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1. Introduction. The focus of this expository article will be on the notion of 
a cell-like set and a cell-like map (definitions below). It will be discussed how these 
notions arise naturally in the study of certain problems in topology, and how some 
solutions to these problems have been achieved. It should be emphasized at the 
outset that the problems discussed here are all topological in nature, and so in parti
cular there will be a minimum of extra global structure on the various spaces at 
hand. 

The principal questions to be discussed (and motivated) are the following: 
1. PoiNfT-LiKE QUESTION. Which compact subsets of the /w-sphere have the prop

erty that their complements are homeomorphic to euclidean /77-space Rml (Such 
subsets are called point-like, for the natural reason.) 

II. POLYHEDRAL MANIFOLD QUESTION. When is a polyhedron a topological 
manifold? In particular, are there any "unexpected" examples of such polyhedra? 
(i.e., examples which do not locally polyhedrally embed in the euclidean space of 
the same dimension.) 

III. MANIFOLD FACTOR QUESTION. When is a space X a factor of a manifold, 
i.e., when is it the case that XXY is a manifold for some space Yl (Usually 
Y is taken itself to be some euclidean space.) 

2. Definitions. All spaces throughout are locally compact separable metric 
(except in §11, where local compactness is dropped). A manifold will always be 
understood to be a topological manifold, either finite dimensional, or else modelled 
on the hilbert cube 7°° (which is the countably infinite topological product of the 
interval [—1,1] with itself). Precisely stated, then, a (topological) manifold is 
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a separable metric space each point of which has a neighborhood homeomorphic 
either to the w-cell Im or to I°°. Our manifolds will always be connected. 

Later we will be talking about the notion of an absolute neighborhood retract 
(ANR) which we will take to mean a (locally compact separable metric) space which 
can be embedded as a closed subset of 7°°X[0, °o) (recall any locally compact 
separable metric space can be so embedded) in such a manner that some neighborhood 
U of the image retracts to the image, i.e., there is a map r: U-+ image such that 
r |image=identity. A basic fact about ANR's is that this retraction property is 
independent of the embedding chosen : if it holds for one closed embedding, it holds 
for any closed embedding (see e.g. [Hu]; the embeddings even need not be closed). 
A finite dimensional ANR is called a euclidean neighborhood retract (ENR) because 
it can be embedded as a closed subset of euclidean space so as to have this retraction 
property. 

The fundamental notion in this article is that of cell-likeness which, as we will 
see, broadens a bit the notion of contractibility. A cell-like space is a compact 
metric space C having the following property of a cell : there exists an embedding 
of C into the hilbert cube / " such that 

(*) for any neighborhood U of C in 7°°, C is null-homotopic in U 

(examples and properties are given in the next section). 
A proper map is a map such that the preimage of each compact subset is compact. 

A cell-like map is a proper surjection such that each point-inverse is cell-like. A near-
homeomorphism is a proper surjection which can \>Q approximated arbitrarily closely 
by homeomorphisms. On compact spaces, this means ordinary uniform approxima
tion. On non-compact, locally compact spaces (which are only of secondary interest 
in this article) we take this to mean "majorant approximate" by homeomorphisms, 
i.e., given / : X-+Y and given any majorant map s: X^(0, °°), there should exist 
a homeomorphism h: X-+Y such that for each x£X, dist(f(x),h(x))<s(x). 
Finally, X^ Y denotes that X is homeomorphic to Y. 

3. Examples and properties of cell-like compacta. There are two basic comments 
concerning the definition of cell-like which should be recalled at this time. 

REMARK. (1) Cell-likeness is an intrinsic property of the compact metric space C. 
That is, if property (*) holds for one embedding /: Cc^7°°, then it holds for any 
embedding j : Cd.7°°. 

(2) In the definition of cell-like, and in (1), if the hilbert cube 7°° is replaced 
by any ANR, the statements remain true. 

Both remarks are a simple consequence of the map extension property of ANR's. 
For example, if i: Cc_7°° is a given embedding satisfying (*), and if j : C e W 
is any embedding of C into an ANR W, and U is any neighborhood of j(C) 
in W, then the fact that W is an ANR implies that there exists some neighborhood 
V of i(C) in 7°° and a map / : V-+U extending jr1: i(C)-+j(C). So if oct: C->V, 
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O^t^l, is a homotopy provided by (#) such that <x,0=i and a1(C)=point, then 
fat:C-+U provides the desired null-homotopy of C in U. 

The simplest examples of cell-like spaces are of course cells, that is, spaces which 
are homeomorphic to the closed unit ball in some euclidean space. More generally, 
any contractible compactum is cell-like, In fact, we have 

REMARK. Suppose C is a compact ANR. Then C is cell-like <=> C is contractible. 

PROOF. To establish the implication =>, suppose that Cc+I°° and let r: U-+C 
be a retraction of a neighborhood, and let a, : C-> U be a null-homotopy of C in U. 
Then mt:C~+C provides a contraction of C. 

