whose co-
homology, like that of the cobar complex, is Ext. It is much smaller than the cobar
complex; it is probably the smallest such algebra generated by elements of coho-
mological degree one with cohomology isomorphic to Ext. Its greatest attraction,
which will not be exploited here, is that it contains for each n > 0 a subcomplex
A(n) whose cohomology is the Fs-term of a spectral sequence converging to the
2-component of the unstable homotopy groups of S™. In other words A(n) is the
E;-term of an unstable Adams spectral sequence.

More precisely, A is a bigraded Z/(2)-algebra with generators A, € Abn+!
(n > 0) and relations

—i_1
(331) /\i/\2i+1+n = Z (n '7 ))\i+n—j/\2i+1+j for i,n 2 0
%0 J
with differential
o

(3.3.2) d) =Y < , 1>AMAJ-1.

SR
Note that d behaves formally like left multiplication by A_j.

3.3.3. DEFINITION. A monomial A\, Ai, - -+ Ai, € A is admissible if 2i, > ip41
for 1 <r <s. A(n) C A is the subcomplex spanned by the admissible monomials
with i1 < n.

The following is an easy consequence of 3.3.1 and 3.3.2.

3.3.4. PROPOSITION.
(a) The admissible monomials constitute an additive basis for A.
(b) There are short exact sequences of complezes

0—A(n)—>An+1) = X"A(2n+1) — 0. O
The significant property of A is the following.

3.3.5. THEOREM (Bousfield et al. [2]). (a) H(A) = Exta,(Z/(2),Z/(2)), the
classical Adams Eo-term for the sphere.
(b) H(A(n)) is the Ea-term of a spectral sequence converging to m.(S™).
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(c) The long exact sequence in cohomology (3.3.6) given by 3.3.4(b) corresponds
to the EHP sequence, i.e., to the long exact sequence of homotopy groups of the fiber
sequence (at the prime 2)

S" = Q8" Q82! (see 1.5.1). 0

The spectral sequence of (b) is the unstable Adams spectral sequence. The long
exact sequence in (c) above is

(3.3.6) — HY'(A(n)) & H' (A(n+1)) L H= 51 (A(2n + 1))
L B (An) —

The letters E, H, and P stand respectively for suspension (Einhdngung in German),
Hopf invariant, and Whitehead product. The map H is obtained by dropping the
first factor of each monomial. This sequence leads to an inductive method for
calculating H**(A(n)) which we will refer to as the Curtis algorithm.

Calculations with this algorithm up to ¢ = 51 (which means up to t — s =
33) are recorded in an unpublished table prepared by G. W.Whitehead. Recently,
Tangora [4] has programmed a computer to find H**(A) at p = 2 for ¢t < 48 and
p = 3 fort <99. Some related machine calculations are described by Wellington [1].

For the Curtis algorithm, note that the long exact sequences of 3.3.6 for all n
constitute an exact couple (see Section 2.1) which leads to the following spectral
sequence, similar to that of 1.5.7.

3.3.7. PROPOSITION (Algebraic EHP spectral sequence).
(a) There is a trigraded spectral sequence converging to H5*(A) with

B3t = H5 L (A(2n — 1)) for s> 0

and

Eotn _ Z/(2) fort=n=0
! 0 otherwise,

and d,: B3t — Esthtn-r,
(b) For eachm > 0 there is a similar spectral sequence converging to H**(A(m))
with

O

gt — as above forn <m
! 0 for n > m.

The EHP sequence in homotopy leads to a similar spectral sequence converging
to stable homotopy filtered by sphere of origin which is described in Section 1.5.

At first glance the spectral sequence of 3.3.7 appears to be circular in that the
FE;-term consists of the same groups one is trying to compute. However, for n > 1
the groups in E"“™ are from the (t — s —n 4 1)-stem, which is known by induction
on ¢t — s. Hence 3.3.7(b) for odd values of m can be used to compute the E;-terms.
For n = 1, we need to know H*(A(1)) at the outset, but it is easy to compute.
A(1) is generated simply by the powers of Ay and it has trivial differential. This
corresponds to the homotopy of S*.

Hence the EHP spectral sequence has the following properties,

3.3.8. LEMMA. In the spectral sequence of 3.3.7(a),
(a) E"™ =0 fort —s < n — 1 (vanishing line);
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(b) B} =Z/(2) fort —s =n—1 and all s > 0 and if in addition n — 1
is even and positive, di : Ef’t’n — Ef*lﬁtvnfl
groups);

(c) Byt = H3=Lt="(A) for t — s < 3n (stable zone); and

(d) B =0 fort > s.

is nontrivial for all s > 0 (diagonal

PrOOF. The groups in (a) vanish because they come from negative stems in
A(2n — 1). The groups in (b) are in the 0-stem of A(2n — 1) and correspond to
An,1A8_1 € A. If n — 1 is even and positive, 3.3.2 gives

dAn—1 )" = An—2)y mod A(n — 2),

which means d; behaves as claimed. The groups in (c) are independent of n by
3.3.6. The groups in (d) are in A(1) in positive stems. O

The above result leaves undecided the fate of the generators of EV"™ ™1™ for
n — 1 odd, which correspond to the \,,—;. We use 3.3.2 to compute the differentials
on these elements. (See Tangora [2] for some helpful advice on dealing with these
binomial coefficients.) We find that if n is a power of 2, A\,_1 is a cycle, and if
n ==k 27 for odd k > 1 then

d(An—1) = Ap—1-2A9i—1 mod A(n —1— 2j)'

This equation remains valid after multiplying on the right by any cycle in A,
so we get

3.3.9. PROPOSITION. In the spectral sequence of 3.3.7(a) every element in
Ef’t’y is a permanent cycle. For n = k27 for k > 1 odd, then every element
mn Eﬁ’t’kw is a d-cycle for r < 27 and

. 0,k-29 —1,k27 1,k-29 —1,(k—1)27
d2j . E2j — E2

is montrivial, the target corresponding to Ayi_q1 under the isomorphism of 3.3.7.
The cycle Xgj_1 corresponds to h; € Extb?. 0

Before proceeding any further it is convenient to streamline the notation. In-
stead of Aj, Ai, - - - A\i, we simply write i1i5. .. 15, €.g., we write 411 instead of AgA1 1.
If an integer > 10 occurs we underline all of it but the first digit, thereby removing
the ambiguity; e.g., A15A3A15 is written as 15315. Sums of monomials are written
as sums of integers, e.g., d(9) = 71 + 53 means d(A\g) = A\7A1 + AsAg; and we write
¢ for zero, e.g., d(15) = ¢ means d(A;5) = 0.

We now study the EHP spectral sequence [3.3.7(a)] for t — s < 14. It is
known that no differentials or unexpected extensions occur in this range in any
of the unstable Adams spectral sequences, so we are effectively computing the 2-
component of 7,4 (S™) for k < 13 and all n.

For t —s = 0 we have E*' = Z/(2) for all s > 0 and E{"®" = 0 for n > 1. For
t—s =1 we have E;*? = Z/(2), corresponding to A\, or hy, while ES'T" =0
for all other s and n. From this and 3.3.8(c) we get EZ""*" = Z/(2) generated by
An—1A1 for all n > 2, while Ef’t’t*S = 0 for all other s, . The element 11 cannot
be hit by a differential because 3 is a cycle, so it survives to a generator of the
2-stem, and it gives generators of ES" "™ (corresponding to elements with Hopf
invariant 11) for n > 2, while E5"*~*~" = 0 for all other s and ¢.
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This brings us to t — s = 3. In addition to the diagonal groups E{*™>* given
by 3.3.8(b) we have E"*® generated by 21 and E;"®? generated by 111, with no
other generators in this stem. These two elements are easily seen to be nontrivial
permanent cycles, so H**t3(A) has three generators; 3, 21, and 111. Using 3.3.1
one sees that they are connected by left multiplication by 0 (i.e., by Ag).

Thus for t — s < 3 we have produced the same value of Ext as given by the
May spectral sequence in 3.2.11. The relation h3hy = h$ corresponds to the rela-
tion 003 = 111 in A, the latter being easier to derive. It is also true that 300 is
cohomologous in A to 111, the difference being the coboundary of 40 + 22. So far
no differentials have occurred other than those of 3.3.8(b).

These and subsequent calculations are indicated in F1G. 3.3.10, which we now
describe. The gradings t — s and n are displayed; we find this more illuminating
than the usual practice of displaying t — s and s. All elements in the spectral
sequence in the indicated range are displayed except the infinite towers along the
diagonal described in 3.3.8(b). Each element (except the diagonal generators) is
referred to by listing the leading term of its Hopf invariant with respect to the left
lexicographic ordering; e.g., the cycle 4111 4 221 4+ 1123 is listed in the fifth row as
111. An important feature of the Curtis algorithm is that it suffices to record the
leading term of each element. We will illustrate this principle with some examples.
For more discussion see Tangora [3]. The arrows in the figure indicate differentials
in the spectral sequence. Nontrivial cycles in A for 0 < ¢t — s < 14 are listed at the
bottom. We do not list them for ¢ —s = 14 because the table does not indicate which
cycles in the 14th column are hit by differentials coming from the 15th column.

3.3.11. EXAMPLE. Suppose we are given the leading term 4111 of the cycle
above. We can find the other terms as follows. Using 3.3.1 and 3.3.2 we find
d(4111) = 21111. Refering to Fig. 3.3.10 we find 1111 is hit by the differential from
221, so we add 2221 to 4111 and find that d(4111 + 2221) = 11121. The figure
shows that 121 is killed by 23, so we add 1123 to our expression and find that
d(4111 4 2221 4 1123) = ¢ i.e., we have found all of the terms in the cycle.

Now suppose the figure has been completed for t — s < k. We wish to fill in the
column ¢t — s = k. The box for n =1 is trivial by 3.3.8(d) and the boxes for n > 3
can be filled in on the basis of previous calculations. (See 3.3.12.) The elements in
the box for n = 2 will come from the cycles in the box forn =3,t—s=k—1, and
the elements in the box for n = 2, t — s = k — 1 which are not hit by d;’s. Hence
before we can fill in the box for b = 2, t — s = k, we must find the d;’s originating
in the box for n = 3. The procedure for computing differentials will be described
below. Once the column ¢t — s = k has been filled in, one computes the differentials
for successively larger values of n.

The above method is adequate for the limited range we will consider, but for
more extensive calculations it has a drawback. One could work very hard to show
that some element is a cycle only to find at the next stage that it is hit by an easily
computed differential. In order to avoid such redundant work one should work by
induction on ¢, then on s and then on n; i.e., one should compute differentials
originating in E5%™ only after one has done so for all Eﬁ/’t/’"/ with ¢/ < ¢, with
t =t and s’ < s, and with s = s, t/ = t, and n’ < n. This triple induction is
awkward to display on a sheet of paper but easy to write into a computer program.
On the other hand Tangora [4, last paragraph starting on page 48] used downward
rather than upward induction on s because given knowledge of what happens at



3. THE LAMBDA ALGEBRA

81

2n—1nl0[1[2]3]4 5[ 6 [ 7 [8] 9 10 11 12 13 14
1 |1
124111 [1124111
3 |9 111 24111 [11233) (224111 2124111 (21124111
0 21*\211 2111 1233 (2233 \21233 211233\
11 (NN TN 233 N \[2333 N\ \
2233 1124111
24111 224111
5 |3 111 1233|433 44111 324111
11 21" 233 333\ 124111 3233 31233
1 [A 3131 [311 133 |4111 i RN\ 11233\ | 353 3333
4111 24111 124111 1124111
7 |4 111 511 4([233 1233'\ 11233‘& 224111
01 21 61 611 6111 2233 44111
A A1 )3 ’\X 33 AR EEN \&33 433 N\ 533
111 411 \ 241 1124111
9 |5 21 511 233 1233 2233
3 33 \61 53 711 433
1 11 Mz 71 333 73
4111 24111
1 ls 111 511 233 1233
0 21\ 33 61 53 333
N1 11 3N A 7N\
\111 \ 4111
21 511 233
1347 11 3\ 33 61 53
1 A 7
111 4111
0 21 511
1518 ’\ 1 \[11 3 \ 33 61
AN A X 7
11
VAN A
1 11 3 33
o o IENER
0 21
\ 1 11 3N
\ 111 \
21 |11 21
1 11y 3
0 111
23 |12 \ 21
Iv 11x 3
25 13 1 11
0
27 |14 \ )
29 [15
Nontrivial [1 [11]111 33 |4111(233]1233 [124111[1124111
permanent 21 511 |53 (24111 224111
cycles 3 61 333 44111
7

FIGURE 3.3.10. The EHP spectral sequence (3.3.7) for t — s < 14
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all lower values of ¢, the last group needed for the (¢t — s)-stem is the one with the
largest value of s possible under the vanishing line, the unstable analog of 3.4.5.
There are advantages to both approaches.

The procedure for finding differentials in the EHP spectral sequence (3.3.7)
is the following. We start with some sequence « in the (n + 1)th row. Suppose
inductively that some correcting terms have already been added to A,a, in the
manner about to be described, to give an expression . We use 3.3.1 and 3.3.2 to
find the leading term 414 ...is41 of d(z). If d(z) = 0, then our « is a permanent
cycle in the spectral sequence. If not, then beginning with u = 0 we look in the
table for the sequence is_y41%5—ut2...4s41 in the (is—, + 1)th row until we find
one that is hit by a differential from some sequence § in the (m + 1)th row or
until v = s — 1. In the former event we add A;, ... A\, _,_, Am/B to 2 and repeat the
process. The coboundary of the new expression will have a smaller leading term
since we have added a correcting term to cancel out the original leading coboundary
term.

If we get up to u = s — 1 without finding a target of a differential, then it
follows that our original o supports a d,,—;, whose target is i2-- - %s41.

It is not necessary to add all of the correcting terms to x to show that our a
is a permanent cycle. The figure will provide a finite list of possible targets for the
differential in question. As soon as the leading term of d(z) is smaller (in the left
lexicographic ordeninng) than any of these candidates then we are done.

In practice it may happen that one of the sequences is_yy1-- 7541 in the
(is—y + 1)th row supports a nontrivial differential. This would be a contradiction
indicating the presence of an error, which should be found and corrected before
proceeding further. Inductive calculations of this sort have the advantage that
mistakes usually reveal themselves by producing contradictions a few stems later.
Thus one can be fairly certain that a calculation through some range that is free
of contradictions is also correct through most of that range. In publishing such
computations it is prudent to compute a little beyond the stated range to ensure
the accuracy of one’s results.

We now describe some sample calculations in 3.2.11.

3.3.12. EXAMPLE. FILLING IN THE TABLE. Consider the boxes with
t—s—(n—1)=28.
To fill them in we need to know the 8-stem of H(A(2n — 1)). For convenience the
values of 2n — 1 are listed at the extreme left. The first element in the 8-stem is
233, which originates on S® and hence appears in all boxes for n > 2. Next we have
the elements 53, 521, and 5111 originating on S®. The latter two are trivial on S7
and so do not appear in any of our boxes, while 53 appears in all boxes with n > 4.

The element 611 is born on S” and dies on S° and hence appears only in the box
for n = 4. Similarly, 71 appears only in the box for n = 5.

3.3.13. ExaMPLE. COMPUTING DIFFERENTIALS We will compute the differen-
tials originating in the box for ¢t — s = 11, n = 11. To begin we have d(101) =
(90 + 72 + 63 4+ 54)1 = 721 4+ 631 + 541. The table shows that 721 is hit by 83 and
we find

d(83) = (70 + 61 + 43)3 = 721 + 433.
Hence
d(101 + 83) = 631 + 541 + 433.
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The figure shows that 31 is hit by 5 so we compute
d(65) = 631 + (50 + 32)5 = 631 + 541,

SO
d(101 + 83 4 65) = 433,
which is the desired result.
Even in this limited range one can see the beginnings of several systematic
phenomena worth commenting on.

3.3.14. REMARK. JAMES PERIODICITY. (Compare 1.5.18.) In a neighborhood
of the diagonal one sees a certain in the differentials in addition to that of 3.3.9. For
example, the leading term of d(A\, A1) is Ap—2AM A1 if n=00r 1 mod (4) and n > 4,
giving a periodic family of ds’s in the spectral sequence. The differential computed
in 3.3.13 can be shown to recur every 8 stems; add any positive multiple of 8 to the
first integer in each sequence appearing in the calculation and the equation remains
valid modulo terms which will not affect the outcome.

More generally, one can show that A(n) is isomorphic to

272 A(n 4 2™)/A(2™)

through some range depending on n and m, and a general result on the periodicity
of differentials follows. It can be shown that H*(A(n + k)/A(n)) is isomorphic
in the stable zone [3.3.8(c)] to the Ext for H*(RP"*k=1/RP"~1) and that this
periodicity of differentials corresponds to James periodicity. The latter is the fact
that the stable homotopy type of RP"*¥/RP™ depends (up to suspension) only on
the congruence class of n modulo a suitable power of 2. For more on this subject
see Mahowald [1, 2, 3, 4].

3.3.15. REMARK. THE ADAMS VANISHING LINE. Define a collection of admis-
sible sequences (3.3.3) a; for ¢ > 0 as follows.

a; = 1, as = 11, as = 111, a4 = 4111,
as = 24111, ae = 124111, a7 = 1124111, ag = 41124111, etc.
That is, for ¢ > 1

(1,a,—1) fori=2,3 mod (4)
a; =14 (2,a;—1) fori=1 mod (4)
(4,a;—1) fori=0 mod (4)

It can be shown that all of these are nontrivial permanent cycles in the EHP spectral
sequence and that they correspond to the elements on the Adams vanishing line
(3.4.5). Note that H(a;+1) = a;. All of these elements have order 2 (i.e., are
killed by Ag multiplication) and half of them, the a; for i = 3 and 0 mod (4), are
divisible by 2. The ay4;4+3 are divisible by 4 but not by 8; the sequences obtained are
(2, a4i+2) and (4, aqi+1) except for i = 1, when the latter sequence is 3. These little
towers correspond to cyclic summands of order 8 in 7§ 5 (see 5.3.7). The ay; are
the tops of longer towers whose length depends on i. The sequences in the tower
are obtained in a similar manner; i.e., sequences are contracted by adding the first
two integers; e.g., in the 7-stem we have 4111, 511, 61, and 7. Whenever i is a
power of 2 the tower goes all the way down to filtration 1; i.e., it has 47 elements, of
which the bottom one is 8 — 1. The table of Tangora [1] shows that the towers in
the 23-, 29-, and 55-stems have length 6, while that in the 47-stem has length 12.
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Presumably this result generalizes in a straightforward manner. These towers are
also discussed in 3.4.21 and following 4.4.47.

3.3.16. REMARK. d;’s. It follows from 3.3.9 that all d;’s originate in rows with
n odd and that they can be computed by left multiplication by A\g. In particular,
the towers discussed in the above remark will appear repeatedly in the F;-term and
be almost completely cancelled by d;’s, as one can see in Fig. 3.3.10. The elements
cancelled by d;’s do not appear in any H*(A(2n — 1)), so if one is not interested
in H*(A(2n)) they can be ignored. This indicates that a lot of repetition could
be avoided if one had an algorithm for computing the spectral sequence starting
from FEs instead of E1.

3.3.17. REMARK. S3. As indicated in 3.3.5, A gives unstable as well as stable
Ext groups. From a figure such as 3.3.11 one can extract unstable Adams Fs>-terms
for each sphere. For the reader’s amusement we do this for S3 for t — s < 28 in
Fia. 3.3.18. One can show that if we remove the infinite tower in the O-stem,
what remains is isomorphic above a certain line of slope % to the stable Ext for the

mod (2) Moore spectrum. This is no accident but part of a general phenomenon
described by Mahowald [3].

It is only necessary to label a few of the elements in F1G. 3.3.18 because most
of them are part of certain patterns which we now describe. There are clusters of six
elements known as lightning flashes, the first of which consists of 1, 11, 111, 21, 211,
2111. Vertical and diagonal lines as usual represent right multiplication by Ag and
A1, i.e., by hg and hg respectively. This point is somewhat delicate. For example
the element with in the 9-stem with filtration 4 has leading term (according to
3.3.10) 1233, not 2331. However these elements are cohomologous, their difference
being the coboundary of 235.

If the first element of a lightning flash is z, the others are 1z, 11z, 2z, 21z, and
211z. In the clusters containing 23577 and 233577, the first elements are missing,
but the others behave as if the first ones were 4577 and 43577, respectively. For
example, the generator of E25 Y is 24577, In these two cases the sequences 1z and
11z are not admissible, but since 14 = 23 by 3.3.1, we get the indicated values
for 1z.

Ifx e ES’t is the first element of a lightning flash, there is another one beginning
with Px € E§+4’t+12. The sequence for Pz is obtained from that for x by adding 1
to the last integer and then adjoining 4111 on the right, e.g., P(233) = 2344111.
This operator P can be iterated any number of times, is related to Bott periodicity,
and will be discussed more in the next section.

There are other configurations which we will call rays begining with 245333
and 235733. Successive elements in a ray are obtained by left multiplication by As.
This operation is related to complex Bott periodicity.

In the range of this figure the only elements in positive stems not part of
a ray or lightning flash are 23333 and 2335733. This indicates that the Curtis
algorithm would be much faster if it could be modified in some way to incorporate
this structure.

Finally, the figure includes Tangora’s labels for the stable images of certain
elements. This unstable Adams spectral sequence for m.(S%) is known to have
nontrivial ds’s originating on 245333, 222245333, and 2222245333, and ds’s on
2235733 and 22235733. Related to these are some exotic additive and multiplicative
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extensions: the homotopy element corresponding to Phidy = 243344111 is twice
any representative of hohog = 235733 and 7 (the generator of the 1-stem) times a
representative of 2245333. Hence the permanent cycles 2245333, 24334111, 235733,
22245333, 224334111, and the missing element 35733 in some sense constitute an
exotic lightning flash.

4. Some General Properties of Ext

Ext® for s < 3. Behavior of elements in Ext?. Adams’ vanishing line of slope
1/2 for p = 2. Periodicity above a line of slope 1/5 for p = 2. Elements not
annihilated by any periodicity operators and their relation to im J. An elementary
proof that most of these elements are nontrivial.

In this section we abbreviate Exta,(Z/(p),Z/(p)) by Ext. First we describe
Ext® for small values of s. Then we comment on the status of its generators in
homotopy. Next we give a vanishing line, i.e., a function f(s) such that Ext® =0
for 0 <t —s < f(s). Then we give some results describing Ext® for ¢ near f(s).

3.4.1. THEOREM. Forp=2

(a) Ext’ = Z/(2) generated by 1 € Ext™°. »

(b) Ext! is spanned by {h;: i > 0} with h; € Ext"?" represented by [¢2'].

(c) (Adams [12]) Ext® is spanned by {hih;: 0 <i <3, j#i+1}.

(d) (Wang [1]) Ext® is spanned by hihjhy, subject to the relations

hihj = hihi,  hin, =0 hah2y =0 h2hips = h3, ),
along with the elements
¢i = (hiy1, hi, h2,o) € Ext®112 O

3.4.2. THEOREM. Forp =2

(a) Ext’ = Z/(p) generated by 1 € Ext™°.

(b) Ext! is spanned by ag and {h;: i > 0} where ag € Ext™! is represented by
[70] and h; € Ext“®" is represented by [{fl]

(c) (Liulevicius [2]) Ext? is spanned by {h;h;: 0 <i < j—1}, a2, {aoh;: i > 0},
{gi:i >0}, {ki: i >0}, {bi:i >0}, and Ipho, where

9i = (Pishiy hig1) € Ext® PP by — (b hiyy hig) € Ext>@pir'e,
by = (hi hi, ... hi) € Ext>®" (with p factors h;),

and
IIghy = <h,0, h,o, CLO> S EXt2’1+2q . [l

Ext® for p > 2 has recently been computed by Aikawa [1].

The behavior of the elements in Ext! in the Adams spectral sequence is de-
scribed in Theorems 1.2.11-1.2.14.

We know that most of the elements in Ext? cannot be permanent cycles, i.e.,

3.4.3. THEOREM. (a) (Mahowald and Tangora [8]). With the exceptions hohs,
hohs, and haohy the only elements in Ext® for p = 2 which can possibly be permanent
cycles are hf and hih;.

(b) (Miller, Ravenel, and Wilson [1]). For p > 2 the only elements in Ext?
which can be permanent cycles are a3, Mohg, ko, hohi, and b;. ([
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Part (b) was proved by showing that the elements in question are the only ones
with preimages in the Adams—Novikov Fs-term. A similar proof for p = 2 is possible
using the computation of Shimomura [1]. The list in Mahowald and Tangora [8]
includes hohs and hzhg; the latter is known not to come from the Adams—Novikov
spectral sequence and the former is known to support a differential.

The cases hoh; and b;, for p > 3 and hih; for p = 2 are now settled.

3.4.4. THEOREM. (a) (Browder [1]). Forp =2 h3 is a permanent cycle iff there
is a framed manifold of dimension 29+1 — 2 with Kervaire invariant one. Such are
known to exist for j < 5. For more discussion see 1.5.29 and 1.5.35.

(b) (Mahowald [6]). For p=2 hih; is a permanent cycle for all j > 3.

(c) (Ravenel [7]). Forp >3 and i > 1, b; is not a permanent cycle. (At p =3
by is not permanent but by is; by is permanent for all odd primes.)

(d) (R.L.Cohen [3]). For p > 2 hob; is a permanent cycle corresponding to an
element of order p for all i > 0. ]

The proof of (¢) will be given in Section 6.4.
Now we describe a vanishing line. The main result is

3.4.5. VANISHING THEOREM (Adams [17]). (a) For p = 2 Ext®" = 0 for
0<t—s< f(s), where f(s)=2s—¢ec ande =1 for s=0,1 mod (4), € = 2 for
s=2ande=3 for s=3.

(b) (May [6]). Forp >2Ext™ =0 for0<t—s<sq—e, wheree =1ifs#0
mod (p) and e =2 if s =0. O

Hence in the usual picture of the Adams spectral sequence, where the x and y
coordinates are ¢t — s and s, the Fs-term vanishes above a certain line of slope 1/¢
(e.g., % for p = 2). Below this line there are certain periodicity operators IT,, which
raise the bigrading so as to move elements in a direction parallel to the vanishing
line. In a certain region these operators induce isomorphisms.

3.4.6. PERIODICITY THEOREM (Adams [17], May [6]).
(a) FOT’p =2 and n Z 1 Eth’t ~ Eth+2n+1’t+3'2n+l fOT
O<t—s< min(g(s) + 271-!—27 h(s)),

where g(s) =2s —4— 717 witht =2 if s=0,1 mod (4), =14 s=3, and 7 =0
if s =2, and h(s) is defined by the following table:
s 112184156161 7|8 >9

h(s) | 1| 1] 7|10 17| 22| 25| 32| 55 —7
(b) Forp>2 andn >0 Ext®t ~ Ext® TP stHat)/p" for
0 <t—s<min(g(s)+p"q, h(s)),

where g(s) = qs —2p—1 and h(s) =0 for s =1 and h(s) = (p*> —p — 1)s — 7 with
T=2p*—2p+1 for even s > 1 and 7 = p?> +p — 2 for odd s > 1. (]

These two theorems are also discussed in Adams [7].

For p = 2 these isomorphisms are induced by Massey products (A1.4) sending x

to (z, h%n+1

in this book by P. The elements x are such that h%nﬂx is above the vanishing line

of 3.4.5, so the Massey product is always defined. The indeterminacy of the product
. 2n+l 3'2n+1 S_1+2n+l t+2n+1

has the form zy + hpy22 with y € Ext ' and z € Ext ' . Th

y hnt2). For n = 1 this operator is denoted in Tangora [1] and elsewhere

e
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group containing y is just below the vanishing line and we will see below that
it is always trivial. The group containing z is above the vanishing line so the
indeterminacy is zero.

Hence the theorem says that any group close enough to the vanishing line [i.e.,
satisfying t — s < 2”72 + g(s)] and above a certain line with slope £[t — s < h(s)]
is acted on isomorphically by the periodicity operator. In Adams [17] this line
had slope % It is known that % is the best possible slope, but the intercept could
probably be improved by pushing the same methods further. The odd primary case
is due entirely to May [6]. We are grateful to him for permission to include this
unpublished material here.

Hence for p = 2 Ext®" has a fairly regular structure in the wedge-shaped region
described roughly by 2s < t — s < 5s. Some of this (partially below the line of
slope 1 given above) is described by Mahowald and Tangora [14] and an attempt
to describe the entire structure for p = 2 is made by Mahowald [13].

However, this structure is of limited interest because we know that almost all
of it is wiped out by differentials. All that is left in the Fo-term are certain few
elements near the vanishing line related to the J-homomorphism (1.1.12). We will
not formulate a precise statement or proof of this fact, but offer the following expla-
nation. In the language of Section 1.4, the periodicity operators II,, in the Adams
spectral sequence correspond to vi-periodicity in the Adams—Novikov spectral se-
quence. More precisely, II,, corresponds to multiplication by vfn. The behavior
of the vi-periodic part of the Adams—Novikov spectral sequence is analyzed com-
pletely in Section 5.3. The vi-periodic part of the Adams—Novikov F,-term must
correspond to the portion of the Adams spectral sequence Fo.-term lying above
(for p = 2) a suitable line of slope % Once the Adams—Novikov spectral sequence
calculation has been made it is not difficult to identify the corresponding elements
in the Adams spectral sequence. The elements in the Adams—Novikov spectral se-
quence all have low filtrations, so it is easy to establish that they cannot be hit by
differentials. The elements in the Adams spectral sequence are up near the vanish-
ing line so it is easy to show that they cannot support a nontrivial differential. We
list these elements in 3.4.16 and in 3.4.21 give an easy direct proof (i.e., one that
does not use BP-theory or K-theory) that most (all for p > 2) of them cannot be
hit by differentials.

The proof of 3.4.5 involves the comodule M given by the short exact sequence

(3.4.7) 0—Z/(p) — A« Ox0). Z/(p) = M — 0,

where A(0), = E(79) for p > 2 and E(&) for p = 2. M is the homology of the
cofiber of the map from S° to H, the integral Eilenberg-Mac Lane spectrum. The
Es-term for H was computed in 2.1.18 and it gives us the tower in the O-stem.
Hence the connecting homomorphism of 3.4.7 gives an isomorphism
(3.4.8) Ext, "(Z/(p), M) ~ Ext™'
fort—s>0.

We will consider the subalgebras A(n) C A generated by {Sq', S¢?,...,5¢*"}
for p = 2 and {B8,PL,PP,...,P"" '} for p > 2. Their duals A(n), are

n+2—1
P(§17§27"'7€n+1)/(§i2 ! )forp:2a'nd
n+l—1

E(TO,-'an)®P(§lu"'7€n)/(§f )
for p > 2.
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We will be considering A,-comodules N which are free over A(0), and (—1)-
connexted. 7'M is an example. Unless stated otherwise N will be assumed to
have these properties for the rest of the section.

Closely related to the questions of vanishing and periodicity is that of approxi-
mation. For what (s,¢) does Exti"i(Z/(p), N) = Exti"zn (Z/(p), N)? This relation
is illustrated by

3.4.9. APPROXIMATION LEMMA. Suppose that there 18 a nondecreasing function
fn(s) defined such that for any N as above, Ext (Z/( ),N) =0 fort—s

<
fn(s). Then for r > n this group is isomorphic to Ext (Z/( ),N) fort—s <

p"q + fn(s — 1), and the map from the former to the latter is onto for t —s =
P a+ fuls)- O

Hence if f,,(s) describes a vanishing line for A(n)-cohomology then there is a
parallel line below it, above which it is isomorphic to A-cohomology. For n = 1
such a vanishing line follows easily from 3.1.27(a) and 3.1.28, and it has the same
slope as that of 3.4.5.

PROOF OF 3.4.9. The comodule structure map N — A(r), ® N gives a mo-
nomorphism N — A(r), Oy, N with cokernel C. Then C is A(0).-free and
(p"q — 1)-connected. Then we have

EXtZ_(,:)* (C) — EXti‘(T)* (N) — Eth‘l(r)* (A(’f‘)* DA(n)* N) — Eth(’r)*(C)

\LN

Eth‘l(n)* (N>

where Ext 4(,), (=) is an abbreviation for Ext (., (Z/(p), —). The isomorphism is
given by A1.1.18 and the diagonal map is the one we are considering. The high
connectivity of C' and the exactness of the top row give the desired result. O

PROOF OF 3.4.5. We use 3.4.9 with N = M as in 3.4.7. An appropriate
vanishing line for M will give 3.4.5 by 3.4.8. By 3.4.9 it suffices to get a vanishing
line for Ext 41y, (Z/(p), M ). We calculate this by filtering M skeletally as an A(0).-
comodule. Then E°M is an extended A(0).-determined by 3.1.27(a) or 3.1.28 and
the additive structure of M. Considering the first two (three for p = 2) subquotients
is enough to get the vanishing line. We leave the details to the reader. O

The periodicity operators in 3.4.6 which raise s by p™ correspond in A(n)-
cohomology to multiplication by an element w,, € Ext? “atDP" Iy view of 3.4.9,
3.4.6 can be proved by showing that this multiplication induces an isomorphism in
the appropriate range. For p = 2 our calculation of Ext 4(2y, (Z/(2), A(0).) (3.2.17)
is nessesary to establish periodicity above a line of slope % To get these w, we
need

3.4.10. LEMMA. There exist cochains ¢, € Ca, satisfying the following.

(a) For p =2 ¢, = [&|---|&2] with 2™ factors modulo terms involving &1, and
forp>2c, =[] |m1] with p™ factors.
n+1
(b)For p=2 d(c1) = [&[&[¢1] + [§F1621€7] and for n>1d(cn) =[&i] - [G11€F ]

factors &1; and for p > 2 d(cp,) = —[70] - - |7'0|§1 .
(¢) en is uniquely determined up to a coboundary by (a) and (b).



90 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

(d) Forn > 1 (p > 2) orn > 2 (p = 2) ¢, projects to a cocycle in Ca,,

representing a nontrivial element w, € Extf(;l(;ljl)pn (Z/(p),Z/(p))-

(e) For p =2, we maps to w as in 3.1.27, and in general wyy1 maps to wk.

PrROOF. We will rely on the algebraic Steenrod operations in Ext described
in Section Al1.5. We treat only the case p = 2. By A1.5.2 there are operations
Sq': Ext®™ — Ext®"?! satisfying a Cartan formula with Sq°(h;) = hiy1 (A1.5.3)
and Sq*(h;) = h?. Applying Sq' to the relation hoh; = 0 we have

0 = Sq¢' (hoh1) = S¢°(ho)Sq"' (h1) + Sq* (ho)Sq° (h1)
= hi + hghs.

Applying Sq¢? to this gives hiha + hghs = 0. Since hihy = 0 this implies hghg = 0.
Applying S¢* to this gives hShy = 0. Similarly, we get h%l hi+1 = 0 for all 4 > 2.
Hence there must be cochains ¢, satisfying (b) above.

To show that these cochains can be chosen to satisfy (a) we will use the Kudo

transgression theorem A1.5.7. Consider the cocentral extension of Hopf algebras
(A1.1.15)

P(&1) — P(&1,€2) — P(&2).
In the Cartan—Eilenberg spectral sequence (A1.3.14 and A1.3.17) for

EXtP(ElﬁE2)(Z/(2)7 Z/(2))

one has Fy = P(hyj,hoj: y > 0) with hy; € Ey® and hy; € Ey'. By direct
calculation one has da(hao) = hiph11. Applying Sq?Sq' one gets ds(hay) = highiz+
hi,h12. The second term was killed by da(h3;ho1) so we have ds(h3y) = hiohis.
Applying appropriate Steenrod operations gives d2n+1(h%8) = h%ghln_ﬂ. Hence
our cochain ¢, can be chosen in Cp(g, ¢,y so that its image in Cpe,) is [§2] - - - [£2]
representing h3;, so (a) is verified.

For (c), note that (b) determines ¢, up to a cocycle, so it suffices to show that
each cocycle in that bidegree is a coboundary, i.e., that Ext?"32" = 0. This group
is very close to the vanishing line and can be computed directly by what we already
know.

For (d), (a) implies that ¢, projects to a cocycle in Cy¢y,y, which is nontrivial
by (b); (e) follows easily from the above considerations. O

For p = 2 suppose x € Ext satisfies h%nx = 0. Let £ € C4, be a cocycle
representing = and let y be a cochain with d(y) = Z[&1] -+ |&1] with 2™ factors.
Then e, + y[¢2" '] is a cocycle representing the Massey product (z, B hnii),
which we define to be the nth periodicity operator IL,,. This cocycle maps to Zc,
in ca(n)., so I, corresponds to multiplication by w,, as claimed. The argument for
p > 2 is similar.

Now we need to examine w; multiplication in Ext(A(1).)(Z/(p), A(0).) for
p > 2 using 3.1.28 and wp multiplication in Ext (2, (Z/(2), A(0).) using 3.2.17.
The result is

3.4.11. LEMMA.
(a) Forp = 2, multiplication by wy in EXti{Ez)* (Z/(2), A(0).) is an isomorphism
fort —s < v(s) and an epimorphism for t — s < w(s), where v(s) and w(s) are
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given in the following table.

s |0|1] 2|3 ]|4]|5 >6
v(s) | 18| 6 |18 |18 |21 |5s+3
w(s) | 1810|1823 |25|5s+3

(b) For p > 2 multiplication by wyi in Ext:’zl)*(Z/(p),A(O)*) is a monomorphism

for all s > 0 and an epimorphism for t — s < w(s) where

(p*—p—1)s—1 for s even
w(s) =9, , ) 0
(p> —p—1)s+p>—3p for s odd

Next we need an analogous result where A(0). is replaced by a (—1)-connected
comodule N free over A(0).. Let N° C N be the smallest free A(0).-subcomodule
such that N/N? is 1-connected. Then

0—N°—N—N/N°—=0

is an short exact sequence of A(0).-free comodules inducing an long exact sequence
of A(n)-Ext groups on which w,, acts. Hence one can use induction and the 5-lemma
to get

3.4.12. LEMMA. Let N be a connective A(n).-comodule free over A(0)..

(a) For p = 2 multiplication by ws in Extzzz)*(Z/(Q),M) is an isomorphism
fort — s < 0(s) and an epimorphism for t — s < w(s), where these functions are
given by the following table

s 0 (123|456 >7
ofx) | —4|1| 6 | 10|18]|21|25|5s—2
w(s)| 1 | 7110]18]|22|25|33|55+3

(b) For p > 2 a similar result holds for wi-multiplication where

5(s) (P> —p—1)s—2p+1 fors even
vis) =
(p*—p—1)s—p*>+p fors odd

and

~ {(pQ—p—l)s—l for s even 0

() = (P*—p—1)s—p>+2p—1 fors odd.

3.4.13. REMARK. If N/N° is (¢ — 1)-connected, as it is when N = %79M
(3.4.7), then the function ©(s) can be improved slightly. This is reflected in 3.4.6
and we leave the details to the reader.

The next step is to prove an analogous result for w,-multiplication. We sketch
the proof for p = 2. Let N be as above and define N = A(n). O 4(2), N, and let C' =
N/N. Then C is 7-connected if N is (—1)-connected, and Exta,), (Z/(2),N) =

Exta(2),(Z/(2),N). Hence in this group w, = w?2" " and we know its behavior by
3.4.12. We know the behavior of w,, on C by induction, since C' is highly connected,
so we can argue in the usual way by the 5-lemma on the long exact sequence of Ext
groups. If N satisfies the condition of 3.4.13, so will N and C, so we can use the
improved form of 3.4.12 to start the induction. The result is
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3.4.14. LEMMA. Let N be as above and satisfy the condition of 3.4.13. Then
multiplication by w, (3.4.10) in Extjzn)* (Z/(p),N) is an isomorphism for t — s <
h(s+1)—1 and an epimorphism for t —s < h(s) —1, where h(s) is as in 3.4.6. O

Now the periodicity operators I1,,, defined above as Massey products, can be
described in terms of the cochains ¢,, of 3.4.10 as follows. Let = represent a class in
Ext (also denoted by x) which is annihilated by h%n and let y be a cochain whose
coboundary is z[€; |&1] - - [€1] with 27 factors & . Then y[¢2""'] + zc, is a cochain
representing IT,, ().

Hence it is evident that the action of IT,, in Ext corresponds to multiplication
by w, in A(n).-cohomology. Hence 3.4.14 gives a result about the behavior of II,,
in Exta, (Z/(p), M) with M asin 3.4.7, so 3.4.6 follows from the isomorphism 3.4.8.

Having proved 3.4.6 we will list the periodic elements in Ext which survive to
F and correspond to nontrivial homotopy elements. First we have

3.4.15. LEMMA. Forp =2 and n > 2, T, (h2" 'hpi1) = b2 ‘hpis. For
p>2andn > 1, Hn(agnflhn) = agnﬂflhnﬂ up to a nonzero scalar. [It is not

true that Ty (ho) = ab~ " hy ]

PrROOF. We do not know how to make this computation directly. However,
3.4.6 says the indicated operators act isomorphically on the indicated elements,
and 3.4.21 below shows that the indicated image elements are nontrivial. Since the
groups in question all have rank one the result follows. (3.4.6 does not apply to II
acting on hg for p > 2.) O

3.4.16. THEOREM.

(a) Forp > 2 the set of elements in the Adams Eoo-term on which all iterates of
some periodicity operator 11, are nontrivial is spanned by 11, (agn _jhn) with n > 0,
0<j<n+1andi# —1 mod (p). (For i = —1 these elements vanish for n =0
and are determined by 3.4.15 for n > 0.) The corresponding subgroup of m.(S°) is
the image of the J-homomorphism (1.1.12). (Compare 1.5.19.)

(b) For p = 2 the set is generated by all iterates of Il on hy, h3, h$ = h3ha,
hoha, ha, co, and hico (where co = (hy,ho,h2) € Ext®'') and by I h,h2" 9
withm > 3, i odd, and 0 < j < n+ 1. (For even i these elements are determined
by 3.4.15.) The corresponding subgroup of m.(S°) is m.(J) (1.5.22). In particular,
im J corresponds to the subgroup of Eo spanned by all of the above except Ishy for
i >0 and II4h3 fori > 0. O

This can be proved in several ways. The cited results in Section 1.5 are very
similar and their proofs are sketched there; use is made of K-theory. The first
proof of an essentially equivalent theorem is the one of Adams [1], which also uses
K-theory. For p = 2 see also Mahowald [15] and Davis and Mahowald [1]. The
computations of Section 5.3 can be adapted to give a B P-theoretic proof.

The following result is included because it shows that most (all if p > 2)
of the elements listed above are not hit by differentials, and the proof makes no
use of any extraordinary homology theory. We will sketch the construction for
p = 2. Tt is a strengthened version of a result of Maunder [1]. Recall (3.1.9)
the spectrum bo (representing real connective K-theory) with H.(bo) = A, D),
Z/(2) = P(&},€2,&3,...). For each i > 0 there is a map to ¥4 H (where H is the
integral Eilenberg-Mac Lane spectrum) under which ¢ has a nontrivial image.
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Together these define a map f from bo to W =/, Y4 H. We denote its cofiber
by W. There is a map of cofiber sequences

(3.4.17) S0 —H ——TJ

L

bo——=W —W

in which each row induces an short exact sequence in homology and therefore an
long exact sequence of Ext groups. Recall (3.1.26) that the Ext group for bo has a
tower in every fourth dimension, as does the Ext group for W. One can show that
the former map injectively to the latter. Then it is easy to work out the Adams
Es-term for W, namely

(3.4.18)

Ext*t M (H,(bo)) ift—s#0 mod (4)
Ext® (H.(W)) = Z/(2) if t — s = 0 and Ext®'(H,(bo)) = 0

0 otherwise,

where Ext(M) is an abbreviation for Exta, (Z/(2), M). See F1a. 3.4.20. Combin-
ing 3.4.17 and 3.4.8 gives us a map

(3.4.19) Ext®(Z/(2)) — Ext* M (H,(W)) fort—s>0

Since this map is topologically induced it commutes with Adams differentials.
Hence any element in Ext with a nontrivial image in 3.4.19 cannot be the target of
a differential.

One can show that each h,, for n > 0 is mapped monomorphically in 3.4.19, so
each h,, supports a tower going all the way up to the vanishing line as is required in
the proof of 3.4.15. Note that the vanishing here coincides with that for Ext given
in 3.4.5.

A similar construction at odd primes detects a tower going up to the vanishing
line in every dimension = —1 mod (2p — 2).

To summarize

3.4.21. THEOREM.

(a) For p = 2 there is a spectrum W with Adams Ea-term described in 3.4.18
and 3.4.20. The resulting map 3.4.19 commutes with Adams differentials and is
nontrivial on hy, for all n > 0 and all s iterates of hy, h%, h? = I’L%hg, ho, and
h3hs. Hence none of these elements is hit by Adams differentials.

(b) A similar construction for p > 2 gives a map as above which is nontrivial
on hy, for all n >0 and on all the elements listed in 3.4.16(a). O

The argument above does not show that the elements in question are permanent
cycles. For example, all but a few elements at the top of the towers built on h,, for
large n support nontrivial differentials, but map to permanent cycles in the Adams
spectral sequence for W.

We do not know the image of the map in 3.4.19. For p = 2 it is clearly onto for
t—s=2"—1. Fort—s+1=(2k+1)2" with k£ > 0 the image is at least as big as
it is for k = 0, because the appropriate periodicity operator acts on h,,. However,
the actual image appears to be about % as large. For example, the towers in Ext
in dimensions 23 and 39 have 6 elements instead of the 4 in dimension 7, while the
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FIGURE 3.4.20. Ext*~ %! H,(W).

one in dimension 47 has 12. We leave this as a research question for the interested
reader.

5. Survey and Further Reading

Exotic cobordism theories. Decreasing filtrations of A, and the resulting spec-
tral sequences. Application to M .Sp. Mahowald’s generalizations of A. v,-periodicity
in the Adams spectral sequence. Selected references to related work.

In this section we survey some other research having to do with the classical
Adams spectral sequence, published and unpublished. We will describe in sequence
results related to the previous four sections and then indicate some theorems not
readily classified by this scheme.

In Section 1 we made some easy Ext calculations and thereby computed the
homotopy groups of such spectra as MU and bo. The latter involved the cohomology
of A(1), the subalgebra of the mod (2) Steenrod algebra generated by S¢' and Sq?.
A pleasant partial classification of A(1)-modules is given in section 3 of Adams and
Priddy [10]. They compute the Ext groups of all of these modules and show that
many of them can be realized as bo-module spectra. For example, they use this
result to analyze the homotopy type of bo A bo.

The cohomology of the subalgebra A(2) was computed by Shimada and Iwai [2].
Recently, Davis and Mahowald [4] have shown that A//A(2) is not the cohomology
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of any connective spectrum. In Davis and Mahowald [5] they compute A(2)-Ext
groups for the cohomology of stunted real projective spaces.

More general results on subalgebras of A can be found in Adams and Margo-
lis [11] and Moore and Peterson [1].

The use of the Adams spectral sequence in computing cobordism rings is be-
coming more popular. The spectra MO, M SO, MSU, and M Spin were originally
analyzed by other methods (see Stong [1] for references) but in theory could be
analyzed with the Adams spectral sequence; see Pengelley [1, 2] and Giambalvo
and Pengelley [1].

The spectrum MO(8) (the Thom spectrum associated with the 7-connected
cover of BO) has been investigated by Adams spectral sequence methods in Gi-
ambalvo [2], Bahri [1], Davis [3, 6], and Bahri and Mahowald [1].

In Johnson and Wilson [5] the Adams spectral sequence is used to compute the
bordism ring of manifolds with free G-action for an elementary abelian p-group G.

The most prodigious Adams spectral sequence calculation to date is that for
the symplectic cobordism ring by Kochman [1, 2, 3]. He uses a change-of-rings
isomorphism to reduce the computation of the Es-term to finding Ext over the
coalgebra

(3.5.1) B =P(£1,6,...)/(&)

for which he uses the May spectral sequence. The Fs-term for MSp is a direct
sum of many copies of this Ext and these summands are connected to each other
by higher Adams differentials. He shows that M Sp is indecomposable as a ring
spectrum and that the Adams spectral sequence has nontrivial d,.’s for arbitrarily
large r.

In Section 2 we described the May spectral sequence. The work of Nakamura [1]
enables one to use algebraic Steenrod operations (A1.5) to compute May differen-
tials.

The May spectral sequence is obtained from an increasing filtration of the dual
Steenrod algebra A,. We will describe some decreasing filtrations of A, for p = 2
and the spectral sequences they lead to. The method of calculation these results
suggest is conceptually more complicated than May’s but it may have some practical
advantages. The FEs-term (3.5.2) can be computed by another spectral sequence
(3.5.4) whose Fs-term is the A(n) cohomology (for some fixed n) of a certain
trigraded comodule T'. The structure of T is given by a third spectral sequence
(3.5.10) whose input is essentially the cohomology of the Steenrod algebra through
a range of dimensions equal to 27 "! times the range one wishes to compute.

This method is in practice very similar to Mahowald’s unpublished work on
“Koszul resolutions”.

3.5.2. PROPOSITION. For each n > 0, A, has a decreasing filtration (A1.3.5)
{F*A.} where F* is the smallest possible subgroup satisfying {?J ep2T for
j<n+1.

(]
In particular, F°/F! = A(n)., so A(n). C EqA. where

—2n+1

A(n)* :A*/( 1 7§2n7"'757217511-1-1511-1-27'”)-
We also have £ € F2~"'(2'=1 for j > n+ 1. Hence there is a spectral sequence
(A1.3.9) converging to Exta, (Z/c(2), M) with E}"" = Exty 4 (Z/(2), EoM) and
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d,: B34 — ESTLULUFT where the third grading is that given by the filtration, M
is any A,-comodule, and EqM is the associated EyA.-comodule (A1.3.7).

