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Abstract

We propose a method for calculating cohomology operations for finite simplicial
complexes.

Of course, there exist well–known methods for computing (co)homology groups,
for example, the “reduction algorithm” consisting in reducing the matrices corre-
sponding to the differential in each dimension to the Smith normal form, from
which one can read off (co)homology groups of the complex [Mun84], or the “in-
cremental algorithm” for computing Betti numbers [DE93]. However, there is a
gap in the literature concerning general methods for computing cohomology oper-
ations.

For a given finite simplicial complex K, we sketch a procedure including the
computation of some primary and secondary cohomology operations and the A∞–
algebra structure on the cohomology of K. This method is based on the tran-
scription of the reduction algorithm mentioned above, in terms of a special type
of algebraic homotopy equivalences, called a contraction, of the (co)chain com-
plex of K to a “minimal” (co)chain complex M(K). For instance, whenever the
ground ring is a field or the (co)homology of K is free, then M(K) is isomorphic
to the (co)homology of K. Combining this contraction with the combinatorial for-
mulae for Steenrod reduced pth powers at cochain level developed in [GR99] and
[Gon00], these operations at cohomology level can be computed. Finally, a method
for calculating Adem secondary cohomology operations Φq : Ker(Sq2Hq(K)) →
Hq+3(K)/Sq2Hq(K) is showed.

∗Authors are partially supported by the PAICYT research project FQM-296 from Junta de Andalu-
cia and the DGES–SEUID research project PB98–1621–C02–02 from Education and Science Ministry
(Spain).
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1 Introduction

Particular important topological invariants are the (co)homology groups. In a certain
way, these groups measure the degree of connectedness of the space. Although there are
plenty of programs for calculating (co)homology groups of finite simplicial complexes,
we have not found any general software for computing cohomology operations.

Our main motivation is the design of a program for computing all sort of cohomology
invariants on finite simplicial complexes: (co)homology groups, cup product, Bockstein
cohomology operation, cohomology operations determined by homomorphisms of coef-
ficient groups, Steenrod squares and reduced pth powers, Pontrjagin squares and pth
powers, the A∞–algebra structure of cohomology, higher cohomology operations, etc. In
this paper, we give a solution to the problem of computing Steenrod squares and reduced
pth powers [Ste47, ES62] and Adem secondary cohomology operations [Ade52, Ade58].
Our approach is based on the translation of the well–known “reduction” algorithm for
computing (co)homology groups [Mun84] in terms of homotopy equivalences. In that
way, we have a description of the generators of the (co)homology groups in terms of
cochains. In fact, this is sufficient to enable us to determine the effect of the induced
maps between cohomology groups corresponding to cochain maps. Using the same ap-
proach we think that the rest of primary cohomology operations could be attacked.

2 Background

We give a brief summary of concepts and notation used in the following sections. Our
terminology follows Munkres [Mun84].

For 0 ≤ q ≤ n, a q–simplex σ in Rn is the convex hull of a set T of q + 1 affinely
independent points (v0, ..., vq). The dimension of σ is |σ| = q. For every non–empty
U ⊂ T , the simplex τ defined by U is a face of σ. A simplicial complex K is a collection
of simplices satisfying the following properties:

• If τ is a face of σ and σ ∈ K then τ ∈ K.

• If σ, τ ∈ K then σ ∩ τ is either empty or a face of both.

The set of all the q–simplices of K is denoted by K(q). The largest dimension of any
simplex in K is the dimension of K. A simplex σ in K is maximal if it is not face of
any simplex in K. Therefore, K can be given by the set of its maximal simplices. A
subset L ⊂ K is a subcomplex of K if it is a simplicial complex itself. All simplices in
this paper have finite dimension and all simplicial complexes are finite collections. From
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now on, K denotes a finite simplicial complex. The oriented q–simplex σ = [v0, ..., vq] is
the equivalence class of the particular ordering (v0, ..., vq). Two orderings are equivalent
if they differ from one another by an even permutation.