Thus the notion of cell-likeness can be regarded as a generalization of the notion 
of contractibility, and this notion is most useful for non-ANR's. An example of 
a noncontractible (hence non-ANR) cell-like compactum is the following planar 
wedge (=one-point-union) of two cones on cantor sets. 

wedge-point 

-conepomts — 

Figure 1. The wedge of two cones on cantor sets 

One can construct many more interesting examples using the following 

REMARK (Operations preserving cell-likeness). 
(1) A countable null (= diameters tending to 0) wedge of cell-like spaces is 

cell-like. 
(2) A product (finite or countable) of cell-like spaces is cell-like. 
(3) The intersection of a countable nested collection of cell-like spaces is cell-like. 
Regarding (3), note that the cell-like set pictured above is an intersection of 

2-cell neighborhoods (when regarded as a subset of the plane). 
In general, a cell-like space embedded in Rm (or Sm or any manifold) is said to 

be cellularly embedded for cellular) if it has arbitrarily small neighborhoods homeo
morphic to cells. This notion of cellularity definitely depends on the embedding. 
For example, the following picture (from [F—A]) shows an arc in B? which is 
not cellularly embedded there. 

Figure 2. The Artin-Fox wild arc in jR8 

©0e~ 
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Another example of a cell-like, noncellular subset of R3 is the familiar horned 
ball of Antoine and Alexander, pictured here (the closed bounded region really is 
homeomorphic to a ball). 

limit 
cantur set 

Figure 3. The Antoine-Alexander horned ball in R3 

These examples show that cells can admit noncellular embeddings in euclidean 
space. In fact, any finite dimensional cell-like set (except a point) can be non-
cellularly embedded in any euclidean space of greater than twice its dimension. 
But more importantly, every finite dimensional cell-like set admits a cellular 
embedding in some euclidean space. In fact, if C is cell-like and CcuRm, then 

. i T 4 - 1 ii> ucllulcii (Jeducible from [McM]). 

This discussion leads to an answer to Introductory Question I (provided by 
M. Brown). 

THEOREM. A compact subset C of Sm is point-like (that is, Sm—C^Rm) <=>C 
is cellular in Sm. 

SKETCH OF PROOF. The easier implication is =>, for letting rBm be an arbitrarily 
large ball in Rm, then S"1—h (int rBm) is an arbitrarily small ball neighborhood 
of C in Sm (where h:Rm-^Sm—C is the hypothesized homeomorphism). (Note: 
It is far from obvious that Sm—h(intrBm) is a ball; in fact, this amounts to the 
Annulus Conjecture, which has been established in almost all dimensions through 
the efforts of many, especially R. Kirby, but remains unresolved for m=4. 
However, the above proof can be modified so as to circumvent this issue.) To 
prove the implication <=, one first establishes, using the converse of the preceding 
argument, that any compact subset of Sm—C lies in the interior of an m-cell in 
Sm—C. Then one shows that any space having this property is in fact homeo
morphic to Rtn. Details of these arguments are in [BrJ and [Br2]. 

Still, this theorem begs the question somewhat. How does one recognize a cellular 
subset of Sml In the 2-sphere (or the plane) this is comparatively simple. A compact 
subset C of S2 is cellular (and hence point-like) <=• both C and S2—C are 
nonempty and connected (i.e., C is a nonseparating continuum). This is an 
instructive exercise in plane topology. In higher dimensions, since being cellular 
always implies being cell-like, let us assume we can recognize when a subset CaSm 
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is cell-like (inasmuch as this property is basically a homotopy property, C is often 
presented as a cell-like subset by the problem at hand). Given that C is cell-like, 
how does one tell whether it is cellular? (Remember the preceding examples.) 
A natural and useful condition to verify is whether Sm—C is "simply-connected 
at infinity", i.e., whether given any neighborhood U of C in Sm, there exists 
a smaller neighborhood V of C such that the homomorphism n^V—C)-^nx(JJ—C) 
is trivial. This condition clearly is necessary when m ^ 3 . It turns out that this 
celfularity criterion is also sufficient, at least when m ^ 4 [McM]. 

This result may be regarded as one of the prototypal theorems in the study of 
tame versus wild embeddings of compacta in manifolds, a subject which has developed 
into a very coherent theory during the last twenty years (e.g. see the brief surveys 
in [La2] and [EdJ). 

4. Examples and properties of cell-like maps. We now move on to cell-like maps. 
Probably the most useful characterization of a cell-like map is the following. 

PROPOSITION (Homotopy characterization of cell-like maps). Suppose f:X-+Y 
is a proper surjection of ANR's. Then f is cell-like & for each open subset U of Y, 
the restriction / | : /_ 1( t /)->-C/ is a (proper) homotopy equivalence. 

Note: The parenthetical word (proper) can be inserted for =>, and deleted for «=, 
to provide the strongest statements. 