Now let G(n). = Eo A« Oapy, Z/(2). It inherits a Hopf algebra structure from
EyA, and

(3.5.3) A(n)y — EgA. — G(n).

is an extension of Hopf algebras (A1.1.15). Hence we have a Cartan-Eilenberg
spectral sequence (A1.3.14), i.e

3.5.4. LEMMA. Associated with the extension 3.5.3 there is a spectral sequence
with
Bgett = Bty (Z)(2), Bl (2/(2), M)

with d,: ESs2bt — psitrsa— T+1 t U converging to Ext51+52’t " for any EgA, co-
module M. [Extgmy, (Z/(2), M) is the T referred to above] O

3.5.5. REMARK. According to A1.3.11(a) the cochain complex W used to com-
pute Ext over G(n). can be taken to be one of A(n),-comodules. The Es-term of
the spectral sequence is the A(n). Ext of the cohomology of W, and the F-term
is the cohomology of the double complex obtained by applying CZ(n)*( ) (Al.2.11)
to W. This W is the direct sum [as a complex of A(n).-comodules] of its com-
ponents for various u (the filtration grading). The differentials are computed by
analyzing this W.

Next observe that FyA, and G(n). contain a sub-Hopf algebra A jsomor-

phic up to regrading to A,; i.e., As (n+1) Ey A, is the image of P(?"H) C A..
The isomorphism follows from the fact that the filtration degree 2¢ — 1 of f2n+l

coincides with the topological degree of &;. Hence we have

(3.5.6) Exty! (2/(2),Z/(2)) = Bxt’2 " (2/(2), 2/ (2))

and we can take these groups as known inductively.
Let L(n). = G(n)« ® y;m+1 Z/(2) and get an extension

(3.5.7) AY 2 G(n). — Ln)..
L(n), is easily seen to be cocommutative with
(358) Bty (Z/(2,2/(2) = Plhiy: 0<j<n, i >n+2-j),

t1,2](2 _1),2itimmml g

where h; ; € Ex corresponds as usual to 512] This Ext is a

comodule algebra over Al (Al 3.14) with coaction given by

(3.5.9) ) =3 & @hik,

k>0
Hence by A1.3.14 we have

3.5.10. LEMMA. The extension 3.5.7 leads to a spectral sequence as in 3.5.4
with
Byt = Bxtl) (2/(2), Bxtiy )" (2/(2), M)
converging to ExtSGl(:SZ’t “(Z/(2), M) for any G(n).-comodule M. For M = Z/(2),
the Ext over L(n). and its comodule algebra structure are given by 3.5.8 and 3.5.9.
Moreover, this spectral sequence collapses from FEs.
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Proor. All is clear but the last statement, which we prove by showing that
G(n). possesses an extra grading which corresponds to s3 in the spectral sequence.
It will follow that differentials must respect this grading so d, = 0 for r» > 2. Let
&:.; € G(n). be the element corresponding to £?'. The extra grading is defined by

- 1 ifj<n
|51 = L
0 ifj>n.

Since the & ; for j < n are all exterior generators, the multiplication in G(n).
respects this grading. The coproduct is given by

§1J ngg(@gz k,k+3j-

If j > n+ 1 then all terms have degree 0, and if j < n, we have k +j > n+ 2 so
all terms have degree 1, so A also respects the extra grading. O

We now describe how to use these results to compute Ext. If one wants to com-
pute through a fixed range of dimensions, the isomorphism 3.5.6 reduces the calcula-
tion of the spectral sequence of 3.5.10 to a much smaller range, so we assume induc-
tively that this has been done. The next step is to compute in the spectral sequence
of 3.5.4. The input here is the trigraded A(n).-comodule ExtS b ).(2/(2),2/(2)).
We began this discussion by assuming we could compute Ext over A(n), but in
practice we cannot do this directly if n > 1. However, for 0 < m < n we can reduce
an A(n). calculation to an A(m). calculation by proceeding as above, starting with
the mth filtration of A(n). instead of A.. We leave the precise formulation to the
reader. Thus we can compute the A(n), Ext of Extgz‘ (Z/(2),Z/(2)) separately
for each wu; the slogan here is divide and conquer.

This method can be used to compute the cohomology of the Hopf algebra B
(3.5.1) relevant to M Sp. Filtering with n = 1, the SS analogous to 3.5.4 has

= EXtA(l (Z/( ) (h217h307h317h407"'))

with ¢(hi+170) =61 h@l +1® hiJrLO and ’l/)(hl)l) =1® hi,l for ¢ > 2. This Ext
is easy to compute. Both this spectral sequence and the analog of the one in 3.5.2
collapse from F>. Hence we get a description of the cohomology of B which is more
concise though less explicit than that of Kochman [1].

In Section 3 we described A and hinted at an unstable Adams spectral sequence.
For more on this theory see Bousfield and Kan [3], Bousfield and Curtis [4], Ben-
dersky, Curtis, and Miller [1], Curtis [1], and Singer [3, 4, 5]. A particularly
interesting point of view is developed by Singer [2].

In Mahowald [3] the double suspension homomorphism

A2n—1) — A@2n+1)
is studied. He shows that the cohomology of its cokernel W (n) is isomorphic to
Ext%' (Z/(2 ) $2n=1A(0),) for t — s < bs + k for some constant k, i.e., above a line
with slope & - This leads to a similar isomorphism between H* (A(2n+1)/A(1)) and
Exta, (Z/(2 ) «(RP?")). In Mahowald [4] he proves a geometric analog, showing
that a certain subquotient of 7, (S?"*1) is isomorphic to that of 7% (RP?"). The
odd primary analog of the algebraic result has been demonstrated by Harper and

Miller [1]. The geometric result is very likely to be true but is still an open question.
This point was also discussed in Section 1.5.
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Now we will describe some unpublished work of Mahowald concerning gener-
alizations of A. In 3.3.3 we defined subcomplexes A(n) C A by saying that an
admissible monomial A;, --- A;, is in A(n) if 44 < n. The short exact sequence

Aln—1) = A(n) - X"A(2n — 1)
led to the algebraic EHP spectral sequence of 3.3.7. Now we define quotient com-
plexes A(n) by A(n) = A/A(Xo, ..., An—1), so A(0) = A and lim MA(n) = Z/(2).
Then there are short exact sequences

(3.5.11) 0—-X"A{(n+1)/2) = Aln) > Aln+1) -0

where the fraction (n+1)/2 is taken to be the integer part thereof. This leads to a
spectral sequence similar to that of 3.3.7 and an inductive procedure for computing
H,.(A).

Next we define A,-comodules B,, as follows. Define an increasing filtration
on A, (different from those of 3.5.2) by &; € Fy: and let B,, = F,,. The B, is realized
by the spectra of Brown and Gitler [3]. They figure critically in the construction
of the n;’s in Mahowald [6] and in the Brown-Peterson-Cohen program to prove
that every closed smooth n-manifold immerses in R?*~*(") where a(n) is the
number of ones in the dyadic expansion of n. Brown and Gitler [3] show that
Exta,(Z/(2), Bn,) = H*(A(n)) and that the short exact sequence 3.5.11 is realized
by a cofibration. It is remarkable that the Brown—Gitler spectra and the unstable
spheres both lead in this way to A.

Now let N = (n1,ne,...) be a nonincreasing sequence of nonnegative integers.
Let A(N) = A./(&8"",¢3™,...). This is a Hopf algebra. Let M(N) = A, Oy
Z/(2), so M(N) = P(¢2"",¢2"...). The filtration of A, defined above induces
one on M(N) and we have

(3.5.12) F;M(N)/F,-1M(N) = {Ole[i/Q]M(Nl) ftfl:;vllle
where N* is the sequence (ngy1,ngi2,...). For N = (0,0,...) A(N) = A, and
this is equivalent to 3.5.11.

3.5.13. PROPOSITION. The short exact sequence

0— F, 1M(N)— FEM(N) — F;/Fi 1 —0

is split over A(N). O

This result can be used to construct an long exact sequence of A,-comodules
(3.5.14) 0—2Z/(2) —=C% — Oy —-C% — -

such that C% is a direct sum of suspensions of M(N*) indexed by sequences
(i1,12,...,1%) satisfying 1 +4; = 0 mod 2™++~ and ¢; < 2¢,_;. Equation 3.5.14
leads to a spectral sequence (A1.3.2) converging to Ext with

(3.5.15) EY® =Exty (Z/(2),C%).

The splitting of C% and the change-of-rings isomorphism A1.3.13 show that Ef *
is a direct sum of suspensions Ext 4(n+)(Z/(2),Z/(2)).

The Ej-term of this spectral sequence is a “generalized A” in that it consists of
copies of A(N*) Ext groups indexed by certain monomials in A. The d; is closely
related to the differential in A.
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We will desgibe the construction of 3.5.14 in more detail and then discuss some
examples. Let M (N) be the quotient in

0—>Z/(2)—>M(N)—>M(N)—>O

In 3.5.14 we want % = M(N) and Cy = @, X" M(N'), so we need to embed
M(N) in this putative C'. The filtration on M (N) induces ones on M(N) and
C%:; in the latter F; should be a direct sum of suspensions of M(N?'). Consider the
commutative diagram

|

| |

0——=F_ 10y —— F,Ciy ——=Y'N(N!) ——0

0

with exact rows. The upper short exact sequence splits over A(N) (3.5.13) and
hence over A(N1). Since F;_;C}; splits as above, the change-of-rings isomorphism
A1.3.13 implies that the map

Homy, (F;M(N), F;_1CN) — Homuy, (Fi_1M(N), F;_1CY\)

is onto, so the diagonal map exists. It can be used to split the middle short exact
sequence, so the lower short exact sequence can be taken to be split and C is as
claimed.

The rest of 3.5.14 can be similarly constructed.

Now we consider some examples. If N = (0,0,---) the spectral sequence
collapses and we have the A-algebra. If N = (1,1,...) we have Extyy) =
P(ag,a1,...) as computed in 3.1.9, and the Ej-term is this ring tensored with
the subalgebra of A generated by A; with ¢ odd, which is isomorphic up to regrad-
ing with A itself. This is also the E;-term of a spectral sequence converging to the
Adams—Novikov Es-term to be discussed in Section 4.4. The SS of 3.5.15 in this
case can be identified with the one obtained by filtering A by the number of );,
with ¢ odd occurring in each monomial.

For N = (2,2,---) we have A(N) = B as in 3.5.1, so the Ej-term is Extp
tensored with a regraded A.

Finally, consider the case N = (2,1,0,0,...). We have E?’S = Exti‘(l)* and

E; =@ 4 Extz(o)*. One can study the quotient spectral sequence obtained

by setting Ef’s =0 for k > 1. The resulting Fy = E, is the target of a map from
Ext, and this map is essentially the one given in 3.4.19. More generally, the first
few columns of the spectral sequence of 3.5.15 can be used to detect elements in
Ext.

In Section 4 we gave some results concerning vanishing and periodicity. In
particular we got a vanishing line of slope % (for p = 2) for any connective comodule
free over A(0),. This result can be improved if the comodule is free over A(n),
for some n > 0; e.g., one gets a vanishing line of slope % forn =1, p = 2. See
Anderson and Davis [1] and Miller and Wilkerson [8].
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The periodicity in Section 4 is based on multiplication by powers of hog (p = 2)
or a; (p > 2) and these operators act on classes annihilated by some power of
hio or ag. As remarked above, this corresponds to vi-periodicity in the Adams—
Novikov spectral sequence (see Section 1.4). Therefore one would expect to find
other operators based on multiplication by powers of h,41,0 or a, corresponding
to vy-periodicity for n > 1. A wv,-periodicity operator should be a Massey product
defined on elements annihilated by some v,,_1-periodicity operator. For n =2, p =
2 this phenomenon is investigated by Davis and Mahowald [1] and Mahowald [10,
11, 12].

More generally one can ask if there is an Adams spectral sequence version of the
chromatic SS (1.4.8). For this one would need an analog of the chromatic resolution
(1.4.6), which means inverting periodicity operators. This problem is addressed by
Miller [4, 7].

A v,-periodicity operator in the Adams spectral sequence for p = 2 moves
an element along a line of slope 1/(2"*! — 2). Thus v,-periodic families of stable
homotopy elements would correspond to families of elements in the Adams spectral
sequence lying near the line through the origin with this slope. We expect that
elements in the F,-term cluster around such lines.

Now we will survey some other research with the Adams spectral sequence not
directly related to the previous four sections. For p = 2 and t — s < 45, differentials
and extensions are analyzed by Mahowald and Tangora [9], Barratt, Mahowald,
and Tangora [1], Tangora [5], and Bruner [1]. Some systematic phenomena in the
Es-term are described in Davis [2], Mahowald and Tangora [14], and Margolis,
Priddy, and Tangora [1]. Some machinery useful for computing Adams spectral
sequence differentials involving Massey products is developed by Kochman [4] and
Section 12 of Kochman [2]. See also Milgram [2] and Kahn [2] and Bruner et ol [1],
and Makinen [1].

The Adams spectral sequence was used in the proof of the Segal conjecture for
Z/(2) by Lin [1] and Lin et al. [2]. Computationally, the heart of the proof is the
startling isomorphism

Ext}j’ (Z/(2), M) = Ext'"(Z/(2), Z/(2)),

where M is dual to the A-module Z/(2)[z, 2~ '] with dimz = 1 and S¢*z* = (})2***
(this binomial coefficient makes sense for any integer ¢). This isomorphism was
originally conjectured by Mahowald (see Adams [14]). The analogous odd primary
result was proved by Gunawardena [1]. The calculation is streamlined and gener-
alized to elementary abelian p-groups by Adams, Gunawardena, and Miller [18].
This work makes essential use of ideas due to Singer [1] and Li and Singer [1].

In Ravenel [4] we proved the Segal conjecture for cyclic groups by means of
a modified form of the Adams spectral sequence in which the filtration is altered.
This method was used by Miller and Wilkerson [9] to prove the Segal conjecture
for periodic groups.

The general Segal conjecture, which is a statement about the stable homotopy
type of the classifying space of a finite group, has been proved by Gunnar Carls-
son [1]. A related result is the Sullivan conjecture, which concerns says among other
things that there are no nontrivial maps to a finite complex from such a classifying
space. It was proved by Haynes Miller in [10] . New insight into both proofs was
provided by work of Jean Lannes on unstable modules over the Steenrod algebra,
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in particular his T-functor, which is an adjoint to a certain tensor product. See
Lannes [1], Lannes [2] and Lannes and Schwartz [3]. An account of this theory is
given in the book by Lionel Schwartz [1].

Recent work of Palmieir (Palmieri [1] and Palmieri [2]) gives a global descrip-
tion of Ext over the Steenrod algebra modulo nilpotent elements.

Finally, we must mention the Whitehead conjecture. The n-fold symmet-
ric product Sp"™(X) of a space X is the quotient of the n-fold Cartesian prod-
uct by the action of the symmetric group ¥,. Dold and Thom [1] showed that
Sp>(X) = liLnSp"(X ) is a product of Eilenberg—Mac Lane spaces whosw homo-
topy is the homotopy of X. Symmetric products can be defined on spectra and we
have Sp>(S°) = HJ, the integer Eilenbergh-Mac Lane spectrum. After localizing
at the prime p one considers

SO — SpP(8°) — Spr (%) — -+
and
(3.5.16) H 8% — $715pP(5%) /8% — 5725p"" (8°)/SpP(5%) - -- .

Whitehead conjectured that this diagram induces an long exact sequence of ho-
motopy groups. In particular, the map L~1SpP(S%)/S% — SO shouls induce a
surjection in homotopy in positive dimensions; this is the famous theorem of Kahn
and Priddy [2]. The analogous statement about Ext groups was proved by Lin [3].
Miller [6] generalized this to show that 3.5.16 induces an long exact sequence of
Ext groups. The long exact sequence of homotopy groups was established by
Kuhn [1]. The spectra in 3.5.16 were studied by Welcher [1, 2]. He showed that
H,(SpP" " (59)/8Spr" (S9)) is free over A(n),, so its Ext groups has a vanishing line
given by Anderson and Davis [1] and Miller and Wilkerson [8] and the long exact
sequence of 3.5.16 is finite in each bigrading.



CHAPTER 4

BP-Theory and the Adams—Novikov Spectral
Sequence

In this chapter we turn to the main topic of this book, the Adams—Novikov
spectral sequence. In Section 1 we develop the basic properties of MU and the
Brown—Peterson spectrum BP, using the calculation of . (MU) (3.1.5) and the
algebraic theory of formal group laws as given in Appendix 2. The main result is
4.1.19, which describes BP,(BP), the BP-theoretic analog of the dual Steenrod
algebra.

Section 2 is a survey of other aspects of BP-theory not directly related to this
book.

In Section 3 we study BP,(BP) more closely and obtain some formulas, notably
4.3.13, 4.3.18, 4.3.22, and 4.3.33, which will be useful in subsequent calculations.

In Section 4 we set up the Adams—Novikov spectral sequence and use it to com-
pute the stable homotopy groups of spheres through a middling range of dimensions,
namely < 24 for p = 2 and < 2p? — 2p — 1 for p > 2.

1. Quillen’s Theorem and the Structure of BP,(BP)

Complex cobordism. Complex orientation of a ring spectrum. The formal
group law for a complex oriented homology theory. Quillen’s theorem equating the
Lazard and complex cobordism rings. Landweber and Novikov’s theorem on the
structure of MU,(MU). The Brown—Peterson spectrum BP. Quillen’s idempotent
operation and p-typical formal group laws. The structure of BP,(BP).

In this section we will construct the Brown—Peterson spectrum BP and de-
termine the structure of its Hopf algebroid of cooperations, BP,(BP), i.e., the
analog of the dual Steenrod algebra. This will enable us to begin computing with
the Adams—Novikov spectral sequence (ANSS) in Section 4. The main results are
Quillen’s theorem 4.1.6, which identifies 7. (MU) with the Lazard ring L (A2.1.8);
the Landweber—Novikov theorem 4.1.11, which describes MU, (MU); the Brown—
Peterson theorem 4.1.12, which gives the spectrum BP; and the Quillen—Adams
theorem 4.1.19, which describes BP,(BP).

We begin by informally defining the spectrum MU. For more details see Milnor
and Stasheff [5]. Recall that for each n > 0 the group of complex unitary n x n
matrices U(n) has a classifying space BU(n). It has a complex n-plane bundle 7,
over it which is universal in the sense that any such bundle £ over a paracompact
space X is the pullback of 7,, induced by a map f: X — BU(n). Isomorphism
classes of such bundles £ are in one-to-one correspondence with homotopy classes of
maps from X to BU(n). Any C™-bundle ¢ has an associated disc bundle D(§) and
sphere bundle S(§). The Thom space T'(§) is the quotient D(£)/S(€). Alternatively,
for compact X, T'(&) is the one-point compactification of the total space of &.

101
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MU(n) is T(vn), the Thom space of the universal n-plane bundle =, over
BU(n). The inclusion U(n) — U(n + 1) induces a map BU(n) — BU(n + 1).
The pullback of 7,,+1 under this map has Thom space X?>MU (n). Thom spaces are
functorial so we have a map ¥?MU(n) — MU(n + 1). Together these maps give
the spectrum MU.

It follows from the celebrated theorem of Thom [1] that 7, (MU) is isomorphic
to the complex cobordisrn ring (see Milnor [4]) which is defined as follows. A stably
complex manifold is one with a complex structure on its stable normal bundle.
(This notion of a complex manifold is weaker than others, e.g., algebraic, analytic,
and almost complex.) All such manifolds are oriented. Two closed stably complex
manifolds M; and Ms are cobordant if there is a stably complex manifold W whose
boundary is the disjoint union of M; (with the opposite of the given orientation)
and M,. Cobordism, i.e., being cobordant, is an equivalence relation and the set of
equivalence classes forms a ring (the complex cobordism ring) under disjoint union
and Cartesian product. Milnor and Novikov’s calculation of 7, (MU) (3.1.5) implies
that two such manifolds are cobordant if they have the same Chern numbers. For
the definition of these and other details of the above we refer the reader to Milnor
and Stasheff [5] or Stong [1].

This connection between MU and complex manifolds is, however, not relevant
to most of the applications we will discuss, nor is the connection between MU and
complex vector bundles. On the other hand, the connection with formal group laws
(A2.1.1) discovered by Quillen [2] (see 4.1.6) is essential to all that follows. This
leads one to suspect that there is some unknown formal group theoretic construction
of MU or its associated infinite loop space. For example, many well-known infinite
loop spaces have been constructed as classifying spaces of certain types of categories
(see Adams [9], section 2.6), but to our knowledge no such description exists for
MU. This infinite loop space has been studied in Ravenel and Wilson [2].

In order to construct BP and compute BP,(BP) we need first to analyze MU.
Our starting points are 3.1.4, which describes its homology, and the Milnor—Novikov
theorem 3.1.5, which describes its homotopy and the behavior of the Hurewicz map.
The relevant algebraic information is provided by A2.1, which describes universal
formal group laws and related concepts and which should be read before this section.
The results of this section are also derived in Adams [5].

Before we can state Quillen’s theorem (4.1.6), which establishes the connection
between formal group laws and complex cobordism, we need some preliminary
discussion.

4.1.1. DEFINITION. Let E be an associative commutative ring spectrum. A
complex orientation for E is a class xg € E?*(CP>) whose restriction to

E(CP") ~ E?(5?) = mo(E)
is 1, where CP™ denotes n-dimensional complex projective space. ([

This definition is more restrictive than that given in Adams [5] (2.1), but it is
adequate for our purposes.

Of course, not all ring spectra (e.g., bo) are orientable in this sense. Two
relevant examples of oriented spectra are the following.

4.1.2. EXaAMPLE. Let E = H, the integral Eilenberg—Mac Lane spectrum. Then
the usual generator of H?(CP™>) is a complex orientation .



1. QUILLEN’S THEOREM AND THE STRUCTURE OF BP,(BP) 103

4.1.3. EXAMPLE. Let E = MU. Recall that MU is built up out of Thom spaces
MU (n) of complex vector bundles over BU (n) and that the map BU(n) — MU (n)
is an equivalence when n = 1. The composition

CP>* =BU(1) = MU(1) - MU

gives a complex orientation xyy € MU?(CP®). Alternatively, zp could be
defined to be the first Conner—Floyd Chern class of the canonical complex line
bundle over CP> (see Conner and Floyd [1]).

4.1.4. LEMMA. Let E be a complex oriented ring spectrum.

(a) E*(CP) = B*(pt)[[w ]

(b) E*(CP>* x CP*>®) = E*(pt)[[zg ® 1,1 ® xg]].

(c) Let t: CP>* x CP>® — CP be the H-space structure map, i.e., the map
corresponding to the tensor product of complex line bundles, and let Fg(z,y) €
E*(pt)[[x,y]] be defined by t*(zg) = Fr(tp®1,184,). Then Fg is a formal group
law (A2.1.1) over E*(pt).

PRrROOF. For (c), the relevant properties of Fg follow from the fact that CP>
is an associative, commutative H-space with unit.

For (a) and (b) one has the Atiyah-Hirzebruch spectral sequence (AHSS)
H*(X; E*(pt)) = E*(X) (see section 7 of Adams [4]). For X = CP the class zp
represents a unit multiple of xy € H?(CP>). Hence xy and all of its powers are
permanent cycles so the spectral sequence collapses and (a) follows. The argument
for (b) is similar. O

Hence a complex orientation g leads to a formal group law Fr over E*(pt.).
Lazard’s theorem A2.1.8 asserts that Fg is induced by a homomorphism 0g: L —
E*(pt.), where L is a certain ring over which a universal formal group law is defined.

Recall that L = Z[x1, x9,...], where x; has degree 2i. There is a power series over
L®Q
log(z) = Z mx !
i>0

where mg = 1 such that
L®Q = Q[ml,mg...]
and
log(F'(z,y)) = log(z) + log(y)
This formula determines the formal group law F(z,y).
The following geometric description of 8¢y, while interesting, is not relevant
to our purposes, so we refer the reader to Adams [5, Theorem 9.2] for a proof.

4.1.5. THEOREM (Mischenko [1]). The element (n + 1)0pu (my,) € T (MU) is
represented by the complex manifold CP™.

4.1.6. THEOREM (Quillen [2]). Oy is an isomorphism. O

We will prove this with the help of the diagram

L—j>M

. (MU) —L> H, (MU)
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where M = Z[my, my...] is defined in A2.1.9(b) and contains L. The map ¢ will
be constructed below. Recall [A2.1.10(b)] that modulo decomposables in M, the
image of j is generated by

pm; if i = pF — 1 for some prime p,
m; otherwise.

Recall also that H.(MU) = Z[by, b, . ..] [3.1.4(a)] and that modulo decomposables
in H,(MU), the image of h is generated by

—pb; if i = p¥ — 1 for some prime p,
— b; otherwise

Hence it suffices to construct ¢ and show that it is an isomorphism.

Before doing this we need two lemmas.

First we must compute E,(MU). Tt follows easily from 4.1.4(a) that E,(CP>)
is a free 7.(E) module on elements 37 dual to z%,. We have a stable map Cp>® —
$2MU and we denote by bF the image of 85 ;.

4.1.7. LEMMA. If E is a complex oriented ring spectrum then
E.(MU) = m.(E)[p¥, Y .. .].

PROOF. We use the Atiyah-Hirzebruch spectral sequence H.(MU,m.(E)) —
E.(MU). The bF represent unit multiples of b; € Ho;(MU) [3.1.4(a)], so the b; are
permanent cycles and the Atiyah—Hirzebruch spectral sequence collapses. (I

If F is complex oriented so is E A MU. The orientations zg and xp;y both
map to orientations for £ A MU which we denote by &g and sy, respectively.
We also know by 4.1.7 that

7 (E A MU) = E,(MU) = . (E)[bF]

4.1.8. LEMMA. Let E be a complex oriented ring spectrum. Then in (E A
MU)?(CP>).
Evu = bPat,
i>0
where by = 1. This power series will be denoted by gr(2g).

PRrROOF. We will show by induction on n that after restricting to CP™ we get
Fpy = Z b,
0<i<n

For n = 1 this is clear since zp and xp;y restrict to the canonical generators of
E*(CP') and MU*(CP'). Now notice that z7 is the composite

CPn N S2n N EQnE

where the first map is collapsing to the top cell and the second map is the unit.
Also bE_, is by definition the composite

E
g2 O, opn p g EMUAE 2y 0 B
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Hence we have a diagram
CpPvl——CP" ' A\E

zMUNE
g

x E
CP"NE 2 seni A E

CP"Am TEZMU/\m

CP"ANEANE™MNENE o iir A EAE

g
BEAE
bE_  AE

§2 ———> S\ E

where m: E A E — FE is the multiplication and g is the cofiber projection of
(CP"Am) (BEAE). is now split as (CP" *AE)V(S*AE) and x )y AE: CPAE —
$2MU A E is the sum of (zpp A E)g and the map from S?" A E. Since z sy is the
composition

CP" — CP" N E ZMUE 2 U A E
and the lower composite map from CP" to X2MU A E is bZ_, 2%, the inductive
step and the result follow. O

4.1.9. COROLLARY. In m.(E A MU)|[z,y]],

Fuu(z,y) = 92(Felgg' (2), 95" (1)))-
PROOF. In (E A MU)*(CP*>® x CP>),
Fuo iy @ 1,1® dyp) = t* (2w
=ge(t"(Zp))
=g9r(Fr(tr ®1,1® &g))
= 98(Fe(9p' (zmu) ©1,1© g5 (Env)))-
O

Now we are ready to prove 4.1.6. The map ¢ in 4.1.6 exists if the logarithm of
the formal group law defined over H,(MU) by hfyp is integral, i.e., if the formal
group law is isomorphic to the additive one. For £ = H, Fg(z,y) =  + y, so the
formal group law over H,(MU) = m.(H AMU) is indeed isomorphic to the additive
one, so ¢ exists. Moreover, log g(Zg) = &g, so

b= ¢(mi)ihyl =gy (Env)

by 4.1.9. It follows that Y ¢(m;)z*™! is the functional inverse of > b;z**! i.e.,

(4.1.10) hOnr exp(z) = Z bzt
i>0
where exp is the functional inverse of the logarithm (A2.1.5), so ¢(m;) = —b;,

modulo decomposables in H*(MU) and 4.1.6 follows.

Now we will determine the structure of MU,(MU). We know it as an algebra
by 4.1.7. In particular, it is a free m,(MU) module, so MU is a flat ring spectrum.
Hence by 2.2.8 (7.(MU), MU.(MU)) is a Hopf algebroid (A1.1.1). We will show
that it is isomorphic to (L, LB) of A2.1.16. We now recall its structure. As an
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algebra, LB = L[by,bs ...] with deg b; = 2i. There are structure maps e: LB — L
(augmentation), nr,nr: L — LB (left and right units), A: LB — LB ® LB
(coproduct), and ¢: LB — LB (conjugation) satisfying certain identities listed in
Al.1.1.

e: LB — L is defined by €(b;) = 0; n,: L — LB is the standard inclusion,
while np: L® Q — LB ® Q is given by

141
> nr(mi) =Y m (Z C(bj)> :

i>0 i>0 >0

where mg = by = 1;

J+1
i>0 7>0 \i>0
and ¢: LB — LB is determined by ¢(m;) = ng(m;) and

it+1
i>0 §>0
Note that the maps 7y and ng, along with the identities of A1.1.1, determine the
remaining structure maps ¢, A, and c.

The map 6y of 4.1.6 is an isomorphism which can be extended to LB by
defining 617 (b;) to be bMY € MU (MU) (4.1.8).

4.1.11. TuEOREM  (Novikov  [1], Landweber  [2]). The map
Opu: LB — MU(MU) defined above gives a Hopf algebroid isomorphism
(L,LB) = (m(MU), MU, (MU)).

PROOF. Recall that the Hopf algebroid structure of (L, LB) is determined by
the right unit nr: L — LB. Hence it suffices to show that 8,y respects ng. Now
the left and right units in MU,(MU) are induced by MU A S® — MU A MU and
SO ANMU — MU A MU, respectively. These give complex orientations z; and =g
for MU A MU and hence formal group laws (4.1.4) Fr and Fr, over MU, (MU).
The b; in LB are the coefficients of the power series of the universal isomorphism
between two universal formal group laws. Hence it suffices to show that zp =
> iso MUzt but this is the special case of 4.1.9 where E = MU. 0

Our next objective is

4.1.12. THEOREM. [Brown and Peterson [1], Quillen [1]] For each prime p
there is a unique associative commutative ring spectrum BP which is a retract of
MUy (2.1.12) such that the map g: MU,y — BP is multiplicative,

(a) m.(BP) ® Q = Q[gu(myr_1): k > 0] with g.(my) =0 forn #p* —1;

(b) H.(BP: Z/(p)) = P. (3.1.6) as comodule algebras over the dual Steenrod
algebra A, (3.1.1); and

(¢) m(BP)=Z)[v1, vz . ..] with v, Eman 1) and the composition . (9)0mu,,
factors through the map L x Z,y — V' of A2.1.25, giving an isomorphism from V
to m.(BP). O

The spectrum BP is named after Brown and Peterson, who first constructed
it via its Postnikov tower. Recall (3.1.9) that H.(MU;Z/(p)) splits as an A.-
comodule into many copies of P,. Theorem 4.1.12 implies that there is a corre-
sponding splitting of MU(,). Since P, is dual to a cyclic A-module, it is clear that
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BP cannot be split any further. Brown and Peterson [1] also showed that BP can
be constructed from H (the integral Eilenberg—Mac Lane spectrum) by killing all
of the torsion in its integral homology with Postnikov fibrations. More recently,
Priddy [1] has shown that BP can be constructed from S?p) by adding local cells
to kill off all of the torsion in its homotopy.

The generators v, of m.(BP) will be defined explicitly below.

Quillen [2] constructed BP in a more canonical way which enabled him to
determine the structure of BP,(BP). BP bears the same relation to p-typical
formal group laws (A2.1.17) that MU bears to formal group laws as seen in 4.1.6.
The algebraic basis of Quillen’s proof of 4.1.12 is Cartier’s theorem A2.1.18, which
states that any formal group law over a Z,-algebra is canonically isomorphic to
p-typical one. Accounts of Quillen’s work are given in Adams [5] and Araki [1].

Following Quillen [2], we will construct a multiplicative map g: MUy, —
MU, which is idempotent, i.e., ¢> = g. This map will induce an idempotent
natural transformation or cohomology operation on M U(*p)(—). The image of this
map will be a functor satisfying the conditions of Brown’s representability theorem
(see Brown [2] or, in terms of spectra, 3.12 of Adams [4]) and will therefore be rep-
resented by a spectrum BP. The multiplicativity of BP and its other properties
will follow from the corresponding properties of g.

To construct g we need two lemmas.

4.1.13. LEMMA. Let E be an oriented ring spectrum. Then orientations of E are
in one-to-one correspondence with multiplicative maps from MU to E; i.e., given
an orientation yp € E?(CP>), there is a unique multiplicative map g: MU — E
such that g*(xpu) = yr and vice versa.

PROOF. By 4.1.4, E*(CP*®) = 7, (E)[[zE]] so we have
yp = f(z) =Y fir'"!
i>0
with fo = 1 and f; € m;(E). Using arguments similar to that of 4.1.8 and 4.1.6
one shows
(4.1.14) E*(MU) 2 Homy, ., (E.(MU), 7.(E))
and
E*(CP*) = Homy, ,, (E«(CP>), m.(E)).

A diagram chase shows that a map MU — FE is multiplicative if the corresponding
map E,(MU) — 7.(E) is a m.(FE)-algebra map. The map yg corresponds to the
map which sends 87, to f; and 85, by definition maps to bF € Fa;(MU), so we
let g be the map which sends bF to f;. ([

4.1.15. LEMMA. A map g: MU,y — MUy, (or MU — MU) is determined up

to homotopy by its behavior on m,.

PROOF. We do the MU case first. By 4.1.14,
MU*(MU) = Homg_,,,, (MU(MU), 7. (MU)).

This object is torsion-free so we lose no information by tensoring with Q. It follows
from 4.1.11 that MU,.(MU) ® Q is generated over m,(MU) ® Q by the image of
1R, which is the Hurewicz map. Therefore the map

MU*(MU)® Q — Homq (7. (MU) ® Q, m.(MU) ® Q)
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is an isomorphism, so the result follows for MU.
For the MU, case we need to show

(4.1.16) MU(*p)(MU(p)) = MU*(MU) @ Z).
This will follow from 4.1.13 if we can show that the map
(4.1.17) MU(*p)(MU) — MU(*p)(MU(p))

is an isomorphism, i.e., that MU(*p) (C) = 0, where C'is the cofiber of MU — MU .
Now C' is trivial when localized at p, so any p-local cohomology theory vanishes on
it. Thus 4.1.15 and the MU, case follow. O

We are now ready to prove 4.1.12. By 4.1.13 and 4.1.15 a multiplicative map
g: MUy — MU, is determined by a power series f(x) over m.(MU(,)). We, take
f(x) to be as defined by A2.1.23. By 4.1.15 the corresponding map g is idempotent
if m.(9) ® Q is. To compute the latter we need to see the effect of g* on

log(zpmu) = Zml:vﬂllj € MU?(CP*)® Q.
Let F' ]'WU(p) be the formal group law associated with the orientation f (), and
let mog(x) be its logarithm (A2.1.6). The map g* preserves formal group laws
and hence their logarithms, so we have g*(log(zar)) = mog(f(zamu)). By A2.1.24

mog(x) = Y ;o mpk,lxpk and it follows that m.(g) has the indicated behavior;
i.e., we have proved 4.1.12(a).

For (b), we have H,(BP;Q) = m.(BP) ® Q, and H.(BP;Z,)) is torsionfree,
so H.(BP;Z/(p)) = P. as algebras. Since BP is a retract of MU, its homology
is a direct summand over A, and (b) follows.

For (c) the structure of m.(BP) follows from (a) and the fact that BP is a
retract of MU(,. For the isomorphism from V' we need to complete the diagram

L®Z, Y
|

eMU(p)\L
N

(MU py) —£> 7.(BP)

The horizontal maps are both onto and the left-hand vertical map is an isomorphism
so it suffices to complete the diagram tensored with Q. In this case the result follows
from (a) and A2.1.25. This completes the proof of 4.1.12.

Our last objective in this section is the determination of the Hopf algebroid
(A1.1.1) (m«(BP), BP.(BP)). (Proposition 2.2.8 says that this object is a Hopf
algebroid if BP is flat. It is since MU, is flat.) We will show that it is isomorphic
to (V,VT) of A2.1.27, which bears the same relation to p-typical formal group
laws that (L, LB) (A2.1.16 and 4.1.11) bears to ordinary formal group laws. The
ring V' (A2.1.25), over which the universal p-typical formal group law is defined, is
isomorphic to . (BP) by 4.1.12(c). V ® Q is generated by m,:_; for i > 0, and we
denote this element by A;. Then from A2.1.27 we have

4.1.18. THEOREM. In the Hopf algebroid (V,V'T) (see Al1.1.1)

(a) V = Zyylvr, vz, ... ] with |v,| = 2(p" — 1),

(b) VT = Vt1,ta,...] with |t,| =2(p"™ — 1), and

(¢) np: V. — VT is the standard inclusion and ¢: VI — V is defined by
= 07 E(Ui) = V5.

;Di*

e(t:)
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(d) nr: V' — VT is determined by nr(An) = > gcicp Ni
to=1,
(e) A is determined by

> AiA(t) ZAt”@t” ,

i,7>0 i,u,k>0

where A\g =

’ﬂl’

and
(f) ¢ is determined by

Z Ait? "e(tn)P Z)\
4,5,k>0 >0

(g) The forgetful functor from p-typical formal group laws to formal group laws
induces a surjection of Hopf algebroids (A1.1.19)

(L®Z(p),LB®Z(p)) — (V,VT). O

4.1.19. THEOREM (Quillen [2], Adams [5]). The Hopf algebroid
(m«(BP), BP.(BP)) is isomorphic to (V,VT) described above.

PRroOOF. Consider the diagram
(L, LB) ® Z,) (V,VT)

I
lHZ\/IU |
Y

MU, (MU) ® Z,) —2~ (r,(BP), BP,(BP)).

The left-hand map is an isomorphism by 4.1.11 and the horizontal maps are both
onto by (g) above and by 4.1.12. Therefore it suffices to complete the diagram with
an isomorphism over Q. One sees easily that VT ® Q and BP,(BP)® Q are both
isomorphic to V @ V ® Q. O

2. A Survey of BP-Theory

Bordism groups of spaces. The Sullivan-Baas construction. The Johnson—
Wilson spectrum BP(n). The Morava K-theories K (n). The Landweber filtration
and exact functor theorems. The Conner—Floyd isomorphism. K-theory as a func-
tor of complex cobordism. Johnson and Yosimura’s work on invariant regular ideals.
Infinite loop spaces associated with MU and BP; the Ravenel-Wilson Hopf ring.
The unstable Adams—Novikov spectral sequence of Bendersky, Curtis and Miller.

In this section we will give an informal survey of some aspects of complex
cobordism theory not directly related to the Adams-Novikov spectral sequence.
(We use the terms complex cobordism and BP interchangeably in light of 4.1.12.)
Little or no use of this material will be made in the rest of the book. This survey
is by no means exhaustive.

The history of the subject shows a movement from geometry to algebra. The
early work was concerned mainly with applications to manifold theory, while more
recent work has dealt with the internal algebraic structure of various cohomol-
ogy theories and their applictions to homotopy theory. The present volume is, of
course, an example of the latter. The turning point in this trend was Quillen’s
theorem 4.1.6, which established a link with the theory of formal groups treated in
Appendix 2. The influential but mostly unpublished work of Jack Morava in the
early 1970s was concerned with the implications of this link.
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Most geometric results in the theory, besides the classification of closed mani-
folds up to cobordism, rest on the notion of the bordism groups Q.(X) of a space X,
first defined by Conner and Floyd [2]. €,(X) is the group (under disjoint union)
of equivalence classes of maps from closed n-dimensional manifolds (possibly with
some additional structure such as an orientation or a stable complex structure)
to X. Two such maps f;: M; — X (i = 1,2) are equivalent if there is a map
f+ W — X from a manifold whose boundary is M; U My with f extending f; and
f2. Tt can be shown (Conner and Floyd [2]) that the functor 2,(—) is a generalized
homology theory and that the spectrum representing it is the appropriate Thom
spectrum for the manifolds in question. For example, if the manifolds are stably
complex (see the beginning of Section 1) the bordism theory, denoted by QY (-),
coincides with MU, (—), the generalized homology theory represented by the spec-
trum MU, ie., QY(X) = 7, (MU A X). The notation Q.(—) with no superscript
usually denotes the oriented bordism group, while the unoriented bordism group is
usually denoted by N,.(—).

These bordism groups are usually computed by algebraic methods that use
properties of the Thom spectra. Thom [1] showed that MO, the spectrum rep-
resenting unoriented bordism, is a wedge of mod (2) Eilenberg-Mac Lane spectra,
so N.(X) is determined by H.(X;Z/(2)). MSO (which represents oriented bor-
dism) when localized at the prime 2 is known (Stong [1, p.209]) to be a wedge of
integral and mod (2) Eilenberg-Mac Lane spectra, so Q.(X) () is also determined
by ordinary homology. Brown and Peterson [1] showed that when localized at any
odd prime the spectra M SO, MSU, and M Sp as well as MU are wedges of vari-
ous suspensions of BP, so the corresponding bordism groups are all determined by
BP,.(X). Conner and Floyd [2] showed effectively that BP,(X) is determined by
H.(X;Z,)) when the latter is torsion-free.

For certain spaces the bordism groups have interesting geometric interpreta-
tions. For example, 2, (BO) is the cobordism group of vector bundles over oriented
manifolds. Since H,(BSO) has no odd torsion, it determines this group. If X, is
the nth space in the Q-spectrum for MSO, then Q.(X,,) is the cobordism group
of maps of codimension n between oriented manifolds. The unoriented analog was
treated by Stong [3] and the complex analog by Ravenel and Wilson [2].

For a finite group G, Q.(BG) is the cobordism group of oriented manifolds
with free G-actions, the manifolds mapped to BG being the orbit spaces. These
groups were studied by Conner and Floyd [2] and Conner [4]. Among other things
they computed Q. (BG) for cyclic G. In Landweber [6] it was shown that the map
MU, (BG) — H,.(BG) is onto iff G has periodic cohomology. In Floyd [1] and tom
Dieck [1] it is shown that the ideal of m.(MU) represented by manifolds on which
an abelian p-group with n cyclic summands can act without stationary points is
the prime ideal I,, defined below. The groups BP,(BG) for G = (Z/(p))™ have
been computed by Johnson and Wilson [5].

We now turn to certain other spectra related to MU and BP. These are con-
structed by means of either the Landweber exact functor theorem (Landweber [3])
or the Sullivan—Baas construction (Baas [1]), which we now describe. Dennis Sul-
livan (unpublished, circa 1969) wanted to construct “manifolds with singularities”
(admittedly a contradiction in terms) with which any ordinary homology class could
be represented; i.e., any element in H,(X;Z) could be realized as the image of the
fundamental homology class of such a “manifold” M under some map M — X.



2. A SURVEY OF BP-THEORY 111

It was long known that not all homology classes were representable in this sense
by ordinary manifolds, the question having been originally posed by Steenrod. (I
heard Sullivan begin a lecture on the subject by saying that homology was like the
weather; everybody talks about it but nobody does anything about it.)

In terms of spectra this nonrepresentability is due to the fact that MU (if we
want our manifolds to be stably complex) is not a wedge of Eilenberg-Mac Lane
spectra. The Sullivan-Baas construction can be regarded as a way to get from MU
to H.

Let y € m,(MU) be represented by a manifold X. A closed n-dimensional
manifold with singularity of type (y) (n > k) is a space W of the form AU(BxCM),
where C'M denotes the cone on a manifold M representing y, B is a closed (n—k—1)-
dimensional manifold, A is an n-dimensional manifold with boundary B x M, and
A and B x CM are glued together along B x M. It can be shown that the bordism
group defined using such objects is a homology theory represented by a spectrum
C(y) which is the cofiber of

P MU L Cly), so mC(Y)=m.(MU)/y.

This construction can be iterated any number of times. Given a sequence y1, y2, . . .
of elements in 7, (MU) we get spectra C(y1, ¥z, ... yn) and cofibrations

Zlynlc(yla .. '7yn71) - C(yla .. ~7yn71) - O(yl’ o ,yn)

If the sequence is regular, i.e., if y,, is not a zero divisor in m,(MU)/(y1,-- -, Yn—1),
then each of the cofibrations will give a short exact sequence in homotopy, so we
get

T(C(y1s- - yn)) = 7(MU)/(y1, -, Yn)-

In this way one can kill off any regular ideal in m,(MU). In particular, one
can get H by killing (x1,x2,...). Sullivan’s idea was to use this to show that any
homology class could be represented by the corresponding type of manifold with
singularity. One could also get BP by killing the kernel of the map m,(MU) —
m«(BP) and then localizing at p. This approach to BP does not reflect the splitting
of MU(p).

Much more delicate arguments are needed to show that the resulting spectra
are multiplicative (Shimada and Yagita [1], Morava [1], Mironov [1]), and the proof
only works at odd primes. Once they are multiplicative, it is immediate that they
are orientable in the sense of 4.1.1.

The two most important cases of this construction are the Johnson—Wilson
spectra BP(n) (Johnson and Wilson [2]) and the Morava K-theories K (n) (Morava’s
account remains unpublished; see Johnson and Wilson [3]).

BP(n) is the spectrum obtained from BP (one can start there instead of
MU since BP itself is a product of the Sullivan-Baas construction) by killing
(Un+1, Unt2,...) C m(BP). One gets

T.(BP(n)) = Zp[v1, ..., vn]
and
H.(BP(n),Z/(p)) = P. @ E(Tn41, Tnt2,---)-
(It is an easy exercise using the methods of Section 3.1 to show that a connec-
tive spectrum with that homology must have the indicated homotopy.) One has

fibrations
22" =V BP(n) X BP(n) — BP(n—1).
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BP(0) is H,y and BP(1) is a summand of bu,, the localization at p of the
spectrum representing connective complex K-theory. One can iterate the map

vy : D2 "V BP(n) — BP(n)
and form the direct limit

E(n) = lim 5"~V BP(n).
E(1) is a summand of periodic complex K-theory localized at p. Johnson and
Wilson [2] showed that

E(n).(X) = BP.(X) ®pp. E(n)..

E(n) can also be obtained by using the Landweber exact functor theorem below.

The BP(n) are interesting for two reasons. First, the fibrations mentioned
above split unstably; i.e., if BP(n)y is the kth space in the Q-spectrum for BP(n)
(i.e., the space whose homotopy starts in dimension k) then

BP<TL>k ~ BP<TL — 1>k X BP<n>k+2(pn_1)

for k < 2(p™ —1)/(p — 1) (Wilson [2]). This means that if X is a finite complex
then BP,(X) is determined by BP{(n).(X) for an appropriate n depending on the
dimension of X.

The second application of BP(n) concerns Homdim BP,(X), the projective
dimension of BP,(X) as a module over m,(BP), known in some circles as the ugli-
ness number. Johnson and Wilson [2] show that the map BP,(X) — BP(n).(X)
is onto iff Homdim BP,(X) < n+ 1. The cases n = 0 and n = 1 of this were
obtained earlier by Conner and Smith [3].

We now turn to the Morava K -theories K(n). These spectra are periodic, i.e.,
»2@" DK (n) = K(n). Their connective analogs k(n) are obtained from BP by
killing (p,v1,...,Un—1,Un+1,Vnt2,...). Thus one has m.(k(n)) = Z/(p)[vs] and
H.(k(n),Z/(p)) = A/(Qn)«. One has fibrations

22" =DE(n) 25 k(n) — HZ/(p),

and one defines
K(n) = lim S~2" = D(n).
K (1) is a summand of mod p complex K-theory and it is consistent to define K (0)
to be H(Q, rational homology.
The coefficient ring 7. (K (n)) = Fplv,, v, '] is a graded field in the sense that
every graded module over it is free. One has a Kiinneth isomorphism

K(n)«(X xXY) = K(n)«(X) @r, (k(n)) K(1n)«(Y).

This makes K (n).(—) much easier to compute with than any of the other theories
mentioned here. In Ravenel and Wilson [3] we compute the Morava K-theories of
all the Eilenberg-Mac Lane spaces, the case n = 1 having been done by Anderson
and Hodgkin [2]. We show that for a finite abelian group G, K (n).(K(G,m)) is
finite-dimensional over m, (K (n)) for all m and n, and is isomorphic to K(n).(pt)
ifm >mn K+ 1)*K(Z,m+ 2) for m,n > 0 is a power series ring on (%)
variables. In all cases the K (n)-theory is concentrated in even dimensions. These
calculations enabled us to prove the conjecture of Conner and Floyd [2] which

concerns BP,(B(Z/p)™).
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To illustrate the relation between the K (n)’s and BP we must introduce some
more theories. Let I,, = (p,v1,...,0n—1) C m«(BP) (see 4.3.2) and let P(n) be the
spectrum obtained from BP by Kkilling I,,. Then one has fibrations

22" =D p(n) 25 P(n) — P(n+1)

and we define

B(n) = hvi>n2 2" =1 p(p).
P(n).(X) is a module over F,[v,] and its torsion-free quotient maps monomor-
phically to B(n)«(X). In Johnson and Wilson [3] it is shown that B(n).(X) is
determined by K(n).(X). In Wiirgler [2] it is shown that a certain completion of
B(n) splits into a wedge of suspensions of K (n).

This splitting has the following algebraic antecedent. The formal group law
associated with K (n) (4.1.4) is essentially the standard height n formal group law
F, of A2.2.10, while 7.(B(n)) = Fp[vn, v, vnt1,...] is the universal ring for all
p-typical formal group laws of height n (A2.2.7). In A2.2.11 it is shown that over
the algebraic closure of F), any height n formal group law is isomorphic to the
standard one. Heuristically this is why B(n).(X) is determined by K (n).(X).

This connection between K (n) and height n formal group laws also leads to a
close relation between K(n).(K(n)) and the endomorphism ring of F,, (A2.2.17).
An account of K(n).(K(n)) is given in Yagita [1]. The reader should be warned
that K(n).(K(n)) is not the Hopf algebroid K (n).K(n) of Ravenel [5, 6], which is
denoted herein by X (n); in fact, K(n)«(K(n)) = 2(n) ® E(19,71,-..,Tn—1), where
the 7; are analogous to the 7; in A,.

Most of the above results on K (n) (excluding the results about Eilenberg—
Mac Lane spaces) were known to Morava and communicated by him to the author
in 1973.