Let Λ denote an abelian group. A formal sum, λ1σ1 + · · ·+λnσn, where λi ∈ Λ and σi

are oriented q–simplices, is called a q–chain. The chain complex canonically associated
to K, denoted by C∗(K), is the family of groups such that in each dimension q, Cq(K)
is the group of q–chains in K. The boundary of a q–simplex σ = [v0, v1, ..., vq] is the
(q − 1)–chain

∂qσ =
q

∑

i=0

(−1)i[v0, v1, . . . , v̂i, . . . , vq] ,

where the hat means that vi is omitted. By linearity, the boundary operator ∂q can be
extended to q–chains, where it is a homomorphism. It is clear that for each q–simplex
σj there exist unique integers λij such that

∂q(σj) =
∑

τi∈K(q−1)

λijτi .

The matrix Aq = (λij) is the matrix of ∂q relative to the bases K(q) and K(q−1). The
group of q–cycles, Zq(K), is the kernel of ∂q, and define Z0(K) = C0(K). The group of
q–boundaries, Bq(K), is the image of ∂q+1, that is, the subgroup of q–chains b ∈ Cq(K)
for which there exists a (q + 1)–chain a with b = ∂q+1a. It can be shown that ∂q∂q+1 is
null so Bq(K) is a subgroup of Zq(K). Then, the qth homology group

Hq(K) = Zq(K)/Bq(K)

can be defined for each integer q. Let K and L be two simplicial complex. A chain map

f : C∗(K) → C∗(L) is a family of homomorphisms

{fq : Cq(K) → Cq(L)}q≥0

such that ∂qfq = fq−1∂q, for all q.

Dual concepts to the previous ones can be defined. The cochain complex canonically
associated to K, C∗(K), is the family

C∗(K) = {Cq(K), δq}q≥0,

where

Cq(K) = Hom(Cq(K); Λ) = {c : Cq(K) → Λ, c is a homomorphism}
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and δq : Cq(K) → Cq+1(K) called the coboundary operator is given by

δq(c)(a) = c(∂q+1a) ,

where c ∈ Cq(K) and a ∈ Cq+1(K). Observe that a q–cochain can be defined only on
K(q) and extended to Cq(K) by linearity. Moreover, if Λ is a ring, then a basis of Cq(K)
is the set of homomorphisms

σ∗ : Cq(K) → Λ ,

such that if τ ∈ K(q), then σ∗(τ) = 1 if τ = σ, and σ∗(τ) = 0 otherwise. Zq(K) and
Bq(K) are the kernel of δq and the image of δq−1, respectively. The elements in Zq(K)
are called q–cocycles and those in Bq(K) are called q–coboundaries. It is also satisfied
that δqδq−1 = 0 so the qth cohomology group

Hq(K) = Zq(K)/Bq(K)

can also be defined for each integer q. If Λ is a ring, the cohomology of K is also a ring
with the cup product

⌣: Hp(K) ⊗Hq(K) → Hp+q(K)

defined at cocycle level by

c ⌣ c′(v0, v1, . . . , vp+q) = µ(c(v0, . . . , vp) ⊗ c′(vp, . . . , vp+q)) ,

where v0 < v1 < · · · < vp+q, c is an p–cocycle, c′ is a q–cocycle and µ is the product on
Λ.

We use in this paper a special type of homotopy equivalences. A contraction r of a
chain complex N∗ to another chain complex M∗ is a set of three homomorphisms (f, g, φ)
where f : Nn →Mn (projection) and g : Mn → Nn (inclusion) are chain maps and satisfy
that fg = 1M , and φ : Nn → Nn+1 (homotopy operator) satisfies that

1N − gf = φ∂N + ∂Nφ .