To understand this proposition one should initially assume that X and Y are 
as nice as possible, e.g. manifolds. Consider first the implication =>. As a special 
argument, consider establishing that / # : n1(X)-^n1(Y) is onto (which clearly it 
must be, if / is to be a homotopy equivalence). To verify this surjectivity, one 
takes a loop a: S1-^Y, and attempts to find a loop ß: Sr-+X such that fß is 
homotopic to a (basepoints suppressed here). This is achieved by partitioning 
S1 very finely, say by 01 , . . . ,0„, and then arbitrarily choosing a point ß(0^f~x(0^) 
for each /. Now one attempts to join adjacent /J(0/)'s with paths which map under 
/ to paths of small diameter. If the partition {0J was chosen sufficiently fine, 
then each adjacent pair {ß(0i),ß(9ni)} lies very close to some point-inverse f~x(y)-
Hence, by the definition of cell-likeness, ß(0f) and ß(0i^1) can be joined by 
a path lying near f~\y), since the null-homotopy of f~\y) can be assumed to 
carry along a nearby neighborhood. Stringing these paths together gives a map 
ß: S1-^X with the property that fß is (pointwise) close to a, and hence homotopic 
to a. Thus / + is surjective on nx. This argument is a classical lifting argument 
which occurs over and over again topology. The full implication => is a straight
forward generalization. 

To prove the implication <=, we use the hypothesis that y£Y has a (arbitrarily 
small) contractible neighborhood U (assuming still for simplicity that y is a mani
fold). Hence by the hypothesis, / _ 1 ( ^ ) is a (arbitrarily small) contractible neigh
borhood of f~x(y). The general case, where Y is merely an ANR, is only slightly 
more complicated. 
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Cell-like maps are to be regarded as generalizations of homeomorphisms. This 
is a recurring theme. One important advantage that cell-like maps have over homeo
morphisms is that (unlike homeomorphisms) they are closed under the operation 
of talcing limits. 

PROPOSITION (Operations with cell-like maps of ANR's). (1) If a proper map 
f: X-+Y of ANR s is approximable (as in §2) by cell-like maps, then f is cell-like. 

(2) The composition of cell-like maps of ANR's is celt-like. 

The proof is an interesting exercise, using the preceding proposition (one should 
assume X and Y are manifolds, at least initially). See [LaJ and [La2]. 

We close this section by mentioning a classical theorem of R. L. Moore (as refined 
by Roberts-Steenrod and Youngs). The theorem essentially describes all possible 
cell-like maps defined on surfaces. (Those defined on 1-manifolds clearly are just 
those maps having point and interval point-inverses.) 

THEOREM ([MO], [R-S] and [Yo]). Suppose / : M2-+Y is a cell-like map defined 
on a closed surface M2 (i.e. each f~1(y) is connected, and M2—f"1(y) is connected 
and has genus equal that of M2). Then Y is also a surface, and f is approximable 
by homeomorphisms. 

The proof is a lour de foi ce Li plane topology. 

5. Cell-like maps as limits of homeomorphisms. The preceding proposition implies 
that a near-homeomorphism is a cell-like map. When is the converse true? (Certainly 
not always, e.g. the map interval ->- point.) 

It turns out to be natural to restrict attention to the case where the source is 
a manifold-without-boundary (possibly even a hilbert cube manifold). If in addition 
the target is also assumed to be a manifold, then we have the following fundamental 
answer. 

THEOREM (for m ̂ 2 see above; m = 3 Armen trout [Ar2]; 5^m<oo Siebenmann 
[Si]; m=<*> Chapman [Ch2]; m=4 unknown). Suppose f: Mm-*Nm is a cell-like 
map (read cellular if m=3) of m-manifolds-without-boundary, m ^ 4. Then f is 
approximable by homeomorphisms. 

We now arrive at the focal point of this article, which is: What happens in the 
above theorem if N is not at the outset assumed to be a manifold (but M is)? 
Does the rest of the data (namely, that N is a cell-like image of a manifold) neces
sarily imply that TV is a manifold? If dim M^2, then N is necessarily a manifold, 
by the Moore-et-al Theorem. But if dim M s>3, then in fact N need not be a mani
fold, e.g., let N=Ss/Fox-Axtin arc (see §3). So the problem becomes that of 
finding good conditions which ensure that N is a manifold. 

Starting in the 1950's, a great deal of energy was put into understanding various 
special but important cases of this question. Most of the energy and insight was 
provided by R. H. Bing, whose pioneering work opened up the area and established 
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a viable theory. Progress in the area was steady and remarkable, mostly at first 
in dimension 3, and later in higher dimensions. Here we will pass over all of these 
efforts, to concentrate in the next few sections on only the most recent developments, 

6. The Approximation Problem. We cast our problem in the following form. 

APPROXIMATION PROBLEM: Suppose f: M-+X is a cell-like map from a topological 
m-manifold-without-boundary onto an ANR X (possibly m=°° here, i.e., M may 
be a hilbert cube manifold). Find natural and useful conditions on X which guarantee 
that f be approximable by homeomorphisms. 