The invariance of the I, (4.3.2) under the BP-operations makes it possible
to construct the spectra P(n), B(n), and K(n) and to show that they are ring
spectra for p > 2 by more algebraic means, i.e., without using the Sullivan—Baas
construction. This is done in Wiirgler [1], where the structure of P(n).(P(n)) is
also obtained. k(n).(k(n)) is described in Yagita [2].

We now turn to the important work of Peter Landweber on the internal alge-
braic structure of MU- and BP-theories. The starting point is the invariant prime
ideal theorem 4.3.2, which first appeared in Landweber [4], although it was proba-
bly first proved by Morava. It states that the only prime ideals in 7, (BP) which
are invariant (A1.1.21), or, equivalently, which are subcomodules over BP.(BP),
are the I, = (p,v1,v2,...,0,-1) for 0 < n < co. In Conner and Smith [3] it is
shown that for a finite complex X, BP,(X) is finitely presented as a module over
m«(BP). [The result there is stated in terms of MU,(X), but the two statements
are equivalent.] From commutative algebra one knows that such a module over
such a ring has a finite filtration in which each of the successive subquotients is iso-
morphic to the quotient of the ring by some prime ideal. Of course, as anyone who
has contemplated the prospect of algebraic geometry knows, a ring such as . (BP)
has a very large number of prime ideals. However, Landweber [3] shows that the
coaction of BP,(BP) implies that the filtration of BP,(X) [or of any BP.(BP)-
comodule which is finitely presented as a module over 7,.(BP)] can be chosen so
that each successive subquotient has the form 7, (BP)/I, for some finite n. {The
corresponding statement about MU, (X) appeared earlier in Landweber [5].} The
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submodules in the filtration can be taken to be subcomodules and n (the number of
generators of the prime ideal) never exceeds the projective dimension of the module.
This useful result is known as the Landweber filtration theorem.

It leads to the Landweber exact functor theorem, which addresses the following
question. For which 7, (BP)-modules M is the functor BP,(—)®x,(gp) M a gener-
alized homology theory? Such a functor must be exact in the sense that it converts
cofiber sequences into long exact sequences of modules. This will be the case if M
is flat, i.e., if TOI’;F*(BP)(M, N) = 0 for all modules N. However, in view of the
filtration theorem it suffices for this Tor group to vanish only for N = m.(BP)/I,
for all n. This weaker (than flatness) condition on M can be made more explicit as
follows. For each n, multiplication by v, in M ®,_(gp) 7«(BP)/I, is monic. Thus
Landweber [3] shows that any M satisfying this condition gives a homology theory.

For example, the spectrum F(n) mentioned above (in connection with Johnson—
Wilson spectra) can be so obtained since

T (E(n)) = Ziy)vr,v2, ..., vn, v, ]

satisfies Landweber’s condition. [Multiplication by v; is monic in . (E(n)) itself
for i < n, while for i > n, m.(E(n)) @, sp) m«(BP)/I; = 0 so the condition is
vacuous.|

As remarked earlier, F(1) is a summand of complex K-theory localized at p.
The exact functor theorem can be formulated globally in terms of M U-theory and
7 (K) [viewed as a 7. (MU )-module via the Todd genus td: m.(MU) — Z] satisfies
the hypotheses. Thereby one recovers the Conner—Floyd isomorphism

K.(X) = MUL(X) @ (1) 7e(K)

and similarly for cohomology. In other words, complex K-theory is determined by
complex cobordism. This result was first obtained by Conner and Floyd [1], whose
proof relied on an explicit K-theoretic orientation of a complex vector bundle.
Using similar methods they were able to show that real K-theory is determined by
symplectic cobordism.

Landweber’s results have been generalized as follows. Let J C 7.(BP) be an
invariant regular ideal (see Landweber [7]), and let BP.J be the spectrum obtained
by killing J; e.g., P(n) above is BPI,,. Most of the algebra of BP-theory carries over
to these spectra, which are studied systematically in a nice paper by Johnson and
Yosimura [4]. The case J = I,, was treated earlier by Yagita [3] and Yosimura [1].
The mod I,, version of the exact functor enables one to get K(n) from P(n).

Johnson and Yosimura [4] also prove some important facts about 7. (BP) mod-
ules M which are comodules over BP,(BP). They show that if an element m € M
is v,-torsion (i.e., it is annihilated by some power of v,) then it is v, _1-torsion. If
all of the primitive elements in M [i.e., those with ¢¥(m) = 1 ® m] are v,-torsion,
then so is every element, and, if none is, then M is v,-torsion free. If M is a
v,—1-torsion module, then v, 1 M is still a comodule over BP,(BP). Finally, they
show that v, ! BP,(X) = 0 if E(n).(X) = 0.

This last result may have been prompted by an erroneous claim by the author
that the spectrum v, ! BP splits as a wedge of suspensions of E(n). It is clear from
the methods of Wiirgler [2] that one must complete the spectra in some way before
such a splitting can occur. Certain completions of MU are studied in Morava [2].
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We now turn to the last topic of this section, the applications of BP-theory
to unstable homotopy theory. This subject began with Steve Wilson’s thesis (Wil-
son [1, 2]) in which he studied the spaces in the Q-spectra for MU and BP. He
obtained the splitting mentioned above (in connection with the Johnson-Wilson
spectra) and showed that all of the spaces in question have torsion-free homology.
Both the homology and cohomology of each space are either an exterior algebra on
odd-dimensional generators or a polynomial algebra on even-dimensional genera-
tors.

These spaces were studied more systematically in Ravenel and Wilson [2].
There we found it convenient to consider all of them simultaneously as a graded
space. The mod (p) homology of such an object is a bigraded coalgebra. The fact
that this graded space represents a multiplicative homology theory implies that its
homology is a ring object in the category of bigraded coalgebras; we call such an
object a Hopf ring. We show that the one in question has a simple set of genera-
tors and relations which are determined by the structure of MU*(CP>), i.e., by
m.(MU) and the associated formal group law. We obtain similar results for the
value on this graded space of any complex oriented (4.1.1) generalized homology
theory.

As mentioned earlier, the complex bordism of the graded space associated with
MU is the cobordism group of maps between stably complex manifolds. We show
that it is a Hopf ring generated by maps from a manifold to a point and the linear
embeddings of CP™ in CP"*!.

The Hopf ring point of view is also essential in Ravenel and Wilson [3], where
we calculate K (n).(K(G,m)). We show that the Hopf ring K(n).(K(Z/(p"),*))
is a certain type of free object on K (n).(K(Z/(p’),1)). The ordinary homology of
K(Z/(p?),*) can be described in similar terms and the methods of our paper may
lead to simpler proofs of the classical theorems about it (see Wilson [3], section
11.8).

Knowing the BP homology of the spaces in the BP spectrum is analogous to
knowing the mod (p) homology of the mod (p) Eilenberg—Mac Lane spaces. This
information, along with some ingenious formal machinery, is needed to construct
the unstable Adams spectral sequence, i.e., a spectral sequence for computing the
homotopy groups of a space X rather than a spectrum. This was done in the BP
case by Bendersky, Curtis, and Miller [1]. Their spectral sequence is especially
convenient for X = §2"*!. In that case they get an F;-term which is a subcomplex
of the usual F;-term for the sphere spectrum, i.e., of the cobar complex of A1.2.11.
Their Es-term is Ext in an appropriate category. For S2"*1 they compute Ext',
which is a subgroup of the stable Ext', and get some corresponding information
about . (52" T1).

In Bendersky [2] the spectral sequence is applied to the special unitary groups
SU(n). In Bendersky, Curtis, and Ravenel [3] the F>-terms for various spheres are
related by an analog of the EHP sequence.

3. Some Calculations in BP,(BP)

The Morava-Landweber invariant prime ideal theorem. Some invariant regular
ideals. A generalization of Witt’s lemma. A formula for the universal p-typical
formal group law. Formulas for the coproduct and conjugation in BP,(BP). A
filtration of BP,(BP))/I,.
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In this section we will prove the Morava-Landweber theorem (4.3.2), which
classifies invariant prime ideals in 7, (BP). Then we will derive several formulas
in BP,(BP) (4.1.18 and 4.1.19). These results are rather technical. Some of them
are more detailed than any of the applications in this book require and they are
included here only for possible future reference. The reader is advised to refer to
this material only when necessary.

Theorem 4.3.3 is a list of invariant regular ideals that will be needed in Chap-
ter 5. Lemma 4.3.8 gives some generalizations of the Witt polynomials. They are
used to give more explicit formulas for the formal group law (4.3.9), the coprod-
uct (4.3.13), and the right unit (4.3.18). We define certain elements, b; ; (4.3.14)
and ¢; y (4.3.19), which are used to give approximations (modulo certain prime
ideals) of the coproduct (4.3.15) and right unit (4.3.20). Explicit examples of the
right unit are given in 4.3.21. The coboundaries of b; ; and ¢; s in the cobar complex
are given in 4.3.22.

In 4.3.23 we define a filtration of BP,(BP)/I, which leads to a May spectral
sequence which will be used in Section 6.3. The structure of the resulting bigraded
Hopf algebroid is given in 4.3.32-34.

From now on 7.(BP) will be abbreviated by BP,. Recall (A2.2.3) that we
have two sets of generators for the ring BP, given by Hazewinkel [2] (A2.2.1) and
Araki [1] (A2.2.2). The behavior of the right unit ng: BP. — BP.(BP) on the
Araki generators is given by A2.2.5, i.e.,

F i F i
(4.3.1) > timr()” =D vit?
4,j20 i,j>0
For the Hazewinkel generators this formula is true only mod (p).
This formula will enable us to define some invariant ideals in BP,. In each case
it will be easy to show that the ideal in question is independent of the choice of
generators used. The most important result of this sort is the following.

4.3.2. THEOREM (Morava [3], Landweber [4]). Let I, = (p,v1,...vp—1) C BP;.
(a) I, is invariant.

(b) Forn >0,
EXtOBP*(BP)(BP*v BP, /1) = Z/(p)[vs]

and
Extyp, (ppy(BP., BP.) = Z).

(c) 0 — x2¢"-VpBp, /I, ™ BP,/I, — BP./I,+1 — 0 is a short eract
sequence of comodules.
(d) The only invariant prime ideals in BP, are the I, for 0 < n < oo.

PROOF. Part (a) follows by induction on n, using (c) for the inductive step.
Part (c) is equivalent to the statement that

vn € Extyp pp)(BPy, BP./1,)

and is therefore a consequence of (b). For (d) suppose J is an invariant prime ideal
which properly contains some I,,. Then the smallest dimensional element of J not
in I,, must be invariant modulo I,,, i.e., it must be in Ext%P*(BP) (BP.(BP/1,)),
so by (b) it must be a power of v, (where vg = p). Since J is prime this element
must be v, itself, so J D I,41. If this containment is proper the argument can be
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repeated. Hence, if J is finitely generated, it is I,, for some n < oco. If J is infinitely
generated we have J D I, which is maximal, so (d) follows.

Hence it remains only to prove (b). It is clear from 4.3.1 that ng(v,) = v,
mod I,,, so it suffices to show that Ext%P*(BP)(BP*,BP*/In) is no bigger than
indicated. From 4.3.1 we see that in BP,(BP)/I,,

NR(Vntj) = Vntj +opth — vﬁjtj mod (t1,t2,...,tj—1),

so the set {vn4j, Mr(Vntj) | 7 > 0} U {v,} is algebraically independent. It follows
that if nr(v) = v then v must be a polynomial in v,,. O

Now we will construct some invariant regular ideals in BP,. Recall that an
ideal (xg,1,...,2,—1) is regular if z; is not a zero divisor in BP,/(zo,...,Ti—1)
for 0 < i < n. This means that the sequence

0 — BP./(xo,...,xi_1) — BP,/(x0,...,x;i_1) — BP./(x0,...,2;) — 0

is exact. The regular sequence (xg,x1,...) is invariant if the above is a short exact
sequence of comodules. Invariant regular ideals have been studied systematically
by Landweber [7]. He shows that an invariant regular ideal with n generators is
primary with radical I,,, and that any invariant ideal with n generators and radical
I, is regular. Invariant ideals in general need not be regular, e.g., I* for k > 1.

4.3.3. THEOREM. Let iy,1i9,... be a sequence of positive integers such that for

each n > 0, in4; is divisible by the smallest power of p not less than iy, and let
ik ion2 : n

k > 0. Then for each n > 0, the regular ideal (p*** v]'P  v52? ,...,vfz"pk ) is

invariant. (I

In order to prove this we will need the following.
4.3.4. LEMMA. Let B, Ay, As, ... be ideals in a commutative ring. Then if
T=y mode—i—ZAu

K2

then .
xpn = ypn mOd pn+lB + Zpk Z Afnfk'
k=0 A

PrOOF. The case n > 1 follows easily by induction on n from the case n = 1.
For the latter suppose z =y + pb+ > a;, with b € B and a; € A;. Then

. J D
P =yP + Z <1?>pr (pb—l— Zai) + (pb—l— Zai)
0<j<p J
and we have

(];)yp_j (pb—i—Zai)j €p2B+pZAi
(pb—l—Zai)pesz—l—pZAi—FZAf. O

PROOF OF 4.3.3. We have v,, = nr(v,) mod I,,, so we apply 4.3.4 to the ring
BP,.(BP) by setting B = (1), A; = (v;). Then we get
m n—1

" =nr(v,)?” mod (pmTt) + Z Z(p]UZn_J)

=0 i=1

and
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To prove the theorem we must show that the indicated power of v, is invariant
modulo the ideal generated by the first n elements. It suffices to replace this ideal
by the smaller one obtained by replacing each of i1,...,47,_1 by the smallest power
of p not less than it, i.e., by an ideal of the form

1+k ,J1 ,J2 Jn—1y\ __
(p v v e ) =T

with j; = p"*** where 0 < k; < kg --- < k,_1. Then the hypothesis on 4, is that
it is divisible by p*»-1, so it suffices to assume that i,, = p*»~. Hence we must
show _ . _ .
vl 1P =np(v, )P mod I.
We have v, = nr(vy,) mod I,,, so we apply 4.3.4 to the ring BP,(BP) by setting
B = (1), A; = (v;). Then we get
m n—1 )
m N m—7J
B = nr(va)Pm mod (P + >N (el ).
§=0 i=0
We are interested in the case m = kn + k,_1. Careful inspection shows that the
indicated ideal in this case is contained in I. (I

Theorem 4.3.3 leads to a list of invariant regular ideals which one might hope is
complete. Unfortunately, it is not. For example, it gives {(p**1,v*") | k > 0, > 0}
as a list of Ir-primary regular ideals, and this list can be shown to be a complete
for p > 2, but at p = 2 the ideal (16, v + 8vjvs) is regular and invariant but not in
the list. Similarly, for p > 2 the ideal

2 2 2 2 2 2
p+p—1  2p p- P —p, P p°—1, 2p~—p+1
(p, v} y 050 =207 v TP — 200 T3 )

is invariant, regular, and not predicted by 4.3.3. This example and others like it
were used by Miller and Wilson [3] to produce unexpected elements in
Ext}gp*(Bp)(BP*, BP,/I,) (see Section 5.2).

Now we will make the structure of BP,(BP) (4.1.19) more explicit. We start
with the formal group law.

Recall the lemma of Witt (see, e.g., Lang [1, pp. 234-235]) which states that
there are symmetric integral polynomials w,, = w, (21, x2,...) of degree p™ in any
number of variables such that

(4.3.5) wp = Z:z:t and fon = ijwfnij.
t J
For example,

(4.3.6) wr = (Y ah)-(Xa)") fp

and for p = 2 with two variables,
wo = —ahwy — 2w — 2125,

Witt’s lemma can be restated as follows. Let G be the formal group law with
logarithm ;- zP" /p*. Then

(4.3.7) ZG Ty = ZG Wy,

This formula is in some sense more explicit than the usual

log(ZG xt) = Zlogwt.
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We will derive a similar formula for the universal formal group law.

First we need some notation. Let I = (i1,42,...,%,) be a finite (possibly
empty) sequence of positive integers. Let |I| = m and ||I|| = > ;. For positive
integers n let TI(n) = p — p®") and define integers TI(I) recursively by TI(¢) = 1
and TI(I) = TI(||I|)M(i1,...,im—1). Note that II(I) = pl!l mod p/I*1. Given
sequences I and J let IJ denote the sequence (i1, ...,%m,J1,---,jn). Then we have
|[IJ| = |I|+|J| and || IJ]| = |||+ ||.J||. We will need the following analog of Witt’s
lemma (4.3.5), which we will prove at the end of this section.

4.3.8. LEMMA.
(a) For each sequence I as above there is a symmetric polynomial of degree
plin any number of variables with coefficients in Z ), wr = wr(x1,T2,...) with

Wy = Y, & and
PIEL I(K) i
th = Z TI)'LUJ .
t 1=K
(b) Let w; be the polynomial defined by 4.3.5. Then

=
wr = wiy mod (p). O

Now let v; be Araki’s generator and define vy by vy = 1 and vy = vy, (vp)®
where a = p"* and I’ = (i,i3...). Hence dim v; = 2(p/!ll — 1). Then our analog
of 4.3.7 is

4.3.9. THEOREM. With notation as above,
F F
Z Tt = Z ’U[’(U](xl,$2,---)-
t I

(An analogous formula and proof in terms of Hazewinke’s generators can be ob-
711 =17]
tained, by replacing TI(I) by pl!| throughout. In this case wy becomes wﬁj‘

precisely.)
PROOF. Araki’s formula (A2.2.1) is
PAp = Z )\zvzl_l
0<i<n

which can be written as
O, = Y Ak,

0<i<n
By a simple exercise this gives
Ur
An = —_—,
n Z (1)
1 ll=n

ie.,

(4.3.10) log(z) = Z i’[([)
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Therefore we have

F
10g<z v,]w(]> = ZlongwJ
J J
o vrJj pHIH
2

= lelf; ) %w?l (where K = L.7)

VK K
— bv 4.3.8
2wt

= logz; by4.3.10
t

In the structure formulas for BP,(BP) we encounter expressions of the form
Z:l an,i, where ay, ; is in BP.(BP) or BP,(BP)®pp, BP.(BP) (or more generally
in some commutative graded BP, algebra D) and has dimension 2(p™ —1). We can
use 4.3.9 to simplify such expressions in the following way.

Define subsets A,, and B,, of D as follows. A, = B, = ¢ for n < 0 and for
n >0, A, = {an,;} while B, is defined recursively by

By =AU | {vsws(Buoy)}-
[J]>0

4.3.11. LEMMA. With notation as above, E:l ap,i = 271;0 we(Bn).

Proor. We will show by induction on m that the statement is true in dimen-
sions < 2(p™ — 1). Our inductive hypothesis is

ZF O i = ZF we(Bn) +F Z vywy(Bn) +r ZF Qn,i,

0<n<m n<m n>m
I T]|+n=>m

which is trivial for m = 1. The set of formal summands of dimension 2(p™ — 1) on

the right is B,,. By 4.3.9 the formal sum of these terms is ZF vjwy(Bm), so we
get

ZF Qi = ZF we(Bn) +F ZF vgwy(Bm) +F ZF vywy(Bn) +r ZF Qi
7

0<n<m n<m n>m
171 +n>m

= ZF By +F ZF vaJ(Bn) +F ZF Ay -

0<n<m n<m n>m
17l 4+n>m

which completes the inductive step and the proof. (|

Recall now the coproduct in BP,(BP) given by 4.1.18(e), i.e.,
3 log(Alt) = Y log(t; @ 1),

i>0 1,7>0



3. SOME CALCULATIONS IN BP,(BP) 121

which can be rewritten as
F F i
(4.3.12) STUAM) =D et
i>0 i,j>0
To apply 4.3.11, let M,, = {t; ® tfj_i | 0 <4 <n} (M here stands for Milnor since
these terms are essentially Milnor’s coproduct 3.1.1) and let
A, = M, U U {’UJ’U)J(A",”J”)}.
|J|>0
Then we get from 4.3.11 and 4.3.12
4.3.13. THEOREM. With notation as above,
A(t,) = wg(A,) € BP.(BP) @gp, BP.(BP). O
For future reference we make

4.3.14. DEFINITION. In BP,(BP) ®pp, BP.(BP) let b; ; = w;t1(4;). O

For example,
1 P gt
== > ( . )hed
0<i<pitl
This b;; can be regarded as an element of degree 2 in the cobar complex
(A1.2.11) C(BP,). It will figure in subsequent calculations and we will give a

formula for its coboundary (4.3.22) below.
If we reduce modulo I,,, 4.3.13 simplifies as follows.

4.3.15. COROLLARY. In BP.(BP)®pp, BP,(BP)/I, fork <2n

A(ty) = Z tiQth_, + Z UngiOk—n—jntj—1- O
0<i<k 0<j<k—n—1

Now we will simplify the right unit formula 4.3.1. First we need a lemma.

4.3.16. LEMMA. In BP,(BP),
S0y = ST =) )

i,[ 1120 i,[ 1120

(paf]

(It can be shown that for p > 2, [—1](x) = —x for any p-typical formal group law.
[n](z) is defined in A2.1.19.)
PROOF. In the first expression, for each I = (i1,i9,...,4,) with n > 0, the

expression t; appears twice: once as t;tg and once as tp(tin)pwlH where I’ =
(i1,...,in—1). These two terms have opposite formal sign and hence cancel, leav-
ing 1 as the value of the first expression. The argument for the second expression
is similar. (]

Now we need to use the conjugate formal group law ¢(F') over BP,(BP), defined
by the homomorphism ng: BP, — BP,(BP). Its logarithm is

1Ogc(F) (.’,E) g Z ’I]R()\l)Ipl = Z Aité)ini+j .
i>0 4,5>0
An analog of 4.3.9 holds for ¢(F') with v; replaced by nr(vr).



122 4. BP-THEORY AND THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

The last equation in the proof of A2.2.5 reads

Sl =3 N nr(o)” T =Y ne()ir ()
while 4.3.16 gives

dai=> (-1 ‘K‘Atptp

Combining these and reindexing gives

P71 i
Z(—l)mm%()\ )(tJ(vktp P = ZWR Onr(v;)"
which is equivalent to

c(F) I

(4.3.17) > Tnr(v) = ZC(F)[(_l)m]c(F)(tf(vjtzj)p

1>0 |1],7,k>0

).

We now define finite subsets of BP,(BP) for n > 0

N.= U {(_1)\1\t1(vit§i)pwu}

1] +itj=n
R,=N,U |J {nrw)ws(Ra)}
J||=i
0”<L|<n
Then we get
4.3.18. THEOREM. In BP,(BP), we have nr(v,) = we(Ry). O

4.3.19. DEFINITION. In BP.(BP), ¢;,;j = wy(R;). For J = (j) this will be
written as c; ;.

Again we can simplify further by reducing modulo I,,.

4.3.20. COROLLARY. In BP.(BP)/I, for 0 <k < 2n,

n+1 k3
E vn+ztk i —NR(Vnirh—i)? ti = E Un4jChk—j,n+j-
0<i<k 0<j<k—n—1

(Note that the right-hand side vanishes if k < n.) O
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4.3.21. COROLLARY. In BP,(BP)/I,,

n

nR('UnJrl) = Up41+ 'Untﬁ) - 'Uztl

forn >1;

prtt " p p2
NR(Un42) = Uny2 +Unpit]  + ’Unflz — Upyits —vf Lo
2.1 1+p"
+'U£ tl"rp _ ,Ugtl"rp
forn > 2;
n-+42 'n.+l pn P

nR(Un-i-S) = Un+3 + Un+2t1 + ’Un-i-ltz + Unt3 - Un+2tl

1+p pn+1
—Un+1t2 ’Up tg n+1t ’Ugtltz

2
—oP " + nHth + 0B 11t + o tot?

_i_vft}-i-p-i—p —oF t}+p+p2
forn > 3;
nr(vs) = wvs+ 1)21511’2 +vith — bty —of tg vft?pz
—|—v:1"2t}+p + viwy (ve, vit], —ovity)
forn—l p>2 (addvi’t2 forp—2)
and  nplvs) = vs+ut] +usth + v2t” — vty — v} “ty — b t3

—vgt”p —thltp — i t2—|—v3 HFP ol 8
1 1
ol 2 5’ phptpt _pt e

+v2w; (v3, Uztf , —vbth)P
forn=2,p>2 (add v3t} forp=2). O

Now we will calculate the coboundaries of b; ; (4.3.14) and ¢; ; (4.3.19) in the cobar
complex C(BP,./I,) (Al.2.11).

4.3.22. THEOREM. In C(BP, /I ) for0<i<nand0<j

k+j+1 147

(a) d(biy) = > bej @t —t @ bigks; and (b) d(cprijrr) =
0<k
piti <hed i+14i—k
Ogﬂl}vnw bicknthts = Unpk ik
<k<i

PRrROOF. (a) It suffices to assume ¢ = n. Recall that in C(BP,/I,), d(t;) =
ti RI+1® ti — A(tl) and d(vn+i) = nR(vnH)vn,i. A(t2n> —-1® th — tgn X 1, given
by 4.3.13, is a coboundary and hence a cocycle. Calculating its coboundary term
by term using 4.3.13 and 4.3.17 will give the desired formula for d(b,, ,—1) and the
result will follow. The details are straightforward and left to the reader.

For (b) we assume ¢ =n if i +n is even and i =n — 1 if i + n is odd. Then we

use the fact that d(ve,4:) is a cocycle to get the desired formula, as in the proof
of (a). O

Now we will construct an increasing filtration on the Hopf algebroid
BP.(BP)/I,. We will use it in Section 6.3.
To do this we first define integers d,, ; by

Q. — 0 fori <0
e max(i, pdp i—n) fori>0.

We then set deg tp =deg vnﬂ—dn,i for i, j>0. The subgroups F,.C BP.(BP)/I,
are defined to be the smallest possible subgroups satisfying the above conditions.
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The associated graded algebra EoBP,.(BP)/I, is defined by E}BP.(BP)/I, =
F;/F;_1. Tts structure is given by

4.3.23. PROPOSITION.
E()BP*(BP)/I" = T(ti,jaanri,j: 7 > 0, ] > O),

, p P .
where t; ; and vn,y1; are elements corresponding to t; and v, ,, respectively,

T(x) = R[z]/(2P) and R = Z(p)[vn]. O

4.3.24. THEOREM. With the above filtration, BP,(BP)/I, is a filtered Hopf
algebroid, and EgBP.(BP)/I, is a Hopf algebroid.

PROOF. For a set of elements X in B.(BP)/I,, or BP.(BP)®pgp, BP.(BP)/I,,
let deg X be the smallest integer ¢ such that X C Fj. It suffices to show then that
deg A; = deg Ry,+i = dy ;. We do this by induction on ¢, the assertion being obvious
fori=1.

First note that

(4325) dn,a«i»b Z d'n,,a + dn,b
and
(4.3.26) dnatin > Pldn.a-

It follows from 4.3.25 that deg M; = degNy+; = dy, ;. It remains then to show that
for ||J|| <

(4.3.27) deg(UJwJ(Ai,|‘J”)) <dn;
and

(4.3.28) deg(vaJ(RnJri,HJ”)) <dpn;.
Since

(4.3.29) degw;y(X) < pl’ldeg X,
both 4.3.27 and 4.3.28 reduce to showing

(4.3.30) dp,i > degvy + p“”dnyi,”(]”.

Now if vy #Z 0 mod I,, we can write
J=n+j,m+jgs...,n+7j])
with j; > 0, so

l l
Tl =1, |J|=ln+> ji, and degv; = dy .

t=1 t=1
If we set k = ||.J|| — n|J|, then 4.3.25 implies
(4.3.31) dp i > deguy.
However, by 4.3.25 and 4.3.26
dni 2 dn g+ dp i) 7|40l ]|
> dni +pNdn iy
so 4.3.20 follows from 4.3.31. O
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We now turn to the Hopf algebroid structure of EoBP.(BP)/I,. Let M;, A;,
Nnﬂ-, and Fnﬂ- denote the associated graded analogs of M;, A;, N1, and R, 4,
respectively, with trivial elements deleted. (An element in one of the latter sets
will correspond to a trivial element if its degree is less than d, ;.) All we have to
do is describe these subsets. Let ¢1, vr, and w;(z) denote the associated graded
elements corresponding to t7, vy, and wy(z), respectively.

4.3.32. LEMMA.
_ U {tjo®ti—j;} fori<m
;= {o<i<i
{tin®1,1®t;0}  fori>m
- {70, 1yt jyynyy  fori<m
Noppi = < IMIl+j+k=i

{Vn4i,05 Untin, —Uﬁiti,o} fori>m
where m =pn/(p — 1).
Proor. This follows from the fact that equality holds in 4.3.25if a+b < m. O

4.3.33. LEMMA.
M; fori<m
- M, U {vnw’lﬂ%1 (M;—)} fori=m
Ai= M; U U {vsws(Ai—pg)}y  fori>m
[l 7]|=n]|J]|
o<||J|I<
i |7 >m—n
Nogi fori<m
- N U {vnwf%l (Ri—n)} fori=m
Roti = (N pyi U U  A{vws(Ring)}  fori>m
[I7]|=n|J]|
o<||J|I<
i~ 7 >m—n

[Note that the case i = m occurs only if (p — 1)|n, and that the only J’s we need to
consider for i > m are those of the form (n,n,...,n).]

PROOF. We use the observation made in the proof of 4.3.32 along with the fact
that equality holds in 4.3.26 if a > m = n.

Now both R, ., and A, will consist only of the terms associated with those .J
for which equality holds in 4.3.30. For ¢ > m this can occur only if degv; = 0,
ie., if J = (n,n,...,n); the condition ¢ — ||J|| > m — n is necessary to ensure that
dp,; = p|J|dn)i_n‘J‘. For ¢ < m we still need i — ||J|| > m — n. Since ||J|| > n in all
nontrivial terms, the only possibility is J = (n) when i = m.

Now let A; ; and R,,1; ; be the subsets obtained from A; and R,,;, respectively,
by raising each element to the p/th power. The corresponding subsets A, ; and
En—i—i,j of the appropriate associated graded objects are related to A; and R,,4; in
an obvious way. Note that

wy(A) = w7 (A 7-171)

w1 (A gy-1a1)-
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4.3.34. THEOREM. With A, ; and R, ; as above, the Hopf algebroid structure

of EoBP.(BP)/I,, is given by
A(ti;) = wo(Ai )
MR (Untij) = wo(Rni ). O

None of the t; ; for i > 1 are primitive, so we could not get a Hopf algebroid
with deg ¢; ; < dn,; once we have set det ¢; ; = 1.

Note finally that the structure of FqBP,.(BP)/I, depends in a very essential
way on the prime p.

Theorem 4.3.34 implies that FqBP,(BP)/I, is cocommutative for n = 1 and
p > 2. For any n and p we can use this filtration to construct a spectral sequence
as in A1.3.9. The cocommutativity in the case above permits a complete, explicit
determination of the Fa-term, and hence a very promising beginning for a com-
putation of Extgp, pp)(BP:, BP/I;). However, after investigating this method
thoroughly we found the Fs-term to be inconveniently large and devised more
efficient strategies for computing Ext, which will be described in Chapter 7. Con-
ceivably the approach at hand could be more useful if one used a machine to do
the bookkeeping. We leave the details to the interested reader.

PRrOOF OF 4.3.8. We will prove (a) and (b) simultaneously by induction on
m=|K|. If K" = (14 ki,ko,...,kn) then it follows from (b) that

wrr = whe mod (p).

Let K" = (k1 + k2, ks, ..., k) and K" = (ka, k3, ..., kp). Then by the induc-
tive hypothesis wx» and wg» exist with

Wgr = W mod (p),
where a; = p*1. Since ||K|| = ||K”| we have
H(K) pirl _ L(E") i
Z II1(1) Wy = Z II1(1) wy -
1J=K I1J=K"

Expanding both sides partly we get

II(K
H(K)U)K + Lw?{}/u + —U)J
1

(]
Note that the same w’, ~ occur on both sides, and one can use the definition of II(k)

to show that they have the same coeflicients so the sums cancel. The remaining
terms give
1
II(ky)
Since II(k1) = p mod (p?) and wx» = wi), mod (p), we get an integral expression
when we solve for wg.
This completes the proof of (a).

I(K) (wK + ) = I(K" Ywicr.
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For (b) we have

DOEARI Tl ZTK pll

1J
7>

Since I(K) = p!&l mod (p'*1&l) and II(I) = pll mod (p'*t11), we get
(K)/TI(I) = pl’I mod (p'*!/1). By definition

II(K) ) ,
Ty~ UKD = Gi0) - T+ 5
1K 1K |I=3. 1L+
== 9" )"
—p mod (I
= mod (p!®1*1)  since
=1+ pI1H > 7] = 1 1]+ 2
> |K|+1.
By the inductive hypothesis
I70=171
wy = w‘pﬂ mod (p)
plI PIKI=1J] 1417 .. .
sow!, = IJI mod (p'*I11l). Combining these two statements gives
II(K -
Lw(’}m = wlﬂJI'{H I mod (p*HIED.

1I(1)
Hence the defining equation for wyx becomes

1Kl 111~ 1]
fo = pl 8wy + Z p'lefJI mod (p' K.

I1J=K
[I|>0

Let n = ||K|| — |K|. Substituting xfn for z; in 4.3.5 gives

By i plKI=i pn
Yoat =M@ )+ D Pl (@),

0<j<|K]|

n

Since w;(z!") = w?  mod (p),

IKl=5 , ,n nt K| —j i
wPK J(xf )E’U}P+K J mod (p1+|K|—J),

so we get
I n S IEN=d
fo Ep‘K"w‘K‘(CE? )+ Z Py mod (p' 1K),
0<j<|K]|
Comparing this with the defining equation above gives
n [EqEE

wr = wik|(z) ) = w mod (p)

as claimed. O
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4. Beginning Calculations with the Adams—Novikov Spectral Sequence

The Adams—Novikov spectral sequence and sparseness. The algebraic Novi-
kov spectral sequence of Novikov and Miller. Low dimensional Ext of the algebra
of Steenrod reduced powers. Bockstein spectral sequences leading to the Adams—
Novikov Es-term. Calculations at odd primes. Toda’s theorem on the first non-
trivial odd primary Novikov differential. Chart for p = 5. Calculations and charts
for p = 2. Comparison with the Adams spectral sequence.

In this section we introduce the main object of interest in this book, the Adams—
Novikov spectral sequence, i.e., the BP,-Adams spectral sequence (2.2.4). There is
a different BP,-theory and hence a different Adams—Novikov spectral sequence for
each prime p. One could consider the M U,-Adams spectral sequence (as Novikov [1]
did originally) and capture all primes at once, but there is no apparent advantage in
doing so. Stable homotopy theory is a very local (in the arithmetic sense) subject.
Even though the structure formulas for BP,(BP) are more complicated than those
of MU,(MU) (both are given in Section 1) the former are easier to work with once
one gets used to them. (Admittedly this adjustment has been difficult. We hope
this book, in particular the results of Section 3, will make it easier.)

The Adams-Novikov spectral sequence was first constructed by Novikov [1]
and the first systematic calculations at the primes 2 and 3 were done by Zahler [1].
In this section we will calculate the Fs-term for ¢t — s < 25 at p = 2 and for
t —s < (p*+p)q for p > 2, where ¢ = 2p — 2. In each case we will compute all the
differentials and extensions and thereby find m(S°) through the indicated range.
At p = 2 this will be done by purely algebraic methods based on a comparison of
the Adams—Novikov spectral sequence and Adams spectral sequence Fs-terms. At
odd primes we will see that the Adams spectral sequence Es-term sheds no light on
the Adams—Novikov spectral sequence and one must compute differentials by other
means. Fortunately, there is only one differential in this range and it is given by
Toda [2, 3]. The more extensive calculations of later chapters will show that in a
much larger range all nontrivial differentials follow formally from the first one.

In Section 2.2 we developed the machinery necessary to set up the Adams—
Novikov spectral sequence and we have

4.4.1. ADAMS-NOVIKOV SPECTRAL SEQUENCE THEOREM (Novikov [1]). For
any spectrum X there is a natural spectral sequence EX*(X) with d,: E5' —
Estmttr=1 such that

(a) B> = Extpp, (pp)(BP:, BP.(X)) and

(b) if X is connective and p-local then EX* is the bigraded group associated
with the following filtration of m«(X): a map f: S™ — X has filtration > s if it
can be factored with s maps each of which becomes trivial after smashing the target

with BP. O

The fact that BP,(BP), unlike the Steenrod algebra, is concentrated in dimen-
sions divisible by ¢ = 2p — 2 has the following consequence.

4.4.2. PROPOSITION: SPARSENESS. Suppose BP,(X) is concentrated in di-
mensions divisible by ¢ = 2p — 2 (e.g., X = S°). Then in the Adams-Novikov
spectral sequence for X, E$! = 0 for all r and s except when ¢ is divisible by g.
Consequently d,. is nontrivial only if r =1 mod (¢) and Ey, . » = E}' . .4 for all
m > 0.
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For p = 2 this leads to the “checkerboard phenomenon”: E$' =0 if t — s and s
do not have the same parity.

To compare the Adams spectral sequence and Adams—Novikov spectral se-
quence we will construct two trigraded spectral sequences converging to the Adams
spectral sequence and Adams—Novikov spectral sequence Es-terms. The former is a
Cartan—Eilenberg spectral sequence (A1.3.15) for a certain Hopf algebra extension
involving the Steenrod algebra, while the latter arises from a filtration of BP,(BP)
(A1.3.9). The point is that up to reindexing these two spectral sequences have the
same Fs-term. Moreover, at odd primes (but not at p = 2) the former spectral
sequence collapses, which means that the Adams spectral sequence E>-term when
suitably reindexed is a trigraded FEo-term of a spectral sequence converging to the
Adams—Novikov spectral sequence Ea-term. It is reasonable to expect there to be
a close relation between differentials in the trigraded filtration spectral sequence,
which Miller [2] calls the “algebraic Novikov spectral sequence,” and the differen-
tials in the Adams spectral sequence. Miller [4] has shown that many Adams da’s
can be accounted for in this way. At any rate this indicates that at odd primes the
Adams spectral sequence Es-term has less information than the Adams—Novikov
spectral sequence Es-term.

To be more specific, recall (3.1.1) that the dual Steenrod algebra A. as an
algebra is

P(&,&,...) with dim¢& =2"—1forp=2
A, =< E(r9,71,...)® P(&1,6,...) with dim7 =2p' —1 and
dimé& = 2p' — 2 for p > 2.
Let P. C A, be P(§,&2,...) for p = 2 and P(&1,&,...) for p > 2, and let

E.=A.®p, Z/(p), i.e. Ex = E(&,&,...) for p =2 and E, = E(r,11,...) for
p > 2. Then we have

4.4.3. THEOREM. With notation as above (a)
EXtE* (Z/(p)u Z/(p)) = P(a07 ay, .. )

with a; € Ext!2r' ! represented in the cobar complex (A1.2.11) by [&;] for p = 2
and [1;] for p > 2,
(b) P. — A, — E, is an extension of Hopf algebras (A1.1.15) and there is
a Cartan—Filenberg spectral sequence (A1.3.15) converging to Exta, (Z/(p),Z/(p))
with
Ey" = Exty, (Z/(p), Bxt (Z/(p), Z(p)))
and
dT: E511521t _ Elerr,szfrJrl,t,
(c) the Py-coaction on Extg, (Z/(p),Z/(p)) is given by
S @a; forp=2
Y(an) = { & pt
Y& ®a;  forp>2, and

(d) for p > 2 the Cartan—Eilenberg spectral sequence collapses from FEa with no
nontrivial extensions.



130 4. BP-THEORY AND THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

PROOF. Everything is straightforward but (d). We can give A, a second grad-
ing based on the number of 7;’s which are preserved by both the product and the
coproduct (they do not preserve it at p = 2). This translates to a grading of Ext
by the number of a;’s which must be respected by the differentials, so the spectral
sequence collapses. 0

For the algebraic Novikov spectral sequence, let I = (p,v1,v2,...) C BP,. We
filter BP.(BP) by powers of I and study the resulting spectral sequence (A1.3.9).

4.4.4. ALGEBRAIC Novikov SS THEOREM (Novikov [1], Miller [2]). There is
a spectral sequence converging to Extgp (gp)(BP., BP.) with

Ey™ = Ext3(Z/(p), I™/I™)

and d,: ES™t — EstLrmit The Ef** of this spectral sequence coincides with
the E5** of 4.4.3.

PRrROOF. A1.3.9 gives a spectral sequence with
Ey = Extg,pp, (8p)(EoBPx, EoBP;).
Now we have BP,(BP)/I = EgBP,(BP)®g,pp,Z/(p) = P.. We apply the change-
of-rings isomorphism A1.3.12 to the Hopf algebroid map (EoBPy, FoBP.(BP)) —
(Z/(p). P.) and gt
Extp.(Z/(p), EoBP,)
= Extp,5p, (5P)(E0BP:, (EoBP.(BP) ®g,sp. Z/(p)) Up, EoBP;)
= Extg,sp,(Bp)(EoBP:, P, Op, EgBP.)
= Extg,sp, (BP)(EoBP:, EgBP;).
The second statement follows from the fact that EgBP, = Extg, (Z/(p),Z/(p)). O

In order to use this spectral sequence we need to know its E;-term. For p > 2,
4.4.3(d) implies that it is the cohomology of the Steenrod algebra, i.e., the classical
Adams FEs-term suitably reindexed. This has been calculated in various ranges by
May [1], and Liulevicius [2], but we will compute it here from scratch. Theorem
4.4.3(d) fails for p = 2 so we need another method, outlined in Miller [2] and used
extensively by Aubry [1].

We start with Extp, (Z/(p),Z/(p)). For p = 2 we have Exti{i (Z/(2),Z/(2)) =

Ext;’ft(Z/@), Z(2)), so the latter is known if we know the former through half
the range of dimensions being considered. For p > 2 we will make the necessary
calculation below.

Then we compute Extp, (Z/(p), EoBP,/I,), by downward induction on n. To
start the induction, observe that through any given finite range of dimensions
BP./I, ~ Z/(p) for large enough n. For the inductive step we use the short
exact sequence

0 — xdimen g BP, /I, — EgBP, /I, — FEyBP, /1,11 — 0,
which leads to a Bockstein spectral sequence of the form
(4.4.5) P(a,) ® Extp, (Z/(p), EoBPy/Int+1) = Extp, (Z/(p), EoBP./1I,).

The method we will use in this section differs only slightly from the above. We
will compute the groups Extpp, gp)(BPs, BP./I,) by downward induction on n;
these will be abbreviated by Ext(BP./I,). To start the induction we note that
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Ext®'(BP,/I,) = Ext;’*t(Z/(p), Z/(p)) for t < 2(p™ — 1). For the inductive step we
analyze the long exact sequence of Ext groups induced by the short exact sequence

(4.4.6) 0 — xdmewpp /T, — BP,/I, — BP,/I,4+1 — 0,

either directly or via a Bockstein spectral sequence similar to 4.4.5. The long exact
sequence and Bockstein spectral sequence are related as follows. The connecting
homomorphism in the former has the form

6n: Ext*(BP,/I,41) — Ext*TY (%" 2BP,/I,).

The target is a module over Ext’(BP,/I,) which is Z/(p)[v,] for n > 0 and Z,)
for n = 0 by 4.3.2. Assume for simplicity that n > 0. For each x € Ext(BP,/In+1)
there is a maximal k such that &,(z) = vFy, i.e., such that y € Ext(BP./I,) is
not divisible by v,,. (This y is not unique but is only determined modulo elements
annihilated by vF.) Let y € Ext(BP./I,41) denote the image of y under the
reduction map BP,/I,, — BP,/I,+1 Then in the Bockstein spectral sequence there
is a differential dyx(z) = al™*y.

Now we will start the process by computing Ext;’f(Z/(p), Z/(p)) for p > 2
and t < (p?> + p+ 1)g. In this range we have P, = P(&,&2). We will apply the
Cartan—Eilenberg spectral sequence (A1.3.15) to the Hopf algebra extension

(4.4.7) P(&1) — P(&1,&) — P(&).

The Er-term is Extp(¢,y(Z/(p), Extpe,)(Z/(p),Z/(p))). The extension is cocentral
(A1.1.15) so we have

Ey = Extpe,)(Z/(p), Z/(p)) © Extp(e,)(Z/(p), Z(p))-

By a routine calculation this is in our range of dimensions
E(h1o, b1, hi2, hao, ha1) ® P(b1o, b11,b2o)
with

J(pt — J+1 (i
hij € Bxtpl PV and by e Bxept Y

The differentials are (U.p to Sign) dg (hg)j) = h17jh17j+1 and d3 (bgo) = h12b10_h11b11
[compare 4.3.22(a)]. The result is

4.4.8. THEOREM. Forp > 2 andt < (p*>+p+1)g, Ext;’f(Z/(p), Z/(p)) is a free
module over P(big) on the following 10 generators: 1, hio, h11, go = (h11, h1o, h10),
ko = (h11,h11, hio), hioko = £hi1go, hi2, hiohiz, bii, and higbii. There is a
multiplicative relation h11b11 = hi2bip and (for p =3) hi1ko = thiobi1. O

The extra relation for p = 3 follows easily from A1.4.6. For p > 3 there is a
corresponding Massey product relation (kg, h11,...,h11) = h1pb11 up to a nonzero
scalar, where there are p — 2 factors hq;.

The alert reader may observe that the restriction ¢t < (p? + p + 1)q is too
severe to give us Ext® for t — s < (p? 4+ p)q because there are elements in this
range with s > ¢, e.g., bf;. However, one sees easily that in a larger range all
elements with s > ¢ are divisible by b9 and this division gets us back into the
range t < (p? +p + 1)g. One could make this more precise, derive some vanishing
lines, and prove the following result.
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4.4.9. THEOREM. Letp > 2.
(a) Ext;’f(Z/(p), Z/(p)) =0 fort—s < f(s) where
_ (p* —p—1)s for s even
J(s) = {2p—3+(p2—p—1)(5—1) for s odd.
(b) Let R. = P./(&1,&2). Then Ext;i (Z/(p),Z(p)) =0 fort—s < g(s) where

(s) = (p*—p—1)s for s even
g = 2p3 =3+ (p*—p—1)(s—1) fors odd.

(c) The map P(&1,&) — P induces an epimorphism in Ext™" for (t—s) < h(s)
and an isomorphism for (t —s) < h(s — 1) — 1, where

h(s) =2p* -3+ f(s—1)

_{2p3—3+(p2—p—1)(s—1) for s odd

([
2p3 +2p—6+ (p> —p—1)(s —2) for s even.

This result is far more than we need, and we leave the details to the interested
reader.

Now we start feeding in the generators v,, inductively. In our range 4.4.8 gives
us Ext(BP,/I3). Each of the specified generators is easily seen to come from a
cocycle in the cobar complex C(BP,/I5) so we have

Ext(BP./Iy) = Ext(BP,/I3) ® P(vs),

i.e., the Bockstein spectral sequence collapses in our range.
The passage to Ext(BP,/I;) is far more complicated. The following formulas
in C(BP,/I) are relevant.

(4.4.10) (a) d(vg) =vit) — ity
and
(b) d(t2) = —t1|t] — vibyo.
These follow immediately from 4.3.20 and 4.3.15. From 4.4.10(a) we get
(4.4.11) (a) 01(vs) =ivi 'hyy mod (vy)
and
(b) 61(v8) =P hyy  mod (vP).

Next we look at elements in Extl(BP*/Iz). Clearly, hig, h11, and hio are in
ker §; as are vihyy for i < p — 1 by the above calculation. This leaves vihig for
1<i:<p-—1and vg_lhll. For the former 4.4.10 gives

d(vétl + ivlvéil(tiJﬁD — tz)) = Z.’U%’Uéilblo
i .
+ (2) V2os L (EP|t — 28 ta + 2t0|611P)  mod (v}).
The expression in the second term is a multiple of kg, so we have

(4412) 5(Uéh10) = iv1v§71b10 + (;) ’Ul’UéiQko mod (’U%)
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To deal with v5 'hy; we use 4.4.10(a) to show

Lip\ p—i ic1,pi)| _ LD\ p1,pi,p>—pi

d( Z —(i)vg vy 1t’1)> = Z —(Z_>vf e TP mod (v)
o<i<p P o<i<p P

SO

(4413) 51(1)571h,11) = :l:’()fizbll.

This is a special case of 4.3.22(b).

Now we move on to the elements in Ext? (BP,/I3). They are hiphiz, b11, vibio,
vhgo, and viko for suitable 4. The first two are clearly in ker §;. Equation 4.4.12
eliminates the need to consider v%blo for i < p—1, so that leaves ’Ug_lblo, v%go, and
vsko. Routine calculation with 4.4.10 gives

(a) 51 (’U%go) = i(véhloblo + Z.’U;_lhloko) mod (U%)
and
(b)  61(vike) = +vihi1bio mod (v?).
We have to handle v5~'b19 more indirectly.

4.4.14. LEMMA. 51(05711710 + %v?iQko) = cvf73h10b11 for some monzero ¢ €
Z/(p)-

PROOF. By 4.4.13, o' 'b;; = 0 in Ext(BP,/I;), so v" 'higb;y = 0 and
vihiobyy = 61(z) for some i < p — 1 and some z € Ext?(BP,/I;). The only
remaining «x is the indicated one. O

From 4.4.14 we get &, (vg_lhloblo + %vg_thoko) =0 mod (vf_Q). All other
elements in Ext®(BP,/I3) for s > 3 are divisible by hyg or big and they can all be
accounted for in such a way that the above element, which we denote by ¢, must
be in ker d;. Hence §; is completely determined in our range.

Equivalently, we have computed all of the differentials in the Bockstein spectral
sequence. However, there are some multiplicative extensions which still need to be
worked out.

4.4.15. THEOREM. For p > 2, Ext(BP./I;) = P(v1) ® E(h19) & M, where M

is a free module over P(big) on the following generators:
Bi=081(vh), hiofBi, Bi=vi"'01(vihio) (e.g., B1 = £bio),
and hiofi for1<i<p-1;
Bosi =01 "6:i(0)  and  hioBys for 1 <i <p;
Bosi = v "01(v5 Thay)  for2<i < p;
hloﬁp/i for3<i<p; ¢ and ﬁlﬁp/p.
Here 61 is the connecting homomorphism for the short exact sequence
0 — X?BP,/I, 2% BP,/I, — BP,/I, — 0.

Moreover, B
hioBi = v18;, viBi =0, v{B,, =0,

vfﬁlgp/p =0, and vf72h106_p/p =0.