Moreover, φg = 0 , fφ = 0 , φφ = 0 . A contraction up to dimension n of N∗ to M∗

consists in a set of three homomorphisms (f, g, φ) such that

fk : Nk →Mk , gk : Mk → Nk and φk−1 : Nk−1 → Nk
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are defined for all k ≤ n, φn = 0, and the conditions of being a contraction are satisfied
up to dimension n. Starting from a contraction r = (f, g, φ) of N∗ to M∗, it is possible
to give another contraction r∗ = (f ∗, g∗, φ∗) of Hom(N ; Λ) to Hom(M ; Λ) as follows:

f ∗ : Hom(Nn; Λ) → Hom(Mn; Λ) , g∗ : Hom(Mn; Λ) → Hom(Nn; Λ) ,

φ∗ : Hom(Nn; Λ) → Hom(Nn−1; Λ) ,

are such that

f ∗(c) = cg , g∗(c′) = cf and φ∗(c) = cφ ,

where c ∈ Hom(Nn; Λ) and c′ ∈ Hom(Mn; Λ).

3 “Minimal” Chain Complexes

It is possible to translate the results of the “reduction algorithm”, discussed at length
in [Mun84], in terms of homotopy equivalences. Combining this translation with mod-
ern homological perturbation techniques, algorithms for computing algebraic invariants,
such as the A∞–algebra structure on the cohomology of K and primary and secondary
cohomology operations can be designed in an easy way.

First of all, it is necessary to recall the reduction algorithm for computing homology
groups of a finite simplicial complex K. This method consists in reducing the matrix
A of the boundary operator in each dimension q, relative to given bases of Cq(K) and
Cq−1(K), to its Smith normal form A′ (a matrix of integers satisfying that all its elements
are zero except for λ′11 ≥ 1 and λ′11/λ

′
22/ · · ·/λ

′
ℓℓ for some integer ℓ). This reduction is

done in each dimension q modifying the given base of Cq−1(K), using the following
“elementary row operations” on the matrix A:

(1) Exchange row i by row k.

(2) Multiply row i by −1.

(3) Replace row i by row i+ n(row k), where n is an integer and k 6= i.

Of course, there are similar “column operations” on A corresponding to changes of basis
of Cq(K). With this operations, the Smith normal form A′ of A can be obtained, relative
to some bases {a1, . . . ar} of Cq(K) and {e1, . . . , es} of Cq−1(K). Then,
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(1) {aℓ+1, . . . , ar} is a basis of Zq(K),

(2) {λ′11e1, . . . , λ
′
ℓℓeℓ} is a basis of Bq−1(K).

Obviously, a dual treatment for C∗(K) and, consequently, for the cohomologyH∗(K),
can be done.

A chain complex M∗(K) is called minimal if in each dimension q, Mq(K) is a finitely
generated free abelian group and the Smith normal form A′ of the differential of Mq(K)
has the first element λ′11 different from 1. An algebraic minimal model of K is a minimal
chain complex M∗(K) together with a contraction of C∗(K) to M∗(K). Indeed, there is
an algebraic minimal model for any finite simplicial complex K and any two algebraic
minimal models of K are isomorphic.

Now, let us construct inductively an algebraic minimal model of a given finite sim-
plicial complex K. Suppose that an algebraic minimal model up to dimension q − 1
is already constructed. That is, we have a minimal chain complex M ′

∗(K) such that
M ′

i(K) = 0, i ≥ q, and a contraction up to dimension q − 1, (f ′, g′, φ′), of C∗(K) to
M ′

∗(K). Reduce the matrix of ∂q : Cq(K) → Cq−1(K) to its Smith normal form A′. If
the elements λ′11 = · · · = λ′tt = 1, for t ≤ ℓ (that is, ∂(ai) = ei for 1 ≤ i ≤ t), then define
M∗(K) as follows:

Mi(K) = M ′
i(K), for i 6= q − 1, q

Mq−1(K) = M ′
q−1(K) − Λ[e1, . . . , et]