In light of the Moore-Armentrout-Siebenmann- Chapman Theorem above, this 
can be regarded as asking for conditions which guarantee that X be a manifold, 
at least if dim X^A. However, the reason for formulating it as an approximation 
problem will become clear, especially in §9. 

The assumption here that X be an ANR is one of unfortunate necessity. If 
m=oo9 there exists an example of a cell-like map of the hilbert cube onto a non-
ANR [Ta]. If /77<°o? it is not known whether such an X as in this problem need 
be an ANR. (This is a significant unresolved question ; it is known to be equivalent 
to whether X is finite dimensional. In fact, this question is known to be equivalent 
to that of whether a compact metric space of finite cohomological dimension neces
sarily has finite (covering) dimension [Ed6].) At any rate, in most of the interesting 
situations which arise X is independently known to be an ANR. 

7. The Approximation theorem in finite dimensions ^ 5. In the next three sections, 
we restrict attention to finite dimensions. 

In past years it was most often a certain special case of the Approximation Problem 
which was examined (as a rule), namely the stabilized case, where one asks whether 
/ : MxRï-^XXR1 is approximable by homeomorphisms. Progress on this special 
question was slow but steady, working in general on / ' s with increasingly patholog
ical singularities. For example, one of the cases here which took a long time to 
resolve, eventually affirmatively, was the case where / has only one single nontrivial 
point-inverse. 

A key step in recent years was made by J. Cannon, who turned the focus back 
to the pure, unstabilized question, by introducing in [Ca2] as a workable Z-condition 
the disjoint disc property. A space X has the disjoint disc property if, given any 
two maps f1,fz'-B2-^X, there are arbitrarily close maps g1,g2'- B

2-+X which 
have disjoint images. That is, two maps of the 2-disc into X can be general posi
tioned apart. (Interestingly, a version of the disjoint disc property was used by Bing 
in his fundamental paper [Bi3].) 

Cannon showed in [Ca2] that, with regard to the Approximation Problem, if 
X has the disjoint disc property, and if X is already known to be a manifold except 
on a codimension >>3 subset, then in fact / is approximable by homeomorphisms. 
This in turn inspired the following generalization. 
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APPROXIMATION THEOREM [Ed3]. Suppose f:Mm^X is a cell-like map from 
a topological m-manifold-without-boundary M onto an ANR X, and suppose 
5<sm<:°°. Then f is approximable by homeomorphisms <=> X has the disjoint disc 
property. 

The proof is outlined in §9. For one thing, this theorem provides another proof 
of the Siebenmann Approximation Theorem (§5), inasmuch as that is not an in
gredient. 

8. Applications of the Approximation Theorem to the introductory questions II and III. 
The Polyhedral Manifold Question naturally arose in early attempts to understand 
triangulations of topological manifolds (e.g. see the historical discussions in [Cal9 §2] 
and [Ed2, Introduction]). Given a simplicial complex K which is topologically 
a manifold-without-boundary (i.e., K is topologically homogeneous), it is not 
too hard to establish via basic algebraic topology that K has the following two 
properties. 

(1) For any (closed) simplex a of K, the homology groups of the link of a in 
K (=lk(a,K) = the collection {T} of all closed simplexes such that -cnc>=Q 
and the span T * a is a simplex of K) coincide with the homology groups of some 
sphere (in fact a sphere of dimension dim K— dim a—1), and 

(2) In addition, if a is a vertex and dim K>2, then lk(<r,K) is simply connected. 
Are these conditions sufficient to guarantee that K be a topological manifold? 

Yes, if d i m Ä ^ 3 , but the situation becomes less clear in higher dimensions. The 
essence of this question turns out to be the: 

Multiple Suspension Question. Suppose Hm is a homology /«-sphere (defined 
below). For some 1^*2, is it true that the /th suspension of Hm, IlHm (which is 
the same as the join •S*"1*/?7"), is topologically a manifold? 

(If so, it is known to be a (/ra-f-/)-sphere, since it is necessarily covered by two 
coordinate patches. Hence, if the answer is yes for some /, it remains yes for any 
greater /.) 

A homology m-sphere can be taken to be a topological wz-manifold-without-
boundary whose homology groups coincide with those of Sm. The 1=1 case is 
passed over, because if Hm is not simply-connected (e.g., Poincaré's famous 
homology 3-sphere which has for fundamental group the 120-element binary dodeca-
hedral group), then Z1!!"1 cannot possibly be a manifold at the two suspension 
points. The relation of this question to the preceding question is that Hm can be 
taken to be the link of some simplex a in K, and /=dimcj-r-l, in which case 
a neighborhood of the open simplex h in K is homeomorphic to an open subset 
of IlHm containing part of the suspension (/— l)-sphere. 