(This description of the multiplicative structure is not complete.)
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PRrROOF. The additive structure of this Ext follows from the above calculations.
The relations follow from the way the elements are defined. (]

FIGURE 4.4.16 illustrates this result for p = 5. Horizontal lines indicate mul-
tiplication by v1, and an arrow pointing to the right indicates that the element is
free over P(v1). A diagonal line which increases s and t/q by one indicates mul-
tiplication by h1g and one which increases t/q by 4 indicates the Massey product
operation (—, hig, h10, h10, h10). Thus two successive diagonal lines indicate multi-
plication by big = £(hiq, h10, h10, h10, h10). The broken line on the right indicates
the limit of our calculation.

Now we have to consider the long exact sequence or Bockstein spectral sequence
associated with

0— BP, . BP, — BP, /I, — 0.
First we compute dg(vi). Since d(v1) = pt; in C(BP,) we have d(v}) = ipvi 't
mod (ip?), so

(4.4.17) So(v}) = vt thyg mod (ip?).

Moving on to Ext!(BP,/I) we need to compute &y on 3; and Bpsi- The former
can be handled most easily as follows. do(3;) = 0 because there is no element in
the appropriate grading in Ext®. &y is a derivation mod (p) so &o(v15;) = hiofi.
Since v1 8 = hiof; we have hiof; = do(h103;) = h10do(5:) so

(4.4.18) do(B:) = Bi.

p>—p p>—p : p>—1 :
Now Bp/p = hia —v; “hip and v; “hy; is cohomologous to v] ~“hig, which
by 4.4.16 is in ker §p. Hence

(4.4.19) 80(Bp/p) = So(h12) = b1y = £Byp.
It follows that

50(617/17—1') = 50(”1iﬁp/p) = i”ll;lhloﬂp/p + ”ligp/p'
This accounts for all elements in sight but do(h10,,,) which vanishes mod (p). We

will show that it is a unit multiple of p® below in 5.1.24.
Putting all this together gives

4.4.20. THEOREM. For p > 2 and t — s < (p? + p)q, Ext(BP,) is as follows.
Ext’ = Z,) concentrated in dimension zero. Ext? = Z,)/(pi) generated by
a; = i 160(vi), where a; = hig. For s > 2 Ext® generated by all b]io:v, where T 18
one of the following: B; = 60(83;) (where By = £by) and a15; for 1 < i < p—1;
6p/p—i = 50(6p/p—i) fOT 0<i<p-1, o‘lﬂp/p—i fOT 0<i<p-3 and d) =
pildo(hloﬂp/l) which has order p?. ¢ is a unit multiple of (Bpj2, a1, a1) and po is
a unit multiple a1 B8y,/1. Here 3;/; denotes the image under do of the corresponding
element in Ext(BP./11). O

For p = 5 this is illustrated in F1G. 4.4.21, with notation similar to that of
Fig. 4.4.16. It also shows differentials (long arrows originating at 35,5 and 135/5),
which we discuss now. By sparseness (4.4.2) Ey = FEg,_1 and dop_1: E;Z’f_l —
E;;E’l’*l’tfzpﬂ. It is clear that in our range of dimensions Fs, = E. because
any higher (than do,—;) differential would have a target whose filtration (the s-
coordinate) would be too high.  Naively, the first possible differential is
dap—1(0p2_1) = ¢4Y. However, dap—1 respects multiplication by oy and aqag2_q so
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=5 and t — s < 240.

t/8

BP*(BP)(BP 7BP*/11) for P

s,t

FIGURE 4.4.16. Ext
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FIGURE 4.4.21. The Adams—Novikov spectral sequence for p = 5,
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ca1 37 =0 and ¢ = 0. Alternatively one can show (see 5.3.7) that each element in
Ext' is a permanent cycle.

4.4.22. THEOREM (Toda [2, 3]). d2p—1(83,/,) = a1} for some nonzero a €
Z/(p)- O

Toda shows that any = € 7.(S) of order p must satisfy ayz? = 0. For z = /34
this shows a1 87 = 0 in homotopy. Since it is nonzero in Es it must be killed by
a differential and our calculation shows that (3, is the only possible source for it.
We do not know how to compute the coefficient a, but its value seems to be of little
consequence.

Theorem 4.4.22 implies that dap—1(516y/,) = alﬁfﬂ. Inspection of 4.4.20 or
4.4.21 shows that there are no other nontrivial differentials.

Notice that the element ay/3,,, survives to Eo, even though f3,/, does not.
Hence the corresponding homotopy element, usually denoted by ¢’ is indecom-
posable. It follows easily from the definition of Massey products (A1.4.1) that
(a1, a1, 7) is defined in Esp,, has trivial indeterminacy, and contains a unit mul-
tiple of a1,/,. It follows from 7.5.4 that & is the corresponding Toda bracket.
Using A1.4.6 we have

<alv s 7O‘1a5/> = <ala cee ,051>6;10 = Berl

with p — 2 aq’s on the left and p a1’s on the right.

Looking ahead we can see this phenomenon generalize as follows. For 1 < 1 <
p — 1 we have dgp,l(ﬁé/p) = iaalﬁgzl. For i < p — 2 this leads to (a1, ...,a16{")
[with (i + 1) a;’s] being a unit multiple of ¢® = alﬁ;/p, and (a1, o, ..., a;e®)
[with (p—i—1) ay’s] is a unit multiple of 3] 7. In particular, a2 is a unit mul-

2
tiple of AT P72P Since ay 8P = 0 (4.4.22), B P! = 0 since it is a unit multiple
of alﬁfs(p_Q). However, in the Fa-term all powers of 3; are nonzero (Section 6.4),
2

so 87 7P must be killed by a differential, more precisely by d(p,l)qﬂ(alﬁﬁ/_pl).

Now we will make an analogous calculation for p = 2. The first three steps
are shown F1G. 4.4.23. In (a) we have Extp, (Z/(2),Z(2)), which is Ext(BP./I4)
for t — s < 29. Since differentials in the Bockstein spectral sequences and the
Adams—Novikov spectral sequence all lower t — s by 1, we lose a dimension with
each spectral sequence. In (a) we give elements the same names they have in
Exta,(Z/(2),Z/(2)). Hence we have ¢y = (hi1,h35,h11) and Pz = (x, hiy, hia.
Diagonal lines indicate multiplication by hi1g, h11, and hy2. The arrow pointing up
and to the right indicates that all powers of hyg are nontrivial.

The Bockstein spectral sequence for Ext(BP,/I3) collapses and the result is
shown in Fig. 4.4.23(b). The next Bockstein spectral sequence has some differen-
tials. Recall that 5 is the connecting homomorphism for the short exact sequence

0 — X°BP,/I, % BP,/I, — BP,/I3 — 0.
Since ng(v3) = v3 + vatf +v3t; mod Iy by 4.3.1 we have

(4424) (a) 52(’03h§0) = (h12 + Ugh,lo)h,io for i S 2,
(b)  a(vahty) = vahti? for i > 3,
(¢) Oa(vshiy) = i} for i = 1,2,
(d) 52(1)5) = Ughlg —|— ’Ugh,ll.
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FIGURE 4.4.23. (a) Ext(BP./I4) for p = 2 and t — s < 29.
(b) Ext(BP./I5) for t — s < 28. (c) Ext(BP,/I2) for t — s < 27.



4. CALCULATIONS WITH THE ADAMS-NOVIKOV SPECTRAL SEQUENCE 139

This accounts for all the nontrivial values of 2. In Ext(BP./I2) we denote
S2(v4) by v; and vy '2(v3) by Y2/2. The elements vshy 1, vshioh1,2 € Ext(BP,/I3)
are in ker do and hence lift back to Ext(BP,/I3), where we denote them by (2 and
X2 2, respectively. They are represented in C'(BP./I3) by

(4.4.25) (a) (o =wst? 4+ vo(t3 +15) + v3ty and
(b) @ = vt [t + va(talt3 + ta[t75 + toltS + ts[tT + £7]t1)
+ ’Ug (tgltg + t1|t%t2 + t1t2|t%).

Now we pass to Ext(BP./I;). To compute &§; on Ext’(BP./I5) we have
nr(v2) = vy + vt + 0%t mod Iy, so

(4.4.26) 01(v2) = h1s mod (v1),
61(v3) = vih12 = v1 (11 + vahio) mod (v?),
61(v3) = v3h mod (v1),
51(v3) = vihis = 0§ (722 + v3h11) mod (v}),
61(v3) = vyhi mod (v1),

This means that in Extl(BP* /I2) it suffices to compute §; on vahig, (2, v3h10,
2, and vala. We find 41 (v2h10) and the element pulls back to

(4.4.27) x7 = vty + vy (t2 +t3).
For (2 we compute in C(BP,/I;) and get
d(Co + v1t2t3) = vy (L1t} + viti]t1) mod (v?)

SO
(4.4.28) 61(¢2) =9F mod (v;)
For Ughlo we compute
d(vity +viv3(ty + £3) + vivsty) = v¥vit|t; mod (v3)
SO
(4.4.29) 81(v3hio) = v1v3h3, mod (v?).
Similar calculations give
(4.4.30) 61(72) = h11ye/2  mod (v7)
and

01 (v22) = hne + Ughlo mod (U%)
In Ext? BP,/I5) it suffices to compute 61 on xez. We will show

(4.4.31) d1(z22) = co

using Massey products. Since a2 projects to vshighia we have xos € (vg, 712, hio),
s0 01(wa2) € (91(v2),7%, h1o) by A1.4.11. This is (h11,7%, h1o), which is easily seen
to be cg.

This completes our calculation of §;. The resulting value of Ext(BP,/I;) is
shown in F1G. 4.4.32. The elements 1 and z7 are free over P(v1, hig). As usual we
denote v, 78, (v) by Bisj- w7 is defined by 4.4.27. 1, and 72 (not to be confused
with the n; of Mahowald [6]) denote 01(¢2) and 61 (v2(a2).

We must comment on some of the relations indicated in 4.4.32.



140 4. BP-THEORY AND THE ADAMS-NOVIKOV SPECTRAL SEQUENCE
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FIGURE 4.4.32. Ext(BP,/I;) forp=2and t — s < 26

4.4.33. LEMMA. In Ext(BP./Iy) for p =2 the following relations hold.
(a) hiof3 = vlﬁ§/2

(b) 55’/2 = 5%54/4 + h%oﬁ4/2

(¢) h3gxrBa/a = v1 Ppi.

PrOOF.

(a) 52/2 = h12 HlOd (1)1) SO 0153/2 = 51 (U%hlg) wh1le hloﬂg = 51 (Ughlo). SiHCG
nr(v2v3) = vovs + v3t] +v3t; mod Iz, we have v3hia = vihig in Ext(BP,/I5).

(b) Baj2 = h12 4+ vih11 = hig + v¥hig s0

6%/2 = hy = hi bz = 54/4]1%1
= Baja(BF + vihio) = BajalBi + Baj2hiy mod (v}).
(c) viPB1 = v1(B1, hiy, Baja)
= (v1, B1,hio)Baja by Al.4.6

= (v1, B, h10>h?054/4 by Al1.4.6.
The last Massey product is easily seen to contain z7. 0

Now we pass to Ext(BP,) by computing &y, beginning with Ext’(BP,/I,) =
P(v1). By direct calculation we have

(4.4.34) So(vit) = v¥hyy mod (2)
50(1)%) = 251

To handle larger even powers of vq, consider the formal expression u = v? —4v; Log.
Using the formula (in terms of Hazewinkel’s generators A2.2.1)

7’]3(’02> = U2 — 5’0115% - 31)%151 + 2t2 - 4ti’,
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we find that d(u) = 8vy 2x7 in C(vy ' BP,/(2%)). Tt follows that
d(u? — 20 %v3) = 2% (w7 + Bay2) mod (2%)

and for ¢ > 2 _ ‘

d(u') = 8iv?*z; mod (161)
o
(4.4.35) So(v) = 2%(x7 + B2y2) mod (2%)
and

So(v?) = 4w *x; mod (8i) fori > 3.
Combining this with
(4.4.36) So(vFTiR]) = o2t
and
So(VI R xy) = vB R Ty
accounts for all elements of the form vihéx? for 7,5 > 0 and € = 0,1 we have
4.4.37. THEOREM. For p =2 Ext'(BP,) is generated by &; for i > 1 where
So(v) for i odd
@ = 4 360(v}) fori=2
(1/2i)00(vy)  for even i > 4.
In particular &1 = hi1g. Moreover 64{641- #0 for all j >0 and i # 2. O

~ Moving on to Ext'(BP,/I) we still need to compute &y on hiz, v1hia, 3, and
v]hyg for 0 < j < 3. An easy calculation gives

(4.4.38) So(h12) = h3, mod (2),
do(vihi2) = h10h12 mod (2),
do(h13) = h mod (2),
do(v1hiz) = v h12 + highis mod (2),
S0(vihiz) = 2(hiy +vihig)hiz mod (4),

and
So(vihi3) = v¥hiohiz mod (2).

For (33 we have
(4.4.39) So(Bs) = B35 + .-

The proof is deferred until the next chapter (5.1.25).
In Ext?(BP,/I,) all the calculations are straightforward except 1y and 70, /5
The former gives

(4440) 50(7’]2) = Cop,
which we defer to 5.1.25. For the latter we have
So(278B4/4) = x7hi, mod (2).
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FIGURE 4.4.45. Ext(BP,) for p=2,t — s < 25.

Computing in C(BP,/I2) we get
d(t3[ts + talts + L[t + tTt2[t]) = ta[t1]t] + vatF[e]]tT
so z7h3y = (337 mod (v?) and
(4.4.41) 80(x7Ba/4) = 0103 + chiofayz  mod (2)
for ¢ =0 or 1. Note that

S0 (h10B1) = hipBay2.
We also get from 4.4.37

(4.4.42) So(z7B4y3) = chioBa + hioxrByya  mod (2).
do(w784/2) must be a multiple of hiox7B4/3 but the latter is not in ker dg so

Of the remaining calculations of dg all are easy but 6%64/4 and hiy By = 6%64/4.
It is clear that 8o(6%34/4) and 6o(5784/4) are multiples of elements which reduce
to hi, and P, respectively. Since ﬂfﬁ%m = 0 and (18h3yBs5 = 0 we have

60(B2B1/4) =0 mod (2) and 6o(6784/4) =0 mod (4). Thus the simplest possible
result is

1
(4.4.44) 550(5%54/4) = hiBs3 mod (2),

00(06110) = P mod (2)

We will see below that larger values of the corresponding Ext groups would
lead to a contradiction.



4. CALCULATIONS WITH THE ADAMS-NOVIKOV SPECTRAL SEQUENCE 143

The resulting value of Ext(BP,) is shown in F1G. 4.4.45. Here squares denote
elements of order greater than 2. The order of the elements in Ext! is given in
4.4.37. The generators of Ext??® and Ext*?* have order 4 while that of Ext>?® has
order 8.

We compute differentials and group extensions in the Adams—Novikov spectral
sequence for p = 2 by comparing it with the Adams spectral sequence. The Es-term
of the latter as computed by Tangora [1] is shown in F1G. 4.4.46. This procedure
will determine all differentials and extensions in the Adams spectral sequence in
this range as well.

0 5 10 15 20 25
15+ T15
P3hy
P200 b
T 10
5 €o
T5
+0
0 5 10 15 20 25
t—s5——
FIGURE 4.4.46. Exta,(Z/2,Z/2) for t — s < 25.
The Adams element h; corresponds to the Novikov a;. Since hi = 0, of

must be killed by a differential, and it must be ds(&z). It can be shown that
the periodicity operator P in the Adams spectral sequence (see 3.4.6) corresponds
to multiplication by v{, so P’h; corresponds to auii1, 50 d3(Quit3) = G501
The relation h3hs = h$ gives a group extension in the Adams-Novikov spectral
sequence, 2042 = d%d4i+1 in homotopy. The element P’hy for i > 0 corresponds
to 2au4;+1. This element is not divisible by 2 in the Adams spectral sequence so we
deduce d3(@u4i12) = aiay; for i > 0. Summing up we have

4.4.47. THEOREM. The elements in Ext(BP,) for p = 2 listed in 4.4.37 behave
in the Adams—Novikov spectral sequence as follows. ds(Q4i43) = 64:1”644”3 fori>0
and d3(Q4i12) = 6[?6441- for i@ > 1. Moreover the homotopy element corresponding
to Quyiyo = TQu4iro does mot have order 2; twice it is a3au; for i > 1 and &3 for
i=0. O

As it happens, there are no other Adams—Novikov spectral sequence differentials
in this range, although there are some nontrivial extensions.

These elements in the Adams—Novikov spectral sequence E,-term correspond
to Adams elements near the vanishing line. The towers in dimensions congruent
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to 7 mod (8) correspond to the groups generated by &4;. Thus the order of qu;
determines how many elements in the tower survive to the Adams E.-term. For
example, the tower in dimension 15 generated by h4 has 8 elements. &g has order 2°
so only the top elements can survive. From this we deduce d3(h6h4) = hf)do for
i = 1,2 and either d3(hs) = do or da(hs) = hoh3. To determine which of these two
occurs we consult the Adams-Novikov spectral sequence and see that 33 and (34,4
must be permanent so 75, = Z/(2) ® Z/(2). If d3(hs) = dop the Adams spectral
sequence would give 75, = Z/(4), so we must have da(hy) = hoh3.

One can also show that Picy corresponds to o Q4i+4 for © > 1 and this leads to
a nontrivial multiplicative extension in the Adams spectral sequence. For example,
the homotopy element corresponding to Pcy is a times the one corresponding to
h3hy.

The correspondence between Adams—Novikov spectral sequence and Adams
spectral sequence permanent cycles is shown in the following table.

TABLE 4.4.48. Correspondence between Adams—Novikov spectral
sequence and Adams spectral sequence permanent cycles for p = 2,

14<t—s5<24
Adams—Novikov | Adams || Adams—Novikov | Adams
element element element element
Baya h3 Ba g
B3 do 303084/4 hog
Bas3 hihy 10364 hag
304)2 hahy Ba/a0ia haco
72 C1

4.4.49. COROLLARY. The Adams—Novikov spectral sequence has nontrivial
group extensions in dimensions 18 and 20 and the homotopy product Pycvs is de-
tected in filtration 4. O

4.4.50. COROLLARY. For 14 <t — s < 24 the following differentials occur in
the Adams spectral sequence for p = 2.

do(ha) = hoh3,  dz(hoha) = hodo, ~ da(eo) = hido,
d2(fo) = hieo, da(i) = hoPdy, and dz(Peg) = hiPd.
There are nontrivial multiplicative extensions as follows:

h,l 'hgh4:PCO, hl'hlgzpdo, and ho'hgeozhlpdo :h2h§d0 [l
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CHAPTER 5

The Chromatic Spectral Sequence

The spectral sequence of the title is a mechanism for organizing the Adams—
Novikov Es-term and ultimately 7, (S°) itself. The basic idea is this. If an element
z in the FEs-term, which we abbreviate by Ext(BP,) (see 5.1.1), is annihilated by a
power of p, say p’, then it is the image of some 2’ € Ext(BP,/p’) under a suitable
connecting homomorphism. In this latter group one has multiplication by a suitable
power of v; (depending on i), say v}®. ' may or may not be annihilated by some
power of v]", say v'f”. If not, we say x is vi-periodic; otherwise z' is the image of
some 2" € Ext(BP,/(p',v]™)) and we say it is v -torsion. In this new Ext group
one has multiplication by v7 for some n. If x is v;-torsion, it is either vy-periodic
or vp-torsion depending on whether z" is killed by some power of v}. Iterating
this procedure one obtains a complete filtration of the original Ext group in which
the nth subgroup in the v,-torsion and the nth subquotient is v,-periodic. This is
the chromatic filtration and it is associated with the chromatic spectral sequence of
5.1.8. The chromatic spectral sequence is like a spectrum in the astronomical sense
in that it resolves stable homotopy into periodic components of various types.

Recently we have shown that this algebraic construction has a geometric origin,
i.e., that there is a corresponding filtration of m,(S°). The chromatic spectral
sequence is based on certain inductively defined short exact sequences of comodules
5.1.5. In Ravenel [9] we show that each of these can be realized by a cofibration

N, - M,, > N1+
with Ny = SY so we get an inverse system
SO «— Z_lNl «— Z_QNQ — e

The filtration of 7, (S°) by the images of 7, (X" N") is the one we want. Applying
the Novikov Ext functor to this diagram yields the chromatic spectral sequence,
and applying homotopy yields a geometric form of it. For more discussion of this
and related problems see Ravenel [8].

The chromatic spectral sequence is useful computationally as well as conceptu-
ally. In 5.1.10 we introduce the chromatic cobar complex CC(BP,). Even though
it is larger than the already ponderous cobar complex C(BP,), it is easier to work
with because many cohomology classes (e.g., the Greek letter elements) have far
simpler cocycle representatives in C'C' than in C.

In Section 1 the basic properties of the chromatic spectral sequence are given,
most notably the change-of-rings theorem 5.1.14, which equates certain Ext groups
with the cohomology of certain Hopf algebras X(n), the nth Morava stabilizer alge-
bra. This isomorphism enables one to compute these groups and was the original
motivation for the chromatic spectral sequence. These computations will be the

147
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subject of the next chapter. Section 1 also contains various computations (5.1.20—
5.1.22 and 5.1.24) which illustrate the use of the chromatic cobar complex.

In Section 2 we compute various Ext' groups (5.2.6, 5.2.11, 5.2.14, and 5.2.17)
and recover as a corollary the Hopf invariant one theorem (5.2.8), which says almost
all elements in the Adams spectral sequence E;’* are not permanent cycles. Our
method of proof is to show they are not in the image of the Adams-Novikov Ey*
after computing the latter.

In Section 3 we compute the vi-periodic part of the Adams—Novikov spectral
sequence and its relation to the J-homomorphism and the p-family of Adams [1].
The main result is 5.3.7, and the resulting pattern in the Adams—Novikov spectral
sequence for p = 2 is illustrated in 5.3.8.

In Section 4 we describe Ext® for all primes (5.4.5), referring to the original
papers for the proofs, which we cannot improve upon. Corollaries are the nontrivi-
ality of 74, (5.4.4) and a list of elements in the Adams spectral sequence Eg” which
cannot be permanent cycles (5.4.7). This latter result is an analog of the Hopf
invariant one theorem. The Adams spectral sequence elements not so excluded
include the Arf invariant and n; families. These are discussed in 5.4.8-5.4.10.

In Section 5 we compile all known results about which elements in Ext? are
permanent cycles, i.e., about the f-family and its generalizations. We survey the
relevant work of Smith and Oka for p > 5, Oka and Toda for p = 3, and Davis and
Mahowald for p = 2.

In Section 6 we give some fragmentary results on Ext® for s > 3. We describe
some products of a’s and £’s and their divisibility properties. We close the chapter
by describing a possible obstruction to the existence of the §-family.

Since the appearance of the first edition, many computations related to the
chromatic spectral sequence have been made by Shimomura. A list of some of
them can be found in Shimomura [2]. A description of the first three columns of
the chromatic spectral sequence (meaning the rational, v1- and wvy-periodic parts)
for the sphere can be found in Shimomura and Wang [3] for p = 2, in Shimomura
and Wang [4] for p = 3, and in Shimomura and Yabe [5] for p > 5. Analogous
computations for the mod p Moore spectrum can be found in Shimomura [6] for
p = 2, in Shimomura [7] for p = 3 and in Shimomura [8] for p > 5.

1. The Algebraic Construction

In this section we set up the chromatic spectral sequence converging to the
Adams—Novikov Fs-term, and use it to make some simple calculations involving
Greek letter elements (1.3.17 and 1.3.19). The chromatic spectral sequence was
originally formulated by Miller, Ravenel, and Wilson [1]. First we make the follow-
ing abbreviation in notation, which will be in force throughout this chapter: given
a BP,(BP) comodule M (A1.1.2), we define

(511) EXt(M) ZEXtBP*(Bp)(BP*,M)

To motivate our construction recall the short exact sequence of comodules given
by 4.3.2(c)

(5.1.2) 0— 22"V Bp, /I, 2 BP, /I, = BP,/I,41 — 0

and let
6n: Ext®(BP,/I,41) = Ext*™ (BP,/I,)
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denote the corresponding connecting homomorphism.
5.1.3. DEFINITION. For t,n > 0 let
agn) = 6051 s (5n,1(’02) € Eth(BP*) O

Here o™ stands for the nth letter of the Greek alphabet. The status of these
elements in 72 is described in 1.3.11, 1.3.15, and 1.3.18. The invariant prime ideals
in I, in 5.1.2 can be replaced by invariant regular ideals, e.g., those provided by
4.3.3. In particular we have

5.1.4. DEFINITION. agpi/iq1 € Extl’qs”i(BP*) (where ¢ = 2p — 2) is the image

of vfpl under the connecting homomorphism for the short exact sequence

pi+1 .
0 - BP, *— BP, — BP./(p""") — 0. 0

We will see below that for p > 2 these elements generate Ext'(BP,) (5.2.6)
and that they are nontrivial permanent cycles in im.J. We want to capture all of
these elements from a single short exact sequence; those of 5.1.4 are related by the
commutative diagram

0 BP, -2~ BP. BP./(p) —=0
|
pl'+1 +1
0 BP BP BP,/(p+) —— 0

Taking the direct limit we get
0= BP., - Q® BP. = Q/Z(,) ® BP, — 0;

we denote these three modules by N°, M°, and N!, respectively. Similarly, the
direct limit of the sequences
piti

0— BP,/(p") s 2" Bp, /(pit!) - £1P

i+j

BP./(p"™*' 0] ) = 0

i+j

gives us
0= BP./(p™) = v7 ' BP./(p™) = BP./(p™,v7°) = 0

and we denote these three modules by N', M, and N2, respectively. More gener-
ally we construct short exact sequences

(5.1.5) 0— N" = M"™ - N"" 50

inductively by M™ = v, ! BP, @ gp, N™. Hence N™ and M™ are generated as Z -

n
modules by fractions % where x € BP, for N" and v,leP* for M™ and y is a
monomial in the ideal (pvy ---v, 1) of the subring Z,)[v1,..., v, 1] of BP,. The
BP.-module structure is such that vz/y = 0 for v € BP, if this fraction when
reduced to lowest terms does not have its denominator in the above ideal. For

example, the element pil,,{ € N? is annihilated by the ideal (p’, v{)

5.1.6. LEMMA. 5.1.5 is an short exact sequence of BP.(BP)-comodules.
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PRrROOF. Assume inductively that N™ is a comodule and let N’ € N" be a
finitely generated subcomodule. Then N’ is annihilated by some invariant regular
ideal with n generators given by 4.3.3. It follows from 4.3.3 that multiplication by
some power of v, say v¥, is a comodule map, so

—1 a7t _ 1: —dimvfbi ]
v, N —hEZ N
’l)k

is a comodule. Alternatively, N’ is annihilated by some power of I,,, so multiplica-
tion by a suitable power of v,, is a comodule map by Proposition 3.6 of Landweber [7]
and v; !N’ is again a comodule. Taking the direct limit over all such N’ gives us a
unique comodule structure on M™ and hence on the quotient N*t!. d

5.1.7. DEFINITION. The chromatic resolution is the long exact sequence of co-
modules
0— BP, — MO o Mt 2oy .

obtained by splicing the short exact sequences of 5.1.5. g
The associated resolution spectral sequence (A1.3.2) gives us

5.1.8. PROPOSITION. There is a chromatic spectral sequence converging to
Ext(BP,) with E"® = Ext®(M") and d.: EM® — EMTSTI=T where dy is the
map induced by d. in 5.1.7. O

5.1.9. REMARK. There is a chromatic spectral sequence converging to Ext(F)
where F' is any comodule which is flat as a BP,-module, obtained by tensoring the
resolution of 5.1.7 with F.

5.1.10. DEFINITION. The chromatic cobar complex CC(BP,) is given by
CC"(BP,) = @ C*(M™),
s+n=u
where C( ) is the cobar complex of A1.2.11, with d(x) = d*(z) + (—1)"d;(z) for
x € C*(M™) where d* is the map induced by d. in 5.1.7 (the external component of

d) and d; (the internal component) is the differential in the cobar complex C(M,).
g

It follows from 5.1.8 and A1.3.4 that H(CC(BP,)) = H(C(BP,)) = Ext(BP,).
The embedding BP, — MPO induces an embedding of the cobar complex C(BP;)
into the chromatic cobar complex CC(BP,). Although CC(BP,) is larger than
C(BP,), we will see below that it is more convenient for certain calculations such
as identifying the Greek letter elements of 5.1.3.

This entire construction can be generalized to BP, /I, as follows.

5.1.11. DEFINITION. Let N9 = BP,/I,, and define BP,-modules N and M,
inductively by short exact sequences
0— NI = M! — N 50

where M = v ' BP, @pp, NI. O

m+n

Lemma 5.1.6 can be generalized to show that these are comodules. Splicing
them gives an long exact sequence

0= BP, /I, — M2 2 M} 2oy ...
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and a chromatic spectral sequence as in 5.1.8. Moreover BP, /I, can be replaced by
any comodule L having an increasing filtration {F;L} such that each subquotient
F;/F;_ is a suspension of BP,/I,,, e.g., L = BP,/I*. We leave the details to the
interested reader.

Our main motivation here, besides the Greek letter construction, is the com-
putability of Ext(M?); it is essentially the cohomology of the automorphism group
of a formal group law of height n (1.4.3 and A2.2.17). This theory will be the subject
of Chapter 6. We will state the first major result now. We have M2 = v, !BP,/I,,
which is a comodule algebra (A1.1.2), so Ext(M?) is a ring (A1.2.14). In partic-
ular it is a module over Ext’(M?). The following is an easy consequence of the
Morava-Landweber theorem, 4.3.2.

5.1.12. PROPOSITION. Forn > 0, Ext®(M2) = Z/(p)[vn, v;']. We denote this
ring by K(n).. [The case n = 0 is covered by 5.2.1, so it is consistent to denote Q
by K(0)..] O

5.1.13. DEFINITION. Make K(n). a BP.-module by defining multiplication by v;
to be trivial for i #n. Then let ¥(n) = K(n). ®pp, BP.(BP) ®@pp, K(n)«. O

Y (n), the nth Morava stabilizer algebra, is a Hopf algebroid which will be
closely examined in the next chapter. It has previously been called K (n).K (n),
e.g., in Miller, Ravenel, and Wilson [1], Miller and Ravenel [5], and Ravenel [5, 6].
K (n). is also the coefficient ring of the nth Morava K-theory; see Section 4.2 for
references. We have changed our notation to avoid confusion with K (n).(K(n)),
which is ¥(n) tensored with a certain exterior algebra.

The starting point of Chapter 6 is

5.1.14. CHANGE-OF-RINGS THEOREM (Miller and Ravenel [5]).
Ext(M) = Exts() (K(n)., K(n).). a
We will also show (6.2.10)

5.1.15. MORAVA VANISHING THEOREM. If (p — 1) { n then Ext®(M?) = 0 for
s> n2. O

Moreover this Ext satisfies a kind of Poincaré duality, e.g.,
Ext®(M°) = Ext” —*(M°)

and it is essentially the cohomology of a certain n stage nilpotent Lie algebra of

rank n?. If we replace ¥(n) with a quotient by a sufficiently large finitely generated

subalgebra, then this Lie algebra becomes abelian and the Ext [even if (p — 1)

divides n] becomes an exterior algebra over K (n). on n? generators of degree one.
To connect these groups with the chromatic spectral sequence we have

5.1.16. LEMMA. There are short exact sequences of comodules
0 — M7, L sdimun ypn 2oy gy
and Bockstein spectral sequences converging to Ext(M) with
Ep* = Ext*(M251) © Plam)

where multiplication by a,, in the Bockstein spectral sequence corresponds to division
by vy, in Ext(MP2). d, is not a derivation but if d.(al,x) = y # 0 then d,.(a’Fz) =

K
UK T
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PROOF. The spectral sequence is that associated with the increasing filtration
of M7 defined by F; M = ker v}, (see A1.3.9). Then E°M2 = M\ @ P(ay,). O

Using 5.1.16 n times we can in principle get from Ext(M?) to Ext(MJ}) =
Ext(M™) and hence compute the chromatic Ej-term (5.1.8). In practice these
computations can be difficult.

5.1.17. REMARK. We will not actually use the Bockstein spectral sequence of
5.1.16 but will work directly with the long exact sequence

— Ext® (M) Ly Bxt® (M) 2= Ext® (X207 +2m) & Ext* ™ (M) — -

by induction on s. Given an element z € Ext(M7}) which we know not to be
in im 4, we try to divide j(x) by v, as many times as possible. When we find an
x' € Ext(M) with o7 2’ = j(z) and §(2’') = y # 0 then we will know that j(x)
cannot be divided any further by v,,. Hence ¢ serves as reduction mod I,;,11. This
state of affairs corresponds to d,(al,z) = y in the Bockstein spectral sequence of
5.1.16. We will give a sample calculation with ¢ below (5.1.20).

We will now make some simple calculations with the chromatic spectral se-
quence starting with the Greek letter elements of 5.1.3. The short exact sequence
of 5.1.2 maps to that of 5.1.5, i.e., we have a commutative diagram

0 — BP,/I, —>x-dimv.Bp /[ — > s-dimv.Bp /1 . — >
0 N M Nn+1 0
with

Vi1

pv1 - Un -
Hence a§”) can be defined as the image of i(vf) under the composite of the connect-
ing homomorphisms of 5.1.5, which we denote by a: Ext”(N") — Ext"(BP,). On
the other hand, the chromatic spectral sequence has a bottom edge homomorphism

i(”fzﬂ) =

Ext’(M") == E"°
Ext?(N") —— ker d; E™0 Ext"(BP,)

which we denote by
: Ext’(N") = Ext"(BP,).

k and « differ by sign, i.e.,

5.1.18. PROPOSITION. &k = (—1)I("+1D/2lq where [x] is the largest integer not
exceeding .

PROOF. The image yo of i(v},) in M™ is an element in the chromatic complex
(5.1.10) cohomologous to some class in the cobar complex C(BP,). Inductively
we can find z, € C*(M"*71), and y, € C*(M"*) such that d.(zs) = y, and
di(zs) = yst+1. Moreover y, € C"(MP) is the image of some z, € C"(BP.).
It follows from the definition of (tl)le connecting homomorphism that z, is a co-

n

cycle representing a(i(v)) = «;'”. On the other hand, y, is cohomologous to
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(=1)"3ys41 in CC(BP,) by 5.1.10 and [["Z, (=1)"~* = (=1)["+1/2] 50 x,, repre-
sents (—1)"+1/2k(i(vl)). O

5.1.19. DEFINITION. If z € Ext®(M™) is in the image of Ext’(N") (and hence
gives a permanent cycle in the chromatic spectral sequence) and has the form

t
v
- - mod I,

iogyit ...
Py Up—1

(i.e., = is the indicated fraction plus terms with larger annihilator ideals) then we
(n)

t/in—140ees
a(z) by o™ O

t/in 1, imy1”

denote a(z) by a i if for some m < mn, i =1 for k < m then we abbreviate

5.1.20. EXAMPLES AND REMARKS. We will compute the image of f; in
Ext?(BP,/I,) for p > 2 in two ways.

(a) We regard f; as an element in Ext’(AM?) and compute its image under
connecting homomorphisms &, to Ext'(M]) and then &, to Ext?(MJY), which is
E?’Q in the chromatic spectral sequence for Ext(BP,/I). To compute dy, we pick
an element in z € M? such that px = f;, and compute its coboundary in the cobar
complex C'(M?). The result is necessarily a cocycle of order p, so it can be pulled
back to Ext!(M}). To compute §; on this element we take a representative in
C'(M}), divide it by vy, and compute its coboundary.

t t
Specifically f; is :721 € M?, so we need to compute the coboundary of z = p;’;l .

vP ol

P2l
generating an invariant regular ideal, which means that we need to compute ng on
the numerator only. We have

It is convenient to write x as then the denominator is the product of elements

nr(f ") = —p? 7t mod (p?)
and
nr(v) = v + tvl (v t? + pty) mod (p?, pur,vi).
These give

p—1 ¢ t t—1
vy U -5t tv
a(U ) 2 Z0h g gy
p2’1)1 pvy puy
This is an element of order p in C'(M?), so it is in the image of C'(M}). In this
group the p in the denominator is superfluous, since everything has order p, so we
omit it. To compute ¢; we divide by v; and compute the coboundary; i.e., we need
to find

d(—véza g™ (1 ~ ti“’))
5+ 2 :
Uy vy
Recall (4.3.15)
A(tg) =t ®1+t ®t11)+1®t2 + v1b1g
where
1/p\ ; .
bio = — - th ot
10 Z p<z> 1 &1

0<i<p
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as in 4.3.14. From this we get

—vtty  tolT! —tol 1P|t t\ vi=2
d( 21+ 2 (b —t}“’)) :2721“ _ < )Z—t?p“l
1

vy U5 vy 2
t—2
v
(= 1) (k2 — 117)
1
t—1

v
+ t;—%(—’l}lblo + t117|t1)

t\ vy 1+ 2
~(5) et - 201 - )
o1

—t blg.

2
U1
We will see below that Ext?(MY) has generators ko represented by 2t7 |ty —2t7|t; 17 —
tfp|t1 and big. Hence the mod Ir reduction of —f; is

t
<2> ’1)572]60 + t’l)éilbLO.

(b) In the chromatic complex CC(BP,) (5.1.10), B; € M? is cohomologous to
elements in C'(M!) and C?(M?). These three elements pull back to N2, C1(N1),
and C?(N?), respectively. In theory we could compute the element in C?(N°) =
C?(BP,) and reduce mod I, but this would be very laborious. Most of the terms
of the element in C°(BP,) are trivial mod I, so we want to avoid computing them
in the first place. The passage from C°(N?) to C?(BP,) is based on the four-term
exact sequence

0— BP, - M° - M' - N? - 0.

t
Since pUTi € N? is in the image of ¥"YBP, /I, we can replace this sequence with

0 — BP, % BP, Y X"9BP,/I, - S 'BP, /I, — 0.

We are going to map the first BP, to BP./Iy; we can extend this to a map of
sequences to

0 — BP,/I, & BP,/(p?,pv1,v?) 2 S'BP,/(p,v}) = S 9BP, /I, = 0,

which is the identity on the last comodule. [The reader may be tempted to replace
the middle map by
BP./(p*,v1) = ST1BP,/(p,v})
but BP,/(p? v1) is not a comodule.] This sequence tells us which terms we can
ignore when computing in the chromatic complex, as we will see below.
Specifically we find (ignoring signs) that 1:)721 € M? is cohomologous to

th ] N (E) ”1U572t2p
p p !

5 + higher terms.

Note that the first two terms are divisible by v; and v respectively in the image
of C1(X7YBP,/(p)) in C'(M?'). The higher terms are divisible by v} and can
therefore be ignored.
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In the next step we will need to work mod I3 in the image of C?(BP,) in
C?(M?) via multiplication by p. From the first term above we get
t(t — D)ol ta|t? + tvi ™ by,
while the second term gives
t -
<2> Ea

and their sum represents the same element obtained in (a).
Our next result is

5.1.21. PROPOSITION. Forn > 3,

alV = (—1)"a1a;n:11). O
For n = 3 this gives 73 = —a16,-1. In the controversy over the nontriviality

of v1 (cf. the paragraph following 1.3.18) the relevant stem was known to be
generated by ai18,-1, so what follows is an easy way (given all of our machinery)
to show v, # 0.

PROOF OF 5.1.2. ay is easily seen to be represented by t; in C(BP,), while
(n) (n=1)

and « are represented by

Qq p—1
Pt
QY CEVE N M= VUt ) L7 5 Wy VS
pUL - Up—1 pUL - Up_2 '
respectively. Hence (—1)”a1a1(,"_711) = —az(ffll)al is represented by
Up71t1
(1)l e C' (M"Y c CC™(BP,)
pviL--Un_2
_1)lnt1/2]
and it suffices to show that this element is cohomologous to % in

CC(BP,).
Now consider

-1
= n=tUn Vho1 c Mn1.
pUL Up—2 puy - - /Un73/v711t12)
Clearly
v
de(r) = ——F—r.
pv1 - Un—
To compute d;i(xz) we need to know ng(v,',v,) mod I,—; and ng(v”_,)
mod (p,v1,..., v 3,v.7%) since d;(z) = nr(z) — 2. We know
n—1
Ner(Vn) = v, + vty —ob ity mod I, 4
by 4.3.21, so
n—1 2
MR(Vn_ 1) Svp g +vp ot]  —vpot] mod In_s.
Hence )
nr(, vn) —v, o, =7 =P mod I, 4
and
P o .p ! 1+p
nr(vh_) —vh_  =vb_,t] mod (p,v1,...,Vn—3,0,"5).
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It follows that

p—1
—v,_;t
di ({I?) — n—1"1
pv1 - Un—2
SO .
p—
v v,_1t
d(z) = n F(~1)n—n=tt
puL - Un—1 pvur - Un—2
and a simple sign calculation gives the result. O

For p = 2 5.1.21 says agn) = a?ﬂa?) for n > 2. We will show that each of

these elements vanishes and that they are killed by higher differentials (d,—1) in
the chromatic spectral sequence. We do not know if there are nontrivial d,’s for all
r > 2 for odd primes.
5.1.22. THEOREM. In the chromatic spectral sequence for p = 2 there are ele-
ments x,, € EX" % for n > 2 such that
Un n,0
dp— =——€cE .
n 1(9371) 210y 1 n—1
PROOF. Fortunately we need not worry about signs this time. Equation 4.3.1
gives nr(v1) = v — 2t; and ngr(ve) = va +v1t} +vft; mod (2). We find then that

v} + dv; Loy
8
has the desired property. For n > 2 we represented z,, by

[(t2 = 8} + vy twaty)[ta] -+ [t ]
2
with n — 3 t;’s. To compute d,,_1(x,) let

n—2 2 2,,—1
Vi — ViU Vix2)t1| |t
i’n:$n+z ( i+1 i Vil z+2) 1| | 1 c C’C'(BP*)
i=1

To =

c On—Q (Ml)

21)1 "'1)2'_11)1'3 ’
where the ith term has (n — 2 — i) ¢1’s. Then one computes
- Un
d(i,) = ———
( ”) 21 Uy
S0 v
d o (r,))= —"7
n—1(2n) 201 - Uyt
unless this element is killed by an earlier differential, in which case z,, would
represent a nontrivial element in Ext” **"(BP,), which is trivial by 5.1.23 below.

O

5.1.23. EDGE THEOREM.

(a) For all primes p Ext®!(BP,) = 0 for t < 2s,
(b) for p = 2 Ext**(BP,) = Z/(2) for s > 1, and
(c) for p = 2 Ext****?(BP,) = 0 for s > 2.

PRrOOF. We use the cobar complex C(BP,) of A1.2.11. Part (a) follows from
the fact that C*! for t < 2s. C'*2* is spanned by t1|- - |t; while C*25%2 is spanned
by viti|--- |t and ej = t1| - t1|t3|t1 -+ -t with ¢} in the jth position, 1 < j < s.
Since d(t3) = —3t1|t3 — 3t}|t1, the e;’s differ by a coboundary up to sign. Part (b)
follows from

d(el) = 2t1‘ e |t1 = —d(’l)lt1| e |t1)
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and (c) follows from
d(talta] - [t1) = —vita| -+ [t1 —e1.
O

We conclude this section by tying up some loose ends in Section 4.4. For p > 2 we
need

5.1.24. LEMMA. For odd primes, a13, is divisible by p but not by p*>. (This
gives the first element of order p* in Ext®(BP,) for s> 2.)

Proor. Up to sign a3, is represented by . No
if we can get a cocycle by adding a term of order p then we w111 have the de51red

- 'U2t1

divisibility. It is more convenient to write this element as ; then the factors

of the denominator form an invariant sequence [i.e., nr(v}) = vf mod (p?)], so to

compute the coboundary it suffices to compute ng(v?~'v5) mod (p?,v”). We find

)iy
p2ol pv? 2\ p?

so the desired cocycle is
P bt 1 bR
S 2}
This divisibility will be generalized in (5.6.2).

To show that ayf3, is not divisible by p® we compute the mod (p) reduction of
our cocycle. More precisely we compute its image under the connecting homomor-
phism associated with

0— M- MZE M2 -0
(see 5.1.16). To do this we divide by p and compute the coboundary. Our divided
(by p) cocycle is
vfgflvé’tl 1 ol 202

PPl 2 p2f
and its coboundary is
vy (851t + tt7) N A PN 0 W i 12
pu} pu1 2 pu pu1

3
We can eliminate the first term by adding %?Ut; (even if p = 3). For p > 3 the

resulting element in C?(M}) is

v (o]t — 1P|t — lto)
V1 '

Reducing this mod I in a similar fashion gives a unit multiple of ¢ in 4.1.14. For
= 3 we add U2t1 to the divided cocycle and get

p—1
v tojty —--- v
2 B2 ) % g 4 ),
U1 U1
which still gives a nonzero element in Ext?(M}). O

For p = 2 we need to prove 4.4.38 and 4.4.40, i.e.,
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5.1.25. LEMMA. In the notation of 4.4.32 for p = 2 (a) §o(B3) = 63/2 +m
mod (2),
(b) 50(7]2) =Cp mod (2)

ProoOF. For (a) we have
p vivs  wovg) | V3L w3t} + vat3 + V3t + Vot
402 T 2w} ) 3 20, ’

which gives the result.

For (b) we use Massey products. We have n(n1,v1, 81) so by A1.4.11 we have
do(n2) = {m,h1o0,51) mod (2). Hence we have to equate this product with co,
which by 4.4.31 is represented by %, where x99 is defined by 4.4.25. To expedite
this calculation we will use a generalization of Massey products not given in A1.4
but fully described by May [3]. We regard #; as an element in Ext'(M]), and hiq,
and B, as elements in Ext'(BP,/I;) and use the pairing M} ® BP, /I, — M} to
define the product. Hence the cocycles representing 71, h1o and 3, are

v3t? + vo (13 + 19) + v3ty
V1 ’

tl, and t% + Ultl,

respectively. The cochains whose coboundaries are the two successive products are

vs(ta +13) + vo(tz + t1t2 + tite + t7) + v3(t] + t1ts)
U1

and 5.

If we alter the resulting cochain representative of the Massey product by the
coboundary of

vatity + va(t3 + tatd + 1)) + v3 (1§ + 12) N v3 (ta +13) N vaty

U1 'Uil U%

we get the desired result. O

2. Ext'(BP,/I,) and Hopf Invariant One

In this section we compute Ext' (BP,/I,,) for all n. For n > 0 our main results
are 5.2.14 and 5.2.17. For n = 0 this group is E;’* in the Adams—Novikov spectral
sequence and is given in 5.2.6. In 5.2.8 we will compute its image in the classical
Adams spectral sequence, thereby obtaining proofs of the essential content of the
Hopf invariant one theorems 1.2.12 and 1.2.14. More precisely, we will prove that
the specified h;’s are not permanent cycles, but we will not compute da(h;). The
computation of Ext'(BP,/I,) is originally due to Novikov [1] for n = 0 and to
Miller and Wilson [3] for n > 0 (except for n =1 and p > 2).

To compute Extl(BP*) with the chromatic spectral sequence we need to know
Ext!'(M°) and Ext®(M"). For the former we have

Q ifs=t=0

5.2.1. THEOREM. (a) Ext®!(M°) = _
0 otherwise

(b) Ext®(BP.) = { 20 ift=0
0 otherwise

ProOOF. (a) Since M? = Q ® BP,, we have Ext(M°) = Extr (A4, 4A) where
A= M"and T = Q ® BP,(BP). Since t, is a rational multiple of ng(v,) — vn
modulo decomposables, T" is generated by the image of ng and 7y, and is therefore
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a unicursal Hopf algebroid (A1.1.11). Let ¢, = nr(vy), so T = A[v1,Da,...]. The
coproduct in T is given by A(v,) = v, ® 1 and A(7,) = 1 ® U,. The map ng: A —
' = A®4 I makes A a right [-comodule. Let R be the complex I' ® E(y1,y2,...)
where E(y1, Y2, .. .) is an exterior algebra on generators y; of degree 1 and dimension
2(p' — 1). Let the coboundary d be a derivation with d(y,) = d(9,) = 0 and
d(vn) = yn. Then R is easily seen to be acyclic with H°(R) = A. Hence R is
a suitable resolution for computing Extr (4, A) (A1.2.4). We have Homr (A4, R) =
A® E(y1,...) and this complex is easily seen to be acyclic and gives the indicated
Ext groups for MP.

For (b) Ext’ BP, = kerd, C Ext®(MJ) and d.(z) # 0 if = is a unit multiple of
a negative power of p. O

To get at Ext(M?!) we start with

5.2.2. THEOREM.

(a) Forp > 2, Ext(M?) = K(1), ® E(ho) where hg € Ext"? is represented by
t1 in C1(MY) (see 5.1.12) and g = 2p — 2 as usual.

(b) For p = 2, Ext(M?) = K(1), ® P(ho) ® E(p1), where hg is as above and
p1 € Ext"? is represented by vfs(tg —t3) + vf4v2t1. O

This will be proved below as 6.3.21.

Now we use the method of 5.1.17 to find Ext®(M"); in the next section we will

compute all of Ext(M") in this way. From 4.3.3 we have e ) = o? mod (pit),

;’,;erl € Ext®(M"). For p odd we have

(5.2.3) UR(Ufpl) = vfpl + Spiﬂvfpl*ltl mod (pz'+2)

so in 5.1.17 we have

SO

sp’ .
6(%) = svi? “'hy € Ext!(MY))

for p{ s, and we can read off the structure of Ext’(M?) below.
For p =2, 5.2.3 fails for i > 0, e.g.,
nr(v?) = v} +4dvt; + 482 mod (8).
The element t? +vit; € C'(M?) is the coboundary of v; *va, s0

2 4 —1
a2/3 = 7(1)1 + 8’01 ’UQ) S EXtO(Ml);
i.e., we can divide by at least one more power of p than in the odd primary case. In
order to show that further division by 2 is not possible we need to show that ay/;
has a nontrivial image under § (5.1.17). This in turn requires a formula for ng(vs)
mod (4). From 4.3.1 we get

(5.2.4) nr(v2) = vy + 130185 — 303ty — 14ty — 415,
[This formula, as well as nr(v1) = vy — 2t;, are in terms of the v; defined by
Araki’s formula A2.2.2. Using Hazewinkel’s generators defined by A2.2.1 gives
nr(v1) = vy + 2t; and nr(ve) = vy — 51t — 3vity + 2ty — 413 ]

Let 21, = v} + 4v] 'vy. Then 5.2.4 gives
(5.2.5) nr(z11) = 211 + 8(v; o + vy ' 4+ v %vet;) mod (16)

50 6(@z/3) = vip1 # 0 € Ext' (MY).
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5.2.6. THEOREM.
(a) For p odd

0 if ¢t t where g =2p —2
Ext*"(M') = ¢ Q/Z¢,) ift=0
Z/(p™*) ift=sp andpts

These groups are generated by
sp’

v
p§+1 e M.