Mq(K) = Cq(K) − Λ[a1, . . . , at]

where Λ[a1, . . . , at] and Λ[e1, . . . , et] are the free abelian groups generated by {a1, . . . , at}
and {e1, . . . , et}, respectively. The formulae for the component morphisms of the con-
traction up to dimension q, (f, g, φ), of C∗(K) to M∗(K) are:

f(x) =











f ′(x) if x ∈ Λ[et+1, . . . , es] or x ∈ Ci(K), i < q,
0 if x ∈ Λ[e1, . . . , et] or x ∈ Λ[a1, . . . , at],
x if x ∈ Λ[at+1, . . . , ar],

g(y) =

{

g′(y) if y ∈Mi(K), i < q,
y if y ∈Mn(K),

φ(x) = φ′(x) if x ∈ Ci(K), i < q − 1,

φ(ei) = ai if 1 ≤ i ≤ t,

φ(ei) = 0 if t+ 1 ≤ i ≤ s.
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In this way, we can determine an algebraic minimal model for a finite simplicial
complex K. Observe that whenever Λ is a field or the homology of K is free, then
M∗(K) is isomorphic to H∗(K) and, therefore, we can obtain a contraction of C∗(K) to
its homology.

Passing to cohomology does not represent a problem and a dual process can be done
without effort.

The fact of dealing with contractions is highly important in obtaining topology in-
variants such as the A∞–algebra structure of the cohomology of K [GS86]. In particular,
if Λ = Q, then from the previous contraction connecting C∗(K) with H∗(K), it is
possible to design an algorithm computing the commutative A∞–algebra structure of
H∗(K) reflecting the complete rational homotopy type of K [Kad98]. We will see in the
next section that the homotopy equivalence data structure is also essential in computing
cohomology operations.

4 Steenrod Cohomology Operations

Let us suppose Λ = Zp (p being a prime), then it is possible to construct an algebraic
minimal model for any finite simplicial complex K, in which the associated contraction
(f ∗, g∗, φ∗) connects C∗(K) with its cohomology. From this data and the combinatorial
formulae for Steenrod squares and reduced pth powers [Ste47, ES62] at cochain level in
terms of face operators established in [GR99, Gon00], Steenrod cohomology operations
can effectively be computed.

For instance, the formula for the Steenrod reduced power

P1 : H∗(X) → H∗p−1(X)

at cochain level [Gon00] is:

P1(c)(σ) =
p−1
∑

j=1

(j+1)q−1
∑

i=jq

(−1)(i+1)(q+1)+1

µ(c(v0, . . . , vq)

⊗(vq, . . . , v2q)
...

⊗c(v(j−2)q, . . . , v(j−1)q)

⊗c(v(j−1)q, . . . , vi−q, vi, . . . , v(j+1)q−1)

7



⊗c(v(j+1)q−1, . . . , v(j+2)q−1)

...

⊗c(v(p−2)q−1, . . . , v(p−1)q−1)

⊗c(v(p−1)q−1, . . . , vpq−1)

⊗c(vi−q, . . . , vi) )

where c is a q–cocycle, σ = (v0, v1, . . . , vpq−1) is a (pq − 1)–simplex such that v0 < v1 <
· · · < vpq−1 and µ is the product on Zp. Therefore, for calculating the cohomology class
P1(α) with α ∈ Hq(K), we only have to compute f ∗P1g

∗(α).

In the particular case of Steenrod squares,

Sqi : H∗(K;Z) → H∗+i(K;Z2) ,

we can express them in a matrix form due to the fact that these cohomology operations
are homomorphisms. Moreover, the process of diagonalization of such matrices can give
us detailed information about the kernel and image of these cohomology operations.

5 Adem Secondary Cohomology Operations

For attacking the computation of secondary cohomology operations, we will see in this
section that the homotopy operator φ∗ of the contraction associated to an algebraic
minimal model of a simplicial complex K is essential.