An affirmative answer to the Multiple Suspension Question for any nonsimply-
connected triangulated homology sphere would provide a non-combinatorial 
triangulation of a sphere, i.e., a triangulation which cannot be locally polyhedrally 
embedded in the euclidean space of the same dimension (cf. Introductory Question II). 
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How does this tie in with the earlier discussion of cell-like maps? The connection 
is that it can be shown (without too much trouble, at least in most cases) that given 
any homology /w-sphere Hm, and any 1^2, then there is a cell-like map / : S,,,,+l-*-
-+ZlHm from the (w+/)-sphere onto ElHm. Hence, in view of the earlier dis
cussion, the Multiple Suspension Question boils down to whether this map / is 
approximable by homeomorphisms. 

The Approximation Theorem of the preceding section provides an answer. The 
point is, the target space IlHm has the disjoint disc property whenever 7^2 (recall 
without loss w ^ 3 ) . One way to verify this is to show that given any map 
/ : B2-+ZlHm, there is an arbitrarily close map such that f~1(ZI'~1) has all of 
its components of arbitrarily small diameter, where Z 7 - 1 denotes the suspension 
(/—l)-sphere. Hence, if one started with two maps fl9f2: B2-+ZlHm, then one 
could find nearby maps g1,g2: B2-+ZlHm such that g1(B

2)ng2(B
2)nZl-1 = Q9 

by arranging the images of these components to be points and moving them to be 
disjoint. Then it is merely a matter of applying general position in the manifold 
I ' r - l ' - ^ r x i ? ' to achieve that g!(B2)ng2(B

2) = 0. 
Historically, the Multiple Suspension Question was answered affirmatively in 

almost all cases by the work described in [Ed2], and it was completely settled by 
the subsequent work in [Ca2]. The Approximation Theorem [Ed3] came later. For 
the Multiple Suspension question itself, proofs have been improved now to the 
point where they are quite succinct (e.g. see [Ca3]). 

Regarding Introductory Question II, there is now a very satisfactory answer 
which follows as a consequence of the preceding work (excluding the unknown 
dimension 4). 

POLYHEDRAL-TOPOLOGICAL MANIFOLD CHARACTERIZATION THEOREM. A simplicial 
complex K of dimension ^ 4 is topologically a manifold-without-boundary if and 
only if conditions (1) and (2) above hold. 

Note that this theorem includes as a special case an affirmative answer to the 
Multiple Suspension Question, for all 1^2 

It is worth pointing out that the related question of whether a given topological 
manifold is homeomorphic to some simplicial complex (i.e., the triangulation prob
lem, in its broader form) is now known, as a consequence of the preceding work and 
the work of Galewski-Stern and Matumoto, to rest entirely on the question of 
whether certain homology 3-spheres bound acyclic 4-dimensional manifolds (see 
[G-S] or [Ma]). This problem is smack in the middle of an active area of research 
in low dimensional manifold topology. 

Regarding Introductory Question III, the following corollary to the Approxima
tion Theorem offers some insight. 

COROLLARY. Suppose an ANR X is a cell-like image of some topological manifold-
witlwut-boundary. Then XX R2 is itself a topological manifold. 
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This follows by an argument of R. Daverman, who shows that XX R2 has the 
disjoint disc property (assuming without loss that dim X^3; observe that trivially 
XX R5 has the disjoint disc property, by applying general position in the R5 co
ordinate). The corollary remains unresolved with R2 replaced by R1 (even if 
d imZ^4 , i.e., it is unknown whether XXR1 has the disjoint disc property). 

Actually, with regard to Question II, there is a very natural and appealing: 

CONJECTURE: A space JIT is a finite-dimensional-manifold factor <=> X is an 
ENR homology manifold. 

Being a homology /«-manifold means that H*(X,X-x; Z)^H*(Rm,Rm-0;Z) 
for each point x£X. That a manifold factor X has this property is a straightforward 
consequence of Alexander duality. 

There is further discussion of this conjecture in §12. 

9. Sketch of the proof of the Approximation Theorem. The purpose of this section 
is to give some indication of the ideas, and their history, that go into the proof. 
We confine ourselves to the case where M and X are compact. 

The first important point to make is that the proof uses the Bing Shrinking Crite
rion, which is a tool introduced by Bing almost three decades ago in [BiJ for showing 
that a map is approximable by homeomorphisms. We discuss it only for compact 
spaces. This theorem was first stated in the following form by L. McAuley. 

SHRINKING THEOREM. A surjective map f:X-+Y of compact metric spaces is 

approximable by homeomorphisms o the following Bing Shrinking Criterion holds. 
Given any £>0, there is a homeomorphism h: X-^X such that 
(1) dist (/ /*,/)<£ and 
(2) for each y£Y, diam h(f~1(y))^s. 