(b) For p odd

Ext® (M) ift >0

Ext"'(BP,) = .
0 ift =0

(c) Forp=2

0 if t is odd

Q/Zp  ift=0

Z/(2) ift =2 mod 4
Z/(213) ift = 21425 for odd s

Ext®f(M') =

2
vy z
These groups are generated by - and 533

€ M where x1, @5 as in 5.2.5.

(d) Forp=2
0 ift <0
Ext"(BP,) = { Ext®{(M") ift>0 andt #4
Z/(4) ift=4

2
and Ext1’4(BP*) is generated by s o = i%.

We will see in the next section (5.3.7) that in the Adams-Novikov spectral
sequence for p > 2, each element of Ext'(BP,) is a permanent cycle detecting an
element in the image of the J-homomorphism (1.1.13). For p = 2 the generators
of Ext"?" are permanent cycles for ¢ =0 and 1 mod (4) while for ¢t = 2 and 3 the
generators support nontrivial ds’s (except when ¢ = 2) and the elements of order 4
in Ext"®** are permanent cycles. The generators of E;"*" = E':* detect elements
in im J for all £ > 0.

PROOF OF 5.2.6. Part (a) was sketched above. We get Q/Z(;) in dimension
zero because 1/p is a cocycle for all i > 0. For (b) the chromatic spectral sequence
gives an short exact sequence

0— EYY —» Ext'(BP,) - E%' =0

and E%' by 5.2.1. EL0 = E}° = kerd,/imd,. An element in E;"° = Ext®(M")
has a nontrivial image under d. iff it has terms involving negative powers of vy,
so kerd, C E;"° is the subgroup of elements in nonnegative dimensions. The zero-
dimensional summand Q/Z ) is the image of d., so Ey? = Ext!(BP,) is as stated.
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For (c) the computation of Ext®(M?) is more complicated for p = 2 since 5.2.3
no longer holds. From 5.2.5 we get

(5.2.7) nR(mff) = :Ufls + 2i+3w%jf_1(vl_1t2 + o7 ' o7 aty) mod (21%)

2
for odd s, from which we deduce that ;1—+13 is a cocycle whose image under § (see
5.1.17) is U%Z“spl. Equation 5.2.3 does hold for p = 2 when i = 0, so Ext%®?%(M?)

is generated by %1 for odd s. This completes the proof of (c).
For (d) we proceed as in (b) and the situation in nonpositive dimensions is the

2t
T . —
same. We need to compute d, (21—+13) Since z1,; = v% + 4o 11}2, we have

2! i i 2ig—
i1 v 4 s — 227 5y,
9i+3 9i+3 :

For 2is = 1 (but for no 2's > 1) this expression has a negative power of v; and we
get

de(wl—71) - 2 M2

8 - 2’1)1
This gives a chromatic di (compare 5.1.21) and accounts for the discrepancy be-
tween Ext”* (M) and Ext"*(BP,). 0

Now we turn to the Hopf invariant one problem. Theorems 1.2.12 and 1.2.14
say which elements of filtration 1 in the classical Adams spectral sequence are per-
manent cycles. We can derive these results from our computation of Ext' (BP,) as
follows. The map BP — H/(p) induces a map ® from the Adams—Novikov spectral
sequence to the Adams spectral sequence. Since both spectral sequences converge to
the same thing there is essentially a one-to-one correspondence between their F-
terms. A nontrivial permanent cycle in the Adams spectral sequence of filtration s
corresponds to one in the Adams—Novikov spectral sequence of filtration < s.

To see this consider BP, and mod (p) Adams resolutions (2.2.1 and 2.1.3)

50:X0<_X1<_...

|

Vo<V ~— -

S0 =——=

where the vertical maps are the ones inducing ®. An element z € 7,(S°) has
Adams filtration s if it is in im 7. (Y;) but not in im 7. (Ysy1). Hence it is not in
im 7, (Xs41) and its Novikov filtration is at most s.

We are concerned with permanent cycles with Adams filtration 1 and hence of
Novikov filtration 0 or 1. Since Ext®(BP,) is trivial in positive dimensions [5.2.1(b)]
it suffices to prove

5.2.8. THEOREM. The image of
®: Ext'(BP.) — Extyy (Z/(p),Z/(p))

is generated by hy, hy, and hs, for p = 2 and by hg € Ext"? for p > 2. (These
elements are permanent cycles; cf. 1.2.11 and 1.2.13.)
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PROOF. Recall that A, = Z/(p)[tl,tg, .. ] & E(eo,el, .. ) with

A(tn) = Z t; ® tﬁz_i and A(en) =1®e, + Z e ® tf;_l,
O<i<n 1<i<n

where tg = 1. Here t,, and e, are the conjugates of Milnor’s &, and 7, (3.1.1). The
map BP,(BP) — A, sends t,, € BP.(BP) to t, € A,.

Now recall the I-adic filtration of 4.4.4. VYe can extend it to the comodules M™
and N by saying that a monomial fraction 7 is in F* iff the sum of the exponents
in the numerator exceeds that for the denominator by at least k. (This k may be
negative and there is no k such that F¥M™ = M™ or FEN™ = N™. However, there
is such a k for any finitely generated subcomodule of M™ or N™.) For each k € Z
the sequence

0— FEN™ — FFM™ — FEN™ 50
is exact. It follows that a: Ext®*(N") — Ext*™"(BP,) (5.1.18) preserves the I-adic
filtration and that if z € F' Ext®(N') then ®a(z) = 0.

Easy inspection of 5.2.6 shows that the only elements in Ext’(M!) not in F'

are a1 and, for p =2, ay /s, and ay)4, and the result follows. O

Now we turn to the computation of Ext'(BP,/I,,) for n > 0; it is a module
over Ext®(BP,/I,) which is Z/(p)[v,] by 4.3.2. We denote this ring by k(n).. It is
a principal ideal domain and Ext'(BP,/I,) has finite type so the latter is a direct
sum of cyclic modules, i.e., of free modules and modules of the form k(n)./(v})
for various i > 0. We call these the v,-torsion free and v,-torsion summands,
respectively. The rank of the former is obtained by inverting v,,, i.e., by computing
Ext'(M?). The submodule of the v,-torsion which is annihilated by v, is precisely
the image of Ext®(BP, /I, ;1) = k(n+ 1), under the connecting homomorphism for
the short exact sequence

(5.2.9) 0 — xdimepp /1, X BP, /I, = BP,/I,,;1 — 0.

We could take these elements in Ext' (BP,/I,) and see how far they can be divided
by v, by analyzing the long exact sequence for 5.2.9, assuming we know enough
about Ext!(BP, /I,,;1) to recognize nontrivial images of elements of Ext'(BP, /I,)
when we see them. This approach was taken by Miller and Wilson [3].

The chromatic spectral sequence approach is superficially different but one ends
up having to make the same calculation either way. From the chromatic spectral
sequence for Ext(BP,/I,) (5.1.11) we get an short exact sequence

(5.2.10) 0— EL° —» Ext'(BP./I,) = E%! =0,

where E10 = E,” is a subquotient of Ext”(M}, ) and is the v,-torsion summand,
while EQ! = B9 Ext! (MY) is the v,-torsion free quotient. To get at Ext”(M}, )
we study the long exact sequence for the short exact sequence

0— MO, L xdimuppl Doy At 0

as in 5.1.17; this requires knowledge of Ext’ (MY, |) and Ext' (MY, ;). To determine
the subgroup E%! of Ext'(M?) we need the explicit representatives of generators
of the latter constructed by Moreira [1, 3].

The following result (to be proved later as 6.3.12) then is relevant to both E%!
and EL0 in 5.2.10.
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5.2.11. TuroREM. Ext'(M?9) forn > 0 is the K (n).-vector space generated by

h; € Ext! e for 0 < i < n-—1 represented by t’fz, (n € Ext"? (forn > 2)represented
2
forn = 2 by vty + v (th — 7 HP) — vy "Pust? and (if p = 2 and n > 1)

pn € Bxt'Y. (¢, and p, will be defined in 6.3.11). 0

5.2.12. REMARK. For i > n, h; does not appear in this list because the equation
NrR(Vnt1) = Vpt1 + vt — 0Pty mod I,

gp—l)pih,

leads to a cohomology between h,,; and v i

Now we will describe Ext’(M}) and EL°. The groups are v,-torsion modules.

t
The submodule of the former annihilated by v, is generated by {% t € Z}.
Only those elements with ¢ > 0 will appear in EL"; if # = 0 the element is in im dj,
and ker d; is generated by those elements with ¢ > 0. We need to see how many
times we can divide by v, and (still have a cocycle). An easy calculation shows

. t
that if ¢ = sp* with p { s, then v:;;l is a cocycle whose image in Ext'(M2, ) is

svﬁls;f)pl hn+ti, but by 5.2.12 these are not linearly independent, so this is not the

best possible divisibility result. For example, for n = 1 we find that

2 2
i1 _
A
1+p> 2 -
,U1+P Uh U1

is a cocycle.
The general result is this.

5.2.13. THEOREM. As a k(n).-module, Ext®(M}) is the direct sum of

n
Tht1,i

(i) the cyclic submodules generated by s fori>0,pts; and
(ii) K(n)./k(n)., generated by va forj > 1.
The z,,; are defined as follows. ’

T1,0 = V1,
. —1 .
zi1=0v0 ifp>2 and v} +4v7've  ifp=2,
D )
T15 =Ty, for i>2
T2,0 = U2,

— P _ P11
T2,1 = Uy V1Vy U3,

2 2 2 2
-1, p?—p+1 -1, p?-2

ran = by — ol g I gy

_ 2 ) o
T =T5,; fori>3 ifp=2
and
D bai, (p—1)p' "' +1 . .
Ty — 201 "0y fori>3 ifp>2,
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where
bai = (p+ 1)@~ 1),
Tp,0 = Un for n> 2,
Tpy =0h — U£71U;1Un+1,
Tni = fm’—l for i>1 and i#Z1 mod (n—1),
Tni=Th 4 — vZ"_‘ilvﬁi*”i_IH for i>1, and i=1 mod (n—1)
where .
bni:(pl — D" = 1) for i=1 mod (n—1).
: -1 1
The ay,; are defined by
aro=1
a1, =1+ 2 forp=2 and i>1,
aig=1+1 forp>2 and i>1,
azo =1,
a27i=pi+pi_1—1 forp>2 and i>1 orp=2 and i=1,
as; =321 forp=2andi>1,
ano =1 forn > 2,
an,1 =D,
(n,i = Pln,i—1 fori>1 and i#1 mod (n—1),
and
Qi =DPap;+p—1 fori>1 and i=1 mod (n—1).

O

This is Theorem 5.10 of Miller, Ravenel, and Wilson [1], to which we refer the
reader for the proof.

Now we need to compute the subquotient Ey® of Ext®(M]}). Tt is clear that the
summand of (ii) above is in the image of d; and that ker d; is generated by elements

of the form m"% for s > 0. Certain of these elements for s > 0 are not in kerd;;
1

e.g., we saw in 5.2.6 that d; (I;Tl) # 0. More generally we find d; (M) # 0 iff

v

s=1and p' < j < apt1, (see Miller and Wilson [3]), so we have
5.2.14. COROLLARY. The v,-torsion summand of Ext'(BP,/I,) is generated

by the elements listed in 5.2.13(i) for s > 0 with (when s = 1) fa""ﬁll'fi replaced by
Lot ] O

i

vh

Now we consider the k(n).-free summand E%' C Ext'(M2). We assume n > 1
(n = 1is the subject of 5.2.2); 5.2.11 tells us that E%:! has rank n+ 1 for p > 2 and
n+2 for p = 2. We need to determine the image of Ext' (BP,/I,,) in Ext'(M2). To
show that an element in the former is not divisible by v,, we must show that it has
a nontrivial image in Ext'(BP,/I,+1). The elements h; € Ext'(M?) clearly are in
the image of Ext'(BP,/I,) and have nontrivial images in Ext'(BP,/I,41). The
elements (,, and p, are more complicated. The formula given in 5.2.11 for {5 shows
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that vy P¢, pulls back to Ext' (BP, /I,) and projects to vshy € Ext'(BP, /I5). This
element figures in the proof of 5.2.13 and in the computation of Ext?(BP,) to be
described in Section 4.

The formula of Moreira [1] for a representative of ¢, is

k—1 n-—i n—i4j
(5.2.15) To= Y ub " et j)?
1<i<j<k<n
where the u,; € M? are defined by
(5.2.16) up, =v,' and Z un“vﬁ;kii =0 fork>0.

0<i<k

One sees from 5.2.16 that un+i,1v,(f171)/(p71) € BP,/I, so fn = v,(fnfl)/(pil)Tn €
BP.(BP)/I,. In 5.2.15 the largest power of v, occurs in the term with i = j =
n n—1
k= 1;in T), this term is v /¥ Yy, 147" and its image in Ext'(BP, /I,,41)
n—1
is (_1)n+1,u7(11;1 *U/(P*l)hn_l.
The formula of Moreira [3] for a representative Uy, of py is very complicated
and we will not reproduce it. From it one sees that v?:n_l"'Qn_lUn € BP.(BP)/I,
2n—1 n—
reduces to v, , 't ‘e BP.(BP)/I,41.
Combining these results gives

5.2.17. THEOREM. The k(n).-free quotient E2;' of Ext'(BP,/I,) forn > 1
is generated by h; € Ext'?? for0 < i <n-1,( = P 71)/@71){”, and (for

p=2) pp = 1)7212"+2"71_1pn. The imagas of Cn and py, in Ext'(BP,/I,11) are
n—1 n—
(—1)”“1}2’;1 /=Dy and ”72111 171hn,1, respectively. O

3. Ext(M') and the J-Homomorphism

In this section we complete the calculation of Ext(M!) begun with 5.2.6 and
describe the behavior of the resulting elements in the chromatic spectral sequence
and then in the Adams—Novikov spectral sequence. Then we will show that the
elements in Ext'(BP,) (and, for p = 2, Ext® and Ext®) detect the image of the
homomorphism J: 7, (SO) — 72 (1.1.12). This proof will include a discussion of
Bernoulli numbers. Then we will compare these elements in the Adams—Novikov
spectral sequence with corresponding elements in the Adams spectral sequence.

We use the method of 5.1.17 to compute Ext(M?!); i.e., we study the long exact
sequence of Ext groups for

(5.3.1) 0— MO L At B Mt 0.

Ext(M?) is described in 5.2.6 and the computation of Ext?(M') is given in 5.2.6
Let § be the connecting homomorphism for 5.3.1. Then from the proof of 5.2.6 we
have

5.3.2. COROLLARY. The image of § in Ext'(MP?) is generated by (a) vthg for
all t #1 when p is odd and
(b) vihg for all even t and vip; for all t # 0 when p = 2. O

For odd primes this result alone determines all of Ext(M?'). Ext’(MY) = 0
for s > 1 and there is only one basis element of Ext'(M{) not in imd, namely
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—1
vy
p

. Since Ext?(M?) = 0, there is no

obstruction to dividing j(v; “ho) by any power of p, so we have

(5.3.3) Ext™ (M) = {Q/Z(p) fort =0

’Ul_lh(]. Its image under j is represented by

0 fort #0

for any odd prime p. We can construct a representative of an element of order p* in
Ext"?(M") as follows. From 4.3.1 we have ng(v;) = v; = put; where u = 1—p?~ !
Then a simple calculation shows that

iyt
(5.3.4) yr = — Z(—l)zi;mji

1=1i

is the desired cocycle. (This sum is finite although the ith term for some i >
k could be nonzero if p | i.) The group Ext"®(M') + E;'"° cannot survive in
the chromatic spectral sequence because it would give a nontrivial Ext>°(BP,)
contradicting the edge theorem, 5.1.23. It can be shown (lemma 8.10 of Miller,
Ravenel, and Wilson [1]) that this group in fact supports a d; with trivial kernel.
Hence we have

5.3.5. THEOREM.
(a) for p > 2 the group Ext®!(M?) is
Q/Z ) generated by 1% for (s,t) = (0,0).

Z/(p"t") generated by :% for ptr and (s,t) = (0,7p'q),
Q/Zy) generated by yy. (5.3.4) for (s,t) = (1,0) and
0 otherwise.
(b) In the chromatic spectral sequence, where Ext®!(M') = EP*'E]"° € im d;
and kerd; @, E;'"™", so EL* = Ext'(BP,) and kerd; = @, E'™, so EL* =
Ext'(BP,) is _genemted by the groups Ext®*(M*') for t > 0. - O

We will see below that each generator of Ext'(BP,) for p > 2 is a permanent
cycle in the Adams—Novikov spectral sequence detecting an element in the image
of J (1.1.12).

The situation for p = 2 is more complicated because Ext(M}) has a polynomial
factor not present for odd primes. We use 5.3.2 and 5.2.2 to compute Ext®(M?)
for s > 1. The elements of order 2 in Ext"®(M") are the images under j (5.3.1) of
vihg for t odd and v!p; for t odd and ¢ = 0.

We claim j(p;) is divisible by any power of 2, so Ext"?(M?") contains a sum-
mand isomorphic to Q/Z) as in the odd primary case. To see this use 5.2.4 to
compute

-3 -3 2 2 —4
vy “Vo v —v1ty +vit; + vo v
77R( 1 ) _U ( 1 1 ) |

4 4 2
showing that y, (5.3.4) represents j(p1); the same calculation shows that y; =

-1 —2,2
vy “titvy Tt

(vaty + it + vity),

is a coboundary. Hence the y; for k& > 2 give us the cocycles we need.

Next we have to deal with j(vthg) and j (vt py) for odd t. These are not divisible
by 2 since an easy calculation gives §;(viz) = vi= ' hoz for t odd and = = hit! or
hip1 for any i > 0. Indeed this takes care of all the remaining elements in the short
exact sequence for 5.3.1 and we get
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5.3.6. THEOREM.
(a) For p =2, Ext®!(M") is

Q/Z 5y generated by 2%
for (s,t) = (0,0),
Z/(2) generated by %
for (s,t) = (0,2r) and r odd,

Z/(21+3) generated by 3%
for (s,t) = (0,7212) and r odd,
Q/Z5) ® Z/(2) generated by yy (k > 2) and %
for (s, t) = (1,0),
Z/(2) generated by j(vihf)
for s >0,t=2(r+s), r odd, and (s,t) # (1,0)
Z/(2) generated by j(vipi1hi ")
fors>0,t+2(r+s—1), and r odd,

and
W otherwise.
(b) In the chromatic spectral sequence for p =2, EL>' is
Ext”(Ml) fort=28+27“ anerl,T#Q,
2

Z/(4) generated by %1 for (s,t) = (0,4), and pz—1 € Wgt“’

and
0 otherwise

(See 5.1.22 for a description of differentials originating in E*25%1) In other
words the subquotient of Ext(BP,) corresponding to EL* is generated by Ext' (BP,)
(5.2.6) and products of its generators (excluding asy/s € Ext™) with all positive
powers of oy € Ext'?.

ProOF. Part (a) was proved above. For (b) the elements said to survive, i.e.,
those in E;* and j(vjp1h3™") for s > 0 with odd r > 5 and j(vjhg) for s > 0 with
odd r > 1, are readily seen to be permanent cycles. The other elements in Ell’s for
s > 0 have to support nontrivial differentials by the edge theorem, 5.1.23. g

Now we describe the behavior of the elements of 5.3.5(b) and 5.3.6(b) in the
Adams—Novikov spectral sequence. The result is

5.3.7. THEOREM.

(a) For p > 2, each element in Ext'(BP,) is a permanent cycle in the Adams-
Novikov spectral sequence represented by an element of imJ (1.1.13) having the
same order.

(b) For p = 2 the behavior of Ext"*(BP,) in the Adams-Novikov spectral
sequence depends on the residue of t mod (4) as follows. If t = 1 mod 4 the
generator a; is a permanent cycle represented by the element o1 € wsft_l of order
2 constructed by Adams [1]. In particular oy is represented by n (1.1.13). ajoy is
represented by poy = npai—1 and a3y is represented by an element of order 2 in
imJ C 75, (the order of this group is an odd multiple of 8). a**3a; = d3(af )
for all s > 0.
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Ift =0 mod (4) then the generator &, of Ext"*(BP,) is a permanent cycle
represented by an element of im.J having the same order, as are oy, and o .
asta, = d3(afayqay3) for s > 0. In particular y, is represented by o € 77 (1.1.13).

Ift =2 mod (4), ay/, (twice the generator except when t = 2) is a permanent
cycle represented by an element in im .J of order 8. (a;/, has order 4 and 4 times
the generator of im J represents aia; o as remarked above). In particular Qy /o 08
represented by v € w5 (1.1.13). O

This result says that the following pattern occurs for p = 2 in the Adams—
Novikov spectral sequence E,.-term as a direct summand for all k£ > 0:

(5.3.8)
3 a%@lk a%a4k+1
|
|
l
|
2 Q4 Q1 QY41 ;
|
|
T l
s 1 Q4 QYk41 Qap42/2
0
8k —1 8k 8k +1 8k + 2 8k + 3
t—s——

Where all elements have order 2 except ay4g4.9/2, which has order 4, and @y, whose
order is the largest power of 2 dividing 16k; the broken vertical line indicates a
nontrivial group extension. The image of J represents all elements shown except
agp1 and a1 agpyt.

Our proof of 5.3.7 will be incomplete in that we will not prove that im J actually
has the indicated order. This is done up to a factor of 2 by [1] Adams [1], where
it is shown that the ambiguity can be removed by proving the Adams conjecture,
which was settled by Quillen [1] and Sullivan [1].

We will actually use the complex .J-homomorphism J: 7, (U) — 72, where U
is the unitary group. Its image is known to coincide up to a factor of 2 with that
of the real J-homomorphism. We will comment more precisely on the difference
between them in due course.

An element z € w91 (U) corresponds to a stable complex vector bundle £ over
S2t. Tts Thom spectrum T'(€) is a 2-cell CW-spectrum S Ue?! with attaching map
J(x) and there is a canonical map T'(£) — MU. We compose it with the standard
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map MU — BP and get a commutative diagram

(5.3.9) S0 T(€) S2t
S?p) BP T
BP A BP

where the two rows are cofibre sequences. The map S* — BP is not unique
but we do get a unique element e(z) € mo;(BP A BP)/im 7y (BP). Now E,”' of
the Adams—Novikov spectral sequence is by definition a certain subgroup of this
quotient containing e(z), so we regard the latter as an element in Ext"*(BP,).
Alternatively, the top row in 5.3.9 gives an short exact sequence of comodules
which is the extension corresponding to e(z). We need to show that if 2 generates
Ta;1(U) then e(z) generates Ext' (BP,) up to a factor of 2.

For a generator z; of ma;—1(U) we obtain a lower bound on the order of e(x)
as follows. If je(x;) = 0 for some integer j then for the bundle given by z = jz; €
Ta¢—1(U) the map S** — BP in 5.3.9 lifts to BP, so we get an element in mo; (BP).
Now consider the following diagram

(5.3.10) 7 (BU) m(MU) —~7

H.(BU) = H.,(MU)——Q
where the two left-hand vertical maps are the Hurewicz homomorphisms and 6 is
some ring homomorphism; it extends as indicated since 7, (MU)®Q = H,(MU)2Q
by 3.1.5. Let ¢ be the composite map (not a ring homomorphism) from ., (BU) to
Q. If ¢(z;) has denominator j;, then j; divides the order of e(x;).

According to Bott [2] the image of z; in Hy:(BU) is (t — 1)!'s; where s; is a
primitive generator of Ho;(BU). By Newton’s formula

_z db(2)
S(Z)_@ dz

where s(z) = > ,5q8:2" and b(z) = Y ,5,bi2", the b, being the multiplicative
generators of H,(BU) = H,(MU) (3.1.4).

Now by Quillen’s theorem, 4.1.6, 6 defines a formal group law over Z (see
Appendix 2), and by 4.1.11

6(b(z)) = 222

6s(2)) = eX;(z) de}c(lz(;:) -b

where exp(z) is the exponential series for the formal group law defined by 6, i.e.,
the functional inverse of the logarithm (A2.1.5).
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The 6 we want is the one defining the multiplicative formal group law (A2.1.4)
Z 4+ y + zy. An easy calculation shows exp(z) = e¢* — 1 so
ze®

0(s(z)) = 1.

er—1

This power series is essentially the one used to define Bernoulli numbers (see ap-
pendix B of Milnor and Stasheff [5]), i.e., we have

P | Bi2?*
0(s(2)) = 5+ 2 (D" p

E>1

where By is the kth Bernoulli number. Combining this with the above formula of
Bott we get

5.3.11. THEOREM. The image of a generator x; of wor—1(U) = 7oy (BU) under
the map ¢: . BU — Q of 5.3.10 is % ift=1,0 for odd t > 1, and £ By /2k for
t = 2k. Hence the order of z; in Ext'(BP,) is divisible by 2 for t =1, 1 for t > 1,
and the denominator joy, of By /2k for t = 2k. d

This denominator jo, is computable by a theorem of von Staudt proved in 1845;
references are given in Milnor and Stasheff [5]. The result is that p | jor. iff (p—1) | 2k
and that if p’ is the highest power of such a prime which divides 2k then p’*' is the
highest power of p dividing joz. Comparison with 5.2.6 shows that Ext!**(BP,)
also has order p'*! except when p = 2 and k > 1, in which case it has order 22,
This gives

5.3.12. COROLLARY. The subgroup of Ext"* (BP,) generated by e(x;) (5.3.9),
i.e., by the image of the complex J-homomorphism, has index 1 for t = 1 and 2.
and 1 or 2 for t > 3. Moreover each element in this subgroup is a permanent cycle
in the Adams—Novikov spectral sequence. O

This completes our discussion of im .J for odd primes. We will see that the above
index is actually 2 for all ¢ > 3, although the method of proof depends on the congru-
ence class of t mod (4). We use the fact that the complex J-homomorphism factors
through the real one. Hence for ¢t =3 mod (4), e(z;) = 0 because m2;—1(S0O) = 0.

For t = 0 the map ma;—1(U) = m2:—1(SO) has degree 2 in Bott [1] (and for
t = 2 it has degree 1) so e(z;) is divisible by 2 and the generator y of Ext'(BP,)
is as claimed in 5.3.7. This also shows that ny;, and n%y,, detect elements in im .J.
Furthermore 7? kills the generator of ma;_1(SO) by 3.1.26, so ajy; must die in the
Adams—Novikov spectral sequence. It is nonzero at Fs, so it must be killed by a
higher differential and the only possibility is dz(a;12/3) = ady; [here we still have
t=0 mod (4)].

For t = 1 the generator of w1 (SO) = Z/(2) is detected by ?y;_1 as observed
above, so e(z;) = 0. For t = 2 we just saw that the generator a3 of Ext!?! supports
a nontrivial d3 for ¢ > 2, so we must have e(z;) = ay».

To complete the proof of 5.3.7 we still need to show three things: for t = 1
mod (4), a; is a permanent cycle, for t = 3, d3(a;) = oy, and for t = 2m oy is
represented by an element of order 4 whose double is detected by a?a; 1. To do
this we must study the Adams—Novikov spectral sequence for the mod (2) Moore
spectrum M (2). Since BP,(M(2)) = BP./(2) is a comodule algebra, the Adams—
Novikov Es-term for M (2), Ext(BP./(2)),is aring (A1.2.14). However, since M (2)
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is not a ring spectrum, the Adams—Novikov spectral sequence differentials need not
respect this ring structure. The result we need is

5.3.13. THEOREM. (a) Ext(BP,/(2)) contains Z/(2)[v1, ho] ® {1,u} as a direct
summand where v; € Ext®?, hg € Ext"?, and u € Ext'® are represented by vy, t1,
and t‘% + vlt?,v%t% + vt + vaty respectively. This summand maps isomorphically
to E%:* in the chromatic spectral sequence for Ext(BP./(2)) (5.1.11).

(b) In the Adams—Novikov spectral sequence for M(2), vih§u® is a permanent
cycle for s >0, e=0,1, andt =0 or 1 mod (4). If t = 2 or 3 then d3(vihiu®) =
Vi 2R, Fort = 3, viu® is represented by an element of order 4 in a4 70 (M (2))
whose double is detected by h3vi™ ue.

(c) Under the reduction map BP. — BP./(2) induced by S° — M(2), if t is
odd then the generator a; of Ext"*(BP,) maps to vi"hy. If t is even and at least
4 then the generator y; of Ext'**(BP,) maps to vi *u.

(d) Under the connecting homomorphism §: Ext®(BP,/(2)) — Ext*T!'(BP,)
induced by M(2) — S* (2.3.4), v\ maps to oy € Ext"*(BP,) for all t > 0; uv;
maps to ayyiys if t is odd and to 0 if t is even. O

In other words, the Adams—Novikov E..-term for M (2) has the following pat-
tern as a summand in low dimensions:

(5.3.14)
2 h% 111h,%
|
|
T |
|
s 1 h(] : Ulh(]
|
|
|
|
0 1 U1
0 1 2 3 4
t—s——

where the broken vertical line represents a nontrivial group extension. [Compare
this with 3.1.28(a) and 5.3.8.] The summand of (a) also contains the products of
these elements with v{fu® for ¢+ > 0 and e = 0,1. The only other generators of
Ext*'(BP,/(2)) for t — s < 13 are ; € Ext"*, 8% € Ext™®, h§Bs/o € Ext'T*5+%
for s = 0,1,2 (where hifs/o = 7), and h§p; € Ext' 510728 for s = 0, 1.

Before proving this we show how it implies the remaining assertions of 5.3.7
listed above. For t =1 mod (4), ay = §(vt) by (d) and is therefore a permanent
cycle by (b). For t =3, a; = §(vt) and § commutes with differentials by 2.3.4, so

d3(oy) = dds(v}) = 5(h(3ﬂ’§72)
= a?at_g.
For the nontrivial group extension note that for ¢ = 1 a?a; maps to an element
killed by a differential so it is represented in m,(S°) by an element divisible by 2.

Alternatively, a;y1 is not the image under § of a permanent cycle so it is not
represented by an element of order 2.



172 5. THE CHROMATIC SPECTRAL SEQUENCE

PrOOF OF 5.3.13. Recall that in the chromatic spectral sequence converging
to Ext(BP,/(2)), Ext)™* = Ext(M?), which is described in 5.2.2. Once we have
determined the subgroup EL* ¢ E;™* then (c) and (d) are routine calculations,
which we will leave to the reader. Our strategy for proving (b) is to make low-
dimensional computations by brute force (more precisely by comparison with the
Adams spectral sequence) and then transport this information to higher dimensions
by means of a map a: X8 M (2) — M (2) which induces multiplication by v{ in BP-
homology. [For an odd prime p there is a map «: L4M(p) — M(p) inducing
multiplication by v;. v} is the smallest power of v; for which such a map exists at
p=2]

To prove (a), recall (5.2.2) that Ext(v;'BP,/(2)) = K(1).[ho,p1]/(p3) with
ho € Ext"? and p; € Ext"®. We will determine the image of Ext(BP,/(2)) in this
group. The element u maps to vip;. [Our representative of u differs from that
of v{p; given in 5.2.2 by an element in the kernel of this map. We choose this u
because it is the mod (2) reduction of y; € Ext"®(BP,).] It is clear that the image
contains the summand described in (a). If the image contains v ' h§ or v{~*h3p; for
any t > 0, then it also contains that element times any positive power of hy. One
can show then that such a family of elements in Ext(BP./(2)) would contradict
the edge theorem, 5.1.23.

To prove (b) we need some simple facts about 7, (S°) in dimensions < 8 which
can be read off the Adams spectral sequence (3.2.11). First we have n® = 4v in
m3(S%). This means hjz must be killed by a differential in the Adams-Novikov
spectral sequence for M (2) for any permanent cycle x. Hence we get d3(v}) = hJ
and d3(v}) = v1h3. Next, if we did not have 7o (M (2)) = Z/(4) then v € 71 (M (2))
would extend to a map ¥2(M(2)) — M (2) and by iterating it we could show that
all powers of v; are permanent cycles, contradicting the above.

Now suppose we can show that v{ and u are permanent cycles representing
elements of order 2 in m,(M(2)), i.e., maps S™ — M (2) which extend to self-maps
Y"M(2) — M(2). Then we can iterate the resulting a: %¥M(2) — M(2) and
compare with the map extending u to generalize the low-results above to all of (b).

A simple calculation with the Adams spectral sequence shows that w7 (M (2))
and mg(M (2)) both have exponent 2 and contain elements representing u and v{,
respectively, so we have both the desired self~-maps. O

4. Ext? and the Thom Reduction

In this section we will describe Ext*(BP,) and what is known about its behavior
in the Adams—Novikov spectral sequence. We will not give all the details of the
calculation; they can be found in Miller, Ravenel, and Wilson [1] for odd primes and
in Shimomura [1] for p = 2. The main problem is to compute Ext’(M?) and the
map d* from it to Ext®(M?). From this will follow (5.4.4) that the », € Ext®(BP,)
are nontrivial for all ¢ > 0 if p is odd. (We are using the notation of 5.1.19.) They
are known to be permanent cycles for p > 7 (1.3.18).

We will also study the map ® from Ext? to E22’* of the Adams spectral sequence
as in 5.2.8 to show that most of the elements in the latter group, since they are not
im ®, cannot be permanent cycles (5.4.7). The result is that im ® is generated by

{(p(ﬂp"/p"fl)vq)(ﬂp"/p"): n > 1}
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and a certain finite number of other generators. It is known that for p = 2 the
®(Byn /pn_1) are permenet cycles. They are the 1,12 € II3,,, constructed by
Mahowald [6] using Brown-Gitler spectra. For odd primes it follows that some
element closely resembling B,n /pn_; for 1 <i < p™ — 1 is a nontrivial permanent
cycle (5.4.9) and there is a similar more complicated result for p = 2 (5.4.10).

For p = 2, ®(Bynjon) = be_l is known to be a permanent cycle iff there is a
framed (272 — 2)-manifold with Kervaire invariant one (Browder [1]), and such are
known to exist for 0 < n < 4 (Barratt et al. [2]). The resulting element in moi+1_5
is known as 6; and its existence is perhaps the greatest outstanding problem in
homotopy theory. It is known to have certain ramifications in the EHP sequence
(1.5.29).

For odd primes the situation with ®(B,n /,n) is quite different. We showed in
Ravenel [7] that this element is not a permanent cycle for p > 5 and n > 1, and
that 3,» /p» itself is not a permanent cycle in the Adams-Novikov spectral sequence
forp >3 and n > 1; see 6.4.1.

To compute Ext? with the chromatic spectral sequence we need to know F%:2,
ELl and EY . The first vanishes by 5.2.1; the second is given by 5.3.5 for p > 2 and
5.3.6 for p = 2. For odd primes Extl(Ml) = E?l vanishes in positive dimensions;
for p = 2 it gives elements in Ext?(BP,) which are products of a; with generators
in Ext?(BP,). The main problem then is to compute EY? = Ext®(M?2). We use
the short exact sequence

0— M — M*EZ M2 50

and our knowledge of Ext®(M]) (5.2.13). The method of 5.1.17 requires us to
recognize nontrivial elements in Ext' (M'). This group is not completely known but
we have enough information about it to compute Ext’(M?). We know Ext!(MY)
by 5.2.11, and in proving 5.2.13 one determines the image of Ext’(M}) in it. Hence
we know all the elements in Ext* (M) which are annihilated by v;, so any other
element whose product with some v! is one of these must be nontrivial.

To describe Ext’(M?) we need some notation from 5.2.13. We treat the odd
primary case first. There we have

T2,0 = V2,

— P p,—1
T2,1 = Uy — V1 Vy U3,

2 2 2 2
-1 —p+1 -1 —2
D p°—p+1 _ Uf +p vg P

— P
Tap =Ty — V] Uy v3, and

Loy =1, | — 2vf2'iv§p_1)plil+1 for i > 3,
where by ; = (p+ 1)(p" * —1). Also asg = 1 and ay; = p' +p'~ 1 — 1 fori > 1.
Then

5.4.1. THEOREM (Miller, Ravenel, and Wilson [1]). For odd primes p, Ext®(M?)
is the direct sum of cyclic p-groups generated by

(i) 1% with pts, j > 1, k >0 such that p* | j and j < asi— and either
1
pFti Y ora; 1 <j; and
(ii)pl for k>0, p"|j, and j > 1. O

k+1vi

Note that s may be negative.
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For p = 2 we define x5 ; as above for 0 <i < 2, x9; = x5, fori >3, a2 = 1,
azy1 = 2, and asz; = 3.2t for g > 2. We also need T1,0 =V1, T1,1 = ’U% + 4vf1v2,
and z1,; = 27, for i > 2. In the following theorem we will describe elements
in Ext’(M?) as fractions with denominators involving x; ;, i.e., with denomina-
tors which are not monomials. These expressions are to be read as shorthand for
sums of fractions with monomial denominators. For example, in ﬁ we multiply
1

s, Now 27 | = vf mod (8) so we
. :

numerator and denominator by z;,; to get

have
1 v} + 4o My 1 Vg

821 1 8vt 8uv? 207

5.4.2. THEOREM (Shimomura [1]). For p = 2, Ext®(M?) is the direct sum of
cyclic 2- -groups genemted by

() 52 5 5ok (k=
is excluded because 645/2 is divisible by 2);
(i) 12; and either j is odd or as;—1 < j;
(iii) 2k+1 ﬁk for s odd, j,k>1,i>3, and as; 1 < j2F < as; ;
iv or s odd i j odd an and 2j < as j_p—1; an
QHZJ ddi>3,k>1,7 odd and > 1, and 2Fj < d
(v) Qv],mforj odd and > 1 and k > 1. O

This result and the subsequent calculation of Ext?(BP,) for p = 2 were obtained
independently by S. A. Mitchell.

These two results give us Ef’o in the chromatic spectral sequence. The image of
d; is the summand of 5.4.1(ii) and 5.4.2(v) and, for p = 2, the summand generated
by f; this is the same d; that we needed to find Ext'(BP,) (5.2.6). We know
that imds = 0 since its source, Eg’l, is trivial by 5.2.1. The problem then is
to compute d; : E2 0 Ef’o. Clearly it is nontrivial on all the generators with
negative exponent s. The following result is proved for p > 2 as lemma 7.2 in
Miller, Ravenel, and Wilson [1] and for p = 2 in section 4 of Shimomura [1].

5.4.3. LEMMA. In the chromatic spectral sequence, di : Ef’o — Ef’o is trivial
on all of the generators listed in 5.4.1 and 5.4.2 except the following:

(i) all generators with s < 0;

(i) % with p' < j < as;, and i > 2, the image of this generator being

1
i—1

73 .
: ; ﬂnd
e e
pvi~ P b
2
cee x - . v
(111) (’OTP =2 Only) 8I2£21 B w}lose tmage 1s —2’1)13’1)2 . O

From this one easily read off both the structure of Ext?(BP,) and the kernel
of a: Ext’(N?3) = Ext®(BP,), i.e., which Greek letter elements of the y-family are
trivial. We treat the latter case first. The kernel of a consists of im d; ®im ds ®im ds.
For p = 2 we know that 7, € imds by 5.1.22. dy for p > 2 and d3 for all primes
are trivial because Ey’" (in positive dimensions) and Ej” are trivial by 5.3.5 and
5.2.1, respectively.

5.4.4. COROLLARY. The kernel of a: Ext®(N3) — Ext®*(BP,) (5.1.18) is gen-
erated by vpijpi j fori > 1T with1 >3 >p' =1 forp>2and 1< j <p' forp=2;
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and (for p = 2 only) y1 and y>. In particular 0 # ~, € Ext®>(BP,) for all t > 0 if
p>2and forallt > 2 if p=2.

5.4.5. COROLLARY.

(a) For p odd, Ext®(BP,) is the direct sum of cyclic p-groups generated by

6spi/j,1+¢(i7j) fOT‘ s > ]-} p Jf S, .7 > ]-} i > 0’ and ¢(Za.7) >0 where ¢(Za.7) is the
largest integer k such that p* | j and

7 <

azi—r ifs>1ork>0
p ifs=1and k=0

This generator has order p'T¢(»1) and internal dimension 2(p*> —1)sp’ —2(p — 1)j.
It is the image under o (5.1.18) of the element pL of 5.4.1.

1+6() o]

(b) For p = 2, Ext®(BP,) is the direct sum of cyclic 2-groups generated by
a1ay, where a; generates Ext"*(BP,) for t > 1 and t # 2 (see 5.2.6), and by
Bsaijjn+etig) for s > 1,5 odd, j > 1,4 >0, and ¢(i,j) > 0 where

(0 if2]j and az;—y < j <ay,
0 if j is odd and j < as;,
2 ifj=2andi=2,

k>2 ifj=2%1 mod (2%), j < asi_k, andi >3,
k>1 if2%|j, asimp—1 < j < asi—k, and i >3,
-1 otherwise

unless s = 1, in which case ay; is replaced by 2' in cases above where ¢(i,j) = 0,
#(2,2) = 1, and By is omitted. The order, internal dimension, and definition of
this generator are as in (a). O

For example when p =2, i = 3 and s is odd with s > 1, we have generators

m?s )
Bss/j2 = 2’; for j =2,4,6
|
"'E . .
Busjs = oy for1<j<12andj#£2,4.6
1

but Bs/; is not defined for 9 < j < 12. Similarly when p > 2, i = 4 and s is prime
to p with s > 1, we have generators

xs
6p4s/p2,3 = 33}722
b |
Bpts/j2 2o for p|j, j # p* and j < p* +p* -1
23, |
Bypsssj = —5 forother j < p* 4+ p® -1,
pvy

but fp4/; is not defined for pl<ji<p'+p’-1

Next we study the Thom reduction map & from Ext?>(BP,) to E;™ in the
classical Adams spectral sequence. This map on Ext' was discussed in 5.2.8. The
group E3™ was given in 3.4.1 and 3.4.2. The result is
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5.4.6. THEOREM. The generators of Ext?(BP,) listed in 5.4.5 map to zero
under the Thom reduction map ®: Ext(BP.) — Exta,(Z/(p),Z/(p)) with the fol-
lowing exceptions.

(a) (S. A.Mitchell). Forp=2

@(af) = h%: ‘1’(041044/4) = hihs,
®(Byijos) = hjpy  forj 21,
(B j2-1) = hihjyo for j > 2,
®(B4/2,2) = hohy  and  ®(Bss2) = hahs.

(b) (Miller, Ravenel, and Wilson [1]). For p > 2 ®(8,i,,) = —b; for j > 0;
@(ﬁpj/pjfl) = hoh]'+1 fOT‘j 2 1, and (I)(BQ) = :|:k‘0.

PRrROOF. We use the method of 5.2.8. For (a) we have to consider elements of
Ext'(N') as well as Ext’(N?). Recall (5.3.6) that the former is spanned by ‘2t
2

for odd s > 5 and vl% for odd s > 1. We are looking for elements with I-adic
filtration > 0, and the filtrations of ¢; and p; are 0 and —4, respectively. Hence we
need to consider only viﬁ and ”124, which give the first two cases of (a).

The remaining cases come from Ext®(N?). The filtration of T2, is p' so Bisjk
has filtration i — j — k, and this number is positive in all cases except those indicated
above. We will compute ®(8;/2) and ®(f4/22), leaving the other cases of (a) and (b)

to the reader. [The computation of ®(8;) and ®(3;) for p > 2 were essentially done
2
in 5.1.20.] Using the method of 5.1.20(a), we find that 3/, reduces to 24 mod (2),

vt
which in turn reduces to #7 [t} mod I, which maps under & to h3. Similarly, 84/ »

3,2 40,2
reduces to % + 1)2(’517?’1’51) mod (2) and to v3t3|t? + #§|t2 mod Iy, which maps

under @ to hahy. O

This result limits the number of elements in Ext% (Z/(p), Z/(p)) which can be
permanent cycles. As remarked above (5.2.8), any such element must correspond
to one having Novikov filtration < 2. Theorem 5.4.6 tells us which elements in
Ext(BP,)? map nontrivially to the Adams spectral sequence. Now we need to see
which elements in Ext'(BP,) correspond to elements of Adams filtration 2. This
amounts to looking for elements in Ext’(N') with I-adic filtration 1. From 5.2.8
we see that as/, and ay/4 for p = 2 have I-adic filtration 0, so az and a4/3 have
filtration 1 and correspond to hohs and hghs, respectively. More generally, a; for
all primes has filtration ¢ — 1 and therefore corresponds to an element with Adams
filtration > t. Hence we get

5.4.7. COROLLARY. Of the generators of Exty (Z/(p), Z(p)) listed in 3.4.1 and
3.4.2, the only ones which can be permanent cycles in the Adams spectral sequence
are

(a) fOT‘p = 2} h%) h0h2} h0h3) h? fOTj Z ]-} hlh] fOT‘j Z 3} h2h4) and h2h5;
and

(b) for p > 2, a2, b; for j >0, a1, aghy for p =3, hoh; for j > 2, and ko. O

Part (a) was essentially proved by Mahowald and Tangora [8], although their
list included hshg. In Barratt, Mahowald, and Tangora [1] it was shown that hahs
is not a permanent cycle. It can be shown that ds3(fs/6,2) # 0, while S/, is a
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permanent cycle. The elements h3, hohs, hohs for p = 2 and a2, a1, aghi (p = 3)
for odd primes are easily seen to be permanent cycles detecting elements in im J.

This leaves two infinite families to be considered: the b; (or h?H for p = 2) for
j > 0 and the hoh; (or hyihjqq for p = 2) for j > 1. These are dealt with in 3.4.4
and 4.4.22. In Section 6.4 we will generalize the latter to

5.4.8. THEOREM. (a) In the Adams—Novikov spectral sequence for p > 3,
d2p—1(6pi/p]‘) = alﬁgj—l/pj—l 7£ 0

modulo a certain indeterminacy for j > 1.
(b) In the Adams spectral sequence for p > 5, b; is not a permanent cycle for
j>1. O

The restriction on p in 5.4.8(b) is essential; we will see (6.4.11) that by is a
permanent cycle for p = 3.

The proof of 3.4.4(b) does not reveal which element in Ext?(BP,) detects
the constructed homotopy element. 5.4.5 implies that Ext>(147)1 i 5 Z/(p)
vector space of rank [j/2]; i.e., it is spanned by elements of the form dq(z) for
z € Ext'(BP,/(p)). (This group is described in 5.2.14 and 5.2.17.) The 2 that we
want must satisfy v? 2=, (7). (6 and & are defined in 5.1.2.) The fact
that the homotopy class has order p, along with 2.3.4, means that z itself [as well
as 6o(z)] is a permanent cycle, i.e., that the map f: S™ — S° for m = q(1+p’) -3
given by 3.3.4(d) fits into the diagram

§m ————> g0

l |

S M (p) —L > 1M (p)

where M (p) denotes the mod (p) Moore spectrum and the vertical maps are inclu-
sion of the bottom cell and projection onto the top cell. Now f can be composed
with any iterate of the map a: X9M(p) — M(p) inducing multiplication by vy in
BP-homology, and the result is a map S™% — SO detected by dq(viz). This gives

5.4.9. THEOREM. (R.Cohen [3]) Let (j_1 € w5 _, be the element given by
3.4.4(d), where m = (14p’)q—2. It is detected by an element y;_, € Ext>**"(BP,)
congruent to o Bpi-1 /pi-1 modulo elements of higher I-adic filtration (i.e., modulo

ker ®). Moreover for j >3 and 0 <i < p/=' —pI=2 —pi=3¢;_1; € ((j—1,p, 1) C

7r;%71+qi, obtained as above, is mnontrivial and detected by an element in
Ext®?T™ 4 (BP,) congruent to 1 Bpi—1 pi-1_j- O

The range of i in 5.4.9(b) is smaller than in (a) because a3y /pi-14pi-2 = 0
i
for 7 > 2. To see this compute the coboundary of #};})1_2
pevy
The analogous results for p = 2 are more complicated. n; € 71"; is not known

to have order 2, so we cannot extend it to a map £ M(2) — S° and compose with
elements in 7, (M (2)) as we did in the odd primary case above. In fact, there is
reason to believe the order of n; is 4 rather than 2. To illustrate the results one
might expect, suppose (3;/2; is a permanent cycle represented by an element of
order 2. (This would imply that the Kervaire invariant element ;41 exists; see
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1.5.29.) Then we get amap f: 2 ~2M(2) — S which we can compose with the
elements of 7, (M (2)) given by 5.3.13. In particular, fv{* would represent Bai 2 —aks
which is nontrivial for k¥ < 2772, fv; would represent B3 j2i—1 (i.e., would be closely
related to 7;42), and 2fv; would represent a%/82j/2j, leading us to expect ;42 to
have order 4. Since the elements of 5.3.13 have filtration < 3, the composites with f
would have filtration < 5. Hence their nontriviality in Ext(BP,) is not obvious.

Now 5.3.13 describes 12 families of elements in Ext(BP./(2)) (each family has
the form {v{*z: k > 0}) which are nontrivial permanent cycles: the six shown in
5.3.14 and their products with u. Since we do not know 6;4, exists we cannot show
that these are permanent cycles directly. However, five of them (viaq, via2, uv,
uviaq, and uvia?) can be obtained by composing vy with mod (2) reductions of
permanent cycles in Ext(BP,), and hence correspond to compositions of 7,41 with
elements in 2. Four of these five families have been shown to be nontrivial by
Mahowald [10] without use of the Adams—Novikov spectral sequence.