First of all, we shall indicate how Adem secondary cohomology operations

Ψq : N q(K) → Hq+3(K;Z2)/Sq
2Hq+1(K;Z)

can be constructed (see [Ade52]). N q(K) denotes the kernel of Sq2 : Hq(K;Z) →
Hq+2(K;Z2) These operations appear using the known relation:

Sq2Sq2α + Sq3Sq1α = 0

for any α ∈ H∗(K;Z). For this particular relation there exist cochain mappings

Ej : C∗(K ×K ×K ×K) → C∗−j(K)

such that mod 2
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(c ⌣q−2 c) ⌣q (c ⌣q−2 c) + (c ⌣q−1 c) ⌣q (c ⌣q−1 c) = δE3q−3(c
4) ,

where ⌣k is the cup–k product [Ste47] and c is a q–cochain. Recall that, at cochain
level, Sqi(c) = c ⌣j−i c mod 2, where c is a j–cocycle. Then Ψq is defined at cochain
level by

ψq(c) = b ⌣i+1 b+ b ⌣i+2 δb+ E3i+3(c) + η(c) ⌣i−1 η(c) + η(c) ⌣i δη(c) ,

where c is a q–cocycle representative of a cohomology class ofN q(K), b is a (q+1)–cochain
such that c ⌣q−2 c = δb and η(c) = 1

2
(c ⌣q c+ c).

If Z2 is the ground ring, formulae for computing cup–i products are well–known
[Ste47]. A method for obtaining “economical” formulae for E3i+3 in terms of face oper-
ations is given in [Gon00]. For example,

E3(c
4)(σ) = µ(c(v0, v2, v3) ⊗ c(v0, v1, v2) ⊗ c(v3, v4, v5) ⊗ c(v2, v3, v5)

+c(v0, v4, v5) ⊗ c(v3, v4, v5) ⊗ c(v0, v1, v2) ⊗ c(v0, v1, v2)

+c(v0, v1, v5) ⊗ c(v3, v4, v5) ⊗ c(v1, v2, v3) ⊗ c(v1, v2, v3)

+c(v0, v1, v2) ⊗ c(v2, v4, v5) ⊗ c(v2, v3, v4) ⊗ c(v2, v3, v4)

+c(v0, v1, v2) ⊗ c(v2, v3, v5) ⊗ c(v3, v4, v5) ⊗ c(v3, v4, v5)) ,

where c is a 2–cochain, σ = (v0, v1, ..., v5) is a 5–simplex such that v0 < v1 < · · · < v5

and µ is the product on Z2. Therefore, the steps for computing Ψq are the following:

1. Take α ∈ N q(K) making use of the diagonalization of the matrix of Sq2 in dimen-
sion q.

2. Compute b = φ∗Sq2g∗(α).

3. Compute f ∗ψg∗(α).

Note that it is very easy to prove that

g∗(α) ⌣q+2 g
∗(α) = δφ∗Sq2g∗(α) ,

using the relation 1 − g∗f ∗ = φ∗δ + δφ∗.
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6 Some Comments

All these results can be given in a more general framework working with not necessarily
finite simplicial complexes. Nevertheless, a contraction of the chain complex associated
to the simplicial complex to its (co)homology must exist in order to develop the method.

Concerning the complexity, obtaining a contraction of a finite simplicial complex
K to its (co)homology can be done using Delfinado–Edelsbrunner incremental algorithm
[ELZ00] which runs in time as most cubic in the number of simplices of the complex if the
group of coefficients is a field. On the other hand, another datum to take into account
is the number of summands of the formulae for computing cohomology operations at
cocycle level. For example the number of summands of P1 over a q–cocycle c and a
(pq − 1)-simplex σ is (p− 1)q.

Finally, in order to obtain the image of any cohomology operations at cochain level
over a representative cocycle using our formulae, we have to compute them over a basis
of C∗(K) in the desired dimension. A way of decreasing the complexity of this is to do a
“topological” thinning of the simplicial complex K in order to obtain a thinned simplicial
subcomplex Mtop(K) of K, such that there exists a contraction of C∗(K) to C∗(Mtop(K))
For example, one way to construct it is using simplicial collapses [For99]. Then we
can apply our machinery to compute cohomology operations in the thinned simplicial
complex Mtop(K) and the results can be easily interpreted in the “big” simplicial complex
K.
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[Gon00] R. González–Dı́az. Cohomology Operations: A Combinatorial Approach. Ph.
D. Thesis, Seville University, May 2000.
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