Our proof will make use of the implication <=. The reverse implication is mentioned 
only for completeness; it is quickly proved by letting A = ^ V i f° r two successively 
chosen homeomorphisms g0,g1 approximating / . Concerning the implication <=, 
it is worth presenting here a slick baire category proof (which is not the way the 
proof was originally discovered and developed). In the baire space <ß(M, X) of 
maps from M to X, with the uniform metric topology, let ê be the closure 
of the set {fh\h: M-+M is a homeomorphism}. The Bing Shrinking Criterion 
amounts to saying that for any e>0, the open subset of s-maps in S (= maps 
having all point-inverses of diameter <e), denoted ^B, is dense in ê. Hence 
^o — rU-o^i is dense in S, since S is a baire space. Since SQ consists of homeo
morphisms, this shows that f£$ is approximable by homeomorphisms. 

As a consequence of this discussion we see that, in order to prove the Approxima
tion Theorem, it suffices to construct, for any given £>0, a homeomorphism 
h\ M-+M as described in the Shrinking Theorem. 

The next basic point about the proof is that it proceeds more or less by induction. 
The idea is to filter the target X as 

X=XW 3 Z<m-1) D . . . D J ( 1 ) 3 Xw 3 Z c - 1 } = 0, 
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where each XU) is a-compact (= a countable union of compacta) and 
âim(X(i)—X{i~1))=0 (hence dimX(0=/). Such a filtration is easy to find, and is 
common in dimension theory arguments. J. Cannon is probably most responsible 
for introducing the filtration method of argument into "shrinking theory". 

Given the filtration, the idea is to take the given cell-like map / , and to approximate 
it by successively better cell-like maps {/J. Each f will have the property that 
it is 1-1 over X(i) (that is, the restriction //|//_1(Jr(,)) is 1-1). Of course, when we 
reach i=m we are done. 

Given a map / : M-+X, the singular set is the set S(f)= u {x^X\f~1(x) contains 
more than one point}. Observe that S(f) is <7-compact, because S(f) = 
= U a > 0 { ^ ^ | d i a m / - i ( A ' ) ^ e } . 

In going from X 0 - 1 * to X{i), we make use of the following: 

O-DIMENSIONAL APPROXIMATION PROPOSITION. Suppose f\M^Y is a cell-like 
map such that S(f) is ^-dimensional (i.e., each compact subset of S(f) is totally 
disconnected) and S(f) is ^-negligible in Y, that is, for each open set U in Y, 
n1(U—S(f))-+n1(U) is an isomorphism. Then f is approximable by homeo
morphisms. 

DISCUSSION OF PROOF. One should consider first the simplest possible case, where 
S(f) is a single point, say y. In tins case f~1(y) satisfies the "cellularity criterion" 
(see §3), and so is cellular in M. Hence Y (^M/{f~1(y)^point}) is a manifold, 
and / is approximable by homeomorphisms. 

The model case of the Proposition, to which the general case is readily reduced, 
is the "countable null" case, in which S(f) is countable (say S(f) = {yr, y2, ...}), 
and diamf~1(yi)-+0 as /-»-oo. In this case the /"^(j*)'15 c a n appear to be quite 
tangled together in M, but in reality they are not (e.g., it turns out that the preimages 
of any two subsets of S(f) whose closures in Y are disjoint can be separated by a 
locally smooth (m-l)-sphere in M—/-1 (£(/)) . In order to show that this / is 
approximable by homeomorphisms it suffices, according to the Shrinking Theorem, to 
find a homeomorphism h:M-+M, with /1% close t o / , such that each h(f~1(yi)) 
has small diameter. Inasmuch as there are only finitely many / - 1 0 , * ) ' s bigger 
than any given size, this at first may seem an easy matter, but the difficulty is that 
in shrinking small a given f~\yi), one may inadvertently stretch larger some of 
the nearby f^iyj)9*. To find the desired homeomorphism h9 we generalize 
a 1950's argument of Bing, who (implicitly) in [Bi2] constructed h for the case where 
each f~x(yò is geometrically a cone in some coordinate patch covering it. With 
a little bit of work, one can show that our more general /^(yd9* have sufficiently 
good conelike structure (after all, they are almost contractible) so that the Bing 
program can be made to succeed. 

In order to be able to apply this Proposition, we assume an additional condition 
on the X ( / ) 's, namely, that JT<m-8>is %-negligible in X, and similarly that X-X™ 
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is ^-negligible in X. This is exactly the point where the disjoint disc property of 
X is used. 

Given these tools, the proof of the Approximation Theorem can be summarized 
quickly as follows. (Note: this is the baire category version of the original argument, 
and so the Shrinking Theorem appears here only implicitly.) Let ^(M, X; Z0) 
denote the space of cell-like maps from M onto X which are 1-1 over X0czX, 
provided with the uniform metric topology (recall M, X are compact). If XQ is 
(7-compact, then %(M, X; XQ) is a Gö (hence baire) subspace of the baire space 
<g(M, X), for if XQ is compact, the set of maps in <€(M, X) which are s-maps 
over X0 is open in %>(M, X). 