5.4.10. THEOREM (Mahowald [10]). Let usk41 € m5,_, be the generator con-
structed by Adams [1] and detected by aupy1 € Ext'®*T2(BP,), and let pj, € ©§, |

be a generator of imJ detected by a generator y4 of Extl’Sk(BP*). Then for
0 < k < 29=* the compositions psk-+17;, Misk+17;, PrNj, and npgn; are essential.
They are detected in the Adams spectral sequence respectively by thfhj, Pkiﬁhj,
P*Leghj, and P*~teghyhy. O

This result provides a strong counterexample to the “doomsday conjecture”,
which says that for each s > 0, only finitely many elements of E;'* are permanent
cycles (e.g., 1.5.29 is false). This is true for s = 0 and 1 by the Hopf invariant one
theorem, 1.2.12, but 5.4.10 shows it is false for each s > 2.

5. Periodic Families in Ext?

This section is a survey of results of other authors concerning which elements
in Ext2(BP*) are nontrivial permanent cycles. These theorems constitute nearly
all of what is known about systematic phenomena in the stable homotopy groups
of spheres.

First we will consider elements various types of 5’s. The main result is 5.5.5.
Proofs in this area tend to break down at the primes 2 and 3. These difficulties
can sometimes be sidestepped by replacing the sphere with a suitable torsion-free
finite complex. This is the subject of 5.5.6 (p = 3) and 5.5.7 (p = 2).

In 5.5.8 we will treat decomposable elements in Ext?.

The proof of Smith [1] that §8; is a permanent cycle for p > 5 is a model for
all results of this type, the idea being to show that the algebraic construction of
B¢ can be realized geometrically. There are two steps here. First, show that the
first two short exact sequences of 5.1.2 can be realized by cofiber sequences, so
there is a spectrum M (p,v;) with BP,(M(p,v1)) = BP./I>, denoted elsewhere
by V(1). [Generally if I = (g0,q1,...,qn—1) € BP, is an invariant regular ideal
and there is a finite spectrum X with BP,(X) = BP,/I then we will denote X

details to the reader. It cannot be done for p = 2. Easy calculations (e.g., 5.3.13)
show that the map S? — M(2) realizing v; does not have order 2 and hence
does not extend to the required map %2M(2) — M(2). Alternatively, one could
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show that H*(M(2,v1);Z/(2)), if it existed, would contradict the Adem relation
S¢®S¢® = S¢*Sq'.

The second step, which fails for p = 3, is to show that for all t > 0, v! €
Ext’(BP,/I,) is a permanent cycle in the Adams-Novikov spectral sequence for
M (p,v1). Then 2.3.4 tells us that 3; = dpd;(vl) detects the composite

S22 Ar(p vy) — SOHLM (p) — S92,

where ¢ = 2p — 2 as usual. One way to do this is to show that the third short exact
sequence of 5.1.2 can be realized, i.e., that there is a map 3: S2®° =DM (p,vy) —
M (p,v1) realizing multiplication by vy. This self-map can be iterated ¢ times and
composed with inclusion of the bottom cell to realize v5. To construct 3 one must
first show that v, is a permanent cycle in the Adams—Novikov spectral sequence
for M(p,v1). One could then show that the resulting map S2°~1) — M(p,v;)
extends cell by cell to all of 22(”2’1)M(p, v1) by obstruction theory. However, this
would be unnecessary if one knew that M (p,v;) were a ring spectrum, which it is
for p > 5 but not for p = 3. Then one could smash vy with the identity on M (p,v1)
and compose with the multiplication, giving

£20° DM (p,vn) - M(p.v1) A M(p,vr) = M(p, 1)

Y

which is the desired map .

Showing that M (p,v1) is a ring spectrum, i.e., constructing the multiplication
map, also involves obstruction theory, but in lower dimensions than above.

We will now describe this calculation in detail and say what goes wrong for
p = 3. We need to know Ext®'(BP,/I,) for t — s < 2(p> — 1). This deviates from
Ext(BP,/I) = Extp_(Z/(p),Z/(p)) only by the class vs € Ext®2"=1_ It follows
from 4.4.8 that there are five generators in lower dimensions, namely 1 € Ext®?,
ho € Ext"?, by € Ext®P, hoby € Ext*P*V4 h, € Ext'??, and Ext®™ = 0 for
t—s=2(p*—1)—1s0 vy is a permanent cycle for any odd prime.

To show M(p,v;) is a ring spectrum we need to extend the inclusion S° —
M (p,v1) to a suitable map from X = M (p,v1) A M(p,v1). We now assume p = 5
for simplicity. Then X has cells in dimensions 0, 1, 2, 9, 10, 11, 18, 19, and 20,
so obstructions occur in Ext®! for ¢ — s one less than any of these numbers. The
only one of these groups which is nontrivial is Ext®® = Z/(p). In this case the
obstruction is p times the generator (since the 1-cells in X are attached by maps
of degree p), which is clearly zero. Hence for p > 5 M (p, v1) is a ring spectrum and
we have the desired self-map 8 needed to construct the 3;’s.

However, for p = 3 obstructions occur in dimensions 10 and 11, where the Ext
groups are nonzero. There is no direct method known for calculating an obstruction
of this type when it lies in a nontrivial group. In Toda [1] it is shown that the
nontriviality of one of these obstructions follows from the nonassociativity of the
multiplication of M(3).

We will sketch another proof now. If M(3,v1) is a ring spectrum then each j;
is a permanent cycle, but we will show that 34 is not. In Ext®®!(BP,) one has
B%B,4 and 34 5§ /3" These elements are actually linearly independent, but we do not
need this fact now. It follows from 4.4.22 that dx (5163/3) = ﬂ:alﬂjlﬂwg # 0. The
nontriviality of this element can be shown by computing the cohomology of P in
this range.
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Now 33 € Ext584(BP,) is a permanent cycle since S5 is. If we can show
(5.5.1) B3 = £6183/3 + 57 Ba

then 3734 and hence 34 will have to support a nontrivial ds. We can prove 5.5.1 by
reducing to Ext(BP,/I3). By 5.1.20 the images of 81, 2, and 84 in this group are
+b10, £v2b1g £ ko, and +v3byg, respectively, and the image of 63/3 is easily seen
to be +b;;. Hence the images of 370, 6163/3, and 33 are +v3bj,, £biob?, and
+v3b3, £ k§ respectively. Thus 5.5.1 will follow if we can show k§ = £b1obh?,. (At
any larger prime p we would have kb = 0.) ko is the Massey product £(hg, b1, h1).
Using A1.4.6 we have up to sign

= (ho, b1, h1){ho, h1, Iy
= (ho(ho, b1, h1), by,
((ho, ho, hi)hyi, hy, hy
= (ho
9o

)
)
)
+ho, ) (hi, by ha)
bll

and

s i, ha)(ho, ho, R )b
o{ho, ho, h1), hi, h1)bia
)
)

(ho, ho, ho)h1, hi, h1)byy
hO h0><h17h17h1 bll

=biob?, as claimed.

= (ho
= (h
(
= (ho

5.5.2. THEOREM (Smith [1]). Let p > 5

(a) B € BExt>PD=1) 4o o nontrivial permanent cycle in the Adams—Novikov
spectral sequence for all t > 0.

(b) There is a map (: 22(”2_1)M(p, v1) = M (p,v1) inducing multiplication by
ve in BP-homology. B: detects the composite

S2HW* 1)y 321D 0 () L5 M (p,vy) — S
(¢) M(p,v1) is a ring spectrum. O

5.5.3. THEOREM (Behrens and Pemmaraju [1]). (a) For p = 3 the complex
V(1) admits a self-map realizing multiplication by v3 in BP-homology.

(b) The element f3; € Ext>9((P+DI=1) o 4 nontrivial permanent cycle in the
Adams—Novikov spectral sequence for t congruent to 0, 1,2, 5, or 6 modlulo 9.

To realize more general elements in Ext?(BP,) one must replace I, in the above
construction by an invariant regular ideal. For example a self-map 3 of M (p?,ov?)

inducing multiplication by 052 (such a map does not exist) would show that ;2 /.2
is a permanent cycle for each ¢ > 0. Moreover we could compose 3! on the left with
maps other than the inclusion of the bottom cell to get more permanent cycles.
Ext’(BP,/(p*,v")) contains pvi for 0 < i < p, and each of these is a permanent
cycle and using it we could show that 3,2/, ; is a permanent cycle.
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It is easy to construct M(pi*! v®P") for s > 0 and p odd. Showing that it is
a ring spectrum and constructing the appropriate self-map is much harder. The
following result is a useful step.

5.5.4. THEOREM. (a) (Mahowald [11]). M (4,v}") is a ring spectrum fort > 0.

(b) (Oka [7]). M(20+2 02t 4+ 24142 =305) s a ring spectrum for i > 2 and
t>2. |

(c) (Oka [7]). For p > 2, M(pi*'vP') is a ring spectrum for i > 0 and t > 2
[Recall M (p,v1) is a ring spectrum for p > 5 by 5.5.2(c).] O

Note that M (p’, v{) is not unique; the theorem means that there is a finite ring
spectrum with the indicated BP-homology.

Hence we have a large number of four-cell ring spectra available, but it is still
hard to show that the relevant power of vy is a permanent cycle in Ext?.

5.5.5. THEOREM.

(a) (Davis and Mahowald [1], Theorem 1.3). For p = 2, there is a map
SM(2,v}) = M(2,v}) inducing multiplication by v§, so Bst/a and Bgy/3 are per-
manent cycles for all t > 0.

(b) Forp > 5 the following spectra exist: M (p,vP~", vE) (Oka [4, 1], Smith [2],
Zahler [2)); M(p, o}, o) for t > 2 (Oka [5)); M(p,v}"0}") (Oka [6]);
M(p,vgp,v§p2) for t > 2 (Oka [6]); M(pQ,vf,v;p2) for t > 2 (Oka [6]); and conse-
quently the following elements in ExtQ(BP*) are nontrivial permanent cycles: By,
fort >0, 1 <i<p—1; By for t > 2; Byp2); for t >0, 1 <0 < 2p — 25 Byp2/ap
and By jap—1 for t > 2; and Byp2p0 for t > 2.

(c) (Oka [10]). For p > 5 the spectra M (p, vfn_Qp,vgnt) fort > 2 and n > 3,

and M(p,vfn_gp,vgn) for n > 3 exist. Consequently the following elements are
nontrivial permanent cycles: Byny/s fort > 2, n > 3, and 1 < s < 2" 2p: and
Bpniss fort > 1, n >3, and 1 <5 < 2" 3p. In particular the p-rank of w,f can be
arbitrarily large. O

Note that in (a) M(2,v}) is not a ring spectrum since M (2) is not, so the proof
involves more than just showing that v§ € Ext’(BP,/(2,v})) is a permanent cycle.

When a spectrum M (p, v, v¥) for an invariant ideal (p?, v!,v¥) ¢ BP, does not
exist one can look for the following sort of substitute for it. Take a finite spectrum X
with torsion-free homology and look for a finite spectrum X M (p, v7, vk) whose BP
homology is BP,(X) @gp, BP./(p',v],vk). Then the methods above show that
the image Bk/m of B;,; induced by the inclusion S% — X [assuming X is (—1)-
connected with a single 0-cell] is a permanent cycle. The resulting homotopy class
must “appear” on some cell of X, giving us an element in 7 which is related to
Bryji- The first example of such a result is

5.5.6. THEOREM (Oka and Toda [8]). Let p = 3 and X = S° Ug, e'', the
mapping cone of B1.

(a) The spectrum X M (3,v1,vq) exists so B; € Ext?*(BP,(X)) is a permanent
cycle for each t > 0.

(b) The spectrum X M (3,vi,v3) exists so B3/ € Ext?(BP,(X)) is a permanent
cycle for each t > 0.

Letp=5 and X = S° Ug, €**.
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(¢) The spectrum X M (5,v1, v, v3) exists so 7; € Ext?(BP, (X)) is a permanent
cycle for all t > 0. O

Hence j3; detects an element in 7g;_g(X) which we also denote by ;. The
cofibration defining X gives an long exact sequence

o (S0 B 1 (X) D 11 (80) 2 w1 (SO) -

where the last map is multiplication by 81 € m10(S°). If 3, ¢ imi then j(5;) # 0,
so for each t > 0 we get an element in either 75, ¢ or m{s_;;. For example, in
the Adams—Novikov spectral sequence for the sphere one has d5(84) = a16f63/3 SO
B4 & imi and j(B4) € 7y, is detected by a1B1B3/3, i.e., j(Ba) = Pre’ (see 5.1.1). We
can regard j(8;) as a substitute for 5; when the latter is not a permanent cycle.

In the above example we had BP,(X) = BP, ® Y'BP, as a comodule, so
Ext(BP,.) is a summand of Ext(BP,(X)). In the examples below this is not the
case, so it is not obvious that B ,;; # 0.

5.5.7. THEOREM (Davis and Mahowald [1] and Mahowald [12]). Let p = 2,
X =8u,e’, W =5%U,¢e*, and Y = X AW. Part (a) below is essentially
theorem 1.4 of Davis and Mahowald [1], while the numbers in succeeding statements
refer to theorems in Mahowald [12]. Their Y and A; are XM (2) and X M (2,v;)
in our notation.

(a) XM (2,v1,v8) exists and fg; € Ext’>(BP,(X)) is a nontrivial permanent
cycle.

(b) (1.4) In the Adams—Novikov spectral sequence for S°, Bs; is not a permanent
cycle and Pg; € Tagt—a(X) projects under the pinching map X — S? to an element
detected by a%ﬂgt/?) if this element is nontrivial.

(c) (1.5) o5 € Ext®(BP,(X)/ L) and Bsiy1 € (BP.(X)) are nontrivial per-
manent cycles. Bgii1 € Ext2(BP*) is not a permanent cycle and Bsi+1 € Tagtt2(X)
projects to an element detected by ayoafse/s € Ext*(BP,) if this element is non-
trivial.

ProoF. (a) Davis and Mahowald [1] showed that X M (2, v;) admits a self-map
realizing v§. This gives the spectrum and the permanent cycles. To show fg; # 0
it suffices to observe that fg; € Ext?(BP,) is not divisible by a;.

(b) Mahowald [12] shows that Bgs; € Tas: 4(X) projects nontrivially to Tig; -
By duality there is a map f: ¥*8¢=4(X) — S9 which is nontrivial on the bottom
cell. From 5.3.13 one can construct a map X484 X — $48=10 7 (2) which is v;n?
on the bottom cell and such that the top cell is detected by v? € Ext®(BP,/(2)).
Now compose this with the extension of fg;/,X*8~10M (2) — S° given by 5.5.4(a).
The resulting map g: $*84X — 5% is a}f5;/3 on the bottom cell and the top cell
is detected by fg;. Hence this map agrees with f modulo higher Novikov filtration.
If a%ﬂst/g # 0 € Ext!(BP,) it follows that the bottom cell on f is detected by that
element. [It is likely that a?,ﬁgt/g = 0 (this is true for ¢ = 1), so the differential on
Bst is not a d3.]

(c) As in (b) Mahowald [12] shows the projection of fg;y1 in 75, is nontriv-
ial. To show that aiay/4fs:/3 detects our element if it is nontrivial we need to
make a low-dimensional computation in the Adams—Novikov spectral sequence for
M (2,v}) where we find that viv, € Ext®'?(BP,/(2,v})) supports a differential
hitting v 40 € Ext®!*. Tt follows that 1o € w1 (M (2,v?)) extends to a map
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YIOX — M(2,v}) with the top cell detected by vav. Suspending 48t — 10 times
and composing with the extension of fg;/4 to L4 =100 (2,v1) gives the result. O

Now we consider products of elements in Ext!.

5.5.8. THROREM. Let a; be a generator of Ext" % (BP,) (see 5.2.6).
(a) (Miller, Ravenel, and Wilson [1]). For p > 2, asa; = 0 for all s,t > 0.
(b) For p=2
(i) If s ort is odd and neither is 2 then a1a; = a1ds1¢—1 # 0.
(i) a3 = Ba/2-
(iii) di = 64/4-
(Presumably, all other products of this sort vanish.)

PROOF. Part (a) is given in Miller, Ravenel, and Wilson [1] as theorem 8.18.
The method used is similar to the proof of (b) below.

For (b)(i) assume first that s and ¢ are both odd. Then a, = 4 and the

2
pstt—1

mod (2) reduction of a; is vi_ltl. Hence a;q; = ~5—1t1 = @sq¢-101.
For s odd and ¢t = 2 we have
v$ ity
sty = %(tf +oty) = d< 1 5 2) S0 agas = 0.
For t even and ¢ > 2, recall that
- at/? 2 -1
T where x =v] —4v; v2
and
d(z) =8p
where

p = v oty — o7ty 4 £3) + 2(vity 4 vy 2t + o7 ity + o wetd)  mod (4).

Hence for even ¢t > 2 the mod (2) reduction of &; is v!~?p and for odd s

o Uf+t—2 . pyz(s+t-1)/2 .
# 2 2
Since
le(s+t+1)/2 _ U_l (s+t71)/2p n x(s+t+1)/2t1
2(s+t+1) 2 2(s+t+1)
SO g0y = A1 Qgqy—1 as claimed.

20,2 4 202
240t is i
vullitnl) The coboundary of % + Y52 shows this is

For (ii) we have a3 =
cohomologous to ;5.

For (iii) we have ai/4 € Ext™'% which is (Z/(2))? generated by ajaz, f3, and
Bajs- aiay is not a permanent cycle (5.3.7) so ai/4 must be a linear combination
of 84/4 and B3. Their reductions mod I, tt[t and voti|t;, are linearly independent
so it suffices to compute ai/4 mod I>. The mod I, reduction of ay,4 is t1, so the

result follows. O
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6. Elements in Ext® and Beyond

We begin by considering products of elements in Ext® with those in Exzt' and
Ext?. If z and y are two such elements known to be permanent cycles, then the
nontriviality of xy in Ext implies that the corresponding product in homotopy is
nontrivial, but if zy = 0 then the homotopy product could still be nontrivial and
represent an element in a higher Ext group. The same is true of relations among
and divisibility of products of permanent cycles; they suggest but do not imply
(without further argument) similar results in homotopy.

Ideally one should have a description of the subalgebra of Ext(BP,) generated
by Ext! and Ext? for all primes p. Our results are limited to odd primes and fall
into three types (see also 5.5.8). First we describe the subgroup of Ext® generated
by products of elements in Ext' with elements of order p in Ext? (5.6.1). Second we
note that certain of these products are divisible by nontrivial powers of p (5.6.2).
These two results are due to Miller, Ravenel, and Wilson [1], to which we refer for
most of the proofs.

Our third result is due to Oka and Shimomura [9] and concerns products of
certain elements in Ext? (5.4.4-5.4.7). They show further that in certain cases when
a product of permanent cycles is trivial in Ext*, then the corresponding product in
homotopy is also trivial.

This brings us to 4’s and §’s. Toda [1] showed that 7; is a permanent cycle for
p > 7 (1.3.18), but left open the case p = 5. In Section 7.5 we will make calcula-
tions to show that v3 does not exist. We sketch the argument here. As remarked in
Section 4.4, 4.4.22 implies that d33(a16§/5) = B! (up to a nonzero scalar). Calcula-
tions show that alﬂg/s is a linear combination of 3373 and 3 (a1 33, B4, 72). Hence
if the latter can be shown to be a permanent cycle then we must have dsz(y3) = ;8.
Each of the factors in the above Massey product is a permanent cycle, so it suffices
to show that the products OL1B3B4 € 71'323(50) and 64’)/2 € 71'619(50) both vanish.
Our calculation shows that both of these stems have trivial 5-torsion.

To construct d; one could proceed as in the proof of 5.5.2. For p > 7 there
is a finite complex V(3) with BP,(V(3)) = BP./I;. According to Toda [1] it is
a ring spectrum for p > 11. Hence there is a self-map realizing multiplication by
vg iff there is a corresponding element in 7.(V(3)). We will show (5.6.13) that
the group Ext2p71’2(”4+p72)(BP*/I4) is nonzero for all p > 3, so it is possible that
d2p—1(v4) # 0.

The following result was proved in Miller, Ravenel, and Wilson [1] as theo-
rem 8.6.

5.6.1. THEOREM. Let m >0, pts, s > 1,1 < j < as, (where az y, is as in
5.4.1) for s > 1 and 1 < j < p™ for s = 1. Then aiBeym/; # 0 in Ext®(BP,) iff
one of the following conditions holds

(i) j =1 and either s Z —1 mod (p) or s = —1 mod (p™+32).

(ii)j=1and s=p—1.

(111) ] >1+ a27m—l/(j—1)—l'

In case (ii), we have a1 B, 1 = —y1 and for m > 1, 2a1Bp_1)pm = —Ypm /pm pm -
The onfy linear relations among these classes are

Oflﬂsp?/p+2 = 5041631;2717
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and

Q1 Bopem+2 )24 an myr = 2801 Bsprmtz_pm  for m > 1. O

This result implies that some of these products vanish and therefore certain
Massey products (A1.4.1) are defined. For example, a;fB(1p—1),= = 0if ¢ > 1 and
p™ 2 t t so we have Massey products such as (B2,-1,a1,a1) represented up to
nonzero scalar multiplication by

2p 2p—1,92 p—1
vyt vyt — 2vy Twsty

T .
pu P U1

This product has order p?> but many others do not. For example, aifp/2 = 0 and
(Bpj2, a1, a1) is represented by

p—1_p D42
2v1 vyt vyty

2,0 - 2
b vy pvy

which has order p? and P{Bp/2, 1, 1) = 13, up to nonzero scalar multiplication.
Similarly, one can show

alﬂp2 = p<6p2/27 aq, Oé1> = p2<ﬂp2/37 a1, 0, a1>'
The following results were 2.8(c) and 8.17 in Miller, Ravenel, and Wilson [1].

5.6.2. THEOREM. With notation as in 5.6.1, if a1 Bsym/; # 0 in Ext’(BP,),
then it is divisible by at least p' whenever 0 < i < m and j > as m—;. O

5.6.3. THEOREM. With notation as above and with t prime to p,
aspk/k+1[3tpm/j = Salﬂtpm/]'_spk+1 m EXtS(BP*) O

Now we consider products of elements in Ext?, which are studied in Oka and
Shimomura [9].

5.6.4. THEOREM. For p > 3 we have ij3,8; = stB;(; in Ext? fori+j =s+t.

PRrROOF. To compute 3,3; we need the mod I reduction of f;, which was com-
puted in 5.1.20. Hence we find §4/; is represented by

_tU§+t_1b10 + (;)v§+t_2k0

pur

Now let
vgnvp_lt’f vty kvkT! » 9pt1
Uy = 5P — 5 + (tltg -t )
p vy vy pu1

A routine computation gives

t S+t71b
d(— us+t—1) =2 O g(s +t—1wsT 2k

2 pbux
s+t—2
and hence f3,3; is represented by —%MQPT% and the result follows. O

The analogous result in homotopy for p > 5 was first proved by Toda [7]. The
next three results are 6.1, A, and B of Oka and Shimomura [9].
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5.6.5. THEOREM. For p > 3 the following relations hold in Ext* for s,t > 0.

(i) BsBipr/r =0 fork>1,t>2 andr < as.

(11) Bsﬂth/p,Q = ﬂert(p?fp)ﬂtp/p'

(iii) Fort, k > 2,

ﬂ26tpk/a2,k = 6s+(tp—1)(pk*1—p)ﬂtp2/a2,2
= (t/2)Bsttp-1)pr-1—@p-1)pP2p? 2z - O

5.6.6. THEOREM. Forp >5,0<7r <p, withr <p-—1ift =1, the element
BsBip)r is trivial in 7.(S%) if one of the following conditions holds.

(i) r<p-2.

(ii) r=p—1and s Z—-1 mod (p).

(iii) r=p—1orpandt=0 mod (p). O

5.6.7. THEOREM. For p > 5, s Z 0 or 1, t 2 0 mod (p), and t > 2, the
elements BsBp/, and BsPip2 /p2 are nontrivial. O

Now we will display the obstruction to the existence of V' (4), i.e., a nontrivial
element in Ext2P— 12" +p=2) (BP,/1). This group is isomorphic to the correspond-

ing Ext group for P, = Plty,ts,...], the dual to the algebra of Steenrod reduced
powers. To compute this Ext we use a method described in Section 3.5. Let

P(1), = P/(t’l’g,tg,tg, ...), the dual to the algebra generated by P! and PP. We
will give P, a decreasing filtration so that P(1), is a subalgebra of EyP,. We let

ti,ts € Fy, and tf2,tf+1,ti+2 € F(P'=1/(r=1) for j > 1. Then as an algebra we have

(568) EyP, = P(l)* ® T(ti+270,ti+1,1) ® P(ti72),

wherei > 1, ¢; ; corresponds to tf] , and T denotes the truncated polynomial algebra
of height p. Let R denote the tensor product of the second two factors in 5.6.8.
Then

(5.6.9) P(1), —» E,P. - R

is an extension of Hopf algebras (A1.1.5) for which there is a Cartan—Eilenberg
spectral sequence (A1.3.14) converging to

Extp, p. (Z2/(p),Z/(p))

with

(5.6.10) Ey = Extp(). (Z/(p), Extr(Z/(p), Z/(p)))-

The filtration of P, gives a spectral sequence (A1.3.9) converging to
Extp-(Z/(p), Z/(p))

with

(5.6.11) By = Extr,p, (Z/(p), Z/(p))-

In the range of dimensions we need to consider, i.e., for t —s < 2(p* — 1) Extg
is easy to compute. We leave it to the reader to show that it is the cohomology of
the differential P(1).-comodule algebra

E(h12, hat, hso, his, haz, hai, hag) ® P(bia,ba1, b3o)
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with d(hgg) = h12h13, d(hgl) = h21h13, and d(h40) = h30h13. In our range this
cohomology is

(5.6.12) E(hi2, ha1, hso, hi3)/hiz(hia, hat, hso) ® P(bia, a1, bso),
where the nontrivial action of P(1) is given by
P'hsg = ha1,  PPhay = hia, and  PPbg = bay.
We will not give all of the details of the calculations since our aim is merely to
find a generator of Extzp71’2(”4+”72). The element in question is
(5.6.13) b5 > hthaohiahat hao.

We leave it to the interested reader to decipher this notation and verify that it is a
nontrivial cocycle.



CHAPTER 6

Morava Stabilizer Algebras

In this chapter we develop the theory which is the mainspring of the chromatic
spectral sequence. Let K(n), = Z/(p)[vn, v, ] have the BP,-module structure
obtained by sending all v;, with ¢ # n to 0. Then define ¥(n) to be the Hopf
algebra K(n). ®pp, BP.(BP) @pp, K(n).. We will describe this explicitly as a
K (n).-algebra below. Its relevance to the Adams—Novikov spectral sequence is the
isomorphism (6.1.1)

EXth*(Bp)(BP ’UleP*/In) = Extg(n) (K(n)«, K(n).),

*y Yn

which is input needed for the chromatic spectral sequence machinery described in
Section 5.1. In combination with 6.2.4, this is the result promised in 1.4.9. Since
¥(n) is much smaller than BP,(BP), this result is a great computational aid. We
will prove it along with some generalizations in Section 1, following Miller and
Ravenel [5] and Morava [2].

In Section 2 we study X(n), the nth Morava stabilizer algebra. We will show
(6.2.5) that it is closely related to the Z/(p)-group algebra of a pro-p-group S,, (6.2.3
and 6.2.4). S, is the strict automorphism group [i.e., the group of automorphisms
f(z) having leading term z| of the height n formal group law F,, (see A2.2.17 for
a description of the corresponding endomorphism ring). We use general theorems
from the cohomology of profinite groups to show S,, is either p-periodic (if (p—1) | n)
or has cohomological dimension n? (6.2.10).

In Section 3 we study this cohomology in more detail. The filtration of 4.3.24
leads to a May spectral sequence studied in 6.3.3 and 6.3.4. Then we compute H'
(6.3.12) and H? (6.3.14) for all n and p. The section concludes with computations
of the full cohomology for n = 1 (6.3.21), n = 2 and p > 3 (6.3.22), n = 2 and
p=3(6.3.24), n =2 and p=2 (6.3.27), and n = 3, p > 3 (6.3.32).

The last two sections concern applications of this theory. In Section 4 we
consider certain elements (3, /,: in Extz(BP*) for p > 2 analogous to the Kervaire
invariant elements (35i/o: for p = 2. We show (6.4.1) that these elements are not
permanent cycles in the Adams—Novikov spectral sequence. A crucial step in the
proof uses the fact that S,_; has a subgroup of order p to detect a lot of elements
in Ext. Theorem 6.4.1 provides a test that must be passed by any program to prove
the Kervaire invariant conjecture: it must not generalize to odd primes!

In Section 5 we construct ring spectra T(m) satisfying BP.(T(m)) =
BP.[t1,...,tm] as comodules. The algebraic properties of these spectra will be
exploited in the next chapter. We will show (6.5.5, 6.5.6, 6.5.11, and 6.5.12) that
its Adams—Novikov FEs-term has nice properties.

1. The Change-of-Rings Isomorphism
Our first objective is to prove

187
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6.1.1. THEOREM (Miller and Ravenel [5]). Let M be a BP.(BP)-comodule
annihilated by I, = (p,v1,...,vn_1), and let M = M ®pp, K(n).. Then there is a
natural isomorphism

Extpp, (5p)(BP:, v, ' M) = Exts,) (K (n)., M).

*y Un

Here v;lM denotes v;lBP* ®pp, M, which is a comodule (even though v;lBP*
is not) by 5.1.6. O

This result can be generalized in two ways. Let
E(n). = v, 'BP,/(vnyi: i > 0)

and
E(n).(E(n)) = E(n). ®pp, BP.(BP) ®@pp, E(n)..

It can be shown, using the exact functor theorem of Landweber [3], that
E(n). ®pp, BP.(X) is a homology theory on X represented by a spectrum E(n)
with 7.(E(n)) = E(n)s, and with E(n).(E(n)) being the object defined above.
We can generalize 6.1.1 by replacing ¥(n) with E(n).(E(n)) and relaxing the hy-
pothesis on M to the condition that it be I,-nil, i.e., that each element (but not
necessarily the entire comodule) be annihilated by some power of I,,. For example,
N™ of Section 5.1 is I,,-nil. Then we have

~ 6.1.2. TuHeoreM (Miller and Ravenel [5]). Let M be I,-nil and let
M = M ®pp, E(n)«. Then there is a natural isomorphism

Extpp, (pp)(BP:,v, ' M) = Extpg). (5(n) (E(n), M).

*y Upy

There is another variation due to Morava [2]. Regard BP, as a Z/2(p" — 1)-
graded object and consider the homomorphism 6: BP, — Z/(p) given by 0(v,,) =1
and O(v;) = 0 for ¢ # n. Let I C BP, be kerf and let Vy and VTy denote
the I-adic completions of BP, and BP,(BP). Let Ey = Vp(vyyi: ¢ > 0) and
EHy = Ey Qv, VI Qv, Ep.

6.1.3. THEOREM (Morava [2]). With notation as above there is a natural iso-
morphism

EXtVT@(Vv& M) = EXtEHg (E@, M)
where M is a VTy-comodule and M = M ®v, Ep. O

Of these three results only 6.1.1 is relevant to our purposes so we will not prove
the others in detail. However, Morava’s proof is more illuminating than that of
Miller and Ravenel [5] so we will sketch it first.

Morava’s argument rests on careful analysis of the functors represented by the
Hopf algebroids V'Ty and EHy. First we need some general nonsense.

Recall that a groupoid is a small category in which every morphism is invertible.
Recall that a Hopf algebroid (A,T") over K is a cogroupoid object in the category
of commutative K-algebras; i.e., it represents a covariant groupoid-valued functor.
Let o, 8: G — H be maps (functors) from the groupoid G to the groupoid H. Since
G is a category it has a set of objects, Ob(G), and a set of morphisms, Mor(G),
and similarly for H.
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6.1.4. DEFINITION. The functors a, 3: G — H are equivalent if there is a map
0: Ob(G) — Mor(H) such that for any morphism g: g1 — g2 in G the diagram

a(g1) ﬂ a(g2)

0(g1) 0(g2)
B(9)
Bg1) —> B(g2)

commutes. Two maps of Hopf algebroids a,b: (A,T') — (B,X) are naturally equiv-
alent if the corresponding natural transformations of groupoid-valued functors are
naturally equivalent in the above sense. Two Hopf algebroids (A,T) and (B,X) are
equivalent if there are maps f: (A,T) — (B,X) and h: (B,%) — (A,T) such that
hf and fh are naturally equivalent to the appropriate identity maps. (I

Now we will show that a Hopf algebroid equivalence induces an isomorphism
of certain Ext groups. Given a map f: (A,T') — (B,X) and a left I'-comodule M,
define a ¥-comodule f*(M) to be B ® 4 M with coactions

BOaM —-B@saT'®a M —-BRpXsM=XRB®s M.

6.1.5. LEMMA. Let f: (A,T) — (B,X) a Hopf algebroid equivalence. Then
there is a natural isomorphism Extr(A, M) = Exts(B, f*(M)) for any T'-comod-
ule M.

PROOF. It suffices to show that equivalent maps induce the same homomor-
phisms of Ext groups. An equivalence between the maps a,b: (4,T) — (B,X)
is a homomorphism ¢: I' — B with suitable properties, including ¢nr = a and
¢nr = b. Since nr and ny are related by the conjugation in I'; it follows that
the two A-module structures on B are isomorphic and that a*(M) is naturally iso-
morphic to b*(M). We denote them interchangeably by M’. The maps a and b
induce maps of cobar complexes (A1.2.11) Cr(M) — Cx(M’). A tedious routine
verification shows that ¢ induces the required chain homotopy. O

Now we consider the functors represented by V7T and FHy. Recall that an
Artin local Ting is a commutative ring with a single maximal ideal satisfying the
descending chain condition, i.e., the maximal ideal is nilpotent. If A is such a ring
with finite residue field k then it is W (k)-module, where W (k) is the Witt ring of
A2.2.15. Let Arty denote the category of Z/(2(p™ — 1))-graded Artin local rings
whose residue field is an F,-algebra. Now let my = kerf C BP,. Then BP./mj
with the cyclic grading is is object in Artg, so Vp = lim BP, /mj is an inverse
limit of such objects as is VTy. For any A € Arty, we can consider Hom®(VTy, A),
the set of continuous ring homomorphisms from VTy to A. It is a groupoid-valued
functor on Arty pro-represented by VTy. (We have to say “pro-represented” rather
than “represented” because VTy is not in Artg.)

6.1.6. PROPOSITION. VTy pro-represents the functor liftsy from Arty to the
category of groupoids, defined as follows. Let A € Arty have residue field k. The
objects in liftsg(A) are p-typical liftings to A of the formal group law over k in-
duced by the composite BP, 8, F, — k, and morphisms in liftsg(A) are strict
isomorphisms between such liftings. O



190 6. MORAVA STABILIZER ALGEBRAS

6.1.7. DEFINITION. Let my C A be the maximal ideal fgril € él‘t@. Given a
homomorphism f: F — G of formal group laws over A, let f: F' — G denote their
reductions mod ma. f is a *—isomorphism if f(x) = =.

6.1.8. LEMMA. Let F and G be objects in liftsg(A).  Then the map
Hom(F,G) — Hom(F,G) is injective.
PROOF. Suppose f = 0, i.e., f(x) =0 mod m,. We will show that f(z) =0

mod m/, implies f(z) = 0 mod m/;t' for any r > 0, so f(z) = 0 since m, is
nilpotent. We have

G(f(2), f(y)) = f(z) + f(y) mod m?
since
G(z,y) =z +y mod (z,y)>
Consequently,
[pla(f(x)) =pf(z) mod m¥ =0 mod m’
since p € m 4. On the other hand

pla(f(z)) = f([plr(x))
and we know [p|p(z) = 2?" mod m4 by A2.2.4. Hence f([p]r(z)) =0 mod m’
gives the desired congruence f(z) =0 mod m’. O

Now suppose f1, fo: F — G are x-isomorphisms (6.1.7) as is g: G — F. Then
gfi = gf2 by 6.1.8 so fi = fs; i.e. *-isomorphisms are unique. Hence we can make

6.1.9. DEFINITION. liftsy(A) is the groupoid of x-isomorphism classes of objects
in liftsg A.

6.1.10. LEMMA. The functors liftsy and liftsy are naturally equivalent.

PROOF. There is an obvious natural transformation «: liftsy — liftsy, and we
need to define 3: lifts; — liftsg, of each *-isomorphism class. Having done this,
af will be the identity on lifts; and we will have to prove B« is equivalent (6.1.4)
to the identity on liftsy.

The construction of 3 is essentially due to Lubin and Tate [3]. Suppose G; €
liftsg(A) is induced by 6, : BP, — A. Using A2.1.26 and A2.2.5 one can show that
there is a unique Gy € liftsy(A) *-isomorphic to G; and induced by 6 satisfying
O(vpyi) = 0 for all 4 > 0. We leave the details to the interested reader. As
remarked above, the *-isomorphism from G; to G2 is unique. The verification that
[Ba is equivalent to the identity is straightforward. (I

To prove 6.1.3, it follows from 6.1.5 and 6.1.10 that it suffices to show EHy
pro-represents liftsy. In the proof of 6.1.10 it was claimed that any suitable formal
group law over A is canonically *-isomorphic to one induced by 6: BP, — A which
is such that it factors through Ey. In the same way it is clear that the morphism
set of lifts;(A) is represented by EHy, so 6.1.3 follows.

Now we turn to the proof of 6.1.1. We have a map BP,(BP) — X(n) and
we need to show that it satisfies the hypotheses of the general change-of-rings
isomorphism theorem A1.3.12, i.e., of A1.1.19. These conditions are

(6.1.11) (i) the map I'" = BP,(BP) @pp, K(n), — X(n) is onto and
(ii)  I"Oge) K(n). is a K(n),-summand of T".
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Part (i) follows immediately from the definition ¥(n) = K(n). ®gp, I'. Part
(ii) is more difficult. We prefer to replace it with its conjugate,

(ii) K (n)«Oxn) K(n)«(BP) is a K(n). summand of K (n),BP which is defined
to be K(n), ®pp, BP.(BP). Let B(n), denote v, BP,/I,. Then the right BP,-
module structure on K (n),(BP) induces a right B(n).- module structure.

6.1.12. LEMMA. There is a map
K(n).BP — X(n) ®k(n), B(n)«

which is an isomorphism of X(n)-comodules and of B(n).-modules, and which car-
ries 1 to 1.

PROOF. Our proof is a counting argument, and in order to meet requirements
of connectivity and finiteness, we pass to suitable “valuation rings”. Thus let
k‘(O)* = Z(p) C K(O)*,
k(n)s =Fplv,] C K(n)s, n>0,
k(n)«BP = k(n). ®pp, BP.(BP) C K(n).BP,
b(n)s = k(n)i[ur, uz,...] C B(n).,

where uy, = v, v, k.
It follows from A2.2.5 that in k(n).BP,

n k
(6.1.13) Nr(Untk) = vnth — o2t mod (Nr(vn41), - - NR(Vntr—1)).

Hence ng: BP. — k(n).BP factors through an algebra map b(n). — k(n).BP.
It is clear from 6.1.13 that as a right b(n),.-module, k(n),BP is free on generators

t* = ¢7¢5? ... where 0 < a; < p™ and all but finitely many «; are 0; in particular,
it is of finite type over b(n)..
Now define

o(n) = k(n)«BP @y(n). k(n). C X(n);

by the above remarks o(n) = k(n).[t1,t2, . .. }/(tﬁn 71}21«,1%: k > 1) as an algebra.
(k(n)«,o(n)) is clearly a sub-Hopf algebroid of (K(n)«, X(n)), so o(n) is a Hopf
algebra over the principal ideal domain k(n).,.

The natural map BP,(BP) — o(n) makes BP,(BP) a left o(n)-comodule, and
this induces a left o(n)-comodule structure on k(n).BP. We will show that the
latter is an extended left o(n)-comodule.

Define a b(n),-linear map f: k(n).BP — b(n). by

f(t“):{l if o = (0,0,...)

0 otherwise.

Then f satisfies the equations

fir = id: b(n). — b(n).,
[ ®@pny, k(n)x =€: a(n) — k(n)..



192 6. MORAVA STABILIZER ALGEBRAS

Now let f be the ¢(n)-comodule map lifting f:

(6.1.14) k(n), BP —"> 0(n) ®g(n) k(n).BP

\ la(n)@f
f

Since ¢ijr(z) = 1 ® fgr(x), ¥ is b(n).-linear, so f is too. We claim f is an isomor-

phism. Since both sides are free of finite type over b(n), it suffices to prove that
J ®p(n). k(n) is an isomorphism. But 6.1.14 is then reduced to

o(n) —2> o(n) k(ny. o(n)

. 1®e
F®b(n), k(n)«

o (n) @p(n). k(n)s

so the claim follows from unitarity of A.
Now the map K (n). @), f satisfies the requirements of the lemma. O

6.1.15. COROLLARY. fr: B(n). — K(n). Oxn) K(n).BP is an isomorphism
of B(n)«-modules.

PrRoOOF. The natural isomorphism
B(n). — K(n)s Oz (2(n) @k (n). B(n):)

is B(n).-linear and carries 1 to 1. Hence

K(n)« Ogny (B(n) @k (n). B(n)x)

IR

commutes, and 7jg is an isomorphism. O

Hence 6.1.11(ii) follows from the fact that K(n), is a summand of 3(n), and
6.1.1 is proved. From the proof of 6.1.12 we get an explicit description of 3(n),
namely

6.1.16. COROLLARY. As an algebra
S(n) = K(n)y[t1,ta, ... ]/ (0nt? =00t i > 0).

Its coproduct is inherited from BP,(BP), i.e., a suitable reduction of 4.3.13 holds.
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2. The Structure of X(n)

To study X(n) it is convenient to pass to the corresponding object graded
over Z/2(p" —1). Make F, a K(n).-module by sending v,, to 1, and let S(n) =
Y(n) @k (n). Fp. For a $(n)-comodule M let M = M ®gy), Fp,, which is easily
seen to be an S(n)-comodule. The categories of ¥(n)- and S(n)-comodules are
equivalent and we have

6.2.1. PROPOSITION. For a 3(n)-comodule M,
Exts; () (K (n)s, M) @k (n). Fp = Extg(n) (Fp, M). U

We will see below (6.2.5) that if we regard S(n) and M as graded merely over
Z/(2), there is a way to recover the grading over Z/2(p"™ —1). If M is concentrated
in even dimensions (which it is in most applications) then we can regard M and
S(n) as ungraded objects. Our first major result is that S(n) ® Fyn (ungraded) is
the continuous linear dual of the Fj,»-group algebra of a certain profinite group S,
to be defined presently.

6.2.2. DEFINITION. The topological linear dual S(n)* of S(n) is as follows.
[In Ravenel [5] S(n)* and S(n) are denoted by S(n) and S(n)., respectively.] Let
S(n) @y be the sub-Hopf algebra of S(n) generated by {t,...,t;}. It is a vector space
of rank p™ and S(n) = lim S(n)@). Then S(n)* = limHom(S(n)q), Fy), equipped
with the inverse limit topology. The product and coproduct in S(n) give maps of
S(n)* to and from the completed tensor product

S(n)* & S(n)* = lim Hom(S(n) ) ® S(n);, F,).

To define the group S, recall the Z,-algebra E,, of A2.2.16, the endomorphism
ring of a height n formal group law. It is a free Z,-algebra of rank n? generated
by w and S, where w is a primitive (p™ — 1)th root of units, Sw = wPS, and S™ = p.
Sp C E), is the group of units congruent to 1 mod (5), the maximal ideal in
E,. S, is a profinite group, so its group algebra F,.[S,] has a topology and is a
profinite Hopf algebra. S, is also a p-adic Lie group; such groups are studied by
Lazard [4].

6.2.3. THEOREM. S(n)*®@F, = F,[S,] as profinite Hopf algebras, where g = p",
Sp is as above, and we disregard the grading on S(n)*.

PrROOF. First we will show S(n)* ® Fy, is a group algebra. According to
Sweedler [1], Proposition 3.2.1, a cocommutative Hopf algebra is a group algebra
iff it has a basis of group-like elements, i.e., of elements x satisfying Az = x®x. This
is equivalent to the existence of a dual basis of idempotent elements {y} satisfying
y? = y;, and y;y; = 0 for i # j. Since S(n) ® F, is a tensor product of algebras of
the form R = F,[t]/(t? —t), it suffices to find such a basis for R. Let a € F{ be a
generator and let

— > (a't)? for0<i<gq,
r, = 0<i<q
1—tat for i = 0.

Then {r;} is such a basis, so S(n)* ® F, is a group algebra.
Note that tensoring with F; cannot be avoided, as the basis of R is not defined
over F,,.
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For the moment let G,, denote the group satisfying F,[G,] = S(n)* @ F,. To
get at it we define a completed left S(n)-comodule structure on F,[[z]], thereby
defining a left G,-action. Then we will show that it coincides with the action of S,
as formal group law automorphisms given by A2.2.17.

We now define the comodule structure map

i Folla]] = S(n) ® Fy[[a]]
to be an algebra homomorphism given by

P(z) = ZFfi®$pi,

>0

where tg = 1 as usual. To verify that this makes sense we must show that the
following diagram commutes.

F,[[2]] —— S(n) & F,[[«]]

‘| Jen

S(n) & Fy[la]] —> S(n) & 5(n) & Fyfa]

for which we have

Aol =me)Y Lo

i>0

F F J i
=y ti ot | @ aP
i>0 \j—k=i
F j ik
=Y et @
§:k>0

This can be seen by inserting x as a dummy variable in 4.3.12. We also have

(1@ vp() = (1@ ) (Z% ® a:)
j=0

i

P
— ZFti@; (Zth ®xpi>

j=>0 7=>0
F i it+j
= E tz-@t? ®aP .
0,520

The last equality follows from the fact that F'(«P,yP) = F(x,y)P. The linearity of
1 follows from A2.2.20(b), so ¢ defines an S(n) ® F¢-comodule structure on F,[[z]].

We can regard the ¢;, as continuous F,-valued functions on G,, and define an
action of G,, on the algebra F[[z]] by

F i
glz) = tig)a”
i>0
for g € G,. Hence G(x) = x iff g = 1, so our representation is faithful.

We can embed G, in the set of all power series of the form Ef;o aixpi which
is £, by A2.2.20 so the result follows. B O
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6.2.4. COROLLARY. If M is an ungraded S(n)-comodule, then 6.2.3 gives a
continuous Sy, -action on M @ F,, and

Ext () (Fy, M) © Fy = HE (G, M & F,)
where HY denotes continuous group cohomology. (Il

To recover the grading on S(n) ® M, we have an action of the cyclic group of
order ¢ — 1 generated by @w'w® via conjugation in E,,.

6.2.5. PROPOSITION. The eigenspace of S(n) @ F, with eigenvalue &' is the
component S(n)q; @ Fy of degree 2i.

PROOF. The eigenspace decomposition is multiplicative in the sense that if x
and y are in the eigenspaces with eigenvalues @' and @7, respectively, the zy is
in the eigenspace with eigenvalue @**7. Hence it suffices to show that t; is in the
eigenspace with eigenvalue P -1,

To see this we compute the conjugation of t,S* € FE, by w and we have

W (tpS*)w = w‘ltkwkak = wpk_ltkSk. O

Corollary 6.2.4 enables us to apply certain results from group cohomology the-
ory to our situation. First we give a matrix representation of E,, over W (F,).

6.2.6. PROPOSITION. Lete =} _;_, e; St with e; € W(F,) be an element of
E,. Define an n x n matriz (e; ;) over W(F,) by

€it1,j41 = € Jori<j
1 ] - i . .
Py fori>j.

Then (a) this defines a faithful representation of E,; (b) the determinant |e; ;| lies
n Zy.

PROOF. Part (a) is straightforward. For (b) it suffices to check that w and S
give determinants in Z,,. O

We can now define homomorphisms c: Z, — S, and d: S,, — Z,, for p > 2, and
c:Z5 — S, and d: Z; for p = 2 by identifying S,, with the appropriate matrix
group. (Z, is to be regarded here as a subgroup of Z,'.) Let d be the determinant
for all primes. For p > 2 let ¢(z) = exp(pz)I, where I is the n x n identity matrix
and x € Zy; for p =2 let ¢(z) = zI for v € ZJ.

6.2.7. THEOREM. Let S} = kerd.
(a) If p>2 and ptn then S, 2 Z,d S}.
(b) If p=2 and n is odd then S, = S! & Z.

PROOF. In both cases one sees that im ¢ lies in the center of S,, (in fact imc
is the center of S,,) and is therefore a normal subgroup. The composition dc is
multiplication by n which is an isomorphism for p t n, so we have the desired
splitting. [l

We now describe an analogous splitting for S(n). Let A* = F,[Z,] for p > 2
and A* = Fy[Z] for p = 2. Let A, be the continuous linear dual of A.



196 6. MORAVA STABILIZER ALGEBRAS

6.2.8. PROPOSITION. As an algebra A = Fy[uy,us,...]/(u; —ul’). The coprod-

uct A is given by
G G
5 ) = Yo wew
i>0 4,j>0
where ug = 1 and G is the formal group law with
P’

PROOF. Since A = F,[5], this follows immediately from 6.2.3. O

We can define Hopf algebra homomorphisms ¢,: S(n) ® F, — A® F, and
d.: AQF, — S(n) ® F, dual to the group homomorphisms ¢ and d defined above.

6.2.9. THEOREM. There exist maps c.: S(n) — A and d.: A — S(n) corre-
sponding to those defined above, and for pfn, S(n) = A® B, where B®F,, is the

continuous linear dual of Fy[S}], where S}, is defined in 6.2.7.

PROOF. We can define ¢, explicitly by

ot = Ui ifn i -
0 otherwise.

It is straightforward to check that this is a homomorphism corresponding to the c,
defined above. In lieu of defining d, explicitly we observe that the determinant of
> isotiSt, where t; € W(F,) and ¢; = t{, is a power series in p whose coefficients
are polynomials in the ¢; over Z,. It follows that d. can be defined over F,,. The
splitting then follows as in 6.2.7. (]

Our next result concerns the size of Ext S(n)(Fp, F,), which we abbreviate by

6.2.10. THEOREM.

(a) H*(S(n)) is finitely generated as an algebra.

(b) If (p — 1) ¥ n, then H(S(n)) = 0 for i >n? and H*(S(n)) = H”Qii(S(n))
for 0 <i <n? ie., H*(S(n)) satisfies Poincaré duality.