Our goal is to show that %>(M, X; X) (= the homeomorphisms from M to X) 
is dense in <&(M, X; 0)=%(M, X). To achieve this, it suffices to show that each 
%(M,X;X(i)) is dense in V(M9 X; AT*1"1*). Write X^ = ]JJ=1Xf\ where each 
Xf is compact. Then ^(M,X; X^) = f]J=1^(M,X; X^-^uXf). By the 
baire property it suffices to show that for each j (and each i), <£(M, X; Z ( £ _ 1 ) u X^) 
is dense in %>(M, X; Z ( i _ 1 ) ) . This in turn is a straightforward application of the 
O-Dimensional Approximation Proposition, thus: Given g^(M,X',X^~1)), 
factor g as 

0 00 91 ' 

where Y and gt are defined by declaring that the nontrivial point-inverses of 
g0 are precisely the nontrivial point-inverses of g which lie over Xf\ That is, 
Y is the quotient space Y=M/{g~x(x) ~ point | x^Xf*}. Then the quotient map 
g0:M->Y has O-dimensional singular set S(g0) which is ^-negligible in Y, since 
either g1(S(g0))c:X{m-3) or else g1(S(g0))czX~Xi2\ Now by the proposition 
g0 is approximable by a homeomorphism, h0 say. Then g1hQ^(M, X; X^'^vXf) 
and it approximates g. 

10. Cell-like maps on hilbert cube manifolds. The preceding sections concentrated 
on cell-like maps of finite dimensional spaces. As already noted, the Approximation 
Problem (see §6) makes perfectly good sense even in the hilbert cube manifold 
setting. We repeat it here. 

APPROXIMATION PROBLEM: Suppose f:M-+X is a cell-like map from a hilbert 
cube manifold M onto an ANR X. Find natural and useful conditions on X which 
guarantee that f be approximable by homeomorphisms. 

Geometric topologists have recognized for several years now, thanks largely to 
the work of T. Chapman, that finite dimensional manifold questions often have 
worthwhile hilbert cube manifold analogues. These analogues are usually more pristine 
and more tractable, largely because of the homogeneity of the hilbert cube ( = for 
all x, yÇ.I°°, there exists a homeomorphism of J°° carrying x to y; in particular, 
the hilbert cube has no "boundary") and the stability of the hilbert cube 
(=I°° xl°° % I°°). A specific example of such a problem is the stabilization problem for 
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cell-like maps (which is a special case of the Approximation Problem): If / : M-+X 
is a cell-like map from a hilbert cube manifold onto an ANR X, is it true that the 
stabilized map fxid (I°°): MXI00-+-XXI00 is approximable by homeomorphisms? 
This question gained significance after R. Miller established in 1974 [Mi] that for 
any ANR X, the product XX[0, °°) is a cell-like image of a hilbert cube manifold 
(following which J. West [We] showed how to eliminate the [0, oo) factor). Con
sequently, to establish the longstanding Borsuk conjecture that an ANR crossed 
with the hilbert cube becomes a hilbert cube manifold, it became sufficient (and 
necessary, by Chapman's Approximation Theorem (§5)) to establish the above 
stabilization problem. This was accomplished in 1975 [Ed4], by making use of a Bing 
ShrinkingCriterionargument(theretoforeunexploitedininfinite dimensional topology). 

The following year H. Toruiiczyk extended this work in striking fashion, to 
provide an attractive answer to the Approximation Problem. Completely inde
pendently of Cannon, Toruiiczyk hit upon the disjoint cells property: A space X has 
the disjoint cells property if, given any two maps from an 72-cell (n arbitrary) into 
X, there are two arbitrarily close maps having disjoint images. (For ANR's, this 
property has many interesting equivalent formulations, e.g., there exist two maps 
i,j:X-+X, each arbitrarily close to id (X), suchthat i(X)nj(X) = @.) Clearly 
for X to be a hilbert cube manifold this is a necessary condition. Torunczyk 
established its sufficiency, again using a Bing Shrinking Criterion argument. 

APPROXIMATION THEOREM (H. Toruiiczyk [ToJ). Suppose f: M-+X is a cell-like 
map from a hilbert cube manifold M onto an ANR X. Then f is approximable 
by homeomorphisms <=> X has the disjoint cells property. 

In light of the Miller-West theorem, one can drop the map / from the theorem, 
and assert the following. 

7°°-MANIFOLD CHARACTERIZATION THEOREM (H. Torunczyk [ToJ). An ANR X 
is a hilbert cube manifold o X has the disjoint cells property. 

The significance of this theorem is in its applications, one of which is a satisfying 
proof of the following old conjecture. 