(c) If (p—1) | n, then H*(S(n)) is p-periodic, i.e., there is some v € H'(S(n))
such that H*(S(n)) above some finite dimension is a finitely generated free module
over F,[x]. O

We will prove 6.2.10(a) below as a consequence of the open subgroup theorem
(6.3.6), which states that every sufficiently small open subgroup of S,, has the same
cohomology as Z;Q. Then (c) and the statement in (b) of finite cohomological
dimension are equivalent to saying that the Krull dimension of H*(S(n)) is 1 or 0,
respectively. Recall that the Krull dimension of a Noetherian ring R is the largest
d such that there is an ascending chain py C p; C -+ C pg of nonunit prime ideals
in R. Roughly speaking, d is the number of generators of the largest polynomial
algebra contained in R. Thus d = 0 iff every element in R is nilpotent, which in
view of (a) implies (b). If d =1 and R is a graded F,-algebra, then every element
in R has a power in Fy[z] for a fixed « € R. R is a module over Fp[z], which
is a principal ideal domain. Since H*(S(n)) is graded and finitely generated, it
is a direct sum of cyclic modules over F,[x]. More specifically it is a direct sum
of a torsion module (where each element is annilhilated by some power of z) and
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a free module. Since it is finitely generated, the torsion must be confined to low
dimensions, and H*(S(n)) is therefore a free F,[z]-module in high dimensions, so
(a) implies (c).

The following result helps determine the Krull dimension.

6.2.11. THEOREM (Quillen [3]). For a profinite group G the Krull dimension
of H*(G;F)) is the mazimal rank of an elementary abelian p-subgroup of G, i.e.,
subgroup isomorphic to (Z/(p))?. O

To determine the maximal elementary abelian subgroup of .S,,, we use the fact
that D,, = E,, ® Q is a division algebra over Q,, (A2.2.16), so if G C S, is abelian,
then the Qp-vector space in D,, spanned by the elements of G is a subfield K C D,,.
Hence the elements of G are all roots of unity, G is cyclic, and the Krull dimension
is 0 or 1.

6.2.12. THEOREM. A degree m extension K of Q, embeds in D, iff m | n.
PROOF. See Serre [1, p. 138] or Cassels and Frohlich [1, p. 202], O

By 6.2.11 H*(S(n)) has Krull dimension 1 iff S,, contains pth roots of unity.
Since the field K obtained by adjoining such roots to Q,, has degree p — 1, 6.2.12
gives 6.2.10(c) and the finite cohomological dimension statement in (b). For the
rest of (b) we rely on theorem V.2.5.8 of Lazard [4], which says that if S,, (being
an analytic pro-p-group of dimension n?) has finite cohomological dimension, then
that dimension is n? and Poincaré duality is satisfied.

The following result identifies some Hopf algebra quotients of S(n)@F ,». These
are related to the graded Hopf algebras ¥ 4(n) discussed in Ravenel [10]. More
precisely, S(d, f), is a nongraded form of ¥ 4(d/f), where A is the ring of integers
in an extension K (depending on a) of Q,, of degree fn/d and residue degree f.

6.2.13. THEOREM. Let a € F,, be a (p" — 1)th root of unity, let d divide n, and
let f divide d. Then there is a Hopf algebra

d
S(d, f)a =Fpnlts, toy,. ]/(tff —aitip: 1> 0)

where a; = apid_l, and a surjective homomorphism
6:5(n)@Fpm — S, fa

tir—>{ ti if fli

0 otherwise.

given by

The coproduct on S(d, f), is determined by the one on S(n). This Hopf algebra is
cocommutative when f = d.

PROOF. We first show that the algebra structure on S(d, f), is compatible
d
with that on S(n). The relation ¢}, = a;t;; implies

tf;d = (aitip)?" = TN D@D/ 0Dy
I T
tf)’j = oD@ D/ g
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so 6 exists as an algebra map.
For the coproduct in S(n) we have

F i F k3 it
A =Y et ar
i>0 0,§>0
(where x is a dummy variable) which induces
F if F if o Gi+i)f
D Altip)a" =) tip @t ab
i>0 i,j>0

in S(d, f)a. We need to show that this is compatible with the multiplicative rela-
tions. We can write if = kd + £f with 0 < /f < d, so we can rewrite the above
as

F if F kd+ef  (ith)f
Z Atip)xP = Z tz’f®t§f xP
i>0 1,720
F ef ¢ kd__ d_ Lf itj
_ p (p"-1)/(p" 1), ptd pltitds
= Z a; tig @t x
i,j>0
_ ZF B G SV t:;;fxp““”,
1,720

which gives a well defined coproduct in S(d, f)q.
If f = d then the right hand side simplifies to

F ) P Py
Z aP =D)L g tjfxp( o
i,j>0

which is cocommutative as claimed. O

3. The Cohomology of 3(n)

In this section we will use a spectral sequence (A1.3.9) based on the filtration
of ¥(n) induced by the one on BP,(BP)/I, given in 4.3.24. We have

6.3.1. THEOREM. Define integers dy_; by

.o ifi<0
e max(%, pdy i—n) fori> 0.

Then there is a unique increasing filtration of the Hopf algebra S(n) with deg tfj =
dp,; for 0 <j<n. O

6.3.2. THEOREM. Let E°S(n) denote the associated bigraded Hopf algebra. Its
algebra structure is

E°S(n) =T(t;;:i>0, j€Z/(n)),

where T(-) denotes the truncated polynomial algebra of height p on the indicated

elements and t; ; corresponds to tfj. The coproduct is induced by the one given in
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4.3.34. Explicitly, let m = pn/(p —1). Then

Z tk,j @ik ktj if i <m,
0<k<i

Altij) =S > tr; @tickits +bicnjin—1 ifi=m,
0<k<i

ti; ® 1+41® ti; + Bi—mj-i—’ﬂ—l if i > m,
where tg ; = 1 and Bi,j corresponds to the b; ; of 4.3.14. ]

As in the case of the Steenrod algebra, the dual object EyS(n)* is primitively
generated and is the universal enveloping algebra of a restricted Lie algebra L(n).
L(n) has basis {z; ;j: 1 >0, j € Z/(n)}, where z; ; is dual to t; ;.

6.3.3. THEOREM. E\S(n) is the restricted enveloping algebra on primitives x; ;
with bracket

l J ;
[37‘ o l} _ 6i+jz’i+k,j - 5/€+15Ei+k,l fori+k <m,
R 0 otherwise,

where m is the largest integer not exceeding pn/(p—1), and 67 = 1 iff s =t mod (n)
and 0; = 0 otherwise. The restriction £ is given by

Titn,j+1 if 7> ’I’L/(p — 1)
ori=n/(p—1)and p > 2
§(wij) =

Tonj + Tonj+1 ifi=mnand p=2
0 ifi<n/p—1. O

The formula for the restriction was given incorrectly in the first edition, and
this error led to an incorrect description in 6.3.24 of the multiplicative structure
of H*(S(2)) for p = 3. The correct description is due to Henn [1] and will be
given below. The corrected restriction formula was given to me privately by Ethan
Devinatz.

PrOOF OF 6.3.3. The formula for the bracket follows easily from 6.3.2. The
restriction requires more care. When ¢ > m we have

Altij) = ti;@1+1@ti;+binj
= t,;®1+1®t,;— » p @)tfwl R
0<l<p

so for i >n/(p—1),
—1(P —
Atitnr1) = tivnjt1 @ 1+ 1@ tign jr1 — Z pt <£) th ® "
0<t<p
It follows that in the p-fold iterated coproduct we have
tivngt1—ti; Q- Rt i+ ...,

which leads to the desired value of §{(x; ;) for ¢ > n/(p — 1). The argument for
i=n/(p—1) and p odd is similar.
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For the case p =2 and 7 = n, 6.3.2 gives

Altang) = Y thy®@ton khts +bnj
0<k<2n

= lpnj—1Q@ty -1+ Z tij ® ton—k ktj
0<k<2n

= tnj-1 @ lnj1+1ln;@tn;

) (thg @ ton—k gk + tan—nj ® te k),
0<k<n

and the formula for {(xy, ;) follows.
For i < n/(p — 1) there are no terms in A(¢;4, ) for any k that would lead to
a nontrivial restriction on x; ;. g

Let L(n) be the Lie algebra without restriction with basis x; ; and bracket as
above. We now recall the main results of May [2].

6.3.4. THEOREM. There are spectral sequences

(a) Es = H*(L(n) & P(bi;) = H*(EyS(n)),

(b) Ez = H*(BoS(n)) = H*(S(n)),
where b; ; € H*4i(EyS(n)) with internal degree 2pT1(p' — 1) and P(-) is the
polynomial algebra on the indicated generators. O

Now let L(n, k) be the quotient of L(n) obtained by setting z; ; = 0 for i > k.
Then our first result is

6.3.5. THEOREM. The Es-term of the first May spectral sequence [6.3.4(a)] may
be replaced by H*(L(n,m)) ® P(b; j: i < m —n), where m = [pn/(p—1)] as before.

PROOF. By 6.3.3 L(n) is the product of L(n,m) and an abelian Lie algebra,
SO
H*(L(n)) =2 H*(L(n,m)) ® E(h; j: i >m),
where E(-) denotes the exterior algebra on the indicated generators and h;; €
H'L(n) is the element corresponding to z; ;. It also follows from 6.3.4 that the
appropriate differential will send h; ; to —b;—p j—1 for i > m. It follows that the
entire spectral sequence decomposes as a tensor product of two spectral sequences,

one with the Fs-term indicated in the statement of the theorem, and the other
having Ey = E(h; j) @ P(b;—y,;) with ¢ > m and Eo, = F,,. O

If n < p—1 then 6.3.5 gives a spectral sequence whose Eo-term is H*(L(n,n)),
showing that H*(S(n)) has cohomological dimension n? as claimed in 6.2.10(b).

In Ravenel [6] we claimed erroneously that the spectral sequence of 6.3.4(b)
collapses for n < p — 1. The argument given there is incorrect. For example, we
have reason to believe that for p = 11, n = 9 the element

(h1oh2,0---h70)(haghs7---h73)
supports a differential that hits a nonzero multiple of
hioh2o(higha7 - he3)(hoihs - he1).

We know of no counterexample for smaller n or p.
Now we will prove 6.2.10(a), i.e., that H*(S(n)) is finitely generated as an
algebra. For motivation, the following is a special case of a result in Lazard [4].
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6.3.6. OPEN SUBGROUP THEOREM. FEwvery sufficiently small open subgroup of

2

Sp, is cohomologically abelian in the sense that it has the same cohomology as Zy,,
i.e., an exterior algebra on n? generators. (]

We will give a Hopf algebra theoretic proof of this for a cofinal set of open
subgroups, namely the subgroups of elements in E,, congruent to 1 modulo (S%)
for various ¢ > 0. The corresponding quotient group (which is finite) is dual the
subalgebra of S(n) generated by {tx: k < i}. Hence the ith subgroup is dual to
S(n)/(ty: k < i), which we denote by S(n,1).

The filtration of 6.3.1 induces one on S(n,4) and analogs of the succeeding four
theorems hold for it.

6.3.7. THEOREM. Ifi >n andp > 2, ori >n and p =2, then
H*(S(n,i)) =E(hgj: 1 <k <i+mn, j€Z/(n)).

PROOF. The condition on i is equivalent to ¢ > n — 1 and ¢ > m/2, where as
before m = pn/(p — 1). In the analog of 6.3.3 we have i,k > m/2soi+k >m
so the Lie algebra is abelian. We also see that the restriction £ is injective, so the
spectral sequence of 6.3.5 has the Ea-term claimed to be H*(S(n,4)). This spectral
sequence collapses because hy ; corresponds to tﬁJ € S(n, 1), which is primitive for
each k and j. O

PROOF OF 6.2.10(a). Let A(%) be the Hopf algebra corresponding to the quo-
tient of S,, by the ith congruence subgroup, so we have a Hopf algebra extension
(A1.1.15)

A(i) — S(n) — S(n,i).
The corresponding Cartan—FEilenberg spectral sequence (A1.3.14) has
Ey = Ext a;)(Fp, H*(S(n,1)))

and converges to H*(S(n)) with d,.: E, — EsTH="+1 Each E,-term is finitely
generated since A(¢) and H*(S(n, 1)) are finite-dimensional for ¢ > m/2. Moreover,
E,» = Ey, so Ex and H*(S(n)) are finitely generated. O

Now we continue with the computation of H*(S(n)). Theorem 6.3.5 indicates
the necessity of computing H*(L(n, k)) for k < m, and this may be done with the
Koszul complex, i.e.,

6.3.8. THEOREM. H*(L(n,k)) for k < m is the cohomology of the exterior
complex E(h; ;) on one-dimensional generators h; j withi < k and j € Z/(n), with
coboundary

dhig) = Y hsghiossss.
0<s<i
The element h; ; corresponds to the element x; ; and therefore has filtration degree
i and internal degree 2p’ (p* — 1).

PRrROOF. This follows from standard facts about the cohomology of Lie algebras
(Cartan and Eilenberg [1, XII, Section 7]). O

Since L(n, k) is nilpotent its cohomology can be computed with a sequence of
change-of-rings spectral sequences analogous to A1.3.14.
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6.3.9. THEOREM. There are spectral sequences with
E; = E(hg;) @ H*(L(n,k — 1)) = H*(L(n, k))
and F3 = E.

PROOF. The spectral sequence is that of Hochschild—Serre (see Cartan and
Eilenberg [1, pp. 349-351] for the extension of Lie algebras

A(n, k) — L(n, k) — L(n,k — 1)
where A(n, k) is the abelian Lie algebra on xj ;. Hence H*(A(n,k)) = E(hg,;).
The Es-term, H*(L,(n,k — 1), H*(A(n, k)) is isomorphic to the indicated tensor
product since the extension is central.
For the second statement, recall that the spectral sequence can be constructed

by filtering the complex of 6.3.8 in the obvious way. Inspection of this filtered
complex shows that F3 = F. O

In addition to the spectral sequence of 6.3.4(a), there is an alternative method
of computing H*EyS(n). Define L(n, k) for k < m to be the quotient of PEyS(n)
by the restricted sub-Lie algebra generated by the elements x; ; for £ < i < m, and
define F'(n, k) to be the kernel of the extension

0 — F(n,k) — L(n,k) — L(n,k —1) — 0.

Let H *(L(n,k)) denote the cohomology of the restricted enveloping algebra of
L(n, k). Then we have

6.3.10. THEOREM. There are change-of-rings spectral sequences converging to

H*(L(n,k)) with
Ey = H*(F(n,k)) ® H*(L(n,k — 1))
where
E(h ;) fork>m—n

)= {E(hk,j) ® P(br;j) fork<m-—mn

and H*(L(n,m)) = H*(EoS(n)).

PRrROOF. Again the spectral sequence is that given in Theorem XVI1.6.1 of Car-
tan and Eilenberg [1]. As before, the extension is cocentral, so the Fs-term is the
indicated tensor product. The structure of H*(F(n, k)) follows from 6.3.3 and the
last statement is a consequence of 6.3.5. (I

We begin the computation of H!(S(n)) with:

6.3.11. LEMMA. H'(ES(n)) is generated by
(o= hn; and p, = hon; forp=2;
J J
and forn > 1, hy ; for each j € Z/(n).
PROOF. By 6.3.4(a) and 6.3.5 H'(EyS(n)) = H'L(n,m)). The indicated ele-

ments are nontrivial cycles by 6.3.8. It follows from 6.3.3 that L(n, m) can have no
other generators since [z ;, ;-1 j4+1] = Zi; — 5f+jxi’j+1. O
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In order to pass to H'(S(n)) we need to produce primitive elements in S(n).
corresponding to (, and p, (the primitive t’fj corresponds to hy ;). We will do
this with the help of the determinant of a certain matrix. Recall from (6.2.3) that
S(n) @Fpn was isomorphic to the dual group ring of \S,,, which has a certain faithful
representation over W (Fp») (6.2.6). The determinant of this representation gave
a homomorphism of S(n) into Z, the multiplicative group of units in the p-adic
integers. We will see that in H' this map gives us {, and p,.

More precisely, let M = (m; ;) be the n by n matrix over Z,[t1,t2,...]/(t1 —tfn)
given by

B kgopktznﬂ_l fori < j

6, = kapt . .
> Pty fori>j
k>1

where ty = 1.

Now define T,, € S(n). to be the mod (p) reduction p~—!(det M — 1) and for
p = 2 define U, € S(n). to be the mod (2) reduction of i(det M? —1). Then we
have

6.3.12. THEOREM. The elements T,, € S(n). and, for p =2, U, € S(n). are
primitive and represent the elements ¢, and p,+C, € H'(S(n)), respectively. Hence
H'(S(n)) is generated by these elements and for n > 1 by the hy ; for j € Z/(n).

PROOF. The statement that T;, and U,, are primitive follows from 6.2.6. That
they represent (, and p,, + (, follows from the fact that

T, = Ztﬁj mod (t1,ta,...,tn—1)
J

and
Up=> 83, +12 mod (ty,ta,... tn1). O
J
EXAMPLES.
Ti=t, U=t +ty, To=ty+1t5—1;77,
Uy = ta +t5 + tat3 + tits + to + 1363ty + 343,
and

2 2 2 2
Ty =tz +th +t8 +t, 7P —tth — 0t — ¥t

Moreira [1, 3] has found primitive elements in BP,(BP)/I, which reduce to
our T,,. The following result is a corollary of 6.2.7.

6.3.13. PROPOSITION. If ptn, then H*(S(n)) decomposes as a tensor product
of an appropriate subalgebra with E((,) for p > 2 and P((,) Q@ E(py) forp=2. O

We now turn to the computation of H2(S(n)) for n > 2. We will compute all
of H*S((n)) for n = 2 below.

6.3.14. THEOREM. Letn > 2

(a) For p = 2, H*(S(n)) is generated as a vector space by the elements (2,
PnCns Cns Cuhij, puhaj, and hyihyj for i # j 4 1, where hyjhy; = hy jh1; and
W0
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(b) For p> 2, H2(S(n)) is generated by the elements
Cnhais b1y 90 = (b, Pajivrs hai)s ki = (P, hajivr, )
and hl,ihl,j fOT’i §é ] + 1, where hl,ihl,j + h17jh17i =0. [l

Both statements require a sequence of lemmas. We treat the case p = 2 first.

6.3.15. LEMMA. Let p =2 and n > 2.

(a) HY(L(n,2)) is generated by hy ; fori € Z/(n).

(b) H?(L(n,2)) is generated by the elements hyh1; for i # j+1, gi, ki,
and e3; = (h14,h1,i+1,h1,i+2). The latter elements are represented by hiha,
h17i+1h2,,’, and h17¢h27i+1 + h27ih171‘+2, respectively.

(c) esihi,i41 = h1ies it + esihiihiivs = 0, and these are the only relations
among the elements hy ;es ;.

PrOOF. We use the spectral sequence of 6.3.9 with Ey = E(hy;,hs,) and
da(ha,;) = hiih1,i41. All three statements can be verified by inspection. O

6.3.16. LEMMA. Letp=2,n>2, and 2 < k < 2n.

(a) HY(L(n,k)) is generated by the elements hy ; along with ¢, for k > n and
Pn for k = 2n.

(b) H%(L(n,k)) is generated by products of elements in H'(L(n,k)) subject to
hi,ih1,i41 = 0, along with

gi = (h1is by haivn), ki = (R, haigr, b)),
oy = <h1,iah1,i+lahl,i+27hl,i+1>a and
ek+1,i = (M1, Riitts - Rigk)-

The last two families of elements can be represented by hs;hi 11 + hoiho i1 and
Yshs ihiy1—s,i+1 Tespectively.

(¢) h1i€kt1i+1+€k+1,P1 i+1+% = 0 and no other relations hold among products
of the ejy1,; with elements of H.

PROOF. Again we use 6.3.9 and argue by induction on k, using 6.3.15 to start
the induction. We have Ey = E(hy;) ® H*(L(n,k — 1)) with do(hy ;) = e ;. The
existence of the a; follows from the relation eg ;1 ;41 = 0 in H3(L(n,2)) and that
of ex41,; from Ay e it1h1i4k = 0 in H3(L(n,k — 1)). The relation (c) for k < 2
is formal; it follows from a Massey product identity A1.4.6 or can be verified by
direct calculation in the complex of 6.3.8. No combination of these products can
be in the image of ds for degree reasons. O

6.3.17. Let p =2 and n > 2. Then H?(EqS(n)) is generated by the elements
PnCn; pnhl,i; Cnhl,i; hl,ihl,j fOT‘ 7 7é j + ]., Qy, and h?,; = bi,j fOT’ 1 S 7 S Tl,j c

PROOF. We use the modified first May spectral sequence of 6.3.5. We have
m = 2n and H2(L(n,m)) is given by 6.3.16. By easy direct computation one sees
that dg(gi) = bl,ihl,i—i-l and dg(k)l) = h17ib17i+1. We will show that d2(€2n+1,i) =
hi,ibn,i 4+ P1ignbni—1.

j
Altant1) = th ® 1+ bntin
modulo terms of lower filtration by 4.3.15. Then by 4.3.22
d(bn—i-l,n—l) =1 ® bn,n + bn,n—l @1t
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modulo terms of lower filtration and the nontriviality of d2(ezn+1,:) follows. O

PROOF OF 6.3.14(a). We now consider the second May spectral sequence
(634(b)) By 4.3.22 we have dg(bi,j) = h17j+1bi_17j+1 + hl,i—i—jbi—l,j 7é 0 for
i > 1. The remaining elements of H2FEyS(n) survive either for degree reasons
or by 6.3.12. (]

For p > 2 we need an analogous sequence of lemmas. We leave the proofs to
the reader.

6.3.18. LEMMA. Letn > 2 and p > 2.
(a) H'(L(n,2)) is generated by hy ;.
(b) H?(L(n,2)) is generated by the elements hy;h1; (with hyihiip1 = 0).
gi = h1,ihai, ki = hii11hoy and es; = hyjhoip1ho b ivo.
(c) The only relations among the elements hy jes j are hi ;€3 ;41—es3ih1 43 = 0.
[l

6.3.19. LEMMA. Letn >2,p>2, and 2 < k <m. Then
(a) HY(L(n,k)) is generated by hy,; and, for k > n, (.
(b) H*(L(n,k)) is generated by hy;h1,; (with hyhi i1 =0), gi, hi,

Ck+1,0 = E hj,ihk+1fj,i+ja
0<j<k+1
and, for k > n, Cyhy;.
(c) The only relations among products of elements in H' with the ex1, are
hii€k+1,i+1 — €x+1,ih1 k41 = 0. g

6.3.20. LEMMA. Let n > 2 and p > 2. Then H*(EqS(n)) is generated by the
elements b; ; for i <m —mn and by the elements of H*(L(n,m)).

PROOF OF 6.3.14(b). Again we look at the spectral sequence of 6.3.4(b). By
arguments similar to those for p = 2 one can show that

dy(bi ;) = h1isibio1y — h1jiibio1 41 fori>1
and
ds(em+1,i) = M mt1+i—nbm—n,i—1 — h1,ibm—pn,; where s=14+pn— (p—1)m,
and the remaining elements of H2(EyS(n)) survive as before. O
Now we will compute H*(S(n)) at all primes for n < 2 and at p > 3 for n = 3.

6.3.21. THEOREM.

(a) H*(S(1)) = P(h1,0) ® E(p1) for p =2;

(b) H*(S(1)) = E(hi o) forp > 2

[note that S(1) is commutative and that (1 = hy ).

Proor. This follows immediately from 6.3.3, 6.3.5, and routine calculation.
O

6.3.22. THEOREM. Forp > 3, H*(S(2)) is the tensor product of E((a) with the
subalgebra with basis {1, h1,0,h1.1, 90,91, goh1 1} where

gi = (P14, hiigr, b)),
hi091 = goh1,1, hiogo=hi,191 =0,
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and
hioh11 =hig=hi, =0.
In particular, the Poincaré series is (1 +1)%(1 +t +t2).

PROOF. The computation of H*(L(2,2)) by 6.3.8 or 6.3.9 is elementary, and
there are no algebra extension problems for the spectral sequences of 6.3.9 or
6.3.4(b). O

We will now compute H*(S(2)) for p = 3. Our description of it in the first
edition was incorrect, as was pointed out by Henn [1]. The computation given here
is influenced by Henn but self-contained. Henn showed that there are two conjugacy
classes of subgroups of order 3 in the group S3. In each case the centralizer is the
group of units congruent to one modulo the maximal ideal in the ring of integers of
an embedded copy of the field K = Qg3[(], where ( is a primitive cube root of unity.
Let C; and Cy denote these two centralizers. Henn showed that the resulting map

H*(S2) — H*(Cl) (&) H*(OQ)

is a monomorphism.
We will describe this map in Hopf algebraic terms. Choose a fourth root of
unity ¢ € Fg, let a = +¢, and consider the two quotients

5(2), =8(1,1); and  S2)_=S5(1,1),

where S(1,1), is the quotient of S(2) ® Fg described in 6.2.13. Henn’s map is
presumably equivalent to

(6.3.23) H*(S(2)) ® Fg — H*(S(2),) ® H*(S(2)_).

In any case we will show that this map is a monomorphism.
We have the following reduced coproducts in S(2), .

fl — 0
EQ — afl ®Zl
ts — ¥1®Zz+¥2®ﬁ—a3(¥f®fl+¥1®ff)

It follows that to + af? and t3 — t1t are primitive. The filtration of 6.3.1 induces

one on S(2),, and the methods of this section lead to

H*(S(2),) = E(h1,0, h2,0, h3,0) ® P(b1,0)
with the evident notation.
6.3.24. THEOREM. For p =3, H*(S(2)) is a free module over
E(¢2) ® P(b1,0)
on the generators

{la hl,Oa h1,17 bl,la ga ap, a1, b1,1€}7

where the elements ¢ € H? and ag,ay € H?® will be defined below. The algebra
structure is indicated in the following multiplication table.
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1 || hio | hin b1 § ag ay
hiof O 0 | =biohii| O —b1,1€ | —b1,0§
hi 0 b1,0h1,0 0 —b1,0§ | b11€
b1,1 —bi, b1,1& | —bipa1 | bioao

¢ 0 0 0
aq 0 0
ay 0

In particular, the Poincaré series is
(L4 8)*(1+t%)/(1—1).
Moreover the map of (6.3.23) is a monomorphism.

PROOF. Our basic tools are the spectral sequences of 6.3.10 and some Massey

product identities from Al.4. We have H*(L(2,1)) = E(h1,0,h1,1) ® P(b1,0,b11),
and a spectral sequence converging to H*(L(2,2)) with Ey = E((2,n)@H*(L(2,1)),
where

(2 = hoo+ha, n = ha1—hap,

dy(Gz) = 0, d2(n) = hiohi,
and E3 = E. Hence E is a free module over E({2) ® P(b1,,b1,1) on generators

{1, h10, h1,1, 9o, 91, h1,091 = h1190, },

where g; = (h1,4, R1,i+1, h1,;). This determines the additive structure of H*(L(2, 2)),
but there are some nontrivial extensions in the multiplicative structure. We know by
6.3.13 that we can factor out E((2), and we can write by ; as the Massey product
—(h1,i,h1,i,ha ;). Then by A1.4.6 we have hy;g9; = —b1h1i11, 97 = —b1,igit1,
gigi+1 = b1,:b1 ;41. These facts along with the usual hfz = hi1,0h1,1 = 0 determine
H*(L(2,2)) as an algebra.

This algebra structure allows us to embed H*(L(2,2)) in the ring

R = E((2, h1,0, h1,1) ® P(s0, s51)/(h1,0h1,1, h1,051 — h1,150)
by sending (2 and h;; to themselves and

bi; — —sf
go 851
g1 —  Soss.
Here the cohomological degree of s; is 2/3, and H *(L(2,2)) maps isomorphically
to the subring of R consisting of elements of integral cohomological degree.
Next we have the spectral sequence of 6.3.10 converging to

H*(L(2,3)) = H'(E"S(2))

with Fy = E(h,g,o, h371)®H* (L(Q, 2)), and do (h,g,i) = g; —bl,,‘+1. We will see shortly
that F5 = Eo, for formal reasons. Tensoring this over H*(L(2,2)) with R gives a
spectral sequence with
Ey = E(hso,h31)®R
and da(hso) = 51(5(2) + 5%)
dg(h371) = 80(83 + S?)
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This can be simplified by tensoring with Fg (which contains i = /—1) and defining

9 = hio+ihi 1 = hio—thi
Yo = So+181 Y1 = Sp— 181
2o = thso+hs; z1 = —ih3o+h3

The Galois group of Fg over F3 acts here by conjugating scalars and permuting the

two subscripts. Then we have
R® Fg = E((2, w0, 1) ® P(yo, y1)/(wox1, Toy1 — T1%0),

where the cohomological degrees of x; and y; are 1 and 2/3 respectively. In the
spectral sequence we have

(6.3.25) da(20) = Yo
The image of H*(L(2,2

and do(21) = you?.
))® Fg in R® Fg is a free module over the ring
B =E(G)® Py, 1)
on the following set of six generators.
C = {1, zo, x1, You1, Yoyi, Toyoyi = T1Y3y1 }
Hence the image of E(hs g, h3 1) ® H*(E(Q, 2

{]-7 20, 21, Z()Zl} ® Ca

)) ® Fy is a free B-module on the set

but it is convenient to replace this basis by the set of elements listed in the following
table.

1 Z0 z1 Z0%1
To To20 B = x021 — X120 —Z020%1
I 0= —T120 — X<l 121 T12021
y§y1 Q) = y%ylzo - yézl €= y8y121 - yOy%ZO y8y12021
yoy% Y= _?JO?/%ZO - y3y121 Qp = yoy%zn - y;‘f’zo _yOy%ZOZI
xoyoy% —Zo€ T1€ Sﬂoyoy%Zoﬁ

This basis is Galois invariant up to sign, i.e., the Galois image of each basis element
is another basis element. The elements 1, zoyoy?, §, and 7 are self-conjugate, while
B, €, 2021 and ToYoYiz02z1 are antiself-conjugate. The remaining elements form
eight conjugate pairs.

In the spectral sequence the following twelve differentials (listed as six Poincaré
dual pairs) are easily derived from (6.3.25) and account for each of these 24 basis
elements.

dQ(ZO) = y0y1 dg(l'lz()zl) = I1€

do(z1) = yoyi da(— 5802’021) = —xoe
da(2021) = € d2(6) = woyoy:
da(wozo) = yi(e1) da(ygyiz0z1) = yg(ao)
da(121) = yi(wo) da(—=yoyizoz1) = yi(an)

d2(v) = wpyi(1) da(zoyoyiz0z1) = yayi(6)

The spectral sequence
t > 1. The image of H*(L(2

by

collapses from Ej3 since there are

{1, xo, z1, a0, 11, B}

no elements in Ej*
,3)) ® Fg in the E-term is the B-module generated

for
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subject to the module relations

yoyi(l) = 0, yoyi(B) = 0,
yg(z1) = 0, ys(ag) = 0,
yi(zg) = 0, and () = 0.

The only nontrivial products among these six elements are
Toa = —yop and Tia0 = Yip.
Equivalently the image is the free module over E((2) ® P(y3 +v3) on the eight

generators

(6326) {13 o, L1, y%7 ﬁ7 Qp, (O, y?ﬁ}

with suitable algebra relations.
It follows that H*(E°S(2)) itself is a free module over E({3) ® P(by ) on the
eight generators

{1, h1,0, h1,1, b11, &, ao, a1, bi1&}.
where
£ =10, ag = ag + aq, and ar = i(ag — aq).
It also follows that EY H*(S(2)) has the relations stated in the theorem. The absence
of nontrivial multiplicative extensions in H*(5(2)) will follow from the the fact that
the map of (6.3.23) is monomorphic and there are no extensions in its target.

Now we will determine the images of the elements of (6.3.26) under the map of
(6.3.23). Recall that

H*(5(2),) = E(h1,0, ho,0, h3,0) @ P(b1,0)
As before it is convenient to adjoin a cube root sy of —51,0 and let
Ry = E(h1,0, h2,0) ® P(50).

The map
H*(S(2)) @ Fg — E(h30) ® Ry ® E(hs o) © R-

behaves as follows.

rog +— (0, —hio) 1 — (=hi, 0)
yo — (0, =5o) yi — (=50, 0)
20 [d (—iﬁg’o,_O) _ _ z1 [ (0, Z.hgy())
B (—ihiohso, —ihiohs0) B
(67 [d (’L'gghgyo, 0) (6751 [ (0, 72‘58}1370)
It follows that Henn’s map is a monomorphism. ([

We now turn to the case n = p = 2. We will only compute EYH*(S(2)), so
there will be some ambiguity in the multiplicative structure of H*(S(2)). In order
to state our result we need to define some classes. Recall (6.3.12) that H!(S(2)) is
the Fa-vector space generated by hi,0, 1,1, (2 and p2. Let

(&7s] S <<27h1,07h1,1>7 ﬂ S <h1,07<-2)c227h1,1>7 g = <h7h27h’7h2>;

where h = hi g + h11, @ = (x,h,h?) for x = (o, ap, (3, and apls (more precise
definitions of ap and 8 will be given in the proof).
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6.3.27. THEOREM. E°H*(S(2)) for p = 2 is a free module over P(g) @ E(p2)
on 20 generators: 1, hy 0, h11, h%)o, hil, h%,o; B, Bhio, Bhi1, Bh%’o, ﬁh%,l, 6h§’70,
(2, g, €3, apCa, s, o, 522, aoCa, where a € H?(S(2)) and has filtration degree 4,
B € H3(S(2)) and has filtration degree 8, g € H*(S(2)) and has filtration degree 8,
and the cohomological and filtration degrees of T exceed those of x by 2 and 4,
respectively. Moreover h?,o = hi’,p at = 522, and all other products are zero. The
Poincaré series is (1 +1)2(1 —5)/(1 — t)2(1 + t2).

PRrROOF. We will use the same notation for corresponding classes in the various
cohomology groups we will be considering along the way.

Again our basic tool is 6.3.10. It follows from 6.3.5 that H*(E(S(2)) is the
cohomology of the complex

P(h1,0,h1,1,C2,h2,0) ® E(hs 0, hs,1,p2, hayp)
with
d(h1,;) = d(¢2) = d(p2) = 0,
d(hs3) = h1,iC2, d(hapo) = h1oh11,

and

d(hao) = h1ohs1 +hi1hso+ G

This fact will enable us to solve the algebra extension problems in the spectral
sequences of 6.3.10.

For H*(i(2,2)) we have a spectral sequence with Ey = P(hy 9, h1,1,C2,h2,0)
with da(¢2) = 0 and da(ha,0) = h1,0h1,1. It follows easily that

H*(L(2,2)) = P(h1,0,h1,1,C2,b2,0)/ (h1,0h1,1)
where b3 o :~h§’0 = (h1,0,h1,1,h1,0,h1,1).
For H*(L(2,3)) we have a spectral sequence with

= E(hgp7 hg,l) ® H* (L(Q, 2))
and dg(hg,i) = hLiCQ. Let
a; = hyip1hs; + Chay € (G, hii, hijigr)-

Then H*(L(2,3)) as a module over H*(L(2,2)) is generated by 1, g, and «; with

Coh1i = Glao + a1 + (3) = b = Gahaip10; = 0
and
af = (3bao,  af =GG(G +b20),  aoar = G (ag + bay).
The Poincaré series for H*(L(2,3)) is (1 +t+t2)/(1 —t?).

For H*(L(2,4)) we have a spectral sequence with

Ey = E(hay, p2) ® H*(L(2,3)),
da(p2) = 0, and da(hy ) = ap + a;. Define 3 € H3(L(2,4)) by
B =hao(ao+ a1+ () + Cohsohs € (h10,(2, (5 h1a).
Then H*(L(2,4)) is a free module over E(py) @ P(bs,) on generators 1, hi i o
(2, ap, apls, B, and ﬂhii, where t > 0. As a module over H*(L(2,3)) ® E(p2)
it is generated by 1 and 3, with (ap + 1)1 = (3(1) = ap3(1) = 0. To solve
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the algebra extension problem we observe that 5(> = 0 for degree reasons; fa; =

B{Ca, h1,i, h1it1) = (B, (2, h1,i)h1i+1 = 0 since (B, (2, h1 ;) = 0 for degree reasons;

and E(ps) splits off multiplicatively by the remarks at the beginning of the proof.
This completes the computation of H*(EyS(2)). Its Poincaré series is

(14 t)2/(1 — t)2. We now use the second May spectral sequence [6.3.4(b)] to

pass to ECH*(S5(2)). H*(EyS(2)) is generated as an algebra by the elements hy o,

hi1, G2, p2, o, bao, and 3. The first four of these are permanent cycles by 6.3.12.
By direct computation in the cobar resolution we have

(6.3.28) d(ts + t113) = @ @ b1,

so the Massey product for ag is defined in H*(S(2)) and the «p is a permanent
cycle. We also have

Aty @ta+1 @3ty + 11t @) =t 9, @t + 12 12 D 13,

50 da(bz0) = hi o+ h? . Inspection of the s term shows that b3 , = (h, h?, h, h?),
(where h = hy1 9+ hi11) is a permanent cycle for degree reasons.

We now show that 3 = (h1,0, (2, (3, h1,1) is a permanent cycle by showing that
its Massey product expression is defined in E°H*(S(2)). The products hy o2 and
(2hy 1 are zero by 6.3.28 and we have

(6.3.29) A3 @t + Dotz @3 + To @ty + To @t + To @ (1 +t2 +13))
=TT ®Ts,

where 3 = t3 + t1t2 and Ty = to + 2 + 13, s0 (3 = 0 in H*(S(2)). Inspection of
H3(E(S(2)) shows there are no elements of internal degree 2 or 4 and filtration
degree > 7, so the triple products (h1 o, (2, ¢3) and ({2, (3, h1,1) must vanish and 3
is a permanent cycle.

Now the Ej term is a free module over E(ps) ® P(b3,) on 20 generators: 1,
hio, b1, b, hiy, h3 o =R}, B, Bhio, Bhiy, BRI 1, Bites Bh3 o, Cos 0, (3, oo,
C2b1.0, apba o, §22b2707 C200b2,0. The last four in the list now have Massey product
expressions ((a, b, h?), (ao, h, h?), (C2, h, h?), and (ag, (2, h, h?), respectively. These
elements have to be permanent cycles for degree reasons, so F3 = F,, and we have
determined E°H*(S(2)). O

We now describe an alternative method of computing H*(S(2) ® F4), which is
quicker than the previous one, but yields less information about the multiplicative
structure. By 6.3.4, this group is isomorphic to H*(S2;F4), the continuous coho-
mology of certain 2-adic Lie group with trivial coefficients in Fy, S is the group
of units in the degree 4 extension Fs of Zs obtained by adjoining w and S with
Ww4+w+1=0,5%=2and Sw=w?S.

Let @ denote the quaternion group, i.e., the multiplicative group (with 8 ele-
ments) of quaternionic integers of modulus 1.

6.3.30. PROPOSITION. There is a split short exact sequence of groups
(6.3.31) 1G58 L0 —1.
The corresponding extension of dual group algebras over is
Q. 5 5(2) = G,

where Q. = Fylz,y]/(z* — 2, y?> —y) and G, = S(2)/(t1,ts +wt3) as algebras where
Je(@) = t1, ju(y) = @ty + 0a*t3, and & is the residue class of w.
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PRrOOF. The splitting follows the theory of division algebras over local fields
(Cassels and Frohlich [1, pp. 137-138]]) which implies that Fs ® Qg is isomorphic
to the 2-adic quaternions. We leave the remaining details to the reader. O

6.3.32.
(a) H*(Q;F2) = P(h1o,h11,9)/(h1oh11,hY o + b3 ).
(b) H*(G;F2) = E(Ca, p2, 3.0, h31)-

PROOF. Part (a) is an easy calculation with the change-to-rings spectral se-
quence (A1.3.14) for Fa[z]/(z* + 2) — Q. — Fay]/(y* +y). For (b) the filtration
of S(2) induces one on G,. It is easy to see that E°G, is cocommutative and the
result follows with no difficulty. O

6.3.33. PROPOSITION. In the Cartan—FEilenberg spectral sequence for 6.3.31,
E3 = E and we get the same additive structure for H*(S(2)) as in 6.3.27.

PROOF. We can take H*(G) ® H*(Q) as our Fi-term. Each term is a free
module over E(p2) ® P(g). We leave the evaluation of the differentials to the
reader. O

Finally, we consider the case n = 3 and p > 5. We will not make any attempt
to describe the multiplicative structure. An explict basis of ECH*(S(3)) will be
given in the proof, from which the multiplication can be read off by the interested
reader. It seems unlikely that there are any nontrivial multiplicative extensions.

6.3.34. THEOREM. For p > 5, H*(S(3)) has the following Poincaré series:
(1+6)%(1 4t + 662 + 3> + 6t* + t° + 1°).

PrOOF. We use the spectral sequences of 6.3.9 to compute H*(L(3,2)) and
H*(L(3,3)). For the former the Es-term is H(h1;) ® E(he;) with ¢ € Z/(3),
dg(hl,i) = 0 and dg(hgﬂ') = hl,ihl,i—i-l- The Poincaré series for H*(L(?),Q)) is
(14)2(1 +t + 5t2 + 13 + t*) and it is generated as a vector space by the following
elements and their Poincaré duals: 1, hi;, g; = hiih2i, ki = hoihiiq1, €35 =
hl,ih2i+1 + h2,ih1,i+2 (where ZZ €31 = 0)7 gihl,i+1 = hl,iki = hl,ih2,ih1,i+1a and
hiiesi = gihiir2 = h1ihaihyivo.

For H*(L(3,3)) we have Ey = E(hs; ® H*(L(3,2))) with da(hs;) = e3,, so
da(D> " hs i) =0. H*(L(3,3)) has the indicated Poincaré series and is a free module
over E((3), where (3 = hs;, on the following 38 elements and the duals of their
products with (3:

1, Ry, Gis ki, b1i42 = hiihss + haihoivo + haihi,
gih1iv1 = hig, ki, highoihoive, hiihoihoivt 4+ haihaiviha g,
hishaihs s, hiihoivohsiti, Z(h1,¢h2,¢+1 — hii41hoi2)hs, hiikihs ;

(Where hl,iki Zj hg_’j is divisible by Cg), and hl,i+2h1,ih2,i(h3,i + h377;+1) +
hiih2oh2,1h2 2. O

4. The Odd Primary Kervaire Invariant Elements

The object of this section is to apply the machinery above to show that the
Adams-Novikov element 3/, € Ext® (see 5.1.19) is not a permanent cycle for
p > 2 and ¢ > 0. This holds for the corresponding Adams element b; (4.3.2) for
p >3 and i > 0; by 5.4.6 we know 3, maps to b;. The latter corresponds to the
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secondary cohomology operation associated with the Adem relation p=1p" pr’ —
-+ The analogous relation for p = 2 is S¢? S¢® = -- -, which leads to the element
h?, which is related to the Kervaire invariant by Browder’s theorem, hence the title
of the section. To stress this analogy we will denote By ;i by 6;.

We know by direct calculation (e.g., 4.4.20) that 6y is a permanent cycle cor-
responding to the first element in coker J. By Toda’s theorem (4.4.22) we know 6,
is not a permanent cycle; instead we have da,_1(61) = 16} (up to nonzero scalar
multiplication) and this is the first nontrivial differential in the Adams—Novikov
spectral sequence. Our main result is

6.4.1. ODD PRIMARY KERVAIRE INVARIANT THEOREM. In the Adams—Novikov
spectral sequence for p > 2 dap_1(0i+1) = a16? mod ker 0y (up to nonzero scalar
multiplication) where a; = p(p* —1)/(p — 1) and 167 is nonzero modulo this inde-
terminacy. [l

Our corresponding result about the Adams spectral sequence fails for p = 3,
where by is a permanent cycle even though b; is not.

6.4.2. THEOREM. In the Adams spectral sequence for p > 5 b; is not a perma-
nent cycle for i > 1. O

From 6.4.1 we can derive the nonexistence of certain finite complexes which
would be useful for constructing homotopy elements with Novikov filtration 2.

6.4.3. THEOREM. There is no connective spectrum X such that
BP.(X) = BP./(p,o} v} )
fori>0 andp > 2.

PRrROOF. Using methods developed by Smith [1], one can show that such an X
must be an 8-cell complex and that there must be cofibrations

(i) x2' -y Ly x,

(i) 22" =Dy (0) L V(0) - Y,

(iil) =2 @DV (0) L v (0) — Y7,
where V(0) is the mod (p) Moore spectrum, g and ¢’ induce multiplication by v]fi
in BP,(V(0)) = BP,/(p), and f induces multiplication by v in

BP,(Y) = BP,(Y') = BP,/(p,"").
V(0) and the maps g, g’ certainly exist; e.g., Smith showed that there is a map
a: 2Py (0) — V(0)

which includes multiplication by vy, hence af' induces multiplication by v i, but it
may not be the only map that does so.

Hence we have to show that the existence of f leads to a contradiction. Consider
the composite

§2r' (0*-1) I, w2 -1y Ly K, §2+2p' (p=1)

where j is the inclusion of the bottom cell and k is the collapse onto the top cell.
We will show that the resulting element in ngi+1(p_1)_2 would be detected in the
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Novikov spectral sequence by 6;, thus contradicting 6.4.1. The cofibrations (ii) and
(iii) induce the following short exact sequence of BP* modules

i 0P i
0 — 2 ®=Vpp,/(p) - BP./(p) — BP./(p,v} ) — 0,
and the cofibration
S0 2,89 v (0)
induces
0— BP, . BP, — BP,/(p) — 0.
Hence we get connecting homomorphisms
612 Ext’(BP./(p, o} ) — Ext'(BP./(p))
and
So: Ext'(BP./(p)) — Ext*(BP,).
The element fj € 7pi(p2_1)(Y”) is detected by o8 € Ext®(BP,/(p,v"")). We know
(5.1.19) that '
0; = 6001 (%) € Ext*(BP,)
detects the element kfj € wfpiﬂ(p_l)_Q. (]

The statement in 6.4.1 that «16? is nonzero modulo the indeterminacy is a
corollary of the following result, which relies heavily on the results of the previous
three sections.

6.4.4. DETECTION THEOREM. In the Adams—Novikov Eo-term for p > 2 let 0!
be a monomial in the 0;. Then each 01 and 1607 is nontrivial. O

We are not asserting that these monomials are linearly independent, which
indeed they are not. Certain relations among them will be used below to prove
6.4.1. Assuming 6.4.4, we have

PROOF OF 6.4.1. We begin with a computation in Ext(BP./(p)). We use the
symbol 6; to denote the mod p reduction of the 6; defined above in Ext(BP;). We
also let h; denote the element —[t’fl]. In the cobar construction we have

1 S
dlta] = —[t1|th] + v Z - (p) [t 107
0<j<p P\J
S0
(645) U190 = —hohl.

May [5] developed a general theory of Steenrod operations which is applicable to
this Ext group (see A1.5). His operations are similar to the classical ones in ordinary
cohomology, except for the fact that PY # 1. Rather we have PY(h;) = h;y1 and
P%(0;) = ;1. We also have 3P%(h;) = 6;, BP°(6;) = 0, BP°(v1) = 0, P*(6;) = 67
and the Cartan formula implies that PP’ (67') = 67" . Applying BP° to (6.4.6)
gives
(6.4.6) 0= 6pha — hi10;.

If we apply the operation PP PP~ ... P! to (6.4.5) we get

(6.4.7) h1sif? = hoy 08
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Now associated with the short exact sequence
0— BP, & BP, — BP,/(p) — 0
there is a connecting homomorphism
§: Ext®*(BP,/(p)) — Ext**'*(BP,)
with d(h;4+1) = 6;. Applying 0 to 6.4.7 gives
(6.4.8) 0,0 = 01100 € Ext(pp._pp.)(BP., BP,).

We can now prove the theorem by induction on i, using 4.4.22 to start the
induction. We have for i > 0

dop1(0:41)08 = dop1(0:116F))
= dap1(0,67)
= d2p—1(9i)9§)i
= hot”_ 0" mod ker g
= ho(6;_167" )P
= ho(6:68 )P
= hot?0"'

SO
dop—1(0i+1) = hof? mod ker 6. O

We now turn to the proof of 6.4.4. We map Ext(BP,) to Ext(v,, ! BP,/I,,) with
n = p— 1. By 6.1.1 this group is isomorphic to Exts,)(K(n)., K(n).), which is
essentially the cohomology of the profinite group S, by 6.2.4. By 6.2.12 S,, has
a subgroup of order p since the field K obtained by adjoining pth roots of unity
to Qp has degree p — 1. We will show that the elements of 6.4.4 have nontrivial
images under the resulting map to the cohomology of Z/(p). In other words, we
will consider the composite

BP,(BP) — X(n) — S(n) @ Fpn — C,
where C' is the linear dual of the group ring Fy»[Z/(p)].
6.4.9. LEMMA. Let C be as above. As a Hopf algebra
C=Fplt]/(t?P —t) with At=t®1+1ct.

PrROOF. As a Hopf algebra we have F,n[Z/(p)] = Fpn[u]/(u? — 1) with Au =
u®u, where u corresponds to a generator of the group Z/(p). We define an element
t € C by its Kronecker pairing (u’,t) = i. Since the product in C is dual to the
coproduct in the group algebra, we have

(', t) = (Au') t@ " 71) = (', ) (u’ ")
so by induction on k
(6.4.10) (u', t*y =i
We also have (u’,1) = 1.
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We show that {1,¢,¢2,...,tP71} is a basis for C by relating it to the dual basis
of the group algebra. Define z; € C' by

z= > ()"

0<k<p

for0<j<pandzo=1+3_; ;. Then

W) = (o, 3 G0F) = 3

0<k<p 0<k<p
. —1 ifij=1 modp
- st {t e
0shep otherwise
and
1 ifi=0
u' xg) = (u', 1+ Ti) =
(', o) < 0223> {0@#0
<j<p

so {xg, —x1, —x2,...,—xp_1} is the dual basis up to permutation.

Moreover, 6.4.10 implies that t» = ¢ so C' has the desired algebra structure.
For the coalgebra structure we use the fact that the coproduct in C' is dual the
product in the group algebra. We have

Wouw tel+let)=i+j
and
(' @ul, At)) = (ut t)y=i+j
SO At=t®1+1®t. |

To proceed with the proof of 6.4.4; we now show that under the epimorphism
J: £(n) @xny. Fpn — € (wheren =p—1), f(t1) #0.

From the proof of 6.2.3, ¢; can be regarded as a continuous function from S,, to
F,n. It follows then that the nontriviality of f(¢1) is equivalent to the nonvanishing
of the function ¢; on the nontrivial element of order p in S,,. Suppose z € S,_; is
such an element. We can write

=1+ Z ;S

i>0
with e; € W(Fp») and ef" = ¢;. Recalling that SP~! = p, we compute
1=a2?=1+pe; S+ (e1S)? mod (S)1?

and
(e19)P = egpp—l)/(p—l)sp mod (§)'+7
so it follows that )
er 4P/ =g mod (p).

[Remember that ¢1(z) is the mod (p) reduction of e;.] Clearly, one solution to
this equation is e; = 0 mod (p) and hence e; = 0. We exclude this possibility by
showing that it implies that x = 1. Suppose inductively that e; = 0 for ¢ < k. Then
r=1+ ekSk mod (S**1) and 2P = 1 + perS¥ mod (S¥*P) so e, = 0 mod (p).

Since ez — e, = 0, this implies e, = 0.
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Hence, f is a map of Hopf algebras, f(¢1) primitive, so f(t1) = ¢t where ¢ € Fyn
is nonzero. Now recall that

Exto(Fpn, Fypn) = H(Z/(p); Fpr) = E(h) @ P(b),

where E() and P() denote exterior and polynomial algebras over F,», respectively,

h=[t] € H', and
1 . .
b= Z — (p) [t7tP~7] € H?.
O<j<pp J
Let f* denote the composition

Ext(BP,) — Ext(v,, 'BP,/I,)
= Exty(n) (K (n)x, K(n)) = Exto(Fyn, Fyn) = H*(Z/(p); Fypr).

Then it follows that f*(hg) = —ch and f*(b;) = —c?""'b and 6.4.4 is proved.

Note that the scalar ¢ must satisfy 14 ¢®"~P)/(P=1) = 0. Since ¢?* =1 = 1, the
equation is equivalent to 1 + P =D/(=1) = . Tt follows that ¢ = w®~1/2 for
some generator w of F:p,l, so ¢ is not contained in any proper subfield of F,»-1.
Hence tensoring with this field is essential to the construction of the detecting

map f.

Now we examine the corresponding situation in the Adams spectral sequence.
The relations used to prove 6.4.1 (apart from the assertion of nontriviality) are
also valid here, but the machinery used to prove 6.4.4 is, of course, not available.
Indeed the monomials vanish in some cases. The following result was first proved
by May [1].

6.4.11. PROPOSITION. For p = 3, hob? = 0 in Exta,(Z/(3),Z/(3)); i.e., by
cannot support the expected nontrivial differential.

PROOF. We use a certain Massey product identity (A1.4.6) and very simple
facts about Ext,(Z/(3),Z/(3)) to show hob? = 0. We have
h()b% S —h0<h1, hl, h1>bl = —<h0, hl, h1>h1b1.
By (647) hlbl = hgbo7 SO
hob? = —(hg, h1, h1)habg = —(h1, ho, h1)habg = —hy(hg, b1, ha)bg.

The element (hq, h1,hs) is represented in the cobar construction by £7|&s + £5|&1,
which is the coboundary of &3, so hob? = 0. (]

The case of by at p = 3 is rather peculiar. One can show in the Adams—
Novikov spectral sequence that ds(57) = ialﬁg /- (This follows from the facts
that ds(Bs) = 1870373, 61 = £P1Br, Babssz = £618es3, and 335 = 6763
We leave the details to the reader.) Hence By/9 & 37 is a permanent cycle mapping
to by. The elements (7 and alﬁg’/g = ia16%ﬁ6/3 correspond to Adams elements in
filtrations 8 and 10 which are linked by a differential. We do not know the fate of
the b; at p =3 for ¢ > 2.

To prove 6.4.2 we will need two lemmas.

6.4.12. LEMMA. Forp >3
i+2
(i) Ext>9P " (BPy) is generated by the [(i + 3)/2] elements B, ; jpi+s—2i, where

J=12,..,[(i+3)/2], aij = (P2 +p"T3727) /(p+1), and [(i+3)/2] is the largest
integer < (i + 3)/2. Each of these elements has order p.
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(i) Each of these elements except Bpit1pi1 reduces to zero in
Ext>? " (BP*/I3). O

6.4.13. LEMMA. For p > 5, any element of Ext2% (BPy) (for i > 0) which
maps to b1 in the Adams Ea-term supports a nontrivial differential dop—_. O

We have seen above that 6.4.13 is false for p = 3.

Theorem 6.4.2 follows immediately from 6.4.13 because a permanent cycle in
the Adams spectral sequence of filtration 2 must correspond to one in the Adams—
Novikov spectral sequence of filtration < 2. By sparseness (4.4.2) the Novikov
filtration must also be 2, but 6.4.13 says that no element in Ext?(BP,) mapping to
b; for ¢ > 1 can be a permanent cycle.

PROOF OF 6.4.12. Part (i) can be read off from the description of Ext®*(BP,)
given in 5.4.5.

To prove (ii) we recall the definition of the elements in question. We have short
exact sequences of BP,(BP)-comodules

(6.4.14) 0 — BP, — BP, % BP,/(p) — 0.
pit3—2j its_2;
(6.4.15) 0 BP./(p) “—— BP./(p) = BP./(p.v] " ) —0.

Let §p and d;, denote the respective connecting homomorphisms. Then we have
v5"' € Exthp pp(BP., BP./(p,v;"* %)) and B,, pr+a-2; = dod1(vy™?). The ele-
ment (pi+1/,i+1 the above element for j = 1) can be shown to be b;y; as follows.
The right unit formula 4.3.21 gives

(6.4.16) nr(v2) = ve + v1th — vty mod (p),

it+1 i+2 i+2 i+l il
D _p'  p' T —p P
61(vy ) =1 U1 y

and 50(15’1’“2) = b;j+1. Moreover 6.4.16 implies that in Ext(BP./(p)),

pit2_1

v o =ob t1.

P’ pi+l ~ PP P
vy ty v; t;, so v

=1
. i4+2
This element is the mod (p) reduction of p~*=25p(v] ) and is therefore in ker &y.
it1 i+2

Hence 6001 (v5 ! ) =00(t] ) =bit1.

This definition of B,i+1 /i1 differs from that of 5.4.5, where for i > 0 it is

2 2 2 i

defined to be 8ody (v —oP Tl PP

In principle one can compute this element explicitly in the cobar complex
(A1.2.11) and reduce mod I3, but that would be very messy. A much easier
method can be devised using Yoneda’s interpretation of elements in Ext groups
as equivalence classes of exact sequences (see, for example, Chapter IV of Hilton

and Stammbach [1]) as in 5.1.20(b). Consider the following diagram.
(6.4.17)

i+3-3j s
z —=<]

0 BP. BP."— BP./(0) ="~ BP,/(p, o} ") —>0

Ll’l LZ& lps ’
i+3—2j

0 — BP./(p,v1,v2) My M BP,/(p,v? ) —0.

p
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The top row is obtained by splicing 6.4.14 and 6.4.15 and it corresponds to an
i4+3—27

element in Ext?(BP,/(p, v? ), BP.). Composing this element with
0§ € BxtO(BP, /(p,oi**%))

gives ﬂai,j/pi+3*2j-

We let p; be the standard surjection. It follows from Yoneda’s result that if we
choose BP,BP-comodules M; and M>, and comodule maps ps and ps such that
the diagram commutes and the bottom row is exact, then the latter will determine
the element of

Ext%p, pp(BP./(p, vy "), BP./(p,v1,v3))
which, when composed with v;i'j, will give the mod I3 reduction of ﬁaiyj/pi+372j. We

choose My = BP,/(p?,pv1,v?,pvs) and My = BP*/(p,vf“’Hs*Q]) and let po and
ps be the standard surjections. It is easy to check that M; and M, are comodules
over BP,(BP), i.e., that the corresponding ideals in BP, are invariant. (The ideal
used to define M is simply I3 + I113.) Moreover, the resulting diagram has the
desired properties.

The resulting bottom row of 6.4.17 is the splice of the two following short exact
sequences.

(6.4.18) 0 — BP,/(p,v1,v2) = BP,/(p*, pv1,pv2,v7) — BP,/(p,v}) — 0,
pit3—2j

(6.4.19) 0 — BP,/(p,v?) 2— BP, /(p,v>*"""

+3-25

) — 0.

2j

) — BP./(p, "

Let 4}, 7 denote the corresponding connecting homomorphisms. The elements we

are interested in then are §)d] (vy"?)

To compute & (vy"?) we use the formula d(v}) = (vy + vivit] — vit)™ — v,
o4 pit3—2i

implied by 6.4.16, in the cobar construction for BP,/(p, vy ). Recall that
aij =@ +p ) /(p+1) 1< <[ +3)/2]
Hence a;; = p™*2 mod (p1-%) and d(vg™) = oo [t s0

y by i r,pit3—20
0i(vy") = vty ],

where b; j = a; ; — p™* ¥ = (p'*? — pT) [(p+ 1).
For j = 1, bi,l =0 and
a;, 1 p kp* —k)p®
ot == 30 2 (B) e = b
0<k<p
For j > 1, b; ; is divisible by p and d(vgi’j) =0 mod (p?,pvy,v?) and
vgi’jd(t’fiﬂ_%) =0 mod (pva),
so 8jvy™ € Ext'(BP,/(p,v?})) pulls back in 6.4.17 to an element of
Ext!(BP,/(p?, pv1, pva,v?)) and  6,0](vy™?) = 0,
completing the proof. O

PROOF OF 6.4.13. Any element of Ext2% (BPy) can be written uniquely as
cbiy1 + = where z is in the subgroup generated by the elements f,, ; /pi+s—2; for



220 6. MORAVA STABILIZER ALGEBRAS

j > 1. In 5.4.6, we showed that x maps to zero in the classical Adams Es-term.
Hence it suffices to show that no such x can have the property

dop—1(z) = dap—1(bi+1)

By 5.5.2 for p > 5 there is an 8-cell spectrum V(2) = M(p,v1,v2) with
BP,(V(2)) = BP./(p,v1,v2), and a map f: S° — V(2) inducing a surjection
in BP homology. f also induces the standard map

f«: Ext(BP,) — Ext(BP,/I3).

Lemma 6.4.12 asserts that f.(fBa,/pits-21) = 0 for j > 1, so fu(dzp-1(z)) = 0
where x is as above. However, 6.4.1 and the proof of 6.4.4 show that

gx(dap—1(biv1)) # 0,
where g, is induced by the obvious map
g: BP, — v, \BP, /I, ;.

Since g factors through BP, /I3, this shows that f.(dap—1(bit1)) # 0, completing
the proof. ([l

5. The Spectra T'(m)

In this section will we construct certain spectra T'(m) and study the corre-
sponding chromatic spectral sequence. T'(m) satisfies

BP,(T(m)) = BP,[t1,ts,. .., tm] C BP.(BP,)

as a comodule algebra. These are used in Chapter 7 in a computation of the Adams—
Novikov FEs-term. We will see there that the Adams—Novikov spectral sequence for
T(m) is easy to compute through a range of dimensions that grows rapidly with
m, and here we will show that its chromatic spectral sequence is very regular.

To construct the T'(m) recall that BU = QSU by Bott periodicity, so we
have maps QSU(k) — BU for each k. Let X(k) be the Thom spectrum of
the corresponding vector bundle over QSU(k). An easy calculation shows that
H.(X(k)) =Z[by,ba,...,bg—1] C H(MU). Our first result is

6.5.1. SPLITTING THEOREM. For any prime p, X (k)(y) is equivalent to a wedge
of suspensions of T'(m) with m chosen so that p™ < k < p™*!, and BP.(T(m)) =
BP.[t1,...,tm] C BP.(BP). Moreover T(m) is a homotopy associative commuta-
tive Ting spectrum. (Il

From this we get a diagram
Sty =T(0) = T(1) > T(2) = --- — BP.

In Ravenel [8, §3] we show that after p-adic completion there are no essential maps
from T'(3) to T'(j) if ¢ > j or from BP to T'(3).

This theorem is an analog of 4.1.12, which says that MU, splits into a wedge
of suspensions of BP, as is its proof. We start with the following generalization of
4.1.1.

6.5.2. DEFINITION. Let E be an associalive commutative ring spectrum. A
complex orientation of degree k for E is a class g € E*(CP¥) whose restriction
to E?(CP) = 1o(E) is 1. O
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A complex orientation as in 4.1.1 is of degree k for all £ > 0. This notion is
relevant in view of

6.5.3. LEMMA. X (k) admits a complex orientation of degree k.

Proor. X(k) is a commutative associative ring spectrum (up to homotopy)
because QSU (k) is a double loop space. The standard map CP*~! — BU lifts to
QSU (k). Thomifying gives a stable map CP* — X (k) with the desired properties.

[l

X (k) plays the role of MU in the theory of spectra with orientation of degree
k. The generalizations of lemmas 4.1.4, 4.1.7, 4.1.8, and 4.1.13 are straightforward.
We have

6.5.4. PROPOSITION. Let E be an associative commutative ring spectrum with
a complez orientation i € Ey(CP*) of degree k.

(a) E*(CP*) = m(B)[zp]/(a}).

(b) E*(CP* x CP*) = m.(E)[zg @ 1,1 @ zp] /(25 @ 1,1 @ ).

(c) For 0 < i < k the map t: CP? x CP*~" — CP* induces a formal group
law k-chunk; i.e., the element t*(xg) in the truncated power series ring

’/T*(E)[xE & ].,].®{EE]/(£IJE ®1,1 ®$E)k+l

has properties analogous to an formal group law (A2.1.1).

(d) B (X (k) = m(E)[bE,...,bF || where bF € Es(X(k)) is defined as in
4.1.7.

(e) With notation as in 4.1.8, in (E A X (k))?(CP*) we have

Exgy = Y bPEYT where by=1.
0<i<k—1

This power series will be denoted by gg(iE).
(f) There is a one-to-one correspondence between degree k orientations of E
and multiplicative maps X (k) — E as in 4.1.13. O

We do not have a generalization of 4.1.15, i.e., a convenient way of detecting
maps X (k) — X (k), but we can get by without it. By 6.5.4(f) a multiplicative map
g: X(k)py — X(k)(p) is determined by a polynomial f(z) = >, o_; fiz' T with
Jo=1and f; € moi(X(k))). In this range of dimensions 7, (X (k)) is isomorphic
to m.(MU), so we can take f(z) to be the truncated form of the power series of
A2.1.23. Then the calculations of 4.1.12 show that ¢ induces an idempotent in
ordinary or BP,-homology. In the absence of 4.1.15 it does not follow that g itself
is idempotent. Nevertheless we can define

T(m) = limg X(k‘)(p),

i.e., T'(m) is the mapping telescope of g. Then we can compose the map X (k)(,) —
T'(m) with various self-maps of X (k) to construct the desired splitting, thereby
proving 6.5.1.

Now we consider the chromatic spectral sequence for T'(m). Using the change-
of-rings isomorphism 6.1.1, the input needed for the machinery of Section 5.1 is
Exts(n) (K (n)s, K(n)«(T(m))) where K (n).(T(m)) = K(n)«[t1,...,tm]. Using no-
tation as in 6.3.7, let X(n,m + 1) = X(n)/(t1,...,tm). Then we have
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6.5.5. THEOREM. With notation as above we have

Exts(n) (K (1)«, K (n).(T (m)))
= K(n)* [un+1a sy un-l—m] ®K(n)* EXtZ(n,erl) (K(n)*, K(”)))

where dimu; = dimuv;. Moreover w; maps to v; under the map to
Exty;(n) (K (1), K(n)«(BP)) = B(n). (6.1.11) induced by T(m) — BP. In other
words its image in K(n).(BP) coincides with that of nr(vj) € BP,(BP) under the
map BP,(BP) — K(n).(BP). O

Applying 6.3.7 gives

6.5.6. COROLLARY. Ifn<m+2 andn <2(p—1)(m+1)/p then

Exty(n) (K (n)«, K(n)«(T(m)))
= K(n)u[tunt1s. s Unim) @ E(hgj:m+1<k<m+n, jeZ/(n)).
(]
PROOF OF 6.5.5. The images of ngr(v,+;) (for 1 < j < m) in K(n).(T(m))
are primitive and give the w,;. The image of BP,(T'(m)) — BP,(BP) — X(n)

is the subalgebra generated by {t,: n < m}. The result follows by a routine
argument. (I

Now we will use the chromatic spectral sequence to compute Ext®(BP,(T(m)))
for s = 0 and 1. We assume m > 0 since T'(0) = S°, which was considered in 5.2.1
and 5.2.6. By 6.5.5 and 6.5.6 we have
(6.5.7) Exts0)(K(0)«, K(0)«(T(m))) = Qlua, ..., un] and
Exty ) (K (1), K(1)«(T(m))) = K(1)«[uz, . tms1] © E(hant1,0)-

The short exact sequence
(6.58) 0— M°® BP,(T(m)) > M'® BP.(T(m)) & M' @ BP,(T(m)) — 0
induces a six-term exact sequence of Ext groups with connecting homomorphism §.
For j <m, nr(v;) € BP.(T(m)) C BP.(BP), so if u is any monomial in these ele-
ments then &(u/p’) = 0 for all i > 0 and Ext®(M' ® BP,(T(m))) has a correspond-
ing summand isomorphic to Q/Z(p). Hence in the chromatic spectral sequence,
Ell’O has a summand isomorphic to Z,)[u1, ..., u,] ® Q/Z(p), which is precisely
the image of d : E?’O — E%707 giving

6.5.9. PROPOSITION.

Ext’(BP.(T(m))) = Zepy[ui,- - . , tm). O

Next we need to consider the divisibility of u?,,,/p € Ext®(M' ® BP,(T(m))).

Note that g (vm+1) is not in BP,(T(m)) but nr(vm+t1) — ptmt1 (where vp,yq is

Hazewinkel’s generator given by A2.2.1) is, so we call this element w,, 1. It follows
that in the cobar complex C(BP,(T(m))) (A1.2.11) d(um+1) = ptm41 and

t
(6.5.10) d(ufn_H) = ptuf;iltmﬂ +p? (2) uf;flt?n_H mod (th),

where the second term is nonzero only when p = 2 and ¢ is even. Thus the situation
is similar to that for m = 0 where we have v; = uw;. Recall that in that case the
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presence of the second term caused Ext! to behave differently at p = 2. We will
show that this does not happen for m > 1 and we have

6.5.11. THEOREM. For m > 1 and all primes p
Ext'(BP,(T(m))) = Ext’(BP.(T(m))) ® {ul,,,/pt: t > 0}.

PROOF. For p > 2 the result follows from 6.5.10 as in 5.2.6. Now recall the
situation for m = 0, p = 2. For t = 2, 6.5.10 gives d(v?) = 4(vit; + t3) and we
have d(4vy 'vs) = 4(vat; +13) mod (8), so we get a cocycle (v} + 4vy 'vp)/8. The
analogous cocycle for m > 1 would be something like

(g1 + 407 ume2) /g
where 1o is related somehow to v, 2. However, the relevant terms in 7 (vpm42)
mod (2) are vit2, ; + v tmi1, which does not bear the resemblance to 6.5.10
for m > 1 that it does for m = 0. In other words uf;fltfn 41 is not cohomologous

mod (2) to ufq;iltmﬂ, so the calculation for p = 2 can proceed as it does for
p > 2. [

Our last result is useful for computing the Adams—Novikov Fs-term for T'(m)
by the method used in Section 4.4.

6.5.12. THEOREM. Fort < 2(p*m+2 —1)
Ext(BP(T(m))/Im+1) = Z/(P)[tm+1, ms2; - - - Uzmt1] ® E(hi ;) @ P(bi ;)
withi >m+1,i+j<2m+2, hy; € Ext"? @' =1 gnd b, . € Ext>?’ @',
6.5.13. EXAMPLE. For m = 1 we have
Ext(BP.(T(1))/12) = Z/(p)[uz, us] @ E(ha,0,h21,h2.2,hs3,0,hs31)
QP (b2,0,b2,1,b3,0)
in 6.5.1 for t < 2(p* — 1)

PROOF OF 6.5.12. By a routine change-of-rings argument (explained in Sec-
tion 7.1) the Ext in question is the cohomology of Cr(BP;/In+1) (Al1.2.11) where
' = BP.(BP)/(t1,...,tm). Then from 4.3.15 and 4.3.20 we can deduce that v
and ¢; are primitive for m +1 <4 < 2m + 1. h;; corresponds to tfz and b; ; to

— > ockepP *) tfpj \tgp_k)pj . The result follows by routine calculation. O
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CHAPTER 7

Computing Stable Homotopy Groups with the
Adams—Novikov Spectral Sequence

In this chapter we apply the Adams—Novikov spectral sequence to the moti-
vating problem of this book, the stable homotopy groups of spheres. Our main
accomplishment is to find the first thousand stems for p = 5, the previous record
being 760 by Aubry [1]. In Section 1 we describe the method of infinite descent
for computing the Adams—Novikov spectral sequence Es-term in a range of dimen-
sions, namely to find it for the spectra T'(m) of Section 6.5 by downward induction
on m. Recall BP.(T(m)) = BPy[t1,...,tn] as a comodule, so T'(m) is equivalent
to BP in dimensions less than |v,,4+1]. This starts our downward induction since
we always restrict our attention to a finite range of dimensions.

In Section 2 we construct a resolution enabling us in theory to extract the
Adams—Novikov Es-term for S® from that for T'(1). In practice we must proceed
more slowly, computing for skeleta T(l)(pl_l)q by downward induction on i. In
Section 3 we do this down to i = 1; see 7.5.1. T(1)?~14 is a complex with p cells,
its Adams—Novikov spectral sequence collapses in our range, and its homotopy is
surprisingly regular.

In Section 4 we take the final step from T(l)(p_l)q to S°. We have a spectral
sequence (7.1.16) for this calculation and a practical procedure (7.1.18) for the
required bookkeeping. We illustrate this method for p = 3, but here our range of
dimensions is not new; see Tangora [6] and Nakamura [3].

In Section 5 we describe the calculations for p = 5, giving a running account of
the more difficult differentials in the spectral sequence of 7.1.16 for that case. The
results are tabulated in Appendix 3 and range up to the 1000-stem.

In more detail, the method in question involves the connective p-local ring
spectra T'(m) of 6.5, which satisfy

BP.(T(m)) = BP,[t1, ... tm] C BP.(BP).
T(0) is the p-local sphere spectrum, and there are maps
S0 =T1(0) - T(1) - T(2) - --- — BP.
The map T(m) — BP is an equivalence below dimension |v,,,1| — 1 = 2p™+! — 3.
To descend from 7, (T(m)) to m.(T(m — 1)) we need some spectra interpolat-
ing between T(m — 1) and T(m). Note that BP.(T(m)) is a free module over

BP,.(T(m — 1)) on the generators {t/,: j > 0}. In Lemma 7.1.11 we show that for
each h there is a T'(m — 1)-module spectrum T'(m — 1), with

BP,(T(m — 1)) = BP.(T(m — 1)){tJ,: 0 < j < h}.

We will be most interested in the case where h is one less than a power of p, and
we will denote T'(m)pi_1 by T'(m) ).
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We have inclusions
T(m — 1) = T(m — 1)(0) — T(m — 1)(1) — T(m — 1)(2) — T(m)
and the map T'(m — 1)¢;y — T(m) is an equivalence below dimension pf|t,| — 1 =
2(h+1)(p™ — 1) — 1.
For example when m =i = 0, the spectrum T'(m);) is S° while T'(m)pi+1_; is
the p-cell complex

y =5° Uay €7 Uny e2. .. Uy elP—1a
where ¢ = 2p — 2.
In Theorem 7.1.16 we give a spectral sequence for computing 7. (7'(m — 1))
in terms of 7, (T'(m — 1)(;41). Its Ei-term is
where the elements

1.2 2 m__q
hm,i c E17 p* (p )

itl, om
and b, € E%zp " =1)

are permanent cycles.
In the case m = ¢ = 0 cited above, the F1-term of this spectral sequence is

E(h1,0) ® P(b1,0) ® m(Y).

where hy o and by o represent the homotopy elements oy and B; (a3 for p = 2)
respectively.

Thus to compute 7, (S°) below dimension p3(2p—2) we could proceed as follows.
In this range we have

BP = T(3) =~ T(2)(1).

We then use the spectral sequence of 7.1.16 to get down to T'(2), which is equivalent
in this range to 7'(1)(2), then use it twice to get down to T'(1) = T'(0)(s), and so
on. This would make for a total of six applications of 7.1.16. Fortunately we have
some shortcuts that make this process easier.

The Adams-Novikov Es-term for T'(m) is

Extgp, pp)(BP:, BP(T(m))).

From now on we will drop the first variable when writing such Ext groups, since
we will never consider any value for it other than BP,. There is a change-of-rings
isomorphism that equates this group with

Extr (1) (BP:)
where
I'(m+1) = BP.(BP)/(t1,.-.stm) = BPy[tm+1,tm+t2,---]-
Using our knowledge of Extpy,, , 1)(BP.) (Proposition 7.1.24) and Exty,, ,1)(BP:)
(Theorem 7.1.31) in all dimensions, we will construct a 4-term exact sequence
0— BP,— D% — D}, —E% . —0

of I'(m+1)-comodules. The two D!, . are weak injective, meaning that all of their
higher Ext groups (above Ext®) vanish (we study such comodules systematically at
the end of Section 1), and below dimension p?|v,, 1]
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EXt%(m+1)(Din+1) = EXt%(mH)(BP*)-
It follows that in that range

Extp 1y (Enyy) = Extyl? | (BP,)  forall s > 0.

T(m+1)

The comodule EZ, ,; is (2p™*2 —2p—1)-connected. In Theorem 7.2.6 we determine
its Ext groups (and hence those of BP,) up to dimension p?|v,,11|. There are no
Adams—Novikov differentials or nontrivial group extensions in this range (except in
the case m = 0 and p = 2), so this also determines 7. (7'(m)) in the same range.

Thus Theorem 7.2.6 gives us the homotopy of 7(0)(3) in our range directly
without any use of 7.1.16. In a future paper with Hirofume Nakai we will study
the homotopy of T'(m) ) and the spectral sequence of 7.1.16 for the homotopy of
T(m)@) below dimension p?|vy,41]. There are still no room for Adams—Novikov
differentials, so the homotopy and Ext calculations coincide. For m = 0 this com-
putation was the subject of Ravenel [11].

It is only when we pass from T'(m)y to T'(m)) = T'(m) that we encounter
Adams—Novikov differentials below dimension p*|vy,+1|. For m = 0 the first of
these is the Toda differential

d2p71<ﬁp/p) = alﬁf
of Toda [3] and Toda [2].

1. The method of infinite descent
First we define some Hopf algebroids that we will need.
7.1.1. DEFINITION. ['(m + 1) is the quotient BP.(BP)/(t1,t2,...,tm),
A(m) = BP,.Op(m41)BP. = Zy)[v1,v2, .. ., U]
and
Gm+1,k—1) =T(m+ 1)Opyrt1)BPe = A(m + k) [ttt tmgt -+ - s tngek]

We abbreviate G(m + 1,0) by G(m + 1), and is understood that G(m + 1,00) =
L(m+1).

In particular, I'(1) = BP.(BP).

7.1.2. PROPOSITION. G(m+ 1,k—1) = T'(m+1) > T'(m+ k + 1) is a Hopf
algebroid extension (A1.1.15). Given a left T'(m+1)-comodule M there is a Cartan—
Eilenberg spectral sequence (A1.3.14) converging to Extp(py,1)(BPy, M) with

Ezs’t = Ext&(mi1,0—1)(A(m + k), EXt?(erkJrl)(BP*’ M)

and d, : B3t — ESTrt=r+1 0 (We use the notation ES* to distinguish the Cartan—
Filenberg spectral sequence from the resolution spectral sequence.)

7.1.3. COROLLARY. Let M be a I'(m+1)-comodule concentrated in nonnegative
dimensions. Then

EXtF(m+k+1)(BP*’ M) = EXtF(m+1)(BP*, G(m +1,k—-1) @ A(m+k) M).
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In particular, Extlf’(tm+1)(BP*, M) fort < 2(p™*+1—1) is isomorphic to M for s =0

and vanishes for s > 0. Moreover for the spectrum T(m) constructed in 6.5 and
having BP,(T(m)) = BPy[t1,...,tm],

EXth*(Bp) (BP*, BP*(T(m))) = EXtF(m+1)(BP*, BP*)
The following characterization of the Cartan—Eilenberg spectral sequence is a
special case of (A1.3.16).

7.1.4. LEMMA. The Cartan—FEilenberg spectral sequence of 7.1.2 is the one as-
sociated with the decreasing filtration of the cobar complex Cp(p41y(BPy, M) (see
below) defined by saying that

is in F' if i of the vy’s project trivially to T'(m + k + 1).

The method of infinite descent for computing Extpp, gp)(BPx, M) for a con-
nective comodule M (e.g. the BP-homology of a connective spectrum) is to compute
over Ext over I'(m + 1) by downward induction on m. To calculate through a fixed
range of dimensions k, we choose m so that k < 2(p™*+! — 1) and use 7.1.3 to start
the induction. For the inductive step we could use the Cartan—Eilenberg spectral
sequence of 7.1.2, but it is more efficient to use a different spectral sequence, which
we now describe.

7.1.5. DEFINITION. A comodule M over a Hopf algebroid (A,T") is weak in-
jective (through a range of dimensions) if Ext®(M) = 0 for s > 0 (through the
same range).

We will study such comodules in the at the end of this section.
7.1.6. DEFINITION. For a left G(m + 1,k — 1)-comodule M let
it M — Dltmrl g
be the group homomorphism defined by

jOM
M- G+ 1,k —1) © M 22 siltnl g

where pj : G(m+ 1,k — 1) — A(m + k) is the A(m + k)-linear map sending tfﬁﬂ
to 1 and all other monomaals in the t,,+; to 0.
We will refer to this map as a Quillen operation. When m = 0 we denote it
simply by r;.
It follows that ‘
bla) = "t @F@) +...,
J

where the missing terms involve t, for £ > m + 1.
The following is proved in Ravenel [12] as Lemma 1.10.

7.1.7. LEMMA. The Quillen operation 7; of 7.1.6 is a comodule map and for
7 > 0 it induces the trivial endomorphism in Ext.

7.1.8. DEFINITION. Let Th C G(m + 1,k — 1) denote the sub-A(m + k)-
module generated by {t} ,:0 < j < h}. We will denote TE ~' by TV, A
G(m—+1,k—1)-comodule M is i-free if the comodule tensor product T,Sf) @ A(m+k) M
is weak injective.
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We have suppressed the index k from the notation 7 because it will usually
be clear from the context. In the case k = oo the Ext group has the topological
interpretation given in Lemma 7.1.11 below. The following lemma is useful in
dealing with such comodules. It is proved in Ravenel [12] as Lemma 1.12.

7.1.9. LEMMA. For a left G(m + 1)-comodule M, the group
ExtQ (1) (Am + 1), T @ amry M)
is isomorphic as an A(m)-module to
L= () ker 7 CM.
jzp
The following is proved in Ravenel [12] as Lemma 1.14.
7.1.10. LEMMA. Let D be a weak injective comodule over I'(m + 1). Then
T,S;) ® D is also weak injective with
Extp(,41) (TN ® D) = A(m){t{n+1 0<j<p — 1} ® Extp 1) (D).
Given g € Exth(erl)(D), the element isomorphic to tfn_H ® g is
Z (-* <£)tﬁz+l @z €TV @D
0<k<;j
where x; € D satsifies
I,k
o) = Y (7)o
0<k<j

The following is proved in Ravenel [12] as Lemma 1.15. The only case of it
that we will need here is for m = 0, where T'(0)}, is the 2(p — 1)h-skeleton of T'(1).

7.1.11. LEMMA. For each nonnegative m and h there is a spectrum T(m)p
where BP.(T(m)n) C BP.(BP) is a free module over

BP.(T(m)) = BPy[t1,. .., tm]
on generators {thH: 0 < j < h}. Its Adams—Novikov Ea-term is
Extgp, (pp)(BP., BP.(T(m)p)) 2 Extp, 1) (BP,, Tj).
We will denote T'(m)yi_q by T'(m) .
To pass from EXtG(mJ,_l,k_l)(T’r(n,erl) ® M) to Extg(m+17k_1)(T7(Tf) ® M) we can

make use of the tensor product (over A(m+k)) of M with the long exact sequence

i d° dt d?

(7.1.12) 0 Tg) RO Rl R2 e

where
m+1

R2ste  —  w(pste)2p’(p —1)T7§1") fore=0,1

{ Tpi for s even

and A= R, for s odd,

which leads to a spectral sequence as in (A1.3.2).
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7.1.13. THEOREM. For a G(m+1, k—1)-comodule M there is a spectral sequence
converging to Exte(mi1,k—1)(M ® Ty(nl,)) with

Byt = E(hms1,i) ® P(bmt1,i) ® Bxtl, o 1) (T8 @ M)

With hmy1i € BY°, bniai € B, and d,. : B3t — ESTm4H1 If M s (i 4 1)-free
in a range of dimensions, then the spectral sequence collapses from Eo in the same
range.

Moreover dy is induced by the action on M of Tpia
for s odd.

The action of dy is as follows. Let

r= > toaeomeleM

0<j<pitt

a1 JOT 8 €ven and T(,_1)pi

Then dy is induced by the endomorphism

_ Z Z (i) tfnjfl ® T(pi—k) (M) for s even

0<k<p® k<j<pit!

Nk o~
. Z Z <k>t#f1®r((z)—1)pi—k)(mj) for s odd.

0<k<(p—1)p* k<j<pit?

T —

We will refer to this as the small descent spectral sequence.

Proor. Additively this spectral sequence is a special case of the one in (A1.3.2)
associated with M tensored with the long exact sequence (7.1.12), and the collapsing
for (i + 1)-free M follows from the fact that the spectral sequence is in that case
concentrated on the horizontal axis.

For the identification of dy, note that by (7.1.12) it is induced by the endomor-
phism

Z Tpi (tfn_H) ® m; for s even
e o oosip ‘

Z Pp—1)pi (th,11) @ my for s odd
0<j<pit?

Z <;l> tf;fi ® m; for s even

_ pi<j<pitt )
J j—(p=1)p"
Z ((p B 1)pz‘)tm+1 ®m; for s odd.

(p—Dp'<j<pit!

It follows from Lemma 7.1.7 that 7,ia,, .,
endomorphisms in Ext, so d; is also induced by

and T(,—1)pia,.,, each induce trivial

—7pi(x) + Z Tpi (tfn—&-l) ® m; for s even
v - 0j<pit 4
—Tpyypi () + Z Fp—1)pi (th, 1) @ my  for s odd,
0<j<pitt

which leads to the stated formula.
The multiplicative structure requires some explanation. The elements hp, 41,
and by, +1,; correspond under Yoneda’s isomorphism Hilton and Stammbach [1, page
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155] to the tensor product of M with the exact sequences

0= T — 72 =1 _ sl
and
0— Tr(,i) — Tr(niJrl) _ Epiltm*l‘Tr(niJrl) - Epi+1‘tM+1|T7(ni) o

respectively. Products of these elements correspond to the splices of the these. It
follows that these two elements are permanent cycles and that the spectral sequence
is one of modules over the algebra E(hp41,i) @ P(bm+1,4)- O

In practice we will find higher differentials in this spectral sequence by comput-
ing in the cobar complex Cg(p11,5-1) (M@TT(,?) or its subcomplex Cg (m11,5—1)(M).
As explained in the proof of (A1.3.2), it can be embedded by a quasi-isomorphism
(i.e., a map inducing an isomorphism in cohomology) into the double complex
B = EBs’tZQBS’t defined by

B! = Cé(m-‘rl,k—l)(M ® R?)
with coboundary
0=d+ (-1)°d’,

where d is the coboundary operator in the cobar complex. Our spectral sequence
is obtained from the filtration of B by horizontal degree, i.e., the one defined by

F'B= @ B
s>r,t>0
Theorem 7.1.13 also has a topological counterpart in the case M = BP,. Before

stating it we need to define topological analogs of the operations 7
One can show that there are cofiber sequences

pi and ?(pil)pi.

(7.1.14) T(m) ) — T(m) g1y — 21T (m) o1y

and

(7.1.15) T(m)pi(p-1)-1 — T(m) g1y — SEDPEmstl () .
We define

Ppi i
T(m) (1) ——= L2ttt T (m) (14

and

Ppi(p—1) i
T(m)(i+1) — > y(-Dp \tm+1|T(m)(i+1)

to be the composites
T(m) g1y — =2 1T (m) o1y — ST (m) 4

and
T(m)(’iJrl) _ Z(P—l)pi‘tm_,_llT(m)(i) R Z(p_l)pt|tm+1|T(m)(i+1).

7.1.16. THEOREM. Let T'(m); be the spectrum of Lemma 7.1.11. There is a
spectral sequence converging to m.(T(m)y) with

Ef’t = E(hm+1,i) & P(bm+1,i) & T« (T(m)(i+1)) and dy: Ef’t — Ef"'r’t_r"'l
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m41_ 2,2pt+1 (pmT1_1)

with hpmy1,i € Ell’ZPZ(p Y and by1i € B} . Moreover dy is py:
for s even and Pp—1)pi for s odd. The elements hy41,; and by,y1,; are permanent
cycles, and the spectral sequence is one of modules over the ring

R = E(hmi1,i) @ P(bm+1,)
We will refer to this as the topological small descent spectral sequence.

PRrOOF. This the spectral sequence based on the Adams diagram

X Sax/ ShbY <—— Yatbx/ <—— ...
Jf Eiy ZgY Z“JlrbY
where
a = 2p'(p"tt 1) -1,
bo= 2T 1) -2
X = T(m)u,
X' = T(m)pi(p-1)-1,
and Y = T(m)ut)-

We will show that the elements Ry, 11,; and b,,41; can each be realized by maps
of the form

S0 ——X 1 vX
For hpyy1,4, f is the boundary map for the cofiber sequence
T(m)®D — T(m)2' ~L — S (m) ),

and for by,4+1, it is the composite (in either order) of the ones for (7.1.14) and
(7.1.15). O

7.1.17. EXAMPLE. When m = i = 0, the spectrum T'(0) o) is S® while T'(0)1)
is the p-cell complex
Y =8%U,, €9Uq, €2 Uy, e®P DY
where g = 2p — 2. The Fj-term of the spectral sequence of Theorem 7.1.16 is
E(hi1,0) ® P(b1,0) ® T (Y).
where hy g and by o represent the homotopy elements oy and By (a3 for p = 2)

respectively.

We will use this spectral sequence through a range of dimensions in the following
way. For each spectrum T'(m)(;41) the elements of Adams-Novikov filtration 0
and 1 are all permanent cycles, so we ignore them, replacing (T(m)(iﬂ)) by an

appropriate subquotient of Extp(mﬂ)(T,(ni) ® E2,,,). Let N be a list of generators
of this group arranged by dimension. When an element x has order greater than p,
we also list its nontrivial multiples by powers of p. Thus

N ® E(hmt1,i) ® P(bmy1,i)

contains a list of generators of the E;j-term in our range. Rather than construct
similar lists for each F, term we use the following method.
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7.1.18. INPUT/OUTPUT PROCEDURE. We make two lists I (input) and O (out-
put). 1 is the subset of N @ E(hyy1,) that includes all elements in our range.
Then O is constructed by dimensional induction starting with the empty list as fol-
lows. Assuming O has been constructed through dimensions k — 1, add to it the
k-dimensional elements of 1. If any of them supports a nontrivial differential in the
spectral sequence, remove both the source and target from O. (It may be necessary
to alter the list of (k — 1)-dimensional elements by a linear transformation so that
each nontrivial target is a “basis” element.) Then if k > |bm+1,4|, we append the
product of by, 41,; with each element of O in dimension k —|by,41,5|. This completes
the inductive step.

Note that each element in E; of filtration greater than 1 is divisible by by, 41,
Since the spectral sequence is one of R-modules, that same is true of each E,.. In
7.1.18 we compute the differentials originating in filtrations 0 and 1. If d.(z) = y
is one of them, there is no chance that for some minimal ¢ > 0

dp (') =0, 1y withr! <7

because such an =’ would have to be divisible by b,,+1,;. This justifies the removal
of bl,, 41 ;& and b, ., ;y for all £ > 0 from consideration.

We will consider various T'(m + 1)-comodules M and will abbreviate
Extrm1)(BPx, M) by Extp(p41)(M) or simply Ext(M).

Excluding the case m = 0 and p = 2, we will construct a diagram of 4-term
exact sequences of I'(m + 1)-comodules

0 BP, Dy Dyt En 0
(7.1.19) o BP DY . v EL L ——= B/ (0°) —=0
0 BP, MO M? N? 0

where each vertical map is a monomorphism, M? and N? are as in 5.1.5, the
D¢, ., are weak injectives with Ext’(D9,, ) = Ext’(BP,), Ext’(D},, ) contains
Ext'(BP,) (with equality holding for m = 0 and p odd), and E},_, = DY, ,,/BP;.
Ext’(BP,) and Ext'(BP,) are given in 7.1.24 and 7.1.31 respectively.

It follows that for m = 0 and p odd, there is an isomorphism

s ~ s+2
EXtF(erl)(Erszrl) = EXtF-E_m+1)(BP*)>

and for m > 0 there is a similar isomorphism below dimension p?|v,,;1| for all
primes. EZ2_, is locally finite and (p|vm1| — 1)-connected, which means that
Ext{(;n11) for s > 1 vanishes below dimension p|vy,11].

We will construct the map from BP, to the weak injective DY, 41, inducing an
isomorphism in Ext® , explicitly in Theorem 7.1.28. For m > 0 we cannot construct
a similar map out of E} ; = DY _,/BP,. Instead we will construct a map to a
weak injective D} 11 which enlarges Ext® by as little as possible. We will do this



234 7. COMPUTING STABLE HOMOTOPY GROUPS WITH THE ANSS

by producing a comodule E2, | C E} ., /vi° and using the induced extension

0 qun+1 UflE%@H - rln+1/(vfo) —0
(7.1.20) H T T
0 B Dy i1 Eriq 0

The comodule EZ ,; for m > 0 will be described in the next section. For m = 0
and p odd, a map from E] to a weak injective D} inducing an isomorphism in Ext°
will be constructed in below in Lemma 7.2.1.

We will use the following notations for m > 0. We put hats over the symbols in
order to distinguish this notation from the usual one for elements in Extgzp (pp)-
For m = 0 we will use similar notation without the hats.

~

Vi = Umtis ti = tmtis w = p",
(7.1.21)

o~

hij = hmtij, and bij = bty

We will show that in dimensions below p?|vy|, EZ ., is the A(m + 1)-module
generated by the set of chromatic fractions

(7.1.22) { —1eg,e1 >0, e3> eg+ep — 1},
p

€0 /UT

~e2
Vg

and its Ext group in this range is

~e2
(7123) A(m + 1)/]2 ® E(/h\,L()) ® P(/b\lyo) X {;j’il T ey > 1},
where Bl,o € Exth2(ee—1) corresponds to the primitive #; € I'(m+1), and 3170 €
Ext"?P(P“=1) ig its transpotent. In both cases there is no power of v1 in the numer-
ator when m = 0. These statements will be proved below as Theorem 7.2.6.

An Adams—Novikov differential for 7'(m) originating in the 2-line would have
to land in filtration 2p + 1, which is trivial in the is range of dimensions, so by
proving 7.2.6 we have determined 7. (7' (m)) in this range.

Our first goal here is to compute Ext’ and Ext'. The following generalization
of the Morava-Landweber theorem (4.3.2) is straightforward.

7.1.24. PROPOSITION.
EXtp (1 1) (BP: /1) = A(n+m)/I,.
For n =0 each of the generators is a permanent cycle.

PrOOF. The indicated elements are easily seen to be invariant in I'(m +1). In
dimensions less that [01|—1, T'(m) is homotopy equivalent to BP, so the generators
v; for ¢ < m are permanent cycles as claimed. O

Now we will describe a map from BP, to a weak injective D9, 41 inducing
an isomorphism in Ext”. DY ., is the sub-A(m)-algebra of p~'BP, generated by
certain elements A; for ¢ > 0 congruent to v;/p modulo decomposables.
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To describe them we need to recall the formula of Hazewinkel [4] (see A2.2.1)
relating polynomial generators v; € BP, to the coefficients ¢; of the formal group
law, namely

(7.1.25) pl; = Z Ejvfij for i > 0.
0<j<i

This recursive formula expands to

v
6 = 2
p
V2 ’Uf—‘rl
b = —= 5
p p
P p’ 14+p+p?
V3 V1Uy Va7 Uy
by = —+ 5 5 3
p p p p

We need to define reduced log coefficients Zz for ¢ > 0 obtained from the ¢,,+; by
subtracting the terms which are monomials in the v; for 7 < m. Thus for m > 0
we have

~ 01
6= =
p
~ @\2 ’Ulﬁf i)\l’ljfw
b= —+—5 2
p p p

The analog of Hazewinkel’s formula for these elements is

(7.1.26) plhi= Y e+ Y Gt

0<j<t 0<j<min(i,m+1)
We use these to define our generators Xz recursively for i > 0 by
~ o~ ~pi
(7.1.27) No=1Li— > G
0<j<i

For m = 0 we will denote these by A;.
The following is proved as Theorem 3.12 and equation (3.15) in Ravenel [12].

7.1.28. THEOREM. The BP,-module D9n+1 C p’lBP* described above is a

subcomodule over T'(m + 1) that is weak injective (7.1.5) with Ext® = A(m). In it
we have

nR(Xi) = Xz + %\z mod decomposables.
Before proceeding further we need the following technical tool.

7.1.29. DEFINITION. Let H be a graded connected torsion abelian p-group of
finite type, and let H; have order p"i. Then the Poincaré series for H is

g(H) = Shyt'.
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7.1.30. EXAMPLE. Let I C BP, be the maximal ideal so that BP,/I = Z/(p).
Then the Poincaré series for I'(m + 1)/1 is

Gm(t) = H(l _ t‘vm+i|)71.
i>0
We will abbreviate t/”m+il by z; and denote z1 simply by z. When m > 0 we will
denote ti! for i < m by y; and t/*'! simply by .
For Ext! we have

7.1.31. THEOREM. Unless m = 0 and p = 2 (which is handled in (5.2.6)),
Extll«(mﬂ)(BP*, BP,) is the A(m)-module generated by the set

~j
{60 <ﬁ> ¥ >0},
Jp

where g is the connecting homomorphism for the short exact sequence
0—BP. - M° > N'—>0

as in (5.1.5). Its Poincaré series is

P
gm(t) Z 1 _ xpi—1 9

i>0
where © = tI'm+1l. Moroever each of these elements is a permanent cycle.

PROOF. The Ext calculation follows from (6.5.11) and (7.1.3). For the Poincaré
series, note that the set of A(m)-module generators of order p* is

~jp' !
{50 (“11. ) :j>0}7
p

i—1
P

To show that each of these elements is a permanent cycle, we will study the
Bockstein spectral sequence converging to m,(T'(m)) with

Ey = Z/(p)[vo] ® m(V(0) AT (m)).
V(0) AT(m) is a ring spectrum in all cases except m = 0 and p = 2. We know that
T'(m) is a ring spectrum for all m and p and that V' (0) is one for p odd. The case

p =2 and m > 0 is dealt with in Lemma 3.18 of Ravenel [12].
Low dimensional calculations reveal that o, € Ext’(BP,/p) is a homotopy

and its Poincaré series is

element. The elements a; = % can then be constructed in the usual way using the
self-map of V(0) A T'(m) inducing multiplictation by 6{ followed by the pinch map
V(0) AT(m) — XT(m).

In the Bockstein spectral sequence it follows that v7” " survives to Eiy1, 50 Qg is
divisible (as a homotopy element) by p’. O

Now we will recall some results about weak injective comodules M over a
general Hopf algebroid (A,T") over Z,). In most cases we will refer to Ravenel [12]
for the proofs. We will abbreviate Extr (A4, M) by Ext(M).
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The definition 7.1.5 of a weak injective should be compared with other notions
of injectivity. A comodule I (or more generally an object in an abelian category) is
injective if any homomorphism to it extends over monomorphisms, i.e., if one can
always fill in the following diagram.

‘
N
1
AN

0—>=M——=N

This definition is rather limiting. For example if A is a free Z,)-module, then an
injective I must be p-divisible since a homomorphism A — I must extend over
AR Q.

There is also a notion of relative injectivity (A1.2.7) requiring I to be a sum-
mand of I' ® 4 I, which implies that the diagram above can always be completed
when 7 is split over A. This implies weak injectivity as we have defined it here (see
(A1.2.8)(b)), but we do not know if the converse is true. In any case the require-
ments of our definition can be said to hold only through a range of dimensions.
The following is proved in Ravenel [12] as Lemma 2.1.

7.1.32. LEMMA. A connective comodule M over (A,T) is weak injective in a
range of dimensions iff Ext'(M) = 0 in the same range.

The following is proved in Ravenel [12] as Lemma 2.2.
7.1.33. LEMMA. Let
(D,®) — (A1) — (A,X)

be an extension (A1.1.15) of graded connected Hopf algebroids of finite type, and
suppose that M is a weak injective comodule over I'. Then M is also weak injective
over ¥, and Ext$ (A, M) is weak injective over ® with

Exty (D, Ext%(A, M)) = Ext%(A, M).

Here is a method of recognizing weak injectives without computing any higher
Ext groups. The following is proved in Ravenel [12] as Theorem 2.6.

7.1.34. THEOREM. Let (A,T') be a graded connected Hopf algebroid over Z,),
and let M be a connected torsion I'-comodule of finite type. Let I C A be the
mazimal ideal (so that A/I =7Z/(p)). Then

9(M) < g(Ext®(M))g(T'/I),

meaning that each coefficient of the power series on the left is dominated by the
corresponding one on the right, with equality holding if and only if M is a weak
injective (7.1.5).

It would be nice if for any comodule M one could find a map M — W to a
weak injective inducing an isomorphism in Ext®, but this is not always possible. In
Ravenel [12, Example 2.8] we showed that it fails when (A,T") = (A(1),G(1)) and
M = A/(p?).

For future reference will need the Poincaré series of E},, = DY