COROLLARY (Schori-West [S-W], Curtis-Schori [C-S]). Suppose X is a metric 
continuum (= compact and connected). Let 2X [resp. C(X)] denote the space, 
provided with the hausdorff metric, of all closed [resp. closed and connected] subsets 
of(X. Then 
(1) 2X is homeomorphic to the hilbert cube <=• X is locally connected, that is, X is 

a peano continuum, and 
(2) C(X) is homeomorphic to the hilbert cube <=• X is a nondegenerate peano contin

uum and X contains no free arcs. 

The classical case of part (1) of this conjecture, solved by Schori-West, is the 
case X=I. \It is a pleasant exercise to verify that 21 has the disjoint cells property. 
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11. Analogues in hilbert space topology. In this section we mention briefly some 
very recent additional work of H. Torunczyk [Toa], which grew out of his preceding 
work and some earlier work of his on non-locally-compact ANR's. In this sçction, 
all spaces are (possibly non-locally-compact) separable complete metric spaces. 

The appropriate model manifold in the non-locally-compact infinite dimensional 
setting is hilbert space l2 (here we use only its topological structure and so we could 
as well use its homeomorph R^^X^R1, as established by R. D. Anderson). 

Torunczyk found that in hilbert space topology the appropriate analogue of 
the disjoint cells property is the following: A space X has the discrete cells property 
if, given any map f: D-*X, where D= + ~ = 0 D" is the disjoint union of «-cells 
(0<:w<«0, then there is an arbitrarily (uniformly) close map g: D+X so that the 
images of the Z)"'s comprise a disjoint, discrete (hence closed) collection of compacta 
in X. Using this, one has the 

APPROXIMATION THEOREM (Torunczyk). Suppose f: M-+X is a map from a hilbert 
space manifold M onto an ANR X. Then f is approximable by homeomorphisms 
<& f is a fine homotopy equivalence, and X has the discrete cells property. 

Here "approximable by homeomorphisms" means that given any e: X->(0, °°), 
there exists a homeomorphism h: M->X such that for all zZM, dist(/(z), h(z))< 
e(/(z)). The phrase "/ is a fine homotopy equivalence" means that given any 
s: X-+(0, oo), there exists a map g:X-+M such that fg is homotopic to id(Z) 
by a homotopy whose motion is limited by e, and similarly gf is homotopic to 
id (M) by a homotopy whose motion is limited under / by s. We note that in 
this theorem / is not assumed to be any special kind of map (e.g. neither proper, 
nor closed, nor even a quotient map), so that for example the theorem applies to the 
(known) case of the projection map l2Xl2-*l2. The above theorem is proved via 
a Bing shrinking argument. 

Combining the above with his earlier proof that an ANR crossed with hilbert 
space becomes a hilbert space manifold, Torunczyk obtained the impressive 

HILBERT SPACE MANIFOLD CHARACTERIZATION THEOREM (Torunczyk). An ANR 
X is a hilbert space manifold <=> X has the discrete cells property. 

An example of an interesting corollary of this theorem is the following. 

COROLLARY. A countably infinite product of ARs, infinitely many of which are 
noncompact, is homeomorphic to hilbert space l2. 

Recall an AR (absolute retract) is nothing more than a contractible ANR. 
Torunczyk extended these results to frechet manifolds of higher weights, too. 

12. Characterizing topological manifolds. How does one characterize a finite 
dimensional topological manifold? (compare the nice infinite dimensional charac-
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terizations in §§10,11). This is the kind of question to which there can be many 
useful answers. One conjecture in particular that is appealing, and ties in very 
strongly with the material in this article, has been enunciated by J. Cannon. 

MANIFOLD CHARACTERIZATION CONJECTURE. Fix 5^m<°°. A space X is an 
w-manifold-without-boundary <=> X is an ENR homology m-manifold having 
Lhe disjoint disc property. 

This conjecture is a bit stronger than the one at the end of §8 (see the definitions 
there). Again, the forward implication above is well known. Interestingly, an 
affirmative solution of this conjecture was announced recently by F. Quinn. 

13. Dimensions 3 and 4. Almost all of the results above exclude dimension 4, and 
many exclude dimension 3 as well. This is in part due to the lack of an appropriate 
analogue of the disjoint disc property in these dimensions, and also in part due to 
Dur ignorance of the topology of manifolds in these dimensions (particularly di
mension 4). What is a good conjecture to make for the Approximation Problem, 
in either dimensions 3 or 4? 

Dimension 4 is particularly bewildering. The difficulties there tie in with the 
difficulties already encountered by smooth manifold topologists working in that 
iimension on handlebody-structure related problems (e.g. surgery and »s-cobordism 
Jieorems). As an example, it is not even known whether a cell-like surjection 
r:M*-+N* of closed 4-manifolds having exactly one non-trivial point inverse 
is approximable by homeomorphisms (this amounts to asking whether the nontrivial 
3oint-inverse is cellular in M4). Or whether the cellularity criterion (§3) works in 
iimension 4. Questions such as these are in need of answers. 